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Abstract: Childhood neuroblastoma (NB) is a malignant tumour that is a member of a
class of embryonic tumours that have their origins in sympathoadrenal progenitor cells.
There are five stages in the clinical NB staging system: 1, 2A, 2B, 3, 4S, and 4. For those
diagnosed with stage 4 neuroblastoma (NBS4), the treatment options are limited with a
survival rate of between 40 and 50%. Since 1975, more than 15 targets have been identified
in the search for a treatment for high-risk NBS4. This article is concerned with the search
for a multi-target drug treatment for high-risk NBS4 and focuses on four possible treatment
targets that research has identified as having a role in the development of NBS4 and in-
cludes the inhibitors Histone Deacetylase (HDAC), Bromodomain (BRD), Hedgehog (HH),
and Tropomyosin Kinase (TRK). Computer-aided drug design and molecular modelling
have greatly assisted drug discovery in medicinal chemistry. Computational methods
such as molecular docking, homology modelling, molecular dynamics, and quantitative
structure–activity relationships (QSAR) are frequently used as part of the process for find-
ing new therapeutic drug targets. Relying on these techniques, the authors describe a
medicinal chemistry strategy that successfully identified eight compounds (inhibitors) that
were thought to be potential inhibitors for each of the four targets listed above. Results
revealed that all four targets BRD, HDAC, HH and TRK receptors binding sites share
similar amino acid sequencing that ranges from 80 to 100%, offering the possibility of
further testing for multi-target drug use. Two additional targets were also tested as part
of this work, Retinoic Acid (RA) and c-Src (Csk), which showed similarity (of the binding
pocket) across their receptors of 80–100% but lower than 80% for the other four targets. The
work for these two targets is the subject of a paper currently in progress.

Keywords: neuroblastoma stage 4 (NBS4); receptors; compounds; multi-target drugs;
docking; cross-docking; binding interaction

1. Introduction
Childhood neuroblastoma (NB) is a malignant tumour that is a member of a class of

embryonic tumours that have their origins in sympathoadrenal progenitor cells [1]. There
are five stages in the clinical NB staging system: 1, 2A, 2B, 3, 4S, and 4 [1]. For those
diagnosed with stage 4 neuroblastoma (NBS4) the treatment options are limited with a
survival rate of between 40 and 50% [2]. This article is concerned with the search for a
multi-target drug treatment for high-risk NBS4 and focuses on four possible treatment
targets. Since 1975, more than 15 targets have been identified in the search for a treatment
for high-risk NBS4 [3]. Six targets were originally selected and of these, on the basis of the
most promising research (Figure 1) [4] Four demonstrated amino acid sequence similarity
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of 80–100% in the receptors binding sites and are the focus of this paper. The other two
targets showed similarity across their receptors of 80–100% but lower than 80% for the
other four targets.

 

Figure 1. Targeted therapy in NB. Reproduced from Ref. [5], copyright 2021, recreated with BioRen-
der.com (accessed on 10 November 2023).

The four targets were selected because of promising results in previous research for
NBS4. The four have been investigated separately for the role they play in the development
of NB and include: Histone Deacetylase (HDAC), Bromodomain (BRD), Hedgehog (HH),
and Tropomyosin Kinase (TRK). Of the four BRD, HH and HDAC are epigenetics, a term
used to describe the study of heritable traits or a stable change in cell function, that happen
without changes to the DNA sequence. In the case of cancers, it is nearly impossible to
reverse genetic alterations, whereas epigenetic changes “can dynamically respond to signals
from the physical, biological and social environment” [6]. Other targets investigated for
NBS4 include Tyrosine Kinases such as MYCN that is involved in gene amplification in NB.

Current treatment for NBS4 involves immunotherapy combined with anti-cancer
drugs [7]. With therapeutic agents meeting with little success in treating NBS4, the search
for a new target remains urgent [4]. Currently, treatment agents focus on a one-drug-one-
target approach and/or combination therapy, which has had little success in improving
survival rates. An alternative approach is to develop a multi-target drug that interacts
with multiple targets with high efficacy to change the disease network. Further perceived
benefits to developing a multi-target drug offer the possibility of making “cocktail therapies”
or drug combinations redundant [8], leading to less pharmacokinetic and safety profile
testing, as the risk of drug–drug interactions would be reduced [9]. Since it is uncommon
for multiple targets to mutate simultaneously in different pathways or at various locations
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within a single cascade pathway, multi-target drugs may also avoid drug resistance brought
on by single-target mutations or changes in expression [10].

