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Abstract—This paper addresses the reference tracking control
problem for Medical Cyber-Physical Systems (MCPS). The con-
trol theory is employed to guarantee the suitable concentration of
drugs in the body of patients to guarantee a safe treatment. The
MCPS is modeled as a switched system, and the modes consider
the different scenarios for the problem. A discrete-time model
is utilized for the pharmacokinetic process, and the zero input
control strategy is employed to design state-feedback controllers
with a guaranteed exponential convergence rate. A numerical
experiment is presented to illustrate the validity and effectiveness
of our method.

Index Terms—cyber-physical systems, medical systems, phar-
macokinetic, communication constraints, lyapunov theory

I. INTRODUCTION

The suitable concentration and permanence of drugs in the
body of patients is fundamental to guarantee a safe treatment.
The pharmacokinetic (PK) process of a drug involves eval-
uating the Absorption, Distribution, Metabolism, Excretion,
and Toxicity (also called ADMET) within the body on the
dependence of time [1], [2]. Current technological advances
outline pharmacological processes to Precision Medicine [3]–
[5], which consists of the customization of medical decisions
depending on the specific needs of the patients. This scheme
can be seen as a classic automated system where the patient
is the plant and the drug scheduling incorporates parameters
such as age, weight, and base pathologies, to mention a few.
Additionally, it is possible to optimize the drug dose by mini-
mizing toxicity or maintaining a reference drug concentration
level in the body.

This context presents us with the emerging topic of Medical
Cyber-Physical Systems (MCPS) [6]–[8]. In this structure,

the MCPS algorithm (or intelligence, as called in [6]) must
adapt the drug supply based on the specific characteristics
of the patient and is dependent on a computational element
connected via communication channels, which transmits the
patient readings and calculates the best dosage.

In this context, control theory offers techniques that can be
applied to this class of problems. Among others, one may cite
full-order filters, Luenberger-based observers, and static and
dynamic output feedback controllers. However, the control law
(intelligence) in the MCPS must be able to operate locally
or remotely, in addition to guaranteeing an efficient supply
of the drug even when against: forgetfulness of the patients;
communication problems with the medical-server; Denial-of-
Service (DoS) attacks; among other problems inherent to the
Cyber-physical design and/or networking control systems.

This paper outlines a theoretical framework for a realistic
model of precision medicine approach for reference tracking
control design for drug delivery. The reference tracking control
proposed consists of the use of state-feedback controllers
that utilize an integral action and the zero-input strategy.
The proposed approach is tolerant to MCPS problems and
vulnerabilities, seeking to guarantee the tracking asymptotic
or exponential stability. The technique is specialized and ap-
plied in the context of discrete-time pharmacokinetic systems
composed of three compartments (body parts). The theoretical
foundations of the system structure are shown in detail, and
also how to obtain the parameters and the feasibility of the
state’s measurement. The MCPS is modeled as a switched
system, and the modes consider the different scenarios for
the problem. The Lyapunov theory is employed to get the
conditions, which are written in the form of parameter-
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dependent Linear Matrix Inequalities (LMIs). The obtained
conditions can guarantee an exponential convergence rate for
the augmented system, ensuring the ability to track the desired
signal correctly. The conditions are used in the design stage,
and a theoretical numerical experiment is conducted to prove
the designed control’s effectiveness.

II. PROBLEM STATEMENT

Consider the following discrete-time uncertain MCPS in
state-space representation:

x(k + 1) = A(αk)x(k) +B(αk)u(k),

y(k) = Cx(k),
(1)

where x ∈ Rnx is the state vector u ∈ Rnu is the control input
and y ∈ Rny is the system output. The matrices A(αk) ∈
Rnx×nx and B(αk) ∈ Rnx×nu are part of a polytopic domain
in the function of the time-varying parameter αk. k represents
the referred time instant. A generic matrix M(αk) is defined
as:

M(αk) =

Z∑
z=1

αk,zHz , αk ∈ ΛZ ,

ΛZ =

{
α ∈ RZ :

Z∑
z=1

αk,z = 1; αk,z ≥ 0, z = 1, . . . , Z

}
,

(2)

and the output matrix is C ∈ Rny×nx .
The goal is to design robust state-feedback controllers that

aim to render the steady-error null for constant references,
representing a desirable drug concentration in a given body
tissue. The proposed control strategy may contemplate drug
administrations in each considered time instant or every N
instants. This interval between drug deliveries seeks to con-
template possible communication problems in the MCPS, DoS
attacks, or the patient’s forgetfulness.

The DoS attacks originate from a malicious agent and aim
to jam the system’s communication channels, and may make
it impossible to update the measured state received by the
controller, the control signal, and the parameter αk (more
details in [9]). The following is established about the attacks.

Assumption 1: The attacker is energetically bounded, thus
the DoS attacks may last up to N time instants.

Considering attacks with limited maximum duration is a
reasonable assumption found in other works in the litera-
ture [10], [11].
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Fig. 1. Diagram of the proposed reference tracking control.

Following the diagram of the closed-loop system presented
in Fig. 1, the error can be computed as:

e(k) = r(k)− y(k), (3)

being r(k) ∈ Rny the reference to be tracked. An integral
action is considered via the construction of an augmented
system defining η(k) = [x(k) v(k)]T with

v(k) = e(k) + v(k − 1),

resulting in

η(k + 1) = Ā(αk)η(k) + B̄(αk)ū(k),

ȳ(k) = C̄η(k),
(4)

where

Ā(αk) =

[
A(αk) 0

−CA(αk) I

]
, B̄(αk) =

[
B(αk)

−CB(αk)

]
, C̄ =

[
C 0

]
.

Dimension-wise, nη = nx + ny , resulting in η ∈ Rnη ,
Ā(αk) ∈ Rnη×nη , B̄ ∈ Rnη×nu , and C̄ ∈ Rny×nη .

.
To consider that the control inputs are applied at every N

time instants, a zero-input control strategy [12] is utilized
to represent the absence of drug administration in the time
instants in between, being the interval caused by any of the
aforementioned reasons. A switched system to represent the
closed-loop dynamics for (4) is also built. This approach is
akin to what was used in other Cyber-Physical Systems [9],
[10], [13], [14].

With that stated, the following control law is then considered
for (4), where Ks ∈ Rnu×nη :

u(k + s) = Ksη(k), Ks =

{
[KP0 KI0], if s = 0,

0, if s > 0.
(5)

Where the employed gain depends on the switching point
s = 0, 1, . . . , ι(k), with the switching signal ι(k) drawing
values from the finite set L ≜ {0, 1, . . . , N}, where N
represents the maximum interval between doses. It is important
to highlight that when ι(k) = 0, there is no interval. Also, the
zero-input nature of the control strategy defines that Ks = 0,
when s > 0.

Given the presented assumptions, the closed-loop system
dynamics modes are as follows. The modes are selected, one
at a time, successively and relative to the instant concerning
the drug application or its absence.

• Case 0: No interval between doses

η(k + 1) =
(
Ā(αk) + B̄(αk)K0

)
η(k),

= F0(αk)η(k),

F0(αk) ≜ Ā(αk) + B̄(αk)K0. (6)

• Case 1: 1 time instant-interval between doses. η(k + 1)
as in Case 0 and

η(k + 2) = Ā(αk+1)η(k + 1),

= F1(αk, αk+1),

F1(αk, αk+1) ≜ Ā(αk+1)F0(αk). (7)



• Case N : N time instant-interval between doses. η(k+1)
as in Case 0, η(k + 2) as in Case 1 and

η(k +N + 1) = Ā(αk+N )η(k +N),

= FN (αk, . . . , αk+N ),

FN (αk, . . . , αk+N ) ≜ Ā(αk+N )FN−1(αk, . . . , αk+N−1).
(8)

Remark 1: Given the zero-input strategy utilized to model
the dynamics of the drug delivery, and as stated in (5), the
input is only applied in Case 0, as in (6). On the subsequent
modes, the input matrix B̄ would also be present, however,
since in these modes K = 0, i.e. u(k) = 0, this matrix can be
disregarded.

Remark 2: To simplify the notation, the dependency of
FN (αk, αk+1, . . . , αk+N ), as in (6)-(8), on the time-varying
parameter will be omitted from now on. Thus, only Fi,
i = 0, 1, . . . , N , will be employed.

In summary, the resulting switched system is as follows.

η(k + 1) = Fι(k)η(k), (9)

Where ι(k) is a switching signal that draws from the set
L ≜ {0, 1, . . . , N}. Since only one mode of (9) is activated
at a time, the indicator function ζ(k) = [ζ0(k), . . . , ζN (k)]

T

is used.

ζi(k) =

{
1, if ι(k) = i,
0, otherwise.

Resulting in

η(k + 1) = Fι(k)(ζ(k))η(k). (10)

III. PHARMACOKINETIC ABSORPTION MODEL

The pharmacokinetic process of a drug involves evaluating
the Absorption, Distribution, Metabolism, Excretion, and Tox-
icity (also called ADMET) within the body on the dependence
of time [1], [2]. The biomathematical models, which describe
the drug distribution processes through organs connected by
the vascular system in an integrated physiological context,
are called The Physiologically Based Pharmacokinetic Meth-
ods [15], and correspond to a middle-point between the in
silico and in vivo approach. Since the vascular system is equal
in humans and pretty similar in other mammals, these models
are widely transferable [16], expanding their applicability.
Additionally, the distribution of a drug within the body can
be described in good agreement with experimental data by
using simplified biomathematical models, more specifically
the compartment model [17]. The compartmental model is an
extensively used technique, which assumes the percolation of
the drug dynamic between body parts (called compartment).
This structure reduces the complexity and reaches accurate
results in practice.

In the state-of-the-art, the Pharmacokinetic Absorption
Model can be formulated in the state-space representation for
the set of ordinary differential equations [18]–[22]). The states
for dynamic systems corresponding to drug concentration in

the body part and the exogenous input is the drug (injection
or oral) consequently, we can formulate performance criteria
based on linear combinations of the states and/or inputs.
In the case of discrete-time systems, the coefficients of the
model correspond to absorption or delivery rates between
states (body parts) [18] and/or physiological parameters [23].
In this paper the general compartmental model for the phar-
macokinetic process is used, where the absorption or delivery
rates are bounded time-varying parameters (11). The discrete-
time pharmacokinetic systems are composed of the following
three-compartments; blood b(k), organ o(k), and muscle m(k)
being in the latter the drug entry compartment, injection
w(k) exogenous input in (11). The bounded time-varying
parameters correspond to the delivery rate of the muscle
to blood γmb(αk), blood to organ γbo(αk), organ to blood
γob(αk), blood to muscle γbm(αk). And, the absorption rate
to muscle, organ and blood by µm(αk), µo(αk) and µb(αk)
respectively.

State-space representation: The x(k) ∈ R3 is the state vec-
tor by x(k) = [m(k) b(k) o(k)]T and u(k) ∈ R is the control
drug input (injection). The dynamic matrices A(αk) ∈ R3×3

defined as (12).

A(αk) =


(1−γmb(αk)

−µm(αk)

)
γbm(αk) 0

γmb(αk)
( 1−γbo(αk)
−γbm(αk)−µb(αk)

)
γob(αk)

0 γbo(αk) 1− γob(αk)− µo(αk)


(12)

The input matrix B(αk) ∈ R3×1 by B(αk) = [Dm(αk) 0 0]T .
The proposed system is inspired by the [24], [25]. The pro-
posed structure allows mapping the behavior in the continuous-
time pharmacokinetic absorption systems.

IV. MAIN RESULTS

In this section the new control theory-inspired methodology
to track drug concentration in MCPS is proposed, being said
matter modeled after a reference tracking control problem. An
LMI-based approach is utilized to design the state-feedback
controller that will define the most appropriate dosage to be
administered, which will be calculated through the current
drug concentration in the body. This approach uses a zero-
input strategy that seeks to be robust even in the presence of
communication faults, DoS attacks, or patient forgetfulness.

The new LMI condition to compute the gain of the proposed
control law (5) is presented in the sequel. An exponential
decay rate is considered in the design stage, as a way to
speed up the response. For the sake of clarity, the particular
case considering drug administrations with one time instant
interval, i.e. L ≜ {0, 1} is presented in the following Lemma.

Lemma 1: If there exists Pi(αk) ∈ Rnη×nη , where
Pi(αk) = PT

i (αk) > 0 and the matrices X ∈ Rnη×nη ,
Z ∈ Rnu×nη with a given scalar 0 < ρ ≤ 1 such that[

−ρ2P0(αk) XT Ā(αk)
T + ZT B̄(αk)

T

⋆ Pj(αk+1)−X −XT

]
< 0, (13)[

−ρ2P1(αk) XT Ā(αk)
T Ā(αk+1)

T + ZT B̄(αk)
T Ā(αk+1)

T

⋆ Pj(αk+1)−X −XT

]
< 0,

(14)



m(k + 1) = m(k)− γmb(αk)m(k) + γbm(αk)b(k)− µm(αk)m(k) +Dm(αk)w(k),

b(k + 1) = b(k) + γmb(αk)m(k)− γbo(αk)b(k)−γbm(αk)b(k) + γob(αk)o(k)− µb(αk)b(k),

o(k + 1) = o(k) + γbo(αk)b(k)− γob(αk)o(k)− µo(αk)o(k).

(11)

with i, j ∈ L, L ≜ {0, 1}, then K0 = ZX−1 is the state-
feedback control gain from (5) that assure that the closed-loop
system (10) (with F0 and F1 given as in (6)-(7) for N = 1)
is asymptotically stable if ρ = 1, and exponential stable with
convergence rate at least ρ if 0 < ρ < 1, for all (αk, αk+1) ∈
ΛZ × ΛZ .

Proof: By performing the change of variables Z = K0X ,
(13) and (14) can be rewritten as[

−ρ2P0(αk) XTF0
T

⋆ Pj(αk+1)−X −XT

]
< 0,[

−ρ2P1(αk) XTF1
T

⋆ Pj(αk+1)−X −XT

]
< 0.

(15)

Considering R = diag(X−1, X−1), pre- and post multiply-
ing (15) by its transpose and by itself, respectively, results
in[

−ρ2X−TP0(αk)X
−1 F0

TX−1

⋆ Pj(αk+1)−X−1 −X−T

]
< 0,

(16)[
−ρ2X−TP1(αk)X

−1 F1
TX−1

⋆ Pj(αk+1)−X−1 −X−T

]
< 0.

(17)
Given M0

T = [I F0], M1
T = [I F1], pre-and post

multiplying (16) by M0
T and its transpose, and (17) by M1

T

and its transpose results in

F0
TX−TPj(αk+1)X

−1F0 − ρ2X−TP0(αk)X
−1 < 0, (18)

F1
TX−TPj(αk+1)X

−1F1 − ρ2X−TP1(αk)X
−1 < 0. (19)

Multiplying (18) by ζ0(k), (19) by ζ1(k), summing up the
results leads to

F (ζ(k))
T
X−TPj(αk+1)X

−1F (ζ(k))

− ρ2X−TP (ζ(k), αk)X
−1 < 0.

(20)

The same strategy is considered once again, and multiplying
(20) by ζj(k + 1), j = 0, 1 and summing up the results it is
obtained

F (ζ(k))
T
X−TP (ζ(k + 1), αk+1)X

−1F (ζ(k))

− ρ2X−TP (ζ(k), αk)X
−1 < 0.

(21)

At last, pre- and post multiplying (21) by η(k)T and
its transpose, it is possible to infer that (21) is equiva-
lent to ∆V (η(k)) < (ρ2 − 1)V (η(k)), where V (η(k)) =
η(k)T

(
X−TP (ζ(k), αk)X

−1
)
η(k). With (13) and (14), it

is possible to assure that P (ζ(k), αk) > 0, therefore, the
Lyapunov function V (η(k)) is positive definite and Fi as seen
in (6)-(8) is asymptotically stable if ρ = 1, and exponential
stable with convergence rate of at least ρ if 0 < ρ < 1. With
that, the proof is concluded.

In the sequel, a generic approach that considers an arbitrary
N time instants interval between the doses is presented.

Theorem 1: If there exists Pi(αk) ∈ Rnη×nη , where
Pi(αk) = PT

i (αk) > 0 and the matrices X ∈ Rnη×nη ,
Z ∈ Rnu×nη with a given scalar 0 < ρ ≤ 1 such that[

−ρ2Pi(αk) Ψi
T

⋆ Pj(αk+1)−X −XT

]
< 0, (22)

where

Ψi =

i∏
l=0

(
Ā(αk+(i−l))

)
X +ΘiB̄(αk)Z, (23)

Θi =
i∏

r=1

A(αk+(i−r+1)), Θ0 = I, (24)

with i, j ∈ L, L ≜ {0, . . . , N}, then K0 = ZX−1 is the
state-feedback control gain from (5) that assure that the closed-
loop system (10) (with Fi as given by (6)-(8)) is asymptotically
stable if ρ = 1, and exponential stable with convergence rate
of at least ρ if 0 < ρ < 1, for all (αk, . . . , αk+N ) ∈ ΛZ ×
· · · × ΛZ .

Proof: The proof of Lemma 1 introduces the basis for this
proof. However here Mi = [I Fi]

T is considered.
Remark 3: By applying Theorem 1 with N = 0, the

reference tracking for the discrete-time LPV pharmacokinetic
MCPS is considered with inputs at every time instant. In this
case, there is no switching, and only (13) is taken into account.

Remark 4: It is worth noting that every controller gain
designed for N > 0 will be able to adapt the dosage
with guaranteed asymptotic or exponential stability for every
interval equal to or lesser than N time instants between doses.

Corollary 1: By setting (αk, . . . , αk+N ) = α, a control
law (5) that assures the asymptotic stability of linear time-
invariant (LTI) systems with polytopic uncertainties is ob-
tained.

Corollary 2: In Theorem 1, by rendering constant every
matrix dependent on the αk parameter (i.e. Mi(αk) = Mi), a
control law (5) that assures asymptotic stability of a single pre-
cisely known operating point of a pharmacokinetic absorption
system is obtained.

V. NUMERICAL EXPERIMENTS

A numerical example is chosen to test the effectiveness
of the proposed method. The conditions were implemented
in MATLAB. Parsers YALMIP [26] and ROLMIP [27] and
the solver MOSEK [28] were utilized. Considering the previ-
ously presented discrete-time 3-compartment model, described
by (11), the parameters displayed in Table I are considered.

The state matrix (12) is utilized, considering 8 vertices. To
represent the drug being injected into the muscle, the input



TABLE I
3-COMPARTMENT MODEL PARAMETERS

Parameters Values
γmb 0.095
γbo 0.095[

γ
ob

γ̄ob
] [

0.037 0.17
]

γbm 0.03[
µ
m

µ̄m
] [

0.1 0.21
][

µ
o

µ̄o
] [

0.1 0.11
]

µb 0.2

matrix is B =
[
Dm 0 0

]T
, with Dm = 1000 and our aim

is to control the drug concentration in the organs, thus, C =[
0 0 1

]
. A controller considering this LPV system, after

converting it to its augmented form (4), is obtained through
Theorem 1, considering an interval of N = 4 time instants
between doses, and an exponential decay rate of ρ = 0.9.

The desired concentration is r(k) = 0.5, as seen in (3).
To reflect the time-varying nature of the system in its time-
based simulation, a new set of αk, as seen in (2) is randomly
generated at each time instant. Because of the time-varying
parameter randomness, the mean of 1000 simulations was
calculated to test the controller performance. In Fig. 2 a
scenario where a dose is applied during every time instant
is described, while in Fig. 3, there is an interval of 4 time
instants between inputs.

The proposed control strategy was able to calculate in-

puts that assured the reference tracking to the desired drug
concentration in the organs in both scenarios. Note that the
input signal in each time instant refers to the amount of
drug administrated in each time instant of the considered
time scale. In Fig. 2, administrating doses every time instant
provided an almost stationary response in the reference, being,
however, not a viable option in some practical instances.
Applying doses divided by 4 time instant intervals, as seen
in Fig. 3, is a less conservative and practical approach, which
presents an oscillatory response that orbits the reference.
This is a satisfactory and expected response when using a
zero-input strategy, proving to be a robust control system
even under drug administration disruption. In conclusion, the
proposed technique was successful in providing a solution to
the pharmacokinetic absorption reference tracking problem.

VI. CONCLUSIONS

Keeping the suitable concentration of drugs in the body
during treatment is vital to ensure its efficacy. In this context,
emerging MCPS can be applied in order to integrate techno-
logical solutions to medical applications, as well as utilize
control theory fundamentals to help define the appropriate
drug dosages. This work proposed a zero-input state-feedback
control strategy for MCPS that assures exponential or asymp-
totic stability to a reference tracking problem, which keeps the
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drug concentration at the desired value. The proposed control
strategy was designed to be resilient against communication
faults in the system, DoS attacks, or even patient forgetfulness.

The most important future work is to ensure the positivity of
the system, given that drug concentrations as control signals
can only be positive. The general solution to this problem
involves guaranteeing the positivity of the closed loop, which
poses a significant challenge.
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