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About me

Engineer Degree in Computer Science, MSc in Digital Forensics and PhD in
Cyber Security Engineering form City, University of London

15 years+ at Senior-Level in Industry ( Law Enforcement and Corporates)
Certified Expert (CISSP, CPCI, Multi-GIAC...)

Currently Associate Professor, Director of Cyber Security Research Centre



loT & Cloud: Rapidly Expanding Ecosystems

Exponential Growth: Over 75 billion 10T devices are expected by 2025, increasing
the “attack surface” and thus cyber threat landscape.

loT Data Vulnerability: Widespread of cloud adoption elevates data exposure risks
and complicates security management.

Targeted Attacks: |oT devices often have minimal security, making them prime
targets for cyber-attacks.

Complex Security Challenges: The diverse nature of IoT devices complicates the
Implementation of effective security measures.

Critical Infrastructure Needs: There Is an urgent requirement for robust security
frameworks tailored specifically for [loT environments.



loT and Cloud Applications
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Al In loT and Cloud
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Large Language Models (LLMs)

L Machine Learning (ML)
|

- Deep Learning (DL)
L ,
Generative Al (GenAl)

int [] tive Pre-T d
BLOOM Gemini LaMDA YA <=t

» LLMs are a branch of Generative Al

» Focused specifically on language processing.

» LLMs are built on advanced Deep Learning
architectures and trained on massive text
datasets.

<
3

T5-Large

Llama3
RoBERTa
Llama2

Florence2

ChatGPT-3.5 Llama3

T5-Small  VisualBERT
CLIP LLava ChatGPT-40

Claude DALL-E T5-Small

LLMs are meant for specific tasks such as text generation, translation, summarization,
and question answering by identifying context and patterns within text.



LLMs in loT and Cloud Security

Advanced Data Analysis: LLMs leverage sophisticated natural language processing
to examine vast datasets quickly and accurately.

Anomaly Detection: LMs can identify unusual patterns or deviations in data, helping
to detect irregularities that could signal threats.

Predictive Capabilities: By analyzing past data trends, LLMs can forecast potential
risks, providing early warnings and enabling proactive responses.

Context Understanding: LLMs process information with contextual awareness,
Improving accuracy in recognizing potential risks across diverse domains.

Decision Support: LLMs insights assist analysts in prioritizing and addressing
threats, reducing response times and enhancing security measures.



LLMs in loT and Cloud Security (cont.)
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“LLMs can ONLY be a team player
Cyber Secur

LLMs In Incident Response
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Autonomous Driving
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Federated Learning

* A decentralized machine learning approach where models are trained locally
on devices without transferring raw data, enhancing privacy and reducing
central dependency.

* loT devices can collaboratively learn from local data without exposing sensitive
iInformation, significantly enhancing data privacy and reducing security risks.

* FL Supports privacy regulations (like GDPR) by ensuring data stays on local
devices, making it ideal for handling sensitive 10T data.

« Optimizes network usage and lowers latency, which is essential for real-time
loT applications (Since data doesn’t need to be transferred to central servers)



FL in Healthcare
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FL in loT and Cloud

Federated Learning
Approach
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FL Challenges and Opportunities

* Heterogeneity In loT devices, thus heterogeneous Data formats, frequencies, and
guality, introducing inconsistencies that a federated model can hardly generalize
from.

* |oT devices have limited computing power, memory, and battery life, which
restricts the processing (might change soon)

« Security and Privacy risks as attacks such as poisoning (injecting fake data) and
Inference attacks are still possible

* Model and Quality Ensuring convergence is “acceptable” but maintaining model
quality across diverse IoT environments is challenging (the asynchronous nature of
loT implies slower or unstable convergence).



Reinforcement Learning (RL) and Deep RL (DRL)

ACTION
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(Lee, 2017)
Trial-and-Error Process

Applications in Dynamic Environments



RL and DRL in IoT and Cloud

« Automated Intrusion Detection and Prevention
« Adaptive Security Policy Management

* Optimized Resource Allocation

« Continuous Learning from Cyber Threats

« Anomaly Detection with Minimal Human
Intervention



RL Threat Detection on loT devices
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DRL Intrusion Detection in loT

Deep Neural Network-based
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DRL In Cyber Incident Response
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RL and DRL Challenges and Opportunities

Data Scarcity and Quality: High-quality modelling is essential for RL and DRL
which IoT and Cloud environments often make it difficult and thus limiting the
effectiveness.

High Computational Demand: DRL requires significant computational resources
for training and real-time deployment, which can be challenging in resource-
constrained IoT devices and restricted cloud usage costs.

RL and DRL are perfect for !

Proactive and Adaptive Security Measures: RL and DRL enable 10T and cloud
systems to proactively adapt to new security threats in real-time.

Scalability for Large-Scale Environments: DRL can scale efficiently to secure
large, distributed IoT networks and cloud environments.



The near future ...
What needs to be improved (potential ideas! )

Lightweight Models: Efficient model architectures and algorithms tailored for IoT constraints, such as
lightweight neural networks or adaptive learning algorithms

Secure by Design Communication Protocols: Designing secure communication protocols and
compression technigues to reduce security overhead

Enhanced Privacy-Preserving: Advanced privacy mechanisms, e.g. differential privacy and
homomorphic encryption enforce data privacy without compromising model accuracy

Robustness: Robust defence mechanisms to detect and mitigate attacks, ensuring the integrity and
reliability of federated learning models in hostile environments.

Adaptability: Develop scalable federated learning frameworks that can dynamically adapt to the growth
of IoT networks and handle device variability, improving the robustness and applicability of federated
learning in diverse 10T scenarios.



Ethical and Regulatory Considerations

3lo

Balancing Innovation
with Accountability

Data Privacy and Compliance
Al must adhere to data
protection laws like GDPR to
prevent misuse of sensitive
information.

®

Transparency in Al Decision-
Making

Ensuring Al models provide clear,
understandable outcomes for
cybersecurity actions.

Bias and Fairness in Al

Algorithms
Preventing bias in threat
detection models to maintain fair
and effective security practices.



Some Resources

* Edge-lloTset: A New Comprehensive Realistic Cyber Security Dataset
of loT and lloT Applications: Centralized and Federated Learning

Last updated:

Thu, 04/27/2023 -
DOI:

10.21227/mbcl-1h68
Data Format:

* CSV: *.pcap:; *.txt: *.zip

* lloTset
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https://dx.doi.org/10.21227/mbc1-1h68
https://ieee-dataport.org/data-formats/csv-pcap-txt-zip
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Thank you!

Questions



	Slide 1: Speaker: Dr Mohamed Chahine GHANEM Associate Professor Director- Cyber Security Research Centre London Metropolitan University (UK)
	Slide 2: Agenda 
	Slide 3: About me
	Slide 4: IoT & Cloud: Rapidly Expanding Ecosystems
	Slide 5
	Slide 6
	Slide 7: Large Language Models (LLMs) 
	Slide 8: LLMs in IoT and Cloud Security 
	Slide 9
	Slide 10: LLMs in Incident Response 
	Slide 11: LLMs Trustworthiness and Security
	Slide 12: LLMs Opportunities and Challenges
	Slide 13: Federated Learning 
	Slide 14: FL in Healthcare
	Slide 15: FL in IoT and Cloud
	Slide 16: FL Challenges and Opportunities
	Slide 17: Reinforcement Learning (RL) and Deep RL (DRL)
	Slide 18: RL and DRL in IoT and Cloud
	Slide 19: RL Threat Detection on IoT devices 
	Slide 20: DRL Intrusion Detection in IoT 
	Slide 21
	Slide 22
	Slide 23: The near future …  What needs to be improved (potential ideas! )
	Slide 24: Ethical and Regulatory Considerations
	Slide 25: Some Resources
	Slide 26: References
	Slide 27: Thank you!                                     Questions

