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Abstract— Smart farming influences advanced technologies to 
optimize agricultural procedures, yet it meets significant 
cybersecurity challenges, particularly in External Intrusion 
Detection (EID). This article proposes a novel architecture 
combining Blockchain Technology and Federated Learning (FL) 
to reinforce the security of Smart Farming Systems (SMS) against 
external threats. The integration of Blockchain ensures data 
authentication and transparent data storage, while FL enables 
collaborative model training without compromising data privacy. 
Our architecture employs Ensemble Learning (EL) for the Local 
Model at the Ensemble Layer to train each Smart Land's data and 
offers privacy-prevented security. These devices utilize FL 
techniques to collaboratively train intrusion detection models 
while preserving the confidentiality of sensitive data. The 
Aggregated Model completes data aggregation at the 
Authentication Layer, and the PoAh Consensus Algorithm is 
leveraged for smart land's data authentication. The IoT Sensor 
device's identical information of smart lands is stored at the 
Macro Base Stations (MBSs). After downloading the aggregated 
values of the aggregated model, the local model transfers 
the smart lands information to the Cloud layer for decision- 
making and decentralized storage. The validation outcomes of the 
proposed architecture demonstrate excellent performance, with 
an average processing time of 3.663 secs and 0.9956 accuracy for 
Smart Land compared to existing frameworks. 

Index Terms— Blockchain, Enhance External Intrusion 
Detection, Smart Farming, Federated Learning, Privacy, and 
Security. 

 
I. INTRODUCTION 

Mart farming, also known as precision agriculture, 
transforms traditional agricultural techniques by fusing 
new emerging technologies to increase efficiency and 

productivity while reducing resource use. This modern strategy 
optimizes farming operations by utilizing sensor technologies, 
actuators, Internet of Things (IoT) devices, data analytics, and 
automation [1]. Sensors implanted in fields and on equipment 
collect real-time sensing data on soil moisture, nutrient levels, 
weather conditions, and crop health, giving farmers essential 
insights into the state of their crops. IoT devices provide 
agricultural asset connectivity and remote monitoring, enabling 
for faster decision-making and more precise control over 
irrigation, fertilization, and pest management [2]. Data 
analytics solutions transform large, massive volumes of data 
into meaningful insights, helping farmers make informed 
decisions about planting, harvesting, and resource allocation. 

 

Automation technologies like drones and self-driving cars 
improve efficiency by completing tasks like crop monitoring, 
spraying, and harvesting with greater precision and lower labor 
costs [3]. Smart farming represents a paradigm shift in 
agriculture, with the ability to boost yields, reduce 
environmental impact, and assure long-term food production in 
the face of increasing global difficulties. While innovative 
farming systems provide various benefits, they also present new 
challenges, particularly in terms of cybersecurity. As these 
systems become more networked and data-driven, they become 
vulnerable to cyber-attacks, including external intrusion 
attacks. 

External intrusion in farming refers to unauthorized access or 
activities on agricultural land, which can pose significant risks 
to the farm's operations, security, and productivity. These 
intrusions can take various forms, such as theft or vandalism of 
crops and equipment, poaching, and unauthorized grazing, each 
with distinct motivations and consequences. As a result, 
providing security has become one of the significant challenges 
today. In addition to traditional physical security measures like 
fencing and patrolling, modern surveillance systems are 
essential. These include closed-circuit cameras, sensor 
technologies such as motion and acoustic sensors, and systems 
for identifying and authorizing individuals accessing the farm, 
such as employee badges or biometric scanners. Furthermore, 
installing alarm systems and security lighting can help prevent 
sudden damage from external intrusions, enhancing the overall 
protection of agricultural properties. Cutting-edge technologies 
such as IoT, federated learning, and blockchain can 
significantly enhance the detection and prevention of intrusions 
in farming through improved real-time monitoring and 
collaborative intelligence data security. 

