
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

CricPredict: Resource-Aware Prediction of T20
Cricket Match

Ashish Kumar
School of Electronic Engineering and

Computer Science
Queen Mary University

London, United Kingdom

Bilal Hassan
School of Computing and Digital

Media
London Metropolitan University

London, United Kingdom

Muhammad Farooq Wasiq
Department of Creative Technologies

Air University
Islamabad, Pakistan

Abstract— One of the key problems in cricket is the
increasing number of abandoned matches due to unusual
circumstances. There is a total of three different formats in
cricket e.g., Test, ODI and T20 international. Usually, the
Duckworth–Lewis (D/L) method is used to decide the outcome
of the match in Test and ODI cricket, resulting in favour of one
team like completed matches. In contrast to the traditional D/L
method, we tried to incorporate players' performance indicators
into our proposed architecture despite the traditional D/L
method which only includes the current state of the match and
determines the outcome. To accomplish this task, we tried
multiple different machine learning techniques e.g., Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve-
Bayes, Linear Regression and Polynomial Regression and a deep
learning model to predict the outcome of the match. To train
and validate our developed architecture, we crawled data from
the Indian Premier League (IPL) for the completed matches.
Our proposed architecture takes complete matches as input and
for the second batter, it predicts outcome at intermediate stages
of matches. Later, the performance of our proposed
architecture is computed using different performance indicators
e.g., accuracy, Mean squared error etc. In our opinion, our
proposed resource-aware prediction architecture is a unique
contribution of its kind in the field.

Keywords— Cricket, Predictor, SVM, Naïve Bayes, K-NN,
CNN, regression

I. INTRODUCTION
Cricket is a game where two teams each having eleven

players compete against each other. In modern cricket, the
ODI, T20, and Test formats are the most common. One of the
most famous and shortest playing format of cricket is T20
which involves 20 overs each side. Although there are other
T20 premier leagues in the globe, this study focuses on the
biggest and most well-known one, the Indian Premier League.
The question "What happens if the match stops unexpectedly
due to bad playing conditions?" served as the basis for the
concept of the project. How can we acquire a result under
these circumstances, and how should it affect the scores? The
D/L (Duckworth-Lewis) technique is a conventional approach
that was first presented in 1997 and granted formal
certification in 1999 It states that a team's ability to score runs
at any time during the game may be determined by the
combination of two resources that are available to them: the
number of wickets remaining and the number of overs
available to play. However, many other aspects can influence
the game that are not considered in the usual fashion, such as
pitch, past performance, and so on, which is why this method
is also contentious. Sports analytics has become a popular
research subject in data science since the development of deep
learning and artificial intelligence. In particular, for the Indian
Premier League (IPL), the goal of this research project is to
provide a result and score prediction technique for T20 cricket

matches as a backup to the D/L approach if play is suspended
due to unfavourable playing circumstances. The model
created for this project will take into account several input
variables, including the pitch, toss, number of wickets lost,
and past performance of both teams. The approach was
developed expressly to address the unpredictable nature of
modern cricket. i.e., Twenty-Twenty (T20) focusing
exclusively on the Indian Premier League.

In their paper "Score and Winning Prediction in Cricket
using Data Mining", Tejender, Vishal, and Prateek (2015) [1]
introduced the linear regression method and the Nave Bayes
classifier, although just for ODI matches [2] without
considering the team's past performance or the toss. In the
paper titled, "Outcome Prediction of ODI Cricket Matches
Using Decision Trees and MLP Networks," the authors Jalaz,
Rajeev, and Pushpender presented their work using multi-
layer perceptron networks and decision trees. However, this
algorithm turned out to be very sensitive to feature scaling and
also became unstable even with small changes. M. Bailey and
S.R. Clark [4] used multiple linear regressions to determine
the probability of victory of opposing sides. Using a trial of
100 finished matches played in 2005, they built a regression
model that correctly predicts the winning side 71% of the time.
However, they didn't use any deep learning techniques, which
may have increased the accuracy.

