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Abstract: The widespread use of the Internet of Things (IoT) has led to significant break-
throughs in various fields but has also exposed critical vulnerabilities to evolving cyberse-
curity threats. Current Intrusion Detection Systems (IDSs) often fail to provide real-time
detection, scalability, and interpretability, particularly in high-speed optical network envi-
ronments. This research introduces XIoT, which is a novel explainable IoT attack detection
model designed to address these challenges. Leveraging advanced deep learning meth-
ods, specifically Convolutional Neural Networks (CNNs), XIoT analyzes spectrogram
images transformed from IoT network traffic data to detect subtle and complex attack
patterns. Unlike traditional approaches, XIoT emphasizes interpretability by integrating
explainable AI mechanisms, enabling cybersecurity analysts to understand and trust its
predictions. By offering actionable insights into the factors driving its decision making,
XIoT supports informed responses to cyber threats. Furthermore, the model’s architecture
leverages the high-speed, low-latency characteristics of optical networks, ensuring the
efficient processing of large-scale IoT data streams and supporting real-time detection in
diverse IoT ecosystems. Comprehensive experiments on benchmark datasets, including
KDD CUP99, UNSW NB15, and Bot-IoT, demonstrate XIoT’s exceptional accuracy rates
of 99.34%, 99.61%, and 99.21%, respectively, significantly surpassing existing methods in
both accuracy and interpretability. These results highlight XIoT’s capability to enhance IoT
security by addressing real-world challenges, ensuring robust, scalable, and interpretable
protection for IoT networks against sophisticated cyber threats.

Keywords: Internet of Things; intrusion detection systems; deep learning; explainable AI;
spectrogram; network attacks; diverse approach; optimization methods; optical network

1. Introduction
The global perception of the Internet and its services among users has experienced

a substantial rise in recent years, and this upward trajectory is anticipated to persist into
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the foreseeable future [1]. The Internet’s interconnected nature has transformed daily life,
fostering innovations that span personal, commercial, and industrial domains. With the
widespread adoption of electronic devices such as smartphones, smart appliances, and
industrial sensors, the Internet of Things (IoT) has emerged as a defining technological
advancement. IoT connects physical devices to the digital world, allowing real-time data
exchange and automation across sectors. Cyber-Physical Systems (CPSs), integral to critical
infrastructures such as healthcare, water management, power grids, and agriculture, are
increasingly reliant on IoT. However, with this rapid adoption comes the challenge of
securing billions of connected devices. By 2018, there were an estimated 7 billion IoT
devices in operation, which is a number projected to surge to over 20 billion by 2020 [2].

As IoT devices become ubiquitous, so too do the vulnerabilities they introduce. These
devices, which often operate with limited security features, are prime targets for cyber-
attacks. Symantec’s 2018 report highlighted over 57,000 attacks per month on IoT devices,
underscoring the urgent need for comprehensive security frameworks [3]. Traditional
security measures, typically focused on data acquisition and reactive defenses, are no
longer sufficient. To counter emerging threats, especially in IoT environments, a paradigm
shift toward proactive, prevention-focused security measures is critical. This requires the
adoption of advanced Intrusion Detection Systems (IDSs), particularly those capable of
real-time threat detection and mitigation.

A significant challenge in securing IoT networks lies in the complexity of modern
cybercrimes. One of the most prevalent and dangerous forms of attack is the botnet. Bot-
nets, like the infamous Mirai botnet, exploit IoT vulnerabilities to orchestrate large-scale
Distributed Denial of Service (DDoS) attacks. The Mirai attack, which peaked at 1.1 Tbps,
demonstrated the destructive potential of compromised IoT devices when coordinated
at scale. The evolution of botnets now includes features like encrypted command-and-
control (CC) communications, which help them evade detection and execute multi-vector
attacks [4]. The increasing sophistication of such attacks highlights the need for more ad-
vanced detection mechanisms capable of interpreting complex attack patterns in real-time.

In response to these challenges, our research introduces the Explainable Internet
of Things (XIoT) model, which is a novel detection system specifically designed for IoT
environments. While applying Convolutional Neural Networks (CNNs) to IoT traffic for
intrusion detection is a well-known technique, the XIoT model stands apart by introducing
several key innovations. It harnesses the power of CNNs combined with Explainable AI
(XAI) to provide deeper interpretability and transparency in the decision-making process,
which is critical in real-world cybersecurity applications. This integration of CNNs with
XAI ensures that both the spatial and temporal features of spectrogram images derived
from IoT network traffic are efficiently analyzed, facilitating a more nuanced detection of
cyber threats.

These spectrograms transform raw network traffic into visual data, enabling CNNs to
identify intricate attack patterns that are otherwise difficult to capture using conventional
methods. What sets XIoT apart from existing methods is its ability to offer both high
detection accuracy and a transparent, interpretable model that aids cybersecurity experts
in understanding the reasoning behind the system’s decisions, which is a capability largely
absent from most current IDS solutions [5].

In the context of IoT security, Network Intrusion Detection Systems (NIDSs) are indis-
pensable for safeguarding IoT infrastructures from common attack vectors such as Denial of
Service (DoS), Probe Attacks, Remote to Local (R2L), and User to Root (U2R) attacks [6]. Tra-
ditional NIDS solutions, however, often struggle to adapt to the high variability and sheer
volume of data generated by IoT devices. The XIoT model addresses this gap by employing
a dual-focus analysis of IoT network traffic through CNN-based models, handling the
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scale and complexity of IoT traffic effectively. It identifies novel attack patterns, anticipates
potential security breaches, and provides real-time defenses. By focusing on IoT-specific
threats, such as botnets, and leveraging the interpretive power of CNNs enhanced with
XAI, XIoT significantly improves the overall security posture of IoT networks.

Beyond its technical capabilities, the XIoT model also improves upon existing models
by enhancing interpretability, which is a critical aspect for cybersecurity practitioners. In
complex IoT environments, understanding the nature and behavior of an attack is essential
for implementing effective countermeasures. The XIoT model’s explainable intrusion
detection decisions empower security analysts with actionable insights, facilitating faster
and more accurate responses to evolving threats. This is a significant departure from
the ”black box” nature of many ML-based intrusion detection systems, which often leave
analysts with limited understanding of the detection process.

Furthermore, the rising interconnectivity of devices, often referred to as Explainable
IoT (XIoT), which integrates traditional IoT with operational technology (OT) and industrial
control systems (ICSs), presents additional security challenges. XIoT environments extend
the attack surface significantly, necessitating even more robust and scalable detection
mechanisms. The XIoT model is specifically designed to meet these demands, offering
advanced detection capabilities that align with the increasing complexity and scale of these
interconnected systems. By rigorously evaluating the model across diverse datasets such as
KDD CUP99, UNSW NB15, and Bot-IoT, we demonstrate its ability to generalize across
different IoT environments, offering a novel solution that outperforms current intrusion
detection models in terms of accuracy, precision, recall, and F1-score.

Ultimately, the XIoT model is a direct response to the pressing security challenges
posed by the proliferation of IoT devices and their associated cyber threats. By leveraging
advanced ML techniques, specifically CNNs integrated with explainable AI, the XIoT
model enhances the detection, interpretation, and prevention of modern cyberattacks in
IoT environments. The ability to adapt to evolving attack patterns and provide real-time,
actionable insights positions XIoT as a cutting-edge solution for ensuring the confidentiality,
integrity, and availability (CIA) of IoT systems [7,8]. As IoT continues to evolve, so too must
the systems designed to protect it, and the XIoT model offers a promising path forward in
advancing the state of IoT cybersecurity.

The proliferation of IoT devices connected through high-speed optical networks in-
troduces unique challenges, such as managing heterogeneous data streams with minimal
latency and ensuring robust security against increasingly sophisticated cyber threats. Ex-
isting IDSs lack the efficiency and interpretability required for real-time detection in such
environments. This research aims to bridge this gap by leveraging spectrogram-based data
transformation and CNNs to enhance both accuracy and explainability.

1.1. Related Work

ML techniques have been extensively employed to detect various types of cyber attacks,
enabling network administrators to implement preventative measures against intrusions.
Initially, traditional ML methods such as SVM [9], k-Nearest Neighbor (KNN) [10], RF [11],
Naïve Bayes Network [12], and Self-Organizing Maps (SOMs) [13] were utilized in IDS
and demonstrated promising results. Reference [14] assessed the efficacy of various ML
classifiers using the NSL-KDD dataset. However, these traditional methods, characterized
as shallow learning, primarily focus on feature engineering and selection, and they are often
inadequate for managing the complexities of large-scale data classification in real network
environments [15,16]. As datasets expand, the limitations of shallow learning become
apparent, particularly in high-dimensional analysis required for intelligent forecasting.



Photonics 2025, 12, 35 4 of 39

Conversely, DL offers enhanced capabilities for extracting significant representations
from data, thus improving model performance. Recent research has explored the applica-
tion of DL in network intrusion detection, which is a relatively novel field. For instance, DL
approaches like the three-layer RNN proposed by [17] with 41 features and four output
categories, despite its partial inter-layer connectivity, signify advancements in handling
high-dimensional features. Additionally, Torres et al. [18] transformed feature data into
character sequences to analyze temporal characteristics using RNN. In [14], a specific RNN-
IDS model was introduced for direct classification, comparing its performance against
traditional methods such as J48, ANN, RF, and SVM on the NSL-KDD dataset in binary
and multi-class scenarios. Wang et al. [19] integrated both CNN and RNN to maximize
the deep neural network’s ability to learn spatial–temporal features from raw network
traffic data.

As new viruses emerge and intrusion behaviors evolve, IDSs continue to innovate,
integrating data mining and ML technologies to enhance detection capabilities [20]. For
example, an adaptive chicken colony optimization algorithm for efficient clustering in
selecting cluster heads was introduced in [21], along with a two-stage adaptive SVM
classification to identify malicious sensor nodes, thereby reducing time consumption and
enhancing network lifespan and scalability. Other authors developed an IDS model utilizing
a double sparse convolution matrix framework which leverages the strong correlations in
non-negative matrix decomposition to reveal hidden patterns and achieve high detection
accuracy. However, despite these advancements, traditional ML-based IDSs still face
significant challenges due to their reliance on complex mathematical calculations [22].

Various methods have been developed to enhance attack detection in IoT networks. In
prior research, a feed-forward neural network achieved high accuracy using the BoT-IoT
dataset, though with lower precision and recall in some categories [23]. Reference [24]
introduced a hybrid IDS combining feature selection and ensemble learning, significantly
improving accuracy to 99.9%. Reference [25] employed an LSTM autoencoder for dimen-
sionality reduction, followed by a Bi-LSTM, which improved performance at the expense
of increased computational time.

