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 

Abstract— This study highlights the potential of employing 

terahertz metamaterial structures as dual-band biosensors for 

the early detection of cancerous biological tissue. The 

fundamental principle leveraged here is the alteration of the 

effective dielectric constant of biological tissue by cancerous cells. 

The change in the dielectric constant, in turn, induces a shift in 

the resonance frequency of the metamaterial sensor. One notable 

advantage of the terahertz metamaterial sensor is its relatively 

compact size compared to other sensor types, as its dimensions 

are independent of the wavelength. This property translates into 

a requirement for a much smaller biopsy sample, facilitating less 

invasive testing procedures. Beyond the size advantage, the 

proposed biosensor demonstrates efficacy in detecting 

abnormalities within biological tissue. 

 
Index Terms— Biosensors; terahertz; metamaterials; cancer 

I. INTRODUCTION 

he World Health Organization (WHO) estimates that 

approximately 10 million people worldwide died from 

cancer in 2020. Cancer is a complex disease that 

affects various bodily systems, characterized by the 

uncontrolled growth of abnormal cells. These malignant cells 

have the potential to cause organ failure and death. However, 

early identification and prompt treatment of these malignant 

cells could significantly improve survival rates, especially for 

breast cancer patients [1]. 
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Currently, traditional methods such as physical 

examinations, hematology analyses, ultrasound imaging, 

histopathology, and cytology are the primary means of early 

cancer detection. While these methods can enhance patient 

survival and cure rates, they often come with adverse side 

effects. Imaging techniques such as computed tomography 

(CT) scans emit substantial radiation, increasing the risk of 

cancer. Magnetic resonance imaging (MRI) and positron 

emission tomography (PET) scans, although effective, are 

often not accessible due to high associated costs [2]. 

Additionally, blood tests for tumor detection may be less 

effective in certain types of cancer due to the lack of relevant 

blood-based biomarkers. Consequently, researchers are 

focusing on developing biosensors for early disease detection 

[2]. 

Cervical cancer is the fourth most common cancer in 

women worldwide and the leading cause of female cancer-

related deaths. Recognizing the importance of early detection 

and precise diagnosis in improving patient outcomes and 

reducing mortality rates, addressing this challenge is of 

paramount importance. Cervical cancer is highly prevalent, 

especially in resource-limited regions, where limited access to 

healthcare facilities and diagnostic tools exacerbates the 

problem. The disease is strongly associated with modifiable 

risk factors, particularly persistent human papillomavirus 

(HPV) infection. 

Despite significant advances in cervical cancer prevention 

and control, such as HPV vaccination, cervical cancer remains 

a prevalent and potentially lethal disease. Therefore, the 

development of improved diagnostic tools, especially those 

adaptable and feasible in diverse healthcare settings, is crucial 

[1] [3]. 

In the field of biosensing and diagnostics, the terahertz 

(THz) region, spanning from 0.1 to 10 THz, remains relatively 

unexplored. THz waves possess unique properties that make 

them ideal for biomedical applications, including low tissue 

absorption, a low ionization threshold, and the ability to 

interact with molecular structures. These properties open up 

opportunities for creating highly sensitive and precisely 

targeted biosensors with the potential to revolutionize disease 

diagnosis, including cervical cancer [4]. 

Metamaterials, artificially synthesized structures with 

exceptional optical properties surpassing those of natural 

materials, are critical in this context [5]. By engineering their 

unit structures, it is possible to modulate the electromagnetic 

response of incident waves and enhance interaction with the 

substance being measured on the metamaterial's surface. This 

interaction is most pronounced when the metamaterial's 

resonant frequency aligns with the characteristic frequency of 
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the substance being measured. Terahertz metamaterial sensors 

are becoming a significant focus of research, benefiting from 

advancements in micro/nano fabrication [6]. 

Metamaterial-based sensors have garnered significant 

attention in recent years due to their unique ability to 

manipulate electromagnetic waves in ways not possible with 

natural materials. These artificially engineered structures 

possess subwavelength features that enable them to exhibit 

extraordinary electromagnetic properties, such as negative 

refractive index and enhanced light-matter interactions. One of 

the key advantages of metamaterial-based sensors is their 

ability to achieve high sensitivity and specificity in detecting 

minute changes in the surrounding environment, making them 

highly suitable for applications in biomedical diagnostics, 

environmental monitoring, and chemical detection. For 

instance, Liu et al. in [7] demonstrated a terahertz 

metamaterial biosensor capable of detecting protein molecules 

at picomolar concentrations by exploiting the strong localized 

electromagnetic fields generated by the metamaterial structure. 

Similarly, Landy et al. in [8] showcased a metamaterial-based 

perfect absorber that operates at microwave frequencies, 

which can be tuned to detect small changes in dielectric 

properties, highlighting the versatility of these sensors. The 

ability of metamaterials to support high-Q resonances, as 

explored by Al-Naib et al. in [9], further enhances their 

application in sensing, allowing for the precise detection of 

subtle variations in the refractive index of the surrounding 

medium . These features make metamaterial-based sensors a 

powerful tool in advancing sensing technologies across 

various fields. 

