
\ 0 ® Ö ^ \ 2 - S

f ------------
------- _ -------A

T h e L e a m in q C e n t r e
condón

nvgtropoUtan
university © 0

L i b r a r y
2 B 6 - 2 5 0 H o iio w a y R oad
L o n d o n N 7 6P P

k „ - ________/

40 0084416

Development of New Data Partitioning and Allocation
Algorithms for Query Optimization of Distributed Data

Warehouse Systems

A thesis submitted in partial fulfilment of the requirements of

London Metropolitan University for the degree of

Doctor o f Philosophy

Hassan Ismail Abdalla

June 2008

Dedication

This dissertation is dedicated to my family, my beloved brothers and sisters for their

patience and support.

II

Abstract

Distributed databases and in particular distributed data warehousing are becoming an

increasingly important technology for information integration and data analysis. Data

Warehouse (DW) systems are used by decision makers for performance measurement and

decision support. However, although data warehousing and on-line analytical processing

(OLAP) are essential elements of decision support, the OLAP query response time is

strongly affected by the volume of data need to be accessed from storage disks.

Data partitioning is one of the physical design techniques that may be used to optimize

query processing cost in DWs. It is a non redundant optimization technique because it does

not replicate data, contrary to redundant techniques like materialized views and indexes.

The warehouse partitioning problem is concerned with determining the set of dimension

tables to be partitioned and using them to generate the fact table fragments.

In this work an enhanced grouping algorithm that avoids the limitations of some existing

vertical partitioning algorithms is proposed. Furthermore, a static partitioning algorithm

that allows fragmentation at early stages of schema design is presented.

The thesis also, investigates the performance of the data warehouse after implementing a

combination of Genetic Algorithm (GA) and Simulated Annealing (SA) techniques to

horizontally partition the data warehouse star schema. It, then presents the experimentation

and implementation results of the proposed algorithm.

This research presented different approaches to optimize data fragments allocation cost

using a greedy mathematical model and a combination of simulated annealing and genetic

algorithm to determine the site by site allocation leading to optimal solutions for fragments

distribution.

Throughout this thesis, the term fragmentation and partitioning will be used

interchangeably.

Ill

Preface

All work presented here is the original work of the author unless otherwise indicated. Some

parts of this report include revised versions of the following published papers:

F. Marir, M. Tounsi H. and Abdalla, “Using a Greedy-Based Approach for Solving Data

Allocation Problem in a Distributed Environment”, To appear in the Proceedings of the

2008 International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA'08).

F. Marir, H. Abdalla and M. AlFares, “An Enhanced Grouping Algorithm for Vertical

Partitioning Problem in DDBs” IEEE Computer and Information Sciences, 2007. ISCIS-

2007. 22nd International Symposium, 7-9 Nov. 2007, Pages: 1-6, Digital Object Identifier

10.1109/ISCIS.2007.4456833.

H. Abdalla, E. Abuelyaman and F. Marir, “A Static Attribute-Based Partitioning Algorithm

for Vertical Fragmentation in DDBs”, Proceedings of the 2007 International Conference on

Parallel and Distributed Processing Techniques and Applications (PDPTA'07), Volume II,

pp 1017-1022, Las Vegas, June, 2007.

H. Abdalla, M. AlFares and F. Marir, “Vertical Partitioning for Database Design: A

Grouping Algorithm”, 16th International Conference on Software Engineering and Data

Engineering July 9-11, 2007, Nevada USA, Las Vegas, July 2007.

L. Bellatreche, H. Abdalla and K. Boukhalfa, "A Combination of Genetic and Simulated

Annealing Algorithms for Physical Data Warehouse Design", Proceedings of the 23rd

British National Conference on Databases, Queen's University Belfast, Northern Ireland,

18-20 July, 2006.

H. Abdalla and F. Marir, "Vertical Partitioning Impact on Performance and Manageability

of Distributed Database Systems: A Comparative study of some vertical partitioning

algorithms", Proceedings of the 18th NCC, Riyadh, Saudi Arabia, pp 85 - 92, March 26 -

29, 2006.

L. Bellatreche, K. Boukhalfa, and H. Abdalla, "Algorithms for Physical Data Warehouse

Design to Speed up Decision-making Processes", Proceedings of the 18th NCC, Riyadh,

Saudi Arabia, pp 93 -110, March 26 - 29, 2006.

IV

A cknowledgem en ts

In preparing this thesis, I am highly indebted to pass my heartfelt thanks to the many people

who helped me in one way or another. First, I would like to acknowledge my sincerest,

special, deep appreciation, and true thanks to Dr. F. Marir for his insights and guidance

without which this thesis would have not been possible. Through many long discussions, he

provided me with many insightful technical suggestions and helped me clarify my often-

confused thoughts.

My thanks also go to the members of my Ph.D. supervision team, Dr. M. Affendi, Dr. F. Cai

and Dr. S. Sahiti, who provided valuable suggestions and guidance to my research topics,

that helped greatly to improve the presentation and contents of this dissertation.

There is always a major turning point in the life of any one of us. For me this point occurred

when I first come to know Dr. Ladjel Bellatreche and started communicating with him to

discuss various issues in the area of data warehousing. From then and on, Ladjel was

continuously there to give me a friendly scientific and professional advice in my research

work.

V

Table o f Contents
Chapter 1..1

Introduction..1
1.1 Background... 4
1.2 Motivation and Problem Statement... 5
1.3 Aims and Objectives...6
1.4 Contribution.. 7
1.5 Thesis Organization..8

Chapter 2...9
Review of Basic Concepts...9
2.1 Introduction... 9
2.2 Distributed Databases...10
2.3 Data Warehousing and OLAP..11
2.4 Query Optimization..12
2.4.1 Query Optimization and Execution in Data Warehousing...................................... 13
2.5 Data Warehouse Partitioning... 14
2.5.1 Vertical Partitioning...15
2.5.2 Horizontal Partitioning...15
2.6 Summary... 16

Chapter 3..Error! Bookmark not defined.
Data Warehouse Data Models and Architecture..17
3.1 Introduction... 17
3.2 Data Warehouse Modelling... 17
3.2.1 Dimensional Data Modelling.. 18
3.2.2 Dimensional Data Modelling for Multidimensional Data Analysis........................19
3.3 Data Warehouse Schema... 21
3.4 Data Warehouse Architecture..23
3.5 Summary...25

Chapter 4.. 26
Distributed Data Warehouse Design..27
4.1 Introduction...27
4.2 Data Warehouse Functions..28
4.3 Distributed Data Warehouse Design Process and Techniques...................................29
4.4 Distributed Data Warehouse Physical Design Problem.. 32
4.4.1 Objectives of Distributed Data Warehouse Design... 32
4.4.2 Approaches of Distributed Data Warehouse Design... 33
4.5 The Design Methodology.. 35
4.6 Data Warehouse Partitioning...37
4.6.1 Partitioning a Star Schema..38
4.6.2 The Horizontal Fragmentation Algorithm for the Fact Relation.............................38
4.7 Summary.. 40

Chapter 5..42
Related Research and Developments...42
5.1 Introduction.. 42
5.1 Horizontal Partitioning Algorithms.. 43
5.2 Vertical Partitioning Algorithms..45
5.3 Fimitations of the presented Vertical Portioning Algorithms.....................................48
5.4 Summary.. 49

VI

Chapter 6...50
Proposed New Grouping Approach to Enhance Graph Based Vertical Partitioning
Algorithms... 50
6.1 Introduction... 50
6.2 The Enhanced Grouping Algorithm... 50
6.2.1 Definitions.. 50
6.2.2 Description of the Proposed Algorithm.. 51
6.2.3 Grouping Algorithm Steps.. 52
6.2.4 Example 1:... 54
6.2.5 Example 2 :... 58
6.3 Summary... 58

Chapter 7...60
A Static Partitioning Algorithm for Vertical Fragmentation Problem in a
Distributed Environment...60
7.1 Introduction...60
7.2 Static Partitioning..61
7.2.1 The Simulator...63
7.3 Static Attribute-Based Partitioning (SAPA) Algorithm... 65
7.3.1 Description of SAPA Algorithm:.. 65
7.4 Attribute Partitioning... 68
7.5 Summary...69

Chapter 8...70
SAGA for Physical Warehouse Design and Implementation..................................... 70
8.1 Introduction... 70
8.2 Horizontal Partitioning Selection Problem..71
8.2.1 A Formulation of Horizontal Partitioning Selection Problem.................................. 74
8.2.2 Simulated Annealing and Genetic Algorithm (SAGA) Approach..........................74
8.3 Implementation of Genetic Algorithm...78
8.3.1 Coding Mechanism... 78
8.3.2 Fitness Value..81
8.3.3 Selection Operation... 83
8.3.4 Crossover Operation... 84
8.3.5 Mutation Operation... 85
8.4 Implementation of Simulated Annealing Algorithm.. 86
8.4.1 A Concise Description of SA.. 87
8.5 Experimental Studies... 89
8.6 Experimental Setup and Configuration of GA and SA Parameters............................91
8.6.1 Experimentation of GA... 92
8.6.2 Experimentation of the SA.. 93
8.7 Strengths and Weaknesses of SAGA for Data Fragmentation...................................94
8.8 Summary...95

