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Abstract: This paper addresses the state-feedback control problem for the class of state-polynomial
discrete-time systems. The continuous-time polynomial nonlinear model is discretized by the second-
order Runge-Kutta method. The Lyapunov theory and the exponential stability were employed to derive
the conditions. The sum of squares formulation was used to check the constraints. Two approaches are
presented, the first makes use of the Lyapunov function to recover the gain matrices. While the second
formulation allows the design of rational state feedback control gains. We evaluated the impact of the
step size used in the discretization process in the results. Numerical experiments were used to illustrate
the potential of the proposed technique.
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1. INTRODUCTION

A great variety of dynamical systems can be represented by
continuous-time nonlinear models, that is, they can be written
by a set of differential equations. For a better understanding
of their behaviour and computational analysis, it is necessary
to discretize these continuous-time models, transforming them
into discrete-time systems (Ardourel and Jebeile, 2017; Ham-
mel et al., 1987; Sauer et al., 1997; Galias, 2013; Lozi, 2013;
Zhuang et al., 2018). There are several discretization methods,
with methods based on the expansion of the Taylor series being
one of the widely used, such as the Runge-Kutta family meth-
ods (Butcher and Goodwin, 2008; Quarteroni et al., 2010).

Depending on the continuous-time model to be discretized,
nonlinear systems can arise. Concerning nonlinear systems,
there are several tools to provide stability certificates and con-
trol design conditions (Khalil, 2002; Vidyasagar, 1993; Tak-
agi and Sugeno, 1985). When nonlinear systems that depend
polynomially on the states are studied, techniques based on the
sum of squares (SOS) method (Papachristodoulou and Prajna,
2002, 2005) can be employed. The sum of squares formula-
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tion has been extensively used to tackle different problems
such as estimating the region of attraction of polynomial sys-
tems (Topcu et al., 2010; Valmorbida and Anderson, 2017),
control design (Nasiri et al., 2018; Ferreira et al., 2020), filter
design Lacerda et al. (2015), and robust stability analysis Prajna
et al. (2005) for instance.

In Gui et al. (2019), a class of chaotic systems under a state-
feedback controller is described as a polynomial model, and
the optimal control problem for the class of chaotic systems
is transformed into a state-dependent linear matrix inequality,
a viable solution to this problem is the application the sum-
of-squares programming method. SOS is also used in Ramos
et al. (2018), wherein the chaotic Lorenz system with para-
metric uncertainties was used for the switched control design
to choose a polynomial state feedback gain that minimizes the
time derivative of a polynomial Lyapunov function.

In Ebenbauer and Allgöwer (2006), the use of semidefinite
programming and the sum of squares decomposition is used
to solve the obtained stability analysis and control design dis-
sipation inequalities in a numerically reliable and efficient way.
In Saat et al. (2012) a state feedback controller with an integra-
tor was proposed to stabilize discrete-time polynomial systems
with norm-bounded uncertainties. The state-feedback control
problem for state-polynomial discrete-time linear parameter
varying systems is addressed in Lacerda et al. (2022).
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is transformed into a state-dependent linear matrix inequality,
a viable solution to this problem is the application the sum-
of-squares programming method. SOS is also used in Ramos
et al. (2018), wherein the chaotic Lorenz system with para-
metric uncertainties was used for the switched control design
to choose a polynomial state feedback gain that minimizes the
time derivative of a polynomial Lyapunov function.
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programming and the sum of squares decomposition is used
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1. INTRODUCTION

A great variety of dynamical systems can be represented by
continuous-time nonlinear models, that is, they can be written
by a set of differential equations. For a better understanding
of their behaviour and computational analysis, it is necessary
to discretize these continuous-time models, transforming them
into discrete-time systems (Ardourel and Jebeile, 2017; Ham-
mel et al., 1987; Sauer et al., 1997; Galias, 2013; Lozi, 2013;
Zhuang et al., 2018). There are several discretization methods,
with methods based on the expansion of the Taylor series being
one of the widely used, such as the Runge-Kutta family meth-
ods (Butcher and Goodwin, 2008; Quarteroni et al., 2010).

Depending on the continuous-time model to be discretized,
nonlinear systems can arise. Concerning nonlinear systems,
there are several tools to provide stability certificates and con-
trol design conditions (Khalil, 2002; Vidyasagar, 1993; Tak-
agi and Sugeno, 1985). When nonlinear systems that depend
polynomially on the states are studied, techniques based on the
sum of squares (SOS) method (Papachristodoulou and Prajna,
2002, 2005) can be employed. The sum of squares formula-
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tems (Topcu et al., 2010; Valmorbida and Anderson, 2017),
control design (Nasiri et al., 2018; Ferreira et al., 2020), filter
design Lacerda et al. (2015), and robust stability analysis Prajna
et al. (2005) for instance.

In Gui et al. (2019), a class of chaotic systems under a state-
feedback controller is described as a polynomial model, and
the optimal control problem for the class of chaotic systems
is transformed into a state-dependent linear matrix inequality,
a viable solution to this problem is the application the sum-
of-squares programming method. SOS is also used in Ramos
et al. (2018), wherein the chaotic Lorenz system with para-
metric uncertainties was used for the switched control design
to choose a polynomial state feedback gain that minimizes the
time derivative of a polynomial Lyapunov function.

In Ebenbauer and Allgöwer (2006), the use of semidefinite
programming and the sum of squares decomposition is used
to solve the obtained stability analysis and control design dis-
sipation inequalities in a numerically reliable and efficient way.
In Saat et al. (2012) a state feedback controller with an integra-
tor was proposed to stabilize discrete-time polynomial systems
with norm-bounded uncertainties. The state-feedback control
problem for state-polynomial discrete-time linear parameter
varying systems is addressed in Lacerda et al. (2022).
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This article proposes new conditions for the design of state-
feedback controllers for state-polynomial discrete-time sys-
tems. A continuous-time model is considered and then dis-
cretized via the second-order Runge-Kutta method. The orig-
inal model is converted into a discrete-time system that de-
pends on the step size employed in the discretization process.
The polynomial discrete-time system is used to design a state-
feedback controller that will be able to stabilize the closed-loop
system. The exponential stability is considered to derive the
design conditions and to measure the impact of the discretiza-
tion step size on the performance of the closed-loop system.
Two formulations are introduced. The first formulation makes
use of the Lyapunov matrix to recover the state-feedback gain
generating a polynomial state-feedback control law. On the
other hand, the second formulation proposed in this paper uses
a slack variable to design the state-feedback controller that may
be rational on the states. Numerical experiments are employed
to illustrate the influence of the discretization step size in the
exponential stability of the closed-loop system.

The paper is organized as follows. The preliminaries are pre-
sented in Section 2. The main results are developed in Section 3.
Section 4 illustrates the effectiveness of the proposed approach
through a numerical experiment, and Section 5 concludes the
paper.

Notation: The set R
n denotes the n-dimensional Euclidean

space, and the set Rm×n denotes the set of all m× n matrices
with real entries. The operator diag(A,B) indicates a block
diagonal matrix composed of matrices A and B. M > (<) 0
indicates a positive (negative) definite matrix. The symbol
(T ) indicates transpose and ⋆ represents a block induced by
symmetry in a symmetric matrix. Σ[x] is the set of sum of
squares polynomials in variable x.

2. PRELIMINARIES

2.1 Second-Order Runge-Kutta Method (RK2)

Runge-Kutta methods are a family of iterative methods used as
approximations for solutions of ordinary differential equations
(Butcher and Goodwin, 2008). It is particularly useful for prob-
lems where analytical solutions are challenging or impossible
to obtain. Moreover, it allows for the step-by-step approxima-
tion of the solution, breaking down the continuous problem into
discrete steps that can be solved by computers. Consider an
initial value problem described as

ẋ = f (x), (1)

where x ∈ R
n is the state vector, and f (x) ∈ R

n is the vector
field. The RK2 method uses an iterative process to estimate
the value of x at discrete time points based on the given initial
condition. The step-size, denoted as h (a small positive value),
determines the size of each time increment.

xk+1 = xk +
h

2
(K1 +K2) , (2)

where

K1 = f (xk),

K2 = f (xk +hK1).

To better illustrate the idea behind the RK2 method, a simple
example is given.

Example 1. Consider the following continuous-time system:�
ẋ = y,

ẏ = x2 + y.
=⇒

�
ẋ = f (x,y) = y,

ẏ = g(x,y) = x2 + y.
(3)

For K1 we have:

K1x = f (xk,yk) = yk,

K1y = g(xk,yk) = x2
k + yk.

Likewise, for K2 we have:

K2x = f (xk +hk1x ,yk +hk1y)

= f (xk +hyk,yk +h(x2
k + yk))

= yk +h(x2
k + yk),

K2y = g(xk +hk1x ,yk +hk1y)

= g(xk +hyk,yk +h(x2
k + yk))

= (xk +hyk)
2 + yk +h(x2

k + yk)

= x2
k +2hxkyk +h2y2

k + yk +hx2
k +hyk.

Therefore, using equation (2), the discretization of the continu-
ous time system using the RK2 method can be given by




xk+1 = xk +hyk +
1

2
h2(x2

k + yk),

yk+1 = yk +h(x2
k + yk)+

1

2
h2(x2

k + yk)+h2xkyk +
1

2
h3y2

k .

Remark 1. Note that the discretization process via RK2 of the
continuous-time polynomial system given in (3), also results
in a state polynomial system in discrete-time. Moreover, the
discretization step-size h appears in the equations of the system.

Remark 2. It is important to emphasize that the equation pre-
sented in (2) is general to represent the continuous-time system
and its respective discretization by the second-order Runge-
Kutta method. Example 1 shows equation (2) for a specific
case in which there was a need to adapt the general case to
this example of two variables. For this example, there is the
discretization for the variables x and y, with their respective Ks
that depend on system (3) as a whole.

In addition to the second-order Runge-Kutta, there are other
discretization methods, such as the third-order Runge-Kutta and
the fourth-order Runge-Kutta method (Quarteroni and Saleri,
2006; Quarteroni et al., 2010; Hussain et al., 2016; Kennedy
and Carpenter, 2019), which will be described next.

Considering the initial value problem (1), the third-order
Runge-Kutta (RK3) that does not depend explicitly on time can
be expressed by:

xk+1 = xk +
h

6
(K1 +4K2 +K3) , (4)

where

K1 = f (xk),

K2 = f (xk +
1

2
hK1),

K3 = f (xk +2hK2 −hK1).

For the fourth-order Runge-Kutta (RK4), the discretized system
reads

xk+1 = xk +
h

6
(K1 +2K2 +2K3 +K4) , (5)

where
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K1 = f (xk),

K2 = f (xk +
h

2
K1),

K3 = f (xk +
h

2
K2), (6)

K4 = f (xk +hK3).

Remark 3. For the system presented in Example 1, the dis-
cretization process with RK3 and RK4 would result in a greater
number of terms for the discrete-time system, when compared
with RK2.

2.2 System Model

Consider the following state-polynomial system obtained from
the discretization of the continuous-time model through the
RK2

xk+1 = A(xk)xk +B(xk)uk, (7)

where x ∈ R
n is the state vector, u ∈ R

nu is the control input
and k is an integer indicating the time instant. The matrices A ∈

R
n×n and B∈R

n×nu contain elements that depend polynomially
on the state variables.

The main objective of this paper is to design a control law
ensuring the exponential stability of the closed-loop system.
To achieve this end, the following polynomial state-feedback
control law is considered

uk = K(xk)xk, (8)

where K(xk) ∈ R
nu×n is a polynomial matrix. Taking into

account the state-feedback controller (8) in the system (7), the
closed-loop system is

xk+1 = Ã(xk)xk, (9)

with Ã(xk) = A(xk)+B(xk)K(xk).

In this paper, the conditions will be derived from the Lyapunov
theory and SOS certificates will be employed to guarantee the
nonnegativeness of the polynomial constraints. A multivariable
polynomial F(x1,x2, . . . ,xn) of degree 2d is SOS, if it can be
written according to

F(x1,x2, . . . ,xn) =
m

∑
i=1

f 2
i (x1,x2, . . . ,xn), (10)

where each polynomial fi(x1,x2, . . . ,xn) has degree lower or
equal to d. Equation (10) is semi-positive definite and can be
written as

F(x) = zT Qz, (11)

where z is a vector containing monomials of degree up to d of
(x1,x2, . . . ,xn).

3. MAIN RESULTS

A sufficient condition to design a state-feedback controller that
depends polynomially on the states is presented in the next
Theorem.

Theorem 1. If there exist matrices P ∈ R
n×n, polynomial ma-

trices Z(xk) ∈ R
nu×n, and a positive scalar γ such that

M− εI ∈ Σ[x],

holds with

M =

[
γ2P PA(xk)

T +Z(xk)
T B(xk)

T

⋆ P

]
, (12)

then, the discrete-time state-polynomial closed-loop system
(9) is exponentially stable and the polynomial state-feedback
controller is given by

K(xk) = Z(xk)P
−1. (13)

Proof. Consider the Lyapunov function V (xk) = xT
k P−1xk. To

guarantee the exponential stability one must ensure that ∆V <
(γ2 −1)V (xk), or simply

V (xk+1)−V (xk)< (γ2
−1)V (xk),

that reads

V (xk+1)− γ2V (xk)< 0,

or

xT
k+1P−1xk+1 − xT

k γ2P−1xk < 0.

Considering the dynamics of the closed-loop system (9) one
has,

xT
k Ã(xk)

T P−1Ã(xk)xk − xT
k γ2P−1xk < 0,

that is equivalent to

γ2P−1
− Ã(xk)

T P−1Ã(xk)> 0.

By applying the Schur complement yields
[

γ2P−1 Ã(xk)
T P−1

⋆ P−1

]
> 0.

Pre- and post-multiplying the last condition by diag(P,P) re-
sults in [

γ2P PÃ(xk)
T

⋆ P

]
> 0.

Considering the change of variables Z(xk) = K(xk)P one gets
[

γ2P PA(xk)
T +Z(xk)

T B(xk)
T

⋆ P

]
> 0.

As the last constraint contains polynomial matrices in terms of
the state variables, the SOS technique is employed to test the
conditions. In this sense, the last condition is changed by the
one presented in Theorem 1.

Remark 4. The main drawback with the conditions proposed
in Theorem 1 is the fact that the state-feedback controller is
recovered from the Lyapunov matrix that does not depend on
the state vector xk. However, the gain still is a polynomial
function of the state vector xk, once the matrix Z(xk) is also
employed to recover it.

The next result presents a condition that does not employ the
Lyapunov matrix to recover the controller and allows the design
of controllers that depend rationally on xk.

Theorem 2. If there exist matrices P∈R
n×n, polynomial matri-

ces Z(xk) ∈ R
nu×n, X(xk) ∈ R

n×n, and a positive scalar γ such
that

Ψ− εI ∈ Σ[x],

holds with

Ψ =

[
X(xk)+X(xk)

T −P X(xk)
T A(xk)

T +Z(xk)
T B(xk)

T

⋆ γ2P

]
,

(14)
then, the discrete-time state-polynomial system (9) is exponen-
tially stable, and the rational state-feedback controller is given
by

K(xk) = Z(xk)X(xk)
−1. (15)

Proof. Consider the Lyapunov function V (xk) = xT
k P−1xk. To

guarantee the exponential stability, one must ensure that ∆V <
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(γ2 − 1)V (xk). Considering the dynamics of the closed-loop
system (9) one has,

γ2P−1
− �A(xk)

T P−1�A(xk)> 0.

Which can be rewritten as

P−1
− �A(xk)

T P−1γ−2PP−1�A(xk)> 0.

Applying Schur complement yields
�

P−1 �A(xk)
T P−1

⋆ γ2P−1

�
> 0,

Pre- and post-multiplying the last inequality by diag(X(xk)
T ,P)

and diag(X(xk),P) results in
�

X(xk)
T P−1X(xk) X(xk)

T �A(xk)
T

⋆ γ2P

�
> 0,

By exploiting the inequality

X(xk)
T P−1X(xk)≥ X(xk)+X(xk)

T
−P,

and considering the change of variables Z(xk) = K(xk)X(xk)
one gets
�

X(xk)+X(xk)
T −P X(xk)

T A(xk)
T +B(xk)

T Z(xk)
T

⋆ γ2P

�
> 0.

Then the proof is complete, and the controller gain can be
recovered by (15). Following the same strategy employed in
Theorem 1, the SOS formulation is used to provide a nonnega-
tive certificate for the design condition.

Remark 5. Both Theorem 1 and Theorem 2 employ a con-
stant matrix P, this is to guarantee that the Lyapunov function
V (xk) = xT

k P−1xk is radially unbounded. If a polynomial matrix
P(xk) is employed, it restricts the conditions to a local context.

4. NUMERICAL EXPERIMENTS

To illustrate the potential of the proposed method some numeri-
cal experiments are considered. The routines were implemented
in Matlab R2014a using the SOSTOOLS (Papachristodoulou
et al., 2013) and the solver SeDuMi (Sturm, 1999).

Consider the Sprott F system (Sprott, 1994)




ẋ1 = x2 + x3,

ẋ2 =−x1 +
1
2
x2,

ẋ3 =−x2
1 − x3.

(16)

The discretization of the continuous-time system (16) using the
second-order Runge-Kutta method gives

x1k+1
= x1k

+hx2k
+hx3k

−
1

2
h2(x1k

+ x3k
− x2

1k
)−

1

4
h2x2k

,

x2k+1
= x2k

−hx1k
−

1

2
h2(x2k

+ x3k
)−

3

8
h2x2k

+
1

4
h2x1k

, (17)

x3k+1
= x3k

+hx2
1k
−hx3k

+
1

2
h3x2

2k
+h3x2k

x3k
+

1

2
h3x2

3k

−
1

2
h2x2

1k
+h2x1k

x2k
+h2x1k

x3k
+

1

2
h2x3k

.

A possible state-space representation for the discretized sys-
tem (17) is

xk+1 =

�
a11 a12 a13

a21 a22 a23

a31 a32 a33

�
xk (18)

where the elements ai j are given as follows

a11 = 1−
1

2
h2 +

1

2
h2x1k

,

a12 = h−
1

4
h2,

a13 = h−
1

2
h2,

a21 =−h+
1

4
h2,

a22 = 1−
1

2
h−

3

8
h2, (19)

a23 =−
1

2
h2,

a23 = hx1k
−

1

2
h2x1k

,

a23 =
1

2
h3x2k

+h2x1k
,

a23 = 1−h+h3x2k
+

1

2
h3x3k

+h2x1k
+

1

2
h2.

Figure 1 shows the trajectory of x1k
for the open-loop system,

considering different step sizes with initial condition x0 =

[0.1 0.1 0.1]
T

. It is possible to observe that after some time, the
trajectories present different behavior, this divergence is caused
by the accumulated error, because of the finite precision of the
computer. The difference in colors in the x1 curve highlights the
difference in the trajectory with the change in the step size.
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Fig. 1. Trajectory of x1k
for the open-loop system, different step

sizes h, and initial condition x0 = [0.1 0.1 0.1]
T

.

To test the conditions, the matrix B= [0 1 0]
T

is considered. By

using Theorem 1 with ε = 10−5 a polynomial state-feedback
controller that stabilizes the system can be obtained. Table 1
shows the results obtained for γ2, considering different degrees
for the matrix Z(xk). It was possible to verify that as the degree

of Z(xk) increases, we can find smaller values for γ2 when
considering h = 0.1. However, the degree of the polynomial
matrix Z(xk) did not influence the results for h = 0.01 and
h = 0.001.

Figure 2 depicts the trajectories for the second state of the
closed-loop system when considering γ2 = 0.85 and h = 0.1
for matrix Z(xk) up the degree four. In this case, 100 randomly
generated initial conditions in the interval [−15,15] were con-
sidered. It can be seen that all the trajectories converge to the
origin.

When considering an initial condition [15 −8 12]
T

, the trajec-
tory of the third state of the closed-loop system is depicted in
Figure 3, for Z(xk) up to degree four and different values of
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Table 1. γ2 variation for different degrees of the polynomial matrix Z(xk) and different step sizes h.

Step size (h) Degree of polynomial matrix Z(xk)
[0 : 4] [0 : 5] [0 : 6]

0.1 0.85 ≤ γ2 ≤ 1 0.84 ≤ γ2 ≤ 1 0.83 ≤ γ2 ≤ 1

0.01 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1

0.001 γ2 = 1 γ2 = 1 γ2 = 1
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−200

−150

−100

−50

0

50

100

150

k

x
2
k

Fig. 2. State trajectories for 100 randomly generated initial
conditions with the state-feedback control law given in (8),
and γ2 = 0.85 and h = 0.1 for matrix Z(xk) up the degree
four.

γ2. It can be observed that the smaller γ2, the faster the system
converges to the origin.
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Fig. 3. State trajectories for γ2 = 0.85 and γ2 = 1.0 with
the state-feedback control law given in (8) and initial

condition x0 = [15 −8 12]
T

.

Theorem 2 is also able to stabilize the system. Table 2 shows
the results obtained for γ2, considering different degrees for
the matrices Z(xk) and X(xk). We did not report the step size
h = 0.001 in this Table because the solutions were feasible only
for γ2 = 1 in all the scenarios. It is possible to observe that
smaller degrees on the matrix Z(xk) in Theorem 2 can generate
the same results of Theorem 1 by increasing the degree of the
matrix X(xk). Although, for the matrix Z(xk) with polynomial
degree up to 6, the increase in the degree of the matrix X(xk)
made no difference in the values obtained for γ2.

Figure 4 displays the trajectories of the second state for 100
randomly generated initial conditions in the interval [−15,15].
The controller designed with Theorem 2 considering γ2 = 0.85
and h = 0.1 for matrix Z(xk) up to degree four and matrix X(xk)
up to degree two was used. As expected, all the trajectories
always converge to the origin.

Considering an initial condition x0 = [9 13 11]
T

, the trajectory
of the third state of the closed-loop system is shown in Figure 5,
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Fig. 4. State trajectories for 100 randomly generated initial
conditions with the state-feedback control law given in
(15), γ2 = 0.85 and h = 0.1 for matrix Z(xk) up to degree
four and matrix X(xk) up to degree two.

for Z(xk) up to degree five, X(xk) up to degree two and h = 0.1.
As it can be seen, for γ = 0.84 the system response is faster than
the two other cases considered.
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Fig. 5. State trajectories for the third-state considering γ2 =
0.84, γ2 = 0.9 and γ2 = 1.0 with the state-feedback control

law given in (15) and initial condition x0 = [9 13 11]
T

.
Considering matrix Z(xk) up to degree five and matrix
X(xk) up to degree two.

5. CONCLUSION

This work presented new conditions for designing state feed-
back controllers for discrete-time state-polynomial systems.
The discrete-time system is obtained by discretizing the orig-
inal continuous-time system using the second-order Runge-
Kutta method. Two formulations are presented, the first based
on the use of the Lyapunov matrix to recover the polynomial
control gain, and the second making use of a slack variable to
design the rational controllers. Exponential stability was used
to obtain design conditions in both cases. Theorem 2 presented
the best results due to the greater degree of complexity of
the controller used when compared to Theorem 1. As future
research, the authors are investigating the impact of the step
size h in different performance metrics such as the ℓ2 gain.
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Table 2. γ2 variation for different degrees of the polynomial matrices X(xk) and Z(xk), and different step
sizes h.

Z(xk) = [0 : 4]
Step size (h) Degree of polynomial matrix X(xk)

[0 : 2] [0 : 3] [0 : 4]
0.1 0.85 ≤ γ2 ≤ 1 0.84 ≤ γ2 ≤ 1 0.83 ≤ γ2 ≤ 1

0.01 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1

Z(xk) = [0 : 5]
Step size (h) Degree of polynomial matrix X(xk)

[0 : 2] [0 : 3] [0 : 4]
0.1 0.84 ≤ γ2 ≤ 1 0.83 ≤ γ2 ≤ 1 0.83 ≤ γ2 ≤ 1

0.01 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1

Z(xk) = [0 : 6]
Step size (h) Degree of polynomial matrix X(xk)

[0 : 2] [0 : 3] [0 : 4]
0.1 0.83 ≤ γ2 ≤ 1 0.83 ≤ γ2 ≤ 1 0.83 ≤ γ2 ≤ 1

0.01 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1 0.99 ≤ γ2 ≤ 1
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