
1

A Novel Reinforcement Learning Model for
Post-Incident Malware Investigations

Dipo Dunsin, Mohamed Chahine Ghanem *, Karim Ouazzane, Vassil Vassilev,

Abstract—This Research proposes a Novel Reinforcement Learn-
ing (RL) model to optimise malware forensics investigation
during cyber incident response. It aims to improve forensic
investigation efficiency by reducing false negatives and adapting
current practices to evolving malware signatures. The proposed
RL System leverages techniques such as Q-learning and the
Markov Decision Process (MDP) to train the system to identify
malware patterns in live memory dumps, thereby automating
forensic tasks. The RL model is based on a detailed malware
workflow diagram that guides the analysis of malware artefacts
using static and behavioural techniques as well as machine
learning algorithms. Furthermore, it seeks to address challenges
in the UK justice system by ensuring the accuracy of foren-
sic evidence. We conduct testing and evaluation in controlled
environments, using datasets created with Windows operating
systems to simulate malware infections. The experimental results
demonstrate that RL improves malware detection rates compared
to conventional methods, with the RL model’s performance
varying depending on the complexity and learning rate of the
environment. The study concludes that while RL offers promising
potential for automating malware forensics, its efficacy across
diverse malware types requires ongoing refinement of reward
systems and feature extraction methods.

Index Terms—Cyber Incident, Digital Forensics, Artificial Intel-
ligence, Machine Learning, Reinforcement Learning, Malware,
Incident Response.

I. INTRODUCTION

In post-incident malware forensics investigations, the detec-
tion and classification of malware are critical processes for
reconstructing evidence files. This is particularly important
because malware, being a malicious program, can lead to
unauthorised access to confidential information, jeopardising
the security and integrity of data or information systems,
thereby posing a significant threat to the involved systems
and institutions. He and Sayadi [1] highlight that malware
attacks have become a pervasive threat, affecting homes,
education, businesses, government, and healthcare by "finding
vulnerabilities in networks and applications to launch attacks."
In the healthcare field, particularly within the Internet of
Medical Things (IoMT), such malicious attacks are especially
dangerous [2]. A minor misclassification or failure to detect
malware can seriously compromise patient medical records,
potentially leading to incorrect diagnoses or treatments and, in

——————————————————————————————
* Mohamed C. Ghanem is the corresponding author. email:

m.ghanem@londonmet.ac.uk
Mr. D. Dunsin, Dr. M.C. Ghanem, Prof. K. Ouazzane and Prof. V. Vassilev

are with the Cyber Security Research Centre, London Metropolitan University,
London, UK

extreme cases, resulting in paralysis or death. Machine Learn-
ing (ML) has gained widespread adoption to detect various
types of malware. However, increasingly complex malware
can circumvent ML techniques and models. The paper by Wu
et al., [4] discusses the use of reinforcement learning (RL)
as a more advanced model that improves malware detection
accuracy, surpassing traditional machine learning methods.
According to Liu et al., [5], machine learning in malware
detection involves extracting features from data to classify
malware and learn from past data to identify new threats. As
a result of leveraging algorithms and data analysis, machines
can improve their accuracy in identifying malware. However,
newer and more complex malware can deceive ML models
by masquerading as benign software, evading detection [6]
[7]. Ebrahimi et al., [8] suggest that reinforcement learning
can help defenders detect sophisticated adversarial threats.
Adversarial malware relies on perturbation methods to evade
ML-based detectors [9] [10]. A significant challenge is the
need for constant updates with new malware behaviours.

Reinforcement learning, on the other hand, enables models
to generate adversarial malware that can bypass detection by
portable executable (PE) malware classifiers. Quertier et al.,
[10], note that the RL System "Gym-Malware" achieves an
evasion rate of up to 16%, while the RL System "MAB-
malware" can achieve an evasion rate of over 75% in a black-
box setting. Furthermore, according to Quertier et al., [10],
adversarial knowledge defines attacks as either "white box,"
where the adversary has complete access to the model, or
"black box," where the adversary has no knowledge of the
model and can only obtain classification results through a
limited number of attempts [13]. These adversarial samples,
which are falsely classified as benign, can improve the de-
tection accuracy of malware detectors by 16% to 94% [4].
Reinforcement learning’s ability to automate malware evasion
shows how detailed sequences of adversarial actions can
train antivirus and malware detection systems, enhancing their
effectiveness in combating malware [10].