Chapter 9.. 97
Using a Greedy-Based and SAGA Approaches for Solving Data Allocation Problem
in a Distributed Environment... 97
9.1 Introduction.. 97
9.2 Related Work... 98
9.3 The Allocation Problem:.. 100
9.4 The Cost Function Model:... 101
9.5 The Problem Formulation:... 102

VII

9.6 Experiments.. 105
9. 7 Using SAGA Approach for Data Allocation...107
9.7. 1 Genetic Algorithm for Data Allocation... 107
9.7.2 Simulated Annealing for Data Allocation... 109
9.8 SAGA Algorithm for Data Allocation... 110
9.9 SAGA Implementation Results...111
9.9.1 Comparing the Results of Different Methods of the Proposed SAGA Algorithm 115
9.9.2 Proposed GA Results VS [Corcoran and Hale 94] GA Results............................ 117
9.10 Summary... 118

Chapter 10.. 119
Conclusions and Future Work...120
10.1 Summary of contributions...120
10.2 Conclusions... 121
10.3 Future Work:... 123

References.. 125

VIII

Figure 3.1: Sales Data Cube 20

Figure 3.2: A Star Model 21

Figure 3.3: Snowflake Model 22

Figure 3.4: Data Warehouse Architecture 25

Figure 4.1: Physical Design Problem. 35

Figure 4.2: Different relation partitioning types 36

Figure 4.3: Simple Join in Star Schema 40

Figure 5.1: Attribute Usage Matrix for Experimental Workload 46

Figure 5.2: Attribute Affinity matrix for experimental workload 47

Figure 5.3: Affinity Graph 48

Figure 6.1: Attribute Usage Matrix 51

Figure 6.2: Attribute Affinity Matrix 52

Figure 6.3: First step of enhanced grouping algorithm 57

Figure 6.4: Connecting attributes 2 & 3 and merging their groups 57

Figure 6.5: The final results of the enhanced grouping algorithm 57

Figure 7.1: Affinity Graph 64

Figure 7.2: Cycle extension leading to a candidate partition 67

Figure 7.3: Partitioning result of figure 7.1 68

Figure 7.4: Vertical fragments generated by collapsing algorithm 69

Figure 8.1: An example of a Star Schema 72

Figure 8.2: Compromise between maintenance and the processing cost 73

Figure 8.3: The structure of the genetic algorithm 76

Figure 8.4: Sub domains of fragmentation attributes 80

Figure 8.5: Roulette wheel fitness proportionate selection 83

Figure 8.6: Selection of the chromosomes 84

Figure 8.7: Crossover of chromosomes 1 and 5 85

Figure 8.8: An example of a mutation 85

Figure 8.9: Example of SA 86

Figure 8.10: The Structure of the Simulated Annealing Algorithm 88

Figure 8.11: Star Schema of APB-1 Benchmark 90

Figure 8.12: Architecture of SAGA 91

List o f Figures Page

IX

Figure 8.13: Number of generations vs. query processing cost 92

Figure 8.14: Number of final fragments vs. generation 92

Figure 8.15: Number of chromosomes per generation 93

Figure 8.16: The impact of crossover rate on Performance 93

Figure 8.17: The impact of mutation rate on fragment number 93

Figure 8.18: The impact of mutation rate on IOs 93

Figure 8.19: Profitable queries 94

Figure 8.20: Query reduction after SA 94

Figure 9.1 : Reproduction cycle 108

Figure 9.2: Butterfly topology 112

Figure 9.3: Number of solutions per cost 115

Figure 9.4: The average cost per generation 117

X

Table 6.1 The final three groups 58

Table 6.2 The final four groups 58

Table 7.1: Attribute usage matrix 63

Table 7.2: Symmetry matrix 64

Table 8.1: An example of possible solutions 80

Table 8.2: An example of chromosomes’ fitness Representation 84

Table 8.3: Sizes of tables 90

Table 9.1: Fragment specification 105

Table 9.2: Site specification 105

Table 9.3: Fragment allocation 106

Table 9.4: Sensitivity analysis 107

Table 9.5: Required fragments 112

Table 9.6: Cost of fragment allocation 113

Table 9.7: Calculating the cost for a sample solution 114

Table 9.8: The number of solutions per cost 114

Table 9.9: The average cost per generation 116
Table 9.10: The Proposed GA Results VS Corocran and Hale’s GA Results 118

List o f Tables Page

XI

Abbreviations and Meanings in Alphabetic Order

3NF Third Normal Form

AAM Attribute Affinity Matrix

AG Affinity Graph

ALF Attributes Link Factor

ANSI/SPARC American National Standards Institute/ Standards Planning And

Requirements Committee

AUM Attribute Usage Matrix

BEA Bond Energy Algorithm

CAM Clustered Affinity Matrix

COMM-MIN Completeness-Minimality

CQP Constrained Quadratic Program

DBD Data-Base Designer

DBMS Database Management Systems

DDBMSs Distributed Database Management Systems

DDBS Distributed Database Systems

DSS Decision Support Systems

DW Data Warehouse

DWA Data Warehouse Administrator

EISs Executive Information Systems

ERM Entity-Relationship Modelling

ETL Extracted, Transformed and Loaded

FL Fragment Limit

GA Genetic Algorithms

GBAs Graph-Based Algorithms

GHz Giga Hertz

GLF Group Link Factor

HP Horizontal Partitioning

I/O Input/Output

MB Mega Byte

OLAP On-Line Analytical Processing

XII

OLTP On-line Transaction Processing

OODB Object Oriented Database

PS Page Size

PT Processing Time

RDB Relational Database

RNG Random Number Generator

SA Simulated Annealing

SAPA Static Attribute-Based Partitioning Algorithm

SQL Structured Query Language

SSPD Set of Simple Predicates

VP Vertical Partitioning

WAN Wide Area Network

XIII

Chapter 1

Introduction

Data Warehouses (DWs) are large, special purpose databases that contain historical data

integrated from a number of independent sources, supporting users who wish to analyze the

accumulated data. The analysis is usually done by queries that aggregate, select and group the

data in a number of ways. Efficient query processing is critical because the data warehouse is

very large, queries are often complex, and decision support applications typically require

least response time.

The concept of data warehousing has evolved out of the need for easy access to a structured

store of quality data that can be used for decision making [Ahmed et al 02]. It is globally

accepted that information is a very powerful asset that can provide significant benefits to any

organization and a competitive advantage in the business world. Organizations have vast

amounts of data but have found it increasingly difficult to access and maintain. This is

because data is in many different formats, exists on many different platforms, and resides in

many different file and database structures developed by different vendors. Thus

organizations have had to write and maintain perhaps hundreds of programs that are used to

extract, prepare, and consolidate data for use by many different applications for analysis and

reporting. Also, decision makers often want to dig deeper into the data once initial findings

are made [Datta et al 98]. This would typically require modification of the existing programs

or development of new ones. This process is costly, inefficient and very time consuming.

Data warehousing offers a better approach.

Data warehouse applications deal with enormous data sets in the range of Gigabytes or

Terabytes. Queries usually either select a very small set of this data or perform aggregations

on a fairly large data set. Materialized views storing pre-computed aggregates are used to

efficiently process queries with aggregations. This approach increases resource requirements

in disk space and slows down updates because of the view maintenance problem.

The emergence of data warehousing was initially a consequence of the observation that,

operational-level on-line transaction processing (OLTP) and decision support applications

1

cannot coexist efficiently in the same database environment, mostly due to their very

different transaction characteristics [Inmon 96].

Operational databases are focused on recording transactions, thus they are prevalently

characterized by an online transaction processing (OLTP) workload. Conversely, data

warehouses allow complex analysis of data aimed at decision support; the workload they

support has completely different characteristics, and is widely known as online analytical

processing (OLAP) [Rizzi 08],

The design of a data warehouse database system of an OLAP nature is fundamentally

different from the operational database system of OLTP nature. The following list

summarizes the major differences between OLTP and OLAP system design

• OLTP contains up-to-date detailed information while OLAP contains historical,

summarized, multidimensional, integrated and consolidated data.

• OLTP is highly normalized with many tables to ensure consistency while OLAP is

typically de-normalized with fewer tables (use of star and/or snowflake schemas).

• OLTP focus on single record access while OLAP focus on multiple record data

access.

• OLTP Emphasise on update speed while OLAP emphasise on search speed.

• OLTP is application oriented while OLAP is subject-oriented.

• OLTP is used for day to day operations while OLAP is used for decision support.

• OLTP queries are relatively standardized and simple queries returning relatively few

records (Quantitative) while OLAP queries are often complex involving aggregations

(Qualitative).