Reference [26] used a bi-directional LSTM, achieving high detection rates for DoS
attacks in cloud networks, although it struggled with non-DoS traffic like reconnaissance
attacks. Reference [27] proposed Deep-IFS, a forensic model enhanced with multi-head
attention, outperforming centralized DL models but requiring numerous fog nodes for op-
timal performance. Reference [28] applied correlation-based feature selection with various
ML algorithms, achieving high detection rates. Reference [29] developed a Deep Belief
Network (DBN)-based IDS with strong accuracy, while other studies utilized CNN-LSTM
combinations [30,31], achieving high detection rates across different attack types. Another
novel IDS combined CNNs with stacked autoencoders for feature extraction, showing
high performance. However, methods involving RNNs with self-attention mechanisms
demanded extensive preprocessing time.

Research has also explored hybrid feature selection techniques like ant colony opti-
mization and mutual information, which proved effective in improving detection with
decision trees [29]. Metaheuristic algorithms, such as particle swarm optimization (PSO)
and genetic algorithms (GAs), have been used for feature selection to enhance IDS perfor-
mance [32–37]. Despite these advances, there remains a gap in integrating deep learning
with metaheuristic approaches for further improvement in IoT-based IDSs.

One-class classification is a key anomaly detection method particularly suited for
datasets where one class dominates, such as in intrusion detection, where normal network
traffic far exceeds attack instances. It utilizes algorithms like Meta-Learning [38], Inter-
polated Gaussian Descriptor [39], One-Class Support Vector Machine (OCSVM) [40–45],
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and Autoencoders [46–52]. OCSVM is particularly effective with small datasets, as demon-
strated by [45], who enhanced it with hyperparameter optimization, creating a scalable and
distributed IDSs for IoT, which was assessed with ensemble learning.

Autoencoders, such as the stacked self-encoder model from Song [50], are increasingly
favored as datasets grow, offering stable performance with optimization through latent
layer adjustments. Ensemble learning [53–59] has also shown promise, integrating multiple
weak learners to improve overall accuracy. Reference [56] introduced an ensemble voting
classifier for IoT intrusion detection, while [58] used a genetic algorithm for feature selection
combined with SVM and DT classifiers. Reference [59] developed a two-layer soft-voting
model using RF, lightGBM, and XGBoost, achieving superior accuracy in both binary and
multi-class scenarios.

Reference [60] presented an ensemble IDS for IoT environments, mitigating botnet
attacks using DNS, HTTP, and MQTT protocols. The method employed AdaBoost with DT,
naive Bayes, and artificial neural networks, using the UNSW-NB15 dataset. Additionally,
reference [61] proposed a Dew Computing as a Service model to improve the IDS perfor-
mance in Edge of Things (EoT) systems, integrating Deep Belief Networks (DBNs) with
restricted Boltzmann machines for real-time attack classification. [62] introduced MemAE,
a memory-augmented autoencoder that improves anomaly detection by guiding recon-
struction toward normal data characteristics, enhancing detection accuracy. Furthermore,
SVD and SMOTE were applied to improve feature condensation and balance, achieving
99.99% accuracy in binary classification and 99.98% in multi-class classification using the
ToN_IoT dataset.

Finally, reference [63] introduced the Deep Random Neural Network, combining
Particle Swarm Optimization (PSO) and Sequential Quadratic Programming to enhance
attack detection in IIoT settings. The model demonstrated superior performance across
both binary and multi-class scenarios using multiple IIoT datasets. Deep learning (DL)
models have become integral in intrusion detection due to their ability to automatically
learn hierarchical representations from network traffic data. Unlike traditional ML models,
DL methods like Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) do not rely on manual feature extraction, making them more effective in handling
complex patterns in real-time attack data.

RNNs, particularly Long Short-Term Memory (LSTM) networks, have demonstrated
significant improvements in detecting temporal attack patterns. For example, reference [14]
applied an LSTM-based IDS to the NSL-KDD dataset, achieving notable accuracy for probe
and DoS attacks but struggling with less frequent attack types like R2L and U2R. Despite
this limitation, RNNs are particularly advantageous in capturing sequential dependencies
in network traffic data. On the other hand, CNNs have been successfully applied to analyze
network traffic represented as images or spectrograms. In this study, the novel XIoT model
utilizes CNNs to examine spectrogram images of IoT traffic data, emphasizing the inter-
pretability of attack detection. Unlike RNNs, CNNs are primarily used for spatial feature
extraction, which makes them suitable for analyzing the static features of network traffic
patterns [64]. While both RNNs and CNNs offer substantial improvements over traditional
ML models, their specific use cases differ. RNNs excel in sequential data modeling, while
CNNs are more effective for tasks requiring spatial feature extraction. Ensemble models
combining these architectures have been explored for further performance gains.

To demonstrate the application and performance of various machine learning and
deep learning models in the context of intrusion detection systems (IDSs), Table 1 provides
a comparative analysis of these models across different datasets with classification accuracy
as a key metric.
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Traditional ML models, such as SVM, DT, and RF, have been widely applied in
earlier studies. For instance, reference [65] achieved a high accuracy of 98.9% using a
K-means clustering model on the KDD Cup 99 dataset. However, as noted in Section 2.12,
these models often struggle with underrepresented attack classes. DL approaches have
been increasingly adopted due to their ability to handle complex data representations.
Reference [66] applied a CNN on the KDD Cup 99 dataset, achieving an accuracy of 97.1%,
while [67] employed an LSTM, enhancing the accuracy to 97.8%. These results highlight
the effectiveness of CNNs and LSTMs in detecting network intrusions with higher accuracy
compared to traditional ML models.

Table 1. Former IDS models and their corresponding outcomes.

Ref./Authors Model Dataset Classification
Accuracy (%)

[66] Zhang CNN KDD Cup 99 97.1

[68] Gupta RNN KDD Cup 99 96.4

[67] Mishra LSTM KDD Cup 99 97.8

[69] Wang Random Forest DARPA 82.6

[65] Ahmed Hasan K-means KDD Cup 99 98.9

[70] Raj Mukkamala CNN + RNN + LSTM DARPA 99.9

[71] Gupta Random Forest + K-means KDD Cup 99 98.8

[72] Kwon GAN NSL-KDD 92.3

[73] Binbusayyis K-means UNSW-NB15 95.6

[74] Alzahrani CNN CIC-IDS2017 97.2

[75] Wang LSTM CIC-IDS2018 98.5

[76] Zhang Ensemble Learning NSL-KDD 94.8

Ensemble models, which combine multiple machine learning algorithms or deep
learning architectures, have demonstrated even greater performance. Reddy et al. [29]
integrated CNN, RNN, and LSTM networks on the DARPA dataset, achieving the highest
accuracy of 99%, underscoring the potential of hybrid models in intrusion detection. The
development of an IDS model is heavily influenced by the insights gathered from a review
of the current literature and prior sections. A critical takeaway is that DL techniques
have consistently outperformed traditional ML approaches in handling high-dimensional
data and improving classification accuracy in IDS applications. For instance, the paper by
Yin et al. [77] demonstrated that DL models, particularly CNNs, are superior to traditional
ML models such as SVM and decision trees (DTs) when it comes to processing complex
datasets like NSL-KDD and KDDCup99.

One key advantage of DL over traditional ML lies in its ability to automatically extract
features from raw data, eliminating the need for manual feature engineering, which is a
limitation in shallow learning methods [78]. Furthermore, deep learning algorithms such
as feed-forward DNNs and CNNs tend to outperform Recurrent Neural Networks (RNNs),
including GRU and LSTM networks, in certain IDS applications. Although LSTMs excel in
time-series data analysis, DNNs have been shown to be more effective in static intrusion
detection tasks due to their simpler architecture and faster training times.

Recent research also suggests that ensemble learning models, which combine multiple
ML or DL algorithms, can enhance prediction accuracy and reduce variability in IDS
results. Ensemble models outperform individual models by leveraging the strengths of
each algorithm to correct the weaknesses of others [79]. This finding highlights the growing
importance of hybrid approaches in developing robust IDS solutions.



Photonics 2025, 12, 35 7 of 39

However, significant challenges remain in accurately detecting less frequent attack
types, such as R2L and U2R attacks, due to their underrepresentation in common datasets
like NSL-KDD [80]. As most IDS models achieve high accuracy in detecting DoS and
probing attacks, further research is needed to improve the detection rates for R2L and
U2R attacks to ensure more comprehensive IDS performance. The IoT is a technology
that links networks with sensors and other gadgets using IP-based communications. It is
gaining popularity among individuals with Internet access. Individuals institutionalized
because of a handicap or sickness might obtain advantages from the IoT by using it for
remote monitoring, timely intervention, and healthcare services. Sensors, actuators, radio
frequency identification (RFID), and other IOT components can be integrated into people’s
bodies and objects. To illustrate, consider the following scenario: Caregivers can operate the
equipment they have at their disposal more easily if they have the assistance of the available
accessories. It is possible to read RFID patients or patient tags (including medical devices)
and identify them using IOT applications, which are becoming increasingly popular. They
can also be used to monitor and regulate the activities of other people.

Various approaches have been proposed to ensure that communication between nodes
in the IOT network is secure and reliable, proposing a trust management mechanism that
can be described as dynamic and flexible in how it is implemented and operated [81]. This
topic has been extensively discussed by [82] Bao and Chen, who have written extensively
about it in their respective publications.

The researchers developed a management framework for the layered IOT organized
around the concept of services, which is built on the trustworthiness of its nodes as a
foundation. When used with the IOT, which is composed of multiple layers, it is intended
to be a multi-layered system. The developers’ documentation refers to this framework as
”service-oriented”, which indicates that it is designed to provide services. In addition to the
core, sensor, and application layers, several other layers and components contribute to the
system’s structure and function.

1.2. Motivation

The IoT is rapidly becoming an integral part of modern life with smart devices and
sensors increasingly embedded in applications ranging from healthcare to transportation.
The complexity and volume of IoT data present unique challenges for intrusion detection
systems (IDSs), requiring robust, scalable, and interpretable machine learning solutions.

Traditionally, Recurrent Neural Networks (RNNs) and their variants, such as Long
Short-Term Memory (LSTM) networks, are highly effective in dealing with sequential data
patterns, including network traffic data. As acknowledged, RNNs and LSTMs have been
extensively studied in recent intrusion detection research with many papers demonstrating
their effectiveness in learning temporal dependencies. However, while these models excel
in processing time-series data, our research focuses on leveraging the unique properties of
CNNs for the specific nature of the data used in this work—namely, spectrogram images
representing IoT network traffic.

