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Abstract: Flow chemistry has shown significant versatility over the last two decades, offering
advantages in efficiency, scalability, and sustainability. In this study, the continuous stirred tank
reactor (CSTR) was used to optimise the synthesis of α-hydroxyphosphonates via the Pudovik
reaction and their subsequent conversion to phosphates through the phospha-Brook rearrangement.
The study highlights that using CSTRs allows for better control over reaction parameters, leading to
reduced reaction times and improved yields compared to traditional batch methods. The optimised
conditions successfully facilitated a range of organophosphates, including electron-rich and electron-
poor derivatives, with high efficiency. Additionally, a one-pot tandem process combining the Pudovik
reaction and the phospha-Brook rearrangement was developed, reducing reaction times to two
hours while maintaining comparable yields. This work demonstrates the potential of CSTRs in flow
chemistry for synthesising complex organophosphorus compounds, achieving higher reaction yields
and shorter reaction times, highlighting the effectiveness of continuous flow methodologies.

Keywords: continuous flow; Pudovik reaction; phospha-Brook rearrangement; α-hydroxyphosphonates;
phosphates; 1,5-diazabicyclo(4.3.0)non-5-ene

1. Introduction

Over the last two decades, flow chemistry has proven to be highly versatile, offering
significant advantages in terms of efficiency, scalability, and sustainability [1]. In addition,
researchers have adopted continuous flow approaches as reaction times are faster, safer, and
can facilitate challenging reactions [2]. Different devices and equipment are commercially
available to run in continuous transformations (Figure 1), including coil, microchip, and
packed-bed reactors; however, additional opportunities are offered by continuous stirred
tank reactors (CSTRs) [3]. CSTRs operate continuously with uniform mixing and steady-
state conditions, offering effective temperature control, scalability, and flexibility for various
reactions. Their design allows for multistep synthesis [3], reducing reaction times, enabling
solvent switching, and maintaining product isolation [4]. This flow strategy also provides
advantages over multiple coil reactors, ensuring better control of conditions, simpler
operation, more efficient heat management, and easier scalability, especially for slow or
complex reactions.

Organophosphorus compounds are widely found in nature and have garnered sig-
nificant attention due to their unique chemical properties and diverse applications across
various fields. This class of compound is known for its antiviral, antibacterial, anticancer,
and enzyme inhibitory activities, making them valuable in pharmaceuticals, oncology, and
chemical pesticides [5–9]. Furthermore, organophosphorus compounds are important in
organometallic chemistry and photoelectric materials due to their high chelation affinity
and the ease with which they can be modified into functional derivatives [1].
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Figure 1. Illustration of coil reactors, microchip reactors, packed-bed reactors, and continuous 
stirred tank reactors (CSTRs; fReactor) for flow applications. 

Organophosphates are a versatile group of compounds with a broad range of appli-
cations, particularly in the production of synthetic chemicals for pest control and plastics 
[10,11]. They play a crucial role in physiological processes, such as linking nucleotides 
together, stabilising these bonds, and making them resistant to hydrolysis, all while re-
maining selectively reactive through enzymatic catalysis [12]. In organic synthesis, organ-
ophosphates are also used as electrophiles in transition metal-catalysed reactions, includ-
ing the Kumada reaction, Suzuki reaction, and the phospha-Brook rearrangement [13]. 
The first phospha-Brook rearrangement, transforming α-hydroxyphosphonates into 
phosphates, was observed in trichlorfon, an insecticide [14]. This pro-drug converts to 2,2-
dichlorovinyl dimethyl phosphate, an acetylcholinesterase inhibitor, through HCl elimi-
nation. Strong bases such as sodium ethoxide (NaOEt) [15], sodium hydride (NaH) [16], 
and potassium tert-butoxide (t-BuOK) have been reported to facilitate this rearrangement 
[17]. Chiral homogeneous bases have also been shown to deliver promising yields [18]. 
Additionally, benzyl phosphates have been synthesised using a one-pot tandem Pudovik 
reaction followed by the phospha-Brook rearrangement in the presence of butyllithium 
(BuLi) [19,20]. This process was proposed to take place via formation of an activated lith-
ium diethyl phosphite. 

Ramanjaneyulu et al. have reported the first phospha-Brook reaction performed us-
ing flow chemistry [21], utilising a single-step method for the synthesis of α-phospho-
nyloxy ketones as drug scaffolds. This method uses 1,2-dicarbonyls, which readily com-
bine with trialkyl phosphites and formic acids in a capillary microreactor at room temper-
ature. Although the reaction times in the microreactor were short, the formation of by-
products was observed. Recently, it has been shown that 1,5-diazabicyclo(4.3.0)non-5-ene 
(DBN) can facilitate the phospha-Brook reaction at room temperature under batch condi-
tions, yielding a range of phosphate diesters in excellent yields after 16 h [22]. In this 
study, the use of CSTRs is explored for the optimisation and synthesis of α-hydroxyphos-
phonates via the Pudovik reaction and the subsequent formation of phosphates through 
the phospha-Brook reaction by modifying the amount of DBN used (Scheme 1). Addition-
ally, the study demonstrates that a one-pot tandem Pudovik reaction followed by the 
phospha-Brook rearrangement can also be achieved, with reaction times significantly re-
duced compared to batch conditions while maintaining comparable yields. 

 
Scheme 1. Pudovik reaction and phospha-Brook rearrangement. 

2. Materials and Methods 
2.1. General Experimental 

Commercially available analytical grade reagents were purchased from Merck, Gil-
lingham, UK or Thermo Fisher Scientific Inc., UK and used without further purification. 
Reactions were followed by TLC and compounds were purified by flash column chroma-
tography. The silica gel used was Merck 60 (230–400 mesh). Analytical TLC was carried 

Figure 1. Illustration of coil reactors, microchip reactors, packed-bed reactors, and continuous stirred
tank reactors (CSTRs; fReactor) for flow applications.

Organophosphates are a versatile group of compounds with a broad range of ap-
plications, particularly in the production of synthetic chemicals for pest control and
plastics [10,11]. They play a crucial role in physiological processes, such as linking nu-
cleotides together, stabilising these bonds, and making them resistant to hydrolysis, all
while remaining selectively reactive through enzymatic catalysis [12]. In organic synthesis,
organophosphates are also used as electrophiles in transition metal-catalysed reactions, in-
cluding the Kumada reaction, Suzuki reaction, and the phospha-Brook rearrangement [13].
The first phospha-Brook rearrangement, transforming α-hydroxyphosphonates into phos-
phates, was observed in trichlorfon, an insecticide [14]. This pro-drug converts to 2,2-
dichlorovinyl dimethyl phosphate, an acetylcholinesterase inhibitor, through HCl elimina-
tion. Strong bases such as sodium ethoxide (NaOEt) [15], sodium hydride (NaH) [16], and
potassium tert-butoxide (t-BuOK) have been reported to facilitate this rearrangement [17].
Chiral homogeneous bases have also been shown to deliver promising yields [18]. Ad-
ditionally, benzyl phosphates have been synthesised using a one-pot tandem Pudovik
reaction followed by the phospha-Brook rearrangement in the presence of butyllithium
(BuLi) [19,20]. This process was proposed to take place via formation of an activated lithium
diethyl phosphite.

Ramanjaneyulu et al. have reported the first phospha-Brook reaction performed using
flow chemistry [21], utilising a single-step method for the synthesis of α-phosphonyloxy
ketones as drug scaffolds. This method uses 1,2-dicarbonyls, which readily combine
with trialkyl phosphites and formic acids in a capillary microreactor at room temperature.
Although the reaction times in the microreactor were short, the formation of by-products
was observed. Recently, it has been shown that 1,5-diazabicyclo(4.3.0)non-5-ene (DBN)
can facilitate the phospha-Brook reaction at room temperature under batch conditions,
yielding a range of phosphate diesters in excellent yields after 16 h [22]. In this study, the
use of CSTRs is explored for the optimisation and synthesis of α-hydroxyphosphonates via
the Pudovik reaction and the subsequent formation of phosphates through the phospha-
Brook reaction by modifying the amount of DBN used (Scheme 1). Additionally, the study
demonstrates that a one-pot tandem Pudovik reaction followed by the phospha-Brook
rearrangement can also be achieved, with reaction times significantly reduced compared to
batch conditions while maintaining comparable yields.
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2. Materials and Methods
2.1. General Experimental

Commercially available analytical grade reagents were purchased from Merck, Gilling-
ham, UK or Thermo Fisher Scientific Inc., UK and used without further purification.
Reactions were followed by TLC and compounds were purified by flash column chro-
matography. The silica gel used was Merck 60 (230–400 mesh). Analytical TLC was carried
out on Merck 60 F245 aluminium-backed silica gel plates. Short-wave UV (245 nm) was used
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to visualise components. All experiments were conducted using the Asynt fReactor–classic
(Asynt, Cambridgeshire, UK) platform using five modules. The total reactor volume was
8.8 mL, using a PTFE cross-stirrer bar design. A 100 psi back-pressure regulator was used
when trying to optimise the reactions. All syringe pumps were AL-1000 Aladdin and were
connected to the CSTRs using PTFE tubing (1/8” O.D.; 1/16” I.D.) and flangeless male HPLC
nuts (1/8”) with flangeless ferrules (1/8”). 1H-NMR, 13C-NMR, and 31P-NMR were recorded
on a Bruker AV500 spectrometer operating at 500 MHz for proton, 126 MHz for carbon, and
202 MHz for phosphorus. Spectra were recorded in deuterochloroform and referenced to
residual CHCl3 (1H, 7.27 ppm; 13C, 77.0 ppm) and with 85% H3PO4 solution as an external
standard (31P, 0.0 ppm). Chemical shifts (δ) are reported in ppm and coupling constants (J)
are reported in Hz. The following abbreviations are used to describe multiplicity: s singlet,
d doublet, t triplet, q quartet, and m multiplet. High-resolution mass spectra were recorded
on a LTQ Orbitrap XL utilising nanospray ionisation (NSI) with a methanol mobile phase
recorded in the positive mode. Low-resolution mass spectra were recorded on an Agilent
Micromass Q-TOF premier Tandem Mass Spectrometer from Micromass (Agilent, Santa
Clara, CA, USA) utilising electrospray. Melting points were determined using open glass
capillaries on a Stuart Scientific SMP3 (Scientific Laboratory Supplies, Nottingham, UK)
apparatus and are uncorrected. Infrared spectra were recorded on an Agilent Technologies
Cary 630 FT-IR spectrophotometer (Agilent, Santa Clara, CA, USA).

2.2. General Procedure for the Synthesis of α-Hydroxyphosphonates 2

A solution of DBN (0.19 mmol, 5 mol%) in MeCN (0.038 M) was fluxed at the same
flow rate simultaneously with a solution of aromatic aldehyde (3.83 mmol, 1 eq.) and
phosphite (3.83 mmol, 1 eq.) in MeCN (0.77 M) at room temperature. The residence time
was 120 min. Syringes were placed on syringe pumps, and the five module CSTRs on a
stirrer plate, stirring at 500 rpm. The output tube was placed in a beaker containing aqueous
dilute HCl (2 M, 10 mL). After this period, the reactor and tubing were thoroughly rinsed
with MeCN (20 mL) to recover any residual material. The reaction mixture was extracted
with Et2O (20 mL), dried over MgSO4, and concentrated under reduced pressure. The
resulting mixture was suspended in hexane (20 mL) and filtered under reduced pressure,
washing with a 9:1 mixture of hexane:Et2O (20 mL) to afford the α-hydroxyphosphonate.

2.3. General Procedure for the Synthesis of Phosphates 3 from α-Hydroxyphosphonates 2

A solution of DBN (3.34 mmol, 1 eq.) in MeCN (0.67 M) was fluxed at the same flow
rate simultaneously with a solution of α-hydroxyphosphonate (3.34 mmol, 1 eq.) in MeCN
(0.67 M) at room temperature. The residence time was 120 min. Syringes were placed on
syringe pumps, and the five module CSTRs on a stirrer plate, stirring at 500 rpm. The
output tube was placed in a beaker containing aqueous dilute HCl (2 M, 10 mL). After
this period, the reactor and tubing were thoroughly rinsed with MeCN (20 mL) to recover
any residual material. The reaction mixture was extracted with Et2O (20 mL), dried over
MgSO4, and concentrated under reduced pressure. The resulting residue was purified by
column chromatography (2:8 hexane:diethyl ether) to afford the phosphate.

2.4. General Procedure for the Synthesis of Phosphates 3 from Aromatic Aldehydes and Phosphites

A solution of DBN (3.83 mmol, 1 eq.) in MeCN (1.5 M) was fluxed at the same flow
rate simultaneously with a solution of aromatic aldehyde (3.83 mmol, 1 eq.) and phosphite
(3.83 mmol, 1 eq.) in MeCN (1.5 M) at room temperature. The residence time was 120 min.
Syringes were placed on syringe pumps, and the five module CSTRs on a stirrer plate,
stirring at 500 rpm. The output tube was placed in a beaker containing aqueous dilute
HCl (2 M, 10 mL). After this period, the reactor and tubing were thoroughly rinsed with
MeCN (20 mL) to recover any residual material. The reaction mixture was extracted
with Et2O (20 mL), dried over MgSO4, and concentrated under reduced pressure. The
resulting residue was purified by column chromatography (2:8 hexane:diethyl ether) to
afford the phosphate.
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3. Results and Discussion
3.1. Pudovik Reaction

To investigate the phospha-Brook rearrangement, it was first necessary to synthesise α-
hydroxyphosphonates. The synthesis of α-hydroxyphosphonates via the Pudovik reaction
has been extensively studied [23]. Kabachnik notably reported the successful Pudovik
reaction between carbonyl compounds and dialkyl phosphites using 1 mol% DBN with
microwave irradiation, achieving high yields and fast reaction times [24]. Building on
this study, the Pudovik reaction between 2-nitrobenzaldehyde and diethyl phosphite in
the presence of DBN was optimised using the fReactor (Scheme 2). Using a five-module
CSTR set-up, a mixture of 2-nitrobenzaldehyde (1a) and diethyl phosphite in MeCN and
DBN in MeCN were independently fed into the reactor under different reaction conditions
(Table 1). 2-Nitrobenzaldehyde was selected as a model substrate due to the electron-
withdrawing effect of the nitro group, which enhances the electrophilicity of the carbon
atom in the aldehyde.
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Table 1. Optimisation of the Pudovik reaction using the fReactor.

Entry a DBN
(mol%)

Stirring Rate
(rpm)

Temperature
(◦C)

tres
(min) 1b NMR Yield b (%)

2b
3b

1 5 500 40 20 22 44 34
2 5 500 40 120 4 48 48
3 5 500 60 20 12 51 37
4 5 500 25 20 32 63 5
5 5 500 25 60 29 65 6
6 5 500 25 90 15 78 7
7 5 500 25 120 5 88 7
8 5 500 25 180 10 79 11
9 5 250 25 120 16 75 9
10 5 1000 25 120 13 74 13
11 2.5 500 25 120 34 60 6
12 1 500 25 120 46 52 2

a 1 eq. of 2-nitrobenzaldehyde and 1 eq. of diethyl phosphite was prepared in MeCN (0.77 M). DBN was prepared
in MeCN (0.038 M). b Analyzed by 1H-NMR spectroscopy.

The use of 5 mol% DBN at 40 ◦C with a 20-min residence time resulted in a 44% conversion
to the α-hydroxyphosphonate 2a, with 22% unreacted starting material and 34% of the
mixture having undergone the phospha-Brook rearrangement to the phosphate (Table 1,
entry 1). Encouraged by these results, the residence time was increased to 120 min, which
led to an approximate 1:1 mixture of the α-hydroxyphosphonate 2a and rearranged phos-
phate 3a, with only a small amount of starting material remaining (entry 2). Although an
increased conversion to the α-hydroxyphosphonate was observed at 60 ◦C with a 20-min
residence time, it also resulted in a higher formation of the rearranged phosphate product
(entry 3), suggesting that higher temperatures promote the phospha-Brook rearrangement.
To mitigate this, the reaction was conducted at room temperature with a 20-min residence
time (entry 4). While this resulted in more unreacted starting material, a higher conversion
to the α-hydroxyphosphonate was achieved, with the phosphate being a minor compo-
nent. Varying the residence time between 60 and 180 min further increased the desired
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α-hydroxyphosphonate (entries 5–8), with a maximum conversion of 88% observed at
120 min (entry 7). However, at 180 min, the conversion to phosphate and the amount of
unreacted starting material increased at the expense of the α-hydroxyphosphonate (entry 8),
likely due to a retro-Abramov-like reaction [25,26]. Altering the mixing speed from 500 rpm
to 250 and 1000 rpm showed that lower speeds led to more unreacted starting material,
while higher speeds resulted in more of the rearranged product (entries 9–10). Reducing
the catalyst loading also resulted in lower conversions to the α-hydroxyphosphonate with
increased unreacted starting material (entries 11–12). In comparison, the reaction attempted
under batch conditions with 5 mol% DBN at room temperature for 6 h resulted in only a
23% yield with the major component being unreacted starting material.

Using the optimised conditions for the Pudovik reaction—5 mol% DBN, a 120-min
residence time, a mixing speed of 500 rpm, and a temperature of 25 ◦C—a range of substi-
tuted α-hydroxyphosphonates 2 were produced in excellent yields (Scheme 3), with the
exception of the 2-cyano substitution, 2k, which has been synthesised previously [22]. All
of the synthesised α-hydroxyphosphonates were isolated by concentrating the reaction
mixture and suspending the product in hexane, followed by filtration and washing with a
small amount of a 9:1 hexane:Et2O mixture (see Supplementary Materials).
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Although TLC analysis of the reaction mixture for the attempted synthesis of 2k
confirmed consumption of the starting materials, spectral data analysis after column
chromatography revealed the presence of an ester carbonyl group in the 13C-NMR and
IR spectra. Additionally, the 31P-NMR showed a peak at 13.8 ppm, whereas typical α-
hydroxyphosphonates exhibit a chemical shift around 20 ppm. Furthermore, the hydroxyl
peak was absent in the 1H-NMR spectrum. Based on these findings, combined with
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2D NMR analysis, it is proposed that after the Pudovik reaction occurred to form the
α-hydroxyphosphonate (see Supplementary Materials), an intramolecular cyclisation takes
place between the hydroxyl group and the cyano functionality (Scheme 4). Hydrolysis
of the resulting imine results in the formation of a lactone ring, yielding 38% of diethyl
(3-oxo-1,3-dihydroisobenzofuran-1-yl) phosphonate 4. The identity of the product was
confirmed as the spectral data for 4 was identical to that reported by Kachkovskyi [27].
The synthesis of 2k has previously been achieved using dried solvents under an inert
atmosphere, conditions that were not employed in this set-up.
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3.2. Phospha-Brook Rearrangement

The phospha-Brook rearrangement was previously optimised by using one equivalent
of DBN in MeCN with an α-hydroxyphosphonate at room temperature for 16 h in a batch
process [22]. The initial aim was to demonstrate that this rearrangement could be performed
using CSTRs, aiming to reduce the reaction time by enhancing the mixing efficiency. The
2-nitro derivative 2a was used as the model substrate to optimise the conditions for the
phospha-Brook rearrangement (Scheme 5 and Table 2).
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Scheme 5. Phospha-Brook rearrangement reaction set-up.

Table 2. Optimisation of the phospha-Brook rearrangement using the fReactor.

Entry a Stirring Rate
(rpm)

Temperature
(◦C) tres (min) NMR Yield b (%)

1 500 25 30 20
2 500 25 60 50
3 500 25 120 94
4 500 25 150 92
5 250 25 120 29
6 1000 25 120 63
7 1500 25 120 37
8 500 40 120 90
9 500 50 120 83
10 500 60 120 84

11 c 500 25 120 87
a 1 eq. of 2-nitrobenzaldehyde and 1 eq. of diethyl phosphite was prepared in MeCN (0.67 M); 1 eq. of DBN was
prepared in MeCN (0.67 M). b Analyzed by 1H-NMR spectroscopy. c Addition of 2 M HCl into the final CSTR.

Using a five-module CSTR set-up, solutions of α-hydroxyphosphonate 2a in MeCN
and DBN in MeCN were independently fed into the reactor at room temperature. The
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reaction was quenched by directing the outlet flow directly into 2 M HCl. Various residence
times were tested (Table 2, entries 1–4), with a 120-min residence time proving to be the
most effective, achieving a 94% conversion (entry 3). Subsequently, the stirring rate was
investigated by conducting reactions at 250, 500, and 1000 rpm. Inefficient mixing at lower
speeds resulted in a low conversion rate of 29% (entry 5), with the starting materials being
the major components of the mixture. Although a stirring speed of 1000 rpm showed better
conversion than 250 rpm (entry 6), 500 rpm proved to be the most efficient. When the
temperature was increased in 10 ◦C increments (entries 8–10), the conversions were good
but lower than those observed at room temperature. Finally, the addition of dilute HCl
to the final CSTR module to stop the reaction resulted in a slightly lower conversion of
87%, suggesting that five modules for mixing were required. The optimal conditions for
the phospha-Brook rearrangement provided the product in similar conversions to reactions
in batch with reactions taking place in 120 min, instead of 16 h, using five CSTRs [22].

With optimised conditions established, a series of organophosphates were synthesised
(Scheme 6).
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All α-hydroxybenzyl diethyl phosphonates 2, including the 2-cyano derivative synthe-
sised using a previously reported method [22], rearranged to the corresponding phosphates
3 in excellent yields (see Supplementary Materials), except for the 4-nitro, 4-methyl, and
4-ethyl derivatives (3c, 3d, and 3e). These derivatives resulted in the recovery of the
starting material, even when subjected to higher temperatures and the use of a back-
pressure regulator to pressurise the reaction. These findings are consistent with previous
results reported involving DBN [22]. The 4-alkyl derivatives have only been obtained
at elevated temperatures [19,28], while the 4-nitro derivative 3b is typically synthesised
through a chlorophosphate intermediate not directly via the phospha-Brook rearrange-
ment [29]. When modifying the α-hydroxybenzyl phosphonate diesters, the dimethyl
(3n), dibutyl (3q), and dibenzyl (3s) derivatives successfully produced the rearranged
phosphate products in very good yields. Unfortunately, the diisopropyl (3p) and diphenyl
(3r) derivatives did not yield any of the corresponding phosphates. This result is ascribed
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to steric hindrance caused by the interaction between the bulkier DBN base and the larger
ester groups. This observation is consistent with the findings of Khan et al., who reported
the absence of phosphate products when α-hydroxybenzyl phosphonates were treated
with potassium t-butoxide [30]. Results indicate that both electron-rich and electron-poor
α-hydroxyphosphonates were quite well tolerated, showing similar reactivity to produce
the corresponding phosphates in very good yields, unlike what has been observed in
previous studies [31–33]. To evaluate the effectiveness of the CSTRs, the reaction was scaled
up to gram-scale quantities using optimised continuous flow conditions, resulting in a
93% yield.

3.3. One-Pot Pudovik–Phospha-Brook Rearrangement

After demonstrating that the reaction time for the phospha-Brook rearrangement
of an α-hydroxyphosphonate to a phosphate ester could be reduced to 120 min using
CSTRs, the focus was to explore the feasibility of combining the Pudovik reaction and
phospha-Brook rearrangement into a one-step process using DBN in continuous flow. This
reaction has previously been reported to occur catalytically in the presence of strong bases
such as BuLi [19,20], 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) [32], the proton sponge
diazatetracyclo[4.4.0.13,10.15,8]dodecane (DTD) [34], and more recently using Cu(OTf)2 as
a Lewis acid catalyst [35].

The reaction was optimised using 2-nitrobenzaldehyde 1a and diethyl phosphite by
varying the amount of DBN, stirring rate, temperature, and residence time in the reactor
(Scheme 7 and Table 3).
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Table 3. Optimisation of the one-pot Pudovik–phospha-Brook rearrangement using the fReactor.

Entry a DBN (equiv) Stirring Rate
(rpm)

Temperature
(◦C) tres (min) NMR Yield b

(%)

1 0.1 500 40 120 47
2 0.1 500 40 180 79
3 0.2 500 40 180 80
4 0.5 500 40 180 82
5 1 500 40 180 85
6 1 500 40 120 90
7 1 500 25 120 90
8 1 500 25 60 71
9 1 1000 25 120 88
10 1 250 25 120 83

a 1 eq. of 2-nitrobenzaldehyde and 1 eq. of diethyl phosphite was prepared in MeCN (1.5 M); 1 eq. of DBN was
prepared in MeCN (1.5 M). b Analyzed by 1H-NMR spectroscopy.

Based on previous studies that employed catalytic conditions for the one-pot reac-
tion [19,20,32,34,35], an initial experiment was conducted using 10 mol% DBN at 40 ◦C
with a residence time of 120 min, resulting in a 47% conversion to the phosphate 3a (Table 1,
entry 1). Extending the residence time to 180 min nearly doubled the conversion (entry 2).
Encouraged by this result, while aiming to minimise reaction time, 20 mol% DBN was
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tested; however, this led to only a slight increase in the conversion (entry 3). Increasing
the DBN concentration to 50 mol% afforded a marginal improvement in the conversion;
however, the reaction proved not to be efficient under catalytic conditions (entry 4).

Given the observations in Tables 1 and 2 and previous batch reactions involving DBN,
it was decided to use 1 equivalent of the base. This resulted in an 85% conversion to the
phosphate with a 180-min residence time at 40 ◦C (entry 5). However, the presence of
multiple peaks in the 1H-NMR suggested product decomposition. To address this, the
residence time was reduced to 120 min, which increased the conversion to 90%, though
some decomposition was still observed (entry 6). Decreasing the temperature to 25 ◦C
achieved the same conversion (entry 7), but the α-hydroxyphosphonate 2a was detected
as the main by-product, indicating that temperature played a critical role in preventing
product decomposition under basic conditions.

When the residence time was further reduced to 60 min, conversion decreased to
71%, with a greater amount of α-hydroxyphosphonate observed as a by-product (entry 8).
Altering the stirring rate, either increasing or decreasing it, led to a lower conversion
to the phosphate (entries 9 and 10). The optimal conditions for the one-pot Pudovik
reaction–phospha-Brook rearrangement were determined to be 1 equivalent of DBN at room
temperature, with a stirring rate of 500 rpm and a residence time of 120 min. Under batch
conditions for 24 h, these parameters resulted in only a 34% conversion to the phosphate
3a and 45% conversion to the α-hydroxyphosphonate 2a. Although this approach uses
stoichiometric amounts of base, it eliminates the need for strong bases or inert conditions
while offering shorter or comparable reaction times and conversion rates relative to previous
studies [19,20,32,34].

With optimised conditions determined, a range of phosphates were synthesised using
the one-pot Pudovik–phospha-Brook rearrangement using continuous flow (Scheme 8).
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The one-pot conversion of aldehydes 1 to phosphates 3 using 1 equivalent of DBN at
room temperature produced yields similar to those of the phospha-Brook rearrangement
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from α-hydroxybenzyl phosphonates, including 3k which had previously undergone cycli-
sation to lactone 4 when starting the reaction from a phosphite and aldehyde. Compared
to the earlier report on DBU-catalysed phosphate synthesis, the 4-chloro derivative was
formed in excellent yield [32]. However, the 4-nitro, 4-methyl, and 4-ethyl aromatic substi-
tuted derivatives (3c, 3d, and 3e), as well as the diisopropyl (3p) and diphenyl (3r) phosphate
ester derivatives, did not yield the rearranged product; however, the α-hydroxybenzyl phos-
phonates were formed in excellent yields (see Supplementary Materials).

4. Conclusions

In conclusion, a time-efficient and tunable method has been developed for synthesising
both α-hydroxyphosphonates via the Pudovik reaction and phosphates via the phospha-
Brook rearrangement, all at room temperature under continuous flow conditions, depend-
ing on the amount of DBN utilised. Reaction times have been significantly reduced to 2 h
compared to traditional batch processes. This methodology was successfully applied to a
wide range of substrates, yielding α-hydroxyphosphonates and phosphate diesters in excel-
lent yields, demonstrating its broad applicability. While the phospha-Brook rearrangement
was unsuccessful in forming compounds 3c–e, 3p, and 3r, this may be attributed to steric
hindrance or the need for higher temperatures [19]. Additionally, lactone 4 was formed
from the 2-cyano derivative due to an intramolecular cyclisation of α-hydroxyphosphonate
2k. Further studies are currently underway to explore the scope of the reaction and to
develop a telescoped synthesis process for active pharmaceutical ingredients.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/reactions5040042/s1, File S1: physical and NMR data of all products [22,27,36].
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