A. Research Aim and Question

This research aims to improve malware forensics investi-
gations by utilising reinforcement learning (RL) techniques.
The primary focus is on identifying, analysing, and enhanc-
ing models for post-incident investigations. As a result of
this, the goal is to expedite forensic processes and mitigate
the miscarriage of justice within the UK legal system [3].
Additionally, this research seeks to improve heuristic- and
signature-based analysis methods through the application of

2

RL, thereby enhancing overall cybersecurity measures after
a security breach. Building on these objectives, the research
also aims to address a central question: How effective are re-
inforcement learning models in distinguishing between benign
and malicious software, and what are the areas for potential
improvement? The study investigates RL’s role in enhancing
malware analysis within post-incident forensics, particularly
in identifying patterns that traditional tools may struggle to
detect. Furthermore, it examines RL’s adaptability to evolving
malware signatures and explores the feasibility of combining
RL techniques with heuristic methods for more reliable and
comprehensive malware analysis.

II. RELATED WORK

A. Reinforcement Learning Improves ML Malware Detection

Wu et al. [4] explore reinforcement learning (RL) to en-
hance malware evasion against machine learning detection
models. They propose the "gym-plus" model, an extension
of "gym-malware," which generates evasive malware samples.
Using the EMBER dataset, they retrain detection models,
improving detection rates for unknown malware. However, the
study lacks a clear theoretical explanation of RL and omits
a discussion on limitations like agent selection and action
space. Moreover, there is no comparative analysis with other
detection methods. Despite these gaps, the paper demonstrates
practical effectiveness, offering a detailed evaluation of the RL
model. Future work should address these limitations to further
improve malware detection.

B. Adversarial RL for Malware Detection

Ebrahimi et al., [8] research improves cybersecurity by ad-
dressing adversarial attacks on ML-based malware detection.
Specifically, their innovative use of adversarial reinforcement
learning (RL) enhances malware detector robustness in dy-
namic environments. The method improves dynamic interac-
tions between the detector and the adversary by including
adversarial agents that create false samples. However, reliance
on MalVAC and lack of comparative assessment limit the
research’s generalizability. Furthermore, more theoretical ex-
ploration of convergence properties could improve the System.
Despite these flaws, their focus on future work like optimi-
sation solvers and reducing false positives shows forward-
thinking.

C. Reinforcement Learning: Uncovering Control

Wang et al., [11] propose an automated approach for identify-
ing command and control (C2) attack paths in large networks
using reinforcement learning (RL). They address manual C2
detection methods’ limitations by emphasizing efficiency and
automation. By integrating cyberdefense terrain into the RL
model, they enhance practical relevance. While their detailed
attack simulation, which covers infection to exfiltration phases,
demonstrates rigor, reliance on a simulated environment limits
real-world applicability. Furthermore, the assumption of full
knowledge of host characteristics may be unrealistic, and the
RL model’s complexity poses practical challenges. Despite

these weaknesses, the paper contributes valuable insights into
RL-based intrusion detection, laying the groundwork for future
cybersecurity research and applications in network defence.

D. Reinforcement Learning for Grid Security

Yu [12] introduces a hierarchical deep reinforcement learning-
based (HDRAD) scheme for detecting Advanced Persistent
Threats (APT) in data management systems. The thorough
simulations demonstrating HDRAD’s superior performance
over RS and HP schemes in detection delay and data protection
are a key strength. However, the study’s complexity and
reliance on technical illustrations make it difficult for non-
experts. While the research outlines its objectives, it lacks
simplified explanations of how the HDRAD scheme functions.
Additionally, brief introduction, discussion, and conclusion
sections limit comprehensive understanding. Despite these
limitations, the paper significantly contributes by presenting a
novel and efficient APT detection method for improving data
security in smart grids.

E. Deep Learning Techniques for Malware Obfuscation

Gao and Fang [14] present a novel malware evasion approach
using deep reinforcement learning. They generate adversarial
examples by extracting bytes from benign files and injecting
them into malware, achieving an 85% evasion rate against
EMBER, a state-of-the-art malware classifier. The research’s
strengths include the innovative combination of reinforcement
learning and malware evasion, along with a clear presentation.
However, weaknesses arise from a lack of discussion on ethical
implications and potential limitations, such as effectiveness
across diverse malware types. Despite the robust experimental
design, real-world validation requires further research. Nev-
ertheless, the study significantly contributes to cybersecurity
by proposing a promising yet ethically complex method for
enhancing malware evasion techniques.