The necessity for XIoT stems from the inability of existing IDSs to address critical
challenges in IoT security. Traditional methods, including machine learning and some
deep learning approaches, struggle to provide real-time detection, handle large-scale
data, or offer interpretability. By transforming raw IoT traffic into spectrogram images,
XIoT enables CNNs to extract nuanced spatial and temporal patterns, addressing these
limitations effectively.

• Spectrogram Data Representation: In this research, network traffic data are trans-
formed into spectrogram images, which capture both spatial and frequency informa-
tion. CNNs are particularly effective at extracting spatial features and patterns from
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images, making them an ideal choice for analyzing these spectrograms. The capabil-
ity of CNNs to capture local patterns across the image allows them to detect subtle,
localized anomalies in network traffic, which are critical for identifying cyber threats.

• Computational Efficiency and Scalability: CNNs offer significant advantages in terms
of computational efficiency, especially when processing large-scale data in real-time
environments, which is crucial for IoT applications. RNNs and LSTMs, while pow-
erful for sequential tasks, often suffer from higher computational costs and longer
training times due to their sequential nature. In contrast, CNNs can process data in
parallel, making them more scalable and efficient for the real-time analysis of vast
IoT-generated traffic.

• Robustness to Input Variations: IoT data are prone to a variety of attacks and perturba-
tions, such as shifts in scale, rotation, and translation. CNNs are inherently robust to
such variations due to their ability to learn hierarchical features through convolutional
layers. This robustness is critical for ensuring reliable detection across diverse IoT
environments, where data can be highly dynamic and variable.

• Explainability and Interpretability: The ability to integrate explainable AI (XAI) mech-
anisms into CNNs provides a significant advantage in security-critical applications
like IDS. Transparency in decision making is vital for building trust among stakehold-
ers in IoT security. The architectural properties of CNNs make them well suited for
incorporating interpretability techniques, allowing the model’s predictions to be more
easily understood and trusted by security analysts.

Thus, while acknowledging the effectiveness of RNNs and LSTMs for time-series data,
CNNs were selected due to their superior performance in image-based analysis, scalability,
and interpretability—key attributes that align with the requirements and goals of this
research. This strategic choice enhances the practicality of the proposed IDS for real-time,
scalable IoT security applications.

1.3. Problem Statement

With the rapid proliferation of Internet of Things (IoT) devices, the security of these
networks has become a critical concern. Traditional intrusion detection systems are often
ill suited to handle the unique challenges posed by IoT networks, such as their large
scale, diverse device types, and evolving attack strategies. This paper proposes a novel
deep learning-based approach, using explainable gradient-based Convolutional Neural
Networks (EG-CNNs), to detect and classify IoT network attacks. Our aim is to develop a
model that not only achieves high detection accuracy but also provides transparency in its
decision-making process, which is crucial for cybersecurity professionals to understand
and trust the model’s outputs. This research contributes to the growing need for effective
and interpretable IoT intrusion detection systems. The rapid proliferation of Internet of
Things (IoT) devices has led to significant advancements across various sectors. However,
it has also introduced substantial cybersecurity vulnerabilities. An alarming analysis
revealed that 83% of interactions between IoT devices occur in plain text, and 41% of
these interactions lack any form of secure communication, such as SSL. This widespread
insecurity exposes IoT networks to cyberattacks, particularly wireless attacks, due to their
interconnected nature. Consequently, these vulnerabilities result in frequent compromises
of communication channels and component interfaces within large systems, leading to the
propagation of failures across different locations.

Traditional security measures, such as access control and encryption, offer some protec-
tion but are insufficient. Many attacks exploit common vulnerabilities in IoT applications,
often resulting from rushed development cycles. These attacks can significantly impact the
reliability and availability of IoT services, especially in critical infrastructure, where IoT
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applications are heavily relied upon. Moreover, existing detection and mitigation strategies
lack the robustness required to counter these evolving threats effectively.

Given the critical nature of these vulnerabilities, there is a pressing need for advanced
detection and mitigation mechanisms that not only provide high accuracy but also offer
explainability to enhance trust and decision making. This research introduces XIoT, an
explainable deep learning-based IoT attack detection model, to comprehensively address
these cybersecurity challenges.

Despite advancements in Intrusion Detection Systems (IDSs), current solutions fall
short in handling large-scale IoT traffic in real time, adapting to rapidly evolving attack pat-
terns, and offering transparent decision making. Specific challenges include the following:

• Latency in high-speed networks: Current models are unable to process extensive
datasets in optical networks efficiently.

• Limited interpretability: Analysts lack actionable insights from existing ‘black-
box’ models.

• Inadequate adaptability: Many IDSs fail to generalize to novel or evolving attack
scenarios. These gaps significantly compromise the security of IoT ecosystems, such
as smart grids, healthcare systems, and industrial IoT, necessitating the development
of a novel approach.

1.4. Objectives

• To address the limitations of existing Intrusion Detection Systems (IDSs) by developing
a novel model that provides the real-time, scalable, and interpretable detection of IoT
threats, particularly in high-speed optical network environments.

• To design and implement an Explainable AI model (XIoT) that integrates the sequential
and spatial analysis of IoT spectrogram images, leveraging Convolutional Neural
Networks (CNNs) for the efficient and accurate detection of complex attack patterns.

• To thoroughly evaluate the XIoT model across diverse benchmark datasets, including
KDD CUP99, UNSW NB15, and Bot-IoT, ensuring its adaptability to varying IoT
network scenarios and attack complexities.

• To compare the proposed model’s performance with existing machine learning (ML)
and deep learning methods, highlighting its superiority in terms of accuracy, inter-
pretability, and practical utility for cybersecurity analysts.

• To demonstrate the practical applicability of XIoT in protecting critical IoT applications,
such as smart grids, healthcare IoT, and industrial IoT, by offering actionable insights
and ensuring robust cybersecurity.

1.5. Significance

The significance of this research lies in its potential to address critical gaps in exist-
ing Intrusion Detection Systems (IDSs) by providing a solution tailored for the unique
challenges of IoT networks, particularly in high-speed optical communication environ-
ments. Current IDSs often struggle with real-time processing, scalability, and inter-
pretability—limitations that this study directly addresses through the development of
the XIoT model.

By leveraging advanced ML and DL techniques, specifically spectrogram-based CNNs,
this research offers an innovative approach to detecting and predicting IoT-specific cyber
threats. The integration of Explainable AI (XAI) mechanisms ensures transparency and
trust, enabling cybersecurity analysts to understand and act upon the model’s predic-
tions effectively.

This proactive and interpretable approach is expected to significantly reduce the
frequency and impact of cyber-attacks in critical IoT applications, such as smart grids,
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healthcare systems, and industrial IoT environments. By enhancing IoT security, this
research not only mitigates immediate threats but also fosters greater confidence in adopting
IoT technologies, enabling their continued expansion and innovation across industries. The
outcomes of this research aim to create a more secure, reliable, and resilient IoT ecosystem.
This contributes to safeguarding essential infrastructure, protecting sensitive data, and
supporting the ongoing technological advancements required for smart cities, connected
healthcare, and other transformative IoT applications.

1.6. Contribution

The research study introduces a groundbreaking approach to IoT security through
the development of the XIoT model, which stands out due to its integration of advanced
DL techniques and explainable AI mechanisms. Unlike traditional IDSs that often lack
transparency, the XIoT model leverages CNNs to analyze spectrogram images derived
from IoT network traffic, capturing both spatial and sequential data. This dual-focus anal-
ysis facilitates a more nuanced detection of malicious activities, offering unprecedented
accuracy. Moreover, the model’s emphasis on interpretability marks a significant departure
from existing methods, providing stakeholders with clear insights into the decision-making
process behind each detection. By validating the XIoT model across diverse benchmark
datasets, including KDD CUP99, UNSW NB15, and Bot-IoT, the study not only demon-
strates the model’s robustness and adaptability but also highlights its superior performance
in real-world IoT environments. This novel combination of high accuracy, cross-dataset
validation, and enhanced transparency represents a substantial advancement in the field of
IoT cybersecurity, addressing both the technical and practical challenges of protecting IoT
ecosystems from sophisticated cyber threats.

1. Innovative Model Design: The XIoT model is an innovative method for IoT intrusion
detection that combines explainable AI with CNNs. This innovative model architec-
ture offers enhanced interpretability, enabling deeper insights into the underlying
features driving intrusion detection decisions in IoT networks.

2. Cross-Dataset Validation: Through rigorous evaluation across multiple datasets, in-
cluding KDD CUP99, UNSW NB15, and Bot-IoT, the XIoT model demonstrates its
robustness and generalizability. The model’s efficacy is validated by showcasing con-
sistent performance across diverse IoT network environments, instilling confidence in
its practical applicability.

3. Performance Superiority: The XIoT model surpasses current methods in a comparative
study by obtaining superior accuracy, precision, recall, and F1-score metrics across
all datasets. The efficacy of the proposed approach in effectively identifying and
categorizing intrusions highlights its superiority in strengthening the security of
IoT networks.

4. Enhanced Interpretability: Leveraging explainable AI techniques within the XIoT
model enhances its interpretability, allowing for transparent and comprehensible
intrusion detection decisions. The XIoT model empowers cybersecurity analysts with
actionable insights for timely response and mitigation by elucidating the contributing
features behind detected threats.

5. Practical Utility: The XIoT model holds significant practical implications for bolstering
IoT security measures in real-world scenarios. Its ability to effectively identify and
mitigate intrusions in IoT networks can safeguard critical infrastructure, sensitive
data, and connected devices against evolving cyber threats.
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2. Methodology
The transformation of IoT traffic into spectrogram images allows the XIoT to utilize

CNNs for detecting subtle, localized anomalies that are often missed by traditional methods.
This innovative approach ensures the robust detection of diverse attack patterns in large-
scale, dynamic IoT environments.

2.1. Data Processing

As soon as we have obtained a dataset, we must preprocess it to use it to train our
ML models on the information it contains. To accomplish this, we followed a five-step
procedure, such as data cleaning and conversion, splitting the data into training, test, and
validation sets, and, finally, creating images from the data.

2.1.1. Data Preprocessing

Successfully analyzing the NUSW-NB15, KDD Cup 99, Bot-IoT, and TON_IoT datasets
required meticulous preprocessing steps. Initially, entries with zero values were systemat-
ically removed from the datasets, necessitating their conversion into integer or floating-
point representations before elimination. Additionally, six characteristics deemed non-
informative for categorizing network attacks were excluded from all entries in the datasets
as a precautionary measure. Certain features were also turned off by default due to specific
circumstances to mitigate potential bias introduced during the model training phase. Al-
though the immediate impact on model accuracy might have been minimal, this decision
was anticipated to enhance long-term performance.

