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Abstract
This project focuses on novel methods for investigating auditory
perception and associated environmental enrichment of great apes
in managed scenarios. Research outputs can inform animal hus-
bandry and the design of human and animal infrastructures in
both managed and wild environments. This is a report from the
start of the project, explaining the motivation for the research and
demonstrating the utility of soundscape analysis for identifying
anthropogenic noise that potentially impacts on great ape welfare,
natural behaviours and communication strategies. At this early
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stage, technology is being used to passively monitor acoustic sig-
nals in the environment and subsequently support the analysis of
recordings, using visualisation and machine learning techniques to
reveal patterns and identify sound sources. Initial findings demon-
strate that the fundamental frequency of gorilla low growls fall in
the range of 150 to 200 Hz, with subharmonics as low as 30 Hz,
just on the edge of human hearing. Ultimately, we are planning a
deeper investigation of auditory perception, by developing interac-
tive devices that offer agency to non-humans and enable us to find
out more about the hearing capabilities of different species.

CCS Concepts
• Applied computing → Imaging; • Human-centered comput-
ing → Visualization design and evaluation methods;

Keywords
environmental acoustics, acoustic monitoring, great ape, gorilla,
perception, environmental enrichment, animal-computer interac-
tion
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1 Introduction
Human communication strategy evolved so that we can acutely
hear the sounds we can produce, enabling sophisticated appreci-
ation of human vocal signals. We can discern speakers and their
mood without seeing the person, and our human music uses the
harmonics present in the human voice. Other species also evolved
to be able to communicate with their conspecifics, and since their
vocal utterances often vary in pitch, timbre and volume from hu-
man utterances, their perception of sound is very often completely
different from ours.

This project explores some of these differences in the context of
zoo-housed species in the UK, where we can monitor the acoustic
environment around animal enclosures and also capture auditory
communication between different members of the same species.
By analysing the signals produced by non-human animals, we can
infer what they are able to perceive.

Humans do not hear wavelengths outside the human range of
auditory perception (very low frequency or high frequency sounds),
yet we may produce such sounds unwittingly, with machinery and
other technology. Analysing the acoustic environment in the zoo
provides data about this type of noise, information that can be very
helpful for animal husbandry and management. For example, we
can find out if a human-made signal falls within an animal’s usual
vocal range, suggesting that it might impact on communication
strategies or desire to perform natural behaviours, such as mating.
In addition, by simultaneously capturing acoustic and contextual
data, it is possible to study the effect of anthropogenic noise on
animal behaviour.

Our colleagues at Twycross Zoo are keen to mitigate the effects
of anthropogenic noise, by masking human sounds, redesigning

spaces so that animals have more access to zones of limited anthro-
pogenic disturbance and potentially so they can be offered acoustic
enrichment opportunities. Focusing initially on great apes, the
project involves monitoring noise levels in the environment around
the apes’ housing areas. This involves capturing the soundscape
at different times of day, and also collecting data on the vocali-
sations made by different species. Environmental recordings will
include species-specific calls that can be filtered and enhanced to
gain awareness of the animals’ auditory capabilities – production
and perception.

Knowledge on how zoo-housed species perceive sound is scarce,
so this project provides the opportunity to investigate the percep-
tive capabilities of a variety of taxa. Our research could influence
habitat design by zoos, mitigation efforts for scheduled events and
contribute to scientific knowledge concerning the umwelt of differ-
ent species, specifically their subjective soundscape.

2 Background
There seems to be agreement amongst animal researchers [Krieng-
watana et al. 2022, Snowdon & Teie 2009] that communication
between conspecifics can express intentions, needs, affiliation and
emotions, as well as conveying information relating to environ-
mental conditions, personal health and status. Communication
contributes to group dynamics, for example by alerting others to
danger, acknowledging hierarchies, resolving disputes, strength-
ening social bonds and sharing important knowledge. The ability
to learn or improvise has enabled a variety of musical features to
be expressed in some animals, such as the development of local
dialects in songbirds [Hyland Bruno et al. 2021], rhythmic entrain-
ment in parrots [Cate et al., 2016] and sealions [Cook et al., 2013],
cultural transmission of whale songs [Tyarks 2022, Shabangu et
al. 2022], mimicry in birds [Tanaka, 2023], and bats [Ancilotto et
al, 2022], and the acquisition of novel acoustic signals in dolphins
[Kohlsdorf et al., 2013, King & Janik 2013, Herzing 2016]. As a
result of this, many cognitive scientists treat vocal learning as a
critical component of musicality [Doolittle & Gingras 2015].

