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ABSTRACT

This paper describes a methodology to analyse the complexity
of HeLa cells as observed with electron microscopy, in partic-
ular the relationship between mitochondria and the roughness
of the nuclear envelope as reflected by the invaginations of the
surface. For this purpose, several mitochondria segmentation
algorithms were quantitatively compared, namely: Topology,
Image Processing, Topology and Image Processing, and Deep
Learning, which provided the highest accuracy. The invagi-
nations were successfully segmented with one image process-
ing algorithm. Metrics were extracted for both structures and
correlations between the mitochondria and invaginations were
explored for 25 segmented cells. It was found that there was
a positive correlation between the volume of invaginations
and the volume of mitochondria, and negative correlations
between the number and the mean volume of mitochondria,
and between the volume of the cytoplasm and the aspect ratio
of mitochondria. These results suggest that there is a rela-
tionship between the shape of a cell, its nucleus and its mi-
tochondria; as well as a relationship between the number of
mitochondria and their shapes. Whilst these results were ob-
tained from a single cell line and a relatively small number of
cells, they encourage further study as the methodology pro-
posed can be easily applied to other cells and settings.

Code and data are freely available. HeLa images are
available from http://dx.doi.org/10.6019/EMPIAR-10094,
code from https://github.com/reyesaldasoro/MitoEM, and
segmented nuclei, cells, invaginations and mitochondria from
https://github.com/reyesaldasoro/HeLa Cell Data.

Index Terms— Segmentation, HeLa Cells, Mitochon-
dria, Invaginations.

1. INTRODUCTION

The shape of the cellular nuclear envelope is important as it
has been linked to processes associated to viral infections [1]
as well as cancer [2, 3, 4]. Similarly, mitochondrial function
and damage has been found to be correlated to the presence
of disease [5, 6], and in cancer in particular the manifold role

of mitochondria inside cancerous cells has been previously
highlighted [7].

Mitochondria are organelles that can change shape and
distribution inside the cell. Moreover, a substantial amount of
communication has been shown to exist between mitochon-
dria and the nucleus of a cell [8]. This communication may
lead to alterations between the two organelles - nuclear genes
may be altered by an impairment in the mitochondria [9]. The
damage in both structures can contribute to the progression
and metastasis of cancer [10]. A relationship between com-
ponents of the cytoskeleton and the distribution and shape
of mitochondria has been explicitly described multiple times
[11, 12]. However, up to the best knowledge of the authors, no
explicit relationship has been found between the shape of the
nucleus of a cell and the distribution or shape of mitochondria
in the same cell.

Electron microscopy (EM) has the capability of creating
high-resolution images that can be utilised to analyse the
structure of the cell and its organelles. However, computa-
tional methods to identify and characterise the structures in
order to make inferences are yet being developed to produce
high-accuracy results on EM images. This is due to the low
contrast and high complexity of the structures revealed by
EM imaging. Many techniques have been utilised to perform
segmentation on EM images, from traditional image process-
ing [13] to deep learning methodologies [14]. Methods based
on Persistent Homology have shown satisfactory results on
other image segmentation tasks [15], but have not been ap-
plied as widely as other methodologies to EM images and
thus are worth exploring in the context of segmentation of
subcellular structures.

In this paper, a methodology to analyse relationships be-
tween the nuclear envelope and mitochondria inside HeLa
cell images obtained using EM is described. For this goal,
four mitochondria segmentation algorithms were compared.
These algorithms were based on conventional image seg-
mentation methods (canny edge detection, hole-filling, image
morphology), Persistent Homology, a hybrid algorithm com-
bining the two previous methods, and Deep Learning. Metrics
were extracted from the segmented structures and compared.



(a) (b)

Fig. 1. Illustration of electron microscopy (EM) data. (a)
One slice of the volume containing numerous HeLa cells. (b)
A magnified view of a region of interest (ROI) centred at one
cell.

(a) (b)

Fig. 2. Segmentation of nucleus and invaginations. (a) 2D
illustration of the segmentation of cell nucleus (blue) and in-
vaginations (red). (b) 3D surfaces corresponding to the cell
nucleus (blue, with transparency) and invaginations (red).

2. MATERIALS AND METHODS

2.1. Materials

Details of the preparation of HeLa cells and serial block face
scanning electron microscopy (SBF SEM) datasets of HeLa
cells have been previously described [16, 17] and illustrated
in Fig. 1. Nuclear envelope and plasma membranes of 25 cells
were segmented from the 8, 192× 8, 192× 517 voxel dataset
as previously described [13] and the 3D segmentations were
used to select the region outside the nucleus and inside the
plasma membrane in subsequent steps of the methodology.

