High-risk neuroblastoma stage 4 (NBS4): developing a medicinal chemistry multi-target drug approach

Gerges, Amgad and Canning, Una (2025) High-risk neuroblastoma stage 4 (NBS4): developing a medicinal chemistry multi-target drug approach. Molecules, 30 (10). pp. 1-22. ISSN 1420-3049

Abstract

Childhood neuroblastoma (NB) is a malignant tumour that is a member of a class of embryonic tumours that have their origins in sympathoadrenal progenitor cells. There are five stages in the clinical NB staging system: 1, 2A, 2B, 3, 4S, and 4. For those diagnosed with stage 4 neuroblastoma (NBS4), the treatment options are limited with a survival rate of between 40 and 50%. Since 1975, more than 15 targets have been identified in the search for a treatment for high-risk NBS4. This article is concerned with the search for a multi-target drug treatment for high-risk NBS4 and focuses on four possible treatment targets that research has identified as having a role in the development of NBS4 and includes the inhibitors Histone Deacetylase (HDAC), Bromodomain (BRD), Hedgehog (HH), and Tropomyosin Kinase (TRK). Computer-aided drug design and molecular modelling have greatly assisted drug discovery in medicinal chemistry. Computational methods such as molecular docking, homology modelling, molecular dynamics, and quantitative structure–activity relationships (QSAR) are frequently used as part of the process for finding new therapeutic drug targets. Relying on these techniques, the authors describe a medicinal chemistry strategy that successfully identified eight compounds (inhibitors) that were thought to be potential inhibitors for each of the four targets listed above. Results revealed that all four targets BRD, HDAC, HH and TRK receptors binding sites share similar amino acid sequencing that ranges from 80 to 100%, offering the possibility of further testing for multi-target drug use. Two additional targets were also tested as part of this work, Retinoic Acid (RA) and c-Src (Csk), which showed similarity (of the binding pocket) across their receptors of 80–100% but lower than 80% for the other four targets. The work for these two targets is the subject of a paper currently in progress.

Documents
10411:52843
[thumbnail of molecules-30-02211.pdf]
Preview
molecules-30-02211.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (11MB) | Preview
Details
Record
View Item View Item