This article presents a developmental, multi-targeted drug design approach using
computational methods available to medicinal chemistry. Computer-aided drug design
and molecular modelling have greatly assisted drug development within the field of
medicinal chemistry [11]. Computational methods such as molecular docking, homology
modelling, molecular dynamics, and quantitative structure–activity relationships (QSAR)
are frequently used as part of the process of finding new therapeutic drug targets [12].
Using these methods, eight compounds (inhibitors) were identified as possible inhibitors
for four targets. Results revealed that all four targets BRD, HDAC, HH, and TRK share
similar amino acid sequencing in the binding site that ranges from 80 to 100%, offering the
possibility of further testing for their suitability for multi-target drug use. Two additional
targets were also tested as part of this work, Retinoic Acid (RA) signalling pathway and
c-Src kinase (Csk), which showed similarity (of the binding pocket) across their receptors
of 80–100% but were lower that 80% for the other four targets.

1.1. Reasoning Behind Selected Targets

The four targets were selected due to their downregulation of NBS4:

(1) Histone Deacetylase (HDAC)

The Histone Deacetylase (HDAC) family comprises 18 enzymes divided into
four classes (I, II, III, and IV) according to their enzymatic activities, subcellular locali-
sation, and homology to yeast HDCA [13]. In the case of HDAC 8 (class I), it was found
to be downregulated in NBS4 (Figure 1) [14]. Two compounds, 8b and 20a [15], and
two receptors, 2V5X and 2V5W [16], were selected for this target (see Table 1).

(2) Bromodomain (BRD)

Early in the 1990s, the Brahma gene of Drosophila Melanogaster was found to con-
tain a family of evolutionarily conserved motifs known as Bromodomains (BRD) [17].
Numerous studies have been conducted on the Bromodomain and extra terminal (BET)
family. It consists of BRDT, BRD2, BRD3, and BRD4, all of which are widely expressed,
with the exception of BRDT, which is only expressed in the testis [18]. BRDs bind histone
tail acetylated lysines, recognizing the acetyl group is essential for recruiting additional
chromatin factors and transcriptional machinery, which controls gene transcription [18].
The BET family also functions as a cell cycle regulator with BRD4 regulating the expression
of genes necessary for the transition from the M to early G1 phase [18]. Research found that
the compound JQ1, a BRD inhibitor, upregulated p27 and the proapoptotic gene BIM while
suppressing MYC expression, resulting in G1 cell cycle arrest [19,20]. Studies on the Bro-
modomain inhibitor BET762 in vivo have also shown that it has anti-cancer properties [21].
Two compounds, JQ1 and BET762, and two receptors, 4BJX and 5UY9 [22], were selected
for this target (see Table 1).

(3) Hedgehog (HH)

Hedgehog Inhibitors (HHIs) have become a promising new target for cancer ther-
apy [23]. The signalling pathway identified in 1980 [24] was a crucial regulator of growth,
patterning formation, and cell migration during embryonic development [25]. The com-
ponents of the HH signalling pathway are involved in signalling to the transcription
factors [26]. One study found that signalling deregulation was observed with Gorlin syn-
drome and cancers (Figure 2) [27]. Two compounds, BMS-833923 [28] and Vismodegib [29],
and two receptors, 5L7I [30] and 3N1P [31], were selected for this target (see Table 1).
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Figure 2. Deacetylation by histone deacetylase 8 (HDAC8), along with the inhibition of HDAC8 by
the HDAC8 inhibitor. Created in BioRender. Gerges, A. (2025), https://BioRender.com/r11c559.

(4) Tropomyosin Receptor Kinase (TRK)

The neurotrophin family of peptide hormones activates three related tyrosine kinases
known as tropomyosin receptor kinases (TRK) [32] that along with various forms of cancer,
are also essential in neurodegenerative diseases. TRK inhibitor development to target
cancers driven by NTRK fusion has gained attention in the past ten years (Figure 3) [33].

Figure 3. Hedgehog pathway activation in cancer. Created in BioRender. Gerges, A. (2025), https:
//BioRender.com/w90s818.