Consequently, specific pieces of information, such as IPv4 source and destination port
numbers (about Internet Protocol version 4) and minimum and maximum flow Time-to-
Live (TTL) values, were removed from the dataset columns. Following these preprocessing
steps, each dataset comprised distinct features tailored to their respective classes. These
steps were applied uniformly across all four datasets, ensuring consistency and reliability
throughout the subsequent analysis and model training phases.

2.1.2. Data Resampling

We determined that the entire dataset was excessively large, prompting us to utilize
only 100%. This approach allowed us to implement and test models within a reasonable
timeframe. To ensure the equal distribution of data across all classes of attacks, we em-
ployed stratified sampling on the dataset. Subsequently, after converting the data into
images as shown in Figure 1, we categorized and divided the dataset into three groups for
further analysis.

Figure 1. Image creation process using spectrogram.
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We adopted the three-way holdout method with a 70–30 split and stratified sampling to
ensure that each attack type was adequately represented in every dataset group. Following
the study’s conclusion, the collected samples comprised training, validation, and testing
samples, totaling the data collected during the study’s duration.

Due to the reduced concern regarding high variance in large datasets, the 3-way
holdout method is commonly favored. However, for smaller datasets, the k-fold cross-
validation method is typically preferred

2.1.3. Features and Spectrogram Computation

Features Adopted in the Proposed Model
In the proposed XIoT model, the primary features are the spectrogram images gen-

erated from raw IoT network traffic data. These spectrograms encapsulate both spatial
and temporal characteristics of the network traffic, enabling the model to detect intricate
patterns and anomalies indicative of potential cyber threats. The transformation of network
traffic data into visual representations allows us to leverage the powerful pattern recog-
nition capabilities of Convolutional Neural Networks (CNNs), facilitating the effective
classification of malicious activities.

The use of spectrograms is particularly advantageous because they highlight variations
in signal frequency over time, making it easier for the model to identify unusual patterns
that may signify an attack. By analyzing these visual cues, the model can better differentiate
between benign and malicious traffic, thereby improving the overall accuracy of intrusion
detection in IoT environments.

Computing the Spectrogram
The process of computing the spectrogram involves several critical steps, as out-

lined below:

1. Preprocessing Network Traffic Data: The raw IoT network traffic data are first prepro-
cessed into a suitable format for spectrogram generation. This preprocessing involves
the following:

• Segmentation: The data are divided into fixed time windows to capture the
dynamic nature of network traffic. Each segment corresponds to a specific time
frame during which traffic characteristics are analyzed.

• Normalization: The values within each segment are normalized to ensure consis-
tency across different data ranges. This step is crucial for reducing variance and
ensuring that the model training is stable and effective.

2. Transformation to Time–Frequency Domain: Each segmented portion of the network
traffic data are transformed into the time–frequency domain using the Short-Time
Fourier Transform (STFT). This technique is selected for its effectiveness in analyzing
non-stationary signals, which are common in network traffic. The mathematical
representation of STFT is given by

X(t, f ) =
∫ ∞

−∞
x(τ)w(τ − t)e−j2π f τ dτ (1)

where w(τ − t) is a window function that slides along the time axis t. This function
helps to localize the signal in both time and frequency, providing a comprehensive
view of the traffic dynamics.

3. Generating the Spectrogram Image: Once the STFT is computed, the magnitude of the
resulting complex numbers is obtained. This magnitude represents the intensity of
different frequencies over time. The spectrogram is visualized as a 2D image, where
the following apply:
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• One axis represents time.
• The other axis represents frequency.
• The color intensity reflects the magnitude of the signal at each time–frequency

point with brighter colors indicating higher signal strength.

This visual representation allows the model to capture intricate details that may be
indicative of specific types of network attacks.

4. Normalization and Scaling: The final step involves normalizing and resizing the
spectrogram images to ensure compatibility with the input requirements of the CNN.
This typically includes the following:

• Scaling pixel values to a standard range, such as [0, 1], which helps in stabilizing
the training process and improving convergence rates.

• Resizing the images to a consistent dimension to ensure that all input data
fed into the CNN are uniform, thereby simplifying the model architecture and
training process.

By following these steps, we generate a robust set of features that are well suited for
the detection of IoT-related attacks, leveraging the unique capabilities of CNNs to analyze
visual data effectively.

2.2. Metrics Justification

To evaluate the performance of the proposed model, we use standard classification
metrics: accuracy, precision, recall, and F1-score. These metrics were chosen because they
provide a comprehensive view of the model’s performance, especially in the context of IoT
intrusion detection. Accuracy gives an overall measure of correct predictions, while preci-
sion and recall help assess the model’s ability to identify true positive attacks (precision)
and minimize false negatives (recall). Since IoT attack datasets are often imbalanced, where
benign traffic dominates, the F1-score is used as a balanced metric to assess the trade-off
between precision and recall. These metrics are crucial for evaluating how well the model
performs in real-world scenarios where minimizing both false positives (incorrectly labeling
benign traffic as an attack) and false negatives (missing an actual attack) is essential.

2.3. EG-CNN Model Architecture

The architecture of the proposed model for IoT attack detection, known as Explainable
Gradient CNN (EG-CNN), is illustrated in Figure 2. This architecture comprises multiple
layers: convolutional, pooling, fully connected, and output layers, each meticulously
designed to extract and analyze pertinent features from incoming spectrogram images. This
structured approach facilitates the precise categorization of various IoT threats, enhancing
the model’s effectiveness in detecting malicious activities.

While the proposed model employs a general CNN architecture, several key modifica-
tions enhance its applicability for IoT attack detection:

Spectrogram Input: The model uniquely utilizes spectrogram images derived from IoT
network traffic data, which captures both temporal and frequency characteristics, allowing
for more nuanced feature extraction compared to raw data inputs.

Layer Configuration: The architecture includes multiple convolutional layers with
varying filter sizes that are optimized for detecting specific patterns relevant to IoT attacks
shown in Table 2. Each layer’s configuration is tailored to improve feature extraction
progressively.

Pooling Strategy: The use of max pooling after convolutional layers reduces dimen-
sionality while preserving critical features, which are essential for accurately classifying
complex IoT traffic patterns.



Photonics 2025, 12, 35 14 of 39

Dropout Layer: A dropout rate of 0.5 is implemented to combat overfitting, which is
crucial given the diverse nature of IoT network data.

Figure 2. Proposed deep learning framework for iot intrusion detection.

Table 2. Proposed XIoT model layer details.

Layer Type Number of Filters Kernel Size Pool Size Neurons/Output
Classes

Input - - - Spectrogram Images

Convolutional 32 3 × 3 - -

Convolutional 64 3 × 3 - -

Convolutional 64 3 × 3 - -

Convolutional 64 3 × 3 - -

Convolutional 64 3 × 3 - -

Ma × Pooling - - 2 × 2 -

Fully Connected - - - 256

Fully Connected - - - 256

Dropout - - - -

Output (Softmax) - - - 4 (IoT Attack Classes)

Softmax Output: The final softmax layer facilitates multi-class classification, which is
specifically tailored to recognize four distinct classes of IoT attacks.

The convolutional layers are essential for capturing spatial characteristics from the
input spectrograms. Each layer employs filters of increasing complexity, allowing for the
extraction of hierarchical features. The initial layers focus on detecting basic patterns, while
deeper layers identify more abstract features indicative of sophisticated attack strategies.
This progressive feature extraction enhances the model’s ability to recognize a wide variety
of attack types.

The max pooling layer follows the convolutional layers, significantly reducing the
spatial dimensions of the feature maps. This reduction not only decreases the computational
load but also emphasizes the most critical features, which are pivotal for the classification
task. By retaining the most salient aspects of the data, the model becomes more resilient to
minor variations and noise present in the input data.

The fully connected layers are positioned at the end of the architecture, performing
the final classification based on the features learned from the preceding convolutional
layers. Each fully connected layer comprises 256 neurons, allowing the model to learn
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complex decision boundaries essential for accurately distinguishing between different
types of IoT attacks.

To mitigate the risk of overfitting, a dropout layer with a rate of 0.5 is incorporated.
This technique randomly disables a fraction of neurons during training, promoting robust
feature learning and improving the model’s generalization capabilities on unseen data.

Finally, the output layer employs a softmax activation function to generate a proba-
bility distribution across the four classes representing various IoT threats. This function
ensures that the predicted probabilities sum to one, facilitating the interpretation of the
model’s predictions as confidence scores for each class. This structured and comprehen-
sive architecture thus plays a crucial role in the effective detection and classification of
IoT-based attacks.

2.4. Explainable AI

Explainable AI (XAI) refers to methods and techniques in artificial intelligence that
make the outcomes of complex models understandable to humans. In the context of
cybersecurity, particularly for IoT systems, XAI is vital as it provides insights into the
decision-making processes of models, fostering trust and allowing cybersecurity profes-
sionals to interpret and validate predictions.

2.4.1. Importance of Explainability

In IoT environments, where devices continuously generate massive amounts of data,
having models that can explain their decisions is crucial. Cybersecurity professionals need
to understand the rationale behind an AI system’s predictions to respond effectively to
potential threats. XAI empowers these professionals by providing the following:

1. Transparency: Clear insights into how decisions are made, allowing users to follow
the reasoning of the model.

2. Trust: By understanding the model’s decision-making process, stakeholders can have
greater confidence in its outputs, which is essential when dealing with security threats.

3. Improved Decision Making: With insights into feature importance, analysts can
prioritize response strategies based on the characteristics driving model predictions.

2.4.2. Techniques Employed in the XIoT Model

The proposed Explainable Gradient CNN (EG-CNN) model leverages several tech-
niques to enhance its interpretability:

1. Gradient Visualization: The model incorporates gradient-based methods to visualize
critical regions in input spectrogram images. By analyzing the gradients of the model’s
output concerning input features, we can identify which parts of the spectrogram
contribute most significantly to the model’s predictions. This helps in pinpointing
potential attack patterns.

2. Feature Importance Scores: The model provides quantifiable importance scores for
various features derived from the spectrograms, as shown in Table 3. These scores
help users understand which attributes are most influential in the detection of specific
IoT attacks.

