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Abstract  Forecasting stock market out-of-sample is a major concern to researchers in finance and emerging 
markets. This research focuses mainly on the application of regularised Regression Training (RT) techniques to 
forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of 
sophisticated regularised RT models involving model complexity were employed. The regularised RT models which 
include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), 
Relaxed LASSO, Elastic Net and Least Angle Regression were trained and used to forecast the equity premium  
out-of-sample. In this study, the empirical investigation of the Regularised RT models demonstrate significant 
evidence of equity premium predictability both statistically and economically relative to the benchmark historical 
average, delivering significant utility gains. Overall, the Ridge gives the best statistical performance evaluation 
results while the LASSO appeared to be most economical meaningful. They seek to provide meaningful economic 
information on mean-variance portfolio investment for investors who are timing the market to earn future gains at 
minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally 
reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at 
minimal risk. 
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1. Introduction 

The out-of-sample predictability of stock market is a 
research problem in empirical finance. The quest on stock 
market delivery to mean-variance investors above the 
treasury bill rate led to an “estimate of the equity 
premium”. The historical average model is an old-
fashioned efficient market approach for forecasting the 
equity premium. Existing literature claimed that financial 
variables used as potential predictors can only forecast the 
equity premium in-sample but are unable to deliver 
significantly superior out-of-sample forecasts relative to 
the benchmark historical average. This led to the research 
question: can anything consistently beat the historical 
average out-of-sample? [4]. The historical average is used 
as a benchmark for comparing the performance of any 
model whose forecasts are estimated out-of-sample via 
expanding or rolling window [10,11]. Thus, any model 
whose statistical measures outperformed those from the 
benchmark historical average is said to beat the historical 
average. 

This research proposes an application of regularised 
Regression Training (RT) techniques to forecast monthly 

equity premium out-of-sample recursively with expanding 
window. 

In finance, the statistical predictability does not 
necessarily guarantee investor's profit from the trading 
strategy. Thus, the statistical predictability and economic 
significance are comparatively considered in the 
performance evaluation metrics in this paper. 

The equity premium or excess stock return is the 
difference between the expected return on the market 
portfolio (SP500) and the risk-free treasury bill rate. It is 
the return that investors can expect from holding the 
market portfolio in excess of the return on the risk-free 
rate. 

Mathematically, it is defined as: 

 1
1

log( )t
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P −
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where tP  is the price of the stock index at period t ; 1trf −  
is the risk-free interest rate at 1t − . 

The Regression Training comes from the “caret” 
package, developed by [16] for Classification And 
REgression. The caret package (caret for R and RStudio, 
PyCaret for python) aimed to automate the main steps for 
evaluating and comparing machine learning algorithms. 
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The RT techniques presumed that all predictor  
variables are useful before preprocessing when training 
the model and the trained model decides variable 
importance associated with the final model. Thus, the RT 
model is resampled and fine-tuned iteratively, and the best 
tuning parameters are used to run the out-of-sample 
forecasts. 

The remaining structure of the paper is laid out as 
follows: Section 2 described the research methodology; 
Section 3 present the variables, the empirical results and 
discussion; Section 4 concludes the paper. 

2. Methodology 

2.1. The Historical Average 

Given a univariate time series { } 1
T

t ty = , with ty  denoting 
the monthly equity premium. The historical average (HA) 
model is defined as follows: 

 𝑦𝑦𝑡𝑡+1 = 𝛽𝛽 + ∊𝑡𝑡+1 (2) 
where β  is a parameter representing the intercept; ∊𝑡𝑡  is a 
zero mean disturbance term; 1, 2,...,t T=  [4,17]. The least 
squares estimator (LSE) of the historical average is as 
follows: 
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which implies that the forecast for 1ˆTy +  is given by: 
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where ˆ HA
LSEβ  is the parametric estimator of β . 

2.2. The Least Squares Regression Training 

Given a training dataset ,1 ,2 , 1{ , , ,..., }T
t t t t k ty X X X =  of T 

statistical units, then a kitchen sink predictive linear model 
takes the form: 

 𝑦𝑦𝑡𝑡+1 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑡𝑡 ,1 + 𝛽𝛽2𝑋𝑋𝑡𝑡 ,2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑡𝑡 ,𝑘𝑘 + ∊𝑡𝑡+1 (3) 

where 1ty +  is the equity premium at 1t + ; 

,1 ,2 ,, ,...,t t t kX X X  are the predictor variables available at 
the end of t  used to predict 1ty + ; 0β  is a constant  
term representing the intercept; 1 2, ,..., kβ β β  are the 
model coefficients; ∊𝑡𝑡+1 is a zero mean disturbance term 
[11,22]. 

The above model can be represented in matrix form, as 
follows: 

 𝒚𝒚 = 𝑿𝑿𝛽𝛽+∊ (4) 
where y  is a 1T ×  vector of observed values; X  is 

( 1)T k× +  matrix of predictor variables; β  is ( 1) 1k + ×  
dimensional parameter vector; ∊  is 1T ×  zero mean 
vector of disturbances. 

If the parameters 0 1( , ,... ), kβ β β β=  are estimated by 
OLS, then the linear model (LM) forecasts can be 
obtained from the resulting kitchen sink predictive model: 

 1
ˆ ˆˆ ( )OLS OLS

T Ty β β′+ = X  (5) 

where 1ˆ ( )OLSβ ′ − ′= X X X y  is the OLS estimate of β . 

2.3. The Regularised or Penalised Regression 
Training 

2.3.1. The Ridge 
Using the training set  

 { },1 1 ,2 2 ,( , ), ( , ),..., ( , ) ,t t T k TX y X y X y  

and by imposition of ridge constraints, the model 
parameter estimates will be obtained by minimizing the 
objective function 
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which is a convex optimization problem, hence the 
solution has a closed form [12,15]. 

The ridge model parameter estimates will be: 
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which is always invertible, and hence non-singular [1]; 
where X  is the T k×  matrix of covariates; 
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=∑  is the shrinkage penalty; 
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=∑  is the 2 − norm of the vector β ; 1 0λ >  

is the ridge tuning parameter; 0β  is the intercept; 

1 2, ,..., kβ β β  are the ridge coefficients; kI  is a k k×  
identity matrix; k  is the number of parameters to be 
estimated; T  is the sample size; 1, 2,...,j k= . 

Thus, the ridge forecasts are obtained from the resulting 
forecasting model: 
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β  is ( 1) 1k + ×  vector of unknown parameters, including 
the intercept; T  is the sample size. 
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The ridge forecasts converges to the sample mean for 
large values of tuning parameter, 1λ : 

 
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2.3.2. The Forward - Backward Ridge 
The forward-backward (FOBA) ridge is an extension of 

the ridge model. It implements the forward and backward 
sparse learning algorithms for the ridge regression model. 
In this case, 𝛠𝛠 ∊ (𝟎𝟎,𝟏𝟏) controls how likely the steps are to 
be taken, determining either addition or deletion of a 
variable in the ridge model. The FOBA method takes a 
backward step when the ridge penalised risk increase is 
less than 𝛠𝛠 times the ridge penalised risk reduction in the 
corresponding forward step, and vice versa. 

2.3.3. The Least Absolute Shrinkage and Selection 
Operator 

The LASSO model parameter estimates are obtained by 
minimizing the objective function: 
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where 2 0λ >  is the LASSO tuning parameter; 0β  is the 
intercept; 1 2, ,..., kβ β β  are the LASSO coefficients; 

1
1
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=

=∑  is the 1 − norm of the vector β  [23,25]. 

The LASSO model parameter estimates will be: 
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=∑  is the shrinkage penalty; and 

ˆ ˆLASSO OLSβ β→  as 2 .λ →∞  
Thus, the LASSO forecasts are obtained from the 

resulting LASSO forecasting model: 
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where X  is the T k×  matrix of covariates; β  is 
( 1) 1k + ×  vector of unknown parameters, including the 
intercept; T  is the sample size; 2λ  controls the amount of 
shrinkage [9,19]. 

2.3.4. The Relaxed Least Absolute Shrinkage and 
Selection Operator 

The relaxed least absolute shrinkage and selection 
operator (RELAXO) is a generalisation of the LASSO for 
linear regression. 

Let λ  and α  be two separate parameters for 
controlling model selection and shrinkage estimation. The 
RELAXO estimator can be defined for [0, )λ ∈ ∞  and 

(0, ]α ∈ ∞  as follows: 
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where λ  is the set of predictor variables selected by 
LASSO estimator; λ1  is the indicator function on the set 

of predictor variables; 1αλ β  is the shrinkage penalty for 
the RELAXO [20]. It can be expressed as follows: 
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Let ( )β  be the negative log-likelihood under the 
parameter β , then the generalized RELAXO estimator 
takes the form [20]: 
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
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Thus, the RELAXO forecasts are obtained from the 
resulting RELAXO forecasting model: 
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where β  is ( 1) 1k + ×  vector of unknown parameters, 
including the intercept; λ  is the set of predictor 
variables selected by LASSO estimator; λ1  is the 
indicator function on the set of predictor variables. 

2.3.5. The Elastic Net 
The elastic net, as proposed by [28] combines both the 

1  and 2  penalty vector norms, and tends to eliminate 
extreme solutions. Thus the elastic net model parameter 
estimates are obtained by minimizing the objective 
function that includes the ridge and LASSO shrinkage 
penalties subject to both constraints, as follows: 
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where 1λ  is the ridge tuning parameter; 2λ  is the LASSO 
tuning parameter [27]. 

It is worth noting that the Elastic Net is Ridge if 1 0λ = ; 
it is LASSO if 2 1λ =  and it is strictly convex if 

2

1 2
0

λ
λ λ

>
+

 [3]. 

Therefore, the elastic net forecasts are obtained from 
the elastic net forecasting model: 

 
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β  is ( 1) 1k + ×  vector of unknown parameters including 
the intercept; and X  is the T k×  matrix of covariates. 

2.3.6. The Least Angle Regression 
The least angle regression (LARS), introduced by  

[8] is a machine learning model selection algorithm for 
fitting linear regression models to high dimensional data. 
In the LARS algorithm, the parameter estimates are 
increasing in an equiangular direction to each of the 
corresponding correlations associated with the model 
residuals. 

The LARS algorithm adapted from [2] and [8] is 
summarized as follows: 

 
The LARS Algorithm 
1. Initialise all coefficients 0β = ; 

2. Search for the predictor ,j tX  most correlated with the response 

variable ty ; 

3. Increase the coefficient jβ  in the direction of its correlation sign; 

4. Obtain residuals ∊𝑡𝑡= 𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡 . Stop if another predictor ,k tX  has 

as much correlation with ∊𝑡𝑡  as ,j tX ; 

5. Increase ( , )j kβ β  in their joint LS direction until another predictor 

,j mX  has as much correlation with ∊𝑡𝑡 ; 

6. Increase ( , , )j k mβ β β  in their LS direction until another predictor 

,l tX  has as much correlation with ∊𝑡𝑡  
7. Continue until all predictors are in the model; 
8. End 

 
The LARS2 is a special improved case of the LARS 

that uses step as the tuning parameter instead of fraction. 

2.4. Statistical and Economic Performance 
Evaluation 

2.4.1. Mean Squared Forecast Error 
The mean squared forecast error (MSFE) is computed 

as follows: 
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where   is the out-of-sample forecasting period; ty  is 
the actual value at specific time t ; ˆty  is the forecast value 
at specific time t . 

2.4.2. Out-of-Sample Forecast Evaluation:  
The R2

OOS Statistic 
The out-of-sample statistical goodness of fit used to 

measure the performance of individual equity premium 
forecasting model, suggested by [5] for evaluating the 
overall performance of any competing model forecasts in 
terms of proportional error minimization, relative to the 
benchmark historical average forecast is defined as 
follows: 
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where 2 0OOSR >  implies that the MSE of the forecasting 
model is less than the MSE of the benchmark forecasts 
based on historical average; 0ˆ ty +  represents an equity 
premium forecast based on a specific competing model. 

2.4.3. Diebold-Mariano Test 

The assumptions of Diebold-Mariano ( )DM  test rely 
on the forecast error loss differential function [6,7]. Let 
∊1,𝑡𝑡  and ∊2,𝑡𝑡  denote the forecast errors associated with the 
loss functions 𝐿𝐿(∊1,𝑡𝑡)  and 𝐿𝐿(∊2,𝑡𝑡)  for forecasts 1 and 2 
respectively. The time-t loss differential between forecasts 
1 and 2 is defined as follows: 

 𝑑𝑑1,2(𝑡𝑡) = 𝐿𝐿�∊1,𝑡𝑡� − 𝐿𝐿(∊2,𝑡𝑡)  
The DM hypothesis of equal forecast accuracy, also 

known as equal expected loss, corresponds to the zero 
mean assumption of 1,2( )td , i.e., 1,2( )( ) 0tE d = ; where 

( )E ⋅  denotes the mean value. Thus, the null hypothesis of 
equal forecast accuracy against the alternative hypothesis 
of unequal forecast accuracy between forecasts 1 and 2, 
based on monthly forecast horizon 1h = , can be tested 
using the DM test statistic as follows [6]: 

 1,2
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
 is the sample mean loss 

differential and 
1,2

ˆdσ  is a consistent estimate of the 

standard deviation of 1,2d . Thus, the DM test statistic has 
the asymptotic standard normal distribution under the null 
hypothesis of equal forecast accuracy. In this study, the 
forecast errors of each RT model are compared with the 
forecast errors from the benchmark historical average. 
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2.4.4. Sharpe Ratio 
[24] employed the Sharp Ratio (SR) as a measure of 

excess return per unit of risk in an investment asset or 
trading strategy. In this study, the SR standardizes the 
realized returns with the risk of the portfolios, and it is 
computed as follows: 

 
( ) ( )

( )
p f

p
p

E R E R
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−
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where ( )pE R  is the average realized return of the 

portfolio over the out-of-sample period; ( )fE R  is the 

average risk-free treasury bill rate; ( )pVar R  is the 
variance of the portfolio over the out-of-sample period. 

2.4.5. Cumulative Return 
The cumulative return (CR) of the portfolio, is computed 

as follows: 
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t
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where tR  is the return on month t;   is the number of 
months in the out-of-sample periods. 

2.4.6. Utility Gain 
A mean-variance investor who forecasts the monthly 

equity premium using the HA will decide at the end of 
time t  to allocate risky weights as share of her portfolio 
to equities in time 1t + , in the form: 
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where the portfolio risky weights 0,tω  are constrained to 
lie between 0% and 150%, (i.e., 0, 0tω =  if 0, 0tω <  and 

0, 1.5tω =  if 0, 1.5tω > ; γ  is the risk aversion parameter; 

1ty +  is the equity premium forecasts based on HA; 2
, 1ˆR tσ +  

is the variance of stock returns [5,11,12]. 
The investor realizes an average utility from the HA, 

given by: 

 2
0 0, 0,

1ˆ ˆ ˆ
2p pU µ γσ= −  

where 0,ˆ pµ  is the sample mean over the out-of-sample 

period; 2
0,ˆ pσ  is the sample variance over the out-of-sample 

period. 
The weight risky equity share can be chosen by the 

following: 
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Then the investor realizes an average utility from an 
individual RT model, defined by: 

 2
, ,

1ˆ ˆ ˆ
2j j p j pU µ γσ= −  

where ,ˆ j pµ  is the sample mean over the out-of-sample 

period; 2
,ˆ j pσ  is the sample variance over the out-of-sample 

period. 
Thus, the utility gain (UG) can be computed as follows: 

 0
ˆ ˆjUG U U= −  

for each of the RT out-of-sample forecasting models. 

3. The Empirical Results and Discussion 

3.1. Data, Variables and Forecasting Method 
The dataset with financial variables used in this paper 

are obtained from [26], Amit Goyal's website and Robert 
Shiller’s website, covering monthly observations from 
January 1960 to December 2019. The stock indices are 
obtained from the CRSP's month-end values of the 
S&P500 monthly index, and the stock returns are the 
continuously compounded returns on the S&P500 index. 
All out-of-sample forecasts are obtained by expanding 
window; and the out-of-sample period is from January 
1994 to December 2019. The parameters of the 
forecasting models are estimated recursively using an 
expanding window of observations, with data point  
from the start date to the present time and obtain a one 
month-period-ahead forecast. The forecast horizon is one 
month ahead, and the procedure is repeated until the last 
forecast is obtained. 

3.2. Results and Discussion 
In this paper, the empirical results for the RT models 

are summarised in two panels, displayed in Table 1  
and Table 2 respectively. Following the benchmark 
statistical performance evaluation metrics in [4,5,10],  
any model which gives a positive out-of-sample 2

OOSR   

(i.e., 2 0OOSR > ) using expanding or rolling window is 
said to have outperformed or consistently beat the 
historical average. In the Kitchen Sink RT Model  
panel, the Linear Model (LM) gives a negative 2

OOSR   

(i.e., 2 0OOSR < ), which indicates underperformance 
relative to the benchmark historical average. It 
corroborates previous findings in empirical literature in 
which the ordinary linear regression cannot consistently 
beat the benchmark historical average out-of-sample. Thus, 
the introduction of model training with fine-tuning of 
parameters recursively in the LM does not improve the 
statistical predictive task of the LM in this direction. 
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Table 1. Data & Description of Time Series Variables - January 1960 to December 2019 

Variable Description 
Stock Index, tSP  The Standard & Poor 500 U.S stock index. 

Dividend Price Ratio (log), tDPR  The dividends over the past year divided by the current stock index value. 

Dividend Yield (log), tDY  The difference between the log of dividends and the log of lagged prices. 

Earnings Price Ratio (log), tEPR  The earnings over the past year divided by the current stock index value. 

Realized Stock Variance, tRSV  The sum of squared daily returns on the & 500S P  index within one month. 

Book to Market Value, tBMV  The ratio of book value to market value for the Dow Jones Industrial Average. 

Net Equity Expansion, tNEE  The ratio of 12-month moving sums of net issues by New York Stock Exchange (NYSE) listed stocks to 
total end of year market capitalization of the NYSE stocks. 

Treasury Bill Rate, tTBR  The interest rate on a 3-month treasury bill, secondary market. 

Long Term Yield, tLTY  The long term government bond yield, constant maturity. 

Long Term Return, tLTR  The return on long term government bonds. 

Term Spread, tTS  The difference between the long term yield ( tLTY ) and the treasury bill rate ( tTBR ). 

Default Yield Spread, tDYS  The difference between the BAA and AAA rated corporate bond yields. 

Default Return Spread, tDRS  The difference between the long term corporate bond and long term government bond returns. 

Inflation, tINF  Is computed from the consumer price index (CPI) for all urban consumers. 

Table 2. The Statistical Performance Evaluation Results 

RT Model Package Method Value MSFE DM Stat DM pValue 2 (%)OOSR  

Kitchen Sink RT Model       

Linear Model stats lm 0.13512 0.6686 0.2519 -0.0389 

Regularised RT Models       

Ridge elasticnet ridge 0.00449 2.4286 0.0076 8.3047 

FOBA elasticnet foba 0.00554 1.6761 0.0469 6.6870 

LASSO elasticnet lasso 0.00686 1.6601 0.0484 6.6724 

RELAXO elasticnet relaxo 0.00459 1.8669 0.0310 7.9053 

Elastic Net elasticnet enet 0.00996 1.3766 0.0843 4.9447 

LARS lars lars 0.00516 1.7558 0.0396 6.9657 

LARS2 lars lars2 0.00476 1.7824 0.0373 7.3695 

 
In the regularised RT Models panel, each of the models 

produced a positive 2
OOSR  (i.e., 2 0OOSR > ), which 

indicates statistical evidence of outperformance over the 
benchmark historical average. In this paper, the Diebold-
Mariano DM test is introduced as an additional statistical 
performance evaluation measure to compare the forecast 
accuracy of each RT model with those obtained from 
historical average. Interestingly, the regularised RT 
Models demonstrate statistically significant evidence of 
producing better forecasts than those obtained from 
historical average at 5% significance level, except for the 
Elastic Net. Also, the LM in the Kitchen Sink Model panel 
could not give any statistically significant evidence of 
producing unequal forecast accuracy relative to the 
historical average, as judged by the DM test.  
In the regularised RT Models panel, the Ridge gives the 
highest 2

OOSR  with corresponding minimum MSFE and 
DM pValue  among all the RT models tested, in terms of 
statistical predictive power. Thus, the presence of the  

2 -vector norm in the Ridge model seems to improve the 
statistical predictive task of the Ridge model. The FOBA 
underperformed the Ridge model while the relaxed 
LASSO ( )RELAXO  outperformed the LASSO. The 

combination of both 1  and 2  vector norms in the 
Elastic Net does not improve the statistical predictive task 
of the Elastic Net model, as compared to their individual 
forms, as in the Ridge and LASSO. The step as a tuning 
parameter in the LARS2 algorithm seems to improve the 
predictive task of the model, as compared to the LARS 
algorithm which uses fraction as a tuning parameter. Thus, 
the concept of bias-variance trade off in the sophisticated 
regularised RT Models is a more useful approach for 
forecasting the U.S. monthly equity premium out-of-
sample with significant predictive power, relative to the 
benchmark historical average. 

Turning to the economic performance evaluation 
measures (Table 3), it is important to note that the 
statistical predictive power of a model relative to the 
benchmark historical average does not necessarily 
guarantee economic significance in real market setting. 
The 2

OOSR  and MSFE alone cannot explicitly account  
for an investor's risk over the out of sample period.  
In this paper, the useful economic performance evaluation 
metrics which includes the Cumulative Return CR,  
Sharpe Ratio SR and Utility Gains UG based on the  
out-of-sample periods were employed. The study seeks to 
reconcile the statistical and economic evidence in  
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an attempt to guarantee the future expectation of a  
mean-variance portfolio investor. In this paper, the 
average risk-free treasury bill rate is 0.78%freeR =  and 
the risk aversion parameter is 3λ = . A mean-variance 
investor can increase her monthly portfolio return by 

computing a proportional factor 
2

2( )
OOSR
SR

, where SR is the 

Sharpe ratio. In [21] and [22], the UG is expressed in the 
form of average annualised percentage returns, also 
known as certainty equivalent returns. The UG is 
important in a real market setting in that it provides useful 
economic information on the portfolio management fee 
that an investor would be willing to pay in order to have 
access to the additional available information in the 
forecasting model relative to the sole information in the 
historical equity premium. For a mean-variance portfolio 
investor, a model that produced a higher UG based on the 
out-of-sample periods than the average risk-free treasury 
bill is preferable to its counterpart. Whereas, if risk is 
equal, then it is more profitable to invest in the treasury 
bills than in the portfolio based on the forecasting model. 

[5] argued that even very low positive 2
OOSR  values for 

monthly data can produce a meaningful economic 
evidence of equity premium predictability in terms of 

increased annual portfolio returns for a mean-variance 
investor. In agreement with [5], the LM in the Kitchen 
Sink Model panel gives an economically meaningful 
evidence, preferable to the average risk-free treasury bill, 
as judged by the UG and SR. In spite of the weak 
statistical predictive power of the LM, it seems to provide 
useful economic information to a mean-variance portfolio 
investor. 

Table 3. The Economic Performance Evaluation Results 

𝑹𝑹�𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟎𝟎.𝟕𝟕𝟕𝟕% Risk Aversion Parameter = 3 

RT Model CR SR UG (%) 

Kitchen Sink RT Model    

Linear Model 1.9085 0.3382 0.8373 

Regularised RT Models    

Ridge 2.7272 0.6004 2.1169 

FOBA 2.5901 0.5720 1.9705 

LASSO 3.2634 0.8152 3.2459 

RELAXO 2.0084 0.3933 0.9297 

Elastic Net 2.7789 0.6591 2.4606 

LARS 2.9309 0.6609 2.4733 

LARS2 2.7414 0.6123 2.1903 

 

 
Figure 1. Stacked Bar Chart showing CR and SR for the RT Models 
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Figure 2. The Utility Gain (%) for the RT Models 

 
Figure 3. Comparing Actual (Equity Prem) with HA and LM Forecasts 
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Figure 4. Comparing Actual with Ridge and FOBA Forecasts 

 
Figure 5. Comparing Actual with LASSO and Relaxed LASSO Forecasts 
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Figure 6. Comparing Actual with Elastic Net Forecasts 

 
Figure 7. Comparing Actual with LARS and LARS2 Forecasts 
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In the regularised RT Models panel, all the models 
provide strong significant evidence of economic 
predictability and outperformance over the treasury bill. It 
is worth noting that the superiority of a forecasting model 
in terms of statistical predictability does not correspondingly 
guarantee superiority in economic significance. In the 
statistical performance evaluation metrics, the Ridge gives 
the best results. Whereas, in the economic performance 
evaluation metrics, the LASSO produced the best results. 
Thus, the 1 -vector norm in the LASSO forecasting 
model seems to be more economically powerful than the 

2 -vector norm in the Ridge forecasting model. Like in 
[13] in which the penalised binary probit models used as 
classifiers for sign or directional forecasting, and the 
application of deep learning in [14], the training and  
fine-tuning approach of the regularised regression models 
in this paper also provides statistically significant 
evidence of equity premium predictability with significant 
economic gains. Figure 1 and Figure 2 depict the graphical 
analysis of the out-of-sample RT forecasting models. 
Figure 1 is a stacked bar chart while Figure 2 is bar chart, 
showing the cumulative returns (CRs), Sharpe ratios (SRs) 
and utility gains (UGs). The time series graphical 
representation of actual versus forecasts for the various 
RT forecasting models are depicted in Figure 3, Figure 4, 
Figure 5, Figure 6 and Figure 7 respectively. As in [18], 
the regularised RT forecasting models in this paper 
provide significant evidence of equity premium 
predictability over the benchmark historical average with 
useful economic gains, and suggesting better alternatives 
to mean-variance investors. 

The empirical analysis in this paper revealed that the 
sophisticated regularised RT forecasting models consistently 
beat the benchmark historical average out-of-sample, both 
statistically and economically. Thus, the regularised RT 
forecasting models used in this study appeared to 
guarantee a mean-variance portfolio investor in a real-time 
market setting who optimally reallocates a monthly 
portfolio between equities and risk-free treasury bill using 
equity premium forecasts at minimal risk. 

4. Conclusion 

This paper has answered the research question in [4,5], 
demonstrating the superiority of regularised RT forecasting 
models over the benchmark historical average out-of-sample 
with significant economic gains. Interestingly, all the 
regularised RT forecasting models consistently beat  
the benchmark historical average out-of-sample, both 
statistically and economically. 

Overall, the Ridge gives the best statistical performance 
evaluation results while the LASSO appeared to be most 
economically meaningful. The regularised RT forecasting 
models provide useful economic information on mean-
variance portfolio investment for investors who are timing 
the market to earn future gains at minimal risk. Thus, the 
regularised RT forecasting models appeared to guarantee a 
mean-variance investor in a real-time setting who 
optimally reallocates a monthly portfolio between equities 
and risk-free treasury bill using equity premium forecasts 
at minimal risk. 
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