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The randomness and volatility of existing clean energy sources have increased the complexity of 
grid scheduling. To address this issue, this work proposes an artificial intelligence (AI) empowered 
method based on the Environmental, Social, and Governance (ESG) big data platform, focusing on 
multi-objective scheduling optimization for clean energy. This work employs a combination of Particle 
Swarm Optimization (PSO) and Deep Q-Network (DQN) to enhance grid scheduling efficiency and 
clean energy utilization. First, the work analyzes the complexity and uncertainty challenges faced in 
clean energy scheduling within the current power system, highlighting the limitations of traditional 
methods in handling multi-objective optimization and real-time response. Consequently, the work 
introduces the ESG big data platform and leverages its abundant data resources and computational 
power to improve the scheduling decision-making process. Next, PSO is used for initial scheduling 
optimization and a mathematical model for clean energy scheduling optimization is constructed. 
To further enhance the dynamic response capability of the scheduling process, this work designs a 
dual-layer architecture. Among this architecture, DQN is responsible for adjusting the PSO initially 
optimized scheduling plan based on real-time data during the actual scheduling process, adapting it to 
the instantaneous change demand and renewable energy output characteristics. Finally, to verify the 
model’s effectiveness, this work conducts simulation analyses using real data from the state grid ESG 
big data platform. The results indicate that this method significantly improves clean energy utilization, 
increasing it from 62.4% (with traditional methods) to 87.7%, while reducing scheduling costs by 22%. 
With the increase in communication delay, the generation time of scheduling instruction increases 
significantly. This is because the algorithm needs to wait longer to receive the complete grid status 
information, which affects the generation speed of scheduling instructions. Moreover, this method 
demonstrates good adaptability and stability under different load demands and clean energy supply 
conditions. This work introduces a novel and efficient method for clean energy scheduling optimization 
by integrating PSO and DQN. It contributes to the overall improvement of clean energy utilization 
within the State Grid and provides a theoretical and empirical foundation for further research in related 
fields.
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As global climate change becomes increasingly severe, countries worldwide are ramping up their efforts to develop 
and utilize clean energy. Clean energy sources such as wind and solar power, known for their renewability and 
low pollution, have become crucial components of future energy transition strategies1. However, the randomness 
and volatility of clean energy pose significant challenges for grid scheduling. Traditional grid scheduling 
methods mainly rely on highly controllable energy sources like thermal and hydropower. These methods 
struggle to efficiently utilize clean energy while ensuring stable grid operation due to its inherent uncertainty2,3. 
Therefore, improving the utilization rate of clean energy without compromising grid safety has become a key 
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issue in current grid scheduling optimization. The state grid Environmental, Social, and Governance (ESG) big 
data platform provides extensive data support and advanced technological tools for optimizing clean energy 
scheduling by collecting, storing, and analyzing various data within the power system. This platform integrates 
a wealth of historical and real-time data, including output data from wind and photovoltaic power, grid load 
demand data, and meteorological data, providing a comprehensive information foundation for scheduling 
optimization. However, data and platform support alone are insufficient; advanced optimization algorithms are 
needed to achieve truly efficient clean energy scheduling4,5.

To address these challenges, this work proposes an artificial intelligence (AI) empowered method based on 
the ESG big data platform to achieve multi-objective optimization of clean energy scheduling. The introduction 
of the ESG big data platform offers abundant data resources and powerful computational capabilities, enabling 
improvements in the scheduling decision-making process. This work deeply analyzes the complexity and 
uncertainty problems faced in clean energy scheduling within the current power system. It is found that applying 
AI technologies, particularly Particle Swarm Optimization (PSO) and the Deep Q-Network (DQN), to grid 
scheduling can significantly enhance scheduling efficiency and clean energy utilization. PSO, a heuristic search 
algorithm, is known for its simplicity, efficiency, and ease of implementation, showing great potential in solving 
optimization problems6. This work constructs a mathematical model for clean energy scheduling optimization. 
It sets the objective function to maximize clean energy utilization and minimize scheduling costs while 
considering grid safety and environmental constraints. The PSO algorithm quickly finds the optimal scheduling 
solution that meets these constraints. However, the high volatility of clean energy requires the scheduling 
system to have rapid response and dynamic adjustment capabilities7. To further enhance the adaptability and 
flexibility of the scheduling process, this work introduces DQN, a reinforcement learning-based algorithm that 
continuously learns and updates strategies through interaction with the environment8. The work designs a dual-
layer architecture where DQN is responsible for adjusting the initially PSO-optimized scheduling plan based on 
real-time data during the actual scheduling process. This work aims to adapt to the instantaneous changes in 
demand and renewable energy output characteristics.