The term “Data Warehouse” was first used by Barry Devlin [Devlin 96], but Bill Inmon has

won the most acclaim for introducing the concept, defined as follows: “A Data Warehouse is

a subject oriented, integrated, non-volatile and time-variant collection of data in support of

management’s decisions” [Inmon 96]. These properties can be defined as follows [Inmon
96]:

Subject Oriented. Subject orientation means that the data warehouse (unlike the operational

systems where data is organized to support specific business processes) does not include data

2

that won’t be used for Decision Support System (DSS) processing. Data in DW is organized

by subject rather than by function. The data warehouse is oriented to the major subject areas

of the corporation that have been defined in the high-level corporate data model. Typical

subject areas include: customer, product, transaction or activity, claims, etc.

Each major subject area is physically implemented as a series of related tables in the data

warehouse. A subject area may consist of 10, 100, or even more physical tables that are all

related.

Integrated. A business typically employs many different operational systems, each

optimized for a special business process, and each with its own data store. Whatever the

design issue, the data in a data warehouse needs to be stored in a singular, globally acceptable

fashion, regardless of the data source it is coming from. In the DW, data from various

sources is integrated, both by definition, i.e., the same data type, and by content, i.e., the same

value sets, wherever these occur. When data is moved to the data warehouse from

application-oriented operational systems, the data is integrated before entering the data

warehouse. So that the focus of the data warehouse users is on using the data in the data

warehouse, rather than on wondering about the credibility or consistency of the data.

Non-volatile: In a typical operational system, data is often kept only for a short period of time

as it is only interesting for the daily business during that short period. However, in a data

warehousing environment the need to discover trends as been done in business and

comparing them with those of previous periods strengthen the need to keep data for longer

periods of time. Once data is loaded into the data warehouse, then most operations for using

the data will be data querying, rather than inserting, deleting, and changing. That is, data in

data warehouse is normally kept for long-term and is not overwritten but instead it is

appended.

Time-variant: Time variant means that the data in a data warehouse is accurate not only for

some period of time, but for the whole data history. A data warehouse contains enterprise

information of each stage from the time the data warehouse began to current. This means, not

only the current value of data is stored, but also, a snapshot of data at specific points in time,

or a complete history of all changes occurred to the data. Thus, the representation of the

history of fact values across a given lapse of time, at a given granularity, is directly supported

in DWs [Golfarelli and Rizzi 08].

3

Using this information, DSS analyst quantitatively analyzes and forecast the development

progress and future trend of an enterprise. In contrast to data warehouse, application-oriented

operational databases mainly consider the data over specified periods.

Management’s decisions: Data in a DW is optimized for data analysis and used by top

management at the strategic level for setting the course for the entire business. Therefore,

managing redundancy of data is usually appropriate in a DW because it simplifies the

database schema and improves analysis performance.

1.1 Background

The origin of the concept of data warehousing can be traced back to the early 1980s, when

relational database management systems emerged as commercial products [Mohania et al

00], The foundation of the relational model with its simplicity, together with the query

capabilities provided by the SQL language, supported the growing interest in what then was

called end-user computing or decision support.

To enhance end-user computing environments, data was extracted from the organizations

existing databases and stored in newly created database systems dedicated to supporting ad

hoc end-user queries and reporting functions of all kinds. One of the prime concerns

underlying the creation of these systems was the performance impact of end-user computing

on the operational data processing systems. This concern prompted the requirement to

separate end-user computing systems from transactional processing systems.

Data warehouse systems represent a single source of information to analyse the development

and results of an organization [Reeves et al 98]. Measures such as the number of transactions

per customer or the increase of sales during a promotion period are used to recognise warning

signs and to decide on future investments with regard to the strategic goals of the

organization.

Decision Support Systems (DSS) and Executive Information Systems (EISs) can only be

effective tools if the data used are readily available and represent the integration of all

pertinent corporate wide data. Data warehouses provide this integrated environment by

extracting, filtering, and integrating relevant information from all available data sources.

4

Further, as new or additional relevant information becomes available, or the underlying

source data are modified by the operational systems, the new data are extracted from its

autonomous, distributed and heterogeneous sources into a common model that is integrated

with existing warehouse data. Once information is available at the warehouse, queries can be

answered and data analysis (DSS and EIS) can be performed.

Much of the work to date has focused on building large centralized systems that are

integrated repositories founded on pre-existing systems upon which all corporate-wide data is

based. The centralized data warehouse is very expensive and tends to ignore the advantages

realized during the past decade in the areas of distribution and support for data localization in

a geographically dispersed corporate structure. Further, it would be unwise to enforce a

centralized data warehouse when the operational systems exist over a widely distributed

geographical area.

The distributed data warehouse supports the decision makers by providing a single view of

data even though that data are physically distributed across multiple data warehouses on

multiple systems at different sites. Currently, the field of distributed data warehouse in terms

of architecture and design is considered a potential research area with great scope for future

investigation.

1.2 Motivation and Problem Statement

Partitioning of a global schema before allocating it in a distributed database or data

warehouse can be performed either in vertical fragmentation or horizontal fragmentation

schemes. In this work, both vertical and horizontal partitioning methodologies for improving

the performance of distributed database systems are adopted.

The work presented in this thesis is motivated by the need to demonstrate the feasibility of

using a combination of Simulated Annealing and Genetic Algorithms (SAGA) in solving

horizontal partitioning selection problem based on the observations that data warehouse can

have a large number of fragmentation schemas.

5

Given a set of dimension tables D = {D],D2, and a set of OLAP queries Q = {Qi,Q2,

The horizontal partitioning selection problem is concerned with determining a set of

dimension tables D / ç D to be partitioned and generating a set of fragments that can be used

to partition the fact table F into a set of horizontal fragments (called fact fragments) (Fy, F2,

Fyv} such that:

- The sum of the query cost when executed on the partitioned star schema is minimized and

- N <W, where N is the number of possible fragments of the fact table, and IP is a threshold

fixed by the Data Warehouse Administrator (DWA) representing the maximal number of

fragments that can be maintained by him/her. The obedience of this constraint avoids an

explosion of the number of the fact fragments.

A combination of genetic and simulated annealing algorithms is also used to tackle the

fragment allocation problem by determining the optimal allocation of a data fragment in a

distributed environment based on the fragment access patterns and the cost of moving data

fragments from one site to the other.

1.3 Aims and Objectives

A data warehouse stores large volumes of data from many sources, with the purpose of

efficiently implementing decision support or OLAP queries. One of the most important

decisions in designing a data warehouse is the selection of optimal fragments to be

maintained at the warehouse. The goal is to select an appropriate set of fragments that

minimizes total query response time, query processing cost and the cost of maintaining the

selected fragments, given a limited amount of resources such as CPU time, storage space, etc.

In this work, a conceptual framework for the general problem of fragments selection in a data

warehouse has been developed. The goal is to choose a design, such that the performance of a

given query is optimized, subject to a threshold constraint on the maximum number of

fragmentations that can be maintained by a data warehouse administrator and that would have

to be determined by him. Given a set of queries Q that will be executed on a relational data

warehouse modelled by a star schema S with D dimension tables and a fact table F, by

partitioning the fact table based on the fragmentation schemas of the fragmented dimension

6

tables (derived fragmentation), the author aims to reduce irrelevant data accesses to the star

schema and allow the OLAP queries to be executed efficiently.

On the other hand, the objective of the proposed fragment allocation method is to determine

which fragments are used by each query being hosted at specific sites such that all queries are

satisfied while minimizing the communication cost.

1.4 Contribution

This research contributes to the solution of the problem of distributed warehouse database

design and architecture by:

1. Providing a simple to understand, easy to implement and efficient algorithms

compared to existing algorithms used for vertical partitioning problem. This is

obtained by adding some factors that allow for more control on the final produced

partitions based on the problem specifications.

2. Proposing a static vertical partitioning algorithm for improving the performance of

database systems using the number of occurrences of an attribute in a set of queries

rather than the frequency of queries accessing the attributes. This enables the database

designer to perform partitioning and consequent distribution of fragments before the

database enters operation.

3. Proposing a methodology for the distributed data warehouse design using a horizontal

fragmentation algorithm to partition the huge fact relation into a set of fragments based

on the fragmentation schema of the dimension tables. Thus, relations those need not to

be accessed are identified and unnecessary processing is avoided.

4. Addressing and formalizing horizontal fragmentation schema selection problem in

relational data warehouse, using a genetic and simulated annealing algorithms in a star

schema to select the right solution that improves the performance of OLAP quenes by

avoiding unnecessary processing, and reduces the maintenance cost.

7

5. Contributing in determining best possible allocation of a data fragment in a distributed

environment using a greedy mathematical modelling approach and SAGA algorithm that

considers network communication and data movement costs to allocate fragments site by

site, leading to a better solution for the optimal fragments distribution problem.