Consequently metamaterial-based biosensors have also 

emerged as promising platforms for early disease detection 

due to their ability to manipulate electromagnetic waves at 

subwavelength scales. Recent studies have demonstrated the 

potential of incorporating quasi-bound states in the continuum 

(QBIC) into metasurface designs to enhance light-matter 

interactions and improve biosensing performance [10]. By 

leveraging QBIC resonances, these sensors can achieve 

increased sensitivity and specificity in detecting biomarkers 

associated with diseases such as cancer. However, addressing 

the complexities of biological samples remains a significant 

challenge in terahertz biosensing. The three-step one-way 

model proposed by [11] offers a systematic approach to 

overcoming issues related to sample heterogeneity and 

interference. By integrating this model with metamaterial-

based biosensors, it is possible to develop robust and reliable 

diagnostic tools for early disease detection. 

The concept of achieving high Q-factor resonances through 

metamaterial design, as demonstrated in [12], is crucial for 

enhancing the sensitivity and specificity of biosensors. High 

Q-factors allow metamaterial-based sensors to detect subtle 

changes in the surrounding medium more effectively. While 

the primary focus of [12] is on refractive index sensing, the 

underlying principles of metamaterial design for achieving 

high Q-factor resonances can be adapted for biosensing 

applications. 

In cancer diagnosis, where different types and stages are 

characterized by unique biomarkers and molecular profiles, 

traditional single-frequency biosensors often struggle to 

capture this complexity. To enhance sensitivity and accuracy, 

we have developed a dual-band biosensor based on 

metamaterial (MTM) technology. This biosensor shows great 

promise in addressing the heterogeneity of cancer types and 

stages by detecting these unique biomarkers. The numerical 

model used in this study is based on the well-established 

Finite Difference Time Domain (FDTD) technique, 

implemented through CST Microwave Studio Suite—an 

electromagnetic simulation tool widely recognized for its 

precision and accuracy, consistently validated by strong 

correlations with experimental results. 

In summary, this study demonstrates the feasibility and 

advantages of using terahertz (THz) metamaterial structures as 

biosensors. These structures can detect early signs of cancer 

through resonance frequency modulation, highlighting their 

potential to improve diagnostic procedures with reduced 

invasiveness. 

II. METAMATERIAL UNIT CELL 

The construction of biosensors is complicated and limited by 

the need for high sensitivity and specificity. Therefore, it is 

important to enhance the performance of biosensors to 

improve clinical performance and provide useful information 

for cervical cancer diagnosis. The proposed biosensor design 

will consider enhancing the accuracy which is necessary to 

provide reliable diagnosis of cervical cancer. 

Figs. 1(a) and 1(b) illustrate a conceptual model, referred to 

as model#1, representing a metamaterial absorber designed for 

sensing applications. Fig. 1(c) introduces model#2. The 

integration of model#1 with model#2 results in the formation 

of a perfect metamaterial absorber, model#3, as depicted in 

Fig. 2(b). This strategic combination creates two distinct 

bands within the terahertz frequency range. The composite 

absorber consists of a dielectric metamaterial layer 

sandwiched between conductive layers. The key parameters 

defining the characteristics of these models are detailed in 

Table 1. The structure was optimized using a comprehensive 

full-wave 3D electromagnetic solver, CST Microwave Studio 

Suite by Dassault Systèmes. 
 

TABLE 1: OPTIMIZED PHYSICAL PARAMETERS OF THE  

METAMATERIAL SENSOR. 
 

Parameter Value 
(µm) 

 Parameter Value 
(µm) 

A 150 I 84 

B 150 J 44 

C 15.6 K 44 

D 23.5 
Sensor thickness (T1) 

(see Fig.17) 
10 

E 2.6 
Coverslip thickness  

(T2) (see Fig.17) 
1 

F 74 
HeLa Cells thickness 

(T3) (see Fig.17) 
7 

G 103 
Aluminum (Al) 

thickness 
0.2 

H 103   

 

Quantitative calculations are employed to analyze the 

properties of metamaterials and elucidate their behavior across 

varying frequency and size ranges. The literature extensively 

documents the investigation of different configurations, 
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including unit cells, empty spaces, periodic arrays, and perfect 

electric and magnetic conductors (PEC and PMC) [7]-[9]. 

To streamline simulation processes, a unit cell was defined 

in the x- and y-directions, while an open space was 

incorporated in the z-direction. The three-layered model 

comprises a dielectric spacer at its core, composed of 

polyethylene terephthalate (PET), flanked by two Aluminum 

(Al) layers of 0.2 μm thickness. PET is characterized by a low 

electrical conductivity of approximately 1×1012 S/m, reflecting 

its insulating properties. The thickness of the dielectric spacer 

used  is 10 μm. To optimize performance, one of the Al layers 

needs to be engineered to exhibit an impedance compatible 

with the incident medium, facilitating maximum power 

penetration into and dispersion throughout the PET. 

Concurrently, the other Al layer serves as a barrier, designed 

to block all incident electromagnetic (EM) waves and 

eliminate transmission line interference (TLT). 

Electromagnetic waves transmitted through the model are 

terminated at a port featuring high electrical and/or magnetic 

loss. Through subjecting the model to electromagnetic waves, 

the absorption parameters of the model can be systematically 

determined and evaluated.  

 

 

 

 

 

 

 

 

 
Fig. 1: Proposed metamaterial model#1 of a perfect absorber showing a single 

wave; (a) one wave, (b) one λ, and (c) model#2. 

 
 

 

 
 

 

 
 

 

Fig. 2: A perfect metamaterial absorber; (a) model#1, (b) the proposed 
biosensor model#3, and (c) the proposed model#3 biosensor with input and 

output ports. 
 

PET was selected for its optimal combination of dielectric, 

mechanical, and thermal properties, as well as its 

biocompatibility and cost-effectiveness. These attributes 

ensure minimal signal loss, maintain structural integrity, and 

enable safe interaction with biological tissues, thereby 

facilitating the sensor's reliable and efficient operation in 

various conditions. 

In this study, the FDTD technique was employed for 

numerical modeling using CST Microwave Studio Suite. 

Accurate material properties were utilized to characterize the 

metamaterial unit cell at terahertz frequencies. Aluminum (Al) 

was chosen as the conductive material, with an electrical 

conductivity of 3.77×107 S/m. The frequency-dependent 

permittivity of Aluminum was modeled using the Drude 

model, which describes the material's response to 

electromagnetic waves and is defined by the following 

equation [13]: 
 

 
 

Where 𝜖 (∞) is the high-frequency permittivity, 𝜔𝑝 is the 

plasma frequency, 𝛾 is the collision frequency, and 𝜔 is the 

angular frequency. 

Key parameters included a plasma frequency of 2.24×1015 

rad/s and a collision frequency of 1.22×1014 rad/s, which are 

essential for accurately capturing the behavior of metals at 

terahertz frequencies.  

The feasibility of the proposed biosensor relies on the 

integration of advanced materials, fabrication techniques, and 

computational modeling. By leveraging established 

metamaterial principles, the design achieves a compact form 

factor suitable for integration into existing diagnostic 

platforms. As will be shown later, the careful selection of 

materials and optimization through simulation have resulted in 

a device with high sensitivity and specificity, highlighting its 

potential for clinical application. 
 

III. RESULTS AND DISCUSSION 

The expression used for modeling wave absorption in the 

biosensor within CST Microwave Studio Suite was: 

 

 
 

The S-parameters for reflection and transmission are denoted 

by S11 and S21, respectively. The reflection coefficient should 

be kept as low as possible to achieve maximal absorption. 

To investigate the impact of resonator design on absorption 

capacity within the terahertz (THz) region, we examined 

twelve distinct models, as shown in Figs. 3 through 7. This 

exploration is essential for understanding the behavior and 

efficiency of THz metamaterials as perfect absorbers, 

requiring thorough characterization and performance 

assessment. The detailed analysis of these models provides 

valuable insights into the factors influencing signal resonance 

at various THz frequencies. This knowledge is crucial for 

refining design and manufacturing processes to achieve the 

desired absorption characteristics within this frequency range. 

The first model, depicted in Fig. 3(a), exhibits two peaks at 

approximately 0.437 THz and 0.75 THz, with absorption rates 

exceeding 99.7% and 98.4%, respectively. In contrast, the 

second model, shown in Fig. 3(b), displays a single peak 

around 0.65 THz, achieving over 98% absorption. The third 

model, illustrated in Fig. 4(a), features a solitary peak at 

approximately 0.65 THz with an absorption rate above 90%. 

Similarly, the fourth model, shown in Fig. 4(b), has a single 

peak at about 0.63 THz, also surpassing 90% absorption. 

The fifth model, depicted in Fig. 5(a), presents a single peak 

near 0.5 THz, achieving more than 99% absorption. The sixth 

model, shown in Fig. 5(b), incorporates two split-ring 

resonators, resulting in four peaks at around 0.65 THz, 0.75 

THz, 0.9 THz, and 1 THz. However, this model does not reach 

perfect absorption, with an overall capacity below 80%. 
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Fig. 3: Absorption spectra of the two designs: (a) Model#1, and (b) Model#2. 
 

 

 
 

 

 

 

 

 
 

 

 
 

Fig. 4: Absorption spectra of the two designs: (a) Model#3, and (b) Model#4. 

 
 
 

 

 
 

 

 
 

 

 
 

 
 

Fig. 5: Absorption spectra of the two designs: (a) Model#5, and (b) Model#6. 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Fig. 6: Absorption spectra of the two designs: (a) Model#7, and (b) Model#8. 
 

 

 

 
 

 
 

 

 
 

 

 
 

Fig. 7: Absorption spectra of the two designs: (a) Models#9 & #10, and (b) 

Models#11 & #12. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 8: Absorption spectra of the models: (a) using different substrate 

materials, and (b) using different metals as resonators. 

 

The seventh model, shown in Fig. 6(a), reveals two peaks at 

approximately 0.7 THz and 0.8 THz, while the eighth model 

in Fig. 6(b) shows a single peak at around 0.5 THz. Both 

models, despite their peak counts, fail to meet the criteria for 

perfect absorption, with absorption capacities remaining below 

80%. 

The ninth and tenth models, depicted in Fig. 7, each exhibit 

a singular peak around 0.65 THz but do not achieve the 

threshold for perfect absorption at 80%. The eleventh model, 

shown in Fig. 7(a), resonates at around 0.63 THz and 0.72 

THz, with absorption rates surpassing 98% and 99%, 

respectively. However, the proximity of these peaks 

introduces low resolution in microwave imaging, making it 

unsuitable for distinguishing healthy cells from malignant 

ones. Finally, the twelfth model, shown in Fig. 7(b), resonates 

at approximately 0.92 THz but falls short of perfect 

absorption, with a capacity below 80%. 

Fig. 8 demonstrates the impact of substrate and resonator 

materials on the biosensor's absorption spectrum. The choice 

of substrate significantly influences resonant behaviour by 

altering the effective permittivity, which is a measure of how 

the material polarizes in response to an electric field. This 

change in effective permittivity modifies the resonance 

frequency by affecting the propagation speed and wavelength 

of electromagnetic waves within the sensor, which in turn 

impacts the peak absorption and bandwidth. A higher effective 

permittivity typically lowers the resonance frequency, leading 

to a shift in the absorption spectrum. The conductivity and 

plasmonic properties of the resonator material play a crucial 

role in determining the sharpness of the peaks and the 

intensity of the local electromagnetic fields. Materials with 

high conductivity and strong plasmonic activity, such as noble 

metals, support pronounced surface plasmon resonances, 

resulting in sharper and more intense absorption peaks. These 

factors collectively influence the biosensor's sensitivity, as the 

ability to detect subtle changes in the biological environment 

relies on these sharp, well-defined resonance peaks. By 

carefully selecting the substrate and resonator materials, the 

biosensor's performance can be optimized for high sensitivity 

and specificity, crucial for effective cancer diagnosis. 

Several dielectric substrates were evaluated as potential 

candidates for the metamaterial absorber, including PET, 

Arlon AD 410, Arlon AD 430, FR-4, and Rogers RT5780. 

The absorption spectra for these materials are shown in Fig. 

8(a). As expected, FR-4 performed comparatively poorly, as it 

is more suitable for low-frequency applications. 
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The study also investigated the impact of different metals 

on the resonators, considering Aluminium, Copper, Silver, 

Iron, and Gold. The results, depicted in Fig. 8(b), show 

minimal variation in absorption characteristics among the 

metals, except for Iron, which introduced a small third 

resonance near the second peak. Overall, the choice of metal 

has a limited impact on the resonator's absorption 

characteristics, with Iron being the notable exception. 

The absorption rate was evaluated across different incident 

and polarization angles, revealing how changes in angle affect 

the resonance conditions. Fig. 9 illustrates the biosensor's 

angular sensitivity and polarization dependence, which are 

influenced by the underlying physics of permittivity, 

resonance, and plasmonics. The effective permittivity of the 

substrate and the plasmonic properties of the resonator 

material play a crucial role in this behavior. Variations in 

incident angle alter the phase matching conditions, which can 

shift the resonance frequency and affect the intensity of 

absorption peaks. Similarly, the polarization of light impacts 

the coupling efficiency with surface plasmon resonances, with 

certain polarizations enhancing or diminishing the local 

electromagnetic fields. Consistent performance across these 

varying angles, as demonstrated in the results, indicates that 

the biosensor maintains stable resonance behavior and strong 

plasmonic responses under diverse experimental conditions. 

This robustness is essential for practical applications, ensuring 

reliable detection sensitivity and accuracy regardless of the 

specific orientation or polarization of incident light, which is 

critical for real-world scenarios such as cancer diagnosis. 

 

 

 

 

 

 

 

 

 

Fig. 9: The impact of angle modification on absorption rate at: (a) incidence 

angle, and (b) polarization angle. 

 

Polarization can significantly affect the signal-to-noise ratio 

(SNR) in sensing and imaging applications, potentially leading 

to distorted results. The symmetrical construction 

recommended in references [14] and [15] aligns the sensor 

with polarization effects. Notably, the absorption properties 

remain consistent even as the polarization angle varies 

between 0° and 90° as shown in Fig. 9. 

Fig. 9(a) shows that key absorption areas remain stable 

regardless of orientation, and Fig. 9(b) confirms this 

consistency across different angles. This stability suggests the 

model’s effectiveness across a wide range of incidence angles 

and polarizations, efficiently absorbing and transferring 

incident energy regardless of the wave's orientation or 

direction. 

Figs. 10 and 11 demonstrate the proposed sensor’s 

exceptional performance, particularly in biomedical 

applications, due to its high electric field density. These field 

distributions provide valuable insights into the resonance 

process and deepen our understanding of THz electromagnetic 

absorbers. By analysing the electric and magnetic field 

strengths at specific frequencies, we can better understand 

how the metamaterial structure contributes to signal 

resonances, which is essential for optimizing biosensor design. 

Fig. 10 shows the electric field (E-field) distributions at 

resonant frequencies of 0.437 THz and 0.75 THz, revealing 

regions of high field intensity that are essential for efficient 

energy transfer to the biological medium. These high-intensity 

regions are a direct result of the resonator's plasmonic 

properties and the local enhancement of the electromagnetic 

field, which are critical for maximizing the interaction with 

target biomolecules. Identifying these regions allows for the 

optimization of the biosensor's design, enhancing its 

sensitivity by ensuring that the strongest fields are 

concentrated where the biological interactions occur.  

Fig. 11 shows the magnetic field (H-field) distributions at 

the same resonant frequencies, providing insights into the 

magnetic response of the metamaterial structure. The H-field 

patterns help clarify the resonance modes, indicating how 

magnetic energy is stored and dissipated within the sensor. 

This understanding is vital for tuning the metamaterial's 

resonance characteristics to optimize performance. 

Fig. 12 illustrates the surface current distribution at the 

resonant frequencies of 0.437 THz and 0.75 THz, shedding 

light on the electromagnetic response of the metamaterial. 

These distributions highlight the pathways of energy flow that 

underlie the observed resonant behaviour and absorption 

characteristics. By optimizing the surface current flow, the 

biosensor's sensitivity can be enhanced, enabling it to detect 

subtle changes in the biological environment, which is crucial 

for accurate and reliable diagnostics. 

At 0.437 THz, Fig. 12(a) reveals parallel and antiparallel 

surface current patterns, indicating a strong magnetic 

response. The antiparallel currents form a circular pattern, 

suggesting robust magnetic flux in response to the incident H-

field. Fig. 12(b) presents the current distribution for the second 

resonance mode at 0.75 THz, where the direction of current 

flow, whether parallel or antiparallel, directly influences the 

distribution of electric and magnetic fields. Parallel currents 

generate an internal magnetic field that opposes the external 

H-field, while antiparallel currents enhance the magnetic 

response. This analysis clarifies the physical absorption 

processes in the proposed metamaterial structure, providing 

insights critical for optimizing biosensor design. 

Fig. 13 illustrates the power flow distribution within the 

metamaterial structure at the resonant frequencies of 0.437 

THz and 0.75 THz. This analysis highlights the pathways of 

energy propagation and identifies regions where energy is 

concentrated and dissipated. Optimizing power flow is 

essential for improving the biosensor's sensitivity and 

efficiency in detecting subtle changes in biological samples. 

At the resonance frequency of 0.437 THz, Fig. 13(a) shows a 

uniform distribution of power flow, while Fig. 13(b) reveals a 

dense zone of energy concentration at 0.75 THz. These 

patterns indicate that the proposed sensor effectively absorbs 

incident electromagnetic waves. 

The electromagnetic characteristics of the proposed dual-

band micro-biosensor, designed to function as a metamaterial 
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absorber in the 0–1 THz frequency range, are illustrated in 

Figs. 14 to 16. Fig. 14 presents the real and imaginary 

components of the permeability (μ) and permittivity (ε) of the 

metamaterial. These graphs depict the material’s response to 

electromagnetic waves across frequencies up to 1 THz. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 10: Distributions of the electric field across the proposed metamaterial 

structure: (a) E-field at 0.437 THz, and (b) E-field at 0.75 THz. 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 11: An illustrated color map showing the magnetic field distribution over 

the proposed metamaterial structure: (a) H-field at 0.437 THz, and (b) H-field 

at 0.75 THz. 
 

 

 

 

 

 

 

 

 

 
Fig. 12: The surface current distribution over the proposed metamaterial 

structure: (a) at 0.437 THz, and (b) at 0.75 THz. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 13: Power flow over the proposed metamaterial structure: (a) at 0.437 

THz, and (b) at 0.75 THz. 

 

 

Fig. 14(a) presents the real parts of permittivity (ε') and 

permeability (μ′), which correspond to the material's ability to 

store electric and magnetic energy, respectively. The dual-

band nature of the sensor is evident from the distinct resonant 

peaks within this frequency range, signifying the specific 

frequencies where the absorber operates most effectively. 

These resonant peaks highlight the sensor's ability to interact 

strongly with electromagnetic waves at these frequencies, 

leading to enhanced sensitivity in detecting changes in the 

dielectric properties of biological tissues. Consequently, the 

sensor’s accuracy in monitoring or diagnosing biological 

conditions is significantly improved, as it can respond to 

subtle variations in tissue properties over these dual bands. 

Fig. 14(b) displays the imaginary components of 

permittivity (ε'') and permeability (μ''), which represent the 

material's loss factors and are crucial for understanding energy 

dissipation within the metamaterial. The minimal loss 

observed at the resonant frequencies ensures high efficiency 

and sensitivity, making the absorber well-suited for non-

invasive diagnostic applications. The behaviour of these 

imaginary components confirms the material’s effectiveness 

as a perfect absorber in the terahertz range. 

  
 
 

 
 
 
 
 

 

Fig. 14: Real and imaginary components of permeability (μ) and permittivity 

(ε) of the proposed metamaterial absorber: (a) Real components of μ and ε, 

and (b) Imaginary components of μ and ε. 

 

 

 

 

 

 

 

 

 
 
 

Fig. 15: The proposed metamaterial absorber characterizing responses: (a)  

Real and imaginary parts of the Refractive Index, and (b) Impedance (Z). 

 

 
 
 
 
 
 
 
 
 

 
Fig. 16: The proposed metamaterial absorber’s: (a) the real & imaginary parts 

of S11, and (b) Reflection (R) & absorption (A) spectra. 
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Fig. 15(a) shows the impedance characteristics, which are 

essential for evaluating the absorber's performance. The dual-

band nature of the absorber is evident in the two frequency 

bands where the impedance aligns with that of free space, 

indicating optimal absorption. At these resonant frequencies, 

the sensor is highly effective at detecting changes in the 

electromagnetic properties of biological tissues, ensuring high 

sensitivity for biosensing applications.  

Fig. 15(b) presents both the real and imaginary parts of the 

refractive index. The real part indicates how much the wave 

slows down within the material, while the imaginary part 

represents the absorption loss. Significant variations in the real 

part of the refractive index at the resonant frequencies 

underscore the sensor's dual-band capability. These variations 

are crucial for fine-tuning the sensor’s sensitivity and ensuring 

accurate detection of dielectric property changes in biological 

tissues. Additionally, the low absorption loss in the imaginary 

part at these frequencies further enhances the sensor’s 

efficiency and reliability. 

Fig. 16 shows the reflection coefficient (S11), reflection, and 

absorption spectra of the absorber. Fig. 16(a) shows the real 

and imaginary parts of S11, which indicate the reflection 

behaviour of the sensor. The dual-band characteristic is 

evident from the dips in the magnitude of S11 at two specific 

frequencies, where minimal reflection signifies strong 

resonance and efficient absorption. These resonant frequencies 

fall within the target terahertz range, which is crucial for the 

biosensor's sensitivity and accuracy. 

The reflection and absorption spectra shown in Fig. 16(b) 

highlight two peaks in the absorption spectrum that 

correspond to the dual-band frequencies. These peaks 

represent the frequencies at which the metamaterial structure 

absorbs the maximum amount of incident electromagnetic 

energy, thereby enhancing the sensor's ability to detect 

changes in the dielectric constant of biological tissues. The 

low reflection values at these frequencies confirm the high 

efficiency of the absorber. 

The relationship between the figures is clear, as the dual-

band resonant frequencies are consistently identified across 

different parameters. The permeability and permittivity 

analysis in Fig. 14 provides the foundational material 

properties that influence the impedance, refractive index, and 

S11 parameter responses shown in Figs. 15 and 16. The 

coherence in the identified resonant frequencies across these 

figures validates the effectiveness of the design. These 

comprehensive analyses offer valuable insights for optimizing 

the micro-biosensor’s design and functionality, ensuring 

effective operation within the desired terahertz frequency 

bands for early-stage cancer detection. 

IV. DIAGNOSIS OF CERVICAL CANCER  

The development of a biosensor for cervical cancer 

diagnostics is crucial for early cancer detection. The proposed 

metamaterial sensor is designed to identify cervical cancer by 

analysing its absorption spectra, providing a novel and 

effective approach for enhancing early detection and 

prevention. 

 Research [16]-[20] has shown that healthy cervical tissue 

has a refractive index of 1.368, while malignant tissue has a 

slightly higher refractive index of 1.392. As illustrated in Fig. 

17, the sensor can be used to detect cancerous biological tissue 

by placing the tissue sample between glass slides and 

positioning it over the metamaterial sensor. The 0–1 THz 

frequency range is particularly advantageous for biosensing 

due to its low water absorption, which allows for deeper tissue 

penetration. This range also provides distinct spectral 

fingerprints for biomolecules, facilitating the identification of 

specific cancer-related markers. Additionally, terahertz 

radiation is non-ionizing, making it safe for biological 

applications. 

  

 

 

 

 

 

 

 

 

 
Fig. 17: A layer of biological tissue (either healthy cervical tissue or 

cancerous cervical tissue) is placed on top of the proposed metamaterial 

biosensor. 
 

Fig. 18(a) presents the sensor's findings for healthy and 

cancerous cervical tissue across the 0–1 THz frequency range, 

with a focus on the initial peak in the 0.41 THz to 0.43 THz 

region. Fig. 18(b) highlights a significant difference in 

resonance frequency—specifically 1010 MHz—between 

healthy and cancerous cervical tissue. 
  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 18: Absorption coefficient of the proposed biosensor for detecting normal 

Cervical and Cervical cancer, (a) 0 - 1 THz, and (b) 0.41 – 0.43 THz. 

 

Fig. 19(a) presents the detection results for both cervical 

cancer and normal cervical tissue, highlighting a second peak 

in the 0.7 to 0.75 THz range. Fig. 19(b) demonstrates a 

significant frequency difference of 1690 MHz between 

cervical cancer and healthy cervical tissue. This notable 

frequency distinction makes it feasible to identify cervical 

cancer using terahertz imaging methods. 

A careful examination of the terahertz frequency spectrum 

of a patient's HeLa cells carcinoma, as shown in Fig. 19, 

allows medical professionals to accurately diagnose the 

presence of cervical cancer. This capability facilitates early 

intervention and treatment, underscoring the potential of the 

proposed metamaterial sensor in advancing cervical cancer 

diagnostics. 
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Fig. 19: Absorption coefficient of the proposed biosensor for detecting normal 
Cervical and Cervical cancer, (a) 0 - 1 THz, and (b) 0.7 – 0.75 THz. 

 

When evaluating a sensor's performance, sensitivity (S) is a 

critical parameter that describes its ability to detect small 

changes in the measured quantity. Sensitivity is generally 

categorized into two main types: frequency sensitivity and 

intensity sensitivity. Frequency sensitivity is defined as [5]: 
 

f
S

n





                                       (3) 

 

Where Δf represents the frequency shift of the resonance peak, 

and Δn denotes the change in the refractive index (RI), 

typically measured in refractive index units (RIU). This type 

of sensitivity is crucial for detecting minute variations in the 

biological environment, which are indicative of pathological 

changes. Intensity sensitivity, on the other hand, is given by: 
 

I
S

n





                                       (4) 

 

Where ΔI indicates the change in resonant intensity. This 

measure is particularly important for applications that require 

precise quantification of analyte concentration based on 

intensity changes. 

The figure of merit (FOM) is another crucial attribute that 

quantifies a sensor's selectivity. It is defined as the ratio of 

sensitivity (S) to the full width at half maximum (FWHM) of 

the resonant dip, as expressed in [5]: 
 

S
FOM

FWHM
                                 (5) 

 

A higher figure of merit (FOM) indicates a more selective 

sensor, capable of distinguishing between small differences in 

the measured quantity. The quality factor (Q-factor) measures 

the sharpness of the resonance, which is crucial for achieving 

high sensitivity. It is determined by the ratio of the resonant 

wavelength (λ) to the full width at half maximum (FWHM): 
 

factorQ
FWHM


                                (6) 

 

In terahertz (THz) sensing, metamaterial-based biosensors 

leverage high Q-factors and sensitivity metrics to achieve 

enhanced detection capabilities. The unique electromagnetic 

properties of metamaterials contribute to significant 

improvements in both sensitivity and figure of merit (FOM), 

making them highly effective for applications such as early 

cancer detection and other biomedical diagnostics. By 

optimizing sensitivity, FOM, and Q-factor, THz metamaterial-

based biosensors can deliver superior performance, enabling 

precise and early detection of biological changes. This 

underscores their potential as powerful tools in medical 

diagnostics and various sensing applications [21][22]. 

Table 2 presents a comparative analysis of the proposed 

metamaterial biosensor alongside previously reported systems 

in the literature. All these systems utilize the phase change of 

terahertz waves to obtain data on material properties. 

Specifically, these sensors exploit changes in the refractive 

index to affect absorption spectra, a principle that this study 

applies to differentiate between healthy and cancerous tissue. 

The urgent need for early identification and effective 

treatment of cervical cancer highlights the importance of 

accurately distinguishing malignant tissue. In terms of 

performance, particularly absorptivity, the proposed biosensor 

compares favourably with benchmark devices. Additionally, it 

features a compact physical size, which is crucial for practical 

applications, such as needing smaller biopsy samples for 

diagnostics. 

 
TABLE 2: COMPARISON BETWEEN OTHER METAMATERIAL-BASED SENSORS 

AND THE PROPOSED BIOSENSOR 

Ref. Techniques used Frequency 

operating (THz) 

Material 

substrate 

Absorptivity Application 

[23] Au/ Dielectric 

Teflon/Au 

1−2.2 dielectric 

Teflon 

0.99 Sensor 

[24] Graphene/ 

Topas/Au 

0.5−4.5 Topas 

spacer 

0.99, 0.98, 

0.99 

Ultra-Broadband 

Absorber 

[25] 

 

Gold/Silicon 

Dioxide/ Gold 

1.5-1.7 silicon 

dioxide 

0.972, 0.991 Biosensor for 

Detecting Corona 

Virus 

[26] Bulk Dirac 

Semimetal/ 

Photonic 

Crystal/Au 

1−3 photonic 

crystal 

plate 

0.97, 0.98, 

0.99 

Narrowband 

Perfect Absorber 

[27] Graphene/ Au/ 

SiO2/Au 

2−6 SiO2 0.99 Refractive Index 

Sensor 

[28] 

 

Au/SiO2/ 

Graphene 

7-9.5 SiO2 0.98 Multi-Frequency 

Broadband and 

Ultra-Broadband 

[29] 

 

Ion Gel/ 

Graphene/ 

Teflon/Gold 

0.7-5 Teflon >0.96 Polarization-

Sensitive 

[30] PET/FSS/UV 

glue/ Graphene 

0-3 PET 0.99, 0.80, 

0.95 

Multifunctional 

Tunable Terahertz 

[31] Au/dielectric 

layer/Au 

1−3 dielectric 

layer 

0.99, 0.99 Sensor 

[32] Glass/InSb/ 

MgF2/InSb 

0-0.37 Glass 0.998 Colon Cancer 

Detection 

[33] SiO2/ Graphene 0.5-2.5 SiO2 - Breast Cancer 

Detection 

 

This 

work 

 

Al/PET/Al 

 

0−1 

 

PET 

 

0.9977, 0.984 

Biosensor, 

Cervical Cancer 

Diagnostics and 

Microwave 

Imaging 

 

Fig. 20 illustrates the application of the proposed biosensor, 

showing the testing of a cervical sample placed on a coverslip. 

Fig. 21(a) depicts a normal cervical scan, which reveals a 

weak electric field. In contrast, Fig. 21(b) shows an area of 

red, indicating a very high electric field density, characteristic 

of cancerous tissue. Further distinction is provided by 

examining the electric field at the second peak of 0.75 THz, as 

shown in Fig. 22. Fig. 22(a) presents a region with a very low 

electric field, corresponding to a healthy cervix, while Fig. 

22(b) shows a region with high electric field density, 

indicative of cervical cancer. 
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To validate these electric field findings, a parallel 

examination of the magnetic field is conducted, as 

demonstrated in Fig. 23. The results from detecting the H-field 

are consistent with the electric field observations, reinforcing 

the reliability and effectiveness of the proposed metamaterial 

biosensor in distinguishing between healthy and cancerous 

cervical tissue. 
  

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 20: The diagnosis of cervical cancer using the MWI approach. 

 
 

 

 

 

 

 
 
 

 

 

 
 

Fig. 21: The E-field distribution of biological tissue sample at 0.437 THz: (a) 

healthy cervical, and (b) cervical cancer. 
 

 

 

 

 
 

 
 

 

 
 

 
 

Fig. 22: The E-field distribution of biological tissue sample at 0.75 THz: (a) 

healthy cervical, and (b) cervical cancer. 

 

 

 

 

 

 
 
 

 

 
 

 

 
Fig. 23: The H-field distribution of biological tissue sample at 0.437 THz: (a) 

healthy cervical, and (b) cervical cancer. 

 

V. FUTURE PERSPECTIVE 

These results demonstrate that early-stage diagnosis of various 

cancers, including breast cancer, colon cancer, adrenal gland 

cancer (such as PC-12 tumors), and non-melanoma skin 

cancer, can be significantly enhanced using terahertz 

electromagnetic wave imaging biosensors. These advanced 

biosensors utilize THz EM waves to detect subtle changes in 

tissue properties that are indicative of cancerous growth. 

 Terahertz imaging is particularly advantageous for early 

cancer detection due to its ability to penetrate biological 

tissues with minimal damage and its sensitivity to variations in 

tissue composition and structure. By analyzing the interaction 

of THz waves with different types of tissues, these biosensors 

can identify specific signatures associated with early-stage 

tumors, improving diagnostic accuracy and enabling timely 

intervention. 

 For breast cancer, THz imaging can reveal abnormal tissue 

changes before they become visible through traditional 

imaging techniques. Similarly, for colon cancer, THz 

biosensors can detect precancerous lesions and early-stage 

tumors by differentiating between healthy and malignant 

tissue based on their unique THz absorption and reflection 

characteristics. 

 In the case of adrenal gland cancer (PC-12), THz imaging 

can be used to distinguish between benign and malignant 

lesions, facilitating early diagnosis and appropriate treatment 

planning. Non-melanoma skin cancer detection benefits from 

THz imaging’s ability to differentiate between cancerous and 

healthy skin tissues with high precision. 

Overall, the use of THz electromagnetic wave imaging 

biosensors offers a promising approach for early cancer 

detection across various types of cancers, enhancing 

diagnostic capabilities and potentially improving patient 

outcomes through earlier intervention and more accurate 

monitoring. 

VI. BENCHMARKING 

The proposed terahertz dual-band metamaterial biosensor 

represents a significant advancement over traditional 

microwave imaging techniques for cervical cancer diagnostics. 

This biosensor, designed as a metamaterial perfect absorber, 

operates within the 0-1 THz range and exhibits dual-band 

functionality. It achieves impressive absorption rates of 

99.77% and 98.4% at its first and second resonant peaks, 

respectively (see Table 2). 

 Table 3 compares the performance metrics of the proposed 

biosensor with other metamaterial-based biosensors, showing 

that it has a sensitivity of 0.042 THz/RIU at the first peak and 

0.0704 THz/RIU at the second peak, with quality factors (Q-

factors) of 20.382 and 16.286, respectively. The figures of 

merit (FOM) for the proposed biosensor are 1.9589 RIU⁻¹ and 

1.529 RIU⁻¹ at these peaks, indicating its high precision and 

efficiency. 

Unlike conventional sensors, the compact size of this 

metamaterial biosensor allows for the use of significantly 

smaller biopsy samples, facilitating less invasive testing 

procedures. Its high sensitivity and specificity are crucial for 
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early-stage cancer detection, ensuring accurate identification 

of abnormalities in biological tissues. The superior 

performance metrics of this biosensor, coupled with its 

practical advantages, highlight its potential as a highly 

effective tool for non-invasive cervical cancer diagnostics. 

 
TABLE 3: COMPARISON OF THE PROPOSED BIOSENSOR’S PERFORMANCE 

METRICS WITH OTHER METAMATERIAL-BASED BIOSENSORS 

Ref. Year 

Published 

FOM (RIU−1) Q S (THz/RIU) Bio-application 

[34] 2017 - - 0.0242, 0.02438 Detection of Virus 

[35] 2021 - - 0.074 Cervical cancer 

[36] 2022 - - 0.068 Hepatocellular 

Carcinoma 

[37] 2022 1.81, 1.57 8.21, 6.05 0. 203 Sensor 

[38] 2023 - 11 0.278 Bovin Serum Albumin 

Protein 

[39] 2023 0.86, 1.15 12.8, 13.5 0.0515, 0.076 Non-Melanoma Skin 

Cancer Diagnostics 

This 

work 

- 1.9589, 1.529 20.382, 

16.286 

0.042, 0.0704 Cervical Cancer 

Diagnostics 

FOM: Figure of merit, RIU-I: Refractive index unit 

 

VII. CONCLUSIONS 

This research highlights the potential of utilizing metamaterial 

structures as biosensors for the early detection of cancerous 

biological tissues. The underlying mechanism is based on the 

ability of cancerous cells to alter the effective dielectric 

constant of the surrounding tissue. This alteration leads to a 

shift in the resonance frequency of the metamaterial sensor, 

enabling the detection of cancerous changes at an early stage. 

One of the key advantages of the proposed metamaterial 

biosensor is its compact size. Unlike traditional sensors, which 

often require larger sample sizes, this sensor's dimensions are 

independent of the wavelength, allowing it to analyze 

significantly smaller biopsy samples. This compact nature not 

only reduces the invasiveness of the procedure but also 

improves patient comfort. 

Furthermore, the biosensor has demonstrated effectiveness 

in identifying abnormalities within biological tissues, 

providing a valuable tool for early cancer detection. The 

ability to detect subtle changes in tissue properties makes it 

particularly useful for monitoring and diagnosing various 

forms of cancer at a stage when treatment options are most 

effective. 

Overall, this research underscores the promising capabilities 

of metamaterial-based biosensors in enhancing diagnostic 

accuracy and facilitating earlier intervention in cancer 

treatment. The compact design and high sensitivity of the 

biosensor contribute to its potential as a powerful tool for 

advancing medical diagnostics. 
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