3. Potential Techniques for Further Explainability: Future iterations of this research
may incorporate additional XAI methods, such as the following:
Gradient-weighted Class Activation Mapping (Grad-CAM): This technique visu-
alizes the areas in the spectrogram that influence predictions, aiding analysts in
interpreting results more intuitively. SHAP (SHapley Additive exPlanations): SHAP
values can be utilized to explain the contribution of each feature to the model’s
predictions, offering a comprehensive view of feature interactions.
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To illustrate the practical utility of the EG-CNN’s explainability, consider a scenario
where the model identifies a surge in suspicious network traffic labeled as a potential
DDoS attack. By analyzing the gradient visualizations, cybersecurity analysts discover that
specific frequency patterns in the spectrogram correlate with previous DDoS events. This
insight not only confirms the model’s prediction but also allows for a more targeted and
effective response.

2.5. Dataset Selection Justification

The datasets used in this study—NUSW-NB15, KDD Cup 99, Bot-IoT, and TON_IoT—are
selected based on their relevance and comprehensiveness in representing real-world IoT
traffic and attack patterns. These datasets include a wide variety of attacks such as Denial of
Service (DoS), Distributed Denial of Service (DDoS), botnets, and others, which are typical
threats faced by IoT networks. For example, Bot-IoT is designed specifically to simulate
botnet attacks in IoT environments, while NUSW-NB15 covers various IoT devices and
attack types. The diversity of these datasets ensures that the proposed model is exposed
to a broad range of attack scenarios, which enhances its generalization and robustness.
Furthermore, these datasets are widely used in the literature, allowing for meaningful
comparisons with state-of-the-art intrusion detection methods.

Training Process

The EG-CNN model undergoes training utilizing Stochastic Gradient Descent with
Momentum to optimize the weights and biases for predictive accuracy. The training process
encompasses several stages:

2.6. Data Preparation

Spectrogram images representing IoT network traffic data are preprocessed and aug-
mented to enhance model generalization. Data augmentation techniques such as rotation,
scaling, and flipping are applied to increase the diversity of the training dataset.

2.7. Model Training

The preprocessed spectrogram images X are fed into the EG-CNN model, where θ

denotes the model’s parameters (weights and biases). The training process iteratively
updates θ using mini-batch Stochastic Gradient Descent.

During forward propagation, the output Z[l] of layer l is calculated as the linear
combination of the activations from the previous layer, A[l−1], using the layer’s weights
W [l] and biases b[l], which are followed by the application of an activation function g[l]:

A[l] = g[l](W [l]A[l−1] + b[l]) (2)

The loss function J(θ) measures the difference between the predicted outputs ŷ and
the true outputs y. For multi-class classification problems, the categorical cross-entropy
loss function is used:

J(θ) =
1
m

m

∑
i=1

L(ŷ(i), y(i)) (3)

At each iteration t, the model parameters θ are updated using the gradient descent
update rule:

θt+1 = θt − α∇θt J(θt) (4)

where the following apply:

• α is the learning rate.
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• J(θt) is the loss function, typically categorical cross-entropy, which is minimized to
enhance the model’s predictive accuracy.

• ∇θt J(θt) represents the gradient of the loss function with respect to the model param-
eters at iteration t.

The training process continues for multiple epochs until convergence or until a stop-
ping criterion is met.

2.7.1. Features and Interpretability

The EG-CNN model integrates explainable gradient-based approaches to elucidate
essential features contributing to IoT attack diagnosis. Critical regions indicative of attack
patterns can be discerned by visualizing the gradients of the model’s output concerning
the input spectrogram images. This interpretability empowers cybersecurity analysts to
understand the underlying mechanisms driving the model’s predictions.

Figure 3 illustrates the visualization of gradient magnitudes generated by the EG-
CNN model. Higher gradient magnitudes signify regions of the spectrogram images that
significantly influence the model’s predictions. By analyzing these gradients, cybersecurity
analysts can pinpoint crucial features associated with different types of IoT attacks, thereby
enhancing the interpretability of the EG-CNN model.

Table 3 presents the top important features extracted from the input spectrogram
images by the EG-CNN model. These features and their corresponding importance scores
provide valuable insights into the characteristics of IoT attacks captured by the model. By
leveraging this feature interpretability, cybersecurity analysts can better understand the
discriminative power of the EG-CNN model and refine their threat detection strategies ac-
cordingly.

Table 3. Top important features.

Feature Importance Score

Frequency Band 0.87

Time Duration 0.76

Spectral Density 0.68

Frequency Shift 0.62

Amplitude 0.58

Figure 3. Transforming IoT data to a spectrogram.

2.7.2. Mathematical Equations

The training process of the EG-CNN model involves the forward propagation of input
data through the network and the computation of loss functions. The equations governing
these processes are described below.
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2.8. Forward Propagation

The forward propagation process computes the activations of each layer in the neural
network. The output Z[l] of layer l is calculated as the linear combination of the activations
from the previous layer, A[l−1], using the layer’s weights W [l] and the biases b[l], followed
by an activation function g[l].

Z[l] = W [l]A[l−1] + b[l] (5)

A[l] = g[l](Z[l]) (6)

where the following apply:

• Z[l] represents the linear output of layer l.
• A[l] is the activation of layer l.
• W [l] and b[l] are the weights and biases of layer l.
• g[l] is the activation function.

2.9. Loss Function

The loss function measures the difference between the predicted outputs ŷ and the
true outputs y of the model. The categorical cross-entropy loss function is commonly used
for multi-class classification problems:

J(W, b) =
1
m

m

∑
i=1

L(ŷ(i), y(i)) (7)

where the following apply:

• m is the number of samples.
• L(ŷ(i), y(i)) is the categorical cross-entropy loss for the i-th sample.

The forward propagation equations compute the activations of each layer in the EG-
CNN model, while the loss function measures the model’s performance by comparing its
predictions with the ground truth labels. The equations are fundamental to the training
process, allowing the model to enhance its performance by learning over time.

2.10. Adam Optimization Algorithm

In addition to the forward propagation and loss function equations described earlier,
the EG-CNN model’s training process involves utilizing the Adam optimization algorithm
and the softmax activation function. Incorporating these elements enhances the efficiency of
the training process and facilitates the interpretation of model predictions. During training,
the Adam optimization algorithm updates the model parameters (weights and biases). It
adapts the learning rate for each parameter based on past and squared gradients, providing
faster convergence and better performance. The parameter updates in Adam are computed
as follows:

mt = β1mt−1 + (1 − β1)∇θt J(θt) (8)

vt = β2vt−1 + (1 − β2)(∇θt J(θt))
2 (9)

m̂t =
mt

1 − βt
1

(10)

v̂t =
vt

1 − βt
2

(11)
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θt+1 = θt −
αm̂t√
v̂t + ϵ

(12)

where the following apply:

• β1 and β2 are the exponential decay rates for the first and second moments, typically
set to 0.9 and 0.999, respectively.

• α is the learning rate.
• ϵ is a small constant to prevent division by zero.
• mt and vt are the first and second-moment estimates of the gradients.
• m̂t and v̂t are bias-corrected estimates of the first and second moments.

2.11. Softmax Activation

The EG-CNN model uses the softmax activation function on the output layer to
calculate the probability distribution across different classes. It guarantees that the sum
of the outputs equals one, allowing them to be interpreted as probabilities. The softmax
function is formally defined as

ŷi =
ezi

∑C
j=1 ezj

(13)

where the following apply:

• ŷi is the predicted probability for class i.
• zi is the raw output for class i.
• C is the number of classes.

Incorporating Adam optimization and softmax activation into the training process
enhances the efficiency and interpretability of the EG-CNN model, enabling it to learn from
the data and make accurate predictions effectively.

2.12. Cross-Validation in the Proposed Model

We employed a hold-out cross-validation scheme with a 70/30% split to ensure the
robustness and generalizability of the XIoT model. In this approach, 70% of the dataset is
used for training the model, while the remaining 30% is reserved for testing its performance.
This method provides an efficient way to evaluate model performance, especially when
dealing with large datasets. The use of cross-validation ensures that the model’s ability to
generalize to unseen data is effectively assessed.

The primary goals of using cross-validation in the XIoT model are outlined below:

1. Evaluate Model Performance: Metrics such as accuracy, precision, recall, and F1-
score are computed on the test set to measure how well the model generalizes to new,
unseen data.

2. Detect Overfitting: Cross-validation helps to ensure that the model does not simply
memorize the training data but learns to generalize patterns that apply to new data.
This helps mitigate the risk of overfitting.

3. Optimize Hyperparameters: Performance metrics obtained from the validation set
during cross-validation are used to fine-tune the model’s hyperparameters, ensuring
the highest accuracy and robustness.

By employing this strategy, the model’s performance is assessed across multiple
subsets of data, ensuring that it can reliably detect IoT attacks in a variety of scenarios
without overfitting or underperforming.
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2.13. Cross-Validation and Validation Strategy

To ensure the generalizability and robustness of the model, we employ a 70/30% hold-
out cross-validation scheme. This means that 70% of the dataset is used for training and 30%
is used for testing the model’s performance. This approach mitigates the risk of overfitting
by providing a separate validation set that is not seen by the model during training. Addi-
tionally, the performance metrics (accuracy, precision, recall, and F1-score) are computed
on the test set to evaluate the model’s generalization capabilities. Cross-validation allows
us to assess how well the model would perform on unseen data, simulating real-world
conditions where IoT attack patterns may differ from those seen during training. The use
of multiple benchmark datasets further enhances the reliability of the model’s performance
evaluation, ensuring it can handle a wide range of IoT attack scenarios.

2.14. Training

This section of the document details how we chose the hyperparameters to test and
the procedures we used to conduct the tests. Additionally, this section discusses the various
strategies we used to overcome the difficulty of training a classifier on a skewed dataset.
These strategies will be discussed in greater detail later in this section. Additionally, it
contains information about the hardware used during the testing period, which is bene-
ficial for those interested in learning more about the specific hardware used during the
testing period.

2.14.1. Hyperparameters of the XIoT Model

In this section, we provide a detailed explanation of the hyperparameters used in
the XIoT model as shown in Table 4. These hyperparameters are crucial for tuning the
performance of the CNN and ensuring the optimal detection of IoT attacks.

Table 4. Hyperparameters and their descriptions.

Hyperparameter Description Value(s) Used

Learning Rate The step size used by the optimizer to update the model parameters during
training. A lower learning rate can lead to more precise convergence. 0.001

Batch Size
The number of training samples used in one iteration to update the model
weights. A larger batch size can lead to faster training but requires
more memory.

