
High-Confidence Computing 5 (2025) 100299

Contents lists available at ScienceDirect

High-Confidence Computing

journal homepage: www.sciencedirect.com/journal/high-confidence-computing

Research article

Reinforcement learning for an efficient and effective malware

investigation during cyber incident response
Dipo Dunsin a,∗, Mohamed Chahine Ghanem a,b, Karim Ouazzane a, Vassil Vassilev a

a Cyber Security Research Centre, London Metropolitan University, London N7 8DB, UK
b Department of Computer Science, University of Liverpool, Liverpool L69 7ZX, UK

a r t i c l e i n f o

Article history:
Received 3 September 2024
Revised 15 October 2024
Accepted 11 November 2024
Available online 17 January 2025
Keywords:
Cyber incident
Digital forensics
Artificial intelligence
Reinforcement learning
Markov Chain
MDP
DFIR
Malware
Incident response

 a b s t r a c t

The ever-escalating prevalence of malware is a serious cybersecurity threat, often requiring advanced
post-incident forensic investigation techniques. This paper proposes a framework to enhance malware
forensics by leveraging reinforcement learning (RL). The approach combines heuristic and signature-
based methods, supported by RL through a unified MDP model, which breaks down malware analysis
into distinct states and actions. This optimisation enhances the identification and classification of
malware variants. The framework employs Q-learning and other techniques to boost the speed and
accuracy of detecting new and unknown malware, outperforming traditional methods. We tested
the experimental framework across multiple virtual environments infected with various malware
types. The RL agent collected forensic evidence and improved its performance through Q-tables and
temporal difference learning. The epsilon-greedy exploration strategy, in conjunction with Q-learning
updates, effectively facilitated transitions. The learning rate depended on the complexity of the MDP
environment: higher in simpler ones for quicker convergence and lower in more complex ones for
stability. This RL-enhanced model significantly reduced the time required for post-incident malware
investigations, achieving a high accuracy rate of 94% in identifying malware. These results indicate
RL’s potential to revolutionise post-incident forensics investigations in cybersecurity. Future work will
incorporate more advanced RL algorithms and large language models (LLMs) to further enhance the
effectiveness of malware forensic analysis.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Malware, also known as malicious software, is a type of soft-
ware that infiltrates and compromises data and information, per-
forming harmful and unauthorised functions. Its presence can
lead to severe consequences, such as data theft, information de-
struction, extortion, and the crippling of organisational systems.
In today’s digital landscape, investigating malware has become
an urgent and paramount concern due to its potential for signif-
icant damage and loss. Recent studies reveal a startling reality:
malicious software is proliferating at an alarming rate, with some
strains employing deceptive tactics to evade cyber forensics in-
vestigations. According to Quertier et al. [1], AV-TEST estimates
the daily discovery of approximately 450,000 new malware in-
stances, 93 percent of which are Windows-based malicious files,
primarily in the form of portable executable (PE) files. This un-
derscores the critical need for swift malware investigations when
an attack occurs to prevent widespread damage and mitigate the
risk of malware evolving into more sophisticated and destructive

∗ Corresponding author.
E-mail address: d.dunsin@londonmey.ac.uk (D. Dunsin).
https://doi.org/10.1016/j.hcc.2025.100299
2667-2952/© 2025 The Author(s). Published by Elsevier B.V. on behalf of Shandon
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
forms. Quertier et al. [1] also describe various malware inves-
tigation approaches, demonstrate the use of machine learning
in malware analysis, and highlight how reinforcement learning
improves malware models’ performance and accuracy.

The heuristic-based malware technique is a widely employed
approach that analyses various system files, categorising them
as normal, unusual, or potentially harmful. Aslan and Samet [2],
emphasise that while signature-based methods struggle with
new malware, a combination of heuristic and signature-based
approaches offers a reliable and expeditious means of identifying
malicious software. In contrast, deep learning-based approaches
exhibit remarkable capabilities in identifying both known and
previously unseen malicious software, surpassing the perfor-
mance of behaviour-based and cloud-based techniques. Malware
analysis and classification heavily rely on machine learning al-
gorithms trained to distinguish between malware and benign
files. Machine learning-based approaches, according to Akhtar [3],
face several challenges, including the frequent return of false
positives and the ability of new malware with polymorphic traits
to alter their file signatures and evade identification. To overcome
these challenges, machine learning techniques train algorithms to
identify and classify various forms of malware based on patterns
g University. This is an open access article under the CC BY-NC-ND license

https://doi.org/10.1016/j.hcc.2025.100299
https://www.sciencedirect.com/journal/high-confidence-computing
https://www.sciencedirect.com/journal/high-confidence-computing
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hcc.2025.100299&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:d.dunsin@londonmey.ac.uk
https://doi.org/10.1016/j.hcc.2025.100299
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
and features found in extensive databases. These machine learn-
ing approaches improve computer systems, post-incident foren-
sics, and network security by equipping algorithms to effectively
identify and classify different types of malware [4].

While many malware instances exhibit distinct features and
static structures that differentiate them from benign software,
some possess characteristics that make them challenging to
identify accurately [5]. Even with advances in machine learn-
ing, complex, evolving malware can evade these models and
remain hidden, particularly when it is novel or highly adapt-
able. Reinforcement learning becomes a valuable tool in these
scenarios, as it enables the creation of new malware samples
capable of evading machine learning identification. These new
samples retrain the malware models to identify more unknown
threats [6]. Reinforcement learning distinguishes itself from con-
ventional machine learning models by embracing uncertainty and
extensive trial and error as opposed to predefined mappings [7].
This quality makes reinforcement learning particularly effective
in situations where specific answers are elusive, such as in the
analysis of new and unknown malware threats [8]. During the im-
plementation of reinforcement learning algorithms, exploration
plays a pivotal role. Through exploration, the model actively
explores various features, expanding the breadth of knowledge
about different malware types. Subsequently, exploitation comes
into play, enhancing the model’s performance by selecting the
most beneficial attributes [9].

In reinforcement learning, the reward techniques set it apart
from other machine learning approaches. Reinforcement learning
provides the agent with either negative or positive evaluation
feedback, which may not necessarily indicate the correct actions
in the environment. Generally, we depict the agent as capable of
choosing a specific set of features that, when applied, enhance
the model’s accuracy. The ever-changing environment, shaped by
the agent’s actions, facilitates the collection of relevant features
for classification. According to Fang et al. [10], ‘the accuracy of
the classifier serves as a reward’, with the DQFSA architecture
being a noteworthy example that employs reinforcement learning
for feature selection. Reinforcement learning typically involves
an agent that interacts with the malware analysis environment,
introducing modifications to files to relate them to expected
performance outcomes. According to Quertier et al. [1] recent
studies such as REINFORCE and Deep Q-Network (DQN) have
used reinforcement learning to improve malware investigations
by leveraging past knowledge. This is particularly advantageous,
as traditional machine learning models often lack the ability to
incorporate background knowledge into their malware analysis.
Reinforcement algorithms can reduce trial-and-error efforts and
rely on past experiences to analyse and classify malware more
efficiently using verified knowledge [11] & [7].

1.1. Research aim

This research seeks to enhance the accuracy and efficiency
of malware forensics investigations by leveraging reinforcement
learning (RL) techniques. Specifically, it aims to develop and
refine models that can improve the analysis and identification
of malware during post-incident investigations. The goal is to
reduce investigation times and contribute to more reliable cy-
bersecurity measures by addressing gaps in current forensics
processes, particularly the limitations of heuristic and signature-
based methods. Ultimately, this work strives to mitigate instances
of forensic errors, such as the ‘miscarriage of justice’, and help
maintain integrity in the UK’s justice system.
2

1.2. Research objectives

The objectives of this research are fourfold. First, it aims to
explore Reinforcement Learning (RL) methodologies by exam-
ining RL-based approaches for automating key tasks typically
performed by forensic experts, particularly in identifying mal-
ware artefacts following a security breach. Next, the research
seeks to develop a sophisticated RL model that not only clas-
sifies malware accurately but also adapts to emerging malware
variants, thereby improving the efficiency of post-incident foren-
sic analysis. Additionally, we intend to create a multi-approach
malware forensics framework by integrating RL with heuristic
and signature-based methods, creating a comprehensive tool for
enhancing detection and analysis during post-incident investiga-
tions. Finally, we will validate the framework using real-world
empirical data to evaluate its effectiveness against traditional
malware forensics techniques.

1.3. Research contributions

This study makes a significant contribution to the fields of
cybersecurity and digital forensics through several key advance-
ments. First, we developed a comprehensive malware foren-
sics approach that combines static analysis, behavioural analysis,
and machine learning techniques to significantly enhance the
detection and investigation of malware in memory dumps. In
addition, we created a unified Markov Decision Process (MDP)
model, which combines multiple MDP environments to facilitate
a more structured examination of malware artefacts. Further-
more, we advanced the state of reinforcement learning (RL) in
malware forensics by implementing a framework that surpasses
both human and automated methods, resulting in faster and more
accurate post-incident investigations while consuming fewer re-
sources. Finally, we developed a novel method that leverages the
AWK module and Volatility 3 to retrieve and identify crucial in-
formation from memory dumps, enabling a deeper understanding
of malicious activities. These contributions collectively push the
boundaries of malware investigation techniques.

1.4. Comparison with existing literature reviews

In our research, we implemented Q-learning within a de-
fined set of action and state spaces to train reinforcement learn-
ing agents for investigating malware in post-incident malware
forensics. We improve the agent’s performance by continuously
providing it with feedback on its performance in the MDP envi-
ronment. Similarly, Binxiang, Gang, and Ruoying [12] leveraged
deep reinforcement learning to overcome the limitations of tra-
ditional signature-based methods, using Q-learning to adapt to
evolving malware threats, demonstrating the superiority of RL
over static approaches. In a similar approach, Fang et al. [10]
extended this by proposing the DQEAF model, which uses deep
Q-networks to evade anti-malware engines, emphasising the cre-
ation of evasive malware that bypasses traditional malware anal-
ysis methods. The Markov Decision Process (MDP) model helped
us organise our research even more. It helped us compile a list
of the states and actions that make up the proposed reinforce-
ment learning post-incident malware investigation framework.
For instance, it assisted us in acquiring live memory images
and identifying the operating systems in use. In a related study,
Quertier et al. [1], used the DQN and REINFORCE algorithms in an
MDP framework to test machine learning-based malware analysis
engines and find actions that could turn malware into undetected
files. In defining our action and state space, we identified 67
unique states and up to 10 actions within our RL model, facili-
tating a thorough malware forensics investigation. This detailed

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Table 1
Summary of related works.
 Reference Contribution Benefits Drawbacks
 Ebrahimi et al. [13] Proposed an AMG detector against

black-box attacks
RL-based models improve malware
analysis against evasion tactics.

Discrete actions may not suit all
detectors, limiting universality.

 Birman et al. [16] Introduces real-time malware analysis using
deep RL.

Enhances computer security with
effective malware analysis.

Requires a large amount of training data.

 Fang et al. [10] Develops DQFSA for automated malware
classification with deep Q-learning.

DQFSA streamlines feature selection
using RL, saving time and effort.

Lacks details on restrictions imposed on
the AI agent in the action space.

 Anderson et al. [17] Uses RL innovatively to evade PE-based
malware models.

Strengthens ML-based malware analysis
against adversarial threats.

Focuses on static PE models, ignoring
dynamic and behavioural analysis.

 Wu et al. [6] Trains RL agents for optimal malware
investigation models.

Improves the accuracy of ML-based
malware investigations.

The need for extensive training data
may hinder practical use.

 Song et al. [18] Proposes Mab-Malware, an RL framework
for evading static classifiers.

Aids in examining evasive malware
samples.

Potential misuse by malicious actors
complicates analysis.

 Rakhsha et al. [19] Presents a practical environment poisoning
algorithm for RL.

Helps develop better defenses against
poisoning attacks.

Does not thoroughly address all aspects
of poisoning attacks.

mapping is similar to the work of Ebrahimi et al. [13], who used
action and state spaces in their AMG-VAC model to improve
static malware analysis in black-box attack scenarios. Their study
showed the pros and cons of using separate action spaces for
various malware identification needs.

Additionally, we integrated various machine learning tech-
niques, including static and behavioural analysis, to enhance our
proposed framework’s robustness. This integration was adapted
from Wu et al. works [6,14], which emphasised the enhancement
of malware analysis models using reinforcement learning by in-
corporating past knowledge into RL algorithms to improve mal-
ware identification and classification. In parallel, Piplai et al. [7]
also explored the use of knowledge graphs to inform RL algo-
rithms for malware identification, highlighting the benefits of
incorporating historical data into machine learning processes. In
addition, we evaluated the performance of the RL model in our
research methodology based on its ability to reduce the time
required for post-incident malware forensic investigations and its
accuracy in identifying malware. We measure this by conducting
extensive experimental testing in simulated real-world scenarios.
Similarly, in the broader literature, performance metrics often
include the accuracy of malware identification and the time ef-
ficiency of the forensic process. For example, a study by Raff
et al. [15] evaluates their RL-based malware identification system
on similar parameters, emphasising the efficiency of the RL agent
in real-time scenarios. While the related work provides a solid
foundation in malware analysis and MDP modelling, our research
methodology builds upon this foundation by offering practical,
detailed methodologies and demonstrating their application in
real-world scenarios. This progression from theoretical concepts
to practical implementation marks a significant contribution to
the field of cybersecurity and port-incident malware forensics
investigation (see Table 1).

1.5. Paper outline

The remainder of this paper is organised as follows: The ab-
stract summarises the study’s primary focus on leveraging RL to
expedite and improve post-incident forensic processes. The intro-
duction sets the stage by emphasising the critical need for rapid
and efficient malware investigations in light of the increasing
prevalence of cyber threats, as mentioned in Section 1. Follow-
ing this, the literature review in Section 2 presents a thorough
examination of existing malware analysis methods, underscor-
ing the limitations of traditional approaches and highlighting
the promise of RL. Furthermore, Section 3 and Section 4 de-
tail the research methodology development and implementation
of the RL-based model, describing the design of the Markov
decision-process (MDP) environments, the integration of rein-
forcement learning techniques, and the testing and evaluation of
3

the RL agent in Section 5. Furthermore, the discussion and results
in Section 6 show and explain the experimental results, demon-
strating that the RL model works faster and more accurately than
traditional methods and human forensics experts.

Moreover, in Section 7, we encapsulate the key findings, reit-
erating the study’s significant contributions to cybersecurity and
malware forensics. It emphasises the potential of RL to revolu-
tionise post-incident investigations, providing faster and more
accurate results. Additionally, the research offers a comparative
analysis, highlighting the advantages of RL over heuristic and
signature-based methods. Notably, the hybrid approach integrat-
ing heuristic and RL methods shows promising results. Finally,
the paper suggests some artificial intelligence techniques for
future research, such as exploring advanced RL techniques and
refining hybrid models, while emphasising the need for contin-
uous learning and adaptation in RL models. The comprehensive
references section supports the study, citing relevant literature
on RL, malware analysis, and cybersecurity, thus providing a solid
foundation for the research.

2. Literature review and background

2.1. Reinforcement learning for malware analysis

Quertier et al. [1] research highlights the challenges of ma-
chine learning classifiers in identifying potential malware, espe-
cially when there is limited insight into the malware output. The
study suggests that to test how well EMBER and MalConv ma-
chine learning analysis work on commercial antivirus software,
one should use reinforcement learning with the REINFORCE and
DQN algorithms. The study found that REINFORCE has a higher
evasion rate and better performance than DQN, especially when
tested against a commercial antivirus. However, a more compre-
hensive approach could have included training these models on
a broader array of diverse models.

2.2. Deep RL for malware analysis

In 2019, Binxiang, Gang, and Ruoying [12], introduced a deep
reinforcement learning-based technique for malware identifica-
tion, aiming to address the vulnerabilities of traditional signature-
based and machine learning-based approaches. The research
demonstrated that deep reinforcement learning outperformed
traditional methods based on static signatures and demonstrated
the ability to quickly adapt to the ever-changing landscape of
malware. However, the study had limitations, including a lack of
comprehensive details about the experimental design, datasets
used, and evaluation metrics. Expanding the training dataset and
incorporating domain-specific knowledge could improve mal-
ware analysis. Notably, expanding the training dataset’s size

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 1. Malware forensics RL environment.

and diversity, as suggested by Szegedy et al. [20], could signif-
icantly enhance the effectiveness of the malware investigation.
Researchers like Silver et al. [21], emphasise the value of in-
corporating domain-specific knowledge into deep reinforcement
learning systems. While the authors assert their method’s supe-
riority, more comprehensive comparative analyses and statistical
evidence could have provided more support for their claims.

2.3. RL-based attacks on static malware detectors

Ebrahimi et al. research, [13], aims to improve the effective-
ness of static malware detectors in countering black-box cyberat-
tacks. They propose using reinforcement learning (RL) to optimise
the decision-making process of static malware detectors in the
presence of black-box attacks. They create the Variational Actor-
Critic for Discrete Adversarial Malware Generation (AMG-VAC)
using discrete operations and an approximate sampling operator.
They use RL to optimise the decision-making process, adjusting
the neural network’s weights based on the reward signal. In terms
of accuracy, the RL-based AMG detector outperforms the original
detector, particularly in the presence of black-box attacks. Fur-
thermore, their findings show that the RL-based AMG detector
is significantly more accurate than the original detector when
it comes to black-box attacks. However, RL in discrete action
spaces may not align with all types of malware detectors, and its
effectiveness depends on factors like the training dataset quality
and the neural network’s architecture.

2.4. Malware analysis using intelligent feature selection

Fang et al. [10] developed a specialised architectural solution
called DQFSA to address the shortcomings of traditional malware
classification methods. The architecture uses deep Q-learning to
identify crucial features, reducing human intervention and al-
lowing data selection and analysis across various cases and data
volumes. The methodology incorporates multi-view features, fo-
cusing on high classification accuracy during the validation phase.
The key difference lies in exposing an AI agent to sample features
with minimal human intervention. Experiments validated the
DQFSA architecture by comparing its performance against various
classifiers and related works. However, the DQFSA framework
imposes restrictions on the AI agent within the action space that
remains unexplored.
4

2.5. Modern incident response enhanced by AI

Dunsin et al. [22] present a study on the application of artificial
intelligence (AI) and machine learning (ML) in digital forensics,
focusing on enhancing malware investigation through innovative
methodologies. The paper highlights the integration of AI and
ML techniques to improve investigative precision and efficacy in
digital forensics, leveraging advanced computational models to
automate the investigation and analysis of cyber threats. Another
focus is memory forensics, which focuses on machine learning al-
gorithms to analyse memory dumps and malware, enhancing the
reliability of forensic investigations by extracting and analysing
multiple artefacts.

The study highlights the advantages of AI and ML in digital
forensics, such as data mining techniques, reinforcement learn-
ing, and Markov decision process (MDP) for automated malware
analysis. However, the study acknowledges challenges such as
data validity, appropriate tools for memory dump retrieval, and
adhering to ethical and legal standards. The study also proposes
reinforcement learning, modelled as a Markov decision process
(MDP), as a method for investigating malware in digital forensics.
The MDP framework allows for systematic evaluation of different
states and actions, facilitating the development of effective RL
models for malware investigation, as illustrated in Fig. 1.

2.6. ML and knowledge based system for malware analysis

Piplai et al. [7] propose a framework that uses reinforcement
learning and open-source knowledge to enhance malware anal-
ysis. The framework consists of two components: reinforcement
learning for malware analysis and knowledge from open sources
detailing past cyberattacks. The research experiments create 99
distinct processes during data collection, enabling the model to
identify new malware. In similar research, Gallant [23] conducted
a malware investigation experiment in which the researchers
trained and employed multiple machine learning algorithms, in-
cluding Perceptrons, and rigorously tested their performance.
However, Piplai et al. [7] leave unspecified aspects, such as de-
termining which prior knowledge is relevant for new malware
analysis and whether prior knowledge might introduce biases
from previous cases. Despite these concerns, the framework’s
incorporation of prior knowledge remains valuable, guiding new
models with increased efficiency and accuracy.

2.7. RL for malware investigations

Reinforcement learning in malware forensics investigations
involves an agent that seeks to optimise cumulative rewards by
effectively managing the trade-off between exploration and ex-
ploitation. Our research’s primary focus is on using reinforcement
learning techniques to automate the process of conducting post-
incident malware forensics investigations following a security
incident. The agent performs actions within the environment,
leading to changes in its state. The objective is to gradually
enhance the agent’s performance, enabling it to precisely identify
portable executables as either malicious or benign. In the context
of the proposed post-incident malware forensics investigations,
the reinforcement learning agent begins at state zero (0), takes
guided actions, and receives rewards or penalties. With each
action and reward, it enhances its strategy through iterative
learning until it attains an optimal approach (see Table 2).

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 2. Experimental setup and dataset generation.
Table 2
Malware names against the operating systems.
 Malware variant Target Windows OS
 1 — WannaCry Windows 7 Professional SP2.
 2 — Cerber Windows 7 All in One AIO (32/64-bit).
 3 — DeriaLock Windows 11 ISO 22H2 - 64 bit.
 4 — LuckyLcoker Windows 8.1 Pro 6.3.9600 - 64 bit
 5 — Dharma Windows 8.1 Pro 6.3.9600 - 32 bit.
 6 — SporaRansomware Windows 10 2022 - 32 bit.
 7 — GandCrab Windows 10 2022 - 64 bit.
 8 — GoldenEye Windows 10-64 bit.
 9 — Locky.AZ WinDev2303Eval.
 10 — InfinityCrypt MSEdge – Windows 10.
 11 — Win32.BlackWorm Windows 7 Professional SP1 v6.1.7601.
 12 — PowerLoader Windows 7 Starter SP1 v6.1.7601.
 13 — W32.MyDoom.A Windows 7 Ultimate SP1 v6.1.7601.

3. Research methodology

3.1. Experimental setup and dataset generation

To implement and validate our proposed reinforcement learn-
ing malware investigation framework, we took a systematic ap-
proach to creating a comprehensive malware dataset using the
London Metropolitan University Digital Forensics Laboratory.
First, we established thirteen virtual machines within an isolated
network to ensure a secure and controlled environment for our
experiments and the eduroam network. This setup was critical to
preventing the spread of unintended malware and maintaining
the integrity of our data collection process. Next, we uploaded
13 different ISO files, each representing various versions of the
Windows operating system. This diverse selection of operating sys-
tems allowed us to test our framework across a broad spectrum
of environments.

Next, we introduced a variety of malware to infect each of
these operating systems. We specifically chose each malware
type to represent different attack vectors and behaviours, pro-
viding a robust challenge for our investigation framework. For
each ISO file installed on the virtual machine, we took an initial
snapshot of the environment and saved the live memory dump.
Following this, we infected the virtual machine with the chosen
malware and took another snapshot. This process resulted in
pairs of snapshots, one uninfected and one infected, for each
operating system. This methodology produced 13 RAM files from
the uninfected environments and another 13 from the infected
5

ones. To analyse these files, we used the Volatility framework, a
powerful tool for memory forensics. We manually examined both
the infected and uninfected RAM files, which, as a result, enabled
us to identify significant changes and behaviours indicative of
malware presence. To ensure replication and verification of our
procedures, we diligently documented each stage of the analysis.
This documentation was critical for maintaining the integrity of
our research, as well as future reference. Finally, based on our
analysis of the 26 files, we created a detailed malware work-
flow diagram. This diagram mapped out the typical processes
and behaviours associated with the malware samples, provid-
ing a visual and analytical aid for understanding how different
malware affects system memory. This workflow diagram is a
crucial component of our proposed reinforcement learning post-
incident malware forensics investigation framework, serving as a
foundational element for training and validating our model. The
visual diagram in Fig. 2 illustrates the steps we took to create
the dataset, outlining each component, from setting up the virtual
machine to creating the malware workflow diagram.

3.2. Malware workflow diagram creation

The research methodology extends from our comprehensive
experimental setup and dataset generation process to the de-
velopment of a detailed malware analysis workflow diagram,
as depicted in Fig. 3. This diagram is integral to our reinforce-
ment learning malware investigation framework, encompassing
various malware analysis techniques, including data collection,
examination, and analysis. Our dataset, comprising live memory
dumps from 13 different versions of Windows operating systems
– both infected and uninfected – provides the foundation for
this workflow. We examined these dumps to detect anomalies,
indicators of compromise, and potential malware artefacts by
using the Volatility framework for memory forensics. The anal-
ysis phase incorporates a diverse array of techniques such as
static analysis, signature-based analysis, behavioural analysis, and
machine learning algorithms. The resulting malware workflow
analysis diagram not only maps out the typical processes and be-
haviours associated with our chosen malware samples, but it also
serves as a crucial tool for improving information security and
post-incident malware forensic investigations. Our structured ap-
proach rigorously trains and validates our reinforcement learning
model, strengthening our malware investigation capabilities.

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
3.3. Markov DecisionProcess (MDP) formulation

The proposed post-incident malware forensics investigation
incorporates the Markov Decision Process (MDP), a mathemati-
cal framework that models decision-making when outcomes are
partially random and partially under a decision-maker’s control.
To achieve this, our MDP consists of the following components:

• States (S): In this case, |S| = 67 states.
• Actions (A): In this case, |A| = 10 actions.
• Transition Function (T): T (s, a, s′) represents the proba-

bility of transitioning from state s to state s′ under action
a.
• Reward Function (R): R(s, a) represents the immediate re-

ward received after performing action a in state s.
• Discount Factor (γ): A factor γ ∈ [0, 1] that discounts

future rewards.

Step 1: Define States and Actions

• Let S = {s0, s1, s2, . . . , s66} where each s represents a unique
state in the malware investigation model process.
• Let A = {a0, a1, a2, . . . , a9} where each a represents a

possible action.

Step 2: Define Transition Function T (s, a, s′)

• The transition function T (s, a, s′) gives the probability of
moving from state s to state s′ when action a is taken.
• Example: If taking action a2 in state s5 has a 0.8 probability

of transitioning to state s10, then T (s5, a2, s10) = 0.8.

Step 3: Define Reward Function R(s, a)

• The reward function R(s, a) provides the immediate reward
received after taking action a in state s.
• Example: If taking action a3 in state s8 gives a reward of 10,

then R(s8, a3) = 10.

Step 4: Define Discount Factor γ

• Choose a discount factor γ (typically between 0.9 and 1) to
weigh future rewards.

3.4. Leveraging reinforcement learning

In the context of our proposed Reinforcement Learning (RL),
the agent learns the optimal policy π∗ by interacting with the
three proposed MDP environments. Specifically, Q-learning, our
chosen algorithm, updates the Q-values based on the Bellman
equation.

3.4.1. Value function and policy
The value function for policy π is given by:

Vπ (s) =
∑
a

π (a | s)
∑
s′

T (s, a, s′)
[
R(s, a)+ γVπ (s′)

]
• Vπ (s): Expected cumulative reward starting from state s and

following policy π .
• π (a | s): Probability of taking action a given state s under

policy π .

The Q-learning update rule is given by:

Q (s, a)← Q (s, a)+ α

[
r + γ max

a′
Q (s′, a′)− Q (s, a)

]

6

Where:

• α is the learning rate.
• r is the reward received after taking action a in state s.
• s′ is the next state resulting from action a.
• maxa′ Q (s′, a′) is the maximum estimated future reward

from state s′.

Using the specifications as a result of the workflow diagram:

• We have 67 states and 10 actions.
• The transition and reward functions would be defined based

on the specific malware identification tasks.

3.4.2. Q-learning update rule

Q (s, a)← Q (s, a)+ α

[
r + γ max

a′
Q (s′, a′)− Q (s, a)

]
Step 1: Initialise Q-Table

• Initialise Q (s, a) for all s ∈ S and a ∈ A to some arbitrary
values (e.g., 0).

Step 2: Choose Learning Rate α and Discount Factor γ

• Example: α = 0.1, γ = 0.9.

Step 3: Implement the Q-Learning Algorithm

• Initialise state s.
• Repeat:

– Select an action a using an exploration–exploitation
strategy (e.g., ϵ-greedy).

– Take action a, observe reward r and next state s′.
– Update Q-Table using the Q-learning update rule:

Q (s, a)← Q (s, a)+ α

[
r + γ max

a′
Q (s′, a′)− Q (s, a)

]
– Update state s← s′.

• Until convergence or a specified number of episodes.

3.5. Setting the parameters for MDPs

The Reinforcement Learning Post-Incident Malware Investiga-
tive Model uses the malware workflow diagram to define param-
eters for action and state spaces. The agent uses live memory
dumps to analyse and identify malware artefacts, with 109 dis-
tinct actions within a defined environment. The state array aligns
with the malware workflow diagram, encompassing 67 unique
states. To achieve this alignment, we follow steps such as in-
stalling WinPmem, obtaining live memory images, understanding
the operating system, extracting process information, listing DLLs,
tracking open handles, collecting network data, figuring out reg-
istry hives, listing keys, duplicating processes into executable
files, and sending them to Known Files Filters Servers.

3.6. The motivation behind implementing Q-learning

The proposed Reinforcement Learning Post-Incident Malware
Investigation Framework uses Q-learning, an off-policy, model-
free algorithm. We use it because it employs a value-based
approach to determine the optimal actions based on the current
state. The algorithm learns the relative value of different states
and actions through experiential knowledge without relying on

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 3. Malware workflow diagram.
explicit transition or reward functions. This approach is suited for
the proposed RL model for analysing malware artefacts. In this
context, ‘Q’ signifies quality, representing the action’s value in
terms of optimising future rewards. On the other hand, model-
based algorithms employ transition and reward functions to
estimate the optimal policy and construct a model, whereas
model-free algorithms acquire knowledge about action outcomes
experientially, without explicit transition or reward functions.
In our proposed implementation, we opt for the value-based
approach, which entails training the value function for the agent
to learn the relative value of different states and take actions
accordingly. Conversely, policy-based methods directly train the
policy to determine the appropriate action for a given state. On
the other hand, in off-policy methods, the algorithm assesses
and improves a policy that is different from the action execution
policy. In contrast, on-policy algorithms evaluate and refine the
same policy employed for action execution.

3.7. Q-learning terminologies

In the following sections, we will implement the proposed Re-
inforcement Learning Post-Incident Malware Investigation Model.
The following terminologies are defined and explained in brief. An
Environment is the space or world in which the agent operates
and takes actions. An Agent is the entity that learns and makes
decisions by interacting with the environment. States (s) signify
the agent’s present location within the environment. An Action
(a) is the set of all possible moves or decisions the agent can
make in the environment. Every action the agent takes results in
either a positive reward or a penalty. Episodes mark the end of
a stage, indicating that the agent cannot perform further actions.
This occurs when the agent either accomplishes its objective or
faces failure.

For each state–action pair, the agent uses a Q-Table to manage
or store Q-values. We use Temporal Differences (TD) to estimate
the expected value by comparing the current state and action
with the previous state and action. The learning rate is a pa-
rameter that determines how much new information overrides
old information. A policy is a strategy or mapping from states to
actions that defines an agent’s behaviours. The Discount Factor
is a parameter that determines the importance of future rewards.
The Bellman Equation is a fundamental equation in Q-Learning
7

that expresses the relationship between the Q-value of a state–
action pair and the Q-values of the subsequent state–action pairs.
The Epsilon-Greedy Strategy is a method for balancing exploration
and exploitation.

3.8. Q-table and Q-function

As previously mentioned, the Q-table is one of the key com-
ponents that facilitate the agent’s decision-making. It guides the
agent in selecting the most favourable action based on expected
rewards within the provided environments. TheQ-learning algo-
rithm updates the values of a Q-table, which essentially functions
as a structured repository encapsulating sets of actions and states.
However, defining the state and action spaces is a crucial pre-
liminary step in effectively setting up the Q-table, a task that
the malware workflow diagram facilitates. Furthermore, the Q-
function plays a central role, using the Bellman equation and
considering the state(s) and action (a) as its input. This equation
significantly streamlines the calculation of both state values and
state–action values.

3.9. Subsections of the Markov Decision Process Model

The proposed subsection of the Markov Decision Process (MDP)
represents a segment of the comprehensive and unified MDP
model. Each subsection of the Markov Decision Process (MDP)
model contains states, actions, rewards, and a transition prob-
ability function. These subsections are crucial components of
the unified MDP that provide an agent with the capabilities of
identifying and isolating suspicious portable executable files for
further investigations. This approach sets a benchmark for pro-
cesses such as recognising process identities, analysing process
DLLs and handles, examining network artefacts, and checking for
evidence of code injection.

• WinPmem Installation: The WinPmem MDP subset repre-
sents the different states and actions involved in the in-
stallation process, including troubleshooting and resetting
if errors or corruption occur during the installation. The
ultimate goal is to reach State 5, indicating a successful
installation of WinPmem. Each action is associated with a
transition between states, either progressing through the

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 4. Live memory acquisition.

Fig. 5. Identifying operating system.

Fig. 6. Windows running process and ID identification.

installation, returning to a previous state for debugging, or
starting over. The MDP helps model and understand the
decision-making process involved in WinPmem installation.
• Acquiring Live Memory Image: Fig. 4 outlines a decision-

making process that involves actions, states, and transitions
to achieve the goal of acquiring a live memory image, with
the possibility of encountering errors and debugging them
along the way. However, we structure it as a Markov deci-
sion process, where the actions taken in each state deter-
mine the state transitions. Additionally, the objective is to
attain a desired state, specifically State 10, where successful
live memory acquisition occurs.
• Identifying the Operating System: In this sequence, the subset

MDP illustrated in Fig. 5 entails the transition between
states and the implementation of actions aimed at identi-
fying the operating systems. States represent the system’s
status, and actions are taken to achieve the goal of iden-
tifying the operating system, including debugging steps to
handle errors and crashes. In state 15, the agent success-
fully identifies the suggested profile name, date, and time
information using the Volatility Image Plugin, indicating
successful operating system identification.
• Identifying Process Information: Fig. 6 illustrates the various

states and actions available in MDP for retrieving process

8

Fig. 7. AWK module features extractions.

information. This includes using different plugin functions,
debugging to fix problems, and being able to choose from
different ways to collect data about the process.
• AWK Module Features Extractions and Print List of Loaded

DLLS: The agent starts with the identified process informa-
tion, executes an AWK module to extract features related
to suspicious portables, and finally reaches a state where
these feature extractions are complete and stored in an
output file, as shown in Fig. 7. The next step represents a
Markov decision process (MDP) for extracting information
about the loaded DLLs by a specific process. The process
includes executing the DLLLIST plugin, debugging potential
issues, and providing the ability to reset and repeat the
analysis if necessary.

3.10. The Unified Markov Decision Process

The Unified Markov Decision Process (MDP), as depicted in Fig.
8, consolidates all the subsections of MDPs into a singular process,
providing a comprehensive perspective. This synthesis allows the
agent to effectively navigate the environment and make informed
decisions regarding malware investigation.

3.11. The proposed RL post-incident malware investigation frame-
work

The Reinforcement Learning Post-Incident Malware Investi-
gation Framework comprises six fundamental components, as
illustrated in Fig. 9: data collection, workflow diagram mapping,
MDP model implementation, environmental dependencies, MDP
solver, and continuous learning and adaptation. Data collection
involves acquiring live memory dumps from Windows operat-
ing systems, whereas data examination focuses on analysing the
collected data to identify anomalies, compromise indicators, and
potential malware artefacts. The workflow diagram outlines a
comprehensive approach to identifying malware infections us-
ing static analysis, signature-based analysis, behavioural analysis,
and machine learning algorithms. However, we use the AWK
module to extract features from the identified processes. On the
other hand, listing DLLs is an essential aspect of this workflow
because it tracks loaded DLLs for each process. Additionally, mon-
itoring open handles is crucial for keeping track of the open
handles associated with each process. Another important focus
is collecting network data to ensure the acquisition of all perti-
nent network-related information. Registry hive analysis involves
identifying the registry hives and listing their keys. We duplicate
the processes into executable files and check them against known
malware databases to determine whether they are malicious or
benign. Additionally, we duplicate the addressable memory to
conduct a grep search using specific keywords.

The state spaces are designed to align with the malware work-
flow diagram, encompassing 67 unique states. Based on this
workflow, the actions are defined, ranging from three to ten,

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 8. Overall Markov Decision Process (MDP) model.
Fig. 9. The proposed RL post-incident malware investigation framework.

exposing the agent to 109 distinct actions within a defined en-
vironment. Formulating the subsections, the unified Markov De-
cision Process (MDP) models, and the proposed RL Post-Incident
Malware Investigation Model leads to the creation of the MDP
solver. We divide the setup environment dependencies into three
sections: creating dependencies and gym environments, import-
ing required libraries, and implementing the training data for
continuous learning and adaptation.

3.12. The proposed RL post-incident malware investigation model

In the proposed Reinforcement Learning Post-Incident Mal-
ware Investigation Model, the ‘Agent ’ is the decision-maker which
interacts with the environment. The ‘Environment ’ is the live
memory dump in which the agent interacts. It provides the agent
9

with state and reward data. The ‘State’ (s) is a representation
of the agent’s current situation in the environment. The ‘Action’
(a) is the set of all possible moves the agent can take. The
environment provides feedback, known as the ‘Reward’ (r), to
evaluate the agent’s actions. The agent uses the ‘Policy’ as a
strategy to decide the next action based on the current state. The
‘Value Function’ (V (s)) is a function that estimates the expected
cumulative reward from a given state following a particular
policy. The ‘Q-Function’ (Q (s, a)) is a function that estimates the
expected cumulative reward from taking a particular action in
a given state, following a particular policy. The agent observes
the current state of the environment. The agent selects an action
based on this state and its policies. The environment transitions to
a new state and provides a reward to the agent. The agent updates
its policy and value functions based on the reward received and

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
the new state. This iterative process continues until the agent
learns an optimal policy that maximises the cumulative reward
over time.

3.13. Algorithm 1 - Implementation of the Q-learning algorithm

Algorithm 1 implements the Q-learning algorithm, a rein-
forcement learning technique, to train an agent to make optimal
decisions in an environment. The code initially initialises a Q-
table with zeros, symbolising the agent’s understanding of the
environment, where rows represent states and columns represent
actions.

Algorithm 1 Q-Learning Implementation
1: Initialisation:

• Initialise Q-table with zeros. (defines the state of the
agent)
• Set parameters: learning rate (α), discount factor (γ),

exploration probability (ϵ = 0.9), and decay schedule.
• Initialise storage structures: storage, storage_new, re-

ward_list.

2: for episode = 0, 1, . . . , episodes do
3: Reset environment and variables:

• Reset the environment to obtain the initial state.
• Initialise episodic reward and step counter.
• Store current epsilon value.

4: while not done, do
5: Select action using ϵ-greedy policy:

• if ϵ < rand() then
• action ∼ Uniform(noA)
• else
• action = maxa Q (state, a)

6: Execute action:
• Act in the environment and observe the next state,

reward, and done flag.
• Update episodic reward.
• Increment steps counter.

7: Update Q-value using Bellman equation
8: Compute the maximum future Q-value for the next state.
9: Calculate the new Q-value

10: Update the Q-table with the new Q-value.
11: Store Q-value updates if specific conditions (e.g., state, action)

are met.
12: Update state: Set the current state to the next state.
13: Append the (current_q, new_q, episode, action) to the storage

list.
14: Decay ϵ: Reduce epsilon based on the decay schedule.
15: Check convergence: if |new_q − current_q| < threshold and

new_q ̸= current_q then
16: Break the loop
17: Append (episodic_reward, episode, steps) to reward_list.
18: Update ϵ:

• ϵ ← ϵ − (ϵ_decay_value× 0.5)

19: Return results:
• Return Q-table, storage, reward_list, and storage_new.

20: end for

The code establishes key parameters such as the learning rate,
discount factor, and exploration probability (initially set to 0.9), as
10
well as decay schedules and structures for storing data (storage,
storage new, reward list). The main loop runs for a specified num-
ber of episodes, resetting the environment and relevant variables
at the start of each episode to obtain the initial state, reset the
episodic reward, and initialise a step counter. A ‘greedy policy’
selects actions within each episode: if the probability is high, it
selects a random action (exploration); if not, it selects the action
with the highest Q-value for the current state (exploitation). The
environment executes the selected action, providing the next
state, reward, and a done flag indicating the episode’s end. The
Bellman equation updates the Q-value, accounting for the im-
mediate reward and the maximum future Q-value from the next
state. The Q-table then stores the updated Q-value. Certain condi-
tions trigger the recording of specific Q-value updates. The state is
then updated to the next state, and the current and new Q-values,
along with the episode number and action taken, are appended
to the storage list. A predefined schedule decays the exploration
probability. We optionally check convergence by comparing the
absolute difference between the new and current Q-values, and
if the difference falls below a threshold but the values are not
equal, we can terminate the loop early. We append the episodic
reward, episode number, and step count to the reward list after
each episode, thereby further delaying the episode. Finally, we
return the Q-table, storage, reward list, and storage new, which
summaries the learned policy and the data gathered during train-
ing. The process begins with the initialisation phase, where three
custom environments (env new1, env new2, andenv new3) are
defined using a defined MDP function. The algorithm then iterates
over a list of names (‘name list ’), and for each name, it assigns
the appropriate environment by configuring the Markov Decision
Process (MDP) with specific transition probabilities and rewards.

3.14. Algorithm -2 Iterating learning rates variation over MDP envi-
ronments

Algorithm 2 is an algorithm that trains and stores models
using different learning rates (LRs) across multiple environments.
The initialisation phase initiates the process, defining various
environments (envs) and creating an empty dictionary named
’final dict’ to store results.

Algorithm 2 Iterating Learning Rates Variation over MDP Environ-
ments
1: Initialisation: Defining different envs and empty final dict
2: for name in name_list do

1. Assigning the right env (MDP): Using diff transition
probs and rewards to create the MDP

2. Defining and resetting the training params:

• Learning rates list
• outputs, store and rewards dictionaries

3. for lr in lrs do
(a) Performing the new_q_learning algorithm
(b) Storing everything by appending in the final_dict

4. end for
3: end for

Next, we set the training parameters, which include a list of
learning rates ranging from ‘0.001 to 0.9’, and store the resulting
Q-tables, intermediate storage, rewards, and additional storage
collections. For each learning rate (‘lr ’) in the list of learning rates
(‘lrs’), the algorithm executes the ‘new q learning ’ algorithm.
Finally, the algorithm stores the results by appending them to
the ‘final dict ’. This structured approach guarantees systematic
model training and result storage for varying learning rates in
different environments.

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
4. MDP models integration and implementation

4.1. An overview of our three proposed MDP environments

The BlankEnvironment models the proposed Markov Deci-
sion Process using the Malware Workflow Diagram, incorporating
states, actions, rewards, transition probabilities, and episode com-
pletion status. It features a discrete action space with 10 actions
and an observation space with 67 observations, assigning a stan-
dard step penalty of 0.04 and a reward of 2 for identifying mal-
ware. The BlankEnvironment_with_Rewards gives a reward
of 2 for all terminal states upon accurate malware identification
and 4 for early-stage accurate identification, encouraging correct
classifications. Conversely, the BlankEnvironment_with_Time
imposes a harsher penalty of -0.01 per step to incentivise efficient
malware identification by discouraging the agent from taking
unnecessary actions. Rewards serve as hyperparameters in both
environments, refined for optimal agent performance.

4.2. Implementing MDP environments key Python libraries

We begin by creating the ‘Environment ’ dependencies, im-
porting essential libraries like NumPy, Random, Time, and Gym
modules. We use NumPy for numerical computations, Random
for generating random numbers, and Time for measuring code
execution time. These measurements help optimise performance
and compare our RL-based post-incident malware investigation
model with human experts. The Gym library, commonly used in
reinforcement learning, defines environments, and agents, and
evaluates their performance, with its ‘spaces’ module represent-
ing possible observations and actions in an RL environment.

4.3. Initialising the state and action variables

We assign values to two variables: ‘noS = 67’ assigns the
value ‘67’ to the variable ‘noS’, implying that ‘noS’ represents the
‘number of states,’ with a value of 67. The variable ‘noA = 10’
assigns the value ‘10’ to ‘noA’, signifying the ‘number of actions’,
with a value of 10. Q-Learning will continue to use these variables
to define the dimensions of data structures.

4.4. Implementation of the BlankEnvironment

As shown in Fig. 10, we define a new class named
‘BlankEnvironment’, which inherits from ‘gym.Env’, indicating
its intended use as a gym environment. For the BlankEnvironment
class, the constructor method initialises the class instance. The
next variable defines the environment’s action space and observa-
tion space. The action space is discrete, with 10 possible actions,
whereas the observation space is discrete, with 67 possible ob-
servations. The next variable, ‘self.state = 0’, sets the initial state
of the environment to ‘0’. We initialise ‘self.P = dict()’ as an empty
dictionary to store transition probabilities in the subsequent code
block.

4.5. Defining reset and step function

The ‘def reset(self)’ function resets the environment to an
initial state, returning the initial observation with ‘self.state =
0’. The ‘def step(self, action)’ method simulates a step in the
BlankEnvironment based on the action, assigning a random
11
Fig. 10. Initialise and implement the BlankEnvironment class.

Fig. 11. Initialise and implement the BlankEnvironment with rewards class.

number to ‘temp’ using ‘np.random.rand(1)’. If the current state is
between 0 and 66 and the action is between 0 and 9, the tuple ‘k’
is updated with the current state, 1, a reward of -0.04, and False.

4.6. Implementation of the BlankEnvironment with rewards

The BlankEnvironment_with_Rewards is a completely dif-
ferent implementation compared to BlankEnvironment. As il-
lustrated in Fig. 11, in the BlankEnvironment_with_Rewards,
actions leading to terminal states are assigned a reward of 2, in
contrast to the -0.04 reward assigned in the BlankEnvironment.
The reward function in BlankEnvironment_with_Rewards is
modified when an episode ends, as indicated by the done flag. The
done flag assigns the value of the fourth element to the variable
done, which contains information about episode completion. The
done flag checks if the done variable equals True, and the reward
variable is set to a positive value of 4. This update considers the
consequences of changing the reward when the episode ends.

4.7. Implementation of the BlankEnvironment with time

In BlankEnvironment_with_Time, the agent incurs a more
severe negative reward of -0.1 per step, compared to the standard
penalty of -0.04 in the other two environments. This technique
aims to incentivise the agent to efficiently identify malicious
files by taking the most direct path, thereby discouraging any
superfluous actions. Furthermore, when the agent extends the
episodes by taking additional steps, it receives significant penal-
ties. Notably, this incentive is considered a hyperparameter, as it
is subject to continuous refinement. The expression ‘done = k[3]’
assigns the fourth element of the tuple ‘k’ to ‘done’, indicating

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299

Fig. 12. The speed of convergence across the three MDP environments.

whether the episode is complete. If ‘done’ is ‘True’, a reward of
+4 is assigned; otherwise, a penalty of -0.1 is given to the agent.
The tuple ‘new k’ is then created, maintaining the original values
of ‘k’ but updating the reward value. We return this updated tuple
for future interactions with the environment.

4.8. Iterating MDP environments over learning rates

We implemented a Python code and iterated the three MDP
environments over a range of learning rates (0.001–0.9). The
name_list = [’env_new1’, ’env_new2’, ’env_new3’] de-
fines a list containing the names of the environments. We ini-
tialise an empty dictionary to store the final results and iterate
over each environment using a for loop. We use the Q-learning
function to convert the current learning rate to a float and store
the results in dictionaries. We convert the output into a list and
save it in the output dictionary. Finally, we group the collected
data into a tuple and store it in the final dictionary, consolidating
all results for further insight.

5. Testing and evaluation

5.1. Retrieving data from final-dict

We implemented a Python code and defined several vari-
ables, including Q-tables for different learning rates (q1, q2,
q3), changes in Q-values (store1, store2, store3), cumulative
rewards (reward1, reward2, reward3), and Q-values for mul-
tiple states (store_new1, store_new2, store_new3) for en-
vironments env_new1, env_new2, and env_new3. It initialises
these variables by retrieving data from final_dict, ensuring
each set of variables corresponds to a specific environment. This
consistent structure allows for efficient tracking and storage of
Q-learning outcomes across multiple environments.

5.2. Comparing the speed of convergence

We implemented a Python code to visualise the speed of
convergence across the three MDP environments, (env_new1,
env_new2, and env_new3) representing BlankEnvironment,
BlankEnvironment_with_Rewards(), and BlankEnviron-
ment_with_Time(), respectively. Each dictionary maps learning
rates to the number of episodes required for convergence.

The code line x = [float(key) for key in env_new1.
keys()] creates a list of floating-point learning rates from
env_new1. The command plt.figure (figsize=(10, 6))
initialises a 10 × 6-inch plot, where we create scatter plots
for each environment, using different colours (blue, red, and
12
green) for distinction and adding lines to illustrate convergence
trends. Fig. 12 shows that BlankEnvironment_with_Rewards
(env_new2) has the smoothest and fastest convergence. In con-
trast, BlankEnvironment_with_Time (env_new3) converges
slowly due to a higher negative reward function, necessitating
larger learning rates and more computational time. BlankEnvi-
ronment (env_new1) also performs well, but it converges slower
due to learning rate fluctuations. As a result, BlankEnviron-
ment_with_Rewards is the best MDP environment, with a 0.4
learning rate.

5.3. Using Argmax to iterate over different learning rates and mdp
environments

We implemented a Python code that initialises a list lrs with
various learning rates and creates empty dictionaries q1_dct and
q1_dict to store results for three different environments, env1,
env2, and env3. The code then outputs a message indicating
the processing of env1, then iterates over each learning rate in
lrs, initialising lists within the dictionaries and retrieving the
corresponding Q-values from q1. Within a nested loop running 67
times for different states, it prints the state index and the action
index with the highest Q-value using np.argmax(q_new[i]),
appending this information as a string to q1_dct and as an
integer to q1_dict.

5.4. Using Softmax to iterate over different learning rates and mdp
environments

We implemented a Python code that defines a stable_
softmax function to calculate the softmax of an input array x in
a numerically stable manner. It initialises a list of learning rates
(0.001–0.9) and empty dictionaries for three environments: env1,
env2, and env3. The code then iterates over the learning rates
for each environment, processes Q-values, and converts them into
probability distributions using the stable_softmax function. It
then samples actions for 67 states, appending the action with the
highest Q-value to the respective dictionary, and prints the current
environment and learning rate at each step. Upon completion, it
prints a done message, ensuring consistent performance across
different environments and learning rates for further comparative
analysis.

5.5. Evaluating rewards dynamics using learning rates and MDP
environments

We implemented a Python code that examines reward changes
in the three MDP environments (env_new1, env_new2, and
env_new3), with learning rates ranging from 0.001 to 0.9. To
create interactive plots, it imports the plotly.graph_objects
module as go. The code extracts cumulative rewards, episode
numbers, steps per episode, and average rewards per step from
episodes 3 to 100 for each environment. We create a new figure
object fig using Plotly and add three traces, each representing
an environment with unique colours (green for env_new1, blue
for env_new2, and red for env_new3). We update the plot layout
with a centred title, axis labels, a legend title, and a hover mode
that displays data for all traces at the same x-coordinate. To
render and display the interactive plot, we call the fig.show()
function, which compares the average rewards per episode for
the three environments at different learning rates. However, the
graph for learning rate 0.4 is displayed in Fig. 13.

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 13. Average rewards vs episodes for different environment using 0.4
learning rate.

Fig. 14. Calling the get_acc function for accuracy computation.

5.6. Command definitions for state-based actions

We imported the Subprocess module to allow the Python
script to spawn new processes and manage their input/output/
error pipes and return codes. We initialise and populate an empty
dictionary, my_dict, with key–value pairs, each representing a
state and each value a list of commands for that state. For ex-
ample, state 0 includes a command to clone a GitHub repository,
while state 10 has commands for Windows system information
and the registry. States 15 to 45 have various commands, some
including special characters and options like --pid and -o.

5.7. Implementing command logic in Python

We implemented a Python function create_command that
takes three arguments: command_dict, state , and action . A
dictionary (command_dict) is used to create a command based
on the given state and action. The function initialises a variable
pid with the value 340 and uses the process ID, pid , in the
command generation logic. The if state == 1 block checks if
the state parameter is equal to 1. If so, the code executes the
next block. If the action parameter is greater than or equal to the
length of the list of commands associated with the current state
in command_dict, it is invalid. If the action is out of bounds,
the code assigns the string action out of list size to the
command variable. If the action is within bounds, the code starts
an else block where the actual command generation takes place.
The function also checks if the state variable is not in the dictio-
nary, assigns the string transitional state , and checks if the
action variable is greater than the list length.

5.8. Defining the ‘commands timings’ dictionary

We set up a nested dictionary called commands_timings to
organise the different commands that were run on the Google
13
Collaborative Environment for WannaCry, Cerber, and Cridex
malware analysis families, along with the times at which they
were run (shown by variables like ta , tb, etc.). Each malware
family includes specific forensic commands for analysing as-
pects of system memory dumps, such as process lists (windows.
pslist), registry scans, module analysis, and network statistics.
Our research relies on these commands and timings to com-
pare the time required by a human forensics expert with the
Proposed Reinforcement Learning Post-Incident Malware Inves-
tigation Framework.

6. Results and discussion

6.1. The agent decision-making processes

We implemented a Python script that initialises two lists,
ideal_list and pred_list, containing integer values repre-
senting actions for specific states within our reinforcement learn-
ing MDP environment. The ideal_list assigns optimal actions
for states 0 to 66, while the pred_list contains predicted ac-
tions for the same states. For example, state 0 has an ideal action
of 0 and a predicted action of 2. Each index in both lists corre-
sponds to a specific state, facilitating the comparison of predicted
actions against ideal outcomes to measure model performance
across the three environments using varying learning rates.

6.2. Python function to evaluate predictive model accuracy

To compare the accuracy of predicted actions against ideal
actions, we implemented a Python function named get_acc .
Initially, the function sets two variables, true and false , to zero
to count correct and incorrect predictions, respectively. It iterates
through the ideal_list and pred_list simultaneously using
the zip() method, comparing each element; if they match, it
increments true; otherwise, it increments false . After the it-
eration, the function computes the accuracy by dividing true by
the total number of comparisons (true + false), formats the
result to five decimal places, and prints the accuracy. This func-
tion is useful for evaluating prediction accuracy in reinforcement
learning settings, and upon execution, it shows an accuracy of
94%.

6.3. get_acc function for accuracy computation

The implemented Python function named get_acc processes
multiple environments (env1, env2, and env3) represented by
dictionaries (q1_dict, q2_dict, and q3_dict). We defines x
and y coordinates for three sets of data representing different
environments: env1, env2, and env3. Each environment’s data
is stored in respective lists, such as env1_x and env1_y, env2_x
and env2_y, and env3_x and env3_y. The code then creates
three scatter plot traces using go.Scatter, specifying the data
points, mode (lines and markers), names, and marker colours for
each environment. A layout is defined for the plot, including a
title, x-axis and y-axis labels, and hover mode configuration. A
figure object is created by combining the traces and the layout,
and the plot is displayed using fig.show(). This code effectively
visualises the accuracy computation for different learning rates
across three MDP environments, as shown in Fig. 14. Consequently,
it demonstrates that env2, with a learning rate of 0.4, is the best
performing environment.

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
6.4. State transitions in our RL post-incident malware investigation
model

We implemented a Python function to simulate state tran-
sitions in the BlankEnvironment_with_Rewards() environ-
ment, using a learning rate of 0.4 and driven by actions and land-
ing states. Starting with the initial state i set to 0, the loop runs 20
iterations, printing the current state (i) and the associated action
(ideal_list_new[i]). To determine the next state, we call the
function return_action_state with i, ideal_list_new[i],
and landing_list[i]. If i reaches 66, the loop breaks. Finally,
the code prints the final state (i) and its corresponding action
(ideal_list_new[i]) after completing the loop or breaking out
due to reaching state 66. This code structure allows for simu-
lating and tracking state transitions based on predefined actions
and conditions, providing insight into how the agent navigates
through our proposed RL Post-Incident Malware Investigation
Model.

6.5. Plotting the proposed model command execution timings

As a result of keeping track of state changes using our pro-
posed reinforcement learning post-incident malware investiga-
tion model, we obtain a trajectory based on actions and landing
states, which control a series of state changes in the environment.
We utilised the Google Collaborative Environment’s execution
timings to plot the proposed model’s command execution tim-
ings. To store keys and values related to states and action tra-
jectories, we created a new command_timings_dict. We then
defined new Python code to create a multi-plot figure using Plotly
to analyse the execution time of different malware commands
(WannaCry, Cerber, and Cridex). This code initialises a figure with
three vertical subplots, each with a title and increased vertical
spacing. We add line plots for WannaCry, Cerber, and Cridex to
the first, second, and third subplots, respectively, ensuring each
has distinct colours and markers. We update the figure’s layout to
set its dimensions and centre the title. We customise the X-axis
labels for each subplot and label the y-axes with ’Time (seconds)’.
The resulting graph is displayed using fig.show(), as illustrated
in Fig. 15 below.

6.6. Plotting collab and PowerShell environment command execution
timings

We created a Python script to visualise the execution timings
of various commands executed on Google Collaborative environ-
ments and Fast Windows Machine. The script examined Wan-
naCry, Cerber, and Cridex to design the malware work flow dia-
gram. The script used the Plotly library to create a multi-subplot
figure, with scatter plots for each type. The graph provided a clear
comparison of execution times for the three malware types. Fig.
16–17 displays a graph that provides a clear visual comparison
of the execution times for various commands executed on the
three malware types using the Google Colab environments and
Fast Windows Machine in the PowerShell.

6.7. Interactive analysis of malware execution times

We implemented a Python code using Plotly for interactive
plotting, which allows us to visualise the execution times of
various commands performed by the agent when analysing dif-
ferent malware, specifically WannaCry, Cerber, and Cridex. We
also used the same code to sample malware analysis execution
times for commands executed in both the Google Collaborative
Environment and a Fast Windows Machine in the PowerShell
Environment. As a result, we initialise a Plotly figure and add
14
three separate bar plots for each malware type, with each bar rep-
resenting the command’s execution time. The bars for WannaCry
are blue, for Cerber they are red, and for Cridex they are green.
The plot’s layout is customised to include a horizontally centred
title, labels for the x-axis (Commands Executed) and y-axis (Time
(seconds)), and grouped bars. Using fig.show(), we presented a
visual comparison of command execution times across different
malware types and environments, as illustrated in Figs. 18–20.

6.8. Visualising execution times across multiple machines

We implemented a Python script that uses Plotly to display
the total execution times for malware analysis across various
machines. We iterate over the different machines and add up the
execution times for each type of malware analysed (WannaCry,
Cerber, and Cridex). We present the data as scatter plots with
lines and markers, with each machine represented by a corre-
spondingly designated trace. The layout contains a centred title
and marked axes to help with data understanding. As a result, the
chart provides a comparison view of different machines’ malware
analysis execution timings, as shown in Fig. 21. Our proposed
RL Post-Incident Malware Investigation Framework demonstrates
superior performance compared to the Google Collab and Win-
dows PowerShell environments.

6.9. Comparison with traditional malware detection and recent works

The experimental results achieved in our research clearly
demonstrate the advantages of implementing reinforcement
learning (RL) in post-incident malware forensics. To highlight
the effectiveness of our approach, it is crucial to compare these
results with traditional malware detection techniques and more
recent advancements in the field. Traditional forensic methods
require significant human expertise and time, especially when
dealing with complex or obfuscated malware. In contrast, our RL
model automates much of the investigation process, demonstrat-
ing superior robustness in identifying malware artefacts from live
memory images with higher precision than existing automated
systems. As shown in our results, the RL agent significantly out-
performed human experts in terms of analysis time while main-
taining high reliability, making it a valuable tool for post-incident
malware forensic investigations.

According to Djenna et al. [24], traditional malware detec-
tion methods, such as signature-based and heuristic-based ap-
proaches, have been foundational in cybersecurity. Signature-
based detection identifies malware by comparing files against a
database of known malware signatures, which works well for
detecting previously encountered threats. However, this method
encounters difficulties when dealing with new or polymorphic
malware, which can modify its code to evade detection. Heuristic-
based methods aim to overcome this limitation by examining
behaviours or patterns that indicate malware. Despite being more
adaptive, heuristic methods are susceptible to high false-positive
rates and still struggle with advanced, evasive malware that
mimics normal system behaviour [25].

Our experimental results, which used Q-learning in a rein-
forcement learning framework, significantly outperformed these
traditional approaches. In our research, we achieved a detec-
tion accuracy of 94%, which is notably higher than what tradi-
tional methods typically reach, especially when identifying un-
known malware strains. Our RL-based approach handles new and
evolving malware effectively by continually learning and adapt-
ing within a Markov Decision Process (MDP) environment. This
dynamic adaptability addresses the critical limitation of static
signature-based and heuristic systems. The RL agent’s ability to

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 15. Malware analysis execution time for different commands executed using the agent (RL model).
respond to a broader range of malware behaviours and features
bridges gaps that traditional methods often fail to address.

Recent advancements in malware detection, particularly those
involving machine learning (ML) and deep learning (DL) tech-
niques, have sought to improve upon traditional methods [26].
Machine learning models, such as those employing support vector
15
machines (SVMs) and neural networks, have made significant
strides by enabling more flexible classification of malware based
on features extracted from files or behaviours [27]. However,
while machine learning approaches can better identify previously
unseen malware than signature-based methods, they are often
resource-intensive, requiring vast amounts of labelled data to

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 16. Malware analysis execution time for different commands executed using
Google Collab environment.

train effectively [2]. Deep learning models, such as Convolutional
Neural Networks (CNNs), have similarly demonstrated improve-
ments in detecting malware by analysing patterns, but they tend
to require large datasets and extensive computational power,
making real-time detection challenging [28].
16
Fig. 17. Malware analysis execution time for different commands executed using
the PowerShell environment.

Our research builds upon these recent advancements by inte-
grating reinforcement learning, which not only allows for learn-
ing from limited data but also enhances adaptability in real-time

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
Fig. 18. Malware analysis execution time for different commands executed using
the agent (RL model).

Fig. 19. Malware analysis execution time for different commands executed using
Google Collab environment.

malware forensics. For instance, studies like Fang et al. [10]
DQEAF model, which employs deep Q-networks to evade an-
tivirus engines, emphasise the need for more dynamic approaches
to deal with malware that evolves to avoid detection. In compari-
son, our Q-learning-based approach provides more efficient mal-
ware detection by continuously learning from its environment
and refining its actions based on feedback. Our experimental
results reflect this capability, as our model outperforms both
traditional methods and machine learning models that rely on
static data and predefined features.

Moreover, recent works, such as those by Quertier et al. [1]
and Wu et al. [6] have incorporated reinforcement learning to
enhance malware detection. These studies demonstrated the ad-
vantages of RL over traditional machine learning by showing
17
Fig. 20. Malware analysis execution time for different commands executed using
PowerShell environment.

Fig. 21. Total time spent on malware analysis using Collab, PowerShell, and RL
agent.

how it can improve malware identification through trial-and-
error learning processes. However, many of these recent works
focus on specific use cases, such as static file analysis or narrowly
defined malware behaviours. In contrast, our research extends
the scope of RL by applying it to post-incident forensic analysis,
incorporating both static and behavioural data. This broader ap-
plication results in a more comprehensive and accurate detection
framework, as demonstrated by our model’s ability to reduce
forensic investigation times while maintaining high detection
accuracy.

Finally, the experimental results of our research showcase
the superior effectiveness of the proposed reinforcement learn-
ing framework in comparison to both traditional malware de-
tection methods and recent advancements in machine learning
and deep learning. As a result of addressing the limitations of
static, signature-based, and resource-intensive machine learning
models, our RL-based framework adapts to evolving malware
threats dynamically and integrates both static and behavioural
analyses. This comprehensive approach makes our method a ro-
bust and efficient solution for post-incident malware forensics
investigations.

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
7. Research findings and recommendations

The paper proposes a post-incident malware investigation
framework built upon a novel MDP model that leverages ad-
vanced reinforcement learning (RL). The model significantly
speeds up the investigation process, surpassing human forensic
experts in both the speed and detection of known and un-
known malware threats. It integrates various malware analysis
techniques and includes data collection methods like live mem-
ory dumps from Windows systems. A custom malware dataset
and comprehensive malware workflow diagram were created to
streamline the forensic process.

The core of the approach is a unified Markov Decision Process
(MDP) model that combines multiple MDP environments into one
cohesive framework. Three distinct environments were created
with each employing a unique reward structure to guide the
RL agent in developing optimal malware analysis strategies. The
RL model operates within these structured MDP environments,
allowing the agent to navigate the malware analysis workflow.
Each state and action corresponds to a specific stage in the
malware analysis process, enabling the agent to learn, estimate,
and refine the expected value of actions. This dynamic learning
is driven by the Q-learning algorithm, which balances the explo-
ration of unknown states with the exploitation of known poli-
cies, optimising decision-making. A Q-table manages state–action
pairs, while temporal-difference learning iteratively updates the
agent’s knowledge base, improving malware identification accu-
racy over time. Extensive experimental evaluation showed that
the learning rate is key to convergence, with simpler environ-
ments benefiting from higher rates and more complex environ-
ments requiring lower rates for stability. In realistic post-incident
scenarios using malware such as WannaCry, Cerber, and Cridex,
the model demonstrated strong classification accuracy, adapt-
ability to novel threats, and computational efficiency, indicating
robustness and scalability. Iterative refinement of the MDP envi-
ronments, guided by experimental feedback and hyperparameter
tuning, was crucial to optimising the RL agent’s performance.
Fine-tuning learning rates and reward mechanisms across di-
verse scenarios greatly enhanced the model’s effectiveness. The
RL-based approach for malware forensics offers a promising al-
ternative to traditional methods, with the potential for real-time
adaptability to evolving malware threats. Future research should
focus on optimising reward functions, expanding state-space de-
signs, and integrating advanced feature extraction techniques
like behavioural analysis, temporal pattern recognition, hybrid
static-dynamic feature analysis, and adversarial training to fur-
ther enhance the framework’s applicability in dynamic forensic
environments.

CRediT authorship contribution statement

Dipo Dunsin: Writing – review & editing, Writing – orig-
inal draft, Validation, Project administration, Methodology, In-
vestigation, Data curation, Conceptualization. Mohamed Chahine
Ghanem: Supervision. Karim Ouazzane: Supervision. Vassil Vas-
silev: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
18
References

[1] T. Quertier, B. Marais, S. Morucci, B. Fournel, MERLIN–Malware Evasion
with Reinforcement LearnINg, 2022, arXiv preprint arXiv:2203.12980.
Available at: https://arxiv.org/abs/2203.12980.

[2] Ö.A. Aslan, R. Samet, A comprehensive review on malware detection
approaches, IEEE Access 8 (2020) 6249–6271, https://ieeexplore.ieee.org/
document/8949524.

[3] M.S. Akhtar, T. Feng, Malware analysis and detection using machine
learning algorithms, Symmetry 14 (11) (2022) 2304, Available at: http:
//dx.doi.org/10.3390/sym14112304.

[4] D. Dunsin, M.C. Ghanem, K. Ouazzane, The use of artificial intelligence in
digital forensics and incident response in a constrained environment, Int.
J. Inf. Commun. Eng. 16 (8) (2022) 280–285.

[5] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, H. Huang, Evading anti-
malware engines with deep reinforcement learning, IEEE Access 7 (2019)
48867–48879, Available at: https://ieeexplore.ieee.org/document/8676031.

[6] C. Wu, J. Shi, Y. Yang, W. Li, Enhancing machine learning based malware
detection model by reinforcement learning, in: Proceedings of the 8th
International Conference on Communication and Network Security, 2018,
pp. 74–78, https://dl.acm.org/doi/abs/10.1145/3290480.3290494.

[7] A. Piplai, P. Ranade, A. Kotal, S. Mittal, S.N. Narayanan, A. Joshi, Using
knowledge graphs and reinforcement learning for malware analysis, in:
2020 IEEE International Conference on Big Data (Big Data), IEEE, 2020, pp.
2626–2633, https://ieeexplore.ieee.org/document/9378491.

[8] M.A. Farzaan, M.C. Ghanem, A. El-Hajjar, AI-enabled system for efficient
and effective cyber incident detection and response in cloud environments,
2024, https://arxiv.org/abs/2404.05602.

[9] M.C. Ghanem, P. Mulvihill, K. Ouazzane, R. Djemai, D. Dunsin, D2WFP: a
novel protocol for forensically identifying, extracting, and analysing deep
and dark web browsing activities, J. Cybersecur. Priv. 3 (4) (2023) 808–829,
Available at: http://dx.doi.org/10.3390/jcp3040036.

[10] Z. Fang, J. Wang, J. Geng, X. Kan, Feature selection for malware detection
based on reinforcement learning, IEEE Access 7 (2019) 176177–176187,
Available at: https://ieeexplore.ieee.org/document/8920059.

[11] M.C. Ghanem, T.M. Chen, M.A. Ferrag, M.E. Kettouche, ESASCF: expertise
extraction, generalization and reply framework for optimized automation
of network security compliance, IEEE Access (2023) http://dx.doi.org/10.
1109/ACCESS.2023.3332834.

[12] L. Binxiang, Z. Gang, S. Ruoying, A deep reinforcement learning malware
detection method based on PE feature distribution, in: 2019 6th Interna-
tional Conference on Information Science and Control Engineering (ICISCE)
(23–27), Shanghai, China, 2019, 2019, pp. 23–27, https://ieeexplore.ieee.
org/document/9107644.

[13] M. Ebrahimi, J. Pacheco, W. Li, J.L. Hu, H. Chen, Binary black-box attacks
against static malware detectors with reinforcement learning in dis-
crete action spaces, 2021, pp. 85–91, https://ieeexplore.ieee.org/document/
9474314.

[14] A.S. Basnet, M.C. Ghanem, D. Dunsin, W. Sowinski-Mydlarz, Advanced
persistent threats (APT) attribution using deep reinforcement learning,
2024, arXiv preprint arXiv:2410.11463.

[15] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, C.K. Nicholas,
Malware detection by eating a whole exe, in: Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018, http://dx.doi.org/
10.13016/m2rt7w-bkok.

[16] Y. Birman, S. Hindi, G. Katz, A. Shabtai, Cost-effective malware detection as
a service over serverless cloud using deep reinforcement learning, in: 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), Melbourne, VIC, Australia, 2020, pp. 420–429, https:
//ieeexplore.ieee.org/document/9139646.

[17] H.S. Anderson, A. Kharkar, B. Filar, D. Evans, P. Roth, Learning to evade
static PE machine learning malware models via reinforcement learning,
2018, https://arxiv.org/abs/1801.08917.

[18] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, H. Yin, Mab-malware: A
reinforcement learning framework for attacking static malware classifiers,
2020, https://arxiv.org/abs/2003.03100.

[19] A. Rakhsha, G. Radanovic, R. Devidze, X. Zhu, A. Singla, Policy teaching in
reinforcement learning via environment poisoning attacks, J. Mach. Learn.
Res. 22 (1) (2021) 9567–9611, https://arxiv.org/abs/2003.12909.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R.
Fergus, Intriguing properties of neural networks, 2013, ArXiv: Computer
Vision and Pattern Recognition. http://export.arxiv.org/pdf/1312.6199.

[21] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of go with
deep neural networks and tree search, Nature 529 (7587) (2016) 484–489,
Available at: http://dx.doi.org/10.1038/nature16961.

http://arxiv.org/abs/2203.12980
https://arxiv.org/abs/2203.12980
https://ieeexplore.ieee.org/document/8949524
https://ieeexplore.ieee.org/document/8949524
https://ieeexplore.ieee.org/document/8949524
http://dx.doi.org/10.3390/sym14112304
http://dx.doi.org/10.3390/sym14112304
http://dx.doi.org/10.3390/sym14112304
http://refhub.elsevier.com/S2667-2952(25)00003-0/sb4
http://refhub.elsevier.com/S2667-2952(25)00003-0/sb4
http://refhub.elsevier.com/S2667-2952(25)00003-0/sb4
http://refhub.elsevier.com/S2667-2952(25)00003-0/sb4
http://refhub.elsevier.com/S2667-2952(25)00003-0/sb4
https://ieeexplore.ieee.org/document/8676031
https://dl.acm.org/doi/abs/10.1145/3290480.3290494
https://ieeexplore.ieee.org/document/9378491
https://arxiv.org/abs/2404.05602
http://dx.doi.org/10.3390/jcp3040036
https://ieeexplore.ieee.org/document/8920059
http://dx.doi.org/10.1109/ACCESS.2023.3332834
http://dx.doi.org/10.1109/ACCESS.2023.3332834
http://dx.doi.org/10.1109/ACCESS.2023.3332834
https://ieeexplore.ieee.org/document/9107644
https://ieeexplore.ieee.org/document/9107644
https://ieeexplore.ieee.org/document/9107644
https://ieeexplore.ieee.org/document/9474314
https://ieeexplore.ieee.org/document/9474314
https://ieeexplore.ieee.org/document/9474314
http://arxiv.org/abs/2410.11463
http://dx.doi.org/10.13016/m2rt7w-bkok
http://dx.doi.org/10.13016/m2rt7w-bkok
http://dx.doi.org/10.13016/m2rt7w-bkok
https://ieeexplore.ieee.org/document/9139646
https://ieeexplore.ieee.org/document/9139646
https://ieeexplore.ieee.org/document/9139646
https://arxiv.org/abs/1801.08917
https://arxiv.org/abs/2003.03100
https://arxiv.org/abs/2003.12909
http://export.arxiv.org/pdf/1312.6199
http://dx.doi.org/10.1038/nature16961

D. Dunsin, M.C. Ghanem, K. Ouazzane et al. High-Confidence Computing 5 (2025) 100299
[22] D. Dunsin, M.C. Ghanem, K. Ouazzane, V. Vassilev, A comprehensive anal-
ysis of the role of artificial intelligence and machine learning in modern
digital forensics and incident response. Forensic Science International,
Digit. Investig. 48 (2024) 301675, http://dx.doi.org/10.1016/j.fsidi.2023.
301675.

[23] S.I. Gallant, Perceptron-based learning algorithms, IEEE Trans. Neural Netw.
1 (1990) 179–191, http://dx.doi.org/10.1109/72.80230.

[24] A. Djenna, A. Bouridane, S. Rubab, I.M. Marou, Artificial intelligence-based
malware detection, analysis, and mitigation, Symmetry 15 (3) (2023) 677,
Available at: https://www.mdpi.com/2073-8994/15/3/677.

[25] M.I. Malik, A. Ibrahim, P. Hannay, L.F. Sikos, Developing resilient
cyber–physical systems: a review of state-of-the-art malware detection
approaches, gaps, and future directions, Computers 12 (4) (2023) 79,
Available at: https://www.mdpi.com/2073-431X/12/4/79.
19
[26] M. Gopinath, S.C. Sethuraman, A comprehensive survey on deep learn-
ing based malware detection techniques, Comput. Sci. Rev. 47 (2023)
100529, Available at: https://www.sciencedirect.com/science/article/abs/
pii/S1574013722000636.

[27] R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, S. Venkatra-
man, Robust intelligent malware detection using deep learning, IEEE Access
7 (2019) 46717–46738, Available at: https://ieeexplore.ieee.org/abstract/
document/8681127.

[28] U.E.H. Tayyab, F.B. Khan, M.H. Durad, A. Khan, Y.S. Lee, A survey of the
recent trends in deep learning based malware detection, J. Cybersecur.
Priv. 2 (4) (2022) 800–829, Available at: https://www.mdpi.com/2624-
800X/2/4/41.

http://dx.doi.org/10.1016/j.fsidi.2023.301675
http://dx.doi.org/10.1016/j.fsidi.2023.301675
http://dx.doi.org/10.1016/j.fsidi.2023.301675
http://dx.doi.org/10.1109/72.80230
https://www.mdpi.com/2073-8994/15/3/677
https://www.mdpi.com/2073-431X/12/4/79
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000636
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000636
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000636
https://ieeexplore.ieee.org/abstract/document/8681127
https://ieeexplore.ieee.org/abstract/document/8681127
https://ieeexplore.ieee.org/abstract/document/8681127
https://www.mdpi.com/2624-800X/2/4/41
https://www.mdpi.com/2624-800X/2/4/41
https://www.mdpi.com/2624-800X/2/4/41

	Reinforcement learning for an efficient and effective malware investigation during cyber incident response
	Introduction
	Research Aim
	Research Objectives
	Research Contributions
	Comparison with Existing Literature Reviews
	Paper Outline

	Literature Review and Background
	Reinforcement Learning for Malware Analysis
	Deep RL for Malware Analysis
	RL-Based Attacks on Static Malware Detectors
	Malware Analysis Using Intelligent Feature Selection
	Modern Incident Response Enhanced by AI
	ML and Knowledge Based System for Malware Analysis
	RL for Malware Investigations

	Research Methodology
	Experimental Setup and Dataset Generation
	Malware Workflow Diagram Creation
	Markov DecisionProcess (MDP) Formulation
	Leveraging Reinforcement Learning
	Value Function and Policy
	Q-Learning Update Rule

	Setting the Parameters for MDPs
	The Motivation behind Implementing Q-Learning
	Q-Learning Terminologies
	Q-Table and Q-Function
	Subsections of the Markov Decision Process Model
	The Unified Markov Decision Process
	The Proposed RL Post-Incident Malware Investigation Framework
	The Proposed RL Post-Incident Malware Investigation Model
	Algorithm 1 - Implementation of the Q-Learning Algorithm
	Algorithm -2 Iterating Learning Rates Variation over MDP Environments

	MDP Models Integration and Implementation
	An Overview of Our Three Proposed MDP Environments
	Implementing MDP Environments Key Python Libraries
	Initialising the State and Action Variables
	Implementation of the BlankEnvironment
	Defining Reset and Step Function
	Implementation of the BlankEnvironment with Rewards
	Implementation of the BlankEnvironment with Time
	Iterating MDP Environments over Learning Rates

	Testing and Evaluation
	Retrieving Data from final-dict
	Comparing the Speed of Convergence
	Using Argmax to iterate over different learning rates and mdp environments
	Using Softmax to iterate over different learning rates and mdp environments
	Evaluating rewards dynamics using learning rates and MDP environments
	Command Definitions for State-Based Actions
	Implementing Command Logic in Python
	Defining the `commands timings' dictionary

	Results and Discussion
	The Agent Decision-Making Processes
	Python Function to Evaluate Predictive Model Accuracy
	get_acc function for accuracy computation
	State transitions in our RL Post-Incident Malware Investigation Model
	Plotting the proposed Model command execution timings
	Plotting Collab and PowerShell Environment Command Execution Timings
	Interactive Analysis of Malware Execution Times
	Visualising execution times across multiple machines
	Comparison with Traditional Malware Detection and Recent Works

	Research Findings and Recommendations
	CRediT authorship contribution statement
	Declaration of competing interest
	References

