Al-Hasan, Muath, Alibakhshikenari, Mohammad, Virdee, Bal Singh, Sharma, Richa, Iqbal, Amjad, Althuwayb, Ayman A. and Falcone, Francisco (2023) Metamaterial inspired electromagnetic bandgap filter for ultra-wide stopband screening devices of electromagnetic interference. Scientific Reports, 13 (1) (13347). pp. 1-9. ISSN 2045-2322
Presented here is a reactively loaded microstrip transmission line that exhibit an ultra-wide bandgap. The reactive loading is periodically distributed along the transmission line, which is electromagnetically coupled. The reactive load consists of a circular shaped patch which is converted to a metamaterial structure by embedded on it two concentric slit-rings. The patch is connected to the ground plane with a via-hole. The resulting structure exhibits electromagnetic bandgap (EBG) properties. The size and gap between the slit-rings dictate the magnitude of the reactive loading. The structure was first theoretically modelled to gain insight of the characterizing parameters. The equivalent circuit was verified using a full-wave 3D electromagnetic (EM) solver. The measured results show the proposed EBG structure has a highly sharp 3-dB skirt and a very wide bandgap, which is substantially larger than any EBG structure reported to date. The bandgap rejection of the single EBG unit-cell is better than − 30 dB, and the five element EBG unit-cell is better than − 90 dB. The innovation can be used in various applications such as biomedical applications that are requiring sharp roll-off rates and high stopband rejection thus enabling efficient use of the EM spectrum. This can reduce guard band and thereby increase the channel capacity of wireless systems.
Available under License Creative Commons Attribution 4.0.
Download (2MB) | Preview
View Item |