Despite the apparent advantages of smart farming, the 
growing reliance on interconnected devices and the massive 
amounts of data created severe cybersecurity issues. One 
crucial part of intelligent farming security is detecting and 
preventing external intrusions, which can range from 
unauthorized access to critical infrastructure to tampering with 
agricultural data and systems. Traditional intrusion detection 
systems (IDS) frequently require assistance dealing with smart 
farming contexts' intricacies [4]. These systems are often built 
using centralized designs, which can lead to single points of 
failure and scalability difficulties. Furthermore, they may need 
to effectively manage the privacy problems that come with - 
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gathering and analyzing sensitive agricultural data. Blockchain 
technology has received attention as a potential solution to 
address security and trust challenges in a variety of domains, 
including agriculture and farming [5]. Blockchain allows for 
transparent and tamper-resistant record-keeping by utilizing a 
decentralized, distributed, and immutable ledger with 
integrated data. Blockchain can improve data integrity, simplify 
secure transactions, and promote stakeholder collaboration in 
advanced Smart Applications in Smart Cities. Data 
authentication in smart city applications such as Smart Farming, 
Smart Lands, and others uses a variety of consensus techniques, 
including PoS, PoW, and PoAh. PoAh is the most recent 
consensus method for data authentication and validation [6]. 

Federated Learning (FL) has evolved as a privacy-preserving 
technique to machine learning model training, making it ideal 
for cases where data privacy is critical. FL enables edge devices 
to collaboratively train machine learning models (Ensemble 
Learning) while keeping raw data local and private [7]. This 
distributed learning paradigm is well-suited to the distributed 
nature of smart agricultural systems, which prioritize data 
privacy and security. Local base stations have limited storage 
and power capacity, so 5G-based macro base stations are used 
to store identity information for IoT and sensor devices in Smart 
City Applications such as Smart Farming, Smart 
Transportation, and others [8]. A summary of the comparison 
with the existing research study is shown in Table I. 

Integrating blockchain technology with FL can provide a 
secure architecture/ Framework that improves external 
intrusion detection in smart farming. Such an architecture 
would use blockchain's openness and immutability to record 
and validate model updates while maintaining data privacy 
using FL methods. Smart contracts can also automate 
governance processes and assure the integrity of transactions in 
the system. Overall, establishing a blockchain and FL-based 
safe architecture shows the potential to solve the cybersecurity 
and external intrusion detection concerns that smart agricultural 
systems confront. This technique, which improves external 
intrusion detection capabilities while protecting data privacy 
and integrity, can help modern agriculture remain resilient and 
sustainable in an increasingly digitized world. 

A. Related Work 

Recently, Vangala et al. [9] proposed a generalized 
blockchain-based secure architecture for IoT-enabled Smart 
Agriculture, addressing key security considerations and threats. 
This research offers a secure environment for smart 
Agriculture, but privacy preservation is not involved. Eddine et 
al. [10] proposed a malicious intrusion detection model for IoT- 
oriented Smart Farming Security, addressing smart agriculture 
security susceptibilities. They developed a novel framework 
based on the artificial neural network using radial basis 
functions (RBF), and categorized malicious intrusion activities 
in the IoT-enabled Smart Farming Networks. However, the 
research did not provide a decentralized, privacy-preserved 
environment, low latency, and efficient infrastructure for IoT- 
enabled Smart Farming. For smart farming, Vangala et al. [11] 
developed an authentication key agreement scheme based on 
Blockchain technology using Smart Contracts. A Mutual 
Authentication mechanism is leveraged for IoT and sensor 
device-to-device verification. Privacy preservation and external 
intrusion detection of smart farms are the key challenges of this 
research. 

EL-Ghamry et al. [12] presented a novel intrusion detection 
system for intelligent farming IoT networks based on 
Convolutional Neural Networks (CNN) using an NSL KDD 
data set. Essential features are determined using recursive 
feature elimination and transformed into square color pictures. 
Data authentication, decentralization, farming data integrity, 
and privacy preservation are key research challenges of this 
study. A novel intrusion detection design model is proposed by 
Berguiga et al. [13] for Smart Agriculture based on the fusion 
of Multilayer Perceptron (MLP) and the Gaussian Mixture 
Model (GMM), both are part of the Feedforward Neural 
Network, using CIC-DDoS2019 dataset. This technique offers 
a promised solution for addressing malicious DDoS attacks in 
the research study. However, this research did not mitigate 
some challenges in the Smart Agriculture Environment, such as 
decentralization, privacy preservation, and complexity, 
which should be addressed by future research. 

Ting et al. [14] developed a secure, intelligent framework for 
IoT-enabled Smart Climate Agriculture System framework 

Eddine et al. [10] Artificial Neural Networks × × × × Smart Farming 
Vangala et al. 

Blockchain, Smart Contract × √ √ √ Smart Farming 
EL-Ghamry et al.  

Convolutional Neural Networks 
[12] × × × √ IoT-based Smart 

Farming 
Berguiga et al. 

Feedforward Neural Network × × × × Smart Agriculture 

Ting et al. [14] 
Fuzzy Logic and Blockchain × √ √ × Smart Climate 

Agriculture 
Javeed et al. [15] BCU, LSTM 

× × × √ Edge-envisioned Smart 
Agriculture 

Proposed Work Blockchain, PoAh, Federated 
Learning √ √ √ √ Smart Farming and 

Land Architecture 



 

 

based on two emerging technologies: intelligent Fuzzy Logic 
and Blockchain. To make a wise decision about the watering 
necessities of plants, the authors leveraged the intelligent fuzzy 
logic and security provided by Blockchain technology for IoT- 
enabled smart farming. Privacy preservation and external 
intrusion detection are the challenges of this research study. 
Javeed et al. [15] presented a novel Intrusion Detection System 
for Edge-envisioned Smart Agriculture in extreme 
environments based on the convergence of bidirectional gated 
recurrent unit (BCU), long-short term memory (LSTM) with a 
softmax classifier to glimpse malicious attacks at the edge of 
the smart network. In this research, we develop an Ensemble 
learning-based Federated (ELF) model to detect any extremal 
intrusion. FL will help to maintain data privacy at the ensemble 
layer of smart farming. Again, these results are verified with the 
help of a blockchain-based consensus algorithm at the 
authentication layer and then saved finally on the cloud layer. 
Also, issues like data privacy, external intrusion, and data 
authentication in a combined manner still need to be 
investigated for smart farming. We know about various 
consensus algorithms in Blockchain Technology, such as Proof 
of Work (PoW), Proof of Stack (PoS), Proof of Availability 
(PoA), and others. However, we leveraged the Proof of 
Authentication (PoAh) consensus algorithm for Smart Farming 
(Lands) related Data Authentication for several reasons, such 
as: The PoAh consensus algorithm provides more security than 
other consensus algorithms because miner nodes are also 

verified in this algorithm. For this reason, miner nodes are 
called Trusted nodes. PoAh is thus suitable for private and 
permissioned blockchains because it introduces a cryptographic 
authentication mechanism to replace PoW, PoA, PoS, and 
others for resource-constrained and authenticated devices and 
to make blockchain applications such as Smart Farming 
(Lands). 

B. Article Contribution 

The main article contribution is as follows: 
 Propose a Blockchain and FL-based Secure Architecture for 

Enhanced External Intrusion Detection in Smart Farming. 
 Design an enhanced external intrusion detection mechanism 

based on Federated Learning at the ensemble learning layer. 
 Develop a Blockchain (PoAh)-based Data Authentication 

Approach at the authentication layer of the proposed work 
for the secure environment in Smart Farming. 

 Finally, we use quantitative and qualitative analysis to 
validate the proposed framework against existing research 
studies based on standard parameters such as computational 
and transactional cost, trust, and security analysis. 

The article's organization is as follows: first, section II 
describes the Proposed Architecture Overview for enhanced 
external intrusion detection in smart farming and details the 
methodological flow structure with a step-by-step 
explanation. Next, Section III presents the experimental results 
and security quantitative analysis. Finally, the article concludes 
in Section IV. 

 

 
Fig. 1: Proposed Secure Architecture Overview for Secure Smart Farming 



 

 

TABLE II 
ABBREVIATION TABLE 

Symbols Description Symbols Description 

{𝑆𝑃1, 𝑆𝑃2, . . } Service Provider {tn} Trusted Nodes 

{𝐼1 , 𝐼2 . . } IoT Devices {𝐷i} 
Bootstrap

 

The top layer (cloud) provides intelligent decision-making 
and storage purposes in a smart farming environment. It is 
utilized for smart farming after getting all smart land secure 
data, such as capturing the image, temperature, water 
requirement in soil, irrigation, and humidity control. As a result, 

  Samples smart farming benefits farmers with better-quality and secure 
{𝑆𝐿1, 𝑆𝐿2, . . } Smart Lands 𝑓(𝑥) Final Prediction 

{𝐿𝑀1, 𝐿𝑀2 … . } Local Model {𝑡𝑛1, 𝑡𝑛2, 𝑡𝑛3} Transactions 

services and higher farmer satisfaction. The proposed Secure 
Architecture’s Methodological Flow is shown in Fig. 2. 

{𝑀𝐵𝑆} Macro-Base 
Stations {𝑡𝑓} Faith value 

{𝐼1, 𝐼2, 𝐼3} & {𝑆𝐷1, 𝑆𝐷2, 𝑆𝐷3} → 𝐶 {𝑆𝐿1, 𝑆𝐿2, 𝑆𝐿3} (1) 
 

{𝑆𝑃1, 𝑆𝑃2, 𝑆𝑃3 } ← 𝑑𝑎𝑡𝑎 𝑎𝑐𝑞. {𝐼1, 𝐼2 , 𝐼1 }& {𝑆𝐷 , 𝑆𝐷 , 𝑆𝐷 } (2) 
{𝐴𝑀 } Aggregated Model {𝐴𝐺𝑉 , 𝐴𝐺𝑉 , . . } 

Aggregated
    1  2  3 1 2 3 

𝑖 
False Positive 

1 2 Gradient Value 
Matthews B. Enhanced External Intrusion Detection Mechanism 

FPR Rate 
MCC

 Correlation The proposed Federated Learning (FL) algorithm for external 
 Coefficient  

 

II. BLOCKCHAIN AND FL-BASED SECURE ARCHITECTURE FOR 
SMART FARMING 

This section describes and discusses the proposed secure 
architecture with methodological flow. External intrusion 
detection is described at the ensemble and authentication layer 
of the proposed architecture, and data authentication and 
verification are illustrated at the authentication layer. Therefore, 
we start with an overview of the architecture and then go 
through all the parts conferred step by step. The abbreviation 
table is shown in Table II. 

A. Proposed Secure Architecture Overview 

The proposed secure architecture has four layers: connection, 
ensemble, authentication, and cloud, as shown in Fig. 1. 
Various Smart Lands {𝑆𝐿1, 𝑆𝐿2, 𝑆𝐿3 … } are connected to 
different types of IoT sensor devices {𝐼1, 𝐼2, 𝐼3 … } smart devices 
{𝑆𝐷1, 𝑆𝐷2, 𝑆𝐷3 … }. These, like a cluster of IoT sensors and 
smart devices such as cameras, ultra-noise sensors, DHT 
sensors (Irrigation Control), temperature, soil moisture, light 
intensity, and humidity, are utilized at the bottom layer 
(Connected Layer). All IoT sensor devices have specific 
purposes, such as capturing the image, temperature, water 
requirement in soil, irrigation, and humidity control. Service 
providers {𝑆𝑃1, 𝑆𝑃2, 𝑆𝑃3 … } used at the second layer to acquire 
the smart land data from IoT sensors and smart devices. 
Federated and Ensemble Learning concepts are also utilized at 
the ensemble layer for external intrusion detection for Smart 
Farming. The decision tree model (Local Model 
{𝐿𝑀1, 𝐿𝑀2, 𝐿𝑀3}) is an Ensemble Learning part of the 
Federated Learning Model. It trains the data and transfers it to 
an aggregated model {𝐴𝑀}. By aggregating multiple decision 
trees, ensemble learning reduces the risk of overfitting and 
improves the model's generalization across different clients, 
each of which may have distinct data characteristics. After the 
aggregation, smart land data is transferred to the Blockchain 
networks for authentication and validation. Marco base station 
{𝑀𝐵𝑆} and Blockchain (PoAh) consensus algorithm is 
leveraged at the third (Authentication) Layer of the proposed 
secure architecture. The macro base station { 𝑀𝐵𝑆} stores 
identical information of IoT sensors and smart devices, and the 
PoAh consensus algorithm completes the smart lands of the 
proposed secure architecture and data authentication. After data 
authentication, it is downloaded by local model nodes and 
transferred to the cloud layer for decision-making and storage. 

intrusion detection leverages Ensemble Learning (EL) and is 
strategically deployed at the second layer of Smart Farming. 

The Bagging technique, which combines predictions from 
multiple Decision Tree (DT) models, is used as the core EL 

approach in the proposed FL model. This improves the overall 
performance by reducing the impact of overfitting that can 

occur in individual Decision Tree models [16]. The 
mathematical model delineating bagging with DT is as follows: 

Let 𝐷 be the original dataset of size 𝑁, and 𝐷𝑖 be the 𝑖𝑡ℎ 
bootstrap samples of size 𝑁, obtained by random sampling with 
replacement. The dataset is prepared on the basis of sensor data 

like ultrasonic sensors, which can observe the farm boundary 
and the installed camera response when anything comes to it 

proximity. The process of creating 𝐵 bootstrap samples can be 
represented as: 

𝐷𝑖 = [(𝑥𝑖1, 𝑦𝑖1), (𝑥𝑖2, 𝑦𝑖2), ⋯ , (𝑥𝑖𝑁, 𝑦𝑖𝑁)] (3) 

where, (𝑖 = 1,2, ⋯ , 𝐵) and ℎ𝑖 be the 𝑖𝑡ℎ DT on the 𝑖𝑡ℎ 
bootstrap sample 𝐷𝑖. 

ℎ𝑖: 𝑋 → 𝑌 (4) 
Train each DT model on its respective bootstrap sample. 

ℎ𝑖 = 𝑇𝑟𝑎𝑖𝑛𝐷𝑇(𝐷𝑖) (5) 
For the classification tasks, the final prediction 𝑓(𝑥) is 
evaluated by a majority vote among the predictions of 
individual trees, and it is determined as: 

𝑓(𝑥) = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑒(ℎ1(𝑥), ℎ2(𝑥), ⋯ , ℎ𝐵(𝑥)) (6) 

The proposed model is built using DT-based EL and employed 
within the FL framework. FL trains a global model on a 
decentralized network of clients, where each client contributes 
to the model training using its local data. Algorithm 1 presents 
complete design steps for the detection of smart farming. This 
algorithm highlights all three stages of the proposed FL model: 
local, global, and aggregate. After completion of the training, 
we test the trained model with unknown data, i.e., information 
that does not take part in the training. After testing, the proposed 
classifier will be validated on the basis of various performance 
metrics (for example, accuracy, recall, specificity, precision, 
False Positive Rate (FPR), F1-score, and Matthews Correlation 
Coefficient (MCC). Using multiple performance metrics 
provides a comprehensive evaluation of the model by 
highlighting different aspects of its performance. This is crucial 
because each metric captures unique information—such as 
accuracy, recall, precision, and robustness—that helps ensure 
the model is reliable and meets the specific needs of the 
application, especially when dealing with imbalanced data or 



 

 

 

 
Fig. 2: Proposed Secure Architecture’s Methodological Flow 

varying costs of errors. The mathematical expression of such 
metrics is represented as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = S 𝑇𝑃+𝑇𝑁 T × 100 (7) 
𝑇𝑃+𝐹𝑁+𝐹𝑃+𝐹𝑁 

 
model downloads aggregated and authenticated gradient value, 
and secure Smart Land data is transferred to the cloud layer for 
decision-making  and  storage  purposes. Smart  Land  Data 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 
𝑇𝑃+𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑃 
𝐹𝑃+𝑇𝑁 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 
𝑇𝑃+𝐹𝑃 

𝐹𝑃𝑅 = 𝐹𝑃 𝐹𝑃+𝑇𝑁 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 

𝑀𝐶𝐶 = 𝑇𝑁×𝑇𝑃–𝐹𝑁×𝐹𝑃 
 

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁
) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

authentication of smart land data is discussed and described in 
Algorithm 2. 

Blocks = 𝑡𝑛1 + 𝑡𝑛2 + 𝑡𝑛3+…….. (14) 

Private keys {Mkeys} → Blocks{ 𝑇𝑥1, 𝑇𝑥2, 𝑇𝑥3, . . . , 𝑇𝑥𝑖}  (15) 

Blocks Mkeys →Broadcast Network { 𝑇𝑟𝑁1, 𝑇𝑟𝑁2, 𝑇𝑟𝑁3, . . } 
(16) Faithful Miner Nodes🠐Checks Blocks MKeys 🠐 with 

𝑁𝐾𝑒𝑦𝑠 (SHA256 Algorithm); (17) 

where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑁, and 𝐹𝑃 are denoting for True Positive, 
True Negative, False Negative, and False Positive respectively. 
Table III showcase the hyperparameters of proposed FL 
technique. 

TABLE III 
PARAMETERS OF FEDERATED LEARNING CLASSIFIER 

 
 

Algorithm 1: Ensemble Learning-based Federated Model 
Input: Providing Smart Farm Sensors-based data and its response, 
like 𝐷𝑖 = [(𝑥𝑖1, 𝑦𝑖1), (𝑥𝑖2, 𝑦𝑖2), ⋯ , (𝑥𝑖𝑁, 𝑦𝑖𝑁)] for the training 
of the proposed FL model. 
Output: Classifying external intrusion. 

 

 Hyperparameters Values/Type  Process: 
Number of clients 5 
Number of DT to build EL 100 
Ensemble Method Bagging 
Data Splitting Method K-fold cross-validation and value is 2 

1: Start: 
2: Load IoT Sensors dataset 
3: Define Input features X and Target labels Y 
4: Building FL Model 

 Number of global model updates 5  5: for {𝑖 = 1 𝑡𝑜 𝑛𝑢𝑚 − 𝑐𝑙𝑖𝑒𝑛𝑡𝑠} 
6: Each client updates its local model 

Authentication and validation. After the validation of the 
transaction of gradient values for Smart Land data, one block is 
added to the blockchain; otherwise, the gradient value 
transaction has malicious activity (unauthenticated gradient 
value transaction), and the transaction stops. Then, the local 

𝑙𝑜𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 {𝐿𝑀1, 𝐿𝑀2, 𝐿𝑀3}  = 𝑓𝑖𝑡𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
(𝑐𝑙𝑖𝑒𝑛𝑡 − 𝑑𝑎𝑡𝑎{𝑖}. 𝑋, 𝑐𝑙𝑖𝑒𝑛𝑡 − 𝑑𝑎𝑡𝑎{𝑖}. 

𝑌, ’𝐵𝑎𝑔’, 100, ’𝑇𝑟𝑒𝑒’, ’𝑇𝑦𝑝𝑒’, ’𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛’); 
7: Combine the local model with the global 

𝑙𝑜𝑐𝑎𝑙 − 𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑚𝑜𝑑𝑒𝑙 = 𝑓𝑖𝑡𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 



 

 

([𝑋; 𝑐𝑙𝑖𝑒𝑛𝑡 − 𝑑𝑎𝑡𝑎{𝑖}. 
𝑋], [𝑌; 𝑐𝑙𝑖𝑒𝑛𝑡 − 
𝑑𝑎𝑡𝑎{𝑖}. 𝑌], 

’𝐵𝑎𝑔’, 100, ’𝑇𝑟𝑒𝑒’, ’𝑇𝑦𝑝𝑒’, ’𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛’); 
8: Aggregate the local update to the global model 

𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑚𝑜𝑑𝑒𝑙 = 
𝑐𝑜𝑚𝑝𝑎𝑐𝑡(𝑓𝑖𝑡𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ([𝑋; 
𝑐𝑙𝑖𝑒𝑛𝑡_𝑑𝑎𝑡𝑎{𝑖}. 𝑋], 
[𝑌; 𝑐𝑙𝑖𝑒𝑛𝑡_𝑑𝑎𝑡𝑎{𝑖}. 𝑌], 

’𝐵𝑎𝑔’, 100, ’𝑇𝑟𝑒𝑒’, ’𝑇𝑦𝑝𝑒’, ’𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛’)); 
9: Validate performance of the proposed model with quantitative 
metrics (e.g.: accuracy, sensitivity, recall, etc.) 
10: Save optimal model 
10. END;  

 
C. Data Authentication Approach 

In the data authentication approach, various faithful miner 
nodes are available in the Blockchain networks. The PoAh 
(Proof of Authentication) consensus algorithm utilizes these 
nodes for Authentication and Validation purposes. We are 
leveraging this procedure at the authentication layer of the 
proposed secure architecture and addressing security and 
privacy issues. After aggregating gradient values for Smart 
Lands data as a lot of transactions, all procedures are shown in 
Fig. 2. Then, the private keys are assigned to the blocks and 
broadcasted in the blockchain networks. Many faithful miner 
nodes are available in the Blockchain networks for 
Authentication and validation. Faithful miner nodes check all 
these blocks or transactions with the help of the SHA 256 
algorithm, which solves the cryptographic puzzles with private 
keys. Faithful miner nodes are also verified by faithful values 
based on Algorithm 2 [17]. Faith miner nodes and private keys 
in the networks achieve the Smart Land Data Authentication 
and Validation. 

 

Algorithm 2: Smart Land Data Authentication 
 

Input: Aggregated Gradient values {𝐴𝐺𝑉1, 𝐴𝐺𝑉2, 𝐴𝐺𝑉3. . } of Smart 
Land, Faithful Miner Nodes, Private Keys {Mkeys}, Public Keys 
{Nkeys}. 
Output: Authenticated and validated Gradient Value data of Smart 
Lands 
Process: 
1: Start: 
2: {𝑡𝑛1, 𝑡𝑛2, 𝑡𝑛3, . . . , 𝑡𝑛𝑖} ← 𝐴𝑙𝑙 𝐵𝑙𝑜𝑐𝑘; 
3: Blocks{ 𝑇𝑥1, 𝑇𝑥2, 𝑇𝑥3, . . . , 𝑇𝑥𝑖} ← {Mkeys}; 
4: Blocks Mkeys →Broadcast Network { 𝑇𝑟𝑁1, 𝑇𝑟𝑁2, 𝑇𝑟𝑁3, . . } 
5: Select Faithful Nodes ==→ Authentication and Validation 
6: if (Miner Node = = faithful) 
7: if (𝑡𝑛 > = 𝑡𝑓 (Faith value = 
5)); 8:  Nodes are faithful 
9: else 4th Step. 

10: else if (Normal Node 🠐 Received miner faith value); 
11: else 6th to 7th Steps; 
12: else 4th Step. 

13:  Faithful Miner Nodes🠐Checks Blocks MKeys 🠐 with 
𝑁𝐾𝑒𝑦𝑠 (SHA256 Algorithm); 

14: if (Validation ==True) 
15: Block addition in Blockchain Networks; 
16: else Unauthorized Transaction; 
 17: END;  

III. PERFORMANCE AND SECURITY QUANTITATIVE 

EVALUATION 

In this section, we discuss and demonstrate the proposed 
secure architecture's performance with a security quantitative 
analysis. The theoretical analysis compares existing research as 
standard parameters. 

The proposed FL-based classifier is executed in the Matlab- 
2023a software environments, and the computer hardware 
specification is the 12th Generation Intel Core-i5-12400 
processor, 16 GB of RAM, and a 2.50 GHz clock frequency. 
Hyperledger Fabric 1.3 on VMware 14 Pro and Ubuntu 
operating system is utilized for PoAh-based Smart Lands data 
authentication. Node.js v8.9.1 (version 6.8.0) is applied for test 
interpretation of multiple node tests and transmission processes 
for successful data authentication with mining nodes in the 
blockchain network. The sensor data was collected throughout 
February 2024, with events logged every 15 minutes. A total of 
2784 entries were recorded from diverse sensors installed 
across different fields in Rajkot, primarily utilizing ultrasonic 
and camera data. This dataset was utilized to develop the 
proposed FL-based intrusion detection model. Entries were 
labeled as either 'No Attack' or 'Attack', with 'Attack' denoting 
the presence of unwanted animals or humans in the agricultural 
fields. 

 
(a) 
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Fig. 3: Global Model Performance Measures (a) Accuracy 
Comparison (b) Confusion Matrix 



 

 

TABLE IV. 
PERFORMANCE MEASURES 

TECHNIQUES ACCURACY RECALL SPECIFICITY PRECISION FPR F1-SCORE MCC 

DT-BASED ENSEMBLE LEARNING 0.9327 0.8755 0.9477 0.9129 0.0126 0.8149 0.8125 

PROPOSED-FL 0.9956 0.9189 0.9844 0.9599 0.0044 0.9031 0.8754 

 

TABLE V. 
POAH AUTHENTICATION TIME DURATION 

Iteration (Number of Transaction) 10 20 30 40 50 60 70 80 90 100 

Time (Sec.) in block validation 3.32 3.81 3.62 3.32 2.61 4.20 4.32 3.82 3.90 3.71 

 

TABLE VI. 
COMPUTATIONAL COST ANALYSIS 

Iterations (Number 
of Transaction) 

Iteration (Number of 
Transaction) 

10 20 30 40 50 60 70 80 90 100 

Computational Cost 
NON-FL 200 380 490 760 1000 1100 1170 1220 1400 1520 

PROPOSED FL 260 240 490 730 800 890 1020 1100 1360 1500 
 

Fig. 3 depicts the performance of the proposed FL-based 
classifier in terms of accuracy across different iterations and 
presents the associated confusion matrices. Specifically, Fig. 3 
(a) shows the FL-based classifier's accuracy over iterations, 
reaching a peak of 99.56% in iteration 5. Accuracy variation 
across iterations arises from factors like heterogeneity of client 
data and randomness in local model training. This 
heterogeneity, influenced by factors such as geographical 
location and device characteristics, leads to diverse data 
distributions among clients. Additionally, stochastic 
optimization algorithms like gradient descent introduce 
randomness, causing local models to converge towards slightly 
different solutions. These discrepancies contribute to variations 
in the global model's performance after aggregating the local 
models. Similarly, Fig. 3 (b) illustrates the confusion matrix of 
the proposed FL model, showcasing its ability to successfully 
detect 'No Attack' 2769 times. However, there were four 
instances where it was misclassified as 'Attack,' indicating the 
potential presence of unwanted animals or humans. Similarly, 
it accurately identified the presence of external intrusions 15 
times but erroneously classified the same event as 'No Attack' 7 
times. The confusion matrix data shows that the proposed FL- 
based model provides an accuracy of up to 99.56%. 

Likewise, Table IV represents the performance of both the 
proposed DT-based ensemble learning model and the proposed 
FL-based model. Apart from accuracy, various other 
performance metrics were evaluated, such as recall, specificity, 
precision, false positive rate (FPR), F1-Score, and Matthews 
Correlation Coefficient (MCC). These data were also assessed 
based on the confusion matrix, which shows that the federated 
learning-based technique not only provides superior accuracy 
but also offers a robust, scalable, and privacy-preserving 
solution for farmland intrusion detection. Leveraging 
decentralized data processing, real-time analytics, and 
collaborative learning enhances agricultural operations' 
security and efficiency, helping farmers protect their valuable 
resources and assets. Since the whole process of handling 
sensitive sensor and image data of the farm remains on local 
devices (e.g., edge devices or local servers), it minimizes the 
risk of data breaches and protects the privacy of the farmers. 
Additionally, DHT sensor data is processed, and soil humidity 

and temperature data can be used to control the irrigation of the 
farmland. 

We are using an extension version of the consensus algorithm 
(Proof of Authentication-PoAh), which is part of Blockchain 
Technology. To simulate the proposed secure architecture, we 
leveraged six nodes, three of which are trusted nodes available 
in the decentralized and distributed Blockchain network and 
utilized 100 iterations. According to these iterations, we 
investigated the performance results and provided Smart Land 
data authentication as gradient values at the authentication layer 
after aggregation with the ensemble learning model; 35 bytes 
are used for each block size. All network nodes have public 
keys for encrypting the transactions of gradient values and 
developing signature certificates using private keys and node 
IDs used by trusted valuable nodes. These nodes validate the 
blocks with the authentic signature but use and deploy their 
public key. After confirmation, trusted and valuable nodes are 
again broadcast to all nodes in the blockchain-based network to 
preserve and validate a replica of the block in their ledger. PoAh 
consensus mechanism or algorithm-based Smart Land Data 
Authentication as Gradient value is shown in Table V with 
specific time duration, based on various transactions. We 
evaluate the average time duration for block Gradient 
authentication with the PoAh consensus mechanism and 
algorithm, which is 3.663 secs, employing a maximum of 100 
iterations and following all steps of Algorithm 2 of the proposed 
secure architecture. Additionally, we compare the 
computational cost of the proposed secure architecture with 
traditional architecture and analyze which is better, as shown in 
Table VI; it also utilizes a maximum of 100 iterations. 

 
IV. CONCLUSION 

In this article, we proposed a Blockchain and FL-based 
Secure Architecture for Enhanced External Intrusion Detection 
in Smart Farming. Federated Learning is utilized for privacy 
preservation-based external intrusion detection-based ensemble 
learning and Smart Land data authentication as the PoAh 
consensus algorithm offers aggregated gradient values, which 
is part of Blockchain technology. We compared the proposed 
secure architecture's performance with parameters such as 
accuracy, average processing time, recall, precision, FPR, F1- 



 

 

score, MCC, and computational cost, which is better than 
existing works. The average processing time is 3.663 secs, and 
the accuracy is 0.9956 of the proposed secure architecture. In 
the future, we will extend our work with an advanced version 
algorithm for more accuracy and less average processing time. 
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