1.5 Thesis Organization

In this chapter, the background to the proposed research has been described, the subject

matter of the thesis is outlined and the scope of the work is specified. The rest of this thesis is

organized as follows. In Chapter 2, basic concepts in the area of distributed databases, data

warehouses and some distributed database design issues will be provided. Chapter 3 specifies

how the data model for a data warehouse should be planned to structure the data in a manner

that could handle the On-Line Analytical Processing (OLAP). Chapter 4 describes the data

warehouse functions and the distributed data warehouse design methodology. In Chapter 5,

related work and developments in the area of horizontal and vertical partitioning in relational

database systems are discussed. An enhanced grouping algorithm that avoids the limitations

of some existing vertical partitioning algorithms is provided in Chapter 6. Enhancements are

continued in Chapter 7 by providing a static partitioning algorithm that allows fragmentation

at early stages of schema design. Chapter 8 investigates the performance of the data

warehouse after implementing a combination of Genetic Algorithm (GA) and Simulated

Annealing (SA) techniques to horizontally partition the data warehouse star schema. It, then

presents the experimentation and implementation results of the SAGA algorithm. Chapter 9

optimizes the data fragments allocation cost using a greedy mathematical model and SAGA

algorithm to determine the site by site allocation leading to optimal solutions for fragments

distribution. Finally, Chapter 10 provides an overall conclusion, a list of contributions and

future work suggestions.

8

Chapter 2

Review of Basic Concepts

2.1 Introduction

The advent of telecommunication era and the constant development of hardware and network

structures have encouraged the decentralization of data while increasing the need to access

information from different sites leading to significant advances in distributed database

systems [Muthuraj 92], A distributed database system is a collection of sites connected on a

common high-bandwidth network. Logically, data belongs to the same system but physically

it is spread over the sites of the network, making the distribution invisible to the user [Ceri

and Weiderhold 89], Each site is an autonomous database with its own processing capability

and data storage capacity. The advantage of this distribution resides in achieving availability,

modularity, performance, response time improvement and reliability.

Distributed and parallel processing on database management systems is an efficient way of

improving performance of applications that manipulate large volumes of data. This may be

accomplished by removing irrelevant data accessed during the execution of queries and by

reducing the data exchange among sites, which are the two main goals of the design of

distributed databases [Ozsu and Valduriez 99].

The primary concern of distributed database systems is to design the fragmentation and

allocation of the underlying database. Distribution involves making decisions on the

fragmentation and placement of data across the sites of a computer network. The first phase

of designing the distribution is the fragmentation phase, which is the process of physically

distributing data that is logically linked to make it closer to the user for fast access. The

fragmentation phase is then followed by the allocation phase, which handles the physical

storage of the generated fragments among the nodes of a computer network, and then

replication of fragments.

9

2.2 Distributed Databases

A distributed database is the term used collectively for distributed database systems (DDBSs)

and distributed database management systems (DDBMSs). These systems were developed in

response to the current trend toward distributed models of computation. Unlike traditional

centralized database systems, DDBSs are spread over many sites. These sites are connected

by a communications network.

Portions of the entire database are spread out over multiple computers, called sites or nodes.

The computers are connected by a communications network with a given topology. Each

local site may have its own local database, which can be maintained by a traditional DBMS.

Each site may also contain fragments, or portions of the distributed global database.

Fragments are managed by application and communication processing software.

The advantages of DDBs include reliability and availability. Reliability is loosely defined as

the probability that a system is up at a particular moment in time. Availability refers to the

probability that a system is continuously available during some time interval. In a traditional

centralized database system, the failure of a single site means failure of the entire system. In a

DDB, the failure of a single site will only affect access to data located at that site. Clearly,

this leads to improved reliability and availability. Another advantage of DDBs is the

performance improvement obtained by distributed processing. Local queries and transactions

accessing data at a single site are much faster since the local database is smaller. Transactions

involving different sites can be processed concurrently, reducing execution and response

time. This is especially an advantage when the database is naturally distributed over different

locations, such as in a business with databases used by regional offices which are all

accessible from the corporate headquarters. These types of database systems are typically

dominated by local queries and transactions. Further, DDBs allow sharing of data while at the

same time retaining localized control. This can be an important issue in database security

when maintaining a 'need to know' authorization scheme.

A potential drawback in a DDB is the added complexity and overhead involved in its design

and implementation. The DDB must be designed to preserve consistency in the database

while providing acceptable response time for transactions across many different sites.

Strategies must be developed to handle distributed queries and transactions. The distribution

10

as part of the design, involves fragmentation of relations and allocation of these fragments.

The objective of fragmentation is to achieve better units of distribution. Allocation is

concerned with optimal placement of the fragments among the available sites. Special care

must be taken in the placement of replicated fragments to maintain consistency and efficient

access. Another important aspect is that the DDB must be able to gracefully recover from

failures such as site crashes or network hang ups.

2.3 Data Warehousing and OLAP

Data warehousing is the design and implementation of processes, tools, and facilities to

manage and deliver complete, timely, accurate, and understandable information for decision

making. It includes all the activities that make it possible for an organization to create,

manage, and maintain a data warehouse or data mart.

The amount of information available in today’s large-scale enterprises has been growing

explosively. New data are being rapidly and continuously generated by various operational

sources, such as auction databases and order processing systems. In order to make intelligent

business decisions, complex analytical queries will be issued and answered across all data

sources [Chaudhuri and Dayal 97], Since the modem data sources are becoming increasingly

heterogeneous and are often distributed over a large network, it is often preferred that the data

may have need to be Extracted, Transformed and Loaded (ETL) [Chaudhuri and Dayal 97]

before complex analytical queries can be executed. However, such ETL processes are very

expensive.

Data warehouses are thus proposed to support on-line analytical processing (OLAP)

[Chaudhuri and Dayal 97], A data warehouse extracts and integrates data from independent

data sources and then stores the integrated data in a central database. The warehouse data is

extracted from multiple operational databases, external sources or legacy sources. The

extracted data is often further aggregated under different granularities in order to provide a

summary of the underlying data.

The granular data found in the data warehouse is the key to reusability, because it can be used

by many people in different ways. With a data warehouse, different organizations are able to

look at the data as they wish to see it.

11

Looking at the data in different ways is only one advantage of having a solid foundation. A

related benefit of a low level of granularity is flexibility, containing a history of activities and

events across the corporation, and that data can be reshaped across the corporation for many

different needs.

Perhaps the largest benefit of data warehousing is that future unknown requirements can be

accommodated. Various front-end tools have been developed to analyze such summary data

for decision making, for example, query reporting, analysis and data mining [Chaudhuri and

Dayal 97],

Most analytical queries over the warehouse data are fairly complex involving multiple joins

and aggregations [Zaharioudakis et al 00]. Such queries are typically operated over huge

volumes of data (many terabytes). Furthermore, most of these queries require interactive

response, i.e., response time typically in a few seconds [Zaharioudakis et al 00]. Traditional

query optimization techniques often fail to meet such new requirements. The proposed

solution is to horizontally partition the warehouse to vastly improve the query performance.

2.4 Query Optimization

Query optimization is of great importance for the performance of a relational data warehouse

[Ziyati et al 07], especially for the execution of complex SQL statements. In query

optimization process the query optimizer chooses and determines the best strategy for

performing each query, for example, whether or not to use indexes for a given query, and

which join techniques to use when joining multiple tables. These decisions have a

tremendous effect on SQL performance, and query optimization is a key technology for every

application, from operational systems to data warehouse and analysis systems to content-

management systems.

The query optimizer is entirely transparent to the application and the end-user. However,

because applications may generate very complex SQL, query optimizers must be extremely

sophisticated and robust to ensure good performance. For example, query optimizers

transform SQL statements, so that these complex statements can be transformed into

equivalent, but better performing SQL statements.

12

Query optimization is mostly cost-based (it sometimes compromise between cost and

response time). In a cost-based optimization strategy, multiple execution plans are generated

for a given query, and then an estimated cost is computed for each plan. The query optimizer

chooses the plan with the lowest estimated cost.

2.4.1 Query Optimization and Execution in Data Warehousing

After the set of data sources has been selected for a given query, a key problem is to find the

optimal query execution plan for this query. A query execution plan is an imperative program

that specifies exactly how to evaluate the query. In particular, the plan specifies the order in

which to perform different operations in a query (join, selection, and projection), a specific

algorithm to use for each operation and the scheduling of different operators. Typically, the

optimizer selects a query execution plan by searching a space of possible plans and

comparing their estimated cost [Bennett et al 91]. To evaluate the cost of a query execution

plan the optimizer relies on extensive statistics about the underlying data, such as sizes of

relations, sizes of domains and selectivity of predicates. The query execution plan is passed to

the query execution engine, which evaluates the query. This problem is analogous to the

query optimization problem faced in database systems, except that it is more complicated in

Data Warehousing because [Bennett et al 91]:

1) Since the sources are autonomous, the optimizer may have no statistics about the sources

or have unreliable ones. Therefore, the optimizer cannot compare between different plans

because their costs cannot be estimated.

