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 a b s t r a c t

The ever-escalating prevalence of malware is a serious cybersecurity threat, often requiring advanced 
post-incident forensic investigation techniques. This paper proposes a framework to enhance malware 
forensics by leveraging reinforcement learning (RL). The approach combines heuristic and signature-
based methods, supported by RL through a unified MDP model, which breaks down malware analysis 
into distinct states and actions. This optimisation enhances the identification and classification of 
malware variants. The framework employs Q-learning and other techniques to boost the speed and 
accuracy of detecting new and unknown malware, outperforming traditional methods. We tested 
the experimental framework across multiple virtual environments infected with various malware 
types. The RL agent collected forensic evidence and improved its performance through Q-tables and 
temporal difference learning. The epsilon-greedy exploration strategy, in conjunction with Q-learning 
updates, effectively facilitated transitions. The learning rate depended on the complexity of the MDP 
environment: higher in simpler ones for quicker convergence and lower in more complex ones for 
stability. This RL-enhanced model significantly reduced the time required for post-incident malware 
investigations, achieving a high accuracy rate of 94% in identifying malware. These results indicate 
RL’s potential to revolutionise post-incident forensics investigations in cybersecurity. Future work will 
incorporate more advanced RL algorithms and large language models (LLMs) to further enhance the 
effectiveness of malware forensic analysis.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access 

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Malware, also known as malicious software, is a type of soft-
ware that infiltrates and compromises data and information, per-
forming harmful and unauthorised functions. Its presence can 
lead to severe consequences, such as data theft, information de-
struction, extortion, and the crippling of organisational systems. 
In today’s digital landscape, investigating malware has become 
an urgent and paramount concern due to its potential for signif-
icant damage and loss. Recent studies reveal a startling reality: 
malicious software is proliferating at an alarming rate, with some 
strains employing deceptive tactics to evade cyber forensics in-
vestigations. According to Quertier et al. [1], AV-TEST estimates 
the daily discovery of approximately 450,000 new malware in-
stances, 93 percent of which are Windows-based malicious files, 
primarily in the form of portable executable (PE) files. This un-
derscores the critical need for swift malware investigations when 
an attack occurs to prevent widespread damage and mitigate the 
risk of malware evolving into more sophisticated and destructive 
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forms. Quertier et al. [1] also describe various malware inves-
tigation approaches, demonstrate the use of machine learning 
in malware analysis, and highlight how reinforcement learning 
improves malware models’ performance and accuracy.

The heuristic-based malware technique is a widely employed 
approach that analyses various system files, categorising them 
as normal, unusual, or potentially harmful. Aslan and Samet [2], 
emphasise that while signature-based methods struggle with 
new malware, a combination of heuristic and signature-based 
approaches offers a reliable and expeditious means of identifying 
malicious software. In contrast, deep learning-based approaches 
exhibit remarkable capabilities in identifying both known and 
previously unseen malicious software, surpassing the perfor-
mance of behaviour-based and cloud-based techniques. Malware 
analysis and classification heavily rely on machine learning al-
gorithms trained to distinguish between malware and benign 
files. Machine learning-based approaches, according to Akhtar [3], 
face several challenges, including the frequent return of false 
positives and the ability of new malware with polymorphic traits 
to alter their file signatures and evade identification. To overcome 
these challenges, machine learning techniques train algorithms to 
identify and classify various forms of malware based on patterns 
g University. This is an open access article under the CC BY-NC-ND license 
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and features found in extensive databases. These machine learn-
ing approaches improve computer systems, post-incident foren-
sics, and network security by equipping algorithms to effectively 
identify and classify different types of malware [4].

While many malware instances exhibit distinct features and 
static structures that differentiate them from benign software, 
some possess characteristics that make them challenging to
identify accurately [5]. Even with advances in machine learn-
ing, complex, evolving malware can evade these models and 
remain hidden, particularly when it is novel or highly adapt-
able. Reinforcement learning becomes a valuable tool in these 
scenarios, as it enables the creation of new malware samples 
capable of evading machine learning identification. These new 
samples retrain the malware models to identify more unknown 
threats [6]. Reinforcement learning distinguishes itself from con-
ventional machine learning models by embracing uncertainty and 
extensive trial and error as opposed to predefined mappings [7]. 
This quality makes reinforcement learning particularly effective 
in situations where specific answers are elusive, such as in the 
analysis of new and unknown malware threats [8]. During the im-
plementation of reinforcement learning algorithms, exploration 
plays a pivotal role. Through exploration, the model actively 
explores various features, expanding the breadth of knowledge 
about different malware types. Subsequently, exploitation comes 
into play, enhancing the model’s performance by selecting the 
most beneficial attributes [9].

In reinforcement learning, the reward techniques set it apart 
from other machine learning approaches. Reinforcement learning 
provides the agent with either negative or positive evaluation 
feedback, which may not necessarily indicate the correct actions 
in the environment. Generally, we depict the agent as capable of 
choosing a specific set of features that, when applied, enhance 
the model’s accuracy. The ever-changing environment, shaped by 
the agent’s actions, facilitates the collection of relevant features 
for classification. According to Fang et al. [10], ‘the accuracy of 
the classifier serves as a reward’, with the DQFSA architecture 
being a noteworthy example that employs reinforcement learning 
for feature selection. Reinforcement learning typically involves 
an agent that interacts with the malware analysis environment, 
introducing modifications to files to relate them to expected 
performance outcomes. According to Quertier et al. [1] recent 
studies such as REINFORCE and Deep Q-Network (DQN) have 
used reinforcement learning to improve malware investigations 
by leveraging past knowledge. This is particularly advantageous, 
as traditional machine learning models often lack the ability to 
incorporate background knowledge into their malware analysis. 
Reinforcement algorithms can reduce trial-and-error efforts and 
rely on past experiences to analyse and classify malware more 
efficiently using verified knowledge [11] & [7].

1.1. Research aim

This research seeks to enhance the accuracy and efficiency 
of malware forensics investigations by leveraging reinforcement 
learning (RL) techniques. Specifically, it aims to develop and 
refine models that can improve the analysis and identification 
of malware during post-incident investigations. The goal is to 
reduce investigation times and contribute to more reliable cy-
bersecurity measures by addressing gaps in current forensics 
processes, particularly the limitations of heuristic and signature-
based methods. Ultimately, this work strives to mitigate instances 
of forensic errors, such as the ‘miscarriage of justice’, and help 
maintain integrity in the UK’s justice system.
2

1.2. Research objectives

The objectives of this research are fourfold. First, it aims to 
explore Reinforcement Learning (RL) methodologies by exam-
ining RL-based approaches for automating key tasks typically 
performed by forensic experts, particularly in identifying mal-
ware artefacts following a security breach. Next, the research 
seeks to develop a sophisticated RL model that not only clas-
sifies malware accurately but also adapts to emerging malware 
variants, thereby improving the efficiency of post-incident foren-
sic analysis. Additionally, we intend to create a multi-approach 
malware forensics framework by integrating RL with heuristic 
and signature-based methods, creating a comprehensive tool for 
enhancing detection and analysis during post-incident investiga-
tions. Finally, we will validate the framework using real-world 
empirical data to evaluate its effectiveness against traditional 
malware forensics techniques.

1.3. Research contributions

This study makes a significant contribution to the fields of 
cybersecurity and digital forensics through several key advance-
ments. First, we developed a comprehensive malware foren-
sics approach that combines static analysis, behavioural analysis, 
and machine learning techniques to significantly enhance the 
detection and investigation of malware in memory dumps. In 
addition, we created a unified Markov Decision Process (MDP) 
model, which combines multiple MDP environments to facilitate 
a more structured examination of malware artefacts. Further-
more, we advanced the state of reinforcement learning (RL) in 
malware forensics by implementing a framework that surpasses
both human and automated methods, resulting in faster and more 
accurate post-incident investigations while consuming fewer re-
sources. Finally, we developed a novel method that leverages the 
AWK module and Volatility 3 to retrieve and identify crucial in-
formation from memory dumps, enabling a deeper understanding 
of malicious activities. These contributions collectively push the 
boundaries of malware investigation techniques.

1.4. Comparison with existing literature reviews

In our research, we implemented Q-learning within a de-
fined set of action and state spaces to train reinforcement learn-
ing agents for investigating malware in post-incident malware
forensics. We improve the agent’s performance by continuously 
providing it with feedback on its performance in the MDP envi-
ronment. Similarly, Binxiang, Gang, and Ruoying [12] leveraged 
deep reinforcement learning to overcome the limitations of tra-
ditional signature-based methods, using Q-learning to adapt to 
evolving malware threats, demonstrating the superiority of RL 
over static approaches. In a similar approach, Fang et al. [10] 
extended this by proposing the DQEAF model, which uses deep 
Q-networks to evade anti-malware engines, emphasising the cre-
ation of evasive malware that bypasses traditional malware anal-
ysis methods. The Markov Decision Process (MDP) model helped 
us organise our research even more. It helped us compile a list 
of the states and actions that make up the proposed reinforce-
ment learning post-incident malware investigation framework. 
For instance, it assisted us in acquiring live memory images 
and identifying the operating systems in use. In a related study, 
Quertier et al. [1], used the DQN and REINFORCE algorithms in an 
MDP framework to test machine learning-based malware analysis 
engines and find actions that could turn malware into undetected 
files. In defining our action and state space, we identified 67
unique states and up to 10 actions within our RL model, facili-
tating a thorough malware forensics investigation. This detailed 
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Table 1
Summary of related works.
 Reference Contribution Benefits Drawbacks  
 Ebrahimi et al. [13] Proposed an AMG detector against 

black-box attacks
RL-based models improve malware 
analysis against evasion tactics.

Discrete actions may not suit all 
detectors, limiting universality.

 

 Birman et al. [16] Introduces real-time malware analysis using 
deep RL.

Enhances computer security with 
effective malware analysis.

Requires a large amount of training data. 

 Fang et al. [10] Develops DQFSA for automated malware 
classification with deep Q-learning.

DQFSA streamlines feature selection 
using RL, saving time and effort.

Lacks details on restrictions imposed on 
the AI agent in the action space.

 

 Anderson et al. [17] Uses RL innovatively to evade PE-based 
malware models.

Strengthens ML-based malware analysis 
against adversarial threats.

Focuses on static PE models, ignoring 
dynamic and behavioural analysis.

 

 Wu et al. [6] Trains RL agents for optimal malware 
investigation models.

Improves the accuracy of ML-based 
malware investigations.

The need for extensive training data 
may hinder practical use.

 

 Song et al. [18] Proposes Mab-Malware, an RL framework 
for evading static classifiers.

Aids in examining evasive malware 
samples.

Potential misuse by malicious actors 
complicates analysis.

 

 Rakhsha et al. [19] Presents a practical environment poisoning 
algorithm for RL.

Helps develop better defenses against 
poisoning attacks.

Does not thoroughly address all aspects 
of poisoning attacks.

 

mapping is similar to the work of Ebrahimi et al. [13], who used 
action and state spaces in their AMG-VAC model to improve 
static malware analysis in black-box attack scenarios. Their study 
showed the pros and cons of using separate action spaces for 
various malware identification needs.

Additionally, we integrated various machine learning tech-
niques, including static and behavioural analysis, to enhance our 
proposed framework’s robustness. This integration was adapted 
from Wu et al. works [6,14], which emphasised the enhancement 
of malware analysis models using reinforcement learning by in-
corporating past knowledge into RL algorithms to improve mal-
ware identification and classification. In parallel, Piplai et al. [7] 
also explored the use of knowledge graphs to inform RL algo-
rithms for malware identification, highlighting the benefits of 
incorporating historical data into machine learning processes. In 
addition, we evaluated the performance of the RL model in our 
research methodology based on its ability to reduce the time 
required for post-incident malware forensic investigations and its 
accuracy in identifying malware. We measure this by conducting 
extensive experimental testing in simulated real-world scenarios. 
Similarly, in the broader literature, performance metrics often 
include the accuracy of malware identification and the time ef-
ficiency of the forensic process. For example, a study by Raff 
et al. [15] evaluates their RL-based malware identification system 
on similar parameters, emphasising the efficiency of the RL agent 
in real-time scenarios. While the related work provides a solid 
foundation in malware analysis and MDP modelling, our research 
methodology builds upon this foundation by offering practical, 
detailed methodologies and demonstrating their application in 
real-world scenarios. This progression from theoretical concepts 
to practical implementation marks a significant contribution to 
the field of cybersecurity and port-incident malware forensics 
investigation (see Table  1).

1.5. Paper outline

The remainder of this paper is organised as follows: The ab-
stract summarises the study’s primary focus on leveraging RL to 
expedite and improve post-incident forensic processes. The intro-
duction sets the stage by emphasising the critical need for rapid 
and efficient malware investigations in light of the increasing 
prevalence of cyber threats, as mentioned in Section 1. Follow-
ing this, the literature review in Section 2 presents a thorough 
examination of existing malware analysis methods, underscor-
ing the limitations of traditional approaches and highlighting 
the promise of RL. Furthermore, Section 3 and Section 4 de-
tail the research methodology development and implementation 
of the RL-based model, describing the design of the Markov 
decision-process (MDP) environments, the integration of rein-
forcement learning techniques, and the testing and evaluation of 
3

the RL agent in Section 5. Furthermore, the discussion and results 
in Section 6 show and explain the experimental results, demon-
strating that the RL model works faster and more accurately than 
traditional methods and human forensics experts.

Moreover, in Section 7, we encapsulate the key findings, reit-
erating the study’s significant contributions to cybersecurity and 
malware forensics. It emphasises the potential of RL to revolu-
tionise post-incident investigations, providing faster and more 
accurate results. Additionally, the research offers a comparative 
analysis, highlighting the advantages of RL over heuristic and 
signature-based methods. Notably, the hybrid approach integrat-
ing heuristic and RL methods shows promising results. Finally, 
the paper suggests some artificial intelligence techniques for 
future research, such as exploring advanced RL techniques and 
refining hybrid models, while emphasising the need for contin-
uous learning and adaptation in RL models. The comprehensive 
references section supports the study, citing relevant literature 
on RL, malware analysis, and cybersecurity, thus providing a solid 
foundation for the research.

2. Literature review and background

2.1. Reinforcement learning for malware analysis

Quertier et al. [1] research highlights the challenges of ma-
chine learning classifiers in identifying potential malware, espe-
cially when there is limited insight into the malware output. The 
study suggests that to test how well EMBER and MalConv ma-
chine learning analysis work on commercial antivirus software, 
one should use reinforcement learning with the REINFORCE and 
DQN algorithms. The study found that REINFORCE has a higher 
evasion rate and better performance than DQN, especially when 
tested against a commercial antivirus. However, a more compre-
hensive approach could have included training these models on 
a broader array of diverse models.

2.2. Deep RL for malware analysis

In 2019, Binxiang, Gang, and Ruoying [12], introduced a deep 
reinforcement learning-based technique for malware identifica-
tion, aiming to address the vulnerabilities of traditional signature-
based and machine learning-based approaches. The research
demonstrated that deep reinforcement learning outperformed 
traditional methods based on static signatures and demonstrated 
the ability to quickly adapt to the ever-changing landscape of 
malware. However, the study had limitations, including a lack of 
comprehensive details about the experimental design, datasets 
used, and evaluation metrics. Expanding the training dataset and 
incorporating domain-specific knowledge could improve mal-
ware analysis. Notably, expanding the training dataset’s size 
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Fig. 1. Malware forensics RL environment.

and diversity, as suggested by Szegedy et al. [20], could signif-
icantly enhance the effectiveness of the malware investigation. 
Researchers like Silver et al. [21], emphasise the value of in-
corporating domain-specific knowledge into deep reinforcement 
learning systems. While the authors assert their method’s supe-
riority, more comprehensive comparative analyses and statistical 
evidence could have provided more support for their claims.

2.3. RL-based attacks on static malware detectors

Ebrahimi et al. research, [13], aims to improve the effective-
ness of static malware detectors in countering black-box cyberat-
tacks. They propose using reinforcement learning (RL) to optimise 
the decision-making process of static malware detectors in the 
presence of black-box attacks. They create the Variational Actor-
Critic for Discrete Adversarial Malware Generation (AMG-VAC) 
using discrete operations and an approximate sampling operator. 
They use RL to optimise the decision-making process, adjusting 
the neural network’s weights based on the reward signal. In terms 
of accuracy, the RL-based AMG detector outperforms the original 
detector, particularly in the presence of black-box attacks. Fur-
thermore, their findings show that the RL-based AMG detector 
is significantly more accurate than the original detector when 
it comes to black-box attacks. However, RL in discrete action 
spaces may not align with all types of malware detectors, and its 
effectiveness depends on factors like the training dataset quality 
and the neural network’s architecture.

2.4. Malware analysis using intelligent feature selection

Fang et al. [10] developed a specialised architectural solution 
called DQFSA to address the shortcomings of traditional malware 
classification methods. The architecture uses deep Q-learning to 
identify crucial features, reducing human intervention and al-
lowing data selection and analysis across various cases and data 
volumes. The methodology incorporates multi-view features, fo-
cusing on high classification accuracy during the validation phase. 
The key difference lies in exposing an AI agent to sample features 
with minimal human intervention. Experiments validated the 
DQFSA architecture by comparing its performance against various 
classifiers and related works. However, the DQFSA framework 
imposes restrictions on the AI agent within the action space that 
remains unexplored.
4

2.5. Modern incident response enhanced by AI

Dunsin et al. [22] present a study on the application of artificial 
intelligence (AI) and machine learning (ML) in digital forensics, 
focusing on enhancing malware investigation through innovative 
methodologies. The paper highlights the integration of AI and 
ML techniques to improve investigative precision and efficacy in 
digital forensics, leveraging advanced computational models to 
automate the investigation and analysis of cyber threats. Another 
focus is memory forensics, which focuses on machine learning al-
gorithms to analyse memory dumps and malware, enhancing the 
reliability of forensic investigations by extracting and analysing 
multiple artefacts.

The study highlights the advantages of AI and ML in digital 
forensics, such as data mining techniques, reinforcement learn-
ing, and Markov decision process (MDP) for automated malware 
analysis. However, the study acknowledges challenges such as 
data validity, appropriate tools for memory dump retrieval, and 
adhering to ethical and legal standards. The study also proposes 
reinforcement learning, modelled as a Markov decision process 
(MDP), as a method for investigating malware in digital forensics. 
The MDP framework allows for systematic evaluation of different 
states and actions, facilitating the development of effective RL 
models for malware investigation, as illustrated in Fig.  1.

2.6. ML and knowledge based system for malware analysis

Piplai et al. [7] propose a framework that uses reinforcement 
learning and open-source knowledge to enhance malware anal-
ysis. The framework consists of two components: reinforcement 
learning for malware analysis and knowledge from open sources 
detailing past cyberattacks. The research experiments create 99 
distinct processes during data collection, enabling the model to 
identify new malware. In similar research, Gallant [23] conducted 
a malware investigation experiment in which the researchers 
trained and employed multiple machine learning algorithms, in-
cluding Perceptrons, and rigorously tested their performance. 
However, Piplai et al. [7] leave unspecified aspects, such as de-
termining which prior knowledge is relevant for new malware 
analysis and whether prior knowledge might introduce biases 
from previous cases. Despite these concerns, the framework’s 
incorporation of prior knowledge remains valuable, guiding new 
models with increased efficiency and accuracy.

2.7. RL for malware investigations

Reinforcement learning in malware forensics investigations 
involves an agent that seeks to optimise cumulative rewards by 
effectively managing the trade-off between exploration and ex-
ploitation. Our research’s primary focus is on using reinforcement 
learning techniques to automate the process of conducting post-
incident malware forensics investigations following a security 
incident. The agent performs actions within the environment, 
leading to changes in its state. The objective is to gradually 
enhance the agent’s performance, enabling it to precisely identify 
portable executables as either malicious or benign. In the context 
of the proposed post-incident malware forensics investigations, 
the reinforcement learning agent begins at state zero (0), takes 
guided actions, and receives rewards or penalties. With each 
action and reward, it enhances its strategy through iterative 
learning until it attains an optimal approach (see Table  2).
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Fig. 2. Experimental setup and dataset generation.
Table 2
Malware names against the operating systems.
 Malware variant Target Windows OS  
 1 — WannaCry Windows 7 Professional SP2.  
 2 — Cerber Windows 7 All in One AIO (32/64-bit). 
 3 — DeriaLock Windows 11 ISO 22H2 - 64 bit.  
 4 — LuckyLcoker Windows 8.1 Pro 6.3.9600 - 64 bit  
 5 — Dharma Windows 8.1 Pro 6.3.9600 - 32 bit.  
 6 — SporaRansomware Windows 10 2022 - 32 bit.  
 7 — GandCrab Windows 10 2022 - 64 bit.  
 8 — GoldenEye Windows 10-64 bit.  
 9 — Locky.AZ WinDev2303Eval.  
 10 — InfinityCrypt MSEdge – Windows 10.  
 11 — Win32.BlackWorm Windows 7 Professional SP1 v6.1.7601. 
 12 — PowerLoader Windows 7 Starter SP1 v6.1.7601.  
 13 — W32.MyDoom.A Windows 7 Ultimate SP1 v6.1.7601.  

3. Research methodology

3.1. Experimental setup and dataset generation

To implement and validate our proposed reinforcement learn-
ing malware investigation framework, we took a systematic ap-
proach to creating a comprehensive malware dataset using the
London Metropolitan University Digital Forensics Laboratory. 
First, we established thirteen virtual machines within an isolated 
network to ensure a secure and controlled environment for our 
experiments and the eduroam network. This setup was critical to 
preventing the spread of unintended malware and maintaining 
the integrity of our data collection process. Next, we uploaded 
13 different ISO files, each representing various versions of the 
Windows operating system. This diverse selection of operating sys-
tems allowed us to test our framework across a broad spectrum 
of environments.

Next, we introduced a variety of malware to infect each of 
these operating systems. We specifically chose each malware 
type to represent different attack vectors and behaviours, pro-
viding a robust challenge for our investigation framework. For 
each ISO file installed on the virtual machine, we took an initial 
snapshot of the environment and saved the live memory dump. 
Following this, we infected the virtual machine with the chosen 
malware and took another snapshot. This process resulted in 
pairs of snapshots, one uninfected and one infected, for each 
operating system. This methodology produced 13 RAM files from 
the uninfected environments and another 13 from the infected 
5

ones. To analyse these files, we used the Volatility framework, a 
powerful tool for memory forensics. We manually examined both 
the infected and uninfected RAM files, which, as a result, enabled 
us to identify significant changes and behaviours indicative of 
malware presence. To ensure replication and verification of our 
procedures, we diligently documented each stage of the analysis. 
This documentation was critical for maintaining the integrity of 
our research, as well as future reference. Finally, based on our 
analysis of the 26 files, we created a detailed malware work-
flow diagram. This diagram mapped out the typical processes 
and behaviours associated with the malware samples, provid-
ing a visual and analytical aid for understanding how different 
malware affects system memory. This workflow diagram is a 
crucial component of our proposed reinforcement learning post-
incident malware forensics investigation framework, serving as a 
foundational element for training and validating our model. The 
visual diagram in Fig.  2 illustrates the steps we took to create 
the dataset, outlining each component, from setting up the virtual 
machine to creating the malware workflow diagram.

3.2. Malware workflow diagram creation

The research methodology extends from our comprehensive 
experimental setup and dataset generation process to the de-
velopment of a detailed malware analysis workflow diagram, 
as depicted in Fig.  3. This diagram is integral to our reinforce-
ment learning malware investigation framework, encompassing 
various malware analysis techniques, including data collection, 
examination, and analysis. Our dataset, comprising live memory 
dumps from 13 different versions of Windows operating systems 
– both infected and uninfected – provides the foundation for 
this workflow. We examined these dumps to detect anomalies, 
indicators of compromise, and potential malware artefacts by 
using the Volatility framework for memory forensics. The anal-
ysis phase incorporates a diverse array of techniques such as 
static analysis, signature-based analysis, behavioural analysis, and 
machine learning algorithms. The resulting malware workflow 
analysis diagram not only maps out the typical processes and be-
haviours associated with our chosen malware samples, but it also 
serves as a crucial tool for improving information security and 
post-incident malware forensic investigations. Our structured ap-
proach rigorously trains and validates our reinforcement learning 
model, strengthening our malware investigation capabilities.
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3.3. Markov DecisionProcess (MDP) formulation

The proposed post-incident malware forensics investigation 
incorporates the Markov Decision Process (MDP), a mathemati-
cal framework that models decision-making when outcomes are 
partially random and partially under a decision-maker’s control. 
To achieve this, our MDP consists of the following components:

• States (S): In this case, |S| = 67 states.
• Actions (A): In this case, |A| = 10 actions.
• Transition Function (T): T (s, a, s′) represents the proba-

bility of transitioning from state s to state s′ under action 
a.
• Reward Function (R): R(s, a) represents the immediate re-

ward received after performing action a in state s.
• Discount Factor (γ ): A factor γ ∈ [0, 1] that discounts 

future rewards.

Step 1: Define States and Actions

• Let S = {s0, s1, s2, . . . , s66} where each s represents a unique 
state in the malware investigation model process.
• Let A = {a0, a1, a2, . . . , a9} where each a represents a 

possible action.

Step 2: Define Transition Function T (s, a, s′)

• The transition function T (s, a, s′) gives the probability of 
moving from state s to state s′ when action a is taken.
• Example: If taking action a2 in state s5 has a 0.8 probability 

of transitioning to state s10, then T (s5, a2, s10) = 0.8.

Step 3: Define Reward Function R(s, a)

• The reward function R(s, a) provides the immediate reward 
received after taking action a in state s.
• Example: If taking action a3 in state s8 gives a reward of 10, 

then R(s8, a3) = 10.

Step 4: Define Discount Factor γ

• Choose a discount factor γ  (typically between 0.9 and 1) to 
weigh future rewards.

3.4. Leveraging reinforcement learning

In the context of our proposed Reinforcement Learning (RL), 
the agent learns the optimal policy π∗ by interacting with the 
three proposed MDP environments. Specifically, Q-learning, our 
chosen algorithm, updates the Q-values based on the Bellman 
equation.

3.4.1. Value function and policy
The value function for policy π is given by:

Vπ (s) =
∑
a

π (a | s)
∑
s′

T (s, a, s′)
[
R(s, a)+ γVπ (s′)

]
• Vπ (s): Expected cumulative reward starting from state s and 

following policy π .
• π (a | s): Probability of taking action a given state s under 

policy π .

The Q-learning update rule is given by:

Q (s, a)← Q (s, a)+ α

[
r + γ max

a′
Q (s′, a′)− Q (s, a)

]

6

Where:

• α is the learning rate.
• r is the reward received after taking action a in state s.
• s′ is the next state resulting from action a.
• maxa′ Q (s′, a′) is the maximum estimated future reward 

from state s′.

Using the specifications as a result of the workflow diagram: 

• We have 67 states and 10 actions.
• The transition and reward functions would be defined based 

on the specific malware identification tasks.

3.4.2. Q-learning update rule

Q (s, a)← Q (s, a)+ α

[
r + γ max

a′
Q (s′, a′)− Q (s, a)

]
Step 1: Initialise Q-Table

• Initialise Q (s, a) for all s ∈ S and a ∈ A to some arbitrary 
values (e.g., 0).

Step 2: Choose Learning Rate α and Discount Factor γ

• Example: α = 0.1, γ = 0.9.

Step 3: Implement the Q-Learning Algorithm

• Initialise state s.
• Repeat:

– Select an action a using an exploration–exploitation 
strategy (e.g., ϵ-greedy).

– Take action a, observe reward r and next state s′.
– Update Q-Table using the Q-learning update rule:

Q (s, a)← Q (s, a)+ α

[
r + γ max

a′
Q (s′, a′)− Q (s, a)

]
– Update state s← s′.

• Until convergence or a specified number of episodes.

3.5. Setting the parameters for MDPs

The Reinforcement Learning Post-Incident Malware Investiga-
tive Model uses the malware workflow diagram to define param-
eters for action and state spaces. The agent uses live memory 
dumps to analyse and identify malware artefacts, with 109 dis-
tinct actions within a defined environment. The state array aligns 
with the malware workflow diagram, encompassing 67 unique 
states. To achieve this alignment, we follow steps such as in-
stalling WinPmem, obtaining live memory images, understanding 
the operating system, extracting process information, listing DLLs, 
tracking open handles, collecting network data, figuring out reg-
istry hives, listing keys, duplicating processes into executable 
files, and sending them to Known Files Filters Servers.

3.6. The motivation behind implementing Q-learning

The proposed Reinforcement Learning Post-Incident Malware 
Investigation Framework uses Q-learning, an off-policy, model-
free algorithm. We use it because it employs a value-based 
approach to determine the optimal actions based on the current 
state. The algorithm learns the relative value of different states 
and actions through experiential knowledge without relying on 
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Fig. 3. Malware workflow diagram.
explicit transition or reward functions. This approach is suited for 
the proposed RL model for analysing malware artefacts. In this 
context, ‘Q’ signifies quality, representing the action’s value in 
terms of optimising future rewards. On the other hand, model-
based algorithms employ transition and reward functions to 
estimate the optimal policy and construct a model, whereas
model-free algorithms acquire knowledge about action outcomes 
experientially, without explicit transition or reward functions. 
In our proposed implementation, we opt for the value-based 
approach, which entails training the value function for the agent 
to learn the relative value of different states and take actions 
accordingly. Conversely, policy-based methods directly train the 
policy to determine the appropriate action for a given state. On 
the other hand, in off-policy methods, the algorithm assesses 
and improves a policy that is different from the action execution 
policy. In contrast, on-policy algorithms evaluate and refine the 
same policy employed for action execution.

3.7. Q-learning terminologies

In the following sections, we will implement the proposed Re-
inforcement Learning Post-Incident Malware Investigation Model. 
The following terminologies are defined and explained in brief. An
Environment is the space or world in which the agent operates 
and takes actions. An Agent is the entity that learns and makes 
decisions by interacting with the environment. States (s) signify 
the agent’s present location within the environment. An Action 
(a) is the set of all possible moves or decisions the agent can 
make in the environment. Every action the agent takes results in 
either a positive reward or a penalty. Episodes mark the end of 
a stage, indicating that the agent cannot perform further actions. 
This occurs when the agent either accomplishes its objective or 
faces failure.

For each state–action pair, the agent uses a Q-Table to manage 
or store Q-values. We use Temporal Differences (TD) to estimate 
the expected value by comparing the current state and action 
with the previous state and action. The learning rate is a pa-
rameter that determines how much new information overrides 
old information. A policy is a strategy or mapping from states to 
actions that defines an agent’s behaviours. The Discount Factor
is a parameter that determines the importance of future rewards. 
The Bellman Equation is a fundamental equation in Q-Learning 
7

that expresses the relationship between the Q-value of a state–
action pair and the Q-values of the subsequent state–action pairs. 
The Epsilon-Greedy Strategy is a method for balancing exploration
and exploitation.

3.8. Q-table and Q-function

As previously mentioned, the Q-table is one of the key com-
ponents that facilitate the agent’s decision-making. It guides the 
agent in selecting the most favourable action based on expected 
rewards within the provided environments. TheQ-learning algo-
rithm updates the values of a Q-table, which essentially functions 
as a structured repository encapsulating sets of actions and states. 
However, defining the state and action spaces is a crucial pre-
liminary step in effectively setting up the Q-table, a task that 
the malware workflow diagram facilitates. Furthermore, the Q-
function plays a central role, using the Bellman equation and 
considering the state(s) and action (a) as its input. This equation 
significantly streamlines the calculation of both state values and 
state–action values.

3.9. Subsections of the Markov Decision Process Model

The proposed subsection of the Markov Decision Process (MDP)
represents a segment of the comprehensive and unified MDP 
model. Each subsection of the Markov Decision Process (MDP) 
model contains states, actions, rewards, and a transition prob-
ability function. These subsections are crucial components of 
the unified MDP that provide an agent with the capabilities of 
identifying and isolating suspicious portable executable files for 
further investigations. This approach sets a benchmark for pro-
cesses such as recognising process identities, analysing process 
DLLs and handles, examining network artefacts, and checking for 
evidence of code injection.

• WinPmem Installation: The WinPmem MDP subset repre-
sents the different states and actions involved in the in-
stallation process, including troubleshooting and resetting 
if errors or corruption occur during the installation. The 
ultimate goal is to reach State 5, indicating a successful 
installation of WinPmem. Each action is associated with a 
transition between states, either progressing through the 
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Fig. 4. Live memory acquisition.

Fig. 5. Identifying operating system.

Fig. 6. Windows running process and ID identification.

installation, returning to a previous state for debugging, or 
starting over. The MDP helps model and understand the 
decision-making process involved in WinPmem installation.
• Acquiring Live Memory Image: Fig.  4 outlines a decision-

making process that involves actions, states, and transitions 
to achieve the goal of acquiring a live memory image, with 
the possibility of encountering errors and debugging them 
along the way. However, we structure it as a Markov deci-
sion process, where the actions taken in each state deter-
mine the state transitions. Additionally, the objective is to 
attain a desired state, specifically State 10, where successful 
live memory acquisition occurs.
• Identifying the Operating System: In this sequence, the subset 

MDP illustrated in Fig.  5 entails the transition between 
states and the implementation of actions aimed at identi-
fying the operating systems. States represent the system’s 
status, and actions are taken to achieve the goal of iden-
tifying the operating system, including debugging steps to 
handle errors and crashes. In state 15, the agent success-
fully identifies the suggested profile name, date, and time 
information using the Volatility Image Plugin, indicating 
successful operating system identification.
• Identifying Process Information: Fig.  6 illustrates the various 

states and actions available in MDP for retrieving process 

8

Fig. 7. AWK module features extractions.

information. This includes using different plugin functions, 
debugging to fix problems, and being able to choose from 
different ways to collect data about the process.
• AWK Module Features Extractions and Print List of Loaded 

DLLS: The agent starts with the identified process informa-
tion, executes an AWK module to extract features related 
to suspicious portables, and finally reaches a state where 
these feature extractions are complete and stored in an 
output file, as shown in Fig.  7. The next step represents a 
Markov decision process (MDP) for extracting information 
about the loaded DLLs by a specific process. The process 
includes executing the DLLLIST plugin, debugging potential 
issues, and providing the ability to reset and repeat the 
analysis if necessary.

3.10. The Unified Markov Decision Process

The Unified Markov Decision Process (MDP), as depicted in Fig. 
8, consolidates all the subsections of MDPs into a singular process, 
providing a comprehensive perspective. This synthesis allows the 
agent to effectively navigate the environment and make informed 
decisions regarding malware investigation.

3.11. The proposed RL post-incident malware investigation frame-
work

The Reinforcement Learning Post-Incident Malware Investi-
gation Framework comprises six fundamental components, as 
illustrated in Fig.  9: data collection, workflow diagram mapping, 
MDP model implementation, environmental dependencies, MDP 
solver, and continuous learning and adaptation. Data collection 
involves acquiring live memory dumps from Windows operat-
ing systems, whereas data examination focuses on analysing the 
collected data to identify anomalies, compromise indicators, and 
potential malware artefacts. The workflow diagram outlines a 
comprehensive approach to identifying malware infections us-
ing static analysis, signature-based analysis, behavioural analysis, 
and machine learning algorithms. However, we use the AWK 
module to extract features from the identified processes. On the 
other hand, listing DLLs is an essential aspect of this workflow 
because it tracks loaded DLLs for each process. Additionally, mon-
itoring open handles is crucial for keeping track of the open 
handles associated with each process. Another important focus 
is collecting network data to ensure the acquisition of all perti-
nent network-related information. Registry hive analysis involves 
identifying the registry hives and listing their keys. We duplicate 
the processes into executable files and check them against known 
malware databases to determine whether they are malicious or 
benign. Additionally, we duplicate the addressable memory to 
conduct a grep search using specific keywords.

The state spaces are designed to align with the malware work-
flow diagram, encompassing 67 unique states. Based on this 
workflow, the actions are defined, ranging from three to ten, 
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Fig. 8. Overall Markov Decision Process (MDP) model.
Fig. 9. The proposed RL post-incident malware investigation framework.
 

exposing the agent to 109 distinct actions within a defined en-
vironment. Formulating the subsections, the unified Markov De-
cision Process (MDP) models, and the proposed RL Post-Incident 
Malware Investigation Model leads to the creation of the MDP 
solver. We divide the setup environment dependencies into three 
sections: creating dependencies and gym environments, import-
ing required libraries, and implementing the training data for 
continuous learning and adaptation.

3.12. The proposed RL post-incident malware investigation model

In the proposed Reinforcement Learning Post-Incident Mal-
ware Investigation Model, the ‘Agent ’ is the decision-maker which
interacts with the environment. The ‘Environment ’ is the live 
memory dump in which the agent interacts. It provides the agent 
9

with state and reward data. The ‘State’ (s) is a representation 
of the agent’s current situation in the environment. The ‘Action’ 
(a)  is the set of all possible moves the agent can take. The 
environment provides feedback, known as the ‘Reward’ (r), to 
evaluate the agent’s actions. The agent uses the ‘Policy’ as a 
strategy to decide the next action based on the current state. The
‘Value Function’ (V (s)) is a function that estimates the expected 
cumulative reward from a given state following a particular 
policy. The ‘Q-Function’ (Q (s, a)) is a function that estimates the 
expected cumulative reward from taking a particular action in 
a given state, following a particular policy. The agent observes 
the current state of the environment. The agent selects an action 
based on this state and its policies. The environment transitions to 
a new state and provides a reward to the agent. The agent updates 
its policy and value functions based on the reward received and 
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the new state. This iterative process continues until the agent 
learns an optimal policy that maximises the cumulative reward 
over time.

3.13. Algorithm 1 - Implementation of the Q-learning algorithm

Algorithm 1 implements the Q-learning algorithm, a rein-
forcement learning technique, to train an agent to make optimal 
decisions in an environment. The code initially initialises a Q-
table with zeros, symbolising the agent’s understanding of the 
environment, where rows represent states and columns represent 
actions.

Algorithm 1 Q-Learning Implementation
1: Initialisation:

• Initialise Q-table with zeros. (defines the state of the 
agent)
• Set parameters: learning rate (α), discount factor (γ ), 

exploration probability (ϵ = 0.9), and decay schedule.
• Initialise storage structures: storage, storage_new, re-

ward_list.

2: for episode = 0, 1, . . . , episodes do
3: Reset environment and variables:

• Reset the environment to obtain the initial state.
• Initialise episodic reward and step counter.
• Store current epsilon value.

4: while not done, do
5: Select action using ϵ-greedy policy:

• if ϵ < rand() then
• action ∼ Uniform(noA)
• else
• action = maxa Q (state, a)

6: Execute action:
• Act in the environment and observe the next state, 

reward, and done flag.
• Update episodic reward.
• Increment steps counter.

7: Update Q-value using Bellman equation
8: Compute the maximum future Q-value for the next state.
9: Calculate the new Q-value

10: Update the Q-table with the new Q-value.
11: Store Q-value updates if specific conditions (e.g., state, action) 

are met.
12: Update state: Set the current state to the next state.
13: Append the (current_q, new_q, episode, action) to the storage 

list.
14: Decay ϵ: Reduce epsilon based on the decay schedule.
15: Check convergence: if |new_q − current_q| < threshold and 

new_q ̸= current_q then
16: Break the loop
17: Append (episodic_reward, episode, steps) to reward_list.
18: Update ϵ:

• ϵ ← ϵ − (ϵ_decay_value× 0.5)

19: Return results:
• Return Q-table, storage, reward_list, and storage_new.

20: end for

The code establishes key parameters such as the learning rate, 
discount factor, and exploration probability (initially set to 0.9), as 
10
well as decay schedules and structures for storing data (storage, 
storage new, reward list). The main loop runs for a specified num-
ber of episodes, resetting the environment and relevant variables 
at the start of each episode to obtain the initial state, reset the 
episodic reward, and initialise a step counter. A ‘greedy policy’ 
selects actions within each episode: if the probability is high, it 
selects a random action (exploration); if not, it selects the action 
with the highest Q-value for the current state (exploitation). The 
environment executes the selected action, providing the next 
state, reward, and a done flag indicating the episode’s end. The
Bellman equation updates the Q-value, accounting for the im-
mediate reward and the maximum future Q-value from the next 
state. The Q-table then stores the updated Q-value. Certain condi-
tions trigger the recording of specific Q-value updates. The state is 
then updated to the next state, and the current and new Q-values, 
along with the episode number and action taken, are appended 
to the storage list. A predefined schedule decays the exploration 
probability. We optionally check convergence by comparing the 
absolute difference between the new and current Q-values, and 
if the difference falls below a threshold but the values are not 
equal, we can terminate the loop early. We append the episodic 
reward, episode number, and step count to the reward list after 
each episode, thereby further delaying the episode. Finally, we 
return the Q-table, storage, reward list, and storage new, which 
summaries the learned policy and the data gathered during train-
ing. The process begins with the initialisation phase, where three 
custom environments (env new1, env new2, andenv new3) are 
defined using a defined MDP function. The algorithm then iterates 
over a list of names (‘name list ’), and for each name, it assigns 
the appropriate environment by configuring the Markov Decision 
Process (MDP) with specific transition probabilities and rewards.

3.14. Algorithm -2 Iterating learning rates variation over MDP envi-
ronments

Algorithm 2 is an algorithm that trains and stores models 
using different learning rates (LRs) across multiple environments. 
The initialisation phase initiates the process, defining various 
environments (envs) and creating an empty dictionary named 
’final dict’ to store results. 

Algorithm 2 Iterating Learning Rates Variation over MDP Environ-
ments
1: Initialisation: Defining different envs and empty final dict
2: for name in name_list do

1. Assigning the right env (MDP): Using diff transition 
probs and rewards to create the MDP

2. Defining and resetting the training params:

• Learning rates list
• outputs, store and rewards dictionaries

3. for lr in lrs do
(a) Performing the new_q_learning algorithm
(b) Storing everything by appending in the final_dict

4. end for
3: end for

Next, we set the training parameters, which include a list of 
learning rates ranging from ‘0.001 to 0.9’, and store the resulting 
Q-tables, intermediate storage, rewards, and additional storage 
collections. For each learning rate (‘lr ’) in the list of learning rates 
(‘lrs’), the algorithm executes the ‘new q learning ’ algorithm. 
Finally, the algorithm stores the results by appending them to 
the ‘final dict ’. This structured approach guarantees systematic 
model training and result storage for varying learning rates in 
different environments.
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4. MDP models integration and implementation

4.1. An overview of our three proposed MDP environments

The BlankEnvironment models the proposed Markov Deci-
sion Process using the Malware Workflow Diagram, incorporating 
states, actions, rewards, transition probabilities, and episode com-
pletion status. It features a discrete action space with 10 actions 
and an observation space with 67 observations, assigning a stan-
dard step penalty of 0.04 and a reward of 2 for identifying mal-
ware. The BlankEnvironment_with_Rewards gives a reward 
of 2 for all terminal states upon accurate malware identification 
and 4 for early-stage accurate identification, encouraging correct 
classifications. Conversely, the BlankEnvironment_with_Time
imposes a harsher penalty of -0.01 per step to incentivise efficient 
malware identification by discouraging the agent from taking 
unnecessary actions. Rewards serve as hyperparameters in both 
environments, refined for optimal agent performance.

4.2. Implementing MDP environments key Python libraries

We begin by creating the ‘Environment ’ dependencies, im-
porting essential libraries like NumPy, Random, Time, and Gym
modules. We use NumPy for numerical computations, Random 
for generating random numbers, and Time for measuring code 
execution time. These measurements help optimise performance 
and compare our RL-based post-incident malware investigation 
model with human experts. The Gym library, commonly used in 
reinforcement learning, defines environments, and agents, and 
evaluates their performance, with its ‘spaces’ module represent-
ing possible observations and actions in an RL environment.

4.3. Initialising the state and action variables

We assign values to two variables: ‘noS = 67’ assigns the 
value ‘67’ to the variable ‘noS’, implying that ‘noS’ represents the 
‘number of states,’ with a value of 67. The variable ‘noA = 10’ 
assigns the value ‘10’ to ‘noA’, signifying the ‘number of actions’, 
with a value of 10. Q-Learning will continue to use these variables 
to define the dimensions of data structures.

4.4. Implementation of the BlankEnvironment

As shown in Fig.  10, we define a new class named
‘BlankEnvironment’, which inherits from ‘gym.Env’, indicating 
its intended use as a gym environment. For the BlankEnvironment 
class, the constructor method initialises the class instance. The 
next variable defines the environment’s action space and observa-
tion space. The action space is discrete, with 10 possible actions, 
whereas the observation space is discrete, with 67 possible ob-
servations. The next variable, ‘self.state = 0’, sets the initial state 
of the environment to ‘0’. We initialise ‘self.P = dict()’ as an empty 
dictionary to store transition probabilities in the subsequent code 
block.

4.5. Defining reset and step function

The ‘def reset(self)’ function resets the environment to an 
initial state, returning the initial observation with ‘self.state = 
0’. The ‘def step(self, action)’ method simulates a step in the
BlankEnvironment based on the action, assigning a random 
11
Fig. 10. Initialise and implement the BlankEnvironment class.

Fig. 11. Initialise and implement the BlankEnvironment with rewards class.

number to ‘temp’ using ‘np.random.rand(1)’. If the current state is 
between 0 and 66 and the action is between 0 and 9, the tuple ‘k’ 
is updated with the current state, 1, a reward of -0.04, and False.

4.6. Implementation of the BlankEnvironment with rewards

The BlankEnvironment_with_Rewards is a completely dif-
ferent implementation compared to BlankEnvironment. As il-
lustrated in Fig.  11, in the BlankEnvironment_with_Rewards, 
actions leading to terminal states are assigned a reward of 2, in 
contrast to the -0.04 reward assigned in the BlankEnvironment. 
The reward function in BlankEnvironment_with_Rewards is 
modified when an episode ends, as indicated by the done flag. The 
done flag assigns the value of the fourth element to the variable 
done, which contains information about episode completion. The 
done flag checks if the done variable equals True, and the reward 
variable is set to a positive value of 4. This update considers the 
consequences of changing the reward when the episode ends.

4.7. Implementation of the BlankEnvironment with time

In BlankEnvironment_with_Time, the agent incurs a more 
severe negative reward of -0.1 per step, compared to the standard 
penalty of -0.04 in the other two environments. This technique 
aims to incentivise the agent to efficiently identify malicious 
files by taking the most direct path, thereby discouraging any 
superfluous actions. Furthermore, when the agent extends the 
episodes by taking additional steps, it receives significant penal-
ties. Notably, this incentive is considered a hyperparameter, as it 
is subject to continuous refinement. The expression ‘done = k[3]’ 
assigns the fourth element of the tuple ‘k’ to ‘done’, indicating 
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Fig. 12. The speed of convergence across the three MDP environments.

whether the episode is complete. If ‘done’ is ‘True’, a reward of
+4 is assigned; otherwise, a penalty of -0.1 is given to the agent. 
The tuple ‘new k’ is then created, maintaining the original values 
of ‘k’ but updating the reward value. We return this updated tuple 
for future interactions with the environment.

4.8. Iterating MDP environments over learning rates

We implemented a Python code and iterated the three MDP 
environments over a range of learning rates (0.001–0.9). The
name_list = [’env_new1’, ’env_new2’, ’env_new3’] de-
fines a list containing the names of the environments. We ini-
tialise an empty dictionary to store the final results and iterate 
over each environment using a for loop. We use the Q-learning 
function to convert the current learning rate to a float and store 
the results in dictionaries. We convert the output into a list and 
save it in the output dictionary. Finally, we group the collected 
data into a tuple and store it in the final dictionary, consolidating 
all results for further insight.

5. Testing and evaluation

5.1. Retrieving data from final-dict

We implemented a Python code and defined several vari-
ables, including Q-tables for different learning rates (q1, q2,
q3), changes in Q-values (store1, store2, store3), cumulative
rewards (reward1, reward2, reward3), and Q-values for mul-
tiple states (store_new1, store_new2, store_new3) for en-
vironments env_new1, env_new2, and env_new3. It initialises 
these variables by retrieving data from final_dict, ensuring 
each set of variables corresponds to a specific environment. This 
consistent structure allows for efficient tracking and storage of 
Q-learning outcomes across multiple environments.

5.2. Comparing the speed of convergence

We implemented a Python code to visualise the speed of 
convergence across the three MDP environments, (env_new1,
env_new2, and env_new3) representing BlankEnvironment,
BlankEnvironment_with_Rewards(), and BlankEnviron-
ment_with_Time(), respectively. Each dictionary maps learning 
rates to the number of episodes required for convergence.

The code line x = [float(key) for key in env_new1.
keys()] creates a list of floating-point learning rates from
env_new1. The command plt.figure (figsize=(10, 6))
initialises a 10 × 6-inch plot, where we create scatter plots 
for each environment, using different colours (blue, red, and 
12
green) for distinction and adding lines to illustrate convergence 
trends. Fig.  12 shows that BlankEnvironment_with_Rewards
(env_new2) has the smoothest and fastest convergence. In con-
trast, BlankEnvironment_with_Time (env_new3) converges 
slowly due to a higher negative reward function, necessitating 
larger learning rates and more computational time. BlankEnvi-
ronment (env_new1) also performs well, but it converges slower 
due to learning rate fluctuations. As a result, BlankEnviron-
ment_with_Rewards is the best MDP environment, with a 0.4 
learning rate.

5.3. Using Argmax to iterate over different learning rates and mdp 
environments

We implemented a Python code that initialises a list lrs with 
various learning rates and creates empty dictionaries q1_dct and
q1_dict to store results for three different environments, env1, 
env2, and env3. The code then outputs a message indicating 
the processing of env1, then iterates over each learning rate in
lrs, initialising lists within the dictionaries and retrieving the 
corresponding Q-values from q1. Within a nested loop running 67
times for different states, it prints the state index and the action 
index with the highest Q-value using np.argmax(q_new[i]), 
appending this information as a string to q1_dct and as an 
integer to q1_dict.

5.4. Using Softmax to iterate over different learning rates and mdp 
environments

We implemented a Python code that defines a stable_
softmax function to calculate the softmax of an input array x in 
a numerically stable manner. It initialises a list of learning rates 
(0.001–0.9) and empty dictionaries for three environments: env1,
env2, and env3. The code then iterates over the learning rates 
for each environment, processes Q-values, and converts them into 
probability distributions using the stable_softmax function. It 
then samples actions for 67 states, appending the action with the 
highest Q-value to the respective dictionary, and prints the current 
environment and learning rate at each step. Upon completion, it 
prints a done message, ensuring consistent performance across 
different environments and learning rates for further comparative 
analysis.

5.5. Evaluating rewards dynamics using learning rates and MDP 
environments

We implemented a Python code that examines reward changes
in the three MDP environments (env_new1, env_new2, and
env_new3), with learning rates ranging from 0.001 to 0.9. To 
create interactive plots, it imports the plotly.graph_objects
module as go. The code extracts cumulative rewards, episode 
numbers, steps per episode, and average rewards per step from 
episodes 3 to 100 for each environment. We create a new figure 
object fig using Plotly and add three traces, each representing 
an environment with unique colours (green for env_new1, blue 
for env_new2, and red for env_new3). We update the plot layout 
with a centred title, axis labels, a legend title, and a hover mode 
that displays data for all traces at the same x-coordinate. To 
render and display the interactive plot, we call the fig.show()
function, which compares the average rewards per episode for 
the three environments at different learning rates. However, the 
graph for learning rate 0.4 is displayed in Fig.  13.
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Fig. 13. Average rewards vs episodes for different environment using 0.4 
learning rate.

Fig. 14. Calling the get_acc function for accuracy computation.

5.6. Command definitions for state-based actions

We imported the Subprocess module to allow the Python 
script to spawn new processes and manage their input/output/
error pipes and return codes. We initialise and populate an empty 
dictionary, my_dict, with key–value pairs, each representing a
state and each value a list of commands for that state. For ex-
ample, state 0 includes a command to clone a GitHub repository, 
while state 10 has commands for Windows system information 
and the registry. States 15 to 45 have various commands, some 
including special characters and options like --pid and -o.

5.7. Implementing command logic in Python

We implemented a Python function create_command that 
takes three arguments: command_dict, state , and action . A 
dictionary (command_dict) is used to create a command based 
on the given state and action. The function initialises a variable
pid with the value 340 and uses the process ID, pid , in the 
command generation logic. The if state == 1 block checks if 
the state parameter is equal to 1. If so, the code executes the 
next block. If the action parameter is greater than or equal to the 
length of the list of commands associated with the current state 
in command_dict, it is invalid. If the action is out of bounds, 
the code assigns the string action out of list size to the 
command variable. If the action is within bounds, the code starts 
an else block where the actual command generation takes place. 
The function also checks if the state variable is not in the dictio-
nary, assigns the string transitional state , and checks if the 
action variable is greater than the list length.

5.8. Defining the ‘commands timings’ dictionary

We set up a nested dictionary called commands_timings to 
organise the different commands that were run on the Google 
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Collaborative Environment for WannaCry, Cerber, and Cridex 
malware analysis families, along with the times at which they 
were run (shown by variables like ta , tb, etc.). Each malware 
family includes specific forensic commands for analysing as-
pects of system memory dumps, such as process lists (windows.
pslist), registry scans, module analysis, and network statistics. 
Our research relies on these commands and timings to com-
pare the time required by a human forensics expert with the 
Proposed Reinforcement Learning Post-Incident Malware Inves-
tigation Framework.

6. Results and discussion

6.1. The agent decision-making processes

We implemented a Python script that initialises two lists,
ideal_list and pred_list, containing integer values repre-
senting actions for specific states within our reinforcement learn-
ing MDP environment. The ideal_list assigns optimal actions 
for states 0 to 66, while the pred_list contains predicted ac-
tions for the same states. For example, state 0 has an ideal action 
of   0 and a predicted action of 2. Each index in both lists corre-
sponds to a specific state, facilitating the comparison of predicted 
actions against ideal outcomes to measure model performance 
across the three environments using varying learning rates.

6.2. Python function to evaluate predictive model accuracy

To compare the accuracy of predicted actions against ideal 
actions, we implemented a Python function named get_acc . 
Initially, the function sets two variables, true and false , to zero 
to count correct and incorrect predictions, respectively. It iterates 
through the ideal_list and pred_list simultaneously using 
the zip() method, comparing each element; if they match, it 
increments true; otherwise, it increments false . After the it-
eration, the function computes the accuracy by dividing true by 
the total number of comparisons (true + false), formats the 
result to five decimal places, and prints the accuracy. This func-
tion is useful for evaluating prediction accuracy in reinforcement 
learning settings, and upon execution, it shows an accuracy of 
94%.

6.3. get_acc function for accuracy computation

The implemented Python function named get_acc processes 
multiple environments (env1, env2, and env3) represented by 
dictionaries (q1_dict, q2_dict, and q3_dict). We defines x
and y coordinates for three sets of data representing different 
environments: env1, env2, and env3. Each environment’s data 
is stored in respective lists, such as env1_x and env1_y, env2_x
and env2_y, and env3_x and env3_y. The code then creates 
three scatter plot traces using go.Scatter, specifying the data 
points, mode (lines and markers), names, and marker colours for 
each environment. A layout is defined for the plot, including a 
title, x-axis and y-axis labels, and hover mode configuration. A 
figure object is created by combining the traces and the layout, 
and the plot is displayed using fig.show(). This code effectively 
visualises the accuracy computation for different learning rates 
across three MDP environments, as shown in Fig.  14. Consequently, 
it demonstrates that env2, with a learning rate of 0.4, is the best 
performing environment.
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6.4. State transitions in our RL post-incident malware investigation 
model

We implemented a Python function to simulate state tran-
sitions in the BlankEnvironment_with_Rewards() environ-
ment, using a learning rate of 0.4 and driven by actions and land-
ing states. Starting with the initial state i set to 0, the loop runs 20
iterations, printing the current state (i) and the associated action 
(ideal_list_new[i]). To determine the next state, we call the 
function return_action_state with i, ideal_list_new[i], 
and landing_list[i]. If i reaches 66, the loop breaks. Finally, 
the code prints the final state (i) and its corresponding action 
(ideal_list_new[i]) after completing the loop or breaking out 
due to reaching state 66. This code structure allows for simu-
lating and tracking state transitions based on predefined actions 
and conditions, providing insight into how the agent navigates 
through our proposed RL Post-Incident Malware Investigation 
Model.

6.5. Plotting the proposed model command execution timings

As a result of keeping track of state changes using our pro-
posed reinforcement learning post-incident malware investiga-
tion model, we obtain a trajectory based on actions and landing 
states, which control a series of state changes in the environment. 
We utilised the Google Collaborative Environment’s execution 
timings to plot the proposed model’s command execution tim-
ings. To store keys and values related to states and action tra-
jectories, we created a new command_timings_dict. We then 
defined new Python code to create a multi-plot figure using Plotly 
to analyse the execution time of different malware commands 
(WannaCry, Cerber, and Cridex). This code initialises a figure with 
three vertical subplots, each with a title and increased vertical 
spacing. We add line plots for WannaCry, Cerber, and Cridex to 
the first, second, and third subplots, respectively, ensuring each 
has distinct colours and markers. We update the figure’s layout to 
set its dimensions and centre the title. We customise the X-axis 
labels for each subplot and label the y-axes with ’Time (seconds)’. 
The resulting graph is displayed using fig.show(), as illustrated 
in Fig.  15 below.

6.6. Plotting collab and PowerShell environment command execution 
timings

We created a Python script to visualise the execution timings 
of various commands executed on Google Collaborative environ-
ments and Fast Windows Machine. The script examined Wan-
naCry, Cerber, and Cridex to design the malware work flow dia-
gram. The script used the Plotly library to create a multi-subplot 
figure, with scatter plots for each type. The graph provided a clear 
comparison of execution times for the three malware types. Fig. 
16–17 displays a graph that provides a clear visual comparison 
of the execution times for various commands executed on the 
three malware types using the Google Colab environments and 
Fast Windows Machine in the PowerShell.

6.7. Interactive analysis of malware execution times

We implemented a Python code using Plotly for interactive 
plotting, which allows us to visualise the execution times of 
various commands performed by the agent when analysing dif-
ferent malware, specifically WannaCry, Cerber, and Cridex. We 
also used the same code to sample malware analysis execution 
times for commands executed in both the Google Collaborative 
Environment and a Fast Windows Machine in the PowerShell 
Environment. As a result, we initialise a Plotly figure and add 
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three separate bar plots for each malware type, with each bar rep-
resenting the command’s execution time. The bars for WannaCry 
are blue, for Cerber they are red, and for Cridex they are green. 
The plot’s layout is customised to include a horizontally centred 
title, labels for the x-axis (Commands Executed) and y-axis (Time 
(seconds)), and grouped bars. Using fig.show(), we presented a 
visual comparison of command execution times across different 
malware types and environments, as illustrated in Figs.  18–20.

6.8. Visualising execution times across multiple machines

We implemented a Python script that uses Plotly to display 
the total execution times for malware analysis across various 
machines. We iterate over the different machines and add up the 
execution times for each type of malware analysed (WannaCry, 
Cerber, and Cridex). We present the data as scatter plots with 
lines and markers, with each machine represented by a corre-
spondingly designated trace. The layout contains a centred title 
and marked axes to help with data understanding. As a result, the 
chart provides a comparison view of different machines’ malware 
analysis execution timings, as shown in Fig.  21. Our proposed 
RL Post-Incident Malware Investigation Framework demonstrates 
superior performance compared to the Google Collab and Win-
dows PowerShell environments.

6.9. Comparison with traditional malware detection and recent works

The experimental results achieved in our research clearly 
demonstrate the advantages of implementing reinforcement
learning (RL) in post-incident malware forensics. To highlight 
the effectiveness of our approach, it is crucial to compare these 
results with traditional malware detection techniques and more 
recent advancements in the field. Traditional forensic methods 
require significant human expertise and time, especially when 
dealing with complex or obfuscated malware. In contrast, our RL 
model automates much of the investigation process, demonstrat-
ing superior robustness in identifying malware artefacts from live 
memory images with higher precision than existing automated 
systems. As shown in our results, the RL agent significantly out-
performed human experts in terms of analysis time while main-
taining high reliability, making it a valuable tool for post-incident 
malware forensic investigations.

According to Djenna et al. [24], traditional malware detec-
tion methods, such as signature-based and heuristic-based ap-
proaches, have been foundational in cybersecurity. Signature-
based detection identifies malware by comparing files against a 
database of known malware signatures, which works well for 
detecting previously encountered threats. However, this method 
encounters difficulties when dealing with new or polymorphic 
malware, which can modify its code to evade detection. Heuristic-
based methods aim to overcome this limitation by examining 
behaviours or patterns that indicate malware. Despite being more 
adaptive, heuristic methods are susceptible to high false-positive 
rates and still struggle with advanced, evasive malware that 
mimics normal system behaviour [25].

Our experimental results, which used Q-learning in a rein-
forcement learning framework, significantly outperformed these 
traditional approaches. In our research, we achieved a detec-
tion accuracy of 94%, which is notably higher than what tradi-
tional methods typically reach, especially when identifying un-
known malware strains. Our RL-based approach handles new and 
evolving malware effectively by continually learning and adapt-
ing within a Markov Decision Process (MDP) environment. This 
dynamic adaptability addresses the critical limitation of static 
signature-based and heuristic systems. The RL agent’s ability to 
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Fig. 15. Malware analysis execution time for different commands executed using the agent (RL model).
respond to a broader range of malware behaviours and features 
bridges gaps that traditional methods often fail to address.

Recent advancements in malware detection, particularly those 
involving machine learning (ML) and deep learning (DL) tech-
niques, have sought to improve upon traditional methods [26]. 
Machine learning models, such as those employing support vector 
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machines (SVMs) and neural networks, have made significant 
strides by enabling more flexible classification of malware based 
on features extracted from files or behaviours [27]. However, 
while machine learning approaches can better identify previously 
unseen malware than signature-based methods, they are often 
resource-intensive, requiring vast amounts of labelled data to 
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Fig. 16. Malware analysis execution time for different commands executed using 
Google Collab environment.

train effectively [2]. Deep learning models, such as Convolutional 
Neural Networks (CNNs), have similarly demonstrated improve-
ments in detecting malware by analysing patterns, but they tend 
to require large datasets and extensive computational power, 
making real-time detection challenging [28].
16
Fig. 17. Malware analysis execution time for different commands executed using 
the PowerShell environment.

Our research builds upon these recent advancements by inte-
grating reinforcement learning, which not only allows for learn-
ing from limited data but also enhances adaptability in real-time 
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Fig. 18. Malware analysis execution time for different commands executed using 
the agent (RL model).

Fig. 19. Malware analysis execution time for different commands executed using 
Google Collab environment.

malware forensics. For instance, studies like Fang et al. [10] 
DQEAF model, which employs deep Q-networks to evade an-
tivirus engines, emphasise the need for more dynamic approaches 
to deal with malware that evolves to avoid detection. In compari-
son, our Q-learning-based approach provides more efficient mal-
ware detection by continuously learning from its environment 
and refining its actions based on feedback. Our experimental 
results reflect this capability, as our model outperforms both 
traditional methods and machine learning models that rely on 
static data and predefined features.

Moreover, recent works, such as those by Quertier et al. [1] 
and Wu et al. [6] have incorporated reinforcement learning to 
enhance malware detection. These studies demonstrated the ad-
vantages of RL over traditional machine learning by showing 
17
Fig. 20. Malware analysis execution time for different commands executed using 
PowerShell environment.

Fig. 21. Total time spent on malware analysis using Collab, PowerShell, and RL 
agent.

how it can improve malware identification through trial-and-
error learning processes. However, many of these recent works 
focus on specific use cases, such as static file analysis or narrowly 
defined malware behaviours. In contrast, our research extends 
the scope of RL by applying it to post-incident forensic analysis, 
incorporating both static and behavioural data. This broader ap-
plication results in a more comprehensive and accurate detection 
framework, as demonstrated by our model’s ability to reduce 
forensic investigation times while maintaining high detection 
accuracy.

Finally, the experimental results of our research showcase 
the superior effectiveness of the proposed reinforcement learn-
ing framework in comparison to both traditional malware de-
tection methods and recent advancements in machine learning 
and deep learning. As a result of addressing the limitations of 
static, signature-based, and resource-intensive machine learning 
models, our RL-based framework adapts to evolving malware 
threats dynamically and integrates both static and behavioural 
analyses. This comprehensive approach makes our method a ro-
bust and efficient solution for post-incident malware forensics 
investigations.
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7. Research findings and recommendations

The paper proposes a post-incident malware investigation 
framework built upon a novel MDP model that leverages ad-
vanced reinforcement learning (RL). The model significantly
speeds up the investigation process, surpassing human forensic 
experts in both the speed and detection of known and un-
known malware threats. It integrates various malware analysis 
techniques and includes data collection methods like live mem-
ory dumps from Windows systems. A custom malware dataset 
and comprehensive malware workflow diagram were created to 
streamline the forensic process.

The core of the approach is a unified Markov Decision Process 
(MDP) model that combines multiple MDP environments into one 
cohesive framework. Three distinct environments were created 
with each employing a unique reward structure to guide the 
RL agent in developing optimal malware analysis strategies. The 
RL model operates within these structured MDP environments, 
allowing the agent to navigate the malware analysis workflow. 
Each state and action corresponds to a specific stage in the 
malware analysis process, enabling the agent to learn, estimate, 
and refine the expected value of actions. This dynamic learning 
is driven by the Q-learning algorithm, which balances the explo-
ration of unknown states with the exploitation of known poli-
cies, optimising decision-making. A Q-table manages state–action 
pairs, while temporal-difference learning iteratively updates the 
agent’s knowledge base, improving malware identification accu-
racy over time.  Extensive experimental evaluation showed that 
the learning rate is key to convergence, with simpler environ-
ments benefiting from higher rates and more complex environ-
ments requiring lower rates for stability. In realistic post-incident 
scenarios using malware such as WannaCry, Cerber, and Cridex, 
the model demonstrated strong classification accuracy, adapt-
ability to novel threats, and computational efficiency, indicating 
robustness and scalability. Iterative refinement of the MDP envi-
ronments, guided by experimental feedback and hyperparameter 
tuning, was crucial to optimising the RL agent’s performance. 
Fine-tuning learning rates and reward mechanisms across di-
verse scenarios greatly enhanced the model’s effectiveness. The 
RL-based approach for malware forensics offers a promising al-
ternative to traditional methods, with the potential for real-time 
adaptability to evolving malware threats. Future research should 
focus on optimising reward functions, expanding state-space de-
signs, and integrating advanced feature extraction techniques 
like behavioural analysis, temporal pattern recognition, hybrid 
static-dynamic feature analysis, and adversarial training to fur-
ther enhance the framework’s applicability in dynamic forensic 
environments.
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