TRK activation results in the autophosphorylation of an intracellular tyrosine
residue [34]. This phosphorylation is a crucial step in activating the TRK receptor and initi-
ating downstream signalling cascades [35]. Two compounds, GW441759 and Compound
10 [36], and two receptors 4AT3 [36] and 3V5Q [36], were selected for this target.

https://BioRender.com/r11c559
https://BioRender.com/w90s818
https://BioRender.com/w90s818
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Table 1. Selected lead compounds and receptors for each target type by literature review.

Target Lead Compound 1 Lead Compound 2 Protein/Receptor

1- Histone Deacetylase
8 Inhibitors 2V5X and 2V5W [16]

8b [15] 20a [15]

2- Bromodomain
Inhibitors

JQ1 [18,20]
BET762 [18]

4BJX [18] and 5UY9 [22]

3- HH inhibitors

BMS-833923 [28]
Vismodegib [29]

5L7I [30] and 3N1P [31]

4- Tropomyosin
Receptor Kinase
Inhibitors

GW441759 [36]
Compound 10 [36]

4AT3 [36] and 3V5Q [36]

1.2. Medicinal Chemistry Approaches to Drug Design

Rational multi-target drug design strategies in recent years have varied from phar-
macophore combination, screening [37], and similar scaffold structure [38]. Each strategy
has advantages and disadvantages, along with varying challenges. The purpose of this
work is to suggest a possible modified approach. In the search for a multi-target drug for
NBS4 using advanced medicinal chemistry software, this approach assesses the possibil-
ity of different targets by assessing receptor similarities (in the binding pocket) and the
selection of two lead compounds for each of the four target (eight compounds in total) that
have demonstrated an inhibitory effect on NBS4 cells, to form the basis of a search for a
multi-target drug.

Having identified four targets that share similar amino-acid sequencing, two receptors
from each target were selected (see Table 1) and a Protein Aligner tool from Samson
was used to check for their suitability, with results reporting 80–100% similarity for the
four targets (Figure 4). Protein Aligner checks for amino acid sequence similarity between
receptors with high similarity between receptors indicating their suitability for use in
cross-docking.

The selection of ligands was based on literature research in relation to NBS4. Two com-
pounds were selected for each target (see Table 1), representing a total of eight compounds.

For the purposes of this work docking involves docking a compound to a receptor
known for that target (i.e., BRD) whereas cross-docking is docking the same compound
to a receptor that belongs to a different target (i.e., TRK) and vice versa. The aim of cross-
docking is to explore the suitability of the selected compound for use across different
targets to determine its suitability as a multi-target drug. This is a process that involves
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selecting known lead compounds to produce hitlists of compounds and was performed
using BROOD [39] as part of the OpenEye suite.

 

Figure 4. Receptor Tyrosine Kinases (RTKs). Created in https://BioRender.com by Ruslan Medzhtov,
Akiko Iwasaki, and Jung-Hee Lee.

Several BROOD rounds were completed on the 2 lead compounds for each target
to produce hitlists (Figure 5) using “Shape and Colour” and “Shape and Electrostatics”
(see Table 2). On completion, BROOD ranked each of the hitlists according to BROOD hitlist
parameters (Figure 6), the top 25 of each hitlist was selected, and the best 8–10 compounds
of those 25 were selected (see Table 3) to run on OEDocking [40] using FRED (Figure 7),
ROCS [41] (Figure 8), AFITT [42] (Figure 9) (see Table 4), and VIDA [43]. In addition, the
Samson docking suite, including AutoDock Vina Extended (Figures 10–12)) and Fitted
(Molecular Forecaster) [44], with another docking programme, Molegro [45], acted as
confirmation for both the docking and cross-docking procedures (see Table 5). BIOVIA
Discovery Studio was also used for visualization (Figure 13) [46]. From this process,
8 to 10 compounds were selected for each target (see Table 6), all of which showed im-
proved parameters compared to the original lead compounds. The compounds from each
individual target were then cross-docked with the receptors from the other three using
AFITT. From the 35 compounds run only 8 showed potential suitability for multi-target use
(two from each list) (see Table 6).

 

Figure 5. Print screen from Protein Aligner of 2V5W with all the selected receptors from the
four targets. The similarity (in grey) was obtained using Protein Aligner by Samson [47]. Zero
indicates 100% similarity, and 100% means no similarity. Figure 5 shows that the similarities (in the
binding pocket) between the selected proteins range from 80% to 100%.

https://BioRender.com
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Table 2. Summary of the rounds on BROOD for generating hitlists for each target. The top
25 compounds were selected from each round.

Target Shape and Colour Shape and Electrostatics

1- Histone Deacetylase 8 Inhibitors
(8b and 20a)

8b-2 rounds
20a-2 rounds

8b-2 rounds
20a-2 rounds

2- Bromodomain Inhibitors
(JQ1 and I-BET762)

JQ1-2 rounds
I-BET-762-3 rounds

JQ1-2 rounds
I-BET-762-3 rounds

3- HH inhibitors (BMS-833923
and Vismodegib)

BMS-833923-2 rounds
Vismodegib-2 rounds

BMS-833923-2 rounds
Vismodegib-2 rounds

4- Tropomyosin Receptor Kinase
Inhibitors (GW441759 and 10)

GW441759-2 rounds
Compound 10-2 rounds

GW441759-2 rounds
Compound 10-2 rounds

(a) (b) 

Figure 6. Print screen of BROOD (Shape and Colour) outcome when using 8b as a lead compound.
The figure on the left (a) shows the first 11 compounds made from 8b, with the figure on the right
(b) showing another 12.

Table 3. Selected clusters from each target (total n = 35).

HDACIs (n = 9) BRDI (n = 8) HH (n = 10) TRK (n = 8)

Cluster 22, 1 of 22 Cluster 3, 1 of 3 Cluster 4, 1 of 1 Cluster 12, 1 of 6

Cluster 21, 1 of 11 Cluster 25, 1 of 12 Cluster 8, 1 of 1 Cluster 4, 1 of 5

Cluster 16,1 of 65 Cluster 16, 1 of 2 Cluster 1, 1 of 3 Cluster 8, 1 of 19

Cluster 23, 1 of 1 Cluster 15, 1 of 2 Cluster 9, 1 of 1 Cluster 9, 1 of 4

Cluster 1, 1 of 26 Cluster 4, 1 of 4 Cluster 8, 1 of 29 Cluster 25, 1 of 8

Cluster 7, 1 of 26 Cluster 24, 1 of 7 Cluster 21, 1 of 99 Cluster 12, 1 of 49

Cluster 4, 1 of 28 Cluster 23, 1 of 1 Cluster 15, 1 of 6 Cluster 7, 1 of 11

Cluster 10, 1 of 86 Cluster 10, 1 of 1 Cluster 23, 1 of 1 Cluster 25, 1 of 8

Cluster 12, 1 of 50 Cluster 17, 1 of 1

Cluster 20, 1 of 12

Selected clusters from all targets were also docked with the Samson Suite, including
AutoDock Vina Extended (V 5.1.3) and Fitted by Molecular Forecaster (V 1.7.2).

To check and compare the compounds (clusters) for toxicity and mutagenicity, Toxicity
Estimation Software Tools (TEST) (Version 5.1.2) were used to provide the prediction
mechanisms of the toxic action of the clusters [48]. The results from TEST showed some
similarity with the original lead compounds (Table 7) which also provided their suitability
for use. Further work was performed to explore possible synthesis routes for each of the
eight compounds using the retrosynthesis programme Spaya [49].
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Figure 7. Print screen is taken from the BROOD hitlist file, which contains the results in CSV
format; it does not represent the entire outcome. The figure also shows some of the results of the
BROOD parameters.

 
Figure 8. A print screen from FRED shows the docking result of 2V5W (HDAC receptor) with cluster
22, 1 of 1.

 
Figure 9. A print screen from ROCS showing the outcome BET762 (BRD inhibitor).
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Table 4. The top clusters obtained from BROOD BRD receptor 4BJX were docked with AFITT, FRED,
AutoDock Vina Extended, Molegro, and Fitted. BET762 and JQ1 were the lead compounds.

Column 1 Clusters from
Bromodomain (BRD) AFITT FRED AutoDock Vina Extended Molegro Fitted

1 Cluster 3, 1 of 3 0.766 −6.474 −8.124 −4.86 −25.259

2 Cluster 25, 1 of 12 0.6863 −8.315 −8.549 89.3 −26.775

3 Cluster 16, 1 of 2 0.7356 −6.337 −7.542 52.9 −21.687

4 Cluster 15, 1 of 2 0.553 −5.308 −7.048 33.28 −23.624

5 Cluster 4, 1 of 4 0.4898 −5.693 −8.403 36.98 −25.566

6 Cluster 24, 1 of 7 0.4644 −8.556 −8.909 80.89 −30.289

7 Cluster 23, 1 of 1 0.497 −5.955 −7.795 9.34 −24.131

8 Cluster 10, 1 of 1 0.7103 −4.672 −7.71 5.23 −21.734

9 BET-762-Lead compound 0.6691 −7.528 −7.971 49.84 −19.709

10 JQ1-Lead compound 0.6084 −8.133 −7.006 99.29 −22.161

 
Figure 10. A print screen from AFITT showing an example of HHI clusters with protein 5L7I. Also,
some of the fitting results.

(a) (b) 

Figure 11. A screenshot from Samson (AutoDock Vina Extended): TRKI (clusters) with 4AT3 before
docking (a) and after docking (b).
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Figure 12. This is a screenshot from AutoDock Vina Extended showing the docking ranking of the
TRK receptor 4AT3 with TRKI-selected clusters. The programme uses nine poses for each cluster.

Table 5. Docking of selected clusters from each target with more than one receptor of the same target.
Data represent the best real space correlation coefficient calculation (RSCC).

Clusters
HDACs AFITT Clusters

BRD AFITT Clusters HH AFITT Clusters
Tropomyosin AFITT

2V5X 2V5W 4BJX 5UY9 5L7I 3N1P 4AT3 3V5Q

Cluster 22,
1 of 22 0.652 0.541 Cluster 3,

1 of 3 0.77 0.42 Cluster 4, 1 of 1 0.552 0.336 Cluster 12, 1 of 6 0.638 0.438

Cluster 21,
1 of 11 0.650 0.499 Cluster 25,

1 of 12 0.69 0.39 Cluster 8, 1 of 1 0.514 0.385 Cluster 4, 1 of 5 0.685 0.438

Cluster
16,1 of 65 0.650 0.541 Cluster 16,

1 of 2 0.74 0.33 Cluster 1, 1 of 3 0.521 0.330 Cluster 8, 1 of 19 0.435 0.438

Cluster 23,
1 of 1 0.645 0.532 Cluster 15,

1 of 2 0.55 0.39 Cluster 9, 1 of 1 0.513 0.404 Cluster 9, 1 of 4 0.622 0.539

Cluster 1,
1 of 26 0.642 0.504 Cluster 4,

1 of 4 0.49 0.33 Cluster 8, 1 of 29 0.496 0.432 Cluster 25, 1 of 8 0.675 0.521

Cluster 7,
1 of 26 0.635 0.527 Cluster 24,

1 of 7 0.46 0.37 Cluster 21, 1 of 99 0.493 0.340 Cluster 12, 1 of 49 0.630 0.627

Cluster 4,
1 of 28 0.633 0.499 Cluster 23,

1 of 1 0.50 0.37 Cluster 15, 1 of 6 0.491 0.374 Cluster 7, 1 of 11 0.643 0.596

Cluster 10,
1 of 86 0.632 0.517 Cluster 10,

1 of 1 0.71 0.37 Cluster 23, 1 of 1 0.478 0.470 Cluster 25, 1 of 11 0.491 0.614

Cluster 12,
1 of 50 0.631 0.524 BET-762 0.67 0.39 Cluster 17, 1 of 1 0.471 0.364 Compound Z9 0.596 0.543

20A 0.631 0.511 JQ1 0.61 0.41 Cluster 20, 1 of 12 0.463 0.389 Compound 10 0.560 0.505

8B 0.629 0.516 Vesmodigib 0.363 0.363

BMS-833923 0.313

 
Figure 13. A Screenshot from AutoDock Vina Extended in Samson showing an example of cross-
docking. HDAC Receptor 2V5W with BRD, HH, and TRK of multi-target inhibitors.

Table 6. Selected clusters from each type that docked with the rest of the targets (n = 8).

HDACIs (n = 2) BRDI (n = 2) HH (n = 2) TRK (n = 2)

Cluster 22, 1 of 22 Cluster 3, 1 of 3 Cluster 8, 1 of 1 Cluster 25, 1 of 8

Cluster 10, 1 of 86 Cluster 16, 1 of 2 Cluster 8, 1 of 29 Cluster 12, 1 of 49
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Table 7. Results from the Toxicity Estimation Software Tools (TEST); predictive values.

Clusters Bioconcentration
Factor 1 Mutagenicity 2 Oral rat LD50

-Log10 (mol/kg) 3
T. Pyriformis IGC50 (48 h)
mg/L 4

Cluster 22, 1 of 22 0.31 Positive 1.78 3845.78
Cluster 10, 1 of 86 5.56 Positive 2.67 173.52
Cluster 3, 1 of 3 12.71 Positive 2.52 4.61
Cluster 16, 1 of 2 46.62 Negative 2.66 1.91
Cluster 8, 1 of 1 27.88 Negative 1.70 6.33
Cluster 8, 1 of 29 8.62 N/A 2.52 N/A
Cluster 25, 1 of 8 98.26 Positive 2.01 6.55
Cluster 12, 1 of 49 308.45 Negative 2.41 6.46
20A 9.94 Positive N/A 36.39
8B 5.14 Positive N/A 29.50
BET-762 22.21 Negative 2.26 2.27
JQ1 235.52 Negative 2.45 0.73
Vesmodigib 28.48 Negative 2.13 2.87
BMS-833923 11.53 Positive 2.38 N/A
Compound Z9 25.14 Positive 2.20 42.96
Compound 10 20.85 Positive 2.65 7.04

1 Bioconcentration factor: ratio of the chemical concentration in fish as a result of absorption via the respiratory
surface to that in water at a steady state. 2 Ames mutagenicity: A compound is positive for mutagenicity if it
induces revertant colony growth in any strain of Salmonella typhimurium. 3 Oral rat LD50: Amount of chemical
(mg/kg body weight) that causes 50% of rats to die after oral ingestion. 4 48 h T. pyriformis IGC50: Concentration
of the test chemical in water (mg/L) that causes 50% growth inhibition to Tetrahymena pyriformis after 48 h.

2. Results
2.1. Medicinal Chemistry Results

Table 1 below contains the selected targets, protein/receptors (Protein Data Bank), and
the identified lead compounds.

The next stage was to compare the similarity of the proteins (receptors) binding sites
for all four targets. This was achieved using the Samson Protein Aligner tool, showing that
the similarities between the selected proteins ranged from 80% to 100% (Figure 4).

By selecting an active group in the lead compound, the programme can produce a
hitlist using shape and colour and shape and electrostatics. Table 2 shows how many rounds
were performed for each lead compound according to target. The top 25 compounds from
the hitlists were selected for the docking studies from each round. Figure 5 shows some of
the compounds.

BROOD [50] hitlist parameters (see Figure 6) include the following:

(1) AroRingCt: Number of aromatic rings in the molecule;
(2) ClusterID/IdeaGroup: ClusterID of the molecule;

(3) Colour: The replacement fragment’s colour Tanimoto score in comparison to the
query fragment;

(4) Combo: Tanimoto combo score for the replacement fragment’s shape and colour in
comparison to the query fragment;

(5) Egan: The Boolean indicates if the molecule satisfies the Egan bioavailability model;
(6) Fragment: SMILES string of the replacement fragment;
(7) Freq: The replacement fragment’s frequency;
(8) fsp3C: The molecule’s fraction of sp3 hybridized carbon atoms;
(9) HvyAtoms: Number of heavy atoms in the molecule;
(10) LipinskiDon: Number of Lipinski donors in the molecule;
(11) LipinkskiAcc: Number of Lipinski acceptors in the molecule;
(12) LipinskiFail: Boolean specifying whether the molecule fails Lipinski’s rule of five;
(13) Local strain: Calculated local strain of the molecule;
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(14) Molecular TanimotoCombo: Shape + colour Tanimoto combo score of the molecule
against the query molecule;

(15) MolWt: Molecular weight of the molecule;
(16) p (active): Belief score of the molecule;
(17) RingCt: Number of ring atoms;
(18) RingRatio: Ratio of the number of ring atoms to the total number of heavy atoms;
(19) Rotors: Number of rotatable bonds in the molecule;
(20) Shape: Compare the replacement fragment’s Shape Tanimoto score to that of the

query fragment;
(21) Source Mols: SMILES strings of the molecules the replacement fragment is part of;
(22) Source Mol Labels: Labels of the molecules the replacement fragment is part of;
(23) tPSA: Calculated topological polar surface area of the molecule;
(24) Veber: Boolean specifying whether the molecule passes the Veber bioavailability model;
(25) XlogP: Calculated LogP of the molecule [50].

The next stage was to dock each hitlist with their relevant receptors; Figure 7 shows one of
the docking outcomes using FRED (OpenEye suite) at the top of the list cluster 22, 1 of 1.

Having completed all the docking using FRED, Molegro, AutoDock Vina, and Fitted
only the top compounds for each target were selected (range 8 to 10 see Table 3) to be run
for validation on ROCS a programme that scores and aligns a database of molecules with
a query. The score assigns a number to molecules according to their likelihood of having
biological characteristics in common with the query molecule (Figure 8).

Another crystallographic tool used from the OpenEye suite is AFITT (Figure 9). AFITT
creates a new combined forcefield that fits small molecules into crystallographic density
while preserving superior chemistry by combining the shape and MMFF technologies of
OpenEye. In order to verify the refinement, it also offers an interface to external refinement
programmes, such as real space correlation coefficient calculation (RSCC) and interactive
Ramachandran plots.

All possible clusters (Table 3) were docked with all docking tools: FRED, AFITT,
AutoDock Vina Extended, Molegro, and Fitted. Table 4 provides an example.

Table 5 shows the docking of selected clusters from each target with more than
one receptor of the same target.

The next step was cross-docking, which involved docking receptors with various
cluster types and comparing the results. Figure 14 shows some of the results from the
cross-docking of each target.

 
Figure 14. A screenshot showing the docking. HDAC Receptor 2V5X with BRD, HH, and TRK
inhibitors using Samson Fitted in BIOVIA Studio Discovery Visualizer [46].

Having completed all cross-docking for the receptors and the selected clusters,
eight compounds were identified as possible multi-target compounds (see Table 6 below).
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2.2. Retrosynthesis Results Using Spaya

(1) Synthesis of Cluster 22, 1 of 22 R1 S&C [49]
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(2) Cluster 10, 1 of 86

 

(3) Cluster 3, 1 of 3
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(4) Cluster 16, 1 of 2

(5) Cluster 8, 1 of 1
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(6) Cluster 8, 1 of 29
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(7) Cluster 25, 1 of 8

 

(8) Cluster 12, 1 of 49

All data are available in the Supplementary Materials, see link below.
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3. Discussion
The development of multi-target drugs is described as the process of “taking a well-

validated primary target for a given disease and adding secondary activities to enhance
efficacy” [37]. Designing such a drug involves fusing the inhibitory actions of two or more
drugs into one molecule [38]. Typical approaches used for designing multi-target drugs
include “Pharmacophore” and “Screening”. The pharmacophore approach can include pro-
cesses such as merged-pharmacophore mode, fused-pharmacophore mode, non-cleavable
linked pharmacophore, and cleavable pharmacophore. Pharmacophore modelling aims
to “strip” functional groups of their true chemical nature in order to categorize them into
a small number of pharmacophore types based on their predominant physicochemical
characteristics [51]. Difficulties with this method occur due to inadequate or inaccurate
conformational sampling, ambiguities in pharmacophore typing (primarily because of
uncertainty regarding the tautomeric/protonation status of compounds), computer time
limitations in complex molecular overlay calculations, and the selection of inappropriate
anchoring points in active sites when ligand cocrystal structures are unavailable [51]. Along
with pharmacophore the technique of screening is also used for drug discovery and has
four identifiable categories: Fragment-based Drug Discovery (FBDD), High-throughput
Screening (HTS), High-content Screening (HCS), and Virtual Screening (VS). For the work
described here, a modified version of the Virtual Screening (VS) programme is used to
enable the discovery of multi-target compounds (inhibitors). Using computational methods
available to medicinal chemistry, computer-aided drug design and molecular modelling
have greatly assisted drug design in the field [11]. Computational methods such as molecu-
lar docking, homology modelling, molecular dynamics, and quantitative structure–activity
relationships (QSAR) are frequently used as part of the process for finding new therapeutic
drug targets using computational methods [12]. For this work, eight compounds (inhibitors)
were identified as possible inhibitors for four targets: HDAC, BRD, HH, and TRK.

Having selected four targets used in the study of NBS4, two receptors from each
of the four targets were selected and the similarities of the receptors were compared as
representations of the targets (Figure 4). Results indicated 80–100% similarities (using the
Protein Aligner programme from Samson) confirming the possibility for multi-target use.
High similarity between receptors indicates their suitability for use in cross-docking and is
a process that involves selecting known lead compounds to produce hitlists of compounds
(clusters). Using BROOD [39] as part of the OpenEye suite, several BROOD rounds were
completed on the lead compounds to produce hitlists with the top 25 of each hitlist selected
to run on OEDocking [40], AFITT [42], ROCS [41], and VIDA. The hitlists of compounds
(clusters) were docked and the selected compounds, cross-docked. The clusters were
docked with more than one docking programme as a means to validating the result.

The final ranking of the selected clusters was performed on AFITT as the receptor
preparation with the tool MakeReceptor gives the user more control over the receptor-
creating process. AFITT also has the advantage of real-space fitting of ligands in density,
integrated with REFMAC, PHENIX, BUSTER, CNX, and COOT, and also fragment and
cocktail fitting. In AFFIT, it is possible to select more than one ligand to fit generation
of high-quality refinement dictionaries for use. This can be performed during reciprocal
space refinement that includes the following: the use of forcefield (MMFF); semi-empirical
(AM1, PM3) methods during reciprocal space refinement for BUSTER and Phenix; real
space fitting of protein residues; proper handling of covalently bonded ligands, and proper
handling of multiple occupancy ligands.

The ranking is based not only on the best results but also on the ability of the identified
compounds to cross-dock on the receptors of other targets, and it was this process that led
to the selection of the eight compounds. Using the tool ROCS provided cluster validation
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and is based on a large database search. Toxicity and mutagenicity of the eight compounds
were tested using Toxicity Estimation Software Tools (TEST) [48], and the results showed
some similarity with the original lead compounds (Table 7). With the aid of the retro-
synthesis programme Spaya (IKTOS), the possibility of synthesizing all eight compounds
was demonstrated (see the Results section) [49]. These results point the way to future work
that will focus on preparing and testing the eight compounds in vitro and in vivo [52].

4. Materials and Methods
4.1. Materials

Computer programmes:

1. OpenEye Scientific programmes, which include various applications, were used. The
suite comprises BROOD, MakeReceptor, FRED, and AFITT.

2. Molegro Virtual Docker.
3. The Samson suite includes Autodock Vina Extended, the Fitted suite by Molecular

Forecaster, and Protein Aligner.
4. Toxicity Estimation Software Tools (TEST).
5. BIOVIA Discovery Studio Visualizer.
6. Spaya retrosynthesis software.

4.2. Method

1. Identifying drug targets.
2. Selection of two proteins (receptors) for each target and downloading the PDB files

and their electron density map from the Protein Data Bank database.
3. Comparing the binding/active sites similarities of the receptors. Run protein similarity

on Samson (Protein Aligner) to determine suitability.
4. Selection of two lead compounds from each type.
5. Run the lead compounds on BROOD (from the OpenEye suite) and produce hit lists

using Shape and Colour and Shape and Electrostatics.
6. Receptor preparations using MakeReceptor from the OpenEye suite.
7. Docking the hit compounds with OpenEye suite (FRED), Molegro, and Samson suite

(AutoDockVina and Fitted).
8. Run cross-docking; each hitlist clusters from one target to the other 3 targets (using

their protein/receptor).
9. Run hits with AFITT to rank the compounds according to their fitting probabilities.
10. Run selected clusters on ROCS.
11. Run selected clusters on Toxicity Estimation Software Tools (TEST)
12. Run clusters on Spaya to find the best synthesis route.

5. Conclusions
Using Virtual Screening with some modifications, eight compounds were identified

as potential inhibitors across four targets (HDAC, BRD, HH, TRK) for the development of
multi-target drug treatment of NBS4. The next stage is for the eight compounds to undergo
single molecule testing in vivo and in vitro [52].

Supplementary Materials: The following supporting information can be downloaded at:
https://doi.org/10.5281/zenodo.14959257, accessed on 20 March 2025.
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