2.2. Methods

2.2.1. Segmentation of Invaginations

Invaginations were segmented on a per-slice basis with the
following sequence of traditional image processing steps. The
nuclear region was filled for holes, morphologically closed
with a rather large structural element, and eroded with a rather
small structural element to remove the small sections on the

surface of the nucleus that did not really penetrate inside the
nucleus. To measure how deep the invaginations penetrated
into the nucleus, a Euclidean distance map was generated
from the region outside of the nuclear envelope, including the
filled invaginations. Then, for each invagination, the mean
and maximum distance were calculated.

2.2.2. Mitochondria Ground Truth (GT) of Benchmark Set

A benchmark set of five slices belonging to a single cell was
used to test algorithms. The mitochondria in the benchmark
images were segmented manually (by D.B.-P.) in 2D by de-
lineating their perimeter. For comparison, a second segmenta-
tion (by C.C.R.-A.) was performed blind to the first segmen-
tation.

2.2.3. Comparison of Mitochondria Segmentation Algo-
rithms

In order to segment mitochondria within individual cells, an
evaluation of four distinct algorithms was performed: Persis-
tent Homology (PH), traditional image processing methods,
a hybrid algorithm of the previous two, and a Deep Learning
model known as MitoNet [14]. The algorithms were selected
based on the average Intersection-Over-Union (IoU) they ob-
tained over the benchmark images.

2.2.4. Topology Segmentation Algorithm

A segmentation algorithm based on Persistent Homology was
implemented following the methodology described in [15].
First, histogram equalisation was applied on each of the cy-
toplasm slices. Upper-thresholds for each value in the range
of 0 to 255 were applied to make 256 binary images. On
these thresholded images, the first two Betti numbers β0 and
β1 were calculated. The maps of threshold value to each Betti
number is called the Persistent Homology Profile (PHP). Us-
ing these values we can calculate another profile given by the
values of β0/β1, these are the values that were used to classify
each patch as having a part of a mitochondrion or not.

A Random Forest model MRF was trained on the PHP’s
extracted from patches that contained complete mitochondria.
The model used 100 estimators and no maximum depth. In
order to perform the final classification, the 2D slice was split
into square patches of varying side lengths (30, 40, 50, 60,
75, 90) with 30% overlap. The PHP was extracted from the
patch and MRF classifies it. From the overlap percentage and
the amount of side lengths, it followed that each pixel could
be at most part of 24 different patches. Each pixel was then
assigned a confidence value between 0 and 24, corresponding
to how many patches it belonged to that were classified as
containing part of a mitochondrion by MRF . Any pixel with
a confidence value greater than or equal to 5 was classified as
a mitochondria patch.



2.2.5. Traditional Segmentation Algorithm

The segmentation of the mitochondria exploited the fact that
the mitochondria have a boundary that is darker than the re-
gion that surrounds it and that it is a closed structure. Thus,
the region between the nucleus and background was thresh-
olded, then morphologically thinned so that all lines were
1 pixel wide. These regions were filled for holes and then
opened with a morphological operator size 3 × 3. The ef-
fect of these steps was that closed regions, like circles or el-
lipses, would be unaffected, but lines that were not closed
would be removed. The threshold was selected to span the
dark and bright intensities of the cell and the results of each
level were grouped. A confidence parameter was determined
by the number of times that regions appeared with this pro-
cess. Regions that appeared at least twice were selected as
mitochondria.

2.2.6. Hybrid Segmentation Algorithm

A hybrid of the PH and the traditional algorithm was im-
plemented to complement their performance. Initially the
intersection of the two segmentations was taken. Then, re-
gions predicted exclusively by the traditional algorithm were
compared against adjacent regions of the intersection. If the
traditionally-segmented region’s area was larger than 25% the
area of the intersection region, it was added to the final seg-
mentation.

2.2.7. MitoNet Model (empanada)

The MitoNet neural network model was introduced by R.
Conrad and K. Narayan in [14]. It is a model based on
Panoptic-DeepLab’s architecture [18] which was pre-trained
on CEM1.5m (https://www.ebi.ac.uk/empiar/EMPIAR-11035/)
and trained on CEM-MitoLab (https://www.ebi.ac.uk/empiar/
EMPIAR-11037/), these two datasets, which contained a large
number of EM images from different types of cells and tis-
sues, were curated by the creators of the MitoNet model.
The model is accessed through a Python package called em-
panada or as a plugin for napari (https://napari.org/) with the
same name.

2.2.8. Morphology Metrics

Segmentations obtained with the previous algorithms were
saved as individual 2D images, assembled as 3D structures
from which metrics were extracted and figures generated
using MATLAB® (MathworksTM, USA). The metrics cal-
culated (all in voxels) for each cell were: volume of the
cytoplasm (calculated as the volume contained by the plasma
membrane minus the volume of the nucleus), total volume of
the invaginations, total number of mitochondria, total volume
of the mitochondria, average volume of the mitochondria,
and average aspect ratio of the mitochondria. The last metric

Table 1. Segmentation results of the methodologies: Per-
sistent Homology (PH) Segmentation, Traditional Segmen-
tation, Hybrid Segmentation MitoNet Model, and Inter-
Observer Segmentation (I.O.). Values correspond to Intersec-
tion over Union or Jaccard Similarity Index.

PH Traditional Hybrid MitoNet I.O.
0.417 0.462 0.567 0.659 0.696

was defined as the ratio of the major axis and the minor axis
of each mitochondrion in 3D.

3. RESULTS AND DISCUSSION

The segmentation of the invaginations was rather good and,
although it was evaluated only visually, invaginations were
clearly distinguished (Fig. 2(a)). The 3D structures of the
invaginations were rather complicated as can be seen in
Fig. 2(b) with some superficial invaginations and others that
penetrated deep inside the nucleus. It should be noted that
the metrics only partly capture the complexity of the invagi-
nations of the nuclear envelope and warrant further study.

The results of the four algorithms are illustrated in Fig. 3
and the numeric results shown in Table 1. These range be-
tween 0.41 and 0.65, which might be considered low, but the
inter-observer similarity is not much higher at 0.696. This in-
dicates that two experienced observers, who can scroll up and
down slices before reaching a decision, do not agree com-
pletely and thus the ground truth may not be perfect. Mi-
toNet outperformed the other algorithms by a fair margin and
thus was selected for subsequent steps. However, it must be
noted that the combination of the PH and image processing
improved results of the individuals, implying a further de-
velopment of a single algorithm with elements of both ap-
proaches could provide better results.

The 3D segmentation of the nucleus, plasma membrane,
invaginations and mitochondria is illustrated in Fig. 4. Four
cells were selected to represent the variability found within
the cells. There were cells where mitochondria were dis-
tributed around the nucleus (Fig. 4(a)), concentrated in two
extremes suggesting a polarity (Fig. 4(b)), distributed along
the nucleus except for a small region (Fig. 4(c)) and concen-
trated on just one side of the cell (Fig. 4(d)). The variability
of these results are consistent with the literature [11]. A nat-
ural extension of these observations is to see the cells in the
presence of their neighbours and not in isolation.

Pearson correlation coefficients were calculated pair-wise
between the morphological metrics previously described and
the following results were interesting:

1 A positive (r = 0.5067) and significant (p = 0.0097)
correlation between the total volume of invaginations and the
total volume of mitochondria. Whilst this could suggest that
larger and more complex invaginations were associated with



(a) (b) (c) (d)

Fig. 3. 2D segmentation of mitochondria on a single cell slice obtained using (a) Persistent Homology Algorithm, (b) Tra-
ditional Segmentation Algorithm, (c) Hybrid Segmentation Algorithm, (d) MitoNet Model. Green pixels show True Positive
(TP), red pixels show False Positive (FP), and blue pixels show False Negative (FN). Region of interest (ROI)’s have been
darkened to improve contrast.

(a) (b) (c) (d)

Fig. 4. Illustration of the variability of the distribution of the cellular structures in four different cells. In all cells, the plasma
membrane is displayed in a very light gray, the nuclear envelope in light blue, invaginations of the nucleus in bright red, and
mitochondria in green. It can be noticed how mitochondria distribute in the cells: (a) uniform, (b) polarised towards left and
right, (c) uniform except for a small region, (c) concentrated towards the right.

more mitochondria, the positive correlation may just be an
indication of the size of the cell.

2 A negative (r = −0.4466) and significant (p = 0.0252)
correlation between the number of mitochondria and the av-
erage volume of mitochondria was found. This suggests that
the more mitochondria are present in a cell, the smaller they
are. This correlation would not be affected by the size of the
cell.

3 A negative (r = −0.4407) and significant (p = 0.0275)
correlation between the volume of the cytoplasm and the as-
pect ratio of the mitochondria, suggesting that the larger the
cytoplasm, the thinner and more elongated the mitochondria.

4. CONCLUSION

In this paper, a methodology to morphologically analyse
HeLa cells as observed with Electron Microscopy has been
described. In order to characterise the shape of the nucleus,
the invaginations of the nuclear envelope were segmented
using conventional image processing methods. A segmenta-

tion of mitochondria was also performed. For this, different
algorithms were compared in order to acquire a segmenta-
tion that yields results similar to manual segmentation. The
MitoNet model outperformed all other algorithms and was
chosen to perform such segmentation. PH, hybrid and Mi-
toNet were implemented in Python. Image processing, the
invaginations and metrics and correlations were measured
using MATLAB®. The MitoNet model represents the state
of the art, as far as the authors are aware.

The measurements were compared and correlations were
found between the total volume of invaginations and the to-
tal volume of mitochondria (r = 0.5067), the total volume
of the cytoplasm and the aspect ratio of the mitochondria
(r = −0.4407), finally, the number of mitochondria and the
average volume of mitochondria (r = −0.4466). Whilst these
results are interesting, it is acknowledged that much more
could be explored in the future. Specifically, improving the
segmentation of mitochondria, extracting more morphologi-
cal measurements and developing the study of the correlations
between metrics.
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