F. A3C Algorithm for Malware Identification

Xue et al., [16] describe a novel approach to improving
malicious code detection using reinforcement learning and the
Asynchronous Advantage Actor-Critic (A3C) algorithm. They
highlight the limitations of traditional detection methods and
position their work within the broader context of machine
learning advancements. The research’s strengths include its
detailed methodology and contribution to generating anti-
detection adversarial samples. However, the study lacks in-
depth discussion of broader implications, such as ethical con-
cerns and scaling challenges. Exploring alternative adversarial
techniques and potential biases could improve robustness.
Despite these limitations, the article significantly contributes
to cybersecurity through its novel application of reinforcement
learning techniques.

III. RESEARCH METHODOLOGY

A. Experimental Setup and Dataset Generation

The London Metropolitan University Digital Forensics Labo-
ratory created a comprehensive malware dataset to implement

3

and validate the proposed reinforcement learning malware
investigation system [17]. We set up thirteen virtual machines
in a secure network to prevent unintended malware spread.
We uploaded different ISO files of the Windows operating
system to ensure a diverse test environment. We introduced
malware to each virtual machine, took snapshots of infected
and uninfected states, and produced 26 RAM files. To uncover
malware behaviours, we analysed these files using the Volatil-
ity System. Finally, we created a detailed workflow diagram
to facilitate the training and validation of the model.

B. Malware Workflow Diagram Creation

The research methodology covers the experimental setup,
dataset generation, and development of a malware analysis
workflow. This workflow is central to the reinforcement learn-
ing System, integrating techniques such as data collection,
examination, and analysis [18]. We analysed live memory
dumps from 13 versions of Windows, both infected and
uninfected, using the Volatility System to detect anomalies
and malware artefacts. The analysis phase employs static,
signature-based, behavioural techniques, and machine learning
algorithms. The workflow diagram maps typical malware
behaviours and improves post-incident forensic investigations,
supporting the reinforcement learning model’s training and
validation.

C. Q-Learning Terminologies

We implement the proposed Reinforcement Learning Post-
Incident Malware Investigation Model in the following sec-
tions. Key terminologies are briefly defined. The Environment
is the world where the agent operates. The Agent learns
by interacting with the environment. States (s) represent the
agent’s position, while an Action (a) is any move the agent can
take, leading to either a reward or penalty. Episodes signify
the end of a stage, either through success or failure. For each
state-action pair, the agent manages Q-values in a Q-Table.
Temporal Differences (TD) compare current and previous
state-actions. The learning rate controls how new information
replaces old. A policy maps states to actions, while the Dis-
count Factor weighs future rewards. The Bellman Equation
relates Q-values across state-action pairs, and the Epsilon-
Greedy strategy balances exploration and exploitation.

D. The Unified Markov Decision Process

The Unified Markov Decision Process (MDP), illustrated in
Figure 1, brings together various MDP components into a
single framework, offering a complete overview. This integra-
tion enables the agent to efficiently explore the environment
and make well-informed choices in the context of malware
analysis.

E. Proposed RL Post-Incident Malware Investigation System

The main components of the Reinforcement Learning Post-
Incident Malware Investigation System consist of six key
elements, as shown in Figure 2. These elements include
data acquisition, workflow diagram mapping, implementation

of the MDP model, environmental dependencies, the MDP
solver, and continuous learning with adaptation. Initially, data
acquisition involves capturing live memory dumps from Win-
dows operating systems. Subsequently, data analysis focuses
on examining the acquired data to detect anomalies, indicators
of compromise, and potential malware artifacts. The workflow
diagram provides a detailed approach for identifying malware
infections through static analysis, signature-based techniques,
behavioural analytics, and machine learning algorithms. The
AWK module carries out feature extraction from identified
processes. In addition, listing DLLs is important for moni-
toring the DLLs loaded by each process. Monitoring open
handles is also critical for tracking the open handles associated
with each process. Network data collection ensures the cap-
ture of all relevant network-related information. We conduct
registry hive analysis to identify registry hives and enumerate
their keys. We duplicate processes into executable files and
compare them with known malware databases to determine
their malicious or benign nature. We also duplicate addressable
memory to conduct searches using specific keywords. The
state spaces are constructed to match the malware workflow
diagram, encompassing 67 unique states. Actions are defined
based on this workflow, ranging from three to ten, which
exposes the agent to 109 different actions within a defined
environment. As part of our work on the MDP solver, we
create unified Markov Decision Process (MDP) models from
the proposed RL Post-Incident Malware Investigation Model.
Lastly, the environment setup dependencies are categorised
into three sections: establishing dependencies and gym envi-
ronments, importing the necessary libraries, and implementing
training data for continuous learning and adaptation.