Literature review
Clean energy scheduling optimization has consistently been a hot research topic in the field of power systems. 
With the continuous increase in the installed capacity of clean energy, its randomness and volatility pose 
unprecedented challenges to grid scheduling. To address this issue, scholars have proposed various optimization 
methods and techniques. First, traditional Linear Programming (LP) and Mixed Integer Linear Programming 
(MILP) methods are widely used in clean energy scheduling optimization. Sarabadani et al.9 optimized the 
scheduling of wind and photovoltaic (PV) power using the MILP method. The findings showed that this approach 
had high computational efficiency in handling small-scale problems. However, LP and MILP methods face high 
computational complexity and long solving time when dealing with large-scale and nonlinear problems. Second, 
the application of metaheuristic algorithms in clean energy scheduling optimization has garnered extensive 
attention. PSO, Genetic Algorithm (GA), and Ant Colony Optimization (ACO) are widely applied in clean 
energy scheduling optimization due to their superior performance in complex optimization problems. Khan 
et al.10 applied GA to wind power scheduling optimization, significantly improving wind power utilization and 
economic benefits. Grisales-Noreña et al.11 optimized PV power scheduling using ACO, demonstrating that 
ACO performed well in solving nonlinear and multi-objective optimization problems.

With the development of AI technology, deep learning and reinforcement learning are gradually being 
applied to clean energy scheduling optimization. Zhai et al.12 proposed a wind power scheduling optimization 
method based on DQN, achieving intelligent wind power scheduling by simulating different load demands and 
wind power outputs. Li et al.13 applied Long Short-Term Memory (LSTM) networks to PV power forecasting and 
combined reinforcement learning to achieve optimal PV power scheduling. Additionally, hybrid optimization 
methods have shown great potential in clean energy scheduling optimization. Liu et al.14 proposed a hybrid 
optimization method based on PSO and GA, achieving collaborative scheduling of wind and PV power by 
combining the advantages of both algorithms. Kim et al.15 proposed a new scheduling optimization method 
by combining PSO with deep learning, which improved scheduling accuracy while reducing computational 
complexity.

Although the aforementioned research has made significant progress in clean energy scheduling optimization, 
there are still some shortcomings. First, most studies focus only on a single type of clean energy and lack 
consideration of the coordinated scheduling of multiple clean energy sources. Second, many studies fail to fully 
consider grid safety and environmental constraints, leading to limitations in the practical application of the 
optimization results. Finally, some studies lack robustness and adaptability in their algorithms, especially when 
faced with extreme weather conditions and drastic changes in load demand, resulting in suboptimal optimization 
performance. The innovation of this work lies in the combination of PSO and DQN, proposing a new multi-
objective clean energy scheduling optimization method. By incorporating the ESG big data platform, this work 
not only enhances the data-driven capability of scheduling decision-making but also achieves rapid response 
and adaptation to instantaneous changes through a dual-layer architecture design. Compared to traditional 
methods, the proposed approach demonstrates significant advantages in improving clean energy utilization and 
reducing scheduling costs, while also exhibiting good robustness and adaptability under various conditions.

Research methodology
Architecture and functionality of the ESG big data platform
The ESG big data platform is a comprehensive environmental, social, and governance data management and 
analysis system. It is designed to provide extensive data support and decision-making assistance to the national 
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power grid and related departments. The platform’s architecture is based on distributed computing and big data 
processing technologies, enabling efficient data collection, storage, processing, and analysis. Figure 1 illustrates 
the architecture of the ESG big data platform.

The ESG big data platform consists of four main components: the Data Collection Layer, Data Storage Layer, 
Data Processing Layer, and Application Layer. Data Collection Layer: This layer gathers real-time data from 
various sources such as sensors, smart devices, and energy management systems. Data includes clean energy 
generation, meteorological data, and electricity demand. Data Storage Layer: This layer utilizes distributed 
databases and big data storage technologies to efficiently store and retrieve vast amounts of data. Data Processing 
Layer: This layer applies advanced algorithms and models to clean, integrate, analyze, and mine data, providing 
essential support for scheduling optimization. Application Layer: This layer is the interface for users’ interaction 
with the platform, offering visualization tools and decision support systems for easy data querying, analysis, and 
scheduling decisions.

The ESG big data platform incorporates rich data resources spanning environmental monitoring, socio-
economic data, and power system operational data. It encompasses traditional power system parameters and 
external factors influencing clean energy generation and utilization, such as weather forecasts, market supply-
demand conditions, and regulatory policies. Comprehensive analysis across multiple dimensions enables the 
platform to provide more accurate and comprehensive scheduling information, laying the foundation for 
efficient clean energy utilization.

Additionally, the platform features robust computing capabilities with distributed computing frameworks 
and parallel processing technologies, enabling rapid processing and analysis of large-scale data. By integrating 
AI and machine learning algorithms, the platform conducts deep exploration of historical data to identify 
patterns and trends, thereby providing scientific insights for clean energy scheduling. For instance, analyzing 
historical weather and generation data enables the platform to forecast future clean energy outputs and optimize 
scheduling plans accordingly.