2) The data sources are not necessarily database systems, the sources may appear to have

different processing capabilities. For example, one data source may be a Web interface to a

legacy information system, while the other may be a program that scans data stored in a

structured file (for example bibliography entries). Therefore, the query optimizer needs to

consider the possibility of exploiting query processing capabilities of a data source. Note that

query optimizers in distributed data warehouse systems also evaluate which parts of the query

should be executed, but in a context when the different processors have identical capabilities.

13

3) In a data warehouse system, data is often transferred over a Wide Area Network (WAN)

and hence delays may occur for many reasons as opposed to traditional system where the

optimizer can reliably estimate the time to transfer data from the disk to the main memory.

Therefore, even a plan that appears to be the best based on cost estimates may turn out to be

inefficient if there are unexpected delays in transferring data from one of the sources accessed

early in the plan.

2.5 Data Warehouse Partitioning

The size of a data warehouse varies, but they are typically quite large because of volumes of

historical data (measured in terabytes) [Boehnlein and Ende 99]. To deal with this issue it is

vital to consider data partitioning in the data architecture.

Partitioning is the process of dividing a relation into fragments which contain sufficient

information to reconstruct the relation back to its original status. It is an important aspect of

physical database design that has significant impact on performance and manageability

[Bellatreche et al 06], In a data warehouse, issues surrounding partitioning do not focus on

whether partitioning should be done, but rather how it should be done. Partitioning data

allows data to grow and to be easily managed.

Generally speaking, proper partitioning can benefit a data warehouse in several ways:

• Loading data

• Accessing data

• Archiving data

• Deleting data

• Monitoring data

• Storing data

The purpose of partitioning data is to break data up into small fragments because operation

staff and the designer can manage small physical units of data better than large ones. Some of

14

the tasks that can easily be performed when data resides in small fragment units includes

restructuring, indexing, sequential scanning, reorganization, recovery, monitoring, etc.

Data can be partitioned by criteria, such as date, line of business, geography, organizational

unit, etc. There are two main types of partitioning, vertical and horizontal. However, vertical

and horizontal partitions can be mixed and fragments may be successively fragmented to an

arbitrary depth.

Like indexes and materialized views, both kinds of partitioning can significantly impact the

performance of the queries by reducing cost of accessing and processing data.

2.5.1 Vertical Partitioning

Vertical partitioning (VP) allows a table to be partitioned into disjoint sets of columns. It is

the process that divides a relation into fragments called vertical fragments containing subsets

of the original attributes. It allows tuples to be split so that each part of the tuple is stored

where it is most frequently accessed. It also allows parallel processing on a relation.

2.5.2 Horizontal Partitioning

Horizontal partitioning (HP) is the process that divides a global relation into subsets of tuples

called horizontal fragments. It allows parallel execution of On-Line Analytical Processing

(OLAP) queries on fragments of a relation and allows a relation to be split so that tuples are

located where they are most frequently accessed. HP aims to reduce irrelevant data access

during query processing [Bellatreche 08], [Ozsu and Valduriez 1999],

Horizontal partitioning is an important aspect of physical database design that has significant

impact on performance and manageability. Two versions of HP are cited by researchers [Ceri

and Pelagatti]: primary HP and derived HP. Primary HP of a relation is performed using

predicates that are defined on that relation. On the other hand, derived HP is the partitioning

of a relation that results from predicates defined on any other relation.

15

DBAs today also use horizontal partitioning extensively to make database servers easier to

manage. If the indexes and the underlying tables are partitioned identically, database

operations such as backup and recovery become much easier. Therefore, there is a need to

incorporate manageability while arriving at the right physical design for data warehouses.

2.6 Summary

This chapter reviewed some basic concepts related to distributed databases and data

warehousing that will be extensively used in this work.

Chapter 3 presents different data modelling techniques employed in data warehousing

environment and explores how data modelling is important in enabling relational data

warehouses to efficiently handle on-line processing.

16

Chapter 3

Data Warehouse Data Models and Architecture

3.1 Introduction

Data warehouse modelling is a very important stage in the data warehousing process. It

provides necessary information for designing and implementing the data warehouse and

defining its functions.

Data warehouse modelling is a process that produces abstract data models for one or more

database components of the data warehouse. It is one part of the overall data warehouse

development process that comprises other processes such as data warehouse architecture and

design with the aim of producing an abstract model representing the reality which the data

warehouse is intending to support and interact with.

The data model for a data warehouse should be designed to structure the data in a manner that

could efficiently handle the (OLAP) queries. There are two techniques for modelling the data

warehouse: the dimensional data model and the relational data model [Ballard et al 98],

These two modelling techniques provide a broader view of data to support and facilitate the

OLAP applications.

The schema proposed for physical structures of the relational data warehouse model is the

star schema [Kimball 96], The following sections discuss the relational data warehouse

modelling and schema definitions in detail.

3.2 Data Warehouse Modelling

In the process of building a data warehouse, modelling is an important step prior to the data

warehouse implementation. Although the models in the data sources may vary, the data

warehouse itself must use a single consistent model that accommodates the needs of users

[Richardo 04]. Two data modelling techniques being used in a data warehousing

environment, despite of their variations in terms of semantic representation are entity-

17

relationship (ER) modelling and dimensional modelling. ER modelling produces a data

model using three basic concepts: entities, attributes and relationships among entities. ER

modelling is a tool for representing conceptual data and primarily focus on eliminating data

redundancy and keeping consistency among the different data sources and applications. It is a

transaction based modelling tool that is mainly used to design a data model for relational

databases [Ballard et al 98], However, dimensional modelling is a tool that is used for

designing data warehouses on top of a pre-existing database and focuses on the subject area

data rather than on transactions. Both of the two modelling techniques, ER and dimensional

modelling, has their own strengths and weaknesses, and each of them can be used in the

appropriate situation. The distributed data warehouse design presented in this research is

based on the dimensional data model.

The importance of data modelling in a data warehouse could be highlighted through the

following points:

• A data model should represent the real world, because it is an abstraction and

reflection of the real world. Actually, data is nothing but a simple representation of all

business activities, resources, and facts of the organization. Thus, the data model is a

well-organized abstraction of the data it reflects the structure, functionality, and work

flow of the data. Through the data model, we have the ability to visualize the

relationship between the warehouse data so that these data can be used in higher

efficiency.

• A single, well-integrated, and easy to understand data model of the data warehouse is

crucial because the data warehouse integrates data being gathered from multiple

autonomous and heterogeneous data sources with different data structures.

• Data modelling step could be considered as a guideline to implement the data

warehouse. Consolidating the data models of each business area before real

implementation can help in reducing the cost of implementation.

3.2.1 Dimensional Data Modelling

Dimensional modelling is a technique for conceptualizing and visualizing data models as a

set of measures that are described by common aspects of the business. It is especially used for

18

summarizing and rearranging the data and presenting views of the data to support data

analysis [Ballard et al 98],

Particularly, dimensional modelling focuses on numeric data, such as values, counts and cost

[Richardo 04]. While conventional database modelling uses transactions/functions such as

automating stock control, calculating VAT, etc, the dimensional data modelling uses numeric

data to aggregate facts to answer the queries, such as, why a state agent selling is going down

(Question) for properties (Subject). So the sales of properties make the fact which is

influenced by features (dimensions) of the properties, such as location, time, etc.

Dimensional data modelling has three basic concepts: facts, dimensions, and measures. A fact

is a collection of related data items, consisting of measures and context data. Fact units and

their values are referred to as measures. In a data warehouse, facts are implemented in the

core tables in which all of the numeric data is stored. Dimensions are single perspectives on

the data that determines the granularity (data detail level) to be adopted for fact representation

3.2.2 Dimensional Data Modelling for Multidimensional Data Analysis

Multidimensional analysis allows decision makers to efficiently and effectively use data

analysis tools, which mainly depend on multidimensional structures of a data warehouse

[Mazon et al 08], The data models for designing traditional OLTP systems are not well suited

for modelling complex queries in data warehousing environment. This is because, in data

warehousing queries tend to use joins on more tables and have a much more computation

time than that in OLTP systems. This kind of processing environment requires a new

perspective to data modelling. The dimensional data modelling proved to be the suitable

model for OLAP applications because it provides a way to aggregate facts along multiple

attributes, called dimensions [Agrwal et al 97], [Mohania et al 00] .

In the dimensional model, data could be thought of as residing in a multidimensional matrix

called a data cube [Boehnlein and Ende 99]. OLAP tools provide an environment for decision

making and business modelling activities by supporting ad-hoc queries. There are two ways

to implement dimensional data model.

1. By using the underlying relational architecture and

2. By using a true multidimensional data structures like arrays.

19

Multidimensional analysis requires a data model that will enable the data to easily and

quickly be viewed from many possible perspectives, or dimensions. It enables users to look at

a large number of interdependent factors involved in a business problem and to view the data

in complex relationships which can be analyzed through an iterative process that includes

drilling down to lower levels of detail or rolling up to higher levels of summarization and

aggregation. That is, rather than submitting multiple queries, data is structured to enable fast

and easy access to answers for typically asked questions. For example, the data would be

structured to include answers to the question, How much of each of our products was sold on

a particular day, by a particular sales person, in a particular store? Each separate part of that

query represents a dimension.

