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Abstract— One of the key problems in cricket is the 
increasing number of abandoned matches due to unusual 
circumstances. There is a total of three different formats in 
cricket e.g., Test, ODI and T20 international. Usually, the 
Duckworth–Lewis (D/L) method is used to decide the outcome 
of the match in Test and ODI cricket, resulting in favour of one 
team like completed matches. In contrast to the traditional D/L 
method, we tried to incorporate players' performance indicators 
into our proposed architecture despite the traditional D/L 
method which only includes the current state of the match and 
determines the outcome. To accomplish this task, we tried 
multiple different machine learning techniques e.g., Support 
Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve-
Bayes, Linear Regression and Polynomial Regression and a deep 
learning model to predict the outcome of the match. To train 
and validate our developed architecture, we crawled data from 
the Indian Premier League (IPL) for the completed matches. 
Our proposed architecture takes complete matches as input and 
for the second batter, it predicts outcome at intermediate stages 
of matches. Later, the performance of our proposed 
architecture is computed using different performance indicators 
e.g., accuracy, Mean squared error etc. In our opinion, our 
proposed resource-aware prediction architecture is a unique 
contribution of its kind in the field. 
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I. INTRODUCTION 
Cricket is a game where two teams each having eleven 

players compete against each other. In modern cricket, the 
ODI, T20, and Test formats are the most common. One of the 
most famous and shortest playing format of cricket is T20 
which involves 20 overs each side. Although there are other 
T20 premier leagues in the globe, this study focuses on the 
biggest and most well-known one, the Indian Premier League. 
The question "What happens if the match stops unexpectedly 
due to bad playing conditions?" served as the basis for the 
concept of the project. How can we acquire a result under 
these circumstances, and how should it affect the scores? The 
D/L (Duckworth-Lewis) technique is a conventional approach 
that was first presented in 1997 and granted formal 
certification in 1999 It states that a team's ability to score runs 
at any time during the game may be determined by the 
combination of two resources that are available to them: the 
number of wickets remaining and the number of overs 
available to play. However, many other aspects can influence 
the game that are not considered in the usual fashion, such as 
pitch, past performance, and so on, which is why this method 
is also contentious. Sports analytics has become a popular 
research subject in data science since the development of deep 
learning and artificial intelligence. In particular, for the Indian 
Premier League (IPL), the goal of this research project is to 
provide a result and score prediction technique for T20 cricket 

matches as a backup to the D/L approach if play is suspended 
due to unfavourable playing circumstances. The model 
created for this project will take into account several input 
variables, including the pitch, toss, number of wickets lost, 
and past performance of both teams. The approach was 
developed expressly to address the unpredictable nature of 
modern cricket. i.e., Twenty-Twenty (T20) focusing 
exclusively on the Indian Premier League. 

In their paper "Score and Winning Prediction in Cricket 
using Data Mining", Tejender, Vishal, and Prateek (2015) [1] 
introduced the linear regression method and the Nave Bayes 
classifier, although just for ODI matches [2] without 
considering the team's past performance or the toss. In the 
paper titled, "Outcome Prediction of ODI Cricket Matches 
Using Decision Trees and MLP Networks," the authors Jalaz, 
Rajeev, and Pushpender presented their work using multi-
layer perceptron networks and decision trees. However, this 
algorithm turned out to be very sensitive to feature scaling and 
also became unstable even with small changes. M. Bailey and 
S.R. Clark [4] used multiple linear regressions to determine 
the probability of victory of opposing sides. Using a trial of 
100 finished matches played in 2005, they built a regression 
model that correctly predicts the winning side 71% of the time. 
However, they didn't use any deep learning techniques, which 
may have increased the accuracy. 

In their work "Duckworth-Lewis-Stern Method 
Comparison with Machine Learning Approach," Kumail and 
Sajjad [5] presented a machine learning method utilizing data 
from 3,470 ODI matches sourced from the CricInfo website. 
While this approach proved to be more accurate due to its use 
of an unpredictability index, it failed to account for 
performance differences between the teams. In recent years, 
academics have tried to address the issue and enhance score 
prediction [6] capabilities using data mining and machine 
learning technologies. To address the problem of ties in 
competition standings and quantify team strength, Basil, Greg, 
and Tim [7] proposed an extension of the D/L approach in 
2001 to assess the extent of victory in one-day cricket. They 
introduced various covariates, transformed variables, and 
applied different match weightings, enabling a more equitable 
assessment of each team's strength. In 2005, Bailey M. [8] 
pioneered an empirical approach to accurately predict winning 
and losing outcomes in sports by incorporating team and 
player-specific data. This methodology accounted for a 
significant portion of variance—often exceeding 50%—in 
these outcomes. Over time, as computational capabilities 
advanced, larger datasets not only became invaluable but also 
opened up a vast field for exploration. This necessitated the 
application of systematic models after analyzing 2,200 One 
Day Internationals (ODIs) played to date.  



A. Tripathi et al. [9] presented the clustering method in the 
context of cricket score prediction in 2016. It was based solely 
on the teams' historical results and the locations of previous 
matches, which did not give a complete picture of the match 
because it ignored the circumstances of the match at hand. In 
2017, Pranavan et al. [10] used the Support Vector Machine 
(SVM) approach to study the optimal set of qualities that have 
a strong influence on the match's outcome. However, their 
study lacked data to demonstrate a link between a team's 
winnability and the performance of individual players. In 
2018, S. Agrawal et al. explored winner prediction by 
leveraging historical data and applied a diverse set of 
algorithms including Support Vector Machine, CTree, and 
Naïve Bayes [11]. It was mentioned in their paper that 
although adding the features (other available data fields) like 
weather conditions, toss outcomes and current run rates would 
further advance their model toward perfect learning, but it will 
just deepen us into more deep waters as they are hidden. Their 
main contribution within the research paper entitled "ICC T20 
Cricket World Cup 2020 Winner Prediction Using Machine 
Learning Techniques" [1] was to present four kinds of key 
machine learning algorithms: Random Forest, Extra Trees, 
ID3, and C4.5. These are based on a dataset taken from 
CricInfo, but they did miss some very important numbers 
which could affect their predictions. In 2020, Nikhil et al. 
performed score prediction using linear regression, lasso 
model and ridge models [13]. The dataset was passed through 
different classifiers such as SVC, decision tree and random 
forest to predict the result of games based on only team 
information. However, this approach left out crucial features 
such as pitch and weather conditions that could potentially 
increase the predictive accuracy. Although, previous research 
has been done using machine learning on T20 matches related 
to traditional features but currently deep NNs have gained 
attention as they can accept large feature vectors [14-16]. 

II. METHODOLOGY  
The dataset was then assembled using a self-designed web 

crawler to scrape the data from espncricinfo.com, with an 
existing dataset taken from Kaggle. While previous studies 
have focused solely on predicting the outcome of a match, this 
dataset and system allow for the anticipation of not only the 
result of a partial match but also the score after each ball. As 
we aim to create an alternative to the D/L method, predictions 
are made once the second inning has started, with an Excel 
pivot table being used to calculate and store the first innings' 
score in the main dataset. In this project, the following kind of 
architecture is utilized. 

A. Data pre-processing 
The match winner and runs scored were used as the 

outcome variables. On the other hand, the raw data collected 
using web scraping was combined with Kaggle dataset using 
the approach of match IDs. This data was then pre-
processed/cleaned to generate a feature set – the purpose of 
which was to serves as input for the analysis. Later, the ordinal 
encoder was used to normalize and encode the new dataset. 
This dataset includes 754 matches from Indian Premier 
League season (2008-2019) and it contains approximately 
86,000 data points. It is divided into training (75%) and testing 
(25%) subsets for further analysis, as illustrated in Fig. 2. The 
complete preprocessing pipeline is available in Fig.3.  

 

 

 
Fig. 1. Project Architecture 

For score forecasting, 

 
For winner prediction, 
 

Feature Set 
season, venue_code, match_id, innings, ball, batting_team_code, 
bowling_team_code, striker_code, non_striker_code, bowler_code, runs, out, 
run_1st_inning, out_1st_inning, Winner_toss_code 

Outcome Variable 

Winner_Match_code 
 

 

 
Fig. 2. Match Winner Summary 

0: Win percentage for the team batting first (47%) 

1: Win percentage for the team batting second (53%) 

Feature Set 
season, venue_code, match_id, innings, ball, batting_team_code, 
bowling_team_code, striker_code, non_striker_code, bowler_code, 
run_1st_inning, out_1st_inning, out, Winner_Match_code, Winner_toss_code 
Outcome Variable 
runs 



B. Models for Predicting Scores  
The estimation of scores is a regression-type problem in 

which the strength of the relationship between the independent 
and dependent variables must be ascertained. The specifics of 
the batter, bowler, pitch, over, first innings score, toss winners, 
etc., all have a significant impact on the number of runs scored 
in this scenario. Thus, the models used to address this problem 
are,  

Multiple Linear Regression: It examines the relationship 
between an independent and a dependent variable, directly 
leading to predictions using historical data. 

Polynomial Regression: Polynomial regression uses nth 
degree polynomials to represent the relationship between the 
independent variable (x) and the dependent variable (y), which 
creates a non-linear relationship between the output and the 
predictors. In order to make this happen, I had used the 
Polynomial Features module of scikit-learn to create 
polynomial features and they were then leveraged using these 
parameters for estimating a high-degree polynomial 
regression that was after all performed as linear regression. 

Metrics used to evaluate different regression models, 
• Mean squared error (MSE) 
• Root mean square error (RMSE) 
• Coefficient of determination (R2) 

C. Models used for predicting the outcome of the match 
The outcome of an interrupted cricket game is complex to 

foresee like predicting the winner of a debate with multiple 
speakers yet to argue. Whether the side batting initially 
emerges victorious or the team batting later depends on the 
run total in the first innings along with particulars of the 
bowlers and batsmen deployed, as well as the team's past 
performances. Consequently, addressing this multifaceted 
issue necessitates models examining run tallies, player data, 
and records to deduce if the team batting first or second will 
carry the contest once play resumes. Thus, the models used to 
address this problem are: 

Support Vector Machine: Support Vector Machine 
identifies optimal hyperplanes in multidimensional feature 
spaces to divide cases into target categories. This supervised 
learning technique is well-suited for problems with a small 
number of attributes yet frequently encounters issues as 
dimensionality increases. The current experiment incorporates 
fifteen features encompassing a wide array of metrics to 
delineate patterns within the data. SVM determines each 
feature's contribution by mapping instances as points spanning 
numerous axes across space. It then calculates the ideal 
boundary splitting classes as widely as possible, maximizing 
margins between parallel hyperplanes on either side for 
enhanced generalization. While hyperplanes offer an intuitive 
depiction, the actual separating structure may exist in a 
radically higher dimensional space mapped by kernel 
functions. 

Gaussian Naïve Bayes: This algorithm makes strong 
assumptions that the presence or absence of a specific attribute 
of a class is independent of other attributes. These classifiers 
assume that each feature contributes independently to the 
probability of an item belonging to a class, regardless of the 
values of other features. Despite its simplicity, Naïve Bayes 
classifiers are highly effective, particularly in supervised 
scenarios with labeled training data. It is a common practice 

to assume that the values for each class follow a normal 
distribution when dealing with continuous numeric data,.                                                                                         

K-Nearest Neighbour (KNN): The KNN is a supervised 
learning method which identifies a predefined number of 
training examples closest in distance to a new data point and 
predicts the label based on these "k" nearest examples. It 
operates by computing the Euclidean distance between the 
new point and existing cases, selecting those with the shortest 
distances. The label is determined by the most frequent class 
among the k nearest neighbours. In this project, 75% of the 
dataset is used as reference points, while the remaining 25% 
is treated as unknown data, with predictions made by majority 
vote from its 75 nearest samples.  

Deep learning with three-layered neural networks: The 
neural network used here consists of three layers of 
interconnected nodes in a feedforward architecture, with 15 
input attributes and two possible outputs. It features 400 
neurons in the first hidden layer, 200 in the second, and 100 in 
the final output layer, as shown in the Fig. 4. The data flow 
through the neural network is shown in the diagram above. 
The network begins with 15 input features, followed by the 
application of the ReLU activation function, batch 
normalization, and dropout to prevent overfitting. The output 
from the 400 neurons in the first hidden layer is fed into the 
second layer, which then produces 200 neurons' output. This 
output is subsequently used as input for the final layer, 
resulting in 100 neurons' output, which ultimately classifies 
the data into two classes (0 or 1). Optimizers are crucial for 
model performance, as they manage key aspects of neural 
networks, such as weight and learning rate, to minimize loss. 
By refining the training process and selecting the most suitable 
optimizers for the prediction task, we can further improve 
model performance. We have evaluated the following 
optimizers for this task: 

• SGD Optimizer  
• AdaGrad Optimizer 
• AdaDelta Optimizer 
Metrics used to evaluate different classification models, 

• Accuracy  
• Confusion matrix 
• Loss function 

III. METHODOLOGY 
When building the model to predict the score, we first 

evaluated a linear regression model with a single feature and 
response variable, however, the mean squared error was 
1723.8. We used multiple linear regression model with fifteen 
predictors and one output variable that provided a significant 
degree of improvement. While the association between these 
variables and the outcome may seem straightforward, the 
reality is more complex. Both linear and nonlinear models 
were examined to elucidate their relationship. A quadratic 
approach showed promise in fitting the training information 
yet struggled markedly with unseen data, reflecting 
overfitting. A cubic form provided a preferable balance, 
depicting the design adequately without being overly specific. 
Processing demand and validation performance were also 
weighed to find the most prudent solution. In conclusion, a 
third-degree polynomial sufficiently captured the trend 
without the drawbacks of higher-order fits or simpler linear 
assumptions.



 
Fig 3. Processing Pipeline 

 

 
Fig 4. Flow chart of 3-layered NN 

 

TABLE I.  ERROR COMPARISON 

Model RMSE MSE R2 

Multiple 
Linear 

Regression 
12.579041 158.232279 0.926096 

Polynomial 
Regression 
(deg = 3) 

9.721125 94.500277 0.955862 

 

We also attempted to predict the score using the Support 
Vector Regressor, but it returned a negative coefficient of 
determination. In the end, the results of all the experiments 
indicated that the polynomial regression model is the most 
appropriate for the score estimation problem statement. In Fig 
5, the forecast score is shown using one match from test data 
through polynomial regression with a degree of 3. 

 
Fig 5. Score Forecast 

The next goal was to predict the outcome of the unfinished 
match using a classification approach with two classes: (0) the 
team batting first won and (1) the team batting second won, 
applied across the entire dataset. Initially, we used one of the 

most common classifiers, SVM, with a normalization 
parameter of 1.0 and an 'rbf' kernel, which yielded an accuracy 
score of 0.53. We experimented with various kernels, and the 
polynomial (poly) kernel improved the accuracy by 4%. Next, 
we applied a Gaussian Naive Bayes model with no prior, 
allowing it to adjust the prior probability based on the data 
distribution, and with a variance smoothing parameter of 1e-
09 for computational stability. This model achieved an 
accuracy score of 0.67 on the test dataset. We also tested the 
k-nearest neighbors (KNN) model with uniform weights and 
an auto algorithm to determine the best computation based on 
input data. Initially, with smaller k values, the model showed 
high accuracy on the training data but performed poorly on the 
test data, indicating overfitting. Increasing k to 11 led to a 
decrease in accuracy, and we found that odd k values provided 
better precision than even k values. Ultimately, we obtained 
an accuracy score of 0.86 with k=11, as shown in Table II.   

TABLE II.   ACCURACY COMPARISON 

Model Accuracy 
SVM 57.217 % 
k-NN 86.665 % 

Gaussian Naïve Bayes 67.154 % 
 

The introduction of deep learning techniques for outcome 
determination was the primary goal of this study. To 
accomplish this task, we constructed a neural network 
architecture using three interconnected models, each 
employing an activation mechanism, batch standardization, 
and randomly excluded connections. Initially, we transformed 
the feature set and corresponding output variable into a tensor 
format before dividing the data into 75% for training and 25% 
for validation, reserving the latter for testing model 
performance. The primary layer contained 200 neurons while 
the secondary and tertiary layers consisted of 100 and 50 
neurons respectively. A regularization momentum of 0.1 and 
40% probability of randomly dropping connections during 
training helped optimize model fitting, yielding an accuracy 



of 67% on validation data. Error was quantified using cross-
entropy loss against a learning rate of 0.01 to minimize costs 
over iterations. In an effort to boost precision, we 
experimented with creating more complex networks 
comprising four interconnected parts with varying numbers of 
neurons from 200 down to 25 within hidden strata to analyze 
impacts on prediction prowess. Nevertheless, even though it 
produced an accuracy of 0.74 and performed well on the test 
dataset, it was computationally expensive. Next, in an attempt 
to achieve the intended outcome, we experimented with 
several optimizers, but the accuracy only went up by 3%. The 
corresponding accuracy values that were attained by testing 
with several optimizers, such as AdaGrad, AdaDelta, and 
SGD, are displayed in Table III. 

TABLE III.  ACCURACY COMPARISON (NN) 

Model Accuracy 
3-layered NN 67.82 % 
 
Optimizer 

SGD 74.32 % 
AdaGrad 74.76 % 
AdaDelta 77.44 % 

 

While AdaDelta generated the most accurate model, its 
four-layer configuration incurred excessive computational 

costs. Therefore, we concentrated tuning efforts on the 
cheaper three-layer network. Initially, incremental upgrades to 
layer sizes modestly boosted performance. However, 
expanding each layer to hold more neurons yielded far better 
results. Specifically, allocating the first layer 400 units, the 
second 200, and the final 100 neurons markedly raised 
accuracy. With these augmented dimensions, we trained the 
architecture across 200 epochs. The normalization momentum 
remained at 0.1 and dropout was set to 0.4, preserving stability 
while avoiding overfitting. Through iterative experimentation, 
this balanced configuration proved best able to learn from the 
data in a cost-effective manner. While on test data, the model 
achieved an accuracy score of 91.461% as shown in Table IV. 

TABLE IV.  BEST ACCURACY USING NEURAL NETWORK 

Model Accuracy 
3-layered NN (AdaDelta optimal) 91.46 % 

 

The loss curve and confusion matrix are displayed in the 
graphics below (see Fig 6, Fig.7 and Fig 8.) to provide a 
better understanding of how the deep model learns during 
training and how it predicts results during testing phase.

 
Fig 6. Epoch vs Loss plot during Model Training 

 

          
 

Fig 7. Classification Outcome after Testing of the Model 
 



 
Fig 8. Confusion Matrix after Model was run on Test data 

                 

IV. CONCLUSION & FUTURE WORK 
Several approaches were explored in this research, 

including linear, and multiple linear regression, and support 
vector regression. However, polynomial regression proved to 
be the most effective model for predicting scores, achieving a 
mean squared error of 94.5. Support vector machines, 
Gaussian naive Bayes categorization, k-nearest neighbor 
categorization, and deep learning using a neural system 
containing three layers were also evaluated, with the most 
accurate model for forecasting match conclusions reported as 
the three-layer neural system attaining 91.46 percent 
precision. Interestingly, while the simpler techniques fell 
short, the polynomial regression and deep learning approaches 
leveraged their enhanced adaptability to glean further insights 
from the information, thereby winning out overall. This paper 
presents an AI alternative that takes into consideration all 
additional parameters, such as pitch, toss, and first-inning 
score and raises issues about the usage of the traditional D/L 
approach for incomplete matches. In contrast, my proposed 
method, which utilizes a broader feature set, achieved higher 
accuracy with reduced computational costs. This study can be 
of interest to cricket managers, sports analysts, and scholars 
interested in sports analysis. We can extend this research to 
different formats of cricket like the ODI, and Test, by utilizing 
additional attributes like the weather and pitch conditions. The 
T20 format of cricket often leads to great unpredictability 
since even minor adjustments to a bowler's delivery or 
placement of fielders can tremendously impact the outcome of 
a game, especially during the restricted overs at the beginning. 
Therefore, we might test introducing one random element to 
gauge how it could influence the match proceedings. It may 
also be possible to forecast which player will be named man 
of the match for their stellar performance, predict who will 
score the most runs, and determine which bowler claims the 
highest number of wickets in upcoming contests. Ultimately, 
this entire project has the potential to be adapted to forecast 
comparable results in numerous other sports as well, such as 
baseball, tennis, American football, and more.     
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