F. Algorithm 1 - Implementation of the Q-Learning Algorithm

Algorithm 1 implements Q-learning to train an agent for
optimal decision-making. It initialises a zero-valued Q-table
representing the agent’s understanding of the environment,
where rows are states and columns are actions. Key parameters
like learning rate, discount factor, and exploration probability
(initially set to 0.9) are established, along with decay schedules
and data storage structures (storage, storage new, reward list).
The main loop runs over a specified number of episodes,
resetting the environment and variables at each episode’s start.
Within each episode, a greedy policy selects actions: if the
probability is high, it explores by choosing a random action
(exploration); otherwise, it exploits by selecting the action
with the highest Q-value for the current state (exploitation).
The environment executes the action, providing the next state,
reward, and a done flag indicating the episode’s end. Q-
values are updated using the Bellman equation, taking into
account the immediate reward and maximum future Q-value,
and stored in the Q-table. The state updates to the next state,
and data such as Q-values, episode number, and action are
appended to the storage list. The exploration probability de-
cays according to a predefined schedule. We optionally check
convergence by comparing the absolute difference between
new and current Q-values; if it falls below a threshold, we
can terminate the loop early. After each episode, we append

4

Fig. 1: Overall Markov Decision Process (MDP) Model

Fig. 2: The Proposed RL Post-Incident Malware Investigation System

episodic rewards and other data to the reward list. Finally,
we return the Q-table and storage data, which summarise
the learnt policy and training data. The process begins with
the initialisation phase, where three custom environments
(env_new1, env_new2, and env_new3) are defined using a
specified MDP function. The algorithm iterates over a list of
names (name_list), and for each name, it assigns the appropri-
ate environment by configuring the Markov Decision Process
(MDP) with specific transition probabilities and rewards.

G. Algorithm -2 Iterating Learning Rates Variation over MDP
Environments

Algorithm 2 is a method that trains and saves models by
utilising various learning rates (LRs) across different envi-
ronments. The algorithm starts with an initialisation phase,
where it defines multiple environments (envs) and creates an
empty dictionary called ’final dict’ to hold the results. Training
parameters are then set, which include a list of learning
rates ranging from 0.001 to 0.9, along with storage for the
corresponding Q-tables, intermediate data, rewards, and other
storage structures. For each learning rate (lr) in the list of

5

Algorithm 1 Q-Learning Implementation

1: Initialization:
• Initialize Q-table with zeros. (defines the state of the

agent)
• Set parameters: learning rate (𝛼), discount factor (𝛾),

exploration probability (𝜖 = 0.9), and decay schedule.
• Initialize storage structures: storage, storage_new, re-

ward_list.
2: for episode = 0, 1, . . . , episodes do
3: Reset environment and variables:
• Reset the environment to obtain the initial state.
• Initialize episodic reward and step counter.
• Store current epsilon value.

4: while not done, do
5: Select action using 𝜖-greedy policy:
• if 𝜖 < rand() then
• action ∼ Uniform(noA)
• else
• action = max𝑎 𝑄(state, 𝑎)

6: Execute action:
• Act in the environment and observe the next state,

reward, and done flag.
• Update episodic reward.
• Increment steps counter.

7: Update Q-value using Bellman equation
8: Compute the maximum future Q-value for the next state.
9: Calculate the new Q-value

10: Update the Q-table with the new Q-value.
11: Store Q-value updates if specific conditions (e.g., state,

action) are met.
12: Update state: Set the current state to the next state.
13: Append the (current_q, new_q, episode, action) to the

storage list.
14: Decay 𝜖 : Reduce epsilon based on the decay schedule.
15: Check convergence: if |new_q − current_q| < threshold

and new_q ≠ current_q then
16: Break the loop
17: Append (episodic_reward, episode, steps) to reward_list.
18: Update 𝜖 :

• 𝜖 ← 𝜖 − (𝜖_decay_value × 0.5)
19: Return results:

• Return Q-table, storage, reward_list, and stor-
age_new.

20: end for

learning rates (lrs), the algorithm applies the ’new q learning’
algorithm. Afterward, the results are appended to the ’final
dict’, ensuring an organised process for model training and
results recording across various environments.

IV. MDP MODELS INTEGRATION AND IMPLEMENTATION

A. An Overview of Our Three Proposed MDP Environments

The BlankEnvironment represents the proposed Markov
Decision Process using the Malware Workflow Diagram, en-
compassing states, actions, rewards, transition probabilities,
and the completion status of an episode. It consists of a

Algorithm 2 Iterating Learning Rates Variation over MDP
Environments

1: Initialization: Defining different envs and empty final dict
2: for name in name_list do

1) Assigning the right env (MDP): Using diff transition
probs and rewards to create the MDP

2) Defining and resetting the training params:
• Learning rates list
• outputs, store and rewards dictionaries

3) for lr in lrs do
a) Performing the new_q_learning algorithm
b) Storing everything by appending in the final_dict

4) end for
3: end for

Fig. 3: Initialise and Implement the BlankEnvironment Class

discrete action space with 10 possible actions and an obser-
vation space comprising 67 observations, applying a default
step penalty of -0.04 and awarding a reward of 2 for detect-
ing malware. The BlankEnvironment_with_Rewards
provides a reward of 2 for correctly identifying malware in
all terminal states and 4 for correct identification at earlier
stages, promoting accurate classifications. On the other hand,
the BlankEnvironment_with_Time enforces a stricter
penalty of -0.01 per step to encourage timely malware de-
tection by deterring the agent from making excessive moves.
In both environments, rewards are treated as hyperparameters,
fine-tuned to achieve optimal agent performance.

B. Implementation of the BlankEnvironment

In Figure 3, we introduce a new class called
‘BlankEnvironment’, which extends from ‘gym.Env’,
signifying its function as a gym-compatible environment.
Within the BlankEnvironment class, the constructor
sets up the instance of the class. A subsequent variable
specifies the environment’s action and observation spaces.
The action space is discrete, containing 10 possible actions,
while the observation space is also discrete, with 67 possible
observations. The variable ‘self.state = 0’ initialises the
environment’s starting state as ‘0’. We also initialise ‘self.P
= dict()’ as an empty dictionary to store the transition
probabilities in the later code sections.

6

C. Implementation of the BlankEnvironment with Rewards

The BlankEnvironment with Rewards represents
a distinct implementation in comparison to the
BlankEnvironment. In BlankEnvironment
with Rewards, actions that lead to terminal states
receive a reward of 2, unlike the -0.04 reward given
in the BlankEnvironment. The reward function in
BlankEnvironment_with_Rewards is adjusted at the
end of an episode, as indicated by the done flag. The done
flag assigns the fourth element’s value to the variable named
done, which reflects whether the episode has concluded.
When the done flag detects that the done variable is set to
True, the reward variable is assigned a positive value of 4.
This modification accounts for the impact of changing the
reward at the conclusion of the episode.

D. Implementation of the BlankEnvironment with Time

In BlankEnvironment_with_Time, the agent encoun-
ters a harsher negative reward of -0.1 per step, in contrast to the
usual penalty of -0.04 present in the other two environments.
The design of this approach encourages the agent to swiftly
identify malicious files by taking the shortest possible route,
thereby avoiding any unnecessary actions. Moreover, if the
agent prolongs the episode by taking extra steps, it incurs
substantial penalties. Crucially, we treat this incentive as a
hyperparameter, enabling continuous adjustments. The expres-
sion ‘done = k[3]‘ assigns the fourth element from the tuple
‘k‘ to the variable ‘done‘, signifying whether the episode has
concluded. If ‘done‘ is ‘True‘, the agent receives a reward of
+4; otherwise, it is penalised with -0.1. Subsequently, the tuple
‘new k‘ is generated by retaining the original values from ‘k‘
but updating the reward. This modified tuple is then returned
for further interactions with the environment.

E. Iterating MDP Environments over Learning Rates

We implemented a Python code and iterated the three MDP
environments over a range of learning rates (0.001–0.9).
The name_list = [’env_new1’, ’env_new2’,
’env_new3’] defines a list containing the names of the
environments. We initialise an empty dictionary to store the
final results and iterate over each environment using a for
loop. We use the Q-learning function to convert the current
learning rate to a float and store the results in dictionaries.
We convert the output into a list and save it in the output
dictionary. Finally, we group the collected data into a tuple
and store it in the final dictionary, consolidating all results
for further insight.

V. TESTING AND EVALUATION

A. Comparing the Speed of Convergence

We implemented a Python code to visualise the
speed of convergence across the three MDP
environments, (env_new1, env_new2, and
env_new3) representing BlankEnvironment,
BlankEnvironment_with_Rewards(), and
BlankEnvironment_with_Time(), respectively. Each

dictionary maps learning rates to the number of episodes
required for convergence. The code line x = [float(key)

Fig. 4: The speed of convergence across the three MDP environments

for key in env_new1.keys()] creates a list of
floating-point learning rates from env_new1. The command
plt.figure(figsize=(10, 6)) initialises a 10x6-
inch plot, where we create scatter plots for each environment,
using different colours (blue, red, and green) for distinction
and adding lines to illustrate convergence trends. Figure
4 shows that BlankEnvironment_with_Rewards
(env_new2) has the smoothest and fastest convergence. In
contrast, BlankEnvironment_with_Time (env_new3)
converges slowly due to a higher negative reward function,
necessitating larger learning rates and more computational
time. BlankEnvironment (env_new1) also performs
well, but it converges slower due to learning rate fluctuations.
As a result, BlankEnvironment_with_Rewards is the
best MDP environment, with a 0.4 learning rate.

B. Command Definitions for State-Based Actions

We imported the Subprocess module to allow the Python
script to spawn new processes and manage their in-
put/output/error pipes and return codes. We initialise and pop-
ulate an empty dictionary, my_dict, with key-value pairs,
each representing a state and each value a list of commands
for that state. For example, state 0 includes a command to
clone a GitHub repository, while state 10 has commands for
Windows system information and the registry. States 15 to
45 have various commands, some including special characters
and options like -pid and -o.

VI. RESULTS AND DISCUSSION

A. The Agent Decision-Making Processes

We implemented a Python script that initialises two lists,
ideal_list and pred_list, containing integer values
representing actions for specific states within our reinforce-
ment learning MDP environment. The ideal_list assigns
optimal actions for states 0 to 66, while the pred_list
contains predicted actions for the same states. For example,
state 0 has an ideal action of 0 and a predicted action of
2. Each index in both lists corresponds to a specific state,

7

Fig. 5: Calling the get_acc function for accuracy computation

facilitating the comparison of predicted actions against ideal
outcomes to measure model performance across the three
environments using varying learning rates.

B. Python Function to Evaluate Predictive Model Accuracy

To compare the accuracy of predicted actions against ideal
actions, we implemented a Python function named get_acc.
Initially, the function sets two variables, true and false, to
zero to count correct and incorrect predictions, respectively. It
iterates through the ideal_list and pred_list simulta-
neously using the zip() method, comparing each element;
if they match, it increments true; otherwise, it increments
false. After the iteration, the function computes the accuracy
by dividing true by the total number of comparisons (true
+ false), formats the result to five decimal places, and
prints the accuracy. This function is useful for evaluating
prediction accuracy in reinforcement learning settings, and
upon execution, it shows an accuracy of 94%.

C. get_acc function for accuracy computation

The implemented Python function named get_acc processes
multiple environments (env1, env2, and env3) represented
by dictionaries (q1_dict, q2_dict, and q3_dict). We
defines 𝑥 and 𝑦 coordinates for three sets of data representing
different environments: env1, env2, and env3. Each envi-
ronment’s data is stored in respective lists, such as env1_x
and env1_y, env2_x and env2_y, and env3_x and
env3_y. The code then creates three scatter plot traces using
go.Scatter, specifying the data points, mode (lines and
markers), names, and marker colours for each environment.
A layout is defined for the plot, including a title, x-axis
and y-axis labels, and hover mode configuration. A figure
object is created by combining the traces and the layout,
and the plot is displayed using fig.show(). This code
effectively visualises the accuracy computation for different
learning rates across three MDP environments, as shown in
Figure 6. Consequently, it demonstrates that env2, with a
learning rate of 0.4, is the best-performing environment.

D. Plotting the proposed Model command execution timings

As a result of keeping track of state changes using our
proposed reinforcement learning post-incident malware in-

Fig. 6: Malware Analysis Execution Time for Different Commands
Executed Using the Agent (RL Model)

vestigation model, we obtain a trajectory based on actions
and landing states, which control a series of state changes
in the environment. We utilised the Google Collaborative
Environment’s execution timings to plot the proposed model’s
command execution timings. To store keys and values re-
lated to states and action trajectories, we created a new
command_timings_dict. We then defined new Python
code to create a multi-plot figure using Plotly to analyse the
execution time of different malware commands (WannaCry,
Cerber, and Cridex). This code initialises a figure with three
vertical subplots, each with a title and increased vertical
spacing. We add line plots for WannaCry, Cerber, and Cridex
to the first, second, and third subplots, respectively, ensuring
each has distinct colours and markers. We update the figure’s
layout to set its dimensions and centre the title. We customize
the X-axis labels for each subplot and label the y-axes with
’Time (seconds)’. The resulting graph is displayed using
fig.show(), as illustrated in Figure 7 below.

E. Research Findings and Recommendations

This research examines post-incident malware forensics using
reinforcement learning (RL), emphasising RL’s growing im-
portance in adapting to evolving malware threats. By automat-
ing forensic tasks, particularly malware artefact identification,
through a structured RL workflow based on Q-learning, the

8

model effectively identifies and classifies malware. However,
its performance depends on the diversity of malware samples,
necessitating broader datasets to improve accuracy. Optimis-
ing RL models for computational efficiency is also critical,
especially in resource-limited environments. Integration with
existing security infrastructure is recommended, combining
RL’s adaptive learning with traditional forensic processes for
a more robust defense. Furthermore, the ethical implications
of AI deployment in cybersecurity must be considered to
protect against adversarial attacks. Finally, this model could
mitigate miscarriages of justice in the UK’s legal system [19]
by introducing a data-driven and unbiased approach to digital
forensic analysis, enhancing judicial outcomes by improving
accuracy and reducing errors.

VII. CONCLUSION

This paper presents a novel reinforcement learning (RL) model
and System for post-incident malware forensics investigations,
designed to surpass the capabilities of human forensic experts.
The model accelerates malware analysis and identifies both
known and unknown threats by integrating various techniques,
such as live memory dumps from Windows systems. A unified
Markov Decision Process (MDP) System was developed,
featuring three environments: BlankEnvironment, BlankEn-
vironment_with_Rewards, and BlankEnvironment_with_Time,
each with distinct reward mechanisms to optimise malware
analysis. The RL agent, utilising Q-learning and epsilon-
greedy exploration, iteratively refines its policy and decision-
making process, improving malware identification accuracy.
Experimental tests, including simulations with malware like
WannaCry and Cerber, demonstrated that performance de-
pends on learning rates and environment complexity. The study
focuses on hyperparameter tuning and continuous learning to
improve the performance of RL models. It shows that reward
systems, feature extraction, and hybrid analysis could all use
more optimisation. In future work, we intend to integrate a
rule-based expert system (RBES) to capture expertise gener-
ated by our system, generalise it and use it directly in future
investigations where the case investigated involves similar
machine architecture and configurations, this will certainly
improve the performance in case of re-investigation similar
plarform (many targeted computers with similar buits) and
maintain consistency [20].

REFERENCES

[1] He, Z., and Sayadi, H. (2023, April). Image-Based Zero-Day Malware
Detection in IoMT Devices: A Hybrid AI-Enabled Method. In 2023 24th
International Symposium on Quality Electronic Design (ISQED) (pp. 1-
8). IEEE.

[2] Nguyen, T.T. and Reddi, V.J., 2021. Deep reinforcement
learning for cyber security. IEEE Transactions on Neural
Networks and Learning Systems, 34(8), pp.3779-3795.
https://doi.org/10.1109/TNNLS.2021.3121870

[3] Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck,
K., Corona, I., Giacinto, G. and Roli, F., 2017. Yes, machine learning
can be more secure! a case study on android malware detection. IEEE
transactions on dependable and secure computing, 16(4), pp.711-724.
https:doi.org/10.1109/TDSC.2017.2700270

[4] Wu, C., Shi, J., Yang, Y., and Li, W. (2018, November). Enhancing ma-
chine learning based malware detection model by reinforcement learning.
In Proceedings of the 8th International Conference on Communication
and Network Security (pp. 74-78).

[5] Liu, L., Wang, B. S., Yu, B., and Zhong, Q. X. (2017). Automatic mal-
ware classification and new malware detection using machine learning.
Frontiers of Information Technology and Electronic Engineering, 18(9),
1336-1347.

[6] Penmatsa, R. K. V., Kalidindi, A., and Mallidi, S. K. R. (2020). Feature
reduction and optimization of malware detection system using ant colony
optimization and rough sets. International Journal of Information Security
and Privacy (IJISP), 14(3), 95-114.

[7] Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., and Yin, H.
(2020). Mab-malware: A reinforcement learning System for attacking
static malware classifiers. https://arxiv.org/abs/2003.03100

[8] Ebrahimi, M. R., Li, W., Chai, Y., Pacheco, J., and Chen, H. (2022,
November). An Adversarial Reinforcement Learning System for Robust
Machine Learning-based Malware Detection. In 2022 IEEE International
Conference on Data Mining Workshops (ICDMW) (pp. 567-576). IEEE.

[9] Zhong, F., Hu, P., Zhang, G., Li, H., and Cheng, X. (2022). Reinforcement
learning based adversarial malware example generation against black-box
detectors. Computers and Security, 121, 102869.

[10] Quertier, T., Marais, B., Morucci, S. and Fournel, B., 2022. MERLIN–
Malware Evasion with Reinforcement LearnINg. arXiv preprint
arXiv:2203.12980. Available at: https://arxiv.org/abs/2203.12980

[11] Wang, C., Kakkar, A., Redino, C., Rahman, A., Ajinsyam, S., Clark,
R., ... and Bowen, E. (2023, April). Discovering Command and Control
Channels Using Reinforcement Learning. In SoutheastCon 2023 (pp. 685-
692). IEEE.

[12] Yu, S., 2022. Fast Detection of Advanced Persistent Threats for Smart
Grids: A Deep Reinforcement Learning Approach. In ICC 2022-IEEE
International Conference on Communications (pp. 2676-2681). IEEE.

[13] Ghanem, M.C., Mulvihill, P., Ouazzane, K., Djemai, R. and Dunsin, D.,
2023. D2WFP: a novel protocol for forensically identifying, extracting,
and analysing deep and dark web browsing activities. Journal of Cyberse-
curity and Privacy, 3(4), pp.808-829. https://doi.org/10.3390/jcp3040036

[14] Gao, J., and Fang, Z. (2022, October). Utilizing benign files to obfuscate
malware via deep reinforcement learning. In 2022 4th International
Conference on Intelligent Information Processing (IIP) (pp. 293-297).
IEEE.

[15] Ghanem, M., Mouloudi, A. and Mourchid, M., 2015. Towards a scien-
tific research based on semantic web. Procedia Computer Science, 73,
pp.328-335. https://doi.org/10.1016/j.procs.2015.12.041

[16] Xue, Y., Shu, H., Bu, W., and Qu, W. (2020, October). Malicious Code
Detection Technology Based on A3C Algorithm. In 2020 IEEE 11th
International Conference on Software Engineering and Service Science
(ICSESS) (pp. 116-120). IEEE.

[17] Dunsin, D., Ghanem, M.C., Ouazzane, K. and Vassilev, V.,
2024. Reinforcement Learning for an Efficient and Effective
Malware Investigation during Cyber Incident Response.
https://doi.org/10.48550/arXiv.2408.01999.

[18] Dunsin, D., Ghanem, M.C., Ouazzane, K., Vassilev, V., 2024. A
comprehensive analysis of the role of artificial intelligence and ma-
chine learning in modern digital forensics and incident response.
Forensic Science International. Digital Investigation 48, 301675.
https://doi.org/10.1016/j.fsidi.2023.301675

[19] Moore, L., 2009. Review: Rethinking Miscarriages of
Justice: Beyond the Tip of the Iceberg Michael Naughton
Palgrave Macmillan, Houndsmills, 2008, 233pp, ISBN
978—0—230—01906—5, £45.00 (hbk). Critical Social Policy 29,
296–297. https://doi.org/10.1177/02610183090290020702

[20] Ghanem, M.C., Chen, T.M., Ferrag, M.A. and Kettouche, M.E., 2023.
ESASCF: expertise extraction, generalization and reply framework for
optimized automation of network security compliance. IEEE Access.
https://doi.or/10.1109/ACCESS.2023.3332834

https://doi.org/10.1109/TNNLS.2021.3121870
https:doi.org/10.1109/TDSC.2017.2700270
https://arxiv.org/abs/2003.03100
https://arxiv.org/abs/2203.12980
https://doi.org/10.3390/jcp3040036
https://doi.org/10.1016/j.procs.2015.12.041
 https://doi.org/10.48550/arXiv.2408.01999
 https://doi.org/10.48550/arXiv.2408.01999
https://doi.org/10.1016/j.fsidi.2023.301675
https://doi.org/10.1177/02610183090290020702
https://doi.or/10.1109/ACCESS.2023.3332834