In all types of signalling behaviour, there are receivers (such as
listeners) as well as senders (such as speakers). In different species,
the perceptual modalities for receiving and interpreting signals
have evolved simultaneously with the physical characteristics that
produce those signals.

There exists a relationship between frequency and volume, based
on our species-specific hearing sensitivity [Fletcher, 1933]. Frequen-
cies at either end of the human range of hearing are perceived to be
quieter, which has resulted in audio amplifiers (designed for human
ears) being able to compensate for the reduction in volume by boost-
ing bass and treble so that midrange frequencies don’t dominate the
acoustic signal. Meanwhile, some types of digital audio file formats,
such as MP (Moving Pictures Expert Group Audio), use algorithms
to compress data. The compression technique is lossy, meaning that
it clips audio frequencies outside human hearing range, so that the
recording can never have as much acoustic detail as the original
analogue signal. Moreover, even if the digital file is RAW, meaning
that there has been no data compression, audio output is limited
by the size of the speakers being used. Infrasound, for example,
requires huge speakers to generate very low frequency waves.
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Clark and Dunn, in their guide to acoustic research with animals
[2022], point to some future directions for investigation, including
further consideration of decibel levels in relation to the perceptive
abilities of different species. They suggest that this could be given
more attention when performing acoustic monitoring procedures in
zoos and animal shelters, stating: ‘A major challenge in bioacoustics
is to measure sound in a meaningful way—to reflect what animals can
hear, rather than what humans can hear.‘ The authors recommend
setting up microphones as close as possible to ‘point of ear’, and
establishing soundscape indices for evaluating the acoustic proper-
ties of managed environments, so as to reliably compare them with
the soundscapes encountered in a natural setting.

Collecting and analysing soundscapes (acoustic data from all the
sound producers in the environment) is known as acoustic monitor-
ing. It can offer information about the variety, health and charac-
teristics of different species, as well as provide data on noise levels
from other sources. Objective soundscapes include environmental
sounds from other animals (biophonic), from natural sources (geo-
phonic), and made by humans (anthrophonic) [Bradfer-Lawrence,
2023]. According to David Dunn [2020], soundscapes offer a com-
plex and holistic perspective on the environment. They point out
that music is both a deeply mysterious phenomenon and a funda-
mental agent in the world, often neglected by humans because of
our visually dominant representations of data and thought. Dunn
emphasises that it is the listener who ascribes meaning, not the
producer, suggesting that music has the potential to help humans
understand the ‘profound physical interconnectedness that is our
true environment’.

Ecological research into soundscapes has revealed some stark
facts about the effects of anthropogenic noise in the environment,
beyond the scope of this project but clearly identified as having a
negative impact in the sea [Jensen et al., 2009; Erbe, 2002; Parks
& Clark, 2007], on land [Shannon et al., 2016; Osbrink et al., 2012;
Ortega, 2012; Teff-Seker et al., 2022], and in managed scenarios such
as zoos [Queiroz & Young, 2018]. Essentially, research shows that to
improve the welfare of other species, humans need to reduce their
acoustic impact by avoiding, dampening or masking anthropogenic
noise.

However, there is also the possibility of introducingmore natural-
sounding sonification to acoustically barren environments. Existing
successful projects include the regeneration of coral reefs by pro-
viding acoustic enrichment (the sound of a healthy, populated reef)
to attract fish [Gordon et al., 2019] and encouraging amphibians
to use special tunnels beneath human transport lanes by playing
a mixed chorus of their usual calls along the new route [Testud
et al., 2022]. These studies relied on the principle of conspecific
attraction, whereby vocalisations indicate members of the same
species and therefore the likelihood of a safe habitat. By contrast,
Kiffner et al. [2007] were able to accurately estimate population
numbers of hyenas and lions, luring them to a specific location by
using the recording of a buffalo calf distress call, thus appealing to
a predatory urge. Putman & Blumstein [2019] provide an overview
of research into acoustic playback for wildlife management.

Animal acoustics is a newly developing field of research, so
any information will be of interest to other institutions and to the
scientific community.

3 Method
Twycross Zoo houses all four species of great ape, including West-
ern Lowland Gorillas (Gorilla gorilla gorilla). All great apes are vocal,
using acoustic signals to express themselves and communicate with
conspecifics. The western lowland gorilla troop, consisting of 3
females and 2 males, includes a geriatric female, who is a prolific
singer. Members of her troop all have individual songs (Fig. 1).

Figure 1: Biddy, a female singing gorilla, Twycross Zoo. Pho-
tograph credit: Phil Grain.

3.1 Aims
(1) To investigate environmental acoustics around great ape

enclosures, identifying patterns and sources of sounds.
(2) To monitor auditory signaling strategies between great ape

conspecifics and identify specific features of vocalisations .
(3) To provide archive recordings of some of the exciting acous-

tic signals made by target species.
2024-08-21 11:24. Page 3 of 1–7.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY French et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Procedure
An early test was carried out in July 2024, using the following
equipment:

• Rode M5 small diaphragm XY stereo condenser microphone
(pair) [https://rode.com/en/microphones/studio-condenser/m5];

• A Rode NTG2 full range super cardoid directional shotgun
microphone [https://rode.com/en/microphones/shotgun/ntg2];

• ZoomF6 32-bit float 6 channel field recorder [https://zoomcorp.com/en/gb/handheld-
video-recorders/field-recorders/f6/];

• Audiomoth full-spectrum acoustic logger (pair) [https://www.openacousticdevices.info/audiomoth];
• Tripod stand for recorder and ambient stereo microphones;
• Pistol grips for shotgun microphones;
• XLR and TRS cables.

The microphones were secured outside the gorilla enclosure,
aimed at an internal housing area (Fig. 2). They recorded into a
Zoom F6, set at 48kHz, 32bit float. Each mic was covered with wind
protection and isolated from any vibrations from the floor using
tripods and shock mounts to ensure the most accurate recording
possible. A recording was taken between 1-3pm. One Audiomoth
was secured inside the building, on a wall accessible only to staff
(Fig. 3). This recorded continuously from 12:00 – 16:00 and was
replaced by another Audiomoth, set to record continuously until
the batteries ran out. During this period, zoo staff took a 1-hour
lunch break and the research team (unknown to the gorillas) left
the area.

4 Early Results
In two hours of recordings, a total of 16 vocalisations were recorded,
comprising nine growls, three barks, three coughs and one howl.

The fundamental frequency of low growls fell in the range of
150 to 200 Hz, with subharmonics as low as 30 Hz, just on the edge
of human hearing.

The barking appeared to contain more upper harmonics than
the lower growls, with a fundamental frequency around 200 to 300
Hz. The most dominant harmonic range of these barks fell between
46 to 800 Hz, with frequencies as high as 15 to 20 kHz captured. The
high frequencies were accentuated by the resonance of the tiled
enclosure, in open spaces they would likely not be as present.

A spectogram of the recording ’Twycross_Gorilla_240724_15.wav’
is shown in iZotope RX 10 (Fig. 4), demonstrating a low growl, with
the highest consistent amplitude indicated in yellow and sitting
around 125 Hz. This rumble continued for around 1 to 2 seconds.

A screenshot showing volume over frequency range of the same
recording demonstrates that the inhale portion of the vocalisation
is loudest at around 46 Hz (Fig. 5).

In Figure 6, a recording of ’Twycross_Gorilla_240724_16.wav’ is
shown in iZotope RX, demonstrating the range of the barking vo-
calisations. The brightest yellows indicate where frequencies have
the highest amplitude and so are the main range of the vocalisation.

It was also noticed in the recordings that there was a continuous
low frequency hum in the vicinity of the enclosure, likely caused by
ventilation or refrigeration units in the area. This was resonating
at around 120 to 150 Hz, which was noted as being in the main
range of the vocalisations captured. It is not possible to give a dBA
value (A-weighted decibel measuring sound pressure levels) using
the sound recordings alone and so a dBA reading will need to be

Figure 2: Zoom F6 and Rode microphone setup.

captured to ascertain its level. Figure 7, taken from Fabfilter Pro Q3,
demonstrates the presence of a continuous hum around 120 to 150
Hz. This could be isolated and removed in the frequency equaliser
(EQ), demonstrating it was a mechanical noise.

These early results indicate that low level environmental noise
emanates constantly, producing a similar frequency to the gorillas’
rumbles (growls). However, this part of the enclosure is supposed to
be a ‘quiet zone’ for the animals, where they can rest undisturbed.
It may be that gorillas can perceive this noise much more acutely
than humans, suggesting that a thorough soundscape analysis could
support husbandry and have a positive effect on gorilla wellbeing.

5 Moving Forward
Since we are at the start of this exciting project, the team welcomes
advice, suggestions and questions from members of the Animal-
Computer Interaction (ACI) community. At this stage, we are partic-
ularly interested in discussing soundscape indices for zoo settings,
so they can be incorporated into the methodology for future data
collection and analysis.
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Figure 3: Audiomoth taped to wall.

Figure 4: Screenshot of iZotope RX spectogram showing go-
rilla growl.

Figure 5: Screenshot from iZotope RX frequency spectrum
of gorilla growl.

As part of a project at UCL, Kang et al. [2023] and Mitchel et
al. [2020] are undertaking research into a new way of measuring

Figure 6: Screenshot from iZotope RX showing spectograms
of gorilla barks.

Figure 7: Screenshot from Fabfilter Pro-Q 3 demonstrating
background noise level.

soundscape indices, emphasising the value of collecting contextual
and personal information from people as well as acoustic and envi-
ronmental data from the sound environment. Their study is focused
on human experience of soundscapes, but it illustrates the point
that each listener has a unique experience. While these researchers
can deploy questionnaires to gather information from their subjects,
in a zoo setting, animal experts would need to interpret individual
ape behaviour to collect a more nuanced response to the auditory
environment. The soundscape indices suggested by Mitchell et al.
include a range of indices for measuring soundscapes aimed at
human users, namely: (i) location details (e.g., GPS, architecture),
(ii) environmental conditions (e.g., weather, number of people),
(iii) sound source identification (e.g., traffic, human-made, natural),
(iv) perceived affective quality (e.g., pleasant, chaotic, calm) and
(v) perceived loudness, as well as (vi) detailed recording data that
identifies equipment used to record each parameter.

Bradfer-Lawrence et al. [2023] provide guidance on using acous-
tic indices in ecoacoustics and also point to the most commonly

2024-08-21 11:24. Page 5 of 1–7.
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used indices, namely: (i) acoustic complexity, (ii) acoustic diversity,
(iii) acoustic evenness, (iv) activity, (v) background noise, (vi) bioa-
coustics data, (vii) spectral, temporal and acoustic entropy, (viii)
events per second and (ix) median of amplitude envelope.

Recording and analysing environmental noise and animal acous-
tic signaling is a passive and non-invasive way to undertake re-
search into species-specific hearing sensitivities. Although we can
deduce which frequencies are perceivable by each species through
considering the range of frequencies in their vocal communica-
tions, and similarly measure the decibels to estimate appropriate
volume levels, it would be useful to have reliable scales showing
equal-loudness contours for all animals.

For a deeper investigation of auditory perception, there is an
opportunity to use technology to develop interactive devices that
provide information about non-human hearing capabilities through
allowing animals to have agency and enact their choices or to
freely demonstrate their hearing limitations. Such devices could
be repurposed for different species, by modifying the interfaces
and adjusting the auditory outputs. Outputs from such research
could inform husbandry, such that enclosures could be designed to
reduce the impact of unwanted noise (for example). Moreover, if
we understand more about the animals in our care, this knowledge
can also be applied to wild members of the same species. As an
example, vocalization banking of different classes of animal (gender,
age) could be used in in-situ population monitoring. Additionally,
we suggest that awareness of non-human others can inform design
across many disciplines, as humans could use relevant information
about the local ecology to adjust how they (and their associated
infrastructure) manifest in the environmental soundscape.
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