Figure 3.1 shows a three-dimensional data cube called sales. The basis of the

multidimensional data model [Wiese 05] is rooted in the difference between qualifying and

quantifying data that are reflected by two key concepts: dimensions and measures.

Dimensions in dimensional models serve for the unambiguous, orthogonal structuring of the

data space and describe different ways of looking at the information (e.g. time, database

objects and workload).

The intersection of dimensions acts as an index and identifies the data points the analysts

intend to analyze, the so-called measures.

In contrast to the descriptive, textual and qualifying dimension attributes, the fact attributes

are mostly numerical, additive and quantifying information.

Pharmacy

Grocery

Dairy

120 185 253

131 47 150

120 45 73

Store 1 Store 2 Store 3

------ Sept

- Aug

- July

June

Figure 3.1: Sales Data Cube

20

3.3 Data Warehouse Schema

The data warehouse schema design was introduced by Kimball [Kimball et al 98]. The basic

principle behind is building a de-normalized data structure to improve database performance

for OLAP applications.

The data warehouse schemas are physical database structures that store quantitative or factual

data about the organization in large central tables surrounded by a group of smaller tables that

describe the dimension of the organization [Chaudhuri and Dayal 97], [Shoshani 97].

There are two basic models that can be used in dimensional modelling: star schema model

and snowflake schema model. The star schema is widely used in data warehousing as the

basic structure for dimensional modelling. Typically, it has one large central table of raw

data, called the fact table that stores un-aggregated observed data, and has some attributes

that represent dimensions, and other dependent attributes that are of interest. Each dimension

is represented by its own table, and the dimension tables can be thought of as the points of the

star whose centre is the fact table. In contrast, the snowflake model is actually the result of

normalizing one or more of the dimensions of the star model causing the dimension tables

themselves to have dimensions.

Figures 3.2 and 3.3 below show an example for star model and snowflake model in

dimensional modelling quoted from [Richardo 04].

Figure 3.2: A Star Model (Quoted from [Richardo 04])

21

The primary justification for using the star schema is performance and understandability. The

simplicity of the star schema has been one of its attractions [Bekrid et al 08], Data in a multi

dimensional database is stored as business people view it, allowing them to slice and dice the

data to answer business questions. When star schema is designed correctly, an OLAP

database will provide must faster response times for analytical queries.

Figure 3.3: Snowflake Model (Quoted from [Richardo 04])

Definition 1 (Data Warehouse Schema):

Data warehouse schema S is an ordered pair (£>, F) [Noaman and Barker 99], S = (D, F)

where:

D = {Di, D2,...,Dn). is a set of dimension relation schemas

F=(FIt F2, . , F,) is a set of fact relation schemas.

The data warehouse schema is a set of relation schemas. Two types of relation schemas are

available in data warehouse: Dimensions and Facts. The relationship between the fact relation

and dimension relations is one to many.

Definition 2 (De-normalization):

De-normalization is the process of re-joining relations in a careful way to introduce

controlled redundant data into already normalized relations, thereby improving database

performance.

22

The advantages of using de-normalization in building data warehouses are [Poe 96]:

1. Reducing the number of joined relations required to answer queries. As a result, the

run-time application is improved.

2. Mapping the physical database structure closely to the user queries thereby improving

the database performance.

The dimension relation represents the joining of more than one normalized relation from

legacy system. Clearly these are in at least 3rd NF to perform OLAP analysis that should be

“pre-joined” to enhance the performance of the OLAP queries.

3.4 Data Warehouse Architecture

Data warehouse architecture exhibits various layers of data in which data of each layer are

derived from the lower layer data. The proposed distributed data warehouse architecture

represents the classical solution for a large enterprise with various divisions and geographic

locations. It is based on the ANSI/SPARC architecture [Tsichritzis 78] that has three levels of

schemas: internal, conceptual and external.

Figure 3.4 illustrates typical data warehouse system architecture. It is a three-tiered

architecture consisting of (1) data sources layer (2) data warehouse layer (that includes

staging area, detail data, summarized data, data marts, and meta data) (3) end-user layer.

The following sections discuss these layers in detail [Noaman and Barker 99].

Data source layer is the origin of the data in the data warehouse. One feature of data

warehouses is integrating data from multiple autonomous and heterogeneous data sources.

Furthermore, warehouse data could come from either remote or local data sources. Such

arbitrary make challenges to data warehouse builders for creating a uniform repository to

store these multi-structure data, and designing an easy-understanding modelling language to

express the schemas of data sources and data warehouse repositories, and the transformations

between these schemas.

Data Warehouse layer is the central layer of the architecture. The global data warehouse

keeps a historical record of data that results from the transformation, integration, and

23

aggregation of detailed data found in the data sources. Usually, a data store of volatile, low

granularity data is used for the integration of data from the various sources.

The actual data warehouse is the database which contains the integrated collection of data

used to support strategic decision-making processes. It contains several components such as:

- Staging Area: Staging area keeps whole copies of the source data and brings them under the

control of the data warehouse administrator. Naturally, staging area stores heterogeneous data

and may contain duplicate and inconsistent data. Data in staging area is the direct source of

data in the data warehouse

- Detailed Data: Detailed data includes current detailed data and older detailed data [Inmon

00]. Far and away the current detailed data is the major concern of data warehousing. It is the

exact lowest level source of the information supporting DSS processing. Normally, data here

is stored in a singular, globally acceptable fashion. From the staging area to the detail data

repository, data need to be extracted, cleaned, transformed, loaded and integrated. Such

activities are the main processes of data warehousing

- Summarized Data: Summarized data is the data that is distilled from the low level detail

data. It is divided into two levels, lightly and highly summarized data. Both of these could be

treated as virtual or materialized views over the detailed data or other views. Mostly, DSS

processing is based on these views.

- Data Marts: Data warehouse users have different information requirements from different

departments. Data flows from the data warehouse to various departments for their customized

DSS usage. These departmental DSS databases are called data marts. A data mart is actually

a body of DSS data for a department that has an architectural foundation of a data warehouse

[Inmon 00].

- Meta-Data: Meta-data plays a special and very important role in the data warehouse and

serves as a roadmap that provides a trace of all design choices and a history of changes

performed on its architecture and components [Inmon 00]..

24

End-user applications layer is the interface used by data warehouse user to access

warehouse data. It contains a series of tools, such as OLAP servers, query applications,

analytic applications, data mining tools, and so on.

The conceptual architecture of a data warehousing system shown in figure 3.4, describes the

proposed data warehouse architecture used in this work. It presents the functionality of its

components and how the information flows in the distributed data warehouse environment.

Data Sources Data Warehouse Application tools Front-end Tools

User
Interfaces

Figure 3.4: Data warehouse architecture

3.5 Summary

In addition to the benefit of visualization, the data model plays the role of a guideline, or

plan, to implement the data warehouse. Traditionally, ER modelling has primarily focused on

eliminating data redundancy and keeping consistency among the different data sources and

applications. Consolidating the data models of each business area before the real

implementation can help assure that the result will be an effective data warehouse and can

help reduce the cost of implementation.

ER and dimensional modelling, although related, are different from each other. There can be

no definite answer on which is best, but there are guidelines on which would be the better

selection in a particular set of circumstances or in a particular environment.

25

In this chapter, the importance of data modelling in a data warehousing environment has been

highlighted and some analytical modeling techniques used in data warehousing have been

presented.

Because physical schema design is one of the major factors that affect the performance of

query processing in data warehousing environment, in the next chapter, the data warehouse

physical design will be reviewed and defined as an optimization problem requiring solutions

to several interrelated problems.

26

Chapter 4

Distributed Data Warehouse Design

4.1 Introduction

A data warehouse is a repository of data that has been extracted and integrated from

heterogeneous and autonomous distributed sources. DWs stores large volumes of data used

for decision support applications and usually owned by centrally coordinated organizations to

process a more complex OLAP queries.

Data warehouses are constructed in a heuristic manner, where one phase of development

depends entirely on the results attained from the previous phase. First, one portion of data is

populated. It is then used and examined by the DSS analyst. Next, the data is modified and/or

other data is added. Then another portion of the data warehouse is built, and so forth. This

loop continues throughout the entire life of the data warehouse.

Therefore, data warehouses cannot be designed the same way as the classical requirements-

driven system. On the other hand, anticipating requirements is still important. Design begins

with the considerations of placing data in the data warehouse. There are many considerations

to be made concerning the placement of data into the data warehouse from the operational

environment.

When the existing operational applications were constructed, no thought was given to

possible future integration. Each application had its own set of unique and private

requirements. It is no surprise, then, that some of the same data exists in various places with

different names or some data is labeled the same way in different places, or all data is in the

same place with the same name but reflects a different measurement, and so on.