32, 64

Optimizer The algorithm used to minimize the loss function and update model
parameters. Adam

Activation Function The function applied to the output of each neuron to introduce non-linearity. ReLU, Softmax

Filter Size The size of the convolutional filters (kernels) used in each convolutional layer. 3 × 3, 5 × 5

Number of Filters The number of filters used in each convolutional layer, which determines the
depth of the output feature map. 32, 64, 128

Pooling Size The size of the pooling window used in max-pooling layers to downsample
the feature maps. 2 × 2

Dropout Rate The fraction of neurons randomly set to zero during training to prevent
overfitting. 0.3, 0.5

Loss Function The function used to measure the difference between the predicted and actual
labels during training.

Categorical
Cross-Entropy

Validation Split The proportion of the training data used for validation during training to
monitor the model’s performance. 0.2

Early Stopping Patience The number of epochs with no improvement after which training is stopped to
prevent overfitting. 10
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These hyperparameters are fine-tuned based on the performance of the model on
the validation dataset. Through experimentation and cross-validation, the optimal values
are determined to ensure the highest accuracy and robustness in detecting IoT attacks.
By adjusting these hyperparameters, the XIoT model can be tailored to handle different
complexities and variations in IoT network traffic data, achieving superior performance
across multiple datasets.

2.14.2. Hardware

The training session needed to be conducted entirely on an Intel workstation, which
was used for every operation step, to ensure everything went properly. When running this
application, a powerful Nvidia GeForce RTX 3090 8GB GPU and 48 GB of DDR4 RAM are
required, as well as an Intel® Xeon® Processor E5-2697 v2 CPU working at 2.70 GHz, for it
to function effectively.

To make use of deep learning frameworks, it is necessary to make use of the CUDA
library, which is made feasible by an Intel® Xeon® Processor E5-2697 v2 processor operating
at a frequency of 2.70 GHz. The Intel® Xeon® Processor E5-2697 v2 is the central processing
unit for this particular computer, and it is responsible for serving as the system’s central
processing unit.

All of the simulations in this study are carried out using the Windows 8.1 operat-
ing system.

3. Experimental Result
3.1. Dataset

The efficacy of the XIoT model is rigorously evaluated using a variety of benchmark
datasets, each presenting unique challenges and complexities inherent in IoT security.
These datasets are meticulously chosen to ensure a comprehensive assessment of the model
performance across diverse attack scenarios and network environments. The selected
datasets are widely recognized in the field of cybersecurity for their relevance and extensive
use in research, making them ideal for benchmarking IoT attack detection models. The
datasets used in this evaluation include the KDD Cup 99, Bot-IoT, and UNSW-NB15
datasets. Each dataset encompasses a rich variety of attack patterns and normal traffic,
providing a robust framework for testing the adaptability and accuracy of the XIoT model.
By leveraging these datasets, the evaluation aims to simulate real-world conditions, thereby
ensuring that the XIoT model is well equipped to handle the dynamic and evolving nature
of cyber threats in IoT networks. The diversity in the datasets, ranging from traditional
network intrusions to sophisticated IoT-specific attacks, highlights the comprehensive
nature of the evaluation process. This rigorous testing not only demonstrates the resilience
and effectiveness of the XIoT model but also underscores its potential applicability in
enhancing the security of IoT ecosystems.

3.1.1. KDD Cup 99 Dataset

The KDD Cup 99 dataset is a benchmark for studying IDSs. The project was developed
for a knowledge discovery and data mining (KDD) competition emphasizing network
security. The dataset contains simulated network traffic statistics collected from a U.S.
Air Force local area network (LAN) across many weeks 1998. The dataset aims to train
and assess ML algorithms for intrusion detection, serving as a benchmark for comparing
different IDS approaches. The dataset is provided in a tab-delimited text format with each
line representing a single network connection record. Each record consists of 41 features
and a class label.
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The KDD Cup 99 dataset is a pivotal resource for developing and benchmarking
intrusion detection systems, originating from the Third International Knowledge Discovery
and Data Mining Tools Competition in 1999. This dataset, derived from DARPA’s 1998
Intrusion Detection Evaluation Program, simulates a network environment containing both
normal traffic and various types of attacks, making it ideal for testing machine learning
algorithms designed to identify malicious activities.

The dataset comprises 41 features for each network connection record, which are cate-
gorized into Basic Features, Content Features, Traffic Features, and the Class Label. Basic
Features include essential details such as source and destination IP addresses, protocol type,
service used, and flag bits, with an example being a TCP connection between ‘192.168.1.1’
and ‘10.0.0.1’ using the ‘http’ service and the ‘SYN’ flag Table 5. Content Features describe
the specifics of the data transferred within the connection, like the number of bytes sent
and received and the number of connections, with typical values being ‘100’ bytes sent,
‘200’ bytes received, and ‘1’ connection. Traffic Features capture the temporal aspects of the
connections, including arrival times and durations, for instance, an arrival time of ‘1000’
milliseconds and a duration of ‘50’ seconds. The Class Label categorizes each connection as
either “normal” or one of several attack types: Denial of Service (DoS), User to Root (U2R),
Remote to Local (R2L), and Probe.

A detailed breakdown of the dataset’s class distribution reveals significant imbalances.
The largest class is DoS, with a total of 391,458 samples, which are subdivided into 274,020
for training and 117,437 for validation. This is followed by the Probe class, comprising
41,072 samples (28,750 for training and 12,321 for validation). The Normal class has 21,528
samples, which are split into 15,069 for training and 6458 for validation. The R2L class
has 803 samples with 562 for training and 240 for validation. The smallest class is U2R,
containing just 52 samples, with 36 for training and 15 for validation.

Despite its widespread use, the KDD Cup 99 dataset has certain limitations, such as
redundancy due to a significant number of duplicate records and the inclusion of outdated
attacks that may not reflect current network threats accurately. Moreover, as it is based on
a simulated environment, it might not capture the full complexity of real-world network
traffic. Nevertheless, the dataset remains a valuable resource for researchers and practition-
ers, providing a rich set of features and a variety of attack types to develop and evaluate
intrusion detection systems. The detailed feature descriptions and class distribution help
in understanding the dataset’s structure and the challenges associated with it, particularly
the class imbalance, which is crucial for developing effective detection models.

Table 5. KDD Cup 99 dataset feature descriptions: type, explanation, and example.

Feature Type Description Example

Basic Features Source and destination IP addresses, pro-
tocol type, service used, flag bits

192.168.1.1, 10.0.0.1, TCP,
http, SYN

Content Features Bytes in various directions, number
of connections 100, 200, 1

Traffic Features Time features like arrival time, duration 1000, 50

Class Label Categorizes the connection as “normal”
or an attack type

normal, DoS, U2R, R2L,
probe

In the context of evaluating advanced models like XIoT, which is designed to address
changing cyber risks in IoT networks using deep learning methods such as Convolutional
Neural Networks (CNNs), the KDD Cup 99 dataset serves as a crucial benchmark shown
in Table 6. XIoT leverages these datasets to validate its capability to accurately classify
diverse IoT attacks and explain the key factors behind its decision-making process. This
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emphasis on interpretability and transparency enhances trust in the model’s outputs and
supports informed decision making by cybersecurity analysts and network administrators.
Comprehensive experiments on benchmark datasets, including KDD Cup 99, showcase
XIoT’s exceptional accuracy rates and its superiority over current intrusion detection
methods in both accuracy and interpretability.

Table 6. KDD Cup 99 dataset class distribution (70%/30% train/validation split).

Class Name Total Samples Training Samples Validation Samples

normal 21,528 15,069 6458

dos 391,458 274,020 117,437

u2r 52 36 15

r2l 803 562 240

probe 41,072 28,750 12,321

3.1.2. Botnet-Iot Dataset

The Bot-IoT dataset helps study botnet detection in the IoT field. The dataset contains
network traffic statistics categorized as normal or botnet-related. The collection consists
of network traffic collected from several honeypots placed worldwide. Honeypots are
imitation systems that lure and trick attackers by imitating genuine IoT devices. The dataset
is designed for training and assessing ML models for detecting botnets in IoT networks.
It can promote the advancement of secure communication protocols for IoT devices via
research and development. It also provides insights into the behavior and characteristics of
botnet attacks targeting IoT devices. The dataset is provided in different formats depending
on the specific version, i.e., CSV, PCAP, and ELF. The specific features included in the CSV
format may vary depending on the dataset version and collection methods. Some common
features include flow-level features, statistical features, and time-based features, as shown
in Table 7.

Table 7. BoT-IoT dataset class distribution (70%/30% train/validation split).

Class Testing Dataset (30%) Training Dataset (70%)

Normal 166,857 389,075

ack 193,665 450,156

combo 154,744 360,412

junk 78,672 183,117

scan 237,678 555,412

syn 219,894 513,405

tcp 257,510 602,340

udp 653,621 1,522,744

plain 156,140 367,164

3.1.3. UNSW-NB15

The UNSW-NB15 dataset consists of unprocessed network packets created by the IXIA
PerfectStorm tool at the Cyber Range Lab at UNSW Canberra. This dataset combines current
normal activities and artificially created contemporary assault behaviors, offering a varied
and accurate representation of network traffic. Using the tcpdump program, 100 gigabytes
of unprocessed traffic data were collected and saved in Pcap files. The dataset includes nine
different kinds of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Recon-
naissance, Shellcode, and Worms. Argus and Bro-IDS tools expanded the dataset, creating
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twelve algorithms with 49 characteristics and class labels. The characteristics are outlined
in the UNSW-NB15_features.csv file. The dataset comprises 2,540,044 entries divided into
four CSV files: UNSW-NB15_1.csv, UNSW-NB15_2.csv, UNSW-NB15_3.csv, and UNSW-
NB15_4.csv. The ground truth information is available in the UNSW-NB15_GT.csv file with
labels for each entry. The file UNSW-NB15_LIST_EVENTS.csv contains a record of events,
as shown in Table 8.

Table 8. UNSW-NB15 dataset class distribution (70%/30% train/validation split).

Class Name Total Samples Training Samples (70%) Validation Samples (30%)

Normal 98,527 68,968 29,559

DoS 4918 3442 1476

U2R 125 87 38

Backdoor 2000 1400 600

Exploits 34 23 11

Fuzzers 2395 1676 719

Generic 210 147 63

Analysis 21 14 7

Shellcode 167 116 51

Worms 2939 2057 882

3.2. BoT-IoT Results

The training plot in Figure 4 showcases the performance of our model throughout
the training process, providing valuable insights into its convergence and generalization
capabilities. With a meticulous approach, we meticulously monitored the model’s training
and validation accuracy across 50 epochs, each comprising mini-batches of 32 samples.
The training accuracy steadily climbed to an impressive 99.97%, reflecting the model’s
proficiency in learning from the training data and accurately classifying instances.

The validation accuracy achieved an impressive level of 99.21%, indicating the model’s
capacity to generalize well to new data. The high similarity between training and validation
accuracy indicates that our model successfully grasped the inherent patterns in the data
without overfitting.

Our choice of the Stochastic Gradient Descent with Momentum (SGDM) optimizer
was crucial for optimizing the model’s weights and biases, facilitating efficient convergence
toward the optimal solution. The SGDM optimizer incorporates momentum to accelerate
the learning process, enabling the model to navigate the complex parameter space more
effectively.

In our study, we employed the Botnet-IoT dataset, consisting of a diverse range of
network traffic data labeled normal or botnet-related, encompassing various attack types
commonly encountered in the IoT networks. The dataset was divided into a training set
with 70% samples and a testing set with the remaining 30%.

Our proposed model, trained on the Botnet-IoT dataset shown in Figure 5, demon-
strated exceptional performance across different attack classes, as evidenced by the follow-
ing performance metrics in Table 9.
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Figure 4. Training plot of XIoT in Bot-IoT dataset.

Figure 5. Proposed XIoT confusion using the Bot-IoT dataset.

Table 9. Detailed performance by class for Bot-IoT dataset.

Class Accuracy Precision Recall F1-Score

Normal 99.22 98.97 98.91 98.94

Ack 99.22 99.11 99.04 99.08

Combo 99.22 99.17 98.76 99.33

Junk 99.13 98.95 97.07 98.00

Scan 99.24 98.44 99.31 99.88

Syn 99.25 98.95 99.21 99.08

Tcp 99.20 98.59 99.35 98.97

Udp 99.23 99.83 99.72 99.78

Udpplain 99.21 99.41 98.78 99.09

Average 99.21 99.04 98.90 99.12

The measurements show how well the model can correctly categorize botnet-related
activity instances while reducing FP and negatives. The proposed model has great accuracy
and precision in identifying and mitigating security risks in IoT networks, as shown by its
performance across several attack classes. By achieving robust performance on the Botnet-
IoT dataset, our model contributes to enhancing the security posture of IoT infrastructures,
safeguarding against potential cyber threats and vulnerabilities.

We used Receiver Operating Characteristic (ROC) curves in Figure 6 to assess the
effectiveness of our proposed model on various attack types in the Botnet-IoT dataset.
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The ROC curve visually displays the balance between true positive rate (TPR) and FPR
across different categorization criteria. Upon examination of the ROC curve, we observed
that the class “Junk” achieved the highest area under the curve (AUC) value of 0.98,
indicating excellent discriminative capability and model performance for this particular
attack class. Conversely, the class “TCP” exhibited the lowest AUC value of 0.90, suggesting
comparatively weaker performance distinguishing TP from FP.

Figure 6. Proposed XIoT performance on Bot-IoT dataset.

3.3. UNSW-NB15

The performance assessment of our model shown in Figure 7 on the UNSW-NB15
dataset shows its ability to effectively categorize different forms of network traffic into their
corresponding categories.

Figure 7. Proposed XIoT confusion using the UNSW NB15 dataset.

Across different attack classes, our model achieved high accuracy with an average
accuracy of 98.61% shown in Table 10. Notably, the model exhibited particularly strong
performance in classifying normal network traffic, achieving an accuracy of 98.69%. This
indicates the model’s ability to distinguish normal network behavior from malicious
activities effectively.
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Table 10. Detail performance by class for UNSW-NB15 dataset.

Class Accuracy Precision Recall F1-Score

Normal 98.69 98.71 99.98 99.34

DoS 98.34 99.43 96.62 98.01

U2R 98.91 98.63 87.76 92.99

Backdoor 98.12 95.70 92.92 94.29

Exploits 98.47 98.82 67.74 80.38

Fuzzers 98.69 98.57 75.75 85.65

Generic 98.40 98.50 99.35 98.97

Analysis 99.23 99.83 99.72 99.78

Shellcode 98.70 99.40 66.08 97.37

Worms 98.55 99.30 62.30 76.58

Average 98.61 98.68 84.82 92.33

Moreover, our model showed strong accuracy and recall values for most attack types,
suggesting its ability to reduce FP and negatives. The model demonstrated an accuracy
of 99.83% and a recall of 99.72% when categorizing instances of “Analysis” assaults, high-
lighting its ability to detect true positives (TPs) in this category accurately, as shown in
Figure 8.

Figure 8. Proposed XIoT performance on Bot-IoT dataset using AUC.

While some classes, such as “U2R” and “Shellcode”, exhibited lower recall values, the
model still maintained strong overall performance with an average recall of 84.82%. This
suggests that our model is proficient in capturing the majority of instances belonging to
these classes while maintaining high precision.

The F1-score balances precision and recall and comprehensively measures the model’s
performance across all classes. With an average F1-score of 92.33%, our model demon-
strates its effectiveness in accurately classifying instances of different attack types while
maintaining a balance between precision and recall.

The Receiver Operating Characteristic (ROC) curve is a crucial tool used throughout
our inquiry to assess the effectiveness of our model on the UNSW-NB15 dataset. The ROC
curve illustrates the balance between the TPR and the FPR for different categorization
thresholds. The ROC curve analysis revealed that the class “Analysis” has the greatest area
under the curve (AUC) value of 0.97. Our model demonstrated outstanding discriminating
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capacity in differentiating between occurrences of the “Analysis” attack class and innocuous
network data with a low FPR.

Conversely, the class “Generic” demonstrated the lowest AUC value of 0.90. While
exhibiting a reasonable discriminatory capability, the lower AUC value implies a higher
FPR than other attack classes. The ROC curve findings provide critical insights into the
discriminatory power of our model across different attack classes in the UNSW-NB15
dataset. By visualizing the TPR and FPR trade-offs, the ROC curve aids in assessing the
model’s ability to accurately classify instances of specific attack types while minimizing FP.

The training plot in Figure 9 thoroughly represents our model’s training process on
the UNSW-NB15 dataset, offering vital insights into its convergence and generalization
skills. Over the course of 50 training epochs, each consisting of mini-batches of 32 samples,
our model demonstrated outstanding performance. The training accuracy consistently
increased to an amazing 99.82%, demonstrating the model’s capacity to comprehend
and adjust to the complexities of the dataset. The high training accuracy indicates the
model’s ability to effectively capture the inherent patterns in the data and provide precise
predictions on the training samples.

Figure 9. Training plot of XIoT in UNSW NB15 dataset.

Similarly, the validation accuracy reached a commendable level of 99.34%, demon-
strating the model’s capability to generalize well to unseen data. This close correspondence
between training and validation accuracy suggests that our model effectively learned the
underlying features of the UNSW-NB15 dataset without overfitting.

The choice of Stochastic Gradient Descent with Momentum (SGDM) optimizer was
pivotal in optimizing the model’s weights and biases, facilitating efficient convergence
toward the optimal solution. The SGDM optimizer, by incorporating momentum, enabled
the model to navigate through the complex parameter space more effectively, thereby
enhancing its convergence speed and stability.

3.4. KDD Cup 99

The KDD Cup 99 dataset class distribution (70%/30% train/validation split). presents
the class distribution of the KDD Cup 99 dataset after a 70%/30% train/validation split.
The table delineates each class’s total number of samples and the corresponding counts
for training and validation datasets. This distribution guarantees that the training and
validation sets include a diverse sample of cases from each class, enabling effective model
training and assessment.

Moreover, Table 11 comprehensively assesses our model’s performance metrics on the
KDD Cup 99 dataset. The metrics include accuracy, precision, recall, and F1-score for each
attack class and the average values across all classes.
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Table 11. Detailed performance by class for the KDD CUP99 dataset.

Class Accuracy Precision Recall F1-Score

Normal 99.55 98.89 97.86 98.40

DoS 99.50 99.45 99.95 99.80

U2R 99.47 99.40 69.86 76.41

R2L 99.01 98.88 82.18 96.35

Probe 99.17 99.12 98.93 99.03

Average 99.34 99.14 89.75 93.99

The model shows outstanding accuracy in all categories with an average accuracy
rate as shown in Figure 10 of 99.34%. The model has good accuracy and recall values
across most classes, showcasing its ability to identify cases effectively while reducing FP
and negatives. The “DOS” class demonstrates exceptional accuracy, recall, and F1-score
values, showcasing the model’s ability to detect denial-of-service assaults accurately with
few misclassifications. The accuracy is good for the “U2R” class, but the recall and F1-
score values are rather low, indicating that the model would have difficulty detecting all
occurrences of this attack type.

Figure 10. Proposed XIoT confusion using the KDD CUP99 dataset.

The Receiver Operating Characteristic (ROC) curve in Figure 11 is a crucial tool used to
assess the effectiveness of our model on the KDD Cup 99 dataset in our research. The ROC
curve illustrates the balance between the TPR and the FPR at various categorization levels.

Upon examination of the ROC curve, we observe that the class “Normal” achieved
the highest area under the curve (AUC) value, reaching 95%. This indicates that our model
exhibits exceptional discrimination ability in distinguishing between normal network traffic
and malicious attacks with a minimal FPR.

Conversely, the class “R2L” demonstrated the lowest AUC value of 93%. While
exhibiting reasonable discriminatory capability, the lower AUC value suggests a higher
FPR than other attack classes.

The insights from the ROC curve findings contribute significantly to our understanding
of the model’s discriminatory power across various attack classes in the KDD Cup 99
dataset. By visualizing the TPR and FPR trade-offs, the ROC curve aids in assessing
the model’s effectiveness in accurately classifying instances of specific attack types while
minimizing FP.
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Figure 11. Proposed XIoT performance on the KDD CUP99 dataset.

The training plot in Figure 12 serves as a comprehensive visualization of the training
process of our model on the KDD Cup 99 dataset, providing valuable insights into its
convergence and generalization capabilities. Our model demonstrates impressive perfor-
mance metrics throughout the training, indicating its robustness and efficacy in intrusion
detection.

The training accuracy consistently increases to an outstanding 99.75%, demonstrating
the model’s capacity to comprehend and adjust to the intricate patterns present in the
dataset. The high training accuracy indicates the model’s ability to identify instances of
network data properly during training, capturing the features of normal and harmful
activity efficiently.

Figure 12. Training plot of XIoT in KDD CUP99 dataset.

The validation accuracy of the model is 99.34%, indicating its strong ability to gen-
eralize to new data. The strong correlation between training and validation accuracies
indicates that our model successfully grasps the fundamental characteristics of the KDD
Cup 99 dataset without overfitting, assuring its capability to provide precise predictions
for new data points.

The choice of Stochastic Gradient Descent with Momentum (SGDM) optimizer, cou-
pled with a batch size of 32 and training for 50 epochs, contributes significantly to the
optimization process. The SGDM optimizer facilitates efficient convergence toward the
optimal solution by incorporating momentum, enhancing the model’s convergence speed
and stability.
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3.5. Discussion

This section thoroughly examines experiments on three notable datasets: Bot-IoT,
UNSW NB15, and KDD CUP99 shown in Figure 13. The studies seek to assess the effective-
ness of our proposed IDS by using explainable AI approaches in various IoT and network
infiltration situations.

In this study, we conducted extensive experiments on three prominent datasets, Bot-
IoT, UNSW-NB15, and KDD Cup 99, to evaluate the performance of our proposed intrusion
detection model. The experiments aimed to assess the model’s efficacy in accurately
classifying network traffic instances and detecting potential intrusions across diverse attack
types and network environments.

Firstly, the Bot-IoT dataset was valuable for investigating botnet detection in the
IoT domain. With a comprehensive collection of network traffic data labeled as normal
or botnet-related, the dataset enabled us to train and evaluate our model on a range of
IoT-related attacks. Our model demonstrated promising results on the Bot-IoT dataset,
achieving high accuracy, precision, recall, and F1-scores across various attack classes.
Notably, the model exhibited exceptional performance in detecting botnet-related activities,
highlighting its effectiveness in safeguarding IoT networks against malicious intrusions.

Figure 13. Performance comparison of the proposed model on various datasets.

The UNSW-NB15 dataset offered a varied and accurate representation of network
traffic, including genuine routine operations and simulated attack patterns. Using this
dataset, we assessed the model’s capability to differentiate between benign and malicious
network traffic in nine attack types. The experimental findings showed that our model
performed well on the UNSW-NB15 dataset with good accuracy, precision, recall, and
F1-score for most attack types. The model’s resilience was shown by its ability to effectively
categorize instances of different attack types while reducing FP and negatives.

The KDD Cup 99 dataset was used as a standard dataset to assess IDSs in network
security. The dataset obtained from a U.S. Air Force LAN, including simulated network
traffic data, allowed us to evaluate the model’s performance under various attack scenarios.
The trials conducted on the KDD Cup 99 dataset demonstrated the model’s ability to
effectively categorize instances of network assaults, obtaining good accuracy, precision,
recall, and F1-score for different attack types. The model showed resistance against many
sorts of attacks, indicating its appropriateness for real-world use in safeguarding network
infrastructures.
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This work utilized to present the results of the training and validation processes
for the proposed XIoT model. The decision to use screenshots, rather than manually
recreating the plots, was made to ensure the most accurate representation of the model’s
performance throughout the training phase. These figures were taken directly from the
environment where the model was trained, thereby capturing the real-time outputs as they
were generated during the experiment. Using these figures allows for the inclusion of all
nuances present during training, such as small fluctuations in accuracy or loss that may not
be as easily replicated or conveyed through manually re-created plots. Additionally, this
method avoids any potential distortions or inaccuracies that could arise from exporting
data into external plotting tools, ensuring that the results are presented exactly as observed.

To maintain a high standard of clarity, all figures are in high resolution, ensuring
that the figures are easy to read and interpret. Care was taken to ensure that all axes,
labels, and trends are clearly visible, providing a precise and faithful representation of
the experiment’s outcome. Although the proposed XIoT model demonstrates a slight
improvement in detection accuracy over previous models, it is important to note that these
differences are typically observed in the third decimal place, which may vary slightly across
different datasets. Therefore, while the results show a trend toward improved performance,
further statistical tests (such as paired t-tests or significance testing) are needed to confirm
whether these differences are statistically significant. While improvements in detection
accuracy have been observed in benchmark datasets such as NUSW-NB15 and KDD Cup 99,
it is important to note that these improvements may vary across datasets. This variability
in performance underscores the need for further validation across diverse test sets and IoT
traffic scenarios. While benchmark datasets such as NUSW-NB15 and KDD Cup 99 provide
a controlled environment for evaluating IoT attack detection models, they may not fully
capture the complexities and variability of real-world IoT networks. The dynamic nature of
real-world IoT traffic, along with diverse attack vectors and environmental factors, requires
further investigation. As such, the effectiveness of the XIoT model in practical, real-world
scenarios remains an open question.

3.6. Comparison with SOTA

Comparing our proposed XIoT model’s performance with state-of-the-art (SOTA)
intrusion detection models across the KDD Cup 99, UNSW NB15, and Bot-IoT datasets pro-
vides valuable insights into its efficacy and advancements in intrusion detection research.

On the KDD Cup 99 dataset, as shown in Table 12, our proposed XIoT model achieved
an accuracy of 99.34%, outperforming previous studies such as [83], which achieved 99.12%,
reference [84] with 99.10%, reference [85] with 98.20%, reference [86] with 90.50%, and [87]
with 85.75%. The significant improvement in accuracy demonstrates the superiority of
our proposed XIoT model in accurately classifying network traffic instances and detecting
intrusions in complex network environments.

Similarly, on the UNSW NB15 dataset our proposed XIoT model achieved an outstand-
ing accuracy of 99.61%, surpassing the results obtained by previous studies such as [88]
with 99.17% and [89], who reported an accuracy of 97.34%. The superior performance of
our proposed model underscores its effectiveness in detecting various types of network
attacks with high accuracy and precision.
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Table 12. Performance comparison of the proposed model with SOTA.

Model Dataset Performance (Accuracy)

[83] Zhang KDD CUP99 99.12

[84] Kumar KDD CUP99 99.10

[85] Shone KDD CUP99 98.20

[86] Faris KDD CUP99 90.50

[87] Abdullah KDD CUP99 85.75

[88] Moustafa UNSW NB15 99.17

[89] Wang UNSW NB15 97.34

[90] Pacheco Bot-IoT 98.63

[91] Alsheikh Bot-IoT 98.95

[92] Zhao Bot-IoT 98.72

Proposed XIoT KDD CUP99 99.34

Proposed XIoT UNSW NB15 99.61

Proposed XIoT Bot-IoT 99.21

Furthermore, our proposed XIoT model achieved a remarkable accuracy of 99.21%
on the Bot-IoT dataset. Previous studies showed slight variations in accuracy, such as [90]
with 98.63%, reference [91] with 98.95%, and [92] with 98.72%. While the accuracy reported
by these studies is competitive, our model’s performance demonstrates its robustness in
detecting botnet-related activities in IoT networks.

Overall, the proposed XIoT model outperforms existing state-of-the-art models across
all three datasets, showcasing its effectiveness and superiority in intrusion detection. The
advancements offered by our model signify significant progress in enhancing cybersecurity
defenses and safeguarding network infrastructures against evolving threats in IoT and
traditional network environments.

Various statistical indicators shown in Figure 14 were calculated to analyze the perfor-
mance of the proposed XIoT model on the KDD Cup 99, UNSW NB15, and Bot-IoT datasets.
Metrics such as accuracy, precision, recall, and F1-score were computed for individual
classes and datasets to assess the model’s classification performance. Confusion matrices
were used to analyze the model’s accuracy in classifying occurrences among several classes.
Visual representations were created using MATLAB to enhance comprehension of the
model’s performance.

Bar charts were created to compare the performance indicators across various classes
and datasets graphically. The graphs provide a clear picture of the model’s accuracy,
precision, recall, and F1-score for each class, facilitating a straightforward comparison
across the datasets. ROC curves were generated to illustrate the balance between true and
FPR for various classes. The curves aid in evaluating the model’s capacity to differentiate
between several classes and choose the best threshold for classification.

Tables were created to display the calculated statistical measures in a tabular layout.
The tables comprehensively summarize each class and dataset’s accuracy, precision, recall,
and F1-score. Tables were generated to summarize the average performance measures for
all classes and datasets, thoroughly evaluating the model’s overall performance.

Statistical tests, such as ANOVA or t-tests as shown in Figure 15, were conducted to
compare the performance of the proposed XIoT model with baseline or existing models.
Post hoc tests, like Tukey’s HSD test, were performed to identify significant differences
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in performance between different models or datasets. The interpretation of the statistical
analysis findings led to conclusions about the effectiveness and superiority of the proposed
XIoT model compared to existing models.

Based on the results of the statistical analysis, recommendations were made for further
model improvements or areas of future research. The practical implications of the findings
for real-world intrusion detection applications in IoT and traditional network environments
were also discussed, highlighting the potential impact of the proposed XIoT model on
enhancing cybersecurity measures.

Figure 14. Performance comparison of the proposed model with SOTA using a bar graph.

Figure 15. Proposed model performance comparison on three datasets using the ANOA plot.

Table 13 displays the results of the Tukey HSD post hoc test used to analyze the mean
disparities across various groups. Each row in the table compares two groups: Bot-IoT, KDD
CUP99, and UNSW NB15. The ’mean diff’ column displays the mean difference between
the groups, while the ’p-adj’ column shows the adjusted p-value accounting for multiple
comparisons. The ’reject’ column shows whether the null hypothesis of equal means
was rejected for each pairwise comparison. The results are crucial for understanding the
importance of variations in the performance of the proposed model across various datasets.
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Table 13. Proposed model comparison using ANOVA across diverse datasets.

Group1 Group2 Mean Diff p-Adj Lower Upper Reject

Bot-IoT KDD CUP99 −4.0267 0.4284 −12.44 4.39 False

Bot-IoT UNSW NB15 −0.222 0.9974 −8.91 8.47 False

KDD CUP99 UNSW NB15 3.8047 0.3623 −3.40 11.01 False

4. Conclusions
The research introduces XIoT, a cutting-edge Intrusion Detection System (IDS) tai-

lored for IoT environments, especially in high-speed optical networks. By leveraging
spectrogram-based Convolutional Neural Networks (CNNs) and Explainable AI (XAI),
XIoT achieves exceptional accuracy (99.34%, 99.61%, and 99.21% across benchmark datasets)
and interpretability, outperforming existing IDS models. Its ability to provide actionable
insights enhances trust and decision making for cybersecurity analysts. XIoT demonstrates
significant potential for real-time, scalable applications in critical domains such as smart
grids, healthcare, and industrial IoT networks. Future work will focus on expanding its
capabilities to address emerging threats, exploring diverse datasets, and improving scal-
ability for large-scale IoT ecosystems. This research marks a major advancement in IoT
cybersecurity, laying the foundation for secure and resilient IoT systems.
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