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ARTICLE INFO ABSTRACT
Keywords: This paper presents a novel microwave sensor using optical activation for measuring in real-time the water
Microstrip sensor contamination in crude oil or its derivatives. The sensor is constructed from an end-coupled microstrip resonator

Electromagnetic (EM) spectrum
Fractal curves
light dependent resistors (LDR)

that is interconnected to two pairs of identical fractal structures based on Moore curves. Electromagnetic (EM)
interaction between the fractal curves is mitigated using a T-shaped microstrip-stub to enhance the performance
of the sensor. The gap in one pair of fractal curves is loaded with light dependent resistors (LDR) and the other
pair with microwave chip capacitors. The chip capacitors were used to increase the EM coupling between the
fractal gaps to realize a high Q-factor resonator that determines the sensitivity of the sensor. Empirical results
presented here show that the insertion-loss of the sensor is affected by the change in LDR impedance when
illuminated by light. This property is used to determine the amount of water contaminated oil. The sensitivity of
the sensor was optimized using commercial 3D EM solver. The measurements were made by placing a 30 mm
diameter petri dish holding the sample on top of the sensor. The petri dish was filled up to a height of 10 mm
with the sample of water contaminated crude oil, and the measurements were done in the range between 0.76
GHz and 1.2 GHz. The Q-factor of the oil sample with no water contamination was 70 and the Q-factor declined
to 20 for 100% contamination. The error in the measurements was less than 0.024%. The sensor has dimensions
of 0.127), x 0.127X, x 0.004 ), and represents a new modality. Compared to existing techniques, the proposed
sensor is simple to use, readily portable and is more sensitive.

1. Introduction derivatives is important since purchase, sale and transfer of this com-
modity are based on net dry oil. In maintaining the operation of re-
EVALUATING the quantity of dissolved water in crude oil or its fineries, low water content is critical [1,2]. Determining the water
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Fig. 1. Simplified block diagram of the proposed LDR based microwave sensor.

content in the oil is also crucial for the quality control of the products
such as lubricating oils. Water in lubricating oil results in premature
aging of the oil which may harm machinery by accelerating the oxi-
dization. Therefore, a sensor is required that can continuously monitor
water dissolved in oil.

Currently there are numerous methods to determine the amount of
water in crude oil [3-8]. In the Dean & Stark method, a solvent is added
to the oil sample and then heated under reflux conditions. This process
co-distills water and solvent. A measuring tank is used to collect the
resulting condensate where the water droplets sink to the bottom of the
tank and are measured against the scales. A heated centrifuge can also be
used to separate the water from the oil. Other methods for determining
the amount of water in crude oil include microextraction and capillary
gas chromatography, Karl Fischer titration, solvent extraction using
Mid-IR laser spectroscopy, accelerated solvent extraction using gas
chromatograph with flame ionization detector, liquid-liquid extraction,
and high-performance liquid chromatography with coupled ultraviolet
and fluorescence detection. Although these methods are highly accurate
however they are time-consuming and require expensive equipment that
is not portable. Moreover, these conventional methods cannot monitor
contamination in real-time.

Microstrip resonators have recently become popular for sensor
application in chemical and biomedical fields [9-11]. Compared to the
conventional sensors described above, microstrip sensors lack the level
of sensitivity needed to accurately detect small amounts of contamina-
tion. The metric used to quantify the sensitivity of such sensors is based
on the variations of the resonant frequency (f,), transmission coefficient
(S21), and the quality (Q) factor. Various approaches have been inves-
tigated to increase the sensitivity of such sensors, including fabricating
the sensors on low loss dielectric substrates [12], employing different
resonator structures [13,14], and incorporating metamaterial technol-
ogy [15-17].

In this paper, a novel microwave sensor is proposed based on optical
illumination for real-time measurement of water contamination in a
sample of crude oil. The sensor is a microstrip resonator that is based on
Moore’s fractal curve [11,12]. The sensor is loaded with light dependent
resistors (LDR). By illuminating the petri dish with the sample of the
crude oil, which is placed on top of the sensor, the impedance of the LDR
will be determined by the amount of light penetrating through the
sample. This will affect the Q-factor of the sensor [18]. The measured Q-
factor is used to accurately determine the amount of contamination.
Compared to other microwave sensors reported recently in literature the
proposed sensor has the highest Q-factor of 70 with no contamination
[12,15,19-22]. The error in the measurements made between 0.76 GHz
and 1.2 GHz was less than 0.024%. The sensor has dimensions of
0.127X, x 0.127), x 0.004X,. The proposed method is simple to use,
inexpensive and fast compared to existing techniques such as micro-
extraction, capillary gas chromatography, solvent extraction using Mid-
IR laser spectroscopy.

2. Proposed microstrip sensor

The principle of the proposed LDR loaded sensor is illustrated in
Fig. 1. The sample of the contaminated oil is placed over the sensor
which will restrict the illumination of the LDR. The impedance of the
LDR is affected by the intensity of the light falling on it. This will perturb
the characteristics of the sensor in terms of its insertion-loss and Q-
factor. The RF output from the sensor is converted to a DC voltage using
an RF power detector. The amount of light penetrating the sample over
the sensor will affect the magnitude of the DC voltage. By carefully
calibrating the output voltage of the sensor, the exact amount of
contamination can be determined. With this technique the contamina-
tion can be measured in real-time without resorting to expensive
equipment.

The geometry of the proposed sensor, which is shown in Fig. 2, is
based on a single pole end-coupled microstrip resonator. The coupling
gaps are bridged with high impedance transmission lines which are
configured into a 4th order Moore fractal curve. A fractal is a continuous
space-filling curve and in the present case, it is a variant of the Hilbert
curve. The dimensions of the fractal were calculated at the resonance
frequency of the sensor. The number of segments required in the fractal
of order n was determined using [23].

Ny = nN, (€8]

where Nj refers to the number of fractal segments of Moore curve for a
single copy. The total length of the fractal, L" was calculated using:

— 8” n
T 2437

L

@

where L is the perimeter of rectangle that occupies the same area as the
fractal curve.

The coupling gaps of the resonator are loaded with a pair of fractal
curves in a parallel formation. The fractal gap of the upper set of fractal
curves near the transmission line is loaded with light dependent resistor,
and the fractal gap of the lower set of fractal curves is loaded with mi-
crowave chip capacitors. The chip capacitance was inserted to increase
the EM coupling between the fractal gaps. Electromagnetic interaction
between the adjacent fractal curves due to surface waves is suppressed
with T-shaped stub connected to the center resonator. This has an effect
of enhancing the sensitivity of the sensor. The full-wave electromagnetic
solver based on finite integration technique (FIT) by CST Microwave
Studio was used to optimize the sensor at 0.76 GHz. The sensor was
fabricated on standard FR4 substrate with a ground plane. Effects of
transmission line width and substrate thickness on S-parameters were
investigated in [11]. Each of the fractal curves in Fig. 2 occupies a
surface area of 16.5 x 14.5 mm?>.

2.1. Effect of LDR loading on the sensor

The impedance of the LDR is dependent on the intensity of the
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Fig. 2. Geometry of the proposed sensor: (a) isometric view, and (b) front view. Dimensions are L = W = 50 mm, T, = 18 mm, T,y = 36 mm, A = 1 mm, B = 4.5 mm,
C=55mm,D=E=25mm, F=35mm, G=1.5mm, H=8.5mm, and T.L = 2.79 mm.
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Fig. 3. (a) Sy variation of the sensor loaded with LDR when LDR is illuminated (R = 1 Q) and not illuminated (R = 1 MQ), and (b) S»; variation of various LDR

resistances analogous to exposure to different amounts of light.
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Fig. 4. Sy variation of the sensor for different chip capacitor loadings when LDR is illuminated with a light source.

photons (light) impinging on it. When LDR is fully illuminated with light
it has an impedance value of 1 Q, which can be considered as a virtual
short circuit. However, when it is fully deprived of light its impedance
increases to 1 MQ. In the sensor, LDR is used to detect the variation
through controlling the resistive part of the fractal section with respect
to the sample under test. Fig. 3(a) shows how the insertion-loss of the
sensor (Sp1) varies under two extreme cases, i.e., when LDR is fully
illuminated with light and vice versa. It is evident that when the LDR is
fully exposed to light the notch frequency shifts from 0.76 GHz to 1.2
GHz. This demonstrates that LDR can be used at microwave frequencies.

In practical application, LDR in the sensor will not be fully illumi-
nated with the light as it will be covered with the crude oil sample. It is
observed from the simulated results that the impedance of LDR varies
between 50 Q and 600 Q. The effect on the sensor’s insertion-loss spectra
over this impedance range is shown in Fig. 3(b). It can be discerned from
the Sy variation that as the resistance of LDR decreases gradually from
600 Q to 50 Q, the insertion-loss at the notch frequency of 0.76 GHz
decreases from approximately —27 dB to —18 dB with negligible change
in the notch frequency. However, the out of band insertion-loss de-
teriorates significantly for resistance values less than 200 Q. These re-
sults show that when the proposed sensor with LDR is properly
calibrated, it can be used to measure the amount of water content
precisely.

2.2. Effect of capacitive loading on the sensor

The effect of the chip capacitor loading on the sensor’s insertion-loss
response is shown in Fig. 4 when the LDR is totally deprived of light. By
comparing the insertion-loss of the sensor under the same lighting
conditions in Fig. 3, it is evident that by loading the sensor with
capacitance, the Q-factor of the resonance at 0.76 GHz increases. The
loss too increases from —28 dB to —37 dB. It is also evident that
capacitive loading of 0.4 pF to 1.2 pF has negligible effect on the sensor’s
resonance frequency. The higher capacitance increases the loss but re-
duces its Q-factor marginally. The out of band insertion-loss, however, is
greatly affected by the lower capacitance value. As the sensor operation
will be confined over the region of its resonance frequency, the out of
band response is not of concern and can be effectively ignored.

3. Results, discussions, and validation
Fig. 5 shows the surface current density distribution over the sensor

at 0.76 GHz under two extreme conditions of being fully illuminated
with light (1 Q) and when it is not exposed to any light (1 MQ). This is

attempted as an experimental validation to ensure the effects of the
photoresistors on the current motion along the Moore traces as well as to
determine their effects on the frequency resonance. The red shading in
the color spectrum chart indicates the regions over the sensor where
there is the greatest concentration of surface currents. When the sensor
is fully illuminated with light, the lateral region at the center of the
sensor is where surface currents appear to concentrate.

The fabricated sensor is shown in Fig. 6(a). A petri dish was placed
over the sensor. The insertion-loss (S21) response variation of the sensor
was measured as the function of frequency under two extreme lighting
conditions. In the first scenario, the petri dish was filled with water and
the sensor was fully illuminated with light of 800 Im from a regular
incandescent 60 W bulb. The measured results in Fig. 6(b) show the
sensor resonated at 1.2 GHz. However, when the petri dish was filled
with black crude oil, the sensor was totally deprived of light. Under this
condition the sensor’s resonant frequency dropped to 0.76 GHz. The
measured results show remarkable agreement with the simulation re-
sults given in Fig. 3(a) for LDR resistance values for fully illuminated (R
=1 Q) and completely deprived of light (R = 1 MQ).

Fig. 7(a) shows the experimental setup for the proposed sensor. The
output of the sensor was connected to a monolithic logarithmic RF
power detector (LT®5538) that converts the RF signal from 40 MHz to
3800 MHz to a DC voltage. This device is capable of measuring RF sig-
nals over a wide dynamic range, from -75 dBm to 10 dBm. The output
voltage depends on the degree of light illuminating the sensor. For
calibration purpose the petri dish over the sensor was first filled with
water and the output dc voltage was measured. As the volume of the
sample will affect the measurements in the study the petri dish of
diameter 30 mm was then filled with the sample up to a height of 10
mm. The petri dish holding the sample was placed on top of the sensor
and its voltage was measured with crude oil with various percentages of
water contamination. The measurements were done at a room temper-
ature of 23 °C.

Fig. 7(b) shows the variation of the insertion-loss (Sy1) is due to the
change in the dielectric coefficient of the crude oil contaminated with
water. Sy was measured at the sensor’s resonant frequency in the range
between 0.76 GHz and 1.2 GHz. With 0% contamination, the magnitude
of the insertion-loss measured is —35 dB, and with 100% contamination
the loss is —5.8 dB. Curve fitting equation describing the variation is
annotated on the graph. The Q-factor as function of the water content is
shown in Fig. 7(c). The Q-factor declines approximately inversely with
increasing water content from a value of 72 to 20. The output voltage
from the sensor for different levels of water contamination is shown in
Fig. 7(d). For no contamination the measured output voltage is 18 pV



R.K. Abdulsattar et al.

Surface current when R = 1Q

(@
Surface current when R = 1MQ

(b)

Fig. 5. Simulated surface current density distribution at 0.76 GHz over the
sensor for LDR impedance of (a) 1 Q (fully illuminated with light), and (b) 1 MQ
(fully blocked from light).

and when fully contaminated it drops to 4.85 pV. The measurement
error was less than 0.024%. The calibrated graph in Fig. 7(d) was used to
measure the exact amount of water contaminating crude oil.

Table 1 shows the performance comparison between the proposed
sensor and other recently published microwave sensors. Although the
sensors listed in the table are developed for analyzing different organic
samples the novelty of the proposed sensor is the use of a resonator
based on fractal curves that uses photoresistors to determine water
contamination in oil derivatives. Compared to other microwave sensors
cited in the table the proposed sensor offers the highest Q-factor of 70
with no contamination. The proposed sensor is simple to design,
compact and is a cost-effective solution.

AEUE - International Journal of Electronics and Communications 170 (2023) 154798
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Fig. 6. Experimental validation (a) Front view of the fabricated sensor, and (b)
Sp; variation of the sensor as the function frequency in light ‘on’ and ‘off’
conditions. Under light ‘on’ condition the sensor was illuminated with 800 lm
from a 60 W incandescent bulb.

4. Conclusion

The experimental results show the effectiveness of the proposed
microwave-optical sensor for accurately measuring in real-time the
amount of dissolved water in crude oil. The sensor is based on a high Q-
factor microstrip resonator based on 4th order of Moore’s fractal curve.
Loaded on the sensor is a pair of light dependent resistors that affect the
sensor’s insertion-loss performance when partially or fully deprived of
light. The sensor’s RF output signal is converted to DC voltage. The
sensor was calibrated with crude oil sample which was contaminated
with different percentages of water. The proposed highly sensitive
calibrated sensor can be used to measure in real-time the degree of water
contamination. Compared to existing methods used in industry the
sensor is relatively small, portable, highly accurate and much faster.
Based on similar calibration principles the sensor can be adapted to
measure contamination in other fluids.
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Fig. 7. (a) Experimental setup, (b) magnitude of S»; variation in dB as the function of water concentration ratio, (c) Q-factor as a function of water content, and (d)
sensor’s DC output voltage (Vo) as a function of percentage of water content. The variation in S»; and V,,, is represented by the curve fit equations.

Table 1
Comparison of the proposed sensor with other published microwave sensors.
Ref. fo (GHz) Type of sensor Area (A,)? Sample under test Q-factor range Meas. error (%)
[12] 0.8 Moore fractal structure 0.127 x 0.127 Water content in crude oil 60-7.1 0.17
[15] 2.4 Circular CSRR 0.28 x 0.2 Water-Ethanol Mixtures 44-37 NP
[19] 4.94 Double split ring resonator 0.82 x 0.49 Glucose in Aqueous Sol. and Bulk Liquid 19-NP NP
[20] 1.19 Split ring resonator 0.11 x 0.1 Methanol/ Acetone in Water 62-NP 0.03
[21] 3-6 Oth order resonator 0.125 x 0.125 Water in methanol, ethanol, acetone 21-NP 9.3
[22] 2 Dual split ring resonator 0.267 x 0.2 Ferrous wear particles 45-NP NP
This work 0.76-1.2 Optical-microwave moore fractal structure 0.127 x 0.127 Water content in crude oil 72-20 0.024

*NP - Not provided.
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