In terms of application potential in clean energy scheduling, the ESG big data platform offers strong support. It 
facilitates real-time monitoring and prediction of clean energy generation, aiding scheduling centers in promptly 
responding to generation fluctuations. Moreover, employing multi-objective optimization algorithms allows the 
platform to balance economic benefits and environmental impacts, devising optimal scheduling strategies to 
enhance clean energy utilization. Furthermore, by analyzing historical data, the platform identifies weaknesses in 
the scheduling process and proposes improvement recommendations, further enhancing scheduling efficiency 
and reliability.

Construction of multi-objective scheduling optimization model
In clean energy scheduling optimization, constructing a multi-objective scheduling optimization model is 
crucial. The design of this model needs to consider multiple factors to achieve efficient utilization of clean 
energy and maximize economic benefits16,17. Table 1 outlines the process for constructing the multi-objective 
scheduling optimization model:

Fig. 1.  Architecture of the ESG big data platform.
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First, the objective function design for clean energy scheduling optimization includes two primary objectives: 
maximizing clean energy utilization and minimizing scheduling costs. To achieve these objectives, the objective 
function is defined as follows (Eq. 1):

	 minimize f (x) = α · f1 (x) + β · f2 (x)� (1)

f1 (x) represents the scheduling costs, and f2 (x) denotes the negative value of the clean energy utilization rate. 
The coefficients α and β serve as weighting factors to balance the importance of these two objectives.

The clean energy utilization rate f2 (x) is expressed as the ratio of clean energy generation to total generation, 
as shown in Eq. (2):

	
f2 (x) = Eclean (x)

Etotal (x) � (2)

Eclean (x) represents the clean energy generation under scheduling plan x, and Etotal (x) denotes the total 
generation. By maximizing this ratio, the efficiency of clean energy utilization can be enhanced, reducing 
reliance on fossil fuels and thereby lowering carbon emissions.

The scheduling costs f1 (x) encompass generation costs and other related expenses incurred during the 
scheduling process, such as standby costs and start-up/shutdown costs. Its expression reads:

	
f1 (x) =

N∑
i=1

Ci · Pi (x)� (3)

N  represents the number of generator units, Ci denotes the unit generation cost of the i-th generator unit, and 
Pi (x) represents the power output of the i-th generator unit under the scheduling plan x.

During the optimization process, ensuring the safe and stable operation of the grid is essential. Therefore, the 
following grid safety constraints are established, as described in Eqs. (4) to (8).

	

N∑
i=1

Pi (x) = D (x) + L (x)� (4)

	 P min
i ≤ Pi (x) ≤ P max

i � (5)

	 Rclean ≥ Rmin� (6)

	 Ecarbon (x) ≤ Elimit� (7)

	 Ppollutant (x) ≤ Plimit� (8)

Serial 
number Step Detailed description

The 
equation or 
key point

1 Model initialization Clearly define optimization objectives and constraints to prepare for model construction –

2 Objective function definition Design a multi-objective function that includes maximizing clean energy utilization and minimizing scheduling costs Equation 1

3 Clean energy utilization 
calculation

Calculate the ratio of clean energy generation to total generation, reflecting the efficiency of clean energy usage in the 
grid Equation 2

4 Scheduling cost calculation Consider factors such as generation costs, standby costs, and start-up/shutdown costs to compute total scheduling 
costs Equation 3

5 Grid safety constraint setting Ensure grid stability under various operational conditions, including load balancing and generation unit output limits Equations 4–
6

6 Clean energy utilization 
constraint

Establish minimum requirements for clean energy utilization to guarantee a minimum proportion of clean energy 
usage Equation 7

7 Environmental constraint 
setting Limit carbon emissions and pollutant emissions to reduce environmental impact Equation 8

8 Weight coefficient determination Assign weight coefficients to different objectives in the multi-objective function to balance economic benefits and 
environmental protection –

9 Optimization algorithm 
selection Choose appropriate optimization algorithms (such as PSO) for solving multi-objective optimization problems –

10 Algorithm parameter setting Configure parameters of the optimization algorithm, such as swarm size, inertia weight, and learning factors –

11 Solve optimization problem Execute the optimization algorithm to search for the optimal solution based on the objective function and constraints –

12 Results analysis and validation Analyze optimization results, validate the effectiveness of the model, and ensure compliance with all constraints –

13 Model adjustment and 
optimization Adjust and optimize the model as necessary based on results analysis to improve accuracy and practicality –

14 End model construction Complete model construction, preparing to apply the model to real-world grid scheduling issues –

Table 1.  Process for constructing the multi-objective scheduling optimization model.
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D (x) represents the load demand under scheduling plan x, and L (x) denotes grid losses. P min
i  and P max

i  
are the minimum and maximum power outputs of generator i, respectively. Rclean signifies the clean energy 
utilization rate, and Rmin is the minimum required clean energy utilization rate. Additionally, considering 
environmental constraints to minimize adverse impacts on the environment, Constraints 7 and 8 are established. 
Ecarbon (x) represents the carbon emissions under scheduling plan x, and Elimit is the carbon emission limit. 
Ppollutant (x) denotes the pollutant emissions under scheduling plan x, and Plimit is the pollutant emission 
limit. Through the construction of the multi-objective scheduling optimization model described above, it 
is possible to maximize the use of clean energy and reduce scheduling costs while ensuring grid safety and 
environmental protection.

PSO optimization method
PSO is an optimization algorithm based on swarm intelligence, widely used in areas such as function optimization 
and neural network training. In the optimization of clean energy scheduling, PSO is favored for its simplicity, 
fast convergence speed, and effectiveness in solving multi-objective optimization problems. PSO simulates the 
foraging behavior of birds, achieving a global optimal solution search through information sharing among 
individuals (particles). Each particle represents a solution in the problem space, and its position is determined 
by its velocity, continuously updating within the search space18,19. Figure 2 illustrates the basic process of the 
PSO algorithm.

Updating the particle’s velocity and position is described by Eqs. (9) and (10):

	 vi (t + 1) = ωvi (t) + c1r1
(
pbest

i − xi (t)
)

+ c2r2
(
gbest − xi (t)

)
� (9)

	 xi (t + 1) = xi (t) + vi (t + 1)� (10)

vi (t) represents the velocity of particle  at time t, and xi (t) denotes the position of particle i at time t. 
pbest

i  is the historical best position of particle i, gbest stands for the global best position, and ω is the inertia 
weight. c1 and c2 are acceleration constants, and r1 and r2 are random numbers within the range [0, 1]. In 
clean energy scheduling optimization, PSO is used to find the optimal scheduling scheme to achieve multi-
objective optimization. The specific application steps include: Particle Swarm Initialization: Initialize each 
particle’s position as a random scheduling scheme and velocity as a random value. Fitness Calculation: Compute 
the fitness value of each particle based on the objective function of clean energy scheduling optimization. 
Optimization Process: Incrementally approach the optimal scheduling scheme by updating particles’ velocities 
and positions. Result Output: Output the position of the particle with the highest fitness value as the optimal 
scheduling scheme. The fitness function is a critical measure of particle quality in PSO algorithms. In clean 
energy scheduling optimization, Eq. (3) defines the fitness function. With this fitness function design, PSO can 
effectively evaluate the merits of each scheduling scheme, guiding particles in the search for the optimal solution.

DQN optimization method
DQN is an algorithm that integrates deep learning with reinforcement learning, continuously improving decision 
strategies through interaction with the environment. In grid scheduling optimization, DQN dynamically adjusts 

Fig. 2.  Basic process of the PSO algorithm.
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scheduling schemes using real-time data, enhancing system responsiveness and adaptability. Built upon the 
Q-learning algorithm, DQN approximates the Q-value function using deep neural networks, overcoming the 
challenges of storing and computing Q-values in high-dimensional state spaces20,21. The DQN architecture 
comprises several key components: (1) The Input Layer: It receives state information from the environment, such 
as real-time electricity demand, clean energy generation capacity, meteorological conditions, etc. (2) The Hidden 
Layer: One or more hidden layers are utilized to extract feature representations from the state information, 
encompassing fully connected or convolutional layers. (3) The Output Layer: It outputs the Q-value estimates for 
each possible action. In the context of grid scheduling, actions include adjusting the generation ratios of various 
clean energies, initiating or halting certain power generation units, etc. Figure 3 illustrates the flow of the DQN 
algorithm.

In Fig. 3, the Q-value function Q(s, a) represents the expected reward obtained by taking action a in state s. 
DQN approximates the Q-value function using a deep neural network. The objective of DQN is to minimize the 
loss function, as shown in Eq. (11).

	
L (θ) = E(s,a,r,s′)

[(
r + γ max︸︷︷︸

a′

Q
(
s′, a′; θ−)

− Q (s, a; θ)

)2]
� (11)

In Eq. (11), θ represents the parameters of the Q-network, θ− represents the parameters of the target network, 
r denotes the reward, and γ is the discount factor. Through experience replay, DQN randomly samples batches 
from an experience pool during training, breaking the correlation among samples and enhancing training 
effectiveness. Through reinforcement learning, DQN continuously adjusts scheduling strategies to learn the 
optimal scheduling policy, thereby enhancing the dynamic responsiveness and adaptability of grid scheduling.

Within the PSO-DQN joint scheduling optimization algorithm, the DQN model serves as the decision-
making layer, interacting with the grid system. The DQN model receives real-time grid data from the main 
network and sends the scheduling decision results back to the main network for execution. The main network 
adjusts the operational status of power generation equipment according to the DQN model’s scheduling decisions 
to meet the load demands and optimization objectives of the grid. The main network then feeds back the grid 
state post-scheduling decision to the DQN model for further learning and optimization.

PSO-DQN joint scheduling optimization algorithm
This work proposes a hybrid clean energy scheduling optimization algorithm that combines PSO and DQN to 
address the complex multi-objective optimization requirements in grid scheduling. Figure 4 illustrates the PSO-
DQN joint scheduling optimization algorithm.

Figure  4 illustrates the PSO-DQN joint scheduling optimization algorithm, where PSO handles initial 
scheduling optimization, and DQN dynamically adjusts during actual scheduling. The PSO algorithm first 
constructs a mathematical model for clean energy scheduling optimization and iteratively finds an initial 
optimal solution through particle swarm iterations. Subsequently, the DQN algorithm dynamically adjusts the 
preliminary optimization results of PSO based on real-time environmental feedback to cope with fluctuations in 
clean energy supply and changes in grid load demands. The objective of DQN is to optimize scheduling strategies 

Fig. 3.  DQN algorithm flow.
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by continuously updating the Q-value function, thereby enhancing the system’s dynamic responsiveness and 
robustness. This combined PSO-DQN scheduling optimization method not only leverages PSO’s global search 
capability but also utilizes DQN’s real-time adjustment feature to achieve adaptive optimization of scheduling 
strategies. Table 2 presents the pseudocode for the PSO-DQN joint scheduling optimization algorithm.

The upper-layer PSO algorithm plays the role of initial scheduling optimization in the dual-layer architecture. 
It generates a relatively stable scheduling plan based on historical data and forecasting models, aiming to 
maximize the utilization of clean energy and minimize scheduling costs. The DQN model, as the lower layer in 
the dual-layer architecture, is responsible for receiving real-time data (such as current clean energy generation 
capacity, load demand, etc.) during the actual scheduling process. Meanwhile, it dynamically adjusts the initial 
scheduling plan generated by the PSO based on this data. In the dual-layer architecture, the initial scheduling 
plan generated by the PSO algorithm is passed to the DQN model as an initial reference. The DQN model 
receives real-time data during the actual scheduling process and adjusts the initial plan based on this data. The 
adjustment results of the DQN model are fed back to the PSO algorithm as a reference for formulating future 
initial scheduling plans. This feedback mechanism helps the PSO algorithm generate scheduling plans that better 
align with actual needs in subsequent iterations.

Addressing the parameter tuning issue of the composite algorithm, the total number of particles (m) 
represents the number of particles in the algorithm. It is generally determined based on the scale and complexity 
of the problem, with this study setting it to 100. Acceleration factors (c1 and c2) are parameters that represent 
the influence of individual and global optima on particle velocity, with this study setting them to 2.05. The inertia 
weight (w) indicates the degree to which the particle’s current velocity affects the next velocity, used to control 
the convergence speed and search precision of the algorithm. The initial value is set to 0.9 and the final value is 
0.4. The initial learning rate of the algorithm can be set to 0.001; the discount factor (γ) is 0.95 to emphasize the 
importance of future rewards. Results of single parameter variation based on sensitivity analysis are presented 
in Table 3.

Design of simulation experiment
This experiment aims to validate the effectiveness of the proposed PSO-DQN-based optimization method for 
clean energy scheduling through the State Grid ESG big data platform. The experimental data is sourced from the 
State Grid ESG big data platform, including real-time data from clean energy power stations (such as wind and 

Fig. 4.  PSO-DQN joint scheduling optimization algorithm.
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Table 2.  The pseudocode for the PSO-DQN joint scheduling optimization algorithm.
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solar power generation capacities), power grid load data, meteorological data, and user electricity consumption 
behavior data. The volume of data processed in the experiment is anticipated to reach the terabyte (TB) level, 
covering a long period of continuous data records to adequately reflect the randomness and volatility of clean 
energy.

Prior to the data being input into the model, necessary preprocessing steps such as data cleaning, denoising, 
and normalization are conducted to ensure data quality and the effectiveness of model training. Utilizing the 
real-time data collection capabilities of the big data platform, data are regularly collected from various sources 
and stored in a distributed file system. Data from different sources are integrated to form a unified data format 
and storage structure, facilitating subsequent processing and analysis.

The preprocessed data are divided into training, validation, and testing sets to ensure the effectiveness of 
model training and its generalization ability. The PSO-DQN model is trained using the training set data, and 
the model performance is enhanced by iteratively optimizing algorithm parameters. The real-time scheduling 
process is simulated on the validation and testing sets, using the DQN model to adjust the PSO scheduling plan 
based on real-time data, thus evaluating the model’s performance in practical applications.

Results
Performance of PSO-DQN method on different evaluation metrics
Figure 5 displays the comparison results of different scheduling methods in terms of clean energy utilization 
and scheduling costs. It reveals that the method combining PSO and DQN demonstrates significant advantages 
across various metrics. The clean energy utilization rate has improved from 62.4% in traditional methods to 
87.7%, indicating a notable enhancement in the efficiency of clean energy utilization. Meanwhile, scheduling 
costs have decreased from 5.4 million RMB to 4.2 million RMB, a reduction of approximately 22%. There are also 

Fig. 5.  Comparison of different scheduling methods in clean energy utilization and scheduling costs.

 

Parameter Reference value Change value
Changes in clean energy 
utilization efficiency Changes in scheduling costs

Changes in 
algorithm 
convergence 
time

Particle swarm size (N) 100 50, 150 + 2%, − 1% + 5%, − 3% − 10%, + 15%

Inertial weight (ω) 0.5 0.2, 0.8 + 1%, − 0.5% + 3%, − 2% − 5%, + 8%

Learning factor (c1) 1.5 1.0, 2.0 + 0.5%, − 0.3% + 2%, − 1% − 3%, + 5%

Learning factor (c2) 1.5 1.0, 2.0 + 0.4%, − 0.2% + 1.5%, − 0.8% − 2%, + 4%

Maximum number of iterations 100 50, 200 + 1%, − 0.8% + 4%, − 2.5% − 20%, + 30%

Table 3.  Variation results of a single parameter based on sensitivity analysis.
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significant improvements in volatility and scheduling response time, indicating that this method is more stable 
and efficient in handling complex scheduling tasks.

Performance under different load demand conditions
Figure 6 presents the comparison results of clean energy utilization rates and scheduling costs under different 
load demand conditions. As the load demand increases, the clean energy utilization rate gradually rises, 
reaching a peak of 88.6%. Scheduling costs also increase with the increase in load demand but remain overall at 
a relatively low level. The stability of volatility and scheduling response time indicates that this method exhibits 
good adaptability and stability under varying load demands.

Figure 7 shows the comparison results of scheduling costs and the response time under different clean energy 
supply conditions. It suggests that with the increase in clean energy supply, the clean energy utilization rate 
gradually improves, reaching a maximum of 88.6%. Scheduling costs, on the other hand, decrease gradually, 
reaching a minimum of 4 million RMB. The reduction in volatility and scheduling response time also decreases 
accordingly, indicating that under adequate clean energy supply conditions, this method can optimize scheduling 
more efficiently and enhance overall system performance.

Adaptability to clean energy variability
Figure 8 reveals the performance in clean energy utilization rates and scheduling costs during different time 
periods. The clean energy utilization rate during peak hours is 86.8%, while it reaches 88.2% during off-peak 
hours and 87.5% during low-demand periods. During nighttime, the utilization rate is 88.1%. Scheduling costs 
show a consistent decreasing trend across different time periods. The stability in volatility and scheduling 
response time indicates that this method maintains efficient and stable scheduling performance throughout 
various time periods.

Figure 9 illustrates a performance comparison of various scheduling algorithms under conditions of high 
clean energy variability. The PSO-DQN method achieves an 85.8% utilization rate of clean energy, significantly 
higher than the traditional method’s 60.3%. The scheduling cost is reduced from the traditional method’s 
5.6  million yuan to 4.5  million yuan, with noticeable improvements in volatility and scheduling response 
time. Moreover, compared to the single advanced algorithm (Non-dominated Sorting Genetic Algorithm II 
(NSGA-II)) and the hybrid optimization algorithm (Genetic Algorithm-Reinforcement Learning (GA-RL)), 
performance enhancements are observed in terms of volatility and scheduling response time. This indicates that 
the method maintains efficient and stable scheduling optimization performance even under conditions of high 
clean energy variability.

Figure 10 demonstrates the proposed PSO-DQN algorithm’s convergence from the perspective of the reward 
function. It can be observed that the agent under DQN training gradually converges after 600 epochs, with a 
smaller fluctuation range and stronger stability post-convergence. The reward function curve reveals that DQN 
exhibits superior performance in terms of convergence stability and precision.

Fig. 6.  Comparison of clean energy utilization rates and scheduling costs under different load demand 
conditions.

 

Scientific Reports |        (2024) 14:31304 10| https://doi.org/10.1038/s41598-024-82798-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 8.  Performance of clean energy utilization rate and scheduling costs in different periods.

 

Fig. 7.  Comparison of scheduling costs and response time under different clean energy supply conditions.
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Further, in the experiment, different communication delay times are set: 0ms (no delay), 50 ms, 100 ms, 200 
ms, and 400 ms to simulate delay conditions under various communication network scenarios. The specific 
results are listed in Table 4. It can be found that as the communication delay increases, the generation time 
of scheduling instruction increases significantly. This is because the algorithm needs to wait for a longer time 
to receive complete grid state information, thereby affecting the speed of scheduling instruction generation. 
Communication delays have a negative impact on the execution efficiency of scheduling instructions. The longer 
the delay, the more likely the algorithm is to fail to fully consider the most recent grid state information when 
generating scheduling instructions, leading to a decline in scheduling effectiveness.

Fig. 10.  Reward function of scheduling strategy.

 

Fig. 9.  Performance comparison of different scheduling algorithms under high clean energy variability.
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Discussion
This work proposes and validates the effectiveness of the PSO-DQN joint scheduling optimization algorithm in 
clean energy scheduling. Compared with traditional scheduling methods and single PSO or DQN methods, the 
research results demonstrate significant advantages of the PSO-DQN joint approach across multiple metrics. 
This finding is consistent with the perspectives of Zeng et al.22 and Chraibi et al.23. Specific advantages include:

Improved clean energy utilization rate: the PSO-DQN joint method shows a substantial improvement in clean 
energy utilization rate. The findings indicate an increase from 62.4% with traditional methods to 87.7% using 
this approach. This improvement is primarily attributed to the synergistic effect of PSO and DQN algorithms. As 
noted by Nama et al.24, the PSO algorithm demonstrated strong global search capabilities in optimizing initial 
scheduling schemes. It establishes a solid foundation for subsequent scheduling processes by exploring a wide 
solution space to find optimal or near-optimal scheduling schemes. Meanwhile, the DQN algorithm dynamically 
adjusts scheduling strategies based on real-time data during actual operations, enabling rapid responses to 
changes in clean energy supply. Through this dual-layer optimization architecture, the system identifies efficient 
scheduling schemes at the outset and continuously adjusts and optimizes them during operation. It enables the 
system to adapt to fluctuations in clean energy supply, thus achieving more efficient utilization of clean energy. 
This collaborative optimization strategy not only enhances clean energy utilization but also significantly reduces 
energy wastage compared to traditional methods, highlighting the substantial potential of intelligent scheduling 
systems in energy management.

Significantly reduced scheduling cost: in terms of scheduling cost, the PSO-DQN method also demonstrates 
significant advantages, reducing the scheduling cost from 5.4 million RMB in traditional methods to 4.2 million 
RMB, a reduction of approximately 22%. This cost reduction is primarily attributed to the efficiency and 
precision of the PSO-DQN method in optimizing scheduling strategies. First, the PSO algorithm utilizes its 
global search capability to find an optimized initial scheduling plan, ensuring a relatively low-cost foundation 
at the start of scheduling. Then, the DQN algorithm dynamically analyzes and adjusts scheduling strategies 
in real-time during actual scheduling processes to cope with changing demands and supply conditions. It can 
further optimize scheduling plans and reduce unnecessary energy waste and cost expenditures. This dynamic 
adjustment mechanism allows the scheduling system to flexibly respond to various uncertainties in actual 
operations, avoiding the high costs associated with traditional methods due to lack of real-time adjustments. 
By combining global optimization from PSO and real-time adjustments from DQN, the PSO-DQN method 
significantly enhances the economic benefits of the scheduling system, proving its effectiveness and superiority 
in optimizing scheduling strategies. Moreover, this cost reduction not only improves overall economic efficiency 
but also provides strong support for further promotion and application of intelligent scheduling systems.

Improved system stability and response time: the PSO-DQN method also shows significant advantages. 
Research results indicate that this method significantly improves system stability and reduces response time 
when handling complex scheduling tasks. Specifically, the PSO algorithm establishes a foundation for stable 
system operation by finding the optimal scheduling plan through global search. Meanwhile, the DQN algorithm 
dynamically adjusts schedules based on real-time data during the scheduling process, promptly responding to 
changes in load demands and clean energy supply conditions. This dynamic adjustment mechanism enables 
the system to make optimal decisions quickly in the face of emergencies and fluctuations, thereby avoiding 
instability and resource waste issues. Through the collaborative efforts of PSO and DQN, the system maintains 
efficient operation in complex scheduling tasks and adjusts rapidly to changes in load demands and energy 
supply conditions, ensuring operational stability and efficiency. This enhancement in stability and rapid 
response capability demonstrates the advantages of the PSO-DQN method in practical applications, better 
meeting the needs of clean energy scheduling and ensuring reliability and efficiency under various operating 
conditions. Therefore, the PSO-DQN method not only excels in clean energy utilization and scheduling costs 
but also exhibits tremendous potential in enhancing system stability and response time in intelligent scheduling 
optimization.

In adapting to varying load demands and clean energy supply conditions, the PSO-DQN method demonstrates 
outstanding adaptability and robustness. Further analysis of its performance under different load demands 
and clean energy supply conditions shows that the PSO-DQN method maintains high clean energy utilization 
rates and low scheduling costs, whether facing increased load demands or enhanced clean energy supply. 
This exceptional performance is primarily due to the combination of the PSO algorithm’s global optimization 
capability and the DQN algorithm’s dynamic adjustment ability. The PSO algorithm identifies optimal solutions 

1 Communication delay time (ms)
The generation time of scheduling 
instructions (ms)

Execution efficiency of scheduling 
instructions (%)

System 
stability 
metrics

0 (No Delay) 100 98 Stable

50 150 95 Stable

100 200 92 Slight 
fluctuations

200 300 88 Significant 
fluctuations

400 500 80 Instability and 
conflicts arise

Table 4.  Algorithm delay under different communication networks.
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during the initial scheduling phase, laying a solid foundation for subsequent scheduling processes. Meanwhile, 
the DQN algorithm adjusts scheduling strategies in real-time based on current data, ensuring efficient system 
operation under diverse conditions. The system exhibits good adaptability and stability in handling fluctuations 
and response time, enabling the PSO-DQN method to effectively address challenges in complex and uncertain 
environments related to clean energy scheduling. This capability ensures stable operation and efficient energy 
utilization, showcasing the method’s broad potential for applications in clean energy scheduling optimization.

Thus, the PSO-DQN joint scheduling optimization algorithm proposed not only demonstrates excellent 
practical performance but also holds significant theoretical value. First, by integrating PSO and DQN, two 
distinct optimization strategies, the algorithm introduces a novel approach to intelligent scheduling optimization, 
expanding the application boundaries of intelligent optimization algorithms in energy scheduling. Second, 
through comprehensive experimental validation and comparative analysis, the work provides ample evidence 
supporting the superiority of the PSO-DQN method in enhancing clean energy utilization, reducing scheduling 
costs, improving system stability, and reducing response time. This lays a solid foundation for future research.

In terms of practical value, the PSO-DQN method significantly enhances the operational efficiency and 
economic benefits of clean energy scheduling systems. It increases clean energy utilization, reduces energy 
waste, and enhances economic efficiency by lowering scheduling costs. Moreover, the method’s improved system 
stability and rapid response capabilities allow it to better handle fluctuations in load demands and energy supply 
in practical applications, ensuring stable system operation. These successful practical applications not only 
demonstrate the utility of the PSO-DQN method but also provide robust support for further promotion and 
application of intelligent scheduling optimization systems.

Conclusion
This work demonstrates the significant advantages of combining PSO and DQN methods in optimizing clean 
energy scheduling. It not only improves clean energy utilization rates and reduces scheduling costs but also 
exhibits good adaptability and stability in handling different load demands, clean energy supply conditions, and 
periods. The adjustment results of the DQN model are fed back to the PSO algorithm as a reference for making 
an initial scheduling plan in the future. This feedback mechanism helps the PSO algorithm to generate more 
realistic scheduling plans in subsequent iterations. Particularly under conditions of high clean energy variability, 
this method effectively mitigates adverse impacts from fluctuations, significantly enhancing scheduling efficiency 
and system stability.

Although the PSO-DQN joint method proposed demonstrates significant advantages in clean energy 
scheduling optimization, several limitations should be noted. First, the method relies heavily on large quantities 
of high-quality real-time data. The accuracy and timeliness of data significantly impact the effectiveness of 
scheduling results. Noise or delays in data could potentially degrade the performance of scheduling solutions. 
Moreover, the computational complexity of the PSO-DQN method is high, especially when dealing with large-
scale power grids and high-frequency scheduling, which may consume substantial computing resources and 
affect the real-time responsiveness of the system. Additionally, this work primarily relies on simulation data 
for validation, and while the results show good performance, real-world applications may encounter more 
unforeseen complexities and challenges. Particularly, during extreme weather events or emergencies, the system’s 
robustness and adaptability need further validation and enhancement.

Future research can enhance the performance and application scope of the PSO-DQN method in several 
ways. First, more advanced algorithms such as multi-objective optimization algorithms and hybrid intelligent 
algorithms can be introduced to further improve the optimization effectiveness and computational efficiency 
of scheduling solutions. Besides, integration with actual grid data can be strengthened to conduct larger-scale 
field tests and validations, ensuring the method’s feasibility and stability in practical applications. Moreover, 
with the development of electricity markets and the increasing proportion of clean energy, future scheduling 
optimizations need to consider not only economic benefits and clean energy utilization rates but also carbon 
emissions and environmental requirements. It can help to construct more holistic and sustainable scheduling 
optimization models. Lastly, the application of the PSO-DQN method in other fields such as intelligent 
transportation and smart manufacturing can be explored. This can facilitate cross-domain intelligent scheduling 
optimization, providing insights and references for optimizing scheduling in more complex systems.

Data availability
The data that support the findings of this study are available on request from the corresponding author, upon 
reasonable request.
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