Pulling the data into the data warehouse without integrating it is a grave mistake. However,

extracting data from many places and integrating it into a unified picture is a complex

problem.

27

In data warehousing approach (also known as an eager or in-advance approach for data

integration), information from each source that may be of interest is extracted in advance,

translated and filtered as appropriate, merged with relevant information from other sources,

and stored in a (logically) centralized repository. When a query is posed, the query is

evaluated directly at the repository, without accessing the original information sources.

Therefore, in this approach, the integrated information is available for immediate querying

and analysis by clients. Thus, the warehousing approach is appropriate for [Widom 95]:

• Clients who require specific, mostly predictable portions of the available information.

• Clients who require high query performance (the data is available locally at the

warehouse), but not necessarily requiring the most recent state of the information.

• Environments in which native applications at the information sources require high

performance (large multi-source queries are executed at the warehouse instead)

• Clients wanting access to private copies of the information so that it can be modified,

annotated, summarized, and so on, or clients wanting to save information that is not

maintained at the sources (such as historical information).

The main characteristics of data warehouses are: their data complexity due to the presence of

historical cascade of data, the huge amount of data, and the complexity of their queries due to

the presence of join and aggregate operations.

4.2 Data Warehouse Functions

The main function of a data warehouse is providing data to support DSS processing.

Additional data warehouse functionalities could include the following1:

1 To perform as a server whose tasks are associated with querying and reporting on the data

not used by transaction processing systems.

2 To use data models and/or server technologies that speed up querying and reporting the

data that are not appropriate for transaction processing.

http://www.dwinfocenter.org/casefor.htmli

28

http://www.dwinfocenter.org/casefor.html

3 To provide a means to speed up the writing and maintaining of the querying and reporting

data.

4 To provide an area for cleaning transaction processing data and making them appropriate

to the requirement of DSS processing.

5 To make it easier, on a regular basis, to query and report data from multiple transaction

processing systems, from external data sources, and from data that must be stored for

query/report purposes only.

6 To provide a repository of transaction processing system data that contains data from a

longer span of time which can efficiently be held in a transaction processing system, and

to be able to generate reports “as was” as of a previous point in time.

7 To prevent people who only need to query and report transaction processing system data

from having any access to maintain and update databases.

These functionalities contain the main consideration aspects of building a data warehouse,

and imply the architecture of data warehouses.

4.3 Distributed Data Warehouse Design Process and Techniques

The design of data warehouses is an optimization problem requiring solutions to several

interrelated problems that include: designing the conceptual schema of the integrated

database, mapping the conceptual schema to storage areas and determining appropriate access

methods i.e. designing the physical database, designing data fragmentation, designing the

allocation of fragments, and local optimization. Each problem phase can be solved with

several different approaches thereby making the design a difficult task.

The distributed data warehouse design involves making decisions on the fragmentation and

placement of data across the sites of a computer network. However, it is not possible to

determine the optimal fragmentation and allocation by solving the two problems

independently, since they are interrelated.

29

To fragment a set of relations, it is possible to use two basic techniques: horizontal and

vertical fragmentation [Ozsu and Valduriez, 99], which may be combined and applied in

many different ways to define the final fragmentation schema.

This chapter addresses the fragmentation phase of data warehouses. The author believes that,

by outputting good fragmentation schemas with improved performance, data allocation and

replication may then be carried out more efficiently, since the fragmentation schema will

adequately reflect appropriate units of distribution according to the application access

patterns, and thus may significantly reduce the search space of the allocation phase. However,

the generation of a good fragmentation schema of a data warehouse is a not an easy task,

because it is not yet a well-defined problem and it could take many parameters into account

with conflicting goals. However, the designer may concentrate on semantic relationships

leaving physical distribution design to the last phase.

The distributed data Warehouse design process consists of three phases: initial design,

redesign and materialization of the redesign [Bellatreche et al 99]. The initial design consists

of the fragmentation and allocation algorithms that minimize the total query processing cost

for a given set of transactions. The redesign problem consists of generating new

fragmentation and allocation schemes from current fragmentation and allocation schemes.

The materialization of redesign is accomplished by a sequence of operations to materialize

the new fragmentation and allocation scheme from the current design.

Efficient query processing is critical because the data warehouse is very large, queries are

often complex, and decision support applications typically require interactive response times.

Because physical schema design is one of the major factors that affects the performance of

query processing in data warehousing environment, our motivation is to study this effect.

A highly normalized schema offers superior performance and efficient storage where only a

few attributes are accessed by a particular query. The star schema [Noaman and Barkerl. 99]

provides similar benefits for data warehouses where most queries aggregate a large amount of
data.

Horizontal and vertical partitioning are important aspects of logical and physical database

designs that have significant impact on performance and manageability [Sanjay et al 04].

30

Both kinds of partitioning can significantly impact the performance of the queries executed

against the data warehouse system, by reducing cost of accessing and processing data.

Horizontal fragmentation of a relation is the partitioning of the relation based on the values of

its attributes such that each fragment contains only a subset of the tuples in this relation

[Ezeife 00]. To horizontally partition a relational data warehouse [Informix 97] several

choices of partitioning schemas are available for a star or snowflake schemas, examples of

some available partitioning scenarios are:

1. Partition only the dimension tables using simple predicates defined on these tables (a

simple predicate p is defined by: p : Ai 6 value, where Ai is an attribute, 6 & {=, <,

>,< , > }, and Value e Dom(H/)).

This scenario is not suitable for OLAP queries, because the sizes of dimension tables

are generally small compared to that of fact table. Most of OLAP queries access the

fact table, which is very huge. Therefore, any partitioning that does not take into

account the fact table is discarded.

2. Partition only the fact table using simple predicates defined on this table because it

normally contains millions of rows and is highly normalized. The fact relation stores

time-series factual data. It is composed of foreign keys and raw data. Each foreign key

references a primary key on one of the dimension relations. In a data warehouse

modelled by a star schema, most of OLAP queries access dimension tables first and

after that the fact table is accessed. This choice is also discarded.

3. Partition some/all dimension tables using their predicates, and then partition the fact

table based on the fragmentation schemas of dimension tables.

This study opted for the last solution for data warehouse partitioning because it takes

into consideration the star join queries requirements and the relationship between the

fact table and dimension tables (these queries impose restrictions on the dimension

values that are used for selecting specific facts, these facts are further grouped and

aggregated according to the user demands. The major bottleneck in evaluating such

31

queries has been the join of a large fact table with the surrounding dimension tables

[Sf'ohr et al 00]).

4.4 Distributed Data Warehouse Physical Design Problem

Physical design is the process to come up with proper structuring of data in storage so that

good performance is guaranteed. A highly normalized schema offers superior performance

and efficient storage where only a few records are accessed by a particular transaction. It is

not possible to come up with better physical schema unless prior knowledge of workload is

known. The information required should consist of the nature of queries and their expected

frequencies. For each query the following should be specified:

• The relations that will be accessed by the query.

• The attributes on which any selection predicates are specified.

• The attributes whose values will be retrieved by the query.

Distributed data warehouse design is concerned with optimizing the storage and allocation of

data with respect to most frequently executed queries on the warehouse.

4.4.1 Objectives of Distributed Data Warehouse Design

When designing a distributed data warehouse, the following objectives should be considered:

• Maximizing processing locality, this simply refers to the principle of placing data as

close as possible to the applications which use them.

• Maximizing the degree of parallelism of execution of applications by efficiently

distributing workload over the sites. However, it is necessary to consider the trade-off

between workload distribution and processing locality as the first could have an

adverse effect on the latter.

• Maximizing availability and reliability of distributed data achieved by storing

multiple copies of the same information

• Minimizing storage cost by considering the limitations of available storages at

different sites.

32

4.4.2 Approaches of Distributed Data Warehouse Design

Two alternative strategies that have been identified for data warehouse design are the top-

down and the bottom-up approaches. The top-down approach [Firestone 97] starts by

designing the global schema, designing the database fragmentation, and then allocating

fragments to the sites. In this approach the data is obtained from the primary sources every

time a query is executed. The bottom-up approach [Bellatreche et al 00], on the other hand, is

based on the integration of existing database schemas into a single, global schema by

aggregating existing databases. Integration refers to the process of merging common data

definitions and the resolution of conflicts among different representations given to the same

data. In this approach, the data is obtained from the primary sources based on the profile of

the likely to be executed queries, which are typically known in advance. These two

approaches are similar to lazy and eager approaches discussed in [Widom 95].

In the lazy approach, where information is extracted from the sources only when queries are

posed, the data integration problem is based on the following very general two-step process:

1. Accept a query, determine the appropriate set of information sources to answer the

query, and generate the appropriate sub-queries or commands for each information

source.

2. Obtain results from the information sources, perform appropriate translation, filtering,

and merging of the information, and return the final answer to the user or application.

On the other hand, the steps for the eager data integration approach which is commonly

referred to as data warehousing, since the repository serves as a warehouse storing the data of

interest, are as follows:

1. Information from each source that may be of interest is extracted in advance,

translated and filtered as appropriate, merged with relevant information from other

sources, and stored in a (logically) centralized repository.

2. When a query is posed, the query is evaluated directly at the repository, without

accessing the original information sources.

33

A lazy approach to integration is appropriate for information that changes rapidly, for users

with unpredictable needs, and for queries that operate over vast amounts of data from very

large numbers of information sources. The warehousing approach, on the other hand, is

appropriate for users requiring specific, mostly predictable portions of the available

information requiring high query performance (the data is available locally at the warehouse),

but not necessarily requiring the most recent state of the information [Boehnlein and Ende

99],

The top-down and the bottom-up approaches are both feasible design solutions to the data

integration problem, and each is appropriate for certain scenarios. In both approaches,

fragmentation [Ladjel 08] can play an important role, by fragmenting the data warehouse into

a number of fragments that can be used as a data allocation unit to sites. These fragments can

be allocated to sites so that most of the queries posed on a given site are executed locally,

thus, minimizing communication cost. This problem can be seen as data allocation problem

in distributed environment and will be discussed later in this thesis. The database research

community has focused primarily on top-down (lazy) approaches to integration. The

distributed data warehouse design proposed in this research is based on the bottom-up (eager)

design approach. This approach is based on the integration of the existing schemata into a

single global schema. The bottom-up approach is used in data warehousing because user

queries can be answered immediately and data analysis can be done efficiently since data will

always be available in the warehouse. Hence, this approach is feasible and improves the

performance of the system. There are two fundamental issues in the bottom-up design

approach: fragmentation and allocation. The problem of fragmentation and allocation has

been addressed for distributed relational database system [Ceri and Pelagatti 84] and the

distributed object database system [Ezeife and Barker 95]. Previous research work on

fragmentation and allocation for distributed relational database system has been based on

highly normalized relations.

In the data warehouse environment, the integrated data from different resources are modelled

into de-normalized relations to facilitate the on-line data analysis. The existing distributed

relational database design techniques for fragmentation will not work quite well for

distributed data warehouse because of the underlying model and also because of the

difference in the type of queries in both environments (quantitative in DDBs while they are

qualitative in Data warehouse environment).

34

The proposed design goal is to choose a configuration (a configuration is a valid set of

physical design structures that can be realized in a data warehouse), such that the

performance of a given workload Q is optimized, subject to a threshold constraint W

representing the maximum number of fragments manageable by the data warehouse

administrator. Figure 4.1 shows the physical design problem formulation.

Given a data warehouse D, a workload Q and a threshold

constraint W, find a fragmentation design configuration:

N = ft mj whose total fragments does not exceed the threshold W,
i= l

m
such that the total cost TC(Q) = £ Cost((2*) is minimized and the

k=l
response time for a given query workload is improved.

Figure 4.1: Physical Design Problem.

4.5 The Design Methodology

Several methodologies have been proposed for the initial design phase of the distributed data

warehouse design process. Some aspects of this initial design, such as vertical and horizontal

fragmentation, have been researched before. The purpose of fragmentation design is to

determine non-overlapping fragments which are proper starting point for the subsequent data

allocation problem. However, before going into the methodological aspects of distributed

data warehouse design let us present the different options of vertical and horizontal

partitioning scenarios that are possible.

Figure 4.2 shows a relation and different ways of partitioning a relation. Given a relation, the

subsets of its tuples form its horizontal fragments defined by its horizontal partitioning, the

subsets of its attribute columns form its vertical fragments defined by its vertical partitioning.

Vertical partitioning of each of the horizontal fragments gives rise to row biased fragments

and is known as HV partitioning. Horizontal partitioning of each of the vertical fragments

gives rise to column biased fragments and is known as VH partitioning.

35

Simultaneously applying vertical partitioning and horizontal partitioning on a relation gives

rise to what is known as mixed partitioning.

Relation Horizontal Partitioning

Mixed Partitioning

Figure 4.2: Different relation partitioning types

The main ideas of the design methodology are (1) to replicate the dimension relations across

the network and (2) to generate horizontal fragments of the fact relation. This is because the

size of the dimension relations are relatively small compared to the fact relation and since the

dimension relations are changing slowly [Bellatreche et al 06], the cost of updating the

replicas is relatively low.

There are two approaches for horizontal fragmentation: primary and derived [Ceri and

Pelagatti 84], [Ozsu and Valduriez 99]. In the first approach, applying the primary horizontal

fragmentation requires a set of simple predicates used in OLAP queries against the fact

relation that represents the numerical measurements of the organization. The queries perform

arithmetic operations on the fact relation such as summarization, aggregation, average and so
forth.

36

However, it is unlikely that a set of simple predicates for the fact relation could be

determined from these OLAP queries. Therefore, the primary horizontal fragmentation

approach could not be applied on the fact relation.

The other approach is to apply the derived horizontal fragmentation on the fact relation. This

approach derives the horizontal fragments of the fact relation from the predicates that are

defined on all the dimension relations. In this work, derived horizontal fragmentation

approach has been used to obtain our horizontal fragments of the fact relation.

4.6 Data Warehouse Partitioning

To discuss horizontal partitioning of a data warehouse that has been modelled using star

schema, let’s consider the following definitions.

Definition 1 (Distributed Join)

Distributed join [Ceri et al 82] is a join between horizontally partitioned relations. When

application requires the join between two relations R and S, all the tuples of R and S need to

be compared, thus comparing all fragments of relation R with all fragments of relation S.

A distributed join between two relations R and S can be represented by a graph called join

graph. The nodes of this graph represent the fragments of R and S. An edge between nodes

exists if these nodes are joinable.

Definition 2 (Total Join Graph)

A join graph is called total [Ceri and Pelagatti 84] when it contains all possible edges

between fragments of R and S. A join graph is partitioned if it is composed of two or more

sub-graphs without edges between them. A join graph is simple if it is partitioned and each

sub-graph has just one edge.

Determining that a join has a simple join graph is very important in database design [Ceri and

Pelagatti 84], The simple join graph concept has a great advantage in optimizing selection

and joins operation by providing partition elimination [Oracle Corp. 99]. Partition elimination

occurs when the database optimizer determines that some of the table fragments are

unnecessary to satisfy the query execution.

37

4.6.1 Partitioning a Star Schema

The proposed algorithm considers fragmenting a star schema with one fact table F and D

dimension tables. The algorithm partitions the dimension table and then uses its fragment

schema to partition the fact table. To partition a dimension table, an algorithm that uses

quantitative and qualitative [Ozsu and P. Valduriez 99] information about applications is

used. Quantitative information describes the selectivity factors and the frequency of each

query accessing this table. Qualitative information describes selection predicates defined on

these dimension tables.

A simple predicate p is defined as:- p : Ai 6 value, where Ai is an attribute, 6 e {=, < , < > , >

and value e Dom (Ai).

4.6.2 The Horizontal Fragmentation Algorithm for the Fact Relation

The input to the proposed algorithm are set of dimension tables D - { Dj,, Dd} and one

fact table F and a set of most frequently executed OLAP queries: Q - { Q u Qn} with their

frequencies. The algorithm consists of some major steps to generate the horizontal fragments

of the fact relations. These steps are:

1. Name all simple predicates used by OLAP queries Q = {Qi, Qn}.

2. Assign to each dimension table A (1 ^ <¿0 its set of simple predicates SSP°'.

3. Each dimension table D\ having SSPD‘ = 0 can not be fragmented. Let Dccmdidaie be the

set of all dimension tables that do not have empty SSP°1' Let g be the cardinality of

Dcandidate.

4. Apply the COMM_MIN algorithm [Ozsu and Valduriez 99] to the simple predicate of

each dimension table D\ 0f Dcandidate. This algorithm takes a set of simple predicates and

then generates a set of complete and minimal predicates. The rule of completeness

and minimality states that “a relation which is partitioned into at least two fragments

should be accessed differently by at least one application”.

38

5. Apply the primary horizontal fragmentation algorithm, presented in [Ceri et al 82],

[Ozsu and Valduriez 99] on each dimension relation. The algorithm generates the set

of minterm predicates for each dimension relation along with the set of implications

defined on each dimension.

6. After fragmentation process, each dimension table A of Dcandidate will have m,

fragments {Du, Da, Dimi}, where each fragment Ay is defined as follows:

D,y = oclj(Di) with clj (1 < i < g, \ < j < mi) represents a clause of simple

predicates.

7. Derive the fragments of the fact table using the fragmentation schemas of the

dimension tables.

The number of the fact table fragments is equal to: N = rf m,.
i=l

Therefore, the star schema S is decomposed into N sub-star schemas {Si, S2, ---Sn}, where

each one satisfies a clause of predicates.

Generally, when the derived HP is used for partitioning a table in a database schema, two

potential cases of joins exist (simple and partitioned). In the DW context, when the fