
T
a
v
i
P
c

©
o
n

Journal Pre-proof

Reinforcement learning for an efficient and effective malware
investigation during cyber incident response

Dipo Dunsin, Mohamed Chahine Ghanem, Karim Ouazzane,
Vassil Vassilev

PII: S2667-2952(25)00003-0
DOI: https://doi.org/10.1016/j.hcc.2025.100299
Reference: HCC 100299

To appear in: High-Confidence Computing

Received date : 3 September 2024
Revised date : 15 October 2024
Accepted date : 11 November 2024

Please cite this article as: D. Dunsin, M.C. Ghanem, K. Ouazzane et al., Reinforcement learning
for an efficient and effective malware investigation during cyber incident response,
High-Confidence Computing (2025), doi: https://doi.org/10.1016/j.hcc.2025.100299.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2025 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an
pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
d/4.0/).

https://doi.org/10.1016/j.hcc.2025.100299
https://doi.org/10.1016/j.hcc.2025.100299
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal Pre-proof
1

R
E r

Abstract—T
ous cyberse
forensic inv
work to enh
learning (R
based meth
which brea
actions. Thi
fication of m
and other te
new and un
We tested
environmen
collected for
Q-tables an
exploration
effectively f
the complex
for quicker
stability. Th
required fo
high accura
indicate RL
vestigations
advanced R
further enh

Index Term
ligence, Rei
Malware, In

Malware, a
software th
performing
can lead to
tion destruc
systems. In
has becom
potential f
reveal a st

—————

* Dipo Dun
Mr. D. Du

Metropolitan
Dr. M.C. G

Metropolitan
Prof. K. O

Metropolitan
Prof. V. Va

Metropolitan

deceptive
cording to
discovery

93 percent
rily in the
scores the
an attack

te the risk
destructive
are inves-
e learning

nt learning
cy.

employed
ising them
and Samet
s struggle
signature-
means of
learning-

dentifying
ware, sur-
oud-based
avily rely
h between
pproaches,
luding the
new mal-

atures and
, machine
d classify
ures found
oaches im-
d network
entify and

atures and
nign soft-
hallenging

machine
se models
or highly

ble tool in
malware
Jo
ur

na
l P

re
-p

ro
of

einforcement Learning for an Efficient and
ffective Malware Investigation during Cybe

Incident Response
Dipo Dunsin *, Mohamed Chahine Ghanem, Karim Ouazzane, Vassil Vassilev,

he ever-escalating prevalence of malware is a seri-
curity threat, often requiring advanced post-incident
estigation techniques. This paper proposes a frame-
ance malware forensics by leveraging reinforcement

L). The approach combines heuristic and signature-
ods, supported by RL through a unified MDP model,
ks down malware analysis into distinct states and
s optimisation enhances the identification and classi-
alware variants. The framework employs Q-learning

chniques to boost the speed and accuracy of detecting
known malware, outperforming traditional methods.

the experimental framework across multiple virtual
ts infected with various malware types. The RL agent
ensic evidence and improved its performance through
d temporal difference learning. The epsilon-greedy

 strategy, in conjunction with Q-learning updates,
acilitated transitions. The learning rate depended on
ity of the MDP environment: higher in simpler ones
 convergence and lower in more complex ones for
is RL-enhanced model significantly reduced the time
r post-incident malware investigations, achieving a
cy rate of 94% in identifying malware. These results
’s potential to revolutionise post-incident forensics in-
 in cybersecurity. Future work will incorporate more
L algorithms and large language models (LLMs) to
ance the effectiveness of malware forensic analysis.

s—Cyber Incident, Digital Forensics, Artificial Intel-
nforcement Learning, Markov Chain, MDP, DFIR,
cident Response.

I. INTRODUCTION

lso known as malicious software, is a type of
at infiltrates and compromises data and information,
 harmful and unauthorised functions. Its presence
 severe consequences, such as data theft, informa-
tion, extortion, and the crippling of organisational
 today’s digital landscape, investigating malware
e an urgent and paramount concern due to its
or significant d amage a nd l oss. R ecent studies
artling reality: malicious software is proliferating

—————————————————————————

sin is the corresponding author.
nsin is with the Cyber Security Research Centre, London

University, London, UK. email: d.dunsin@londonmey.ac.uk
hanem is with the Cyber Security Research Centre, London

University, London UK. email: m.ghanem@londonmet.ac.uk
uazzane is with the Cyber Security Research Centre, London
University, London, UK. email:k.ouazzane@londonmet.ac.uk
ssilev is with the Cyber Security Research Centre, London

University, London, UK. email:v.vassilev@londonmet.ac.uk

at an alarming rate, with some strains employing
tactics to evade cyber forensics investigations. Ac
Quertier et al., [1], AV-TEST estimates the daily
of approximately 450,000 new malware instances,
of which are Windows-based malicious files, prima
form of portable executable (PE) files. This under
critical need for swift malware investigations when
occurs to prevent widespread damage and mitiga
of malware evolving into more sophisticated and
forms. Quertier et al., [1] also describe various malw
tigation approaches, demonstrate the use of machin
in malware analysis, and highlight how reinforceme
improves malware models’ performance and accura

The heuristic-based malware technique is a widely
approach that analyses various system files, categor
as normal, unusual, or potentially harmful. Aslan
[2], emphasise that while signature-based method
with new malware, a combination of heuristic and
based approaches offers a reliable and expeditious
identifying malicious software. In contrast, deep
based approaches exhibit remarkable capabilities in i
both known and previously unseen malicious soft
passing the performance of behaviour-based and cl
techniques. Malware analysis and classification he
on machine learning algorithms trained to distinguis
malware and benign files. Machine learning-based a
according to Akhtar [3], face several challenges, inc
frequent return of false positives and the ability of
ware with polymorphic traits to alter their file sign
evade identification. To overcome these challenges
learning techniques train algorithms to identify an
various forms of malware based on patterns and feat
in extensive databases. These machine learning appr
prove computer systems, post-incident forensics, an
security by equipping algorithms to effectively id
classify different types of malware [4].

While many malware instances exhibit distinct fe
static structures that differentiate them from be
ware, some possess characteristics that make them c
to identify accurately [5]. Even with advances in
learning, complex, evolving malware can evade the
and remain hidden, particularly when it is novel
adaptable. Reinforcement learning becomes a valua
these scenarios, as it enables the creation of new

samples capable of evading machine learning identification.

Journal Pre-proof
2

These new
more unkn
guishes itse
embracing
to predefine
learning p
answers ar
unknown m
reinforcem
role. Throu
features, ex
malware ty
enhancing
beneficial a

In reinforc
from other
ing provide
tion feedba
actions in
as capable
applied, en
environmen
collection
to Fang et
a reward,’
example th
tion. Reinf
interacts w
modificatio
outcomes.
such as RE
reinforcem
leveraging
as tradition
ity to incor
analysis. R
efforts and
malware m

A. Researc

This resear
malware fo
learning (R
refine mod
of malware
to reduce
able cyber
forensics p
and signatu
mitigate in
of justice’,
system.

B. Researc

The object
to explore

key tasks
ly in iden-
ach. Next,
model that
 adapts to
 efficiency
we intend
ework by
 methods,
ection and
y, we will
al data to
e forensics

ields of cy-
y advance-
e forensics
l analysis,

nhance the
ry dumps.

on Process
onments to
e artefacts.
nt learning
ework that
esulting in
ions while
d a novel

atility 3 to
ory dumps,
ties. These
f malware

 a defined
t learning

t malware
 continu-
ce in the
 Ruoying

rcome the
 using Q-
onstrating
a similar
osing the
vade anti-
sive mal-

thods. The
ganise our
 the states
t learning

r instance,
dentifying
, Quertier
Jo
ur

na
l P

re
-p

ro
of

 samples retrain the malware models to identify
own threats [6]. Reinforcement learning distin-
lf from conventional machine learning models by

uncertainty and extensive trial and error as opposed
d mappings [7]. This quality makes reinforcement

articularly effective in situations where specific
e elusive, such as in the analysis of new and
alware threats [8]. During the implementation of

ent learning algorithms, exploration plays a pivotal
gh exploration, the model actively explores various
panding the breadth of knowledge about different
pes. Subsequently, exploitation comes into play,
the model’s performance by selecting the most
ttributes [9].

ement learning, the reward techniques set it apart
machine learning approaches. Reinforcement learn-
s the agent with either negative or positive evalua-
ck, which may not necessarily indicate the correct
the environment. Generally, we depict the agent
of choosing a specific s et o f f eatures t hat, when
hance the model’s accuracy. The ever-changing
t, shaped by the agent’s actions, facilitates the

of relevant features for classification. According
al., [10], ‘the accuracy of the classifier s erves as
with the DQFSA architecture being a noteworthy
at employs reinforcement learning for feature selec-
orcement learning typically involves an agent that
ith the malware analysis environment, introducing
ns t o fi les to re late th em to ex pected performance
According to Quertier et al., [1] recent studies
INFORCE and Deep Q-Network (DQN) have used
ent learning to improve malware investigations by
past knowledge. This is particularly advantageous,
al machine learning models often lack the abil-
porate background knowledge into their malware
einforcement algorithms can reduce trial-and-error
 rely on past experiences to analyse and classify
ore efficiently using verified knowledge [23] & [7].

h Aim

ch seeks to enhance the accuracy and efficiency of
rensics investigations by leveraging reinforcement
L) techniques. Specifically, it aims to develop and
els that can improve the analysis and identification
 during post-incident investigations. The goal is
investigation times and contribute to more reli-
security measures by addressing gaps in current
rocesses, particularly the limitations of heuristic
re-based methods. Ultimately, this work strives to

stances of forensic errors, such as the ‘miscarriage
 and help maintain integrity in the UK’s justice

h Objectives

ives of this research are fourfold. First, it aims
Reinforcement Learning (RL) methodologies by

examining RL-based approaches for automating
typically performed by forensic experts, particular
tifying malware artefacts following a security bre
the research seeks to develop a sophisticated RL
not only classifies malware accurately but also
emerging malware variants, thereby improving the
of post-incident forensic analysis. Additionally,
to create a multi-approach malware forensics fram
integrating RL with heuristic and signature-based
creating a comprehensive tool for enhancing det
analysis during post-incident investigations. Finall
validate the framework using real-world empiric
evaluate its effectiveness against traditional malwar
techniques.

C. Research Contributions
This study makes a significant contribution to the f
bersecurity and digital forensics through several ke
ments. First, we developed a comprehensive malwar
approach that combines static analysis, behavioura
and machine learning techniques to significantly e
detection and investigation of malware in memo
In addition, we created a unified Markov Decisi
(MDP) model, which combines multiple MDP envir
facilitate a more structured examination of malwar
Furthermore, we advanced the state of reinforceme
(RL) in malware forensics by implementing a fram
surpasses both human and automated methods, r
faster and more accurate post-incident investigat
consuming fewer resources. Finally, we develope
method that leverages the AWK module and Vol
retrieve and identify crucial information from mem
enabling a deeper understanding of malicious activi
contributions collectively push the boundaries o
investigation techniques.

D. Comparison with Existing Literature Reviews
In our research, we implemented Q-learning within
set of action and state spaces to train reinforcemen
agents for investigating malware in post-inciden
forensics. We improve the agent’s performance by
ously providing it with feedback on its performan
MDP environment. Similarly, Binxiang, Gang, and
[11] leveraged deep reinforcement learning to ove
limitations of traditional signature-based methods,
learning to adapt to evolving malware threats, dem
the superiority of RL over static approaches. In
approach, Fang et al., [10] extended this by prop
DQEAF model, which uses deep Q-networks to e
malware engines, emphasising the creation of eva
ware that bypasses traditional malware analysis me
Markov Decision Process (MDP) model helped us or
research even more. It helped us compile a list of
and actions that make up the proposed reinforcemen
post-incident malware investigation framework. Fo
it assisted us in acquiring live memory images and i
the operating systems in use. In a related study

Journal Pre-proof
3

et al., [1],
an MDP fr
analysis en
undetected
identified 6
model, faci
This detail
al., [12], w
VAC mode
attack scen
using separ
needs.

Additionall
niques, inc
our propos
adapted fro
the enhance
ment learni
rithms to im
parallel, Pi
graphs to
highlightin
machine le
formance o
on its abil
malware fo
malware. W
mental test
in the broa
the accurac
of the fore
[13] evalua
on similar
agent in re
a solid fou
our researc
offering pr
their appli
from theore
significant
incident ma

E. Paper O

The remain
abstract su
RL to expe
The introd
need for ra
the increas
Section I.
presents a t
methods, un
and highlig
and Section
and implem
design of t
the integra

ection V.
VI show

g that the
traditional

s the key
ions to cy-
e potential
providing

e research
antages of
otably, the
ods shows
e artificial
exploring
els, while
adaptation
n supports
e analysis,
on for the

ND

llenges of
l malware,

malware
l EMBER
ommercial
rning with
found that
rformance
ercial an-
ould have
of diverse
Jo
ur

na
l P

re
-p

ro
of

used the DQN and REINFORCE algorithms in
amework to test machine learning-based malware
gines and find actions that could turn malware into
files. In defining our action and state space, we
7 unique states and up to 10 actions within our RL
litating a thorough malware forensics investigation.
ed mapping is similar to the work of Ebrahimi et
ho used action and state spaces in their AMG-

l to improve static malware analysis in black-box
arios. Their study showed the pros and cons of
ate action spaces for various malware identification

y, we integrated various machine learning tech-
luding static and behavioural analysis, to enhance
ed framework’s robustness. This integration was
m Wu et al. works [6] and [14], which emphasised
ment of malware analysis models using reinforce-
ng by incorporating past knowledge into RL algo-
prove malware identification and classification. In

plai et al., [7] also explored the use of knowledge
inform RL algorithms for malware identification,
g the benefits of incorporating historical data into
arning processes. In addition, we evaluated the per-
f the RL model in our research methodology based
ity to reduce the time required for post-incident
rensic investigations and its accuracy in identifying
e measure this by conducting extensive experi-

ing in simulated real-world scenarios. Similarly,
der literature, performance metrics often include
y of malware identification and the time efficiency
nsic process. For example, a study by Raff et al.,
tes their RL-based malware identification system
parameters, emphasising the efficiency of the RL
al-time scenarios. While the related work provides
ndation in malware analysis and MDP modelling,
h methodology builds upon this foundation by

actical, detailed methodologies and demonstrating
cation in real-world scenarios. This progression
tical concepts to practical implementation marks a
contribution to the field of cybersecurity and port-
lware forensics investigation.

utline

der of this paper is organised as follows: The
mmarises the study’s primary focus on leveraging
dite and improve post-incident forensic processes.
uction sets the stage by emphasizing the critical
pid and efficient malware investigations in light of
ing prevalence of cyber threats, as mentioned in
Following this, the literature review in Section II
horough examination of existing malware analysis
derscoring the limitations of traditional approaches
hting the promise of RL. Furthermore, Section III

IV detail the research methodology development
entation of the RL-based model, describing the

he Markov decision-process (MDP) environments,

Fig. 1: RL Framework Environment

the testing and evaluation of the RL agent in S
Furthermore, the discussion and results in Section
and explain the experimental results, demonstratin
RL model works faster and more accurately than
methods and human forensics experts.

Moreover, the conclusion Section ?? encapsulate
findings, reiterating the study’s significant contribut
bersecurity and malware forensics. It emphasises th
of RL to revolutionise post-incident investigations,
faster and more accurate results. Additionally, th
offers a comparative analysis, highlighting the adv
RL over heuristic and signature-based methods. N
hybrid approach integrating heuristic and RL meth
promising results. Finally, the paper suggests som
intelligence techniques for future research, such as
advanced RL techniques and refining hybrid mod
emphasising the need for continuous learning and
in RL models. The comprehensive references sectio
the study, citing relevant literature on RL, malwar
and cybersecurity, thus providing a solid foundati
research.

II. LITERATURE REVIEW AND BACKGROU

A. Reinforcement Learning for Malware Analysis

Quertier et al., [1] research highlights the cha
machine learning classifiers in identifying potentia
especially when there is limited insight into the
output. The study suggests that to test how wel
and MalConv machine learning analysis work on c
antivirus software, one should use reinforcement lea
the REINFORCE and DQN algorithms. The study
REINFORCE has a higher evasion rate and better pe
than DQN, especially when tested against a comm
tivirus. However, a more comprehensive approach c
included training these models on a broader array
tion of reinforcement learning techniques, and models.

Journal Pre-proof
4

Reference
Ebrahimi et
[12]

rs, limiting

Birman et
[21] .

Fang et al., he AI agent

Anderson et
[18]

ynamic and

Wu et al., [6 ay hinder

Song et al., omplicates

Rakhsha et
[30]

f poisoning

B. Deep R

In 2019, B
deep reinf
identificatio
tional signa
The resear
outperform
and demon
changing l
limitations,
the experim
Expanding
specific kno
expanding t
by Szegedy
tiveness of
et al., [16]
specific kn
While the
comprehen
could have

C. RL-Bas

Ebrahimi e
tiveness of
cyberattack
to optimise
detectors in
the Variatio
Generation
approximat
the decisio
weights ba
the RL-bas
particularly
their findin
nificantly m
comes to b

ctors, and
ng dataset

ection

al solution
traditional
es deep Q-

interven-
ss various
ates multi-
acy during
posing an

tervention.
comparing
ted works.
ons on the
plored.

ication of
(ML) in

vestigation
lights the

vestigative
advanced

and analy-
ics, which
e memory
f forensic
artefacts.

in digital
ent learn-
ated mal-

challenges
ory dump
Jo
ur

na
l P

re
-p

ro
of

TABLE I: Summary of Related Works.

Contribution Benefits Drawbacks
al., Proposed an AMG detector

against black-box attacks
RL-based models improve malware analysis
against evasion tactics.

Discrete actions may not suit all detecto
universality.

al., Introduces real-time mal-
ware analysis using deep
RL.

Enhances computer security with effective mal-
ware analysis. Requires a large amount of training data

[10]
Develops DQFSA for au-
tomated malware classifica-
tion with deep Q-learning.

DQFSA streamlines feature selection using RL,
saving time and effort.

Lacks details on restrictions imposed on t
in the action space.

al., Uses RL innovatively to
evade PE-based malware
models.

Strengthens ML-based malware analysis against
adversarial threats.

Focuses on static PE models, ignoring d
behavioural analysis.

]
Trains RL agents for op-
timal malware investigation
models.

Improves the accuracy of ML-based malware
investigations.

The need for extensive training data m
practical use.

[17]
Proposes Mab-Malware, an
RL framework for evading
static classifiers.

Aids in examining evasive malware samples. Potential misuse by malicious actors c
analysis.

al., Presents a practical environ-
ment poisoning algorithm
for RL.

Helps develop better defenses against poisoning
attacks.

Does not thoroughly address all aspects o
attacks.

L for Malware Analysis

inxiang, Gang, and Ruoying [11], introduced a
orcement learning-based technique for malware
n, aiming to address the vulnerabilities of tradi-
ture-based and machine learning-based approaches.
ch demonstrated that deep reinforcement learning
ed traditional methods based on static signatures
strated the ability to quickly adapt to the ever-
andscape of malware. However, the study had
including a lack of comprehensive details about
ental design, datasets used, and evaluation metrics.
the training dataset and incorporating domain-
wledge could improve malware analysis. Notably,
he training dataset’s size and diversity, as suggested
et al., [15], could significantly enhance the effec-

the malware investigation. Researchers like Silver
, emphasise the value of incorporating domain-

owledge into deep reinforcement learning systems.
authors assert their method’s superiority, more

sive comparative analyses and statistical evidence
provided more support for their claims.

ed Attacks on Static Malware Detectors

t al. research, [12], aims to improve the effec-
static malware detectors in countering black-box

s. They propose using reinforcement learning (RL)
the decision-making process of static malware
the presence of black-box attacks. They create

nal Actor-Critic for Discrete Adversarial Malware
(AMG-VAC) using discrete operations and an

e sampling operator. They use RL to optimise
n-making process, adjusting the neural network’s
sed on the reward signal. In terms of accuracy,
ed AMG detector outperforms the original detector,
in the presence of black-box attacks. Furthermore,

gs show that the RL-based AMG detector is sig-
ore accurate than the original detector when it

spaces may not align with all types of malware dete
its effectiveness depends on factors like the traini
quality and the neural network’s architecture.

D. Malware Analysis Using Intelligent Feature Sel

Fang et al., [10] developed a specialised architectur
called DQFSA to address the shortcomings of
malware classification methods. The architecture us
learning to identify crucial features, reducing human
tion and allowing data selection and analysis acro
cases and data volumes. The methodology incorpor
view features, focusing on high classification accur
the validation phase. The key difference lies in ex
AI agent to sample features with minimal human in
Experiments validated the DQFSA architecture by
its performance against various classifiers and rela
However, the DQFSA framework imposes restricti
AI agent within the action space that remains unex

E. Modern Incident Response Enhanced by AI

Dunsin et al., [19] present a study on the appl
artificial intelligence (AI) and machine learning
digital forensics, focusing on enhancing malware in
through innovative methodologies. The paper high
integration of AI and ML techniques to improve in
precision and efficacy in digital forensics, leveraging
computational models to automate the investigation
sis of cyber threats. Another focus is memory forens
focuses on machine learning algorithms to analys
dumps and malware, enhancing the reliability o
investigations by extracting and analysing multiple

The study highlights the advantages of AI and ML
forensics, such as data mining techniques, reinforcem
ing, and Markov decision process (MDP) for autom
ware analysis. However, the study acknowledges
such as data validity, appropriate tools for mem
lack-box attacks. However, RL in discrete action retrieval, and adhering to ethical and legal standards. The

Journal Pre-proof
5

study also
Markov dec
malware in
systematic
tating the
investigatio

F. ML and

Piplai et al.
learning an
ysis. The f
ment learni
sources det
create 99 di
model to i
[20] condu
the research
ing algorith
their perfor
aspects, suc
for new ma
introduce b
the framew
valuable, g
accuracy.

G. RL for

Reinforcem
involves an
by effectiv
and exploi
reinforcem
of conduct
following
within the
objective i
enabling it
malicious
incident m
learning ag
and receive
it enhances
an optimal

TABLE

Malware V
1 - WannaC
2 - Cerber
3 - DeriaLo
4 - LuckyL
5 - Dharma
6 - SporaRa
7 - GandCr
8 - GoldenE
9 - Locky.A
10 - Infinity
11 - Win32
12 - PowerL
13 - W32.M

ent learn-
systematic
ataset us-
Forensics
machines

controlled
network.

nintended
collection
each rep-

ng system.
us to test

ments.

ct each of
h malware
ehaviours,
ramework.
, we took
d the live
al machine
shot. This
ected and
thodology
ironments
lyse these
l tool for
e infected
nabled us
icative of

fication of
age of the
aintaining
reference.
created a

mapped
d with the
al aid for

memory.
f our pro-

forensics
l element
iagram in
e dataset,
l machine

prehensive
ss to the

diagram,
our rein-

k, encom-
ding data
Jo
ur

na
l P

re
-p

ro
of

proposes reinforcement learning, modelled as a
ision process (MDP), as a method for investigating
digital forensics. The MDP framework allows for
evaluation of different states and actions, facili-

development of effective RL models for malware
n, as illustrated in Figure 1.

Knowledge Based System for Malware Analysis

, [7]) propose a framework that uses reinforcement
d open-source knowledge to enhance malware anal-
ramework consists of two components: reinforce-
ng for malware analysis and knowledge from open
ailing past cyberattacks. The research experiments
stinct processes during data collection, enabling the
dentify new malware. In similar research, Gallant
cted a malware investigation experiment in which
ers trained and employed multiple machine learn-
ms, including Perceptrons, and rigorously tested

mance. However, Piplai et al., [7] leave unspecified
h as determining which prior knowledge is relevant
lware analysis and whether prior knowledge might
iases from previous cases. Despite these concerns,
ork’s incorporation of prior knowledge remains
uiding new models with increased efficiency and

Malware Investigations

ent learning in malware forensics investigations
agent that seeks to optimise cumulative rewards

ely managing the trade-off between exploration
tation. Our research’s primary focus is on using
ent learning techniques to automate the process
ing post-incident malware forensics investigations
a security incident. The agent performs actions
environment, leading to changes in its state. The
s to gradually enhance the agent’s performance,
to precisely identify portable executables as either
or benign. In the context of the proposed post-
alware forensics investigations, the reinforcement
ent begins at state zero (0), takes guided actions,
s rewards or penalties. With each action and reward,
its strategy through iterative learning until it attains
approach.

II: Malware Names Against the Operating Systems

ariant Target Windows OS
ry Windows 7 Professional SP2.

Windows 7 All in One AIO (32/64-bit).
ck Windows 11 ISO 22H2 - 64bit.
coker Windows 8.1 Pro 6.3.9600 - 64bit

Windows 8.1 Pro 6.3.9600 - 32bit.
nsomware Windows 10 2022 - 32bit.

ab Windows 10 2022 - 64bit.
ye Windows 10-64bit.
Z WinDev2303Eval.
Crypt MSEdge – Windows 10.

.BlackWorm Windows 7 Professional SP1 v6.1.7601.
oader Windows 7 Starter SP1 v6.1.7601.

III. RESEARCH METHODOLOGY

A. Experimental Setup and Dataset Generation

To implement and validate our proposed reinforcem
ing malware investigation framework, we took a
approach to creating a comprehensive malware d
ing the London Metropolitan University Digital
Laboratory. First, we established thirteen virtual
within an isolated network to ensure a secure and
environment for our experiments and the eduroam
This setup was critical to preventing the spread of u
malware and maintaining the integrity of our data
process. Next, we uploaded 13 different ISO files,
resenting various versions of the Windows operati
This diverse selection of operating systems allowed
our framework across a broad spectrum of environ

Next, we introduced a variety of malware to infe
these operating systems. We specifically chose eac
type to represent different attack vectors and b
providing a robust challenge for our investigation f
For each ISO file installed on the virtual machine
an initial snapshot of the environment and save
memory dump. Following this, we infected the virtu
with the chosen malware and took another snap
process resulted in pairs of snapshots, one uninf
one infected, for each operating system. This me
produced 13 RAM files from the uninfected env
and another 13 from the infected ones. To ana
files, we used the Volatility framework, a powerfu
memory forensics. We manually examined both th
and uninfected RAM files, which, as a result, e
to identify significant changes and behaviours ind
malware presence. To ensure replication and veri
our procedures, we diligently documented each st
analysis. This documentation was critical for m
the integrity of our research, as well as future
Finally, based on our analysis of the 26 files, we
detailed malware workflow diagram. This diagram
out the typical processes and behaviours associate
malware samples, providing a visual and analytic
understanding how different malware affects system
This workflow diagram is a crucial component o
posed reinforcement learning post-incident malware
investigation framework, serving as a foundationa
for training and validating our model. The visual d
Figure 2 illustrates the steps we took to create th
outlining each component, from setting up the virtua
to creating the malware workflow diagram.

B. Malware Workflow Diagram Creation

The research methodology extends from our com
experimental setup and dataset generation proce
development of a detailed malware analysis workflow
as depicted in Figure 3. This diagram is integral to
forcement learning malware investigation framewor
passing various malware analysis techniques, inclu
yDoom.A Windows 7 Ultimate SP1 v6.1.7601.
collection, examination, and analysis. Our dataset, comprising

Journal Pre-proof
6

live memo
operating s
the founda
to detect a
malware ar
ory forensi
of techniqu
behavioura
resulting m
out the typ
chosen ma
for improv
ware foren
ously train
strengtheni

C. Markov

The propos
corporates
ical framew
are partiall
control. To
component

• States

• Action

• Trans
ability
𝑎.

• Rewa
reward

• Discou
future

presents a
el process.

presents a

bability of
is taken.

probabil-
𝑠10) = 0.8.

immediate
𝑠.

a reward

0.9 and 1)

ning (RL),
g with the
-learning,

ed on the

for policy

𝜋 ′
Jo
ur

na
l P

re
-p

ro
of

Fig. 2: Experimental Setup and Dataset Generation

ry dumps from 13 different versions of Windows
ystems—both infected and uninfected—provides

tion for this workflow. We examined these dumps
nomalies, indicators of compromise, and potential
tefacts by using the Volatility framework for mem-
cs. The analysis phase incorporates a diverse array
es such as static analysis, signature-based analysis,
l analysis, and machine learning algorithms. The
alware workflow analysis diagram not only maps
ical processes and behaviours associated with our
lware samples, but it also serves as a crucial tool
ing information security and post-incident mal-
sic investigations. Our structured approach rigor-
s and validates our reinforcement learning model,
ng our malware investigation capabilities.

Decision Process (MDP) Formulation

ed post-incident malware forensics investigation in-
the Markov Decision Process (MDP), a mathemat-
ork that models decision-making when outcomes

y random and partially under a decision-maker’s
achieve this, our MDP consists of the following

s:

(S): In this case, |𝑆 | = 67 states.

s (A): In this case, |𝐴| = 10 actions.

ition Function (T): 𝑇 (𝑠, 𝑎, 𝑠′) represents the prob-
of transitioning from state 𝑠 to state 𝑠′ under action

rd Function (R): 𝑅(𝑠, 𝑎) represents the immediate
received after performing action 𝑎 in state 𝑠.

nt Factor (𝛾): A factor 𝛾 ∈ [0, 1] that discounts

Step 1: Define States and Actions

• Let 𝑆 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠66} where each 𝑠 re
unique state in the malware investigation mod

• Let 𝐴 = {𝑎0, 𝑎1, 𝑎2, . . . , 𝑎9} where each 𝑎 re
possible action.

Step 2: Define Transition Function 𝑇 (𝑠, 𝑎, 𝑠′)

• The transition function 𝑇 (𝑠, 𝑎, 𝑠′) gives the pro
moving from state 𝑠 to state 𝑠′ when action 𝑎

• Example: If taking action 𝑎2 in state 𝑠5 has a 0.8
ity of transitioning to state 𝑠10, then 𝑇 (𝑠5, 𝑎2,

Step 3: Define Reward Function 𝑅(𝑠, 𝑎)

• The reward function 𝑅(𝑠, 𝑎) provides the
reward received after taking action 𝑎 in state

• Example: If taking action 𝑎3 in state 𝑠8 gives
of 10, then 𝑅(𝑠8, 𝑎3) = 10.

Step 4: Define Discount Factor 𝛾

• Choose a discount factor 𝛾 (typically between
to weigh future rewards.

D. Leveraging Reinforcement Learning

In the context of our proposed Reinforcement Lear
the agent learns the optimal policy 𝜋∗ by interactin
three proposed MDP environments. Specifically, Q
our chosen algorithm, updates the Q-values bas
Bellman equation.
1) Value Function and Policy: The value function
𝜋 is given by:

𝜋
∑︁ ∑︁

′

rewards.

𝑉 (𝑠) =
𝑎

𝜋(𝑎 | 𝑠)
𝑠′

𝑇 (𝑠, 𝑎, 𝑠) [𝑅(𝑠, 𝑎) + 𝛾𝑉 (𝑠)]

Journal Pre-proof
7

• 𝑉 𝜋 (𝑠)
and fo

• 𝜋(𝑎 |
policy

2) Reinforc
tionLeverag
proposed R
optimal pol
environmen
updates the

The Q-lear

𝑄(𝑠, 𝑎)

Where:

• 𝛼 is th

• 𝑟 is th

• 𝑠′ is t

• max𝑎′
from s

Using the s

• We ha

• The tr
based

3) Q-Learn

𝑄(𝑠, 𝑎)

Step 1: In

• Initial
values

Step 2: Ch

• Examp

Step 3: Im

• Initial

• Repea

– Sele
stra

– Tak

– Upd

𝑄(𝑠

– Upd

• Until

Investiga-
to define
uses live

facts, with
The state

ncompass-
we follow
e memory
ng process
collecting

eys, dupli-
g them to

g

dent Mal-
off-policy,
s a value-
based on

e value of
knowledge
functions.

model for
’ signifies
optimising
algorithms
he optimal
algorithms
ially, with-

proposed
ch, which
learn the

cordingly.
policy to

e. On the
sesses and
execution

and refine

proposed
vestigation
explained
which the
entity that
e environ-
within the
ble moves
ent. Every
ward or a
g that the
when the

ure.

to manage
Jo
ur

na
l P

re
-p

ro
of

: Expected cumulative reward starting from state 𝑠

llowing policy 𝜋.

𝑠): Probability of taking action 𝑎 given state 𝑠 under
𝜋.
ement Learning (RL) with Q-Learning: subsec-
ing Reinforcement Learning In the context of our
einforcement Learning (RL), the agent learns the
icy 𝜋∗ by interacting with the three proposed MDP
ts. A common algorithm used is Q-learning, which
Q-values based on the Bellman equation.

ning update rule is given by:

← 𝑄(𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

]

e learning rate.

e reward received after taking action 𝑎 in state 𝑠.

he next state resulting from action 𝑎.

𝑄(𝑠′, 𝑎′) is the maximum estimated future reward
tate 𝑠′.

pecifications as a result of the workflow diagram:

ve 67 states and 10 actions.

ansition and reward functions would be defined
on the specific malware identification tasks.
ing Update Rule:

← 𝑄(𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

]
itialize Q-Table

ize 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴 to some arbitrary
(e.g., 0).

oose Learning Rate 𝛼 and Discount Factor 𝛾

le: 𝛼 = 0.1, 𝛾 = 0.9.

plement the Q-Learning Algorithm

ize state 𝑠.

t:

ct an action 𝑎 using an exploration-exploitation
tegy (e.g., 𝜖-greedy).

e action 𝑎, observe reward 𝑟 and next state 𝑠′.

ate Q-Table using the Q-learning update rule:

, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

]
ate state 𝑠← 𝑠′.

E. Setting the Parameters for MDPs

The Reinforcement Learning Post-Incident Malware
tive Model uses the malware workflow diagram
parameters for action and state spaces. The agent
memory dumps to analyse and identify malware arte
109 distinct actions within a defined environment.
array aligns with the malware workflow diagram, e
ing 67 unique states. To achieve this alignment,
steps such as installing WinPmem, obtaining liv
images, understanding the operating system, extracti
information, listing DLLs, tracking open handles,
network data, figuring out registry hives, listing k
cating processes into executable files, and sendin
Known Files Filters Servers.

F. The Motivation behind Implementing Q-Learnin

The proposed Reinforcement Learning Post-Inci
ware Investigation Framework uses Q-learning, an
model-free algorithm. We use it because it employ
based approach to determine the optimal actions
the current state. The algorithm learns the relativ
different states and actions through experiential
without relying on explicit transition or reward
This approach is suited for the proposed RL
analysing malware artefacts. In this context, ‘Q
quality, representing the action’s value in terms of
future rewards. On the other hand, model-based
employ transition and reward functions to estimate t
policy and construct a model, whereas model-free
acquire knowledge about action outcomes experient
out explicit transition or reward functions. In our
implementation, we opt for the value-based approa
entails training the value function for the agent to
relative value of different states and take actions ac
Conversely, policy-based methods directly train the
determine the appropriate action for a given stat
other hand, in off-policy methods, the algorithm as
improves a policy that is different from the action
policy. In contrast, on-policy algorithms evaluate
the same policy employed for action execution.

G. Q-Learning Terminologies

In the following sections, we will implement the
Reinforcement Learning Post-Incident Malware In
Model. The following terminologies are defined and
in brief. An Environment is the space or world in
agent operates and takes actions. An Agent is the
learns and makes decisions by interacting with th
ment. States (s) signify the agent’s present location
environment. An Action (a) is the set of all possi
or decisions the agent can make in the environm
action the agent takes results in either a positive re
penalty. Episodes mark the end of a stage, indicatin
agent cannot perform further actions. This occurs
agent either accomplishes its objective or faces fail

For each state-action pair, the agent uses a Q-Table

convergence or a specified number of episodes. or store Q-values. We use Temporal Differences (TD) to

Journal Pre-proof
8

estimate th
and action
rate is a pa
overrides o
from states
Discount F
of future r
equation in
the Q-valu
subsequent
a method f

H. Q-Table

As previou
ponents tha
the agent i
expected re
learning al
essentially
sets of act
action spac
up the Q-t
facilitates.
using the B
action (a) a
the calcula

I. Subsecti

The propo
(MDP) rep
MDP mode
(MDP) mod
probability
of the unifi
of identifyi
for further
for process
process DL
checking fo

• WinPm
resent
stallat
if erro
ultima
install
a trans
install
or star
the de
stallat

• Acquir
decisio
transit
image
debug
it as a

ditionally,
cally State
occurs.

uence, the
transition

ons aimed
resent the
e the goal
debugging
, the agent
ame, date,
ge Plugin,
cation.

strates the
retrieving
ent plugin
eing able
about the

nt List of
ed process
ct features
hes a state
and stored
t step rep-
extracting
c process.
T plugin,
ability to

s depicted
DPs into

erspective.
vigate the
g malware

estigation

re Investi-
onents, as

diagram
tal depen-
d adapta-
ry dumps
amination

fy anoma-
e artifacts.
pproach to
signature-
e learning
to extract
Jo
ur

na
l P

re
-p

ro
of

e expected value by comparing the current state
with the previous state and action. The learning

rameter that determines how much new information
ld information. A policy is a strategy or mapping
to actions that defines an agent’s behaviours. The

actor is a parameter that determines the importance
ewards. The Bellman Equation is a fundamental
Q-Learning that expresses the relationship between
e of a state-action pair and the Q-values of the
state-action pairs. The Epsilon-Greedy Strategy is

or balancing exploration and exploitation.

and Q-Function

sly mentioned, the Q-table is one of the key com-
t facilitate the agent’s decision-making. It guides
n selecting the most favourable action based on
wards within the provided environments. The Q-
gorithm updates the values of a Q-table, which
functions as a structured repository encapsulating
ions and states. However, defining the state and
es is a crucial preliminary step in effectively setting
able, a task that the malware workflow diagram
Furthermore, the Q-function plays a central role,
ellman equation and considering the state(s) and
s its input. This equation significantly streamlines

tion of both state values and state-action values.

ons of the Markov Decision Process Model

sed subsection of the Markov Decision Process
resents a segment of the comprehensive and unified
l. Each subsection of the Markov Decision Process
el contains states, actions, rewards, and a transition
function. These subsections are crucial components
ed MDP that provide an agent with the capabilities
ng and isolating suspicious portable executable files
investigations. This approach sets a benchmark

es such as recognising process identities, analysing
Ls and handles, examining network artefacts, and
r evidence of code injection.

em Installation: The WinPmem MDP subset rep-
s the different states and actions involved in the in-
ion process, including troubleshooting and resetting
rs or corruption occur during the installation. The
te goal is to reach State 5, indicating a successful
ation of WinPmem. Each action is associated with
ition between states, either progressing through the
ation, returning to a previous state for debugging,
ting over. The MDP helps model and understand
cision-making process involved in WinPmem in-
ion.

ing Live Memory Image: Figure 4 outlines a
n-making process that involves actions, states, and

ions to achieve the goal of acquiring a live memory
, with the possibility of encountering errors and
ging them along the way. However, we structure

in each state determine the state transitions. Ad
the objective is to attain a desired state, specifi
10, where successful live memory acquisition

• Identifying the Operating System: In this seq
subset MDP illustrated in Figure 5 entails the
between states and the implementation of acti
at identifying the operating systems. States rep
system’s status, and actions are taken to achiev
of identifying the operating system, including
steps to handle errors and crashes. In state 15
successfully identifies the suggested profile n
and time information using the Volatility Ima
indicating successful operating system identifi

• Identifying Process Information: Figure 6 illu
various states and actions available in MDP for
process information. This includes using differ
functions, debugging to fix problems, and b
to choose from different ways to collect data
process.

• AWK Module Features Extractions and Pri
Loaded DLLS: The agent starts with the identifi
information, executes an AWK module to extra
related to suspicious portables, and finally reac
where these feature extractions are complete
in an output file, as shown in Figure 7. The nex
resents a Markov decision process (MDP) for
information about the loaded DLLs by a specifi
The process includes executing the DLLLIS
debugging potential issues, and providing the
reset and repeat the analysis if necessary.

J. The Unified Markov Decision Process

The Unified Markov Decision Process (MDP), a
in Figure 8, consolidates all the subsections of M
a singular process, providing a comprehensive p
This synthesis allows the agent to effectively na
environment and make informed decisions regardin
investigation.

K. The Proposed RL Post-Incident Malware Inv
Framework

The Reinforcement Learning Post-Incident Malwa
gation Framework comprises six fundamental comp
illustrated in Figure 9: data collection, workflow
mapping, MDP model implementation, environmen
dencies, MDP solver, and continuous learning an
tion. Data collection involves acquiring live memo
from Windows operating systems, whereas data ex
focuses on analysing the collected data to identi
lies, compromise indicators, and potential malwar
The workflow diagram outlines a comprehensive a
identifying malware infections using static analysis,
based analysis, behavioural analysis, and machin
algorithms. However, we use the AWK module
Markov decision process, where the actions taken features from the identified processes. On the other hand,

Journal Pre-proof
9

listing DLL
it tracks lo
toring open
handles ass
is collectin

ation

e analysis
their keys.
and check
e whether

plicate the
g specific

malware
Jo
ur

na
l P

re
-p

ro
of

Fig. 3: Malware Workflow Diagram

Fig. 4: Live Memory Acquisition

Fig. 5: Identifying Operating System

s is an essential aspect of this workflow because
aded DLLs for each process. Additionally, moni-

handles is crucial for keeping track of the open
ociated with each process. Another important focus

Fig. 6: Windows Running Process and ID Identific

Fig. 7: AWK Module Features Extractions

pertinent network-related information. Registry hiv
involves identifying the registry hives and listing
We duplicate the processes into executable files
them against known malware databases to determin
they are malicious or benign. Additionally, we du
addressable memory to conduct a grep search usin
keywords.

The state spaces are designed to align with the

g network data to ensure the acquisition of all workflow diagram, encompassing 67 unique states. Based on

Journal Pre-proof
10

this workfl
ten, exposi
environmen
Decision P
Incident M
of the MD
dencies int
environmen
the training

L. The Pr
Model

In the prop
ware Inves
which inte
is the live
provides th
(s) is a rep
environmen
the agent ca
as the ‘Rew
uses the ’P
on the curr
that estima
state follow
a)) is a fun
from taking
particular p
environmen
and its poli
provides a
and value f
state. This

ward over

Algorithm

m, a rein-
ake opti-
initialises

erstanding
d columns

rning rate,
lly set to
or storing
loop runs
vironment
to obtain

nitialise a
ithin each
om action
he highest
vironment
te, reward,

Bellman
immediate
next state.
ain condi-
dates. The
t and new
taken, are

decays the
rgence by
nd current
Jo
ur

na
l P

re
-p

ro
of

Fig. 8: Overall Markov Decision Process (MDP) Model

ow, the actions are defined, ranging from three to
ng the agent to 109 distinct actions within a defined
t. Formulating the subsections, the unified Markov

rocess (MDP) models, and the proposed RL Post-
alware Investigation Model leads to the creation
P solver. We divide the setup environment depen-
o three sections: creating dependencies and gym
ts, importing required libraries, and implementing
data for continuous learning and adaptation.

oposed RL Post-Incident Malware Investigation

osed Reinforcement Learning Post-Incident Mal-
tigation Model, the ‘Agent’ is the decision-maker
racts with the environment. The ‘Environment’
memory dump in which the agent interacts. It

e agent with state and reward data. The ‘State’
resentation of the agent’s current situation in the
t. The ‘Action’ (a) is the set of all possible moves
n take. The environment provides feedback, known
ard’ (r), to evaluate the agent’s actions. The agent

olicy’ as a strategy to decide the next action based
ent state. The ‘Value Function’ (V(s)) is a function
tes the expected cumulative reward from a given
ing a particular policy. The ‘Q-Function’ (Q(s,

ction that estimates the expected cumulative reward
a particular action in a given state, following a

olicy. The agent observes the current state of the
t. The agent selects an action based on this state

cies. The environment transitions to a new state and
reward to the agent. The agent updates its policy
unctions based on the reward received and the new

an optimal policy that maximises the cumulative re
time.

M. Algorithm 1 - Implementation of the Q-Learning

Algorithm 1 implements the Q-learning algorith
forcement learning technique, to train an agent to m
mal decisions in an environment. The code initially
a Q-table with zeros, symbolising the agent’s und
of the environment, where rows represent states an
represent actions.

The code establishes key parameters such as the lea
discount factor, and exploration probability (initia
0.9), as well as decay schedules and structures f
data (storage, storage new, reward list). The main
for a specified number of episodes, resetting the en
and relevant variables at the start of each episode
the initial state, reset the episodic reward, and i
step counter. A ’greedy policy’ selects actions w
episode: if the probability is high, it selects a rand
(exploration); if not, it selects the action with t
Q-value for the current state (exploitation). The en
executes the selected action, providing the next sta
and a done flag indicating the episode’s end. The
equation updates the Q-value, accounting for the
reward and the maximum future Q-value from the
The Q-table then stores the updated Q-value. Cert
tions trigger the recording of specific Q-value up
state is then updated to the next state, and the curren
Q-values, along with the episode number and action
appended to the storage list. A predefined schedule
exploration probability. We optionally check conve
comparing the absolute difference between the new a
iterative process continues until the agent learns Q-values, and if the difference falls below a threshold but the

Journal Pre-proof
11

values are
append the
to the rewa
the episode
list, and sto
the data ga
the initialis
new1, env
MDP funct
(‘name list
environmen
(MDP) wit

N. Algorith
Environmen

Algorithm
using diffe
ments. The
various env
named ’fin

Next, we s
learning ra
sulting Q-ta
storage col
of learning
learning’ a
by appendi
guarantees
varying lea

NTATION

ironments

d Markov
Diagram,

probabili-
a discrete
ion space
p penalty
malware.

ves a re-
rate mal-
rate iden-
onversely,
a harsher

t malware
ng unnec-
s in both
e.

ibraries

ncies, im-
Time, and
putations,

e for mea-
p optimise
t malware
m library,
s environ-
Jo
ur

na
l P

re
-p

ro
of

Fig. 9: The Proposed RL Post-Incident Malware Investigation Framework

not equal, we can terminate the loop early. We
episodic reward, episode number, and step count

rd list after each episode, thereby further delaying
. Finally, we return the Q-table, storage, reward
rage new, which summaries the learned policy and
thered during training. The process begins with

ation phase, where three custom environments (env
new2, and env new3) are defined using a defined
ion. The algorithm then iterates over a list of names
’), and for each name, it assigns the appropriate
t by configuring the Markov Decision Process

h specific transition probabilities and rewards.

m -2 Iterating Learning Rates Variation over MDP
ts

2 is an algorithm that trains and stores models
rent learning rates (LRs) across multiple environ-

initialisation phase initiates the process, defining
ironments (envs) and creating an empty dictionary
al dict’ to store results.

et the training parameters, which include a list of
tes ranging from ‘0.001 to 0.9’, and store the re-
bles, intermediate storage, rewards, and additional
lections. For each learning rate (‘lr’) in the list
rates (‘lrs’), the algorithm executes the ‘new q

lgorithm. Finally, the algorithm stores the results
ng them to the ’final dict’. This structured approach
systematic model training and result storage for

IV. MDP MODELS INTEGRATION AND IMPLEME

A. An Overview of Our Three Proposed MDP Env

The BlankEnvironment models the propose
Decision Process using the Malware Workflow
incorporating states, actions, rewards, transition
ties, and episode completion status. It features
action space with 10 actions and an observat
with 67 observations, assigning a standard ste
of -0.04 and a reward of 2 for identifying
The BlankEnvironment_with_Rewards gi
ward of 2 for all terminal states upon accu
ware identification and 4 for early-stage accu
tification, encouraging correct classifications. C
the BlankEnvironment_with_Time imposes
penalty of -0.01 per step to incentivise efficien
identification by discouraging the agent from taki
essary actions. Rewards serve as hyperparameter
environments, refined for optimal agent performanc

B. Implementing MDP Environments Key Python L

We begin by creating the ‘Environment’ depende
porting essential libraries like NumPy, Random,
Gym modules. We use NumPy for numerical com
Random for generating random numbers, and Tim
suring code execution time. These measurements hel
performance and compare our RL-based post-inciden
investigation model with human experts. The Gy
commonly used in reinforcement learning, define
rning rates in different environments. ments, and agents, and evaluates their performance, with its

Journal Pre-proof
12

Algorithm
1: Initiali
• Initia

agen
• Set

expl
• Initia

ward
2: for epi
3: Reset e
• Rese
• Initia
• Store

4: while n
5: Select
• if 𝜖
• actio
• else
• actio

6: Execut
• Act

rewa
• Upd
• Incre

7: Update
8: Compu
9: Calcul

10: Update
11: Store Q

action)
12: Update
13: Append

storage
14: Decay
15: Check

and ne
16: Break
17: Append
18: Update

• 𝜖 ←
19: Return

• Retu
age_

20: end fo

‘spaces’ mo
in an RL e

C. Initialis

We assign v
‘67’ to the
‘number of
10’ assigns
actions’, w
these variab

over MDP

y final dict

transition

nal_dict

nt Class

ss named
.Env’, in-

t. For the
tialises the
ironment’s
ace is dis-
tion space
t variable,
ent to ‘0’.
ry to store
k.

ent to an
‘self.state
a step in

ssigning a
1)‘. If the
s between
state, 1, a

ewards

is a
ared to
11, in the
Jo
ur

na
l P

re
-p

ro
of

1 Q-Learning Implementation

zation:
lize Q-table with zeros. (defines the state of the
t)
parameters: learning rate (𝛼), discount factor (𝛾),
oration probability (𝜖 = 0.9), and decay schedule.
lize storage structures: storage, storage_new, re-
_list.
sode = 0, 1, . . . , episodes do
nvironment and variables:
t the environment to obtain the initial state.
lize episodic reward and step counter.
current epsilon value.

ot done, do
action using 𝜖-greedy policy:
< rand() then
n ∼ Uniform(noA)

n = max𝑎 𝑄(state, 𝑎)
e action:
in the environment and observe the next state,
rd, and done flag.
ate episodic reward.
ment steps counter.
Q-value using Bellman equation

te the maximum future Q-value for the next state.
ate the new Q-value
the Q-table with the new Q-value.
-value updates if specific conditions (e.g., state,
are met.
state: Set the current state to the next state.
the (current_q, new_q, episode, action) to the

list.
𝜖 : Reduce epsilon based on the decay schedule.
convergence: if |new_q − current_q| < threshold

w_q ≠ current_q then
the loop

(episodic_reward, episode, steps) to reward_list.
𝜖 :
𝜖 − (𝜖_decay_value × 0.5)
results:
rn Q-table, storage, reward_list, and stor-
new.
r

dule representing possible observations and actions
nvironment.

ing the State and Action Variables

alues to two variables: ‘noS = 67’ assigns the value
variable ‘noS’, implying that ‘noS’ represents the
states,’ with a value of 67. The variable ‘noA =
the value ‘10’ to ‘noA’, signifying the ‘number of

ith a value of 10. Q-Learning will continue to use

Algorithm 2 Iterating Learning Rates Variation
Environments

1: Initialization: Defining different envs and empt
2: for name in name_list do

1) Assigning the right env (MDP): Using diff
probs and rewards to create the MDP

2) Defining and resetting the training params:
• Learning rates list
• outputs, store and rewards dictionaries

3) for lr in lrs do
a) Performing the new_q_learning algorithm
b) Storing everything by appending in the fi

4) end for
3: end for

Fig. 10: Initialise and Implement the BlankEnvironme

D. Implementation of the BlankEnvironment

As shown in Figure 10, we define a new cla
‘BlankEnvironment’, which inherits from ‘gym
dicating its intended use as a gym environmen
BlankEnvironment class, the constructor method ini
class instance. The next variable defines the env
action space and observation space. The action sp
crete, with 10 possible actions, whereas the observa
is discrete, with 67 possible observations. The nex
‘self.state = 0’, sets the initial state of the environm
We initialize ‘self.P = dict()’ as an empty dictiona
transition probabilities in the subsequent code bloc

E. Defining Reset and Step Function

The ‘def reset(self)‘ function resets the environm
initial state, returning the initial observation with
= 0‘. The ‘def step(self, action)‘ method simulates
the BlankEnvironment based on the action, a
random number to ‘temp‘ using ‘np.random.rand(
current state is between 0 and 66 and the action i
0 and 9, the tuple ‘k‘ is updated with the current
reward of -0.04, and False.

F. Implementation of the BlankEnvironment with R

The BlankEnvironment_with_Rewards
completely different implementation comp
BlankEnvironment. As illustrated in Figure
les to define the dimensions of data structures. BlankEnvironment_with_Rewards, actions leading

Journal Pre-proof
13

Fig. 11: Initi
Class

to terminal
the -0.04 re
reward fun
is modified
flag. The d
the variable
completion
True, and
4. This up
reward whe

G. Implem

In BlankE
more sever
standard pe
technique a
malicious fi
aging any
extends the
significant
hyperparam
expression
tuple ‘k‘ to
If ‘done‘ i
a penalty o
is then cre
updating th
future inter

H. Iteratin

We implem
environmen
The na
’env_new
environmen
final result
loop. We u
learning ra

the output
to a tuple
all results

eral vari-
rates (q1,
store3),
rd3), and
e_new2,
v_new2,
retrieving

iables cor-
t structure
rning out-

alise the
e MDP
, and
onment,

and
ely. Each

f episodes
at(key)
a list of
command
a 10x6-

vironment,
distinction
s. Figure
Rewards
rgence. In
v_new3)
function,

putational
performs

uctuations.
ds is the

rates and

list lrs
ictionaries
e different
code then
nv1, then
ists within

Q-values
r different
x with the
Jo
ur

na
l P

re
-p

ro
of

alise and Implement the BlankEnvironment with Rewards

states are assigned a reward of 2, in contrast to
ward assigned in the BlankEnvironment. The

ction in BlankEnvironment_with_Rewards
when an episode ends, as indicated by the done

one flag assigns the value of the fourth element to
done, which contains information about episode

. The done flag checks if the done variable equals
the reward variable is set to a positive value of
date considers the consequences of changing the
n the episode ends.

entation of the BlankEnvironment with Time

nvironment_with_Time, the agent incurs a
e negative reward of -0.1 per step, compared to the
nalty of -0.04 in the other two environments. This
ims to incentivise the agent to efficiently identify
les by taking the most direct path, thereby discour-
superfluous actions. Furthermore, when the agent

episodes by taking additional steps, it receives
penalties. Notably, this incentive is considered a
eter, as it is subject to continuous refinement. The
‘done = k[3]‘ assigns the fourth element of the
‘done‘, indicating whether the episode is complete.
s ‘True‘, a reward of +4 is assigned; otherwise,
f -0.1 is given to the agent. The tuple ‘new k‘
ated, maintaining the original values of ‘k‘ but
e reward value. We return this updated tuple for
actions with the environment.

g MDP Environments over Learning Rates

ented a Python code and iterated the three MDP
ts over a range of learning rates (0.001–0.9).
me_list = [’env_new1’, ’env_new2’,
3’] defines a list containing the names of the
ts. We initialise an empty dictionary to store the

s and iterate over each environment using a for
se the Q-learning function to convert the current

We convert the output into a list and save it in
dictionary. Finally, we group the collected data in
and store it in the final dictionary, consolidating
for further insight.

V. TESTING AND EVALUATION

A. Retrieving Data from final-dict

We implemented a Python code and defined sev
ables, including Q-tables for different learning
q2, q3), changes in Q-values (store1, store2,
cumulative rewards (reward1, reward2, rewa
Q-values for multiple states (store_new1, stor
store_new3) for environments env_new1, en
and env_new3. It initializes these variables by
data from final_dict, ensuring each set of var
responds to a specific environment. This consisten
allows for efficient tracking and storage of Q-lea
comes across multiple environments.

B. Comparing the Speed of Convergence

We implemented a Python code to visu
speed of convergence across the thre
environments, (env_new1, env_new2
env_new3) representing BlankEnvir
BlankEnvironment_with_Rewards(),
BlankEnvironment_with_Time(), respectiv
dictionary maps learning rates to the number o
required for convergence. The code line x = [flo
for key in env_new1.keys()] creates
floating-point learning rates from env_new1. The
plt.figure(figsize=(10, 6)) initialises
inch plot, where we create scatter plots for each en
using different colours (blue, red, and green) for
and adding lines to illustrate convergence trend
12 shows that BlankEnvironment_with_
(env_new2) has the smoothest and fastest conve
contrast, BlankEnvironment_with_Time (en
converges slowly due to a higher negative reward
necessitating larger learning rates and more com
time. BlankEnvironment (env_new1) also
well, but it converges slower due to learning rate fl
As a result, BlankEnvironment_with_Rewar
best MDP environment, with a 0.4 learning rate.

C. Using Argmax to iterate over different learning
mdp environments

We implemented a Python code that initialises a
with various learning rates and creates empty d
q1_dct and q1_dict to store results for thre
environments, env1, env2, and env3. The
outputs a message indicating the processing of e
iterates over each learning rate in lrs, initialising l
the dictionaries and retrieving the corresponding
from q1. Within a nested loop running 67 times fo
states, it prints the state index and the action inde
te to a float and store the results in dictionaries. highest Q-value using np.argmax(q_new[i]), appending

Journal Pre-proof
14

this inform
q1_dict.

D. Using S
mdp enviro

We impl
stable_s
of an inpu
initialises
dictionaries
env3. The
each envir
into probab
function. It
action with
and prints
step. Upon
consistent
learning ra

E. Evaluat
MDP envir

We implem
changes in
env_new2
from 0.001
plotly.g
tracts cumu

0 for each
ing Plotly
ment with
v_new2,
ut with a
mode that
To render
.show()
er episode
. However,
ure 13.

he Python
their in-

e and pop-
lue pairs,
ommands
mmand to
mands for
ates 15 to
characters

command
Jo
ur

na
l P

re
-p

ro
of

Fig. 12: The speed of convergence across the three MDP environments

ation as a string to q1_dct and as an integer to

oftmax to iterate over different learning rates and
nments

emented a Python code that defines a
oftmax function to calculate the softmax
t array x in a numerically stable manner. It

a list of learning rates (0.001–0.9) and empty
for three environments: env1, env2, and
code then iterates over the learning rates for

onment, processes Q-values, and converts them
ility distributions using the stable_softmax
then samples actions for 67 states, appending the
the highest Q-value to the respective dictionary,

the current environment and learning rate at each
completion, it prints a done message, ensuring

performance across different environments and
tes for further comparative analysis.

ing rewards dynamics using learning rates and
onments

ented a Python code that examines reward
the three MDP environments (env_new1,

, and env_new3), with learning rates ranging
to 0.9. To create interactive plots, it imports the
raph_objects module as go. The code ex-

and average rewards per step from episodes 3 to 10
environment. We create a new figure object fig us
and add three traces, each representing an environ
unique colours (green for env_new1, blue for en
and red for env_new3). We update the plot layo
centred title, axis labels, a legend title, and a hover
displays data for all traces at the same x-coordinate.
and display the interactive plot, we call the fig
function, which compares the average rewards p
for the three environments at different learning rates
the graph for learning rate 0.4 is displayed in Fig

F. Command Definitions for State-Based Actions

We imported the Subprocess module to allow t
script to spawn new processes and manage
put/output/error pipes and return codes. We initialis
ulate an empty dictionary, my_dict, with key-va
each representing a state and each value a list of c
for that state. For example, state 0 includes a co
clone a GitHub repository, while state 10 has com
Windows system information and the registry. St
45 have various commands, some including special
and options like -pid and -o.

G. Implementing Command Logic in Python

We implemented a Python function create_

lative rewards, episode numbers, steps per episode, that takes three arguments: command_dict, state, and

Journal Pre-proof
15

action. A
a command
initialises a
process ID
state ==
1. If so, the
ter is greate
associated
invalid. If
the string a
variable. If
else block
The functio
dictionary,
checks if th

H. Definin

We set up
to organise
Google Co
Cridex ma
which they
Each malw
analysing a
lists (wind
and networ
and timing
sics expert
Incident M

A. The Age

We implem
ideal_li

reinforce-
t assigns
ed_list
r example,

action of
cific state,
ainst ideal
the three

Accuracy

ainst ideal
et_acc.
false, to
ectively. It
t simulta-
h element;
ncrements
e accuracy
ns (true

laces, and
evaluating
tings, and

processes
epresented
ict). We
presenting
ach envi-

s env1_x
Jo
ur

na
l P

re
-p

ro
of

Fig. 13: Average Rewards vs Episodes for Different Environment using 0.4 learning rate

dictionary (command_dict) is used to create
based on the given state and action. The function
variable pid with the value 340 and uses the

, pid, in the command generation logic. The if
1 block checks if the state parameter is equal to

code executes the next block. If the action parame-
r than or equal to the length of the list of commands
with the current state in command_dict, it is
the action is out of bounds, the code assigns
ction out of list size to the command
the action is within bounds, the code starts an
where the actual command generation takes place.

n also checks if the state variable is not in the
assigns the string transitional state, and
e action variable is greater than the list length.

g the ‘commands timings’ dictionary

a nested dictionary called commands_timings
the different commands that were run on the

llaborative Environment for WannaCry, Cerber, and
lware analysis families, along with the times at
were run (shown by variables like ta, tb, etc.).

are family includes specific forensic commands for
spects of system memory dumps, such as process
ows.pslist), registry scans, module analysis,

k statistics. Our research relies on these commands
s to compare the time required by a human foren-
with the Proposed Reinforcement Learning Post-

alware Investigation Framework.

VI. RESULTS AND DISCUSSION

nt Decision-Making Processes

ented a Python script that initialises two lists,

representing actions for specific states within our
ment learning MDP environment. The ideal_lis
optimal actions for states 0 to 66, while the pr
contains predicted actions for the same states. Fo
state 0 has an ideal action of 0 and a predicted
2. Each index in both lists corresponds to a spe
facilitating the comparison of predicted actions ag
outcomes to measure model performance across
environments using varying learning rates.

B. Python Function to Evaluate Predictive Model

To compare the accuracy of predicted actions ag
actions, we implemented a Python function named g
Initially, the function sets two variables, true and
zero to count correct and incorrect predictions, resp
iterates through the ideal_list and pred_lis
neously using the zip() method, comparing eac
if they match, it increments true; otherwise, it i
false. After the iteration, the function computes th
by dividing true by the total number of compariso
+ false), formats the result to five decimal p
prints the accuracy. This function is useful for
prediction accuracy in reinforcement learning set
upon execution, it shows an accuracy of 94%.

C. get_acc function for accuracy computation

The implemented Python function named get_acc
multiple environments (env1, env2, and env3) r
by dictionaries (q1_dict, q2_dict, and q3_d
defines 𝑥 and 𝑦 coordinates for three sets of data re
different environments: env1, env2, and env3. E
ronment’s data is stored in respective lists, such a
st and pred_list, containing integer values and env1_y, env2_x and env2_y, and env3_x and

Journal Pre-proof
16

env3_y. T
go.Scatt
markers), n
A layout is
y-axis labe
is created
plot is disp
visualises t
across thre
Consequen
of 0.4, is th

D. State tr
gation Mod

We implem
in the Bla
ment, using
landing sta
loop runs 2
associated a
next state,
with i, id
If i reac
prints the
(ideal_l
ing out due
simulating
actions and
navigates t
Investigatio

E. Plotting

As a resu
proposed r
vestigation
and landin
in the env
Environme
command
lated to st
command_
code to cre
execution t
Cerber, and
vertical su
spacing. W
to the first,
each has di
layout to se
the X-axis
’Time (sec
fig.show

F. Plotting
Execution T

We created
of various

t examined
ware work
to create a
. The graph
r the three
at provides
for various
 using the

achine in

es

interactive
n times of
 analysing
nd Cridex.

re analysis
the Google

achine in
ize a Plotly
lware type,
 time. The

e red, and
tomised to
axis (Com-
d grouped
omparison

ware types

hines

 to display
oss various
s and add
e analysed
a as scatter
represented
 contains a
erstanding.
f different
 shown in
 Investiga-
 compared
ironments.

n and Re-

rch clearly
nforcement
o highlight
pare these

s and more
ic methods
ially when
n contrast,
n process,
Jo
ur

na
l P

re
-p

ro
of

he code then creates three scatter plot traces using
er, specifying the data points, mode (lines and
ames, and marker colours for each environment.
defined for the plot, including a title, x-axis and

ls, and hover mode configuration. A figure object
by combining the traces and the layout, and the
layed using fig.show(). This code effectively

he accuracy computation for different learning rates
e MDP environments, as shown in Figure 14.
tly, it demonstrates that env2, with a learning rate
e best performing environment.

ansitions in our RL Post-Incident Malware Investi-
el

ented a Python function to simulate state transitions
nkEnvironment_with_Rewards() environ-
a learning rate of 0.4 and driven by actions and

tes. Starting with the initial state i set to 0, the
0 iterations, printing the current state (i) and the
ction (ideal_list_new[i]). To determine the
we call the function return_action_state
eal_list_new[i], and landing_list[i].
hes 66, the loop breaks. Finally, the code
final state (i) and its corresponding action
ist_new[i]) after completing the loop or break-
to reaching state 66. This code structure allows for
and tracking state transitions based on predefined
conditions, providing insight into how the agent

hrough our proposed RL Post-Incident Malware
n Model.

the proposed Model command execution timings

lt of keeping track of state changes using our
einforcement learning post-incident malware in-
model, we obtain a trajectory based on actions

g states, which control a series of state changes
ironment. We utilised the Google Collaborative
nt’s execution timings to plot the proposed model’s
execution timings. To store keys and values re-
ates and action trajectories, we created a new
timings_dict. We then defined new Python
ate a multi-plot figure using Plotly to analyse the
ime of different malware commands (WannaCry,

Cridex). This code initialises a figure with three
bplots, each with a title and increased vertical
e add line plots for WannaCry, Cerber, and Cridex
second, and third subplots, respectively, ensuring

stinct colours and markers. We update the figure’s
t its dimensions and centre the title. We customize
labels for each subplot and label the y-axes with
onds)’. The resulting graph is displayed using
(), as illustrated in Figure 15 below.

Collab and PowerShell Environment Command
imings

a Python script to visualise the execution timings

vironments and Fast Windows Machine. The scrip
WannaCry, Cerber, and Cridex to design the mal
flow diagram. The script used the Plotly library
multi-subplot figure, with scatter plots for each type
provided a clear comparison of execution times fo
malware types. Figure 16–17 displays a graph th
a clear visual comparison of the execution times
commands executed on the three malware types
Google Colab environments and Fast Windows M
the PowerShell.

G. Interactive Analysis of Malware Execution Tim

We implemented a Python code using Plotly for
plotting, which allows us to visualise the executio
various commands performed by the agent when
different malware, specifically WannaCry, Cerber, a
We also used the same code to sample malwa
execution times for commands executed in both
Collaborative Environment and a Fast Windows M
the PowerShell Environment. As a result, we initial
figure and add three separate bar plots for each ma
with each bar representing the command’s execution
bars for WannaCry are blue, for Cerber they ar
for Cridex they are green. The plot’s layout is cus
include a horizontally centred title, labels for the x-
mands Executed) and y-axis (Time (seconds)), an
bars. Using fig.show(), we presented a visual c
of command execution times across different mal
and environments, as illustrated in Figure 18–20.

H. Visualising execution times across multiple mac

We implemented a Python script that uses Plotly
the total execution times for malware analysis acr
machines. We iterate over the different machine
up the execution times for each type of malwar
(WannaCry, Cerber, and Cridex). We present the dat
plots with lines and markers, with each machine
by a correspondingly designated trace. The layout
centred title and marked axes to help with data und
As a result, the chart provides a comparison view o
machines’ malware analysis execution timings, as
Figure 21. Our proposed RL Post-Incident Malware
tion Framework demonstrates superior performance
to the Google Collab and Windows PowerShell env

I. Comparison with Traditional Malware Detectio
cent Works

The experimental results achieved in our resea
demonstrate the advantages of implementing rei
learning (RL) in post-incident malware forensics. T
the effectiveness of our approach, it is crucial to com
results with traditional malware detection technique
recent advancements in the field. Traditional forens
require significant human expertise and time, espec
dealing with complex or obfuscated malware. I
our RL model automates much of the investigatio
commands executed on Google Collaborative en-

Journal Pre-proof
17

Fig. 15: Ma
Executed Us

Commands

lware arte-
ision than
ts, the RL

terms of
aking it a
stigations.

detection
based ap-
Jo
ur

na
l P

re
-p

ro
of

Fig. 14: Calling the get_acc function for accuracy computation

lware Analysis Execution Time for Different Commands
ing the Agent (RL Model)

Fig. 16: Malware Analysis Execution Time for Different
Executed Using Google Collab Environment

demonstrating superior robustness in identifying ma
facts from live memory images with higher prec
existing automated systems. As shown in our resul
agent significantly outperformed human experts in
analysis time while maintaining high reliability, m
valuable tool for post-incident malware forensic inve

According to Djenna et al., [31], traditional malware
methods, such as signature-based and heuristic-

proaches, have been foundational in cybersecurity. Signature-

Journal Pre-proof
18

Fig. 17: Ma
Executed us

Fig. 18: Ma
Executed Us

based detec
a database
for detectin
method enc
morphic m
tion. Heuri
by examin
Despite bei
to high fal
evasive ma

Our exper
inforcemen
these tradit

Commands

 Commands

 than what
n identify-
ch handles
ally learn-
ess (MDP)
the critical
stems. The
f malware

al methods

larly those
 (DL) tech-
thods [33].
ng support
ave made
Jo
ur

na
l P

re
-p

ro
of

lware Analysis Execution Time for Different Commands
ing the PowerShell Environment

lware Analysis Execution Time for Different Commands
ing the Agent (RL Model)

tion identifies malware by comparing files against
of known malware signatures, which works well
g previously encountered threats. However, this
ounters difficulties when dealing with new or poly-
alware, which can modify its code to evade detec-
stic-based methods aim to overcome this limitation
ing behaviours or patterns that indicate malware.
ng more adaptive, heuristic methods are susceptible
se-positive rates and still struggle with advanced,
lware that mimics normal system behaviour [32].

imental results, which used Q-learning in a re-
t learning framework, significantly outperformed

Fig. 19: Malware Analysis Execution Time for Different
Executed Using Google Collab Environment

Fig. 20: Malware Analysis Execution Time for Different
Executed Using PowerShell Environment

detection accuracy of 94%, which is notably higher
traditional methods typically reach, especially whe
ing unknown malware strains. Our RL-based approa
new and evolving malware effectively by continu
ing and adapting within a Markov Decision Proc
environment. This dynamic adaptability addresses
limitation of static signature-based and heuristic sy
RL agent’s ability to respond to a broader range o
behaviours and features bridges gaps that tradition
often fail to address.

Recent advancements in malware detection, particu
involving machine learning (ML) and deep learning
niques, have sought to improve upon traditional me
Machine learning models, such as those employi
vector machines (SVMs) and neural networks, h
ional approaches. In our research, we achieved a significant strides by enabling more flexible classification of

Journal Pre-proof
19

malware ba
[34]. Howe
ter identify
methods, t
amounts of
models, suc
similarly de
analysing p
extensive c
challenging

Our resear
tegrating re
learning fr
real-time m
et al., [10]
to evade a
dynamic a
avoid detec
provides m
learning fr
on feedback
our model
learning mo

Moreover,
and Wu et
to enhance
the advant
showing ho
trial-and-er
recent wor
analysis or
our researc
post-incide
behavioura
comprehen
strated by o
times while

owcase the
nt learning
e detection
arning and
itations of
hine learn-
 evolving
static and

ach makes
st-incident

vestigation
erages ad-

ignificantly
an forensic
d unknown
lysis tech-

ve memory
are dataset
ere created

ion Process
ments into
ents were

tructure to
re analysis
 structured
e the mal-
orresponds
s, enabling
d value of
Q-learning
own states
g decision-
 temporal-
knowledge
over time.
Jo
ur

na
l P

re
-p

ro
of

Fig. 21: Total time spent on malware analysis using Collab, PowerShell, and RL Agent

sed on features extracted from files or behaviours
ver, while machine learning approaches can bet-
 previously unseen malware than signature-based
hey are often resource-intensive, requiring vast
 labelled data to train effectively [2]. Deep learning
h as Convolutional Neural Networks (CNNs), have
monstrated improvements in detecting malware by
atterns, but they tend to require large datasets and
omputational power, making real-time detection
 [35].

ch builds upon these recent advancements by in-
inforcement learning, which not only allows for

om limited data but also enhances adaptability in
alware forensics. For instance, studies like Fang

 DQEAF model, which employs deep Q-networks
ntivirus engines, emphasise the need for more

pproaches to deal with malware that evolves to
tion. In comparison, our Q-learning-based approach
ore efficient malware detection by continuously

om its environment and refining its actions based
. Our experimental results reflect this capability, as

outperforms both traditional methods and machine
dels that rely on static data and predefined features.

recent works, such as those by Quertier et al., [1]
 al., [6] have incorporated reinforcement learning
 malware detection. These studies demonstrated
ages of RL over traditional machine learning by
w it can improve malware identification through

ror learning processes. However, many of these
ks focus on specific use cases, such as static file
 narrowly defined malware behaviours. In contrast,
h extends the scope of RL by applying it to

nt forensic analysis, incorporating both static and
l data. This broader application results in a more
sive and accurate detection framework, as demon-
ur model’s ability to reduce forensic investigation
 maintaining high detection accuracy.

Finally, the experimental results of our research sh
superior effectiveness of the proposed reinforceme
framework in comparison to both traditional malwar
methods and recent advancements in machine le
deep learning. As a result of addressing the lim
static, signature-based, and resource-intensive mac
ing models, our RL-based framework adapts to
malware threats dynamically and integrates both
behavioural analyses. This comprehensive appro
our method a robust and efficient solution for po
malware forensics investigations.

J. Research Findings and Recommendations

The paper proposes a post-incident malware in
framework built upon a novel MDP model that lev
vanced reinforcement learning (RL). The model s
speeds up the investigation process, surpassing hum
experts in both the speed and detection of known an
malware threats. It integrates various malware ana
niques and includes data collection methods like li
dumps from Windows systems. A custom malw
and comprehensive malware workflow diagram w
to streamline the forensic process.

The core of the approach is a unified Markov Decis
(MDP) model that combines multiple MDP environ
one cohesive framework. Three distinct environm
created with each employing a unique reward s
guide the RL agent in developing optimal malwa
strategies. The RL model operates within these
MDP environments, allowing the agent to navigat
ware analysis workflow. Each state and action c
to a specific stage in the malware analysis proces
the agent to learn, estimate, and refine the expecte
actions. This dynamic learning is driven by the
algorithm, which balances the exploration of unkn
with the exploitation of known policies, optimizin
making. A Q-table manages state-action pairs, while
difference learning iteratively updates the agent’s
base, improving malware identification accuracy

Journal Pre-proof
20

Extensive
rate is key
efiting from
requiring l
scenarios u
Cridex, the
adaptability
indicating
the MDP
and hyperp
agent’s per
mechanism
model’s ef
forensics o
ods, with t
malware th
reward fun
ing advanc
analysis, te
feature ana
framework’

[1] Quertier,
Malware
arXiv:220

[2] Aslan, Ö
malware
https://iee

[3] Akhtar, M
Machine
http://dx.d

[4] Dunsin, D
intelligen
environm
Engineeri

[5] Fang, Z
H. (2019
ment Le
https://iee

[6] Wu, C.,
hancing
inforceme
ference
https://dl.

[7] Piplai, A
Joshi, A
forcemen
tional Co
https://iee

[8] Farzaan,
System fo
in Cloud

[9] Ghanem,
sin, D.,
ing, extra
Journal o
https://do

[10] Fang,
Selection
Learning.
https://iee

ber). A deep
n PE feature
ation Science
China, 2019,

n, H. (2021,
re Detectors
n 2021 IEEE
, USA, 2021,

aro, B. and
hole exe. In

l intelligence.

ards a scien-
Science, 73,

Erhan, D.,
rties of neu-
Recognition.

fre, L., den
neershelvam,
alchbrenner,
K., Graepel,
deep neural

Available at:

in, H. (2020).
tacking static

th, P. (2018).
models via

V., 2024. A
ce and ma-

nt response.
48, 301675.

IEEE Trans-
09/72.80230

2020, May).
erless cloud
E/ACM In-

Computing
20-429, doi:

17. Evading
p.1-6. Avail-
7-Anderson-
wp.pdf

M.E., 2023.
amework for
EEE Access.

(2022, July).
me for Multi-
tion. In 2022
lience (CSR)

sed Resource
ritic. In ICC
Jo
ur

na
l P

re
-p

ro
of

experimental evaluation showed that the learning
to convergence, with simpler environments ben-

higher rates and more complex environments
ower rates for stability. In realistic post-incident
sing malware such as WannaCry, Cerber, and
model demonstrated strong classification accuracy,

to novel threats, and computational efficiency,
robustness and scalability. Iterative refinement of
environments, guided by experimental feedback
arameter tuning, was crucial to optimizing the RL
formance. Fine-tuning learning rates and reward
s across diverse scenarios greatly enhanced the
fectiveness. The RL-based approach for malware
ffers a promising alternative to traditional meth-
he potential for real-time adaptability to evolving
reats. Future research should focus on optimizing
ctions, expanding state-space designs, and integrat-
ed feature extraction techniques like behavioural
mporal pattern recognition, hybrid static-dynamic
lysis, and adversarial training to further enhance the
s applicability in dynamic forensic environments.

REFERENCES

T., Marais, B., Morucci, S. and Fournel, B., 2022. MERLIN–
Evasion with Reinforcement LearnINg. arXiv preprint

3.12980. Available at: https://arxiv.org/abs/2203.12980

.A. and Samet, R., 2020. A comprehensive review on
detection approaches. IEEE access, 8, pp.6249-6271.

explore.ieee.org/document/8949524

.S. and Feng, T. 2022. Malware Analysis and Detection Using
Learning Algorithms. Symmetry 14(11), p. 2304. Available at:
oi.org/10.3390/sym14112304

., Ghanem, M.C. and Ouazzane, K., 2022. The use of artificial
ce in digital forensics and incident response in a constrained
ent. International Journal of Information and Communication
ng, 16(8), pp.280-285.

., Wang, J., Li, B., Wu, S., Zhou, Y. and Huang,
). Evading Anti-Malware Engines With Deep Reinforce-
arning. IEEE Access 7, pp. 48867–48879. Available at:
explore.ieee.org/document/8676031

Shi, J., Yang, Y. and Li, W., 2018, November. En-
machine learning based malware detection model by re-
nt learning. In Proceedings of the 8th International Con-
on Communication and Network Security (pp. 74-78).
acm.org/doi/abs/10.1145/3290480.3290494

., Ranade, P., Kotal, A., Mittal, S., Narayanan, S.N. and
., 2020, December. Using knowledge graphs and rein-
t learning for malware analysis. In 2020 IEEE Interna-
nference on Big Data (Big Data) (pp. 2626-2633). IEEE.
explore.ieee.org/document/9378491

M.A., Ghanem, M.C. and El-Hajjar, A., 2024. AI-Enabled
r Efficient and Effective Cyber Incident Detection and Response
Environments. https://arxiv.org/abs/2404.05602

M.C., Mulvihill, P., Ouazzane, K., Djemai, R. and Dun-
2023. D2WFP: a novel protocol for forensically identify-
cting, and analysing deep and dark web browsing activities.
f Cybersecurity and Privacy, 3(4), pp.808-829. Available at:
i.org/10.3390/jcp3040036.

Z., Wang, J., Geng, J. and Kan, X. 2019. Feature
for Malware Detection Based on Reinforcement

[11] Binxiang, L., Gang, Z., and Ruoying, S. (2019, Decem
reinforcement learning malware detection method based o
distribution. In 2019 6th International Conference on Inform
and Control Engineering (ICISCE) (pp. 23-27), Shanghai,
pp. 23-27, https://ieeexplore.ieee.org/document/9107644

[12] Ebrahimi, M., Pacheco, J., Li, W., Hu, J. L., and Che
May). Binary Black-Box Attacks Against Static Malwa
with Reinforcement Learning in Discrete Action Spaces. I
Security and Privacy Workshops (SPW), San Francisco, CA
pp. 85-91, https://ieeexplore.ieee.org/document/9474314

[13] Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanz
Nicholas, C.K., 2018, June. Malware detection by eating a w
Workshops at the thirty-second AAAI conference on artificia
https://doi.org/10.13016/m2rt7w-bkok

[14] Ghanem, M., Mouloudi, A. and Mourchid, M., 2015. Tow
tific research based on semantic web. Procedia Computer
pp.328-335.

[15] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Goodfellow, I., and Fergus, R. (2013). Intriguing prope
ral networks. ArXiv: Computer Vision and Pattern
http://export.arxiv.org/pdf/1312.6199

[16] Silver, D., Huang, A., Maddison, C.J., Guez, A., Si
Driessche, G. van, Schrittwieser, J., Antonoglou, I., Pan
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., K
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu,
T., Hassabis, D., 2016. Mastering the game of Go with
networks and tree search. Nature 529(7587), pp. 484–489.
http://dx.doi.org/10.1038/nature16961

[17] Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., and Y
Mab-malware: A reinforcement learning framework for at
malware classifiers. https://arxiv.org/abs/2003.03100

[18] Anderson, H. S., Kharkar, A., Filar, B., Evans, D., and Ro
Learning to evade static PE machine learning malware
reinforcement learning. https://arxiv.org/abs/1801.08917

[19] Dunsin, D., Ghanem, M.C., Ouazzane, K., Vassilev,
comprehensive analysis of the role of artificial intelligen
chine learning in modern digital forensics and incide
Forensic Science International. Digital Investigation
https://doi.org/10.1016/j.fsidi.2023.301675

[20] Gallant, S.I., 1990. Perceptron-based learning algorithms.
actions on Neural Networks 1, 179–191. https://doi.org/10.11

[21] Birman, Y., Hindi, S., Katz, G., and Shabtai, A. (
Cost-effective malware detection as a service over serv
using deep reinforcement learning. In 2020 20th IEE
ternational Symposium on Cluster, Cloud and Internet
(CCGRID), Melbourne, VIC, Australia, 2020, pp. 4
https://ieeexplore.ieee.org/document/9139646

[22] Anderson, H.S., Kharkar, A., Filar, B. and Roth, P., 20
machine learning malware detection. black Hat, 2017, p
able at: https://www.blackhat.com/docs/us-17/thursday/us-1
Bot-Vs-Bot-Evading-Machine-Learning-Malware-Detection-

[23] Ghanem, M.C., Chen, T.M., Ferrag, M.A. and Kettouche,
ESASCF: expertise extraction, generalization and reply fr
optimized automation of network security compliance. I
https://doi: 10.1109/ACCESS.2023.3332834

[24] Molloy, C., Ding, S. H., Fung, B. C., and Charland, P.
H4rm0ny: A Competitive Zero-Sum Two-Player Markov Ga
Agent Learning on Evasive Malware Generation and Detec
IEEE International Conference on Cyber Security and Resi
(pp. 22-29). https://ieeexplore.ieee.org/document/9850345

[25] Chen, Z., Hu, J., and Min, G. (2019, May). Learning-Ba
Allocation in Cloud Data Center using Advantage Actor-C
IEEE Access 7, pp. 176177–176187. Available at:
explore.ieee.org/document/8920059.

2019-2019 IEEE International Conference on Communications (ICC) (pp.
1-6). https://ieeexplore.ieee.org/document/8761309

Journal Pre-proof
21

[26] Yuan, X
Attacks a
Networks
http://dx.d

[27] Liu, Y.,
for Andro
Computin

[28] Zhou, Y
theoretic
and Know

[29] Anderso
Adversari
the 2016
21). https

[30] Rakhsha
Policy te
attacks. T
https://arx

[31] Djenna,
intelligen
15(3), p.6

[32] Malik, M
resilient
detection
Available

[33] Gopinat
survey o
Computer
https://ww

[34] Vinayak
and Venk
ing deep
https://iee

[35] Tayyab,
A survey
Journal o
https://ww

[36] Adamov
learning
sign and
https://iee

[37] Moore,
Justice:
Palgrave
978—0—
296–297.
Jo
ur

na
l P

re
-p

ro
of

., He, P., Zhu, Q. and Li, X. 2019. Adversarial Examples:
nd Defenses for Deep Learning. IEEE Transactions on Neural

and Learning Systems 30(9), pp. 2805–2824. Available at:
oi.org/10.1109/tnnls.2018.2886017

Tantithamthavorn, C., Li, L., and Liu, Y. (2022). Deep Learning
id Malware Defenses: A Systematic Literature Review. ACM
g Surveys, 55(8), 1–36. https://doi.org/10.1145/3544968

., Kantarcioglu, M., and Xi, B. (2018). A survey of game
approach for adversarial machine learning. WIREs Data Mining
ledge Discovery, 9(3). https://doi.org/10.1002/widm.1259

n, H.S., Woodbridge, J., and Filar, B., (2016). DeepDGA:
ally-tuned domain generation and detection. In Proceedings of
ACM workshop on artificial intelligence and security (pp. 13-
://dl.acm.org/doi/10.1145/2996758.2996767

, A., Radanovic, G., Devidze, R., Zhu, X. and Singla, A., (2021).
aching in reinforcement learning via environment poisoning
he Journal of Machine Learning Research, 22(1), pp.9567-9611.
iv.org/abs/2003.12909

A., Bouridane, A., Rubab, S. and Marou, I.M., 2023. Artificial
ce-based malware detection, analysis, and mitigation. Symmetry,
77. Available at: https://www.mdpi.com/2073-8994/15/3/677

.I., Ibrahim, A., Hannay, P. and Sikos, L.F., 2023. Developing
cyber-physical systems: a review of state-of-the-art malware
approaches, gaps, and future directions. Computers, 12(4), p.79.
at: https://www.mdpi.com/2073-431X/12/4/79

h, M. and Sethuraman, S.C., 2023. A comprehensive
n deep learning based malware detection techniques.

Science Review, 47, p.100529. Available at:
w.sciencedirect.com/science/article/abs/pii/S1574013722000636

umar, R., Alazab, M., Soman, K.P., Poornachandran, P.
atraman, S., 2019. Robust intelligent malware detection us-

learning. IEEE access, 7, pp.46717-46738. Available at:
explore.ieee.org/abstract/document/8681127

U.E.H., Khan, F.B., Durad, M.H., Khan, A. and Lee, Y.S., 2022.
of the recent trends in deep learning based malware detection.
f Cybersecurity and Privacy, 2(4), pp.800-829. Available at:
w.mdpi.com/2624-800X/2/4/41

, A. and Carlsson, A., 2020, September. Reinforcement
for anti-ransomware testing. In 2020 IEEE East-West De-
Test Symposium (EWDTS) (pp. 1-5). IEEE. Available at:

explore.ieee.org/abstract/document/9225141

L., 2009. Review: Rethinking Miscarriages of
Beyond the Tip of the Iceberg Michael Naughton

Macmillan, Houndsmills, 2008, 233pp, ISBN
230—01906—5, £45.00 (hbk). Critical Social Policy 29,
https://doi.org/10.1177/02610183090290020702

Journal Pre-proof

Decla

☒ Th ips
that

☐ Th l
name

☐ Th red
as po
Jo
ur

na
l P

re
-p

ro
of

ration of interests

e authors declare that they have no known competing financial interests or personal relationsh
could have appeared to influence the work reported in this paper.

e author is an Editorial Board Member/Editor-in-Chief/Associate Editor/Guest Editor for [Journa
] and was not involved in the editorial review or the decision to publish this article.

e authors declare the following financial interests/personal relationships which may be conside
tential competing interests:

