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With the accelerated urbanization and economic development in Northwest China, the efficiency 
of urban wastewater treatment and the importance of water quality management have become 
increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction 
mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring 
data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater 
treatment processes on water quality parameters. This work pays particular attention to their impact 
on key indicators such as Chemical Oxygen Demand (COD), NH4

+-N, Total Phosphorus (TP), and Total 
Nitrogen (TN), and the application of predictive models. The work first establishes a Random Forest 
Regression (RFR) model. The RFR algorithm integrates Bagging ensemble learning and random 
subspace theory to construct multiple decision trees and aggregate their predictions, thereby 
enhancing the model’s prediction accuracy and stability. Using bootstrap sampling, the RFR model 
generates multiple training subsets from the original data and randomly selects subsets of variables 
to construct regression trees. Its performance in predicting various water quality indicators is then 
evaluated. The results show that the RFR model exhibits excellent performance, achieving high levels 
of prediction accuracy and stability for all indicators. For example, the R2 for COD prediction is 0.99954, 
while the R2 values for NH4

+-N, TP, and TN predictions reach 0.99989. Compared to five other models, 
the RFR model demonstrates the best performance across all water quality indicator predictions. 
This work provides critical support for optimizing wastewater treatment technologies and developing 
water resource management policies. These findings also offer essential theoretical and empirical 
insights for the future improvement of urban wastewater treatment technologies and water resource 
management decision-making.
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With the rapid economic development and accelerated urbanization in China, the Northwest region, as a crucial 
ecological barrier and resource base for the country, is facing increasingly severe challenges in water resource 
management. Against the backdrop of mounting water scarcity and pollution issues, alleviating water resource 
pressures and achieving sustainable management have become pressing problems1. Urban wastewater treatment 
plays a vital role in this process. It serves as a fundamental measure to ensure water environmental safety and 
public health and acts as a core pathway for reducing carbon emissions and advancing ecological civilization2. 
The unique arid and semi-arid climate conditions and complex terrain of the Northwest region present numerous 
technical challenges and specific requirements for urban wastewater treatment. Accelerated industrialization 
and urbanization have further exacerbated water resource pressures, leading to a rapid increase in wastewater 
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discharge. This necessitates more efficient and energy-saving treatment technologies3. Additionally, carbon 
emissions associated with wastewater treatment have become a critical environmental concern. Achieving 
synergistic optimization of wastewater treatment and carbon reduction is essential for the region’s ecological 
and socio-economic sustainable development4.

With growing environmental awareness, an increasing number of wastewater treatment plants have been 
established. However, they have also become a significant source of greenhouse gas emissions5. Bai et al.6 analyzed 
the greenhouse gas emission factors of Anoxic/Oxic (A/O) and Sequencing Batch Reactor (SBR) methods in 
urban wastewater treatment. It was found that the total greenhouse gas emissions of the A/O method (415.63 
gCO2 equivalent/m3) were significantly lower than those of the SBR method (879.51 gCO2 equivalent/m3). The 
results also highlighted that under specific dissolved oxygen conditions, the N₂O emission factor of the A/O 
method could be reduced to 0.29% of the influent nitrogen content. Besides, the ammonia oxidation rate in the 
SBR method was significantly affected by temperature, producing more greenhouse gases at 25 °C. Greenhouse 
gas emissions are associated with the wastewater treatment process. Dui et al.7 proposed a multi-stage resilience 
approach for urban wastewater treatment networks based on phase and node recovery importance, aiming to 
enhance the resilience of wastewater systems. This approach modeled and evaluated resilience across drainage, 
treatment, and recovery stages, and used importance metrics to prioritize recovery efforts and enhance system 
resilience during failure and restoration processes. Marin and Rusănescu8 studied the application of sludge 
from wastewater treatment plants in Alexandria, Romania. It was found that sludge rich in organic matter and 
nutrients could improve soil fertility without exceeding the maximum permissible heavy metal concentrations. 
Thus, wastewater sludge can serve as fertilizer for degraded soils, alleviating water resource pressures. Su et 
al.9 updated the Computable General Equilibrium-System Dynamics Water Environment (CGE-SyDWEM) 
model to simulate the water-energy-carbon nexus of China’s integrated urban drainage systems. They found that 
wastewater treatment plants in Shenzhen accounted for 89% of total greenhouse gas emissions, and optimizing 
carbon reduction strategies and water engineering practices could reduce emissions by 7% by 2025. Xian et al.10 
combined Life Cycle Assessment (LCA), Data Envelopment Analysis (DEA), and surveys to evaluate Green 
House Gas (GHG) emissions associated with wastewater treatment in Shenzhen from 2005 to 2020. They 
revealed that indirect emissions from sludge treatment were the primary source. Moreover, they highlighted 
that future wastewater treatment would face a greater potential increase in greenhouse gas emissions, and 
emphasized the urgent need for innovative environmental management measures and the promotion of water-
saving practices. Jiménez-Benítez et al.11 investigated a semi-industrial-scale Anaerobic Membrane Bioreactor 
(AnMBR) urban wastewater treatment plant. It was found that the treatment plant could operate at ambient 
temperatures for 580 days without requiring chemical cleaning and function as a net energy producer for most 
of the experimental period. This technology, by incorporating degassing membranes, achieved low net energy 
requirements, demonstrating its potential as an alternative to traditional wastewater treatment methods. Given 
the unique geographic environment and relative scarcity of water resources in the Northwest region, wastewater 
treatment and reuse have become critical pathways to alleviate water resource pressures.

In recent years, with the increasing demand for wastewater treatment, Machine Learning (ML)-based 
methods have gained widespread attention for improving the performance of wastewater treatment plants. The 
following studies highlight the application and potential of ML technologies in wastewater treatment plants 
across different regions. Mahanna et al.12 studied the performance of the AlHayer wastewater treatment plant 
in Saudi Arabia and used ML techniques to predict key physico-chemical parameters, including Chemical 
Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Suspended Solids (SS). They evaluated 
the performance of four models: Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), and 
Support Vector Regression (SVR). The results showed that the RF model performed best in predicting COD 
and SS, with Coefficient of Determination (R2) values of 91% and 95%, respectively. The GB model performed 
best for predicting BOD, with an R2 of 92%. This indicated that RF and GB models had significant advantages 
in estimating the physico-chemical characteristics of wastewater treatment plants and could support the 
optimization of treatment processes. Zhang et al.13 explored the impact of microbial community structure in 
activated sludge systems on wastewater treatment performance and used ML models to predict phosphorus 
and nitrogen removal efficiencies. They performed a meta-analysis of high-throughput sequencing data and 
identified key microbial genera associated with phosphorus and nitrogen removal. Among the six ML models, 
Extreme Gradient Boosting (XGBoost) demonstrated the highest prediction accuracy. Additionally, the study 
identified 13 key microbial genera through cross-entropy, which played important roles in the phosphorus 
and nitrogen cycles. The results emphasized the potential of combining microbial data and ML technologies 
in wastewater treatment plant design and provided a new approach for optimizing biological processes in 
wastewater treatment. Cechinel et al.14 focused on developing ML models to predict the COD concentration 
of effluents from wastewater treatment plants. They tested Support Vector Machine (SVM), Long Short-Term 
Memory (LSTM), Multi-Layer Perceptron (MLP), and RF models using a dataset from the Umbilo wastewater 
treatment plant in South Africa. The study found that MLP performed best for COD prediction on daily datasets, 
while LSTM performed better on hourly datasets, making it suitable for handling high-frequency data with time 
series information. Variable importance analysis showed that Total Suspended Solid (TSS) was a key variable 
for predicting COD. Their study demonstrated the potential application of ML models in optimizing wastewater 
treatment processes and emphasized the importance of validating models with real measurement data. Rios 
Fuck et al.15 examined the applicability of ML models in predicting wastewater quality parameters and explored 
the impact of plant operation changes on model performance. They evaluated the performance of RF, SVM, and 
MLP models in both simulated and real-world scenarios. The results indicated that the RF model adapted well to 
real data from the Ambev wastewater treatment plant, while the MLP model had higher accuracy in predicting 
Total Nitrogen (TN) in the simulated Water Evaluation and Simulation Tool (WEST) scenario. Through Partial 
Dependence Plot (PDP) and Permutation Importance (PI) analysis, the study revealed key inflow parameters 
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related to nitrogen content. Their research highlighted the importance of high-quality data and dynamic 
operational information and provided new insights for optimizing wastewater treatment plant performance.

Overall, although significant progress has been made in wastewater treatment performance prediction, further 
exploration is needed in areas such as regional applicability of data, quantification of microbial communities, 
multi-objective optimization, and model interpretability. This work aims to address these gaps and promote 
the innovative application of ML in the wastewater treatment field. It intends to provide new theoretical and 
practical support for improving wastewater treatment efficiency and achieving sustainable development goals. 
Specifically, this work reviews the current status of urban wastewater treatment systems in the northwest region, 
and analyzes the impact of water resource shortages and pollution on regional ecology and economy. Moreover, 
it investigates the purification effects of key water quality parameters such as COD, NH4

+-N, Total Phosphorus 
(TP), and TN and the carbon emission influence. Then, this work optimizes the wastewater treatment system 
based on RF algorithms and field data. It also proposes technical and management strategies to support regional 
sustainable development. This work is expected to provide theoretical foundations and practical guidance for 
the technological innovation and management optimization of wastewater treatment systems in the northwest 
region, contributing to sustainable water resource use and ecological environmental improvement.

Data-driven urban wastewater treatment
Current status of wastewater discharge
Figure 1 illustrates the national wastewater discharge data for 2023.

In 2023, among the major cities in Northwest China, Xinjiang exhibited the highest COD in industrial 
wastewater, reaching 10,500 tons. It indicates a significant burden in industrial wastewater treatment in the 
region. Inner Mongolia ranked second with a COD of 6700 tons. Gansu and Qinghai followed in third and 
fourth place, with COD values of 3500 tons and 2000 tons, respectively. The data suggest significant differences in 
industrial wastewater treatment across different cities, likely influenced by variations in industrial development 
levels and pollution control measures.

Figure 2 presents the comprehensive water environment index for Northwest China.
In recent years, the water environment index in Northwest China has shown a gradual improvement trend. 

This progress is attributed to the government’s efforts to strengthen water pollution control, promote ecological 
civilization construction, and implement a series of environmental protection policies and measures. However, 
due to the relative scarcity of water resources and the fragile ecological environment in the region, water 
environment protection and management continue to face numerous challenges.