In their work "Duckworth-Lewis-Stern Method
Comparison with Machine Learning Approach," Kumail and
Sajjad [5] presented a machine learning method utilizing data
from 3,470 ODI matches sourced from the CricInfo website.
While this approach proved to be more accurate due to its use
of an unpredictability index, it failed to account for
performance differences between the teams. In recent years,
academics have tried to address the issue and enhance score
prediction [6] capabilities using data mining and machine
learning technologies. To address the problem of ties in
competition standings and quantify team strength, Basil, Greg,
and Tim [7] proposed an extension of the D/L approach in
2001 to assess the extent of victory in one-day cricket. They
introduced various covariates, transformed variables, and
applied different match weightings, enabling a more equitable
assessment of each team's strength. In 2005, Bailey M. [8]
pioneered an empirical approach to accurately predict winning
and losing outcomes in sports by incorporating team and
player-specific data. This methodology accounted for a
significant portion of variance—often exceeding 50%—in
these outcomes. Over time, as computational capabilities
advanced, larger datasets not only became invaluable but also
opened up a vast field for exploration. This necessitated the
application of systematic models after analyzing 2,200 One
Day Internationals (ODIs) played to date.

A. Tripathi et al. [9] presented the clustering method in the
context of cricket score prediction in 2016. It was based solely
on the teams' historical results and the locations of previous
matches, which did not give a complete picture of the match
because it ignored the circumstances of the match at hand. In
2017, Pranavan et al. [10] used the Support Vector Machine
(SVM) approach to study the optimal set of qualities that have
a strong influence on the match's outcome. However, their
study lacked data to demonstrate a link between a team's
winnability and the performance of individual players. In
2018, S. Agrawal et al. explored winner prediction by
leveraging historical data and applied a diverse set of
algorithms including Support Vector Machine, CTree, and
Naïve Bayes [11]. It was mentioned in their paper that
although adding the features (other available data fields) like
weather conditions, toss outcomes and current run rates would
further advance their model toward perfect learning, but it will
just deepen us into more deep waters as they are hidden. Their
main contribution within the research paper entitled "ICC T20
Cricket World Cup 2020 Winner Prediction Using Machine
Learning Techniques" [1] was to present four kinds of key
machine learning algorithms: Random Forest, Extra Trees,
ID3, and C4.5. These are based on a dataset taken from
CricInfo, but they did miss some very important numbers
which could affect their predictions. In 2020, Nikhil et al.
performed score prediction using linear regression, lasso
model and ridge models [13]. The dataset was passed through
different classifiers such as SVC, decision tree and random
forest to predict the result of games based on only team
information. However, this approach left out crucial features
such as pitch and weather conditions that could potentially
increase the predictive accuracy. Although, previous research
has been done using machine learning on T20 matches related
to traditional features but currently deep NNs have gained
attention as they can accept large feature vectors [14-16].

II. METHODOLOGY
The dataset was then assembled using a self-designed web

crawler to scrape the data from espncricinfo.com, with an
existing dataset taken from Kaggle. While previous studies
have focused solely on predicting the outcome of a match, this
dataset and system allow for the anticipation of not only the
result of a partial match but also the score after each ball. As
we aim to create an alternative to the D/L method, predictions
are made once the second inning has started, with an Excel
pivot table being used to calculate and store the first innings'
score in the main dataset. In this project, the following kind of
architecture is utilized.

A. Data pre-processing
The match winner and runs scored were used as the

outcome variables. On the other hand, the raw data collected
using web scraping was combined with Kaggle dataset using
the approach of match IDs. This data was then pre-
processed/cleaned to generate a feature set – the purpose of
which was to serves as input for the analysis. Later, the ordinal
encoder was used to normalize and encode the new dataset.
This dataset includes 754 matches from Indian Premier
League season (2008-2019) and it contains approximately
86,000 data points. It is divided into training (75%) and testing
(25%) subsets for further analysis, as illustrated in Fig. 2. The
complete preprocessing pipeline is available in Fig.3.

Fig. 1. Project Architecture

For score forecasting,

For winner prediction,

Feature Set
season, venue_code, match_id, innings, ball, batting_team_code,
bowling_team_code, striker_code, non_striker_code, bowler_code, runs, out,
run_1st_inning, out_1st_inning, Winner_toss_code

Outcome Variable

Winner_Match_code

Fig. 2. Match Winner Summary

0: Win percentage for the team batting first (47%)

1: Win percentage for the team batting second (53%)

Feature Set
season, venue_code, match_id, innings, ball, batting_team_code,
bowling_team_code, striker_code, non_striker_code, bowler_code,
run_1st_inning, out_1st_inning, out, Winner_Match_code, Winner_toss_code
Outcome Variable
runs

B. Models for Predicting Scores
The estimation of scores is a regression-type problem in

which the strength of the relationship between the independent
and dependent variables must be ascertained. The specifics of
the batter, bowler, pitch, over, first innings score, toss winners,
etc., all have a significant impact on the number of runs scored
in this scenario. Thus, the models used to address this problem
are,

Multiple Linear Regression: It examines the relationship
between an independent and a dependent variable, directly
leading to predictions using historical data.

Polynomial Regression: Polynomial regression uses nth
degree polynomials to represent the relationship between the
independent variable (x) and the dependent variable (y), which
creates a non-linear relationship between the output and the
predictors. In order to make this happen, I had used the
Polynomial Features module of scikit-learn to create
polynomial features and they were then leveraged using these
parameters for estimating a high-degree polynomial
regression that was after all performed as linear regression.

Metrics used to evaluate different regression models,
• Mean squared error (MSE)
• Root mean square error (RMSE)
• Coefficient of determination (R2)

C. Models used for predicting the outcome of the match
The outcome of an interrupted cricket game is complex to

foresee like predicting the winner of a debate with multiple
speakers yet to argue. Whether the side batting initially
emerges victorious or the team batting later depends on the
run total in the first innings along with particulars of the
bowlers and batsmen deployed, as well as the team's past
performances. Consequently, addressing this multifaceted
issue necessitates models examining run tallies, player data,
and records to deduce if the team batting first or second will
carry the contest once play resumes. Thus, the models used to
address this problem are:

Support Vector Machine: Support Vector Machine
identifies optimal hyperplanes in multidimensional feature
spaces to divide cases into target categories. This supervised
learning technique is well-suited for problems with a small
number of attributes yet frequently encounters issues as
dimensionality increases. The current experiment incorporates
fifteen features encompassing a wide array of metrics to
delineate patterns within the data. SVM determines each
feature's contribution by mapping instances as points spanning
numerous axes across space. It then calculates the ideal
boundary splitting classes as widely as possible, maximizing
margins between parallel hyperplanes on either side for
enhanced generalization. While hyperplanes offer an intuitive
depiction, the actual separating structure may exist in a
radically higher dimensional space mapped by kernel
functions.

Gaussian Naïve Bayes: This algorithm makes strong
assumptions that the presence or absence of a specific attribute
of a class is independent of other attributes. These classifiers
assume that each feature contributes independently to the
probability of an item belonging to a class, regardless of the
values of other features. Despite its simplicity, Naïve Bayes
classifiers are highly effective, particularly in supervised
scenarios with labeled training data. It is a common practice

to assume that the values for each class follow a normal
distribution when dealing with continuous numeric data,.

K-Nearest Neighbour (KNN): The KNN is a supervised
learning method which identifies a predefined number of
training examples closest in distance to a new data point and
predicts the label based on these "k" nearest examples. It
operates by computing the Euclidean distance between the
new point and existing cases, selecting those with the shortest
distances. The label is determined by the most frequent class
among the k nearest neighbours. In this project, 75% of the
dataset is used as reference points, while the remaining 25%
is treated as unknown data, with predictions made by majority
vote from its 75 nearest samples.

Deep learning with three-layered neural networks: The
neural network used here consists of three layers of
interconnected nodes in a feedforward architecture, with 15
input attributes and two possible outputs. It features 400
neurons in the first hidden layer, 200 in the second, and 100 in
the final output layer, as shown in the Fig. 4. The data flow
through the neural network is shown in the diagram above.
The network begins with 15 input features, followed by the
application of the ReLU activation function, batch
normalization, and dropout to prevent overfitting. The output
from the 400 neurons in the first hidden layer is fed into the
second layer, which then produces 200 neurons' output. This
output is subsequently used as input for the final layer,
resulting in 100 neurons' output, which ultimately classifies
the data into two classes (0 or 1). Optimizers are crucial for
model performance, as they manage key aspects of neural
networks, such as weight and learning rate, to minimize loss.
By refining the training process and selecting the most suitable
optimizers for the prediction task, we can further improve
model performance. We have evaluated the following
optimizers for this task:

• SGD Optimizer
• AdaGrad Optimizer
• AdaDelta Optimizer
Metrics used to evaluate different classification models,

• Accuracy
• Confusion matrix
• Loss function

III. METHODOLOGY
When building the model to predict the score, we first

evaluated a linear regression model with a single feature and
response variable, however, the mean squared error was
1723.8. We used multiple linear regression model with fifteen
predictors and one output variable that provided a significant
degree of improvement. While the association between these
variables and the outcome may seem straightforward, the
reality is more complex. Both linear and nonlinear models
were examined to elucidate their relationship. A quadratic
approach showed promise in fitting the training information
yet struggled markedly with unseen data, reflecting
overfitting. A cubic form provided a preferable balance,
depicting the design adequately without being overly specific.
Processing demand and validation performance were also
weighed to find the most prudent solution. In conclusion, a
third-degree polynomial sufficiently captured the trend
without the drawbacks of higher-order fits or simpler linear
assumptions.

Fig 3. Processing Pipeline

Fig 4. Flow chart of 3-layered NN

TABLE I. ERROR COMPARISON

Model RMSE MSE R2

Multiple
Linear

Regression
12.579041 158.232279 0.926096

Polynomial
Regression
(deg = 3)

9.721125 94.500277 0.955862

We also attempted to predict the score using the Support
Vector Regressor, but it returned a negative coefficient of
determination. In the end, the results of all the experiments
indicated that the polynomial regression model is the most
appropriate for the score estimation problem statement. In Fig
5, the forecast score is shown using one match from test data
through polynomial regression with a degree of 3.

Fig 5. Score Forecast

The next goal was to predict the outcome of the unfinished
match using a classification approach with two classes: (0) the
team batting first won and (1) the team batting second won,
applied across the entire dataset. Initially, we used one of the

most common classifiers, SVM, with a normalization
parameter of 1.0 and an 'rbf' kernel, which yielded an accuracy
score of 0.53. We experimented with various kernels, and the
polynomial (poly) kernel improved the accuracy by 4%. Next,
we applied a Gaussian Naive Bayes model with no prior,
allowing it to adjust the prior probability based on the data
distribution, and with a variance smoothing parameter of 1e-
09 for computational stability. This model achieved an
accuracy score of 0.67 on the test dataset. We also tested the
k-nearest neighbors (KNN) model with uniform weights and
an auto algorithm to determine the best computation based on
input data. Initially, with smaller k values, the model showed
high accuracy on the training data but performed poorly on the
test data, indicating overfitting. Increasing k to 11 led to a
decrease in accuracy, and we found that odd k values provided
better precision than even k values. Ultimately, we obtained
an accuracy score of 0.86 with k=11, as shown in Table II.

TABLE II. ACCURACY COMPARISON

Model Accuracy
SVM 57.217 %
k-NN 86.665 %

Gaussian Naïve Bayes 67.154 %

The introduction of deep learning techniques for outcome
determination was the primary goal of this study. To
accomplish this task, we constructed a neural network
architecture using three interconnected models, each
employing an activation mechanism, batch standardization,
and randomly excluded connections. Initially, we transformed
the feature set and corresponding output variable into a tensor
format before dividing the data into 75% for training and 25%
for validation, reserving the latter for testing model
performance. The primary layer contained 200 neurons while
the secondary and tertiary layers consisted of 100 and 50
neurons respectively. A regularization momentum of 0.1 and
40% probability of randomly dropping connections during
training helped optimize model fitting, yielding an accuracy

of 67% on validation data. Error was quantified using cross-
entropy loss against a learning rate of 0.01 to minimize costs
over iterations. In an effort to boost precision, we
experimented with creating more complex networks
comprising four interconnected parts with varying numbers of
neurons from 200 down to 25 within hidden strata to analyze
impacts on prediction prowess. Nevertheless, even though it
produced an accuracy of 0.74 and performed well on the test
dataset, it was computationally expensive. Next, in an attempt
to achieve the intended outcome, we experimented with
several optimizers, but the accuracy only went up by 3%. The
corresponding accuracy values that were attained by testing
with several optimizers, such as AdaGrad, AdaDelta, and
SGD, are displayed in Table III.

TABLE III. ACCURACY COMPARISON (NN)

Model Accuracy
3-layered NN 67.82 %

Optimizer

SGD 74.32 %
AdaGrad 74.76 %
AdaDelta 77.44 %

While AdaDelta generated the most accurate model, its
four-layer configuration incurred excessive computational

costs. Therefore, we concentrated tuning efforts on the
cheaper three-layer network. Initially, incremental upgrades to
layer sizes modestly boosted performance. However,
expanding each layer to hold more neurons yielded far better
results. Specifically, allocating the first layer 400 units, the
second 200, and the final 100 neurons markedly raised
accuracy. With these augmented dimensions, we trained the
architecture across 200 epochs. The normalization momentum
remained at 0.1 and dropout was set to 0.4, preserving stability
while avoiding overfitting. Through iterative experimentation,
this balanced configuration proved best able to learn from the
data in a cost-effective manner. While on test data, the model
achieved an accuracy score of 91.461% as shown in Table IV.

TABLE IV. BEST ACCURACY USING NEURAL NETWORK

Model Accuracy
3-layered NN (AdaDelta optimal) 91.46 %

The loss curve and confusion matrix are displayed in the
graphics below (see Fig 6, Fig.7 and Fig 8.) to provide a
better understanding of how the deep model learns during
training and how it predicts results during testing phase.

Fig 6. Epoch vs Loss plot during Model Training

Fig 7. Classification Outcome after Testing of the Model

Fig 8. Confusion Matrix after Model was run on Test data

IV. CONCLUSION & FUTURE WORK
Several approaches were explored in this research,

including linear, and multiple linear regression, and support
vector regression. However, polynomial regression proved to
be the most effective model for predicting scores, achieving a
mean squared error of 94.5. Support vector machines,
Gaussian naive Bayes categorization, k-nearest neighbor
categorization, and deep learning using a neural system
containing three layers were also evaluated, with the most
accurate model for forecasting match conclusions reported as
the three-layer neural system attaining 91.46 percent
precision. Interestingly, while the simpler techniques fell
short, the polynomial regression and deep learning approaches
leveraged their enhanced adaptability to glean further insights
from the information, thereby winning out overall. This paper
presents an AI alternative that takes into consideration all
additional parameters, such as pitch, toss, and first-inning
score and raises issues about the usage of the traditional D/L
approach for incomplete matches. In contrast, my proposed
method, which utilizes a broader feature set, achieved higher
accuracy with reduced computational costs. This study can be
of interest to cricket managers, sports analysts, and scholars
interested in sports analysis. We can extend this research to
different formats of cricket like the ODI, and Test, by utilizing
additional attributes like the weather and pitch conditions. The
T20 format of cricket often leads to great unpredictability
since even minor adjustments to a bowler's delivery or
placement of fielders can tremendously impact the outcome of
a game, especially during the restricted overs at the beginning.
Therefore, we might test introducing one random element to
gauge how it could influence the match proceedings. It may
also be possible to forecast which player will be named man
of the match for their stellar performance, predict who will
score the most runs, and determine which bowler claims the
highest number of wickets in upcoming contests. Ultimately,
this entire project has the potential to be adapted to forecast
comparable results in numerous other sports as well, such as
baseball, tennis, American football, and more.

REFERENCES
[1] Tejinder Singh, Vishal Singla, Parteek Bhatia; - Score and Winning

Prediction in Cricket through Data Mining; Oct 8-10, 2015
[2] Animal Islam Anik, Sakif yeaser, A.G.M. Emam Hussain, Amitabha

Chakraborty; Player's Performance Prediction in ODI Cricket Using
Machine Learning Algorithms;2018

[3] Jalaz Kumar, Rajeev Kumar, Pushpender Kumar; Outcome Prediction
of ODI Cricket Matches using Decision Trees and MLP
Networks;2018

[4] M. Bailey and S.R. Clark; Predicting the Match Outcome in One Day
International Cricket Matches, while the Game is in Progress;2006

[5] Kumail and Sajjad; Duckworth-Lewis-Stern Method Comparison with
Machine Learning Approach; 2021

[6] Prasad, Vighnesh, Yash; Review Paper On Cricket Score Prediction;
2021

[7] Basil M. de Silva, Greg R. Pond and Tim B. Swartz; Estimation of the
Magnitude of Victory in One-Day Cricket;2001

[8] Bailey M.; Predicting sporting outcomes: A statistical approach;2005
[9] A. Tripathi, J. Vanker, B. Vaje, V. Varekar; Cricket Score Prediction

system using clustering algorithm;2016
[10] P. Somaskandhan, G. Wijesinghe, L. Bashitha; Identifying optimal set

of attributes that impose high impact on end results of cricket match
using machine learning;2017

[11] S. Agrawal, S. P. Singh and J. K. Sharma; Predicting Results of Indian
Premier League T-20 Matches using Machine Learning;2018

[12] A. Basit, M. B. Alvi, F. H. Jaskani, M. Alvi, K. H. Memon and R. A.
Shah; ICC T20 Cricket World Cup 2020 Winner Prediction Using
Machine Learning Techniques; 2020

[13] Nikhil Dhonge, Shraddha Dhole, Nikita Wavre, Mandar Pardakhe,
Amit Nagarale; IPL CRICKET SCORE AND WINNING
PREDICTION USING MACHINE LEARNING TECHNIQUES;
2020

[14] H. Barot, A. Kothari, P. Bide, B. Ahir and R. Kankaria, "Analysis and
Prediction for the Indian Premier League," 2020 International
Conference for Emerging Technology (INCET), Belgaum, India, 2020,
pp. 1-7, doi: 10.1109/INCET49848.2020.9153972.

[15] A. Basit, M. B. Alvi, F. H. Jaskani, M. Alvi, K. H. Memon and R. A.
Shah, "ICC T20 Cricket World Cup 2020 Winner Prediction Using
Machine Learning Techniques," 2020 IEEE 23rd International
Multitopic Conference (INMIC), Bahawalpur, Pakistan, 2020, pp. 1-6,
doi: 10.1109/INMIC50486.2020.9318077.

[16] A. Bandulasiri, “Predicting the Winner in One Day International
Cricket”, Journal of Mathematical Sciences & Mathematics Education,
Vol. 3, No. 1.

	I. Introduction
	II. METHODOLOGY
	A. Data pre-processing
	B. Models for Predicting Scores
	C. Models used for predicting the outcome of the match

	III. METHODOLOGY
	IV. Conclusion & Future Work
	References