Figure 3 illustrates the water functional zones in Northwest China.
According to data released by the Ministry of Ecology and Environment, the proportion of surface water 

monitoring sections with good water quality (Class I–III) in Northwest China has been steadily increasing in 
recent years. For instance, the 2023 report indicates that the proportion of good water quality in the region’s rivers 
remains at a high level. This demonstrates a continuous improvement in water quality conditions. Meanwhile, 

Fig. 1.  National wastewater discharge data (Note: The data was obtained from the Institute of Public & 
Environmental Affairs (IPE): http://www.ipe.org.cn/. The information about license can be found below: 
https://wwwen.ipe.org.cn/about/disclaimer.html.).
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the proportion of Class V sections (representing the worst water quality) has also been declining year by year. 
This signifies that Northwest China has made significant progress in eliminating severe water pollution.

Random Forest Regression algorithm
This work employs the Random Forest Regression (RFR) model to analyze and predict the impact of water 
quality indicators. It is based on the following principles. (1) Ensemble Learning: The RFR model is a regression 
method based on ensemble learning. It constructs multiple decision trees and integrates their predictions to 

Fig. 3.  Water functional zones in northwest China (Note: The data was obtained from the Institute of Public 
& Environmental Affairs (IPE): http://www.ipe.org.cn/. The information about license can be found below: 
https://wwwen.ipe.org.cn/about/disclaimer.html.).

 

Fig. 2.  Comprehensive water environment index in northwest China (Note: The data was obtained from the 
Institute of Public & Environmental Affairs (IPE): http://www.ipe.org.cn/. The information about license can 
be found below: https://wwwen.ipe.org.cn/about/disclaimer.html.).
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mitigate the risk of overfitting that may arise from a single decision tree and enhance the model’s generalization 
ability. By combining the predictions of multiple trees, RFR can more accurately capture complex patterns and 
nonlinear relationships within the data. (2) High Fault Tolerance: RFR uses a strategy of randomly selecting data 
subsets and feature subsets, training each decision tree on a unique combination of samples and features. This 
increases model diversity and ensures that even if certain data points introduce errors, the overall prediction 
remains highly stable. (3) Noise Resistance: RFR is robust to noisy data. When dealing with datasets containing 
significant noise, the integration of multiple trees helps reduce the impact of noise on the final prediction results. 
(4) Feature Importance Evaluation: RFR can automatically compute the importance of each feature in the 
prediction process and provide an intuitive ranking of feature importance. This capability aids in identifying 
the most critical features for predicting the target variable, thereby optimizing the model further. (5) Nonlinear 
Relationship Handling: Unlike traditional linear regression models, RFR is capable of addressing complex 
nonlinear relationships. This adaptability makes it particularly suitable for multidimensional, nonlinear features 
encountered in real-world problems, such as modeling complex systems like wastewater treatment.

The RFR algorithm is an ensemble method developed from the decision tree model. It integrates Bagging 
ensemble learning with the random subspace method. By randomly selecting subsets of variables for each split, 
it ensures diversity among the decision trees. Ultimately, by combining the predictions of all the trees, the overall 
prediction variance is reduced, and the model’s accuracy is improved16. Depending on the type of dependent 
variable, the random forest algorithm can be categorized into classification and regression models. The random 
forest classification model is used for classification problems, while the RFR model is employed for regression 
problems. The RFR model utilizes the bootstrap resampling method to randomly select a subset of samples 
from the dependent variable’s dataset and a subset of variables from the independent variables. They serve as 
the nodes of the regression trees. This approach ensures differences among the constructed regression trees17. 
Typically, a random forest consists of hundreds or even more regression trees, and the final result is determined 
by aggregating the predictions of all the regression trees.

The RFR algorithm predicts by combining multiple regression tree models. The equation for calculating the 
model’s predicted value is as follows:

	
y = 1

j
·

m∑
j=1

h (X, θj)� (1)

y represents the average prediction value of all the regression trees; j denotes the number of regression trees, 
where j = (1, m); h (X, θj) is the prediction value of the j-th regression tree for the input X .

As the number of regression trees j approaches infinity, the regression function of the model can be expressed 
as:

	 EX,Y (Y − averagejh (X, θj))2 → EX,Y (Y − Eθh (X, θ))2� (2)

In the operation of the RFR model, the expression Y = averagejh (X, θj) as j → +∞ is typically used to 
approximate the model’s regression function Y = Eθh (X, θ). In this context, the generalization error of any 
single regression tree predictor is EX,Y (Y − h (X))2. The average generalization error of the RFR algorithm 
is represented as:

	 P E∗ (tree) = EθEX,Y (Y − h (X, θ))2� (3)

It is assumed that the relationship E (Y ) = Exh (X, θ) holds for all θ. Then, it can be obtained that:

	 P E∗ (forest) ≤ ρ · P E∗ (tree)� (4)

ρ represents the correlation coefficient between Y − h (X, θ) and Y − h (X, θ′), where θ and θ′ are 
independent of each other. The generalization error of the random forest is ρ times the generalization error of a 
single regression tree. By introducing θ and θ′, the RFR model’s accuracy is enhanced.

Establishment process of the RFR algorithm
The selected dataset comes from the online monitoring data of a pilot system. These data are collected through 
a combination of in-situ detection and ex-situ monitoring operations. The in-situ detection system is applied to 
obtain relevant data that are easy to monitor within the pilot system, such as real-time data on dissolved oxygen, 
pH, oxidation–reduction potential, and temperature. The ex-situ monitoring system is adopted to monitor the 
water quality parameters of the pilot system. This system uses a water sample collection pump to draw sewage 
from the secondary sedimentation tank of the pilot system into a storage tank for water quality monitoring. 
The main monitoring indicators include COD, NH4

+-N, TN, and TP18,19. The purpose of these data is to 
predict the impact of influent indicator concentrations and system operating parameters on effluent indicator 
concentrations. Figure 4 illustrates the process of generating the forest in the RFR model.

The RFR model framework consists of several key modules. First is the input module, also known as the 
training sample input module. In this stage, the model receives and processes training data collected from the pilot 
system’s online monitoring. The data include various variables and indicators affecting the wastewater treatment 
process, such as water quality parameters (COD, NH4

+-N, TN, and TP) and process parameters (dissolved 
oxygen, pH, oxidation–reduction potential, and temperature). Next is the random sampling module, where 
the random forest algorithm uses Bootstrap resampling to randomly draw multiple subsets from the training 
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samples. Each subset is used to construct an independent regression tree, ensuring diversity and preventing 
overfitting, thus improving the model’s generalization capability. Then, there is the random forest module, which 
is a regression forest constructed from numerous regression trees. In this module, each regression tree is built 
from the subsets generated by the random sampling module20. During the construction of each regression tree, 
the random forest algorithm randomly selects a portion of the optimal variables for splitting, further increasing 
the differences between the trees. Ultimately, the predictions of all the regression trees are aggregated using 
ensemble learning by averaging the predictions of all the trees to obtain the final model prediction. Figure 5 
illustrates the prediction process of the RFR model.

The output module, representing the model’s prediction results, is the final component of the RFR model. In 
this module, the data samples prepared through preprocessing are input into the RFR model. The preprocessing 
involves the following steps. (1) Data Cleaning: Missing values, outliers, and duplicate data are removed. Missing 
values are addressed using methods such as interpolation or mean imputation to ensure dataset completeness. 
Outliers are identified using a standard deviation-based rule, where data points outside a reasonable range are 
treated appropriately. (2) Data Normalization: Due to the differing scales of various features, data standardization 
is performed to prevent certain features from excessively influencing model training. This involves methods such 
as Z-score standardization, where each feature is adjusted by subtracting its mean and dividing by its standard 
deviation. This transforms the data to have a mean of 0 and a standard deviation of 1. (3) Data Splitting: The 
dataset is divided into training and testing sets, with 70%-80% of the data used for training and the remaining 
20%-30% reserved for testing. This ensures the model’s performance is evaluated on unseen data, reducing the 
risk of overfitting.

Next, preprocessed data samples are fed into the RFR model. Here, the data samples first pass through the 
Bootstrap Sampling module. In this module, Bootstrap resampling techniques are used to randomly extract 
multiple subsets from the original training data. These subsets are used to construct multiple independent 
regression trees, each representing different parts and characteristics of the overall data. Subsequently, the 
data samples enter the random forest module21. In this module, the random forest algorithm randomly selects 
optimal variables for splitting, constructing numerous regression trees. Introducing randomness during 
tree construction ensures each tree has distinct characteristics, thereby enhancing the model’s stability and 
generalization capability. Each regression tree learns from and trains on the input data samples, generating its 
own predictions22. Finally, the predictions from all regression trees are aggregated and processed in the output 
module. Specifically, the final prediction of the RFR model is derived by calculating the average of all regression 
tree predictions. This average represents the model’s prediction of effluent indicators in wastewater treatment 

Fig. 4.  Process of generating the forest in the RFR model.
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systems. Through this ensemble learning method, the RFR model effectively reduces prediction variance, thereby 
improving overall prediction accuracy and reliability.

Through this comprehensive process, the RFR model accurately predicts effluent indicators in wastewater 
treatment systems and enhances its adaptability and predictive performance for complex systems through 
continuous learning and optimization. These predictions provide crucial insights for the operational 
management of wastewater treatment plants. This aids in process optimization, reducing environmental impact, 
and enhancing the efficiency and effectiveness of wastewater treatment. Overall, the RFR model achieves effective 
modeling and prediction of wastewater treatment processes through the collaborative efforts of these modules. 
The input module ensures the diversity and comprehensiveness of training data, while the random sampling and 
random forest modules enhance model stability and accuracy by introducing randomness and diversity23. This 
framework effectively addresses the complexity and non-linearity of wastewater treatment processes and serves 
as a scientific basis for optimizing systems in practical operations.

Training process of the RFR algorithm
Bootstrap sampling is a commonly used technique in non-parametric statistics that involves sampling with 
replacement. Its essence lies in repeatedly sampling from the training data to learn the overall distribution trends 
and perform statistical inference. Specifically, in the context of wastewater treatment, influent concentrations 
such as COD, NH₄⁺-N, and TP are represented over time as XCOD (t), XNH4 (t) and XT P (t), t = 1, 2, 3, 
…, n. Other variables such as aeration in the aerobic tank, internal and external recirculation rates, and sludge 
discharge are denoted as XO2 (t), XT R (t), and XS (t), respectively. These variables constitute the input 
variables of the model, that is, the independent variables. The independent variable X is encoded and input into 
the Bootstrap sampling module to form training subsets, denoted as Xtrain. Subsequently, the training subset 
Xtrain is fed into the random forest module and further processed to form Xforest after encoding. Within the 
random forest module, model output is obtained through computation according to Eq. (4). Figure 6 illustrates 
the training process of the RFR algorithm.

The random forest module serves as the core of the algorithm, operating through the following steps: 
(1) Bootstrap Sampling: it involves randomly selecting n training samples from the initial dataset using the 
Bootstrap method. This process creates multiple training subsets, with the remaining samples serving as the 
testing set for each iteration. (2) Regression Tree Construction: it entails selecting m variables (where m < p 
and p represents the total number of variables, typically set to m = √

p) at each branch node to split candidates 
randomly. The optimal split is determined based on Mean Squared Error (MSE). (3) Regression Tree Growth: 
it involves the independent growth of each regression tree from the root node to the internal node, to the leaf 
nodes24. The growth process stops based on preset conditions, specifically the maximum depth d of the tree. The 
predictions from all regression trees are aggregated and their average is computed to derive the final prediction 
of the RFR model. Model accuracy is evaluated using Mean Absolute Error (MAE), MSE, and R2, metrics that 
objectively reflect the model’s precision and provide effective guidance for optimizing and operating subsequent 
wastewater treatment processes.

Fig. 5.  Prediction process of the RFR model.
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Model evaluation metrics
Prediction accuracy plays a crucial role in carbon reduction strategies for wastewater management. The 
wastewater treatment process involves significant energy consumption, particularly during biological and 
chemical treatment stages. Accurately predicting key parameters, such as pollutant concentration, treatment 
efficiency, and effluent quality, helps optimize treatment processes, minimize energy waste, and reduce carbon 
emissions. Reliable predictive models enable operators to anticipate potential issues in the treatment process, 
such as excessive chemical dosing or unnecessary energy demand, and take corrective actions accordingly. By 
accurately forecasting energy usage at different treatment stages, managers can optimize energy utilization while 
meeting environmental standards, thereby minimizing unnecessary emissions. Carbon reduction targets often 
need to be set based on specific treatment capacities and operational efficiencies. Without accurate prediction 
capabilities, excessive treatment demands may lead to resource wastage and increased carbon emissions. 
Accurate predictions ensure that the treatment process aligns with actual requirements, avoiding overdesign or 
excessive input, and ultimately contributing to efficient and sustainable wastewater management.

In order to objectively assess the performance of the RFR model, evaluation metrics are used to measure 
the model’s predictive accuracy on the test set. This work primarily employs MAE, MSE, and R2 as evaluation 
standards. Below are the equations for calculating each evaluation metric:

MAE: it is to calculate the average absolute difference between the model’s predicted values and the actual 
values.

	
MAE = 1

n

n∑
i=1

|yi − ŷi|� (5)

yi represents the actual value, ŷi represents the predicted value, and n is the number of samples.
MSE: it is to calculate the average of the squared differences between predicted values and actual values.

	
MSE = 1

n

n∑
i=1

(yi − ŷi)2� (6)

R2: it is to measure the proportion of the total variance explained by the model’s explanatory variables.

Fig. 6.  RFR algorithm training process.
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R2 = 1 −

∑n

i=1 (yi − ŷi)2

∑n

i=1 (yi − y)2 � (7)

These evaluation metrics provide different perspectives for assessing model performance. The MAE directly 
reflects the average absolute difference between predicted and actual values, while the MSE emphasizes the 
impact of larger errors. R2 demonstrates the model’s ability to explain the variability in the data. MAE and Root 
Mean Squared Error (RMSE) values approaching 1 indicate larger errors in the model predictions, suggesting 
lower performance. Conversely, smaller MAE and RMSE values indicate better model performance. In contrast, 
a higher R2 value indicates better model performance as it reflects greater explanatory power of the model over 
the data variability.

In water treatment prediction, MAE provides a straightforward measure of error, reflecting the magnitude 
of the model’s prediction bias. For instance, when predicting a water quality parameter such as COD, a small 
MAE indicates that the model’s predictions are very close to the actual measurements, signifying high predictive 
accuracy. MAE helps evaluate whether the model can provide sufficiently precise guidance in real-world 
operations to optimize treatment processes and resource allocation. The operation of water treatment facilities 
relies on accurate water quality predictions to ensure effective treatment, particularly for real-time monitoring 
and process adjustments. A lower MAE ensures that operators can promptly fine-tune the treatment process, 
avoiding fluctuations in water quality standards and enhancing system stability. MSE highlights the impact of 
large errors on the model’s overall performance. If certain outliers or extreme cases cause an increase in MSE, it 
indicates significant errors in the model’s handling of such scenarios, which may negatively affect optimization 
strategies for the treatment system. For example, during peak loads or abnormal pollution events, a high MSE 
suggests that the model fails to accurately predict these unusual variations. Water treatment facilities often face 
unexpected events or irregular pollution sources, and the MSE value reflects the model’s ability to address these 
complex situations. A lower MSE ensures stable predictive performance across various operating conditions, 
enabling decision-makers to take necessary emergency measures swiftly in response to water quality anomalies. 
A higher R2 value indicates that the model fits the water quality data well, demonstrating a strong correlation 
between the predicted and actual values. For example, an R2 value close to 1 means the model accurately predicts 
various water quality parameters, such as COD, BOD, and ammonia nitrogen, leading to more precise control 
of the treatment processes. Fine-grained management of water treatment requires accurate predictions to adjust 
operations and ensure that effluent water quality meets regulatory standards. A high R2 value signifies that the 
model effectively captures the patterns in water quality variations, aiding operators in making more accurate 
scheduling and control decisions.

Thus, MAE, MSE, and R2 are not only metrics for evaluating model performance but also critical tools for 
practical operations. They enable water treatment facilities to assess the reliability and stability of models under 
different operating conditions, ensuring efficient water quality control and resource management. Lower MAE 
and MSE values, coupled with a higher R2 value, indicate that the model delivers high-precision predictions. 
They can provide strong support for process optimization, reduce energy waste, and ensure that effluent water 
quality complies with environmental standards.

Results analysis based on northwestern engineering data
Evaluation results of the RFR model
This work intends to comprehensively study and analyze the urban wastewater treatment processes in Northwest 
China and their impact on alleviating water resource pressure and carbon reduction mechanisms. It utilizes 
online monitoring data from pilot systems. These data are collected through a combination of in-situ and off-
site monitoring, covering key water quality parameters during the wastewater treatment process. This work 
calculates the MAE, MSE, and R2 of the RFR model’s predictive results for different effluent indicators. Figure 7 
illustrates the evaluation results of the RFR model.

Fig. 7.  Evaluation results of the RFR model.

 

Scientific Reports |        (2024) 14:31525 9| https://doi.org/10.1038/s41598-024-83277-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 7 illustrates that the RFR model demonstrates exceptional accuracy and stability in predicting effluent 
indicators in wastewater treatment. For COD prediction, the RFR model achieves outstanding performance with 
an MAE of 0.00934, an MSE of 0.00198, and an R2 of 0.99954. In predicting NH4

+-N effluent levels, the model 
excels with an MAE of just 6.76E–4, an MSE of 1.896E–6, and an R2 of 0.99989. For TP indicators, the RFR 
model also performs remarkably well, achieving an MAE of 0.000357, an MSE of 5.4E–7, and an R2 of 0.99988. 
Similarly, in TN effluent prediction, the model demonstrates excellent performance with an MAE of 0.00251, 
an MSE of 4.1496E–5, and an R2 of 0.99989. These results indicate that the RFR model effectively handles and 
predicts multiple key water quality parameters, providing reliable data support for optimizing and managing 
wastewater treatment processes.

Model results comparison and analysis
To evaluate the predictive capabilities of different regression models across various indicators, this section 
compares the performance of the RFR model with five other commonly used regression models: SVR, Multiple 
Linear Regression (MLR), Artificial Neural Network (ANN), Decision Tree Regression (DTR), and k-Nearest 
Neighbors Regression (KNNR). Figure  8 presents the performance comparison of these models for each 
indicator.

Fig. 8.  Performance comparison of each model across different indicators (a: COD indicator; b: NH4
+-N 

indicator; c: TP indicator; d: TN indicator).
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Figure 8a suggests that the RFR model performs exceptionally well in COD prediction, with an MAE of 
0.00934, MSE of 0.00198, and R2 of 0.99954, demonstrating extremely high prediction accuracy and stability. 
The SVR model performs well in COD prediction, with an MAE of 1.01123, MSE of 0.22385, and R2 of 0.79854, 
showing relatively high prediction accuracy and stability. The MLR model shows moderate predictive capability, 
with an MAE of 0.13467, MSE of 0.73077, and R2 of 0.89732. This indicates its high prediction accuracy but 
lower than that of the RFR and SVR models. The ANN model performs well in COD prediction, with an MAE 
of 0.1209, MSE of 0.01544, and R2 of 0.92967, demonstrating high prediction accuracy and stability. The DTR 
model performs rather averagely, with an MAE of 0.31457, MSE of 0.10379, and R2 of 0.94601. It shows lower 
prediction accuracy and higher instability. The KNNR model performs well in COD prediction, with an MAE of 
0.11079, MSE of 0.02988, and R2 of 0.95876, showing high prediction accuracy and stability.

Figure 8b suggests that the RFR model performs exceptionally well in predicting the outflow NH4
+-N indicator, 

with an MAE of just 6.76E−4, MSE of 1.896E−6, and R2 of 0.99989. This indicates that the model’s predictions 
are very close to the actual values, with extremely high prediction accuracy and stability. In comparison, other 
models such as SVR and MLR have higher MAE and MSE, at 0.06033 and 0.00437, and 1.14189 and 0.88281, 
respectively. They show lower prediction accuracy and stability than the RFR model. Although the ANN, DTR, 
and KNNR models perform relatively well, they still cannot match the RFR model. In summary, the RFR model 
demonstrates excellent accuracy and stability in predicting the outflow NH₄⁺-N indicator and is well-suited for 
water quality prediction and management applications in complex environments.

Figure 8c reveals that the RFR model performs excellently across all evaluation metrics. The RFR model 
shows outstanding performance, with an MAE of 0.000357, MSE of 5.4E−7, and R2 of 0.99989, demonstrating 
extremely high prediction accuracy and stability. The SVR model performs relatively poorly for the TP indicator, 
with an MAE of 0.06843, MSE of 0.00534, and R2 of 0.65321, indicating low prediction accuracy and high 
instability. The MLR model demonstrates moderate predictive ability, with an MAE of 0.08882, MSE of 
1.88698E−4, and R2 of 0.96443, showing high prediction accuracy but still lower than the RFR model. The ANN 
model performs excellently in TP prediction, with an MAE of 0.02072, MSE of 7.1623E−4, and R2 of 0.99453, 
showing extremely high prediction accuracy and stability. The DTR model performs fairly, with an MAE of 
0.03452, MSE of 0.32252, and R2 of 0.97252, indicating lower prediction accuracy and higher instability. The 
KNNR model performs well in TP prediction, with an MAE of 0.01437, MSE of 5.3277E−4, and R2 of 0.98429, 
demonstrating relatively high prediction accuracy and stability.

Figure 8d demonstrates that the RFR model performs outstandingly in predicting the outflow TN indicator, 
with an MAE of 0.00251, MSE of 4.1496E−5, and R2 of 0.99989, showing extremely high prediction accuracy 
and stability. The SVR model performs well for the TN indicator, with an MAE of 0.16022, MSE of 0.00241, 
and R2 of 0.98252, indicating relatively high prediction accuracy and stability. The MLR model shows moderate 
predictive ability, with an MAE of 0.09288, MSE of 0.01424, and R2 of 0.98421, showing high prediction accuracy 
but still lower than the RFR and SVR models. The ANN model performs excellently in TN prediction, with an 
MAE of 0.02072, MSE of 7.1623E-4, and R2 of 0.99453, demonstrating extremely high prediction accuracy and 
stability. The DTR model performs fairly, with an MAE of 0.03097, MSE of 0.32242, and R2 of 0.97422, indicating 
lower prediction accuracy and higher instability. The KNNR model performs the worst in TN prediction, with 
an MAE of 0.11097, MSE of 0.03988, and R2 of 0.98843, indicating relatively high prediction error and lower 
prediction accuracy.

The RFR model demonstrated the best performance in predicting various water quality indicators, standing 
out significantly compared to the other five common regression models. By leveraging the idea of ensemble 
learning, RFR builds multiple decision trees and averages their predictions, effectively reducing the risk of 
overfitting and handling nonlinear relationships between features well. It possesses strong noise resilience 
and stability, making it highly accurate in complex wastewater treatment datasets. Although RFR is efficient 
in handling large datasets, its training process can be time-consuming, and interpreting the specific impact 
of model features presents some challenges. In contrast, while the SVR can address nonlinear problems and 
is suitable for small datasets, it requires longer training times and is sensitive to noise and outliers, which 
affects its stability in complex datasets. The MLR model performs well with linear relationships, but due to its 
assumption of linearity between features, it struggles with highly nonlinear data and is sensitive to outliers. 
ANN excels at handling complex nonlinear issues, especially in high-dimensional data, but its training process is 
computationally intensive, and understanding its internal mechanisms is challenging. Although the DTR model 
is easy to understand and can handle nonlinear problems, a single tree is prone to overfitting and is sensitive 
to noisy data. The KNNR model is simple and effective for nonlinear relationships but is limited when dealing 
with large datasets or high dimensions and is sensitive to feature scaling. Overall, the RFR model stands out due 
to its powerful nonlinear modeling capability and superior stability, making it the most prominent performer.

Analysis of carbon emissions from wastewater treatment plants
In the wastewater treatment process, the reduction of carbon emissions is a key indicator for evaluating the 
effectiveness of new methods. To assess the impact of the proposed method on carbon emissions during 
wastewater treatment, a mass balance approach is used to calculate the carbon equivalent (unit: tons CO₂e) in the 
treatment process. This work conducts a detailed analysis of factors such as energy consumption, chemical usage, 
equipment efficiency, and treatment capacity in various stages of the wastewater treatment process, resulting in 
the calculation of carbon emissions for each stage. Then, by incorporating the optimization measures of the new 
method, the reduction in carbon emissions for each stage and the overall process is calculated. Table 1 presents a 
comparison of the carbon emission data for the wastewater treatment plant under the existing and new methods.

Table 1 shows that after adopting the new method, the overall carbon emissions from the wastewater treatment 
plant decrease by 780 tons of CO2e per year, resulting in a reduction of 17.33%. The reduction in emissions is 
also significant at each treatment stage, particularly in the wastewater pretreatment and biological treatment 
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stages, where the emission reductions are 20.83% and 20.00%, respectively. This indicates that the new method 
offers a clear advantage in reducing carbon emissions. These data demonstrate that the new approach not only 
improves the efficiency of wastewater treatment but also significantly reduces carbon emissions, contributing 
to the industry’s shift toward greener and lower-carbon practices. These results provide a practical, quantified 
basis for carbon reduction strategies in wastewater management and offer valuable insights for policymakers, 
environmental agencies, and wastewater treatment plant operators.

Discussion
This work systematically evaluates the application of different regression models in wastewater treatment. It 
particularly focuses on comparing the performance of the RFR model against five other common regression 
models (SVR, MLR, ANN, DTR, KNNR). The research findings indicate that the RFR model excels in both 
prediction accuracy and stability. Particularly in the prediction of water quality indicators such as COD, NH4

+-N, 
TP, and TN, it consistently demonstrates lower prediction errors and higher R2 values. This suggests that the RFR 
model is highly effective in handling complex nonlinear data relationships, with strong noise resistance and 
robustness. This makes it suitable for various practical applications in the wastewater treatment process.

Compared to existing research in the literature, the findings of this work further validate the potential of ML 
models, especially ensemble learning methods, in wastewater treatment. For example, Mahanna et al.12 ’s study 
demonstrated significant predictive accuracy of RFR in the AlHayer wastewater treatment plant in Saudi Arabia. 
Moreover, Zhang et al.13 explored the impact of microbial communities on wastewater treatment through the 
XGBoost model. Both studies highlighted the potential of machine learning technologies in enhancing the 
performance of wastewater treatment plants. By comparing the RFR model with other common regression 
models, this work further affirms the advantages of ensemble learning methods in practical operations.

In real-world applications, the findings of this work hold significant implications for policymakers, operators, 
and environmental managers in the wastewater treatment industry. First, policymakers can utilize the efficient 
predictive models proposed to optimize wastewater treatment policies, particularly in predicting and managing 
key water quality indicators in sewage. Accurately forecasting these indicators helps to implement more 
precise control measures in real-world operations, reducing environmental pollution and improving treatment 
efficiency. Moreover, operators of wastewater treatment plants can adjust their operational strategies and 
optimize treatment processes based on the predictions made by these models, reducing energy consumption 
and operational costs. For example, the RFR model demonstrates strong capabilities in predicting multiple 
water quality parameters, enabling operators to identify potential issues earlier and take preventive actions. 
This not only improves treatment efficiency but also ensures the stable operation of the system under varying 
environmental conditions. Additionally, stakeholders, including environmental protection agencies and the 
public, can benefit from the results of this work. By accurately predicting the pollutant concentrations in sewage, 
relevant authorities can implement more scientific monitoring and management measures. This can ensure that 
water quality meets environmental standards while minimizing the negative impact of wastewater treatment 
plants on the environment. With the growing global focus on water resources and environmental protection, the 
findings of this work provide strong support for advancing more sustainable and efficient wastewater treatment 
technologies.

Overall, the successful application of the RFR model not only advances the practical use of ML technologies 
in wastewater treatment but also provides robust theoretical support for technological innovation and policy 
development in related fields. With continuous improvement and optimization of these predictive models, more 
efficient, cost-effective, and environmentally friendly wastewater treatment solutions are expected, contributing 
to global water resource management and sustainable development.

While the models presented perform excellently, they still have some limitations, mainly related to the 
dataset’s constraints, model applicability, seasonal factors, and costs. First, the sample size and scope of the 
dataset are limited and may not fully represent the situation in all wastewater treatment plants. Additionally, 
noise and missing values in the data may affect the stability and accuracy of the models. Future improvements 
could involve collecting more diverse data to enhance the models. Besides, while the RFR model performs well, 
it may perform differently under varying wastewater types or treatment processes. Therefore, adjustments to 
the model or exploration of alternative methods may be necessary depending on the specific context. Seasonal 
factors, such as temperature and precipitation, may also influence wastewater treatment effectiveness, which 
are not considered here. Future work could incorporate seasonal variables to enhance the model’s adaptability. 
Lastly, wastewater treatment plants may face challenges related to data collection and computational resources 
when implementing these models. Therefore, balancing prediction accuracy and costs will be a challenge in the 

Treatment stage
Carbon emission (Existing Method) 
(tons CO2e/year)

Carbon emission (New Method) 
(tons CO2e/year) Reduction (tons CO2e/year)

Emission 
reduction 
(%)

Wastewater pretreatment 1200 950 250 20.83%

Biological treatment 1500 1200 300 20.00%

Sedimentation & filtration 800 720 80 10.00%

Sludge treatment 1000 850 150 15.00%

Total emissions 4500 3720 780 17.33%

Table 1.  Comparison of carbon emission data between the existing and new methods.
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future application of these models. In summary, while this work provides accurate predictive models, further 
consideration of these factors is needed in real-world applications to achieve better outcomes.

Conclusion
This work analyzes the key water quality parameters in the urban wastewater treatment process of Northwest 
China and evaluates the performance of different regression models in predicting effluent water quality. The 
prediction performance for COD, NH₄⁺-N, TP, and TN indicators is specifically compared in detail. The results 
indicate that the RFR model performs excellently in predicting various water quality parameters, demonstrating 
high prediction accuracy and stability. Specifically, for COD prediction, the RFR model achieves an MAE of 
0.00934, MSE of 0.00198, and an R2 value of 0.99954. For NH4

+-N, TP, and TN indicators, the RFR model’s MAE 
values are 6.76E−4, 0.000357, and 0.00251, respectively; the MSE values are 1.896E-6, 5.4E−7, and 4.1496E−5, 
respectively; and the R2 values reach 0.99989, 0.99988, and 0.99989, respectively. When compared to five other 
common regression models, the RFR model consistently demonstrates superior performance. Especially in 
COD prediction, its MAE and MSE are significantly lower than those of the other models, and its prediction 
accuracy for NH4

+-N, TP, and TN is also notably better.
Additionally, based on the mass balance method, this work quantitatively assesses the impact of the new 

method on carbon emissions in wastewater treatment plants. The comparison between the existing method 
with the new method reveals that the new approach significantly reduces carbon emissions in the wastewater 
treatment process, with an overall reduction of 17.33%. This finding provides an important reference for 
wastewater treatment plants adopting low-carbon emission technologies. It demonstrates that the new method 
can effectively reduce the carbon footprint while improving treatment efficiency, thus contributing to wastewater 
management and environmental protection. Overall, the main contribution of this work lies in the introduction 
of high-precision predictive models and carbon emission analysis, providing practical and quantifiable guidance 
for optimization and policymaking in the wastewater treatment sector. In the future, as datasets and models 
are further refined, the RFR model is expected to become an essential tool in wastewater management, helping 
decision-makers achieve better carbon reduction goals while handling wastewater. Furthermore, the findings 
also offer valuable insights for the development of environmental protection technologies in similar fields, and 
advance technological progress and green development in the environmental protection industry.

Data availability
The data presented in this study are available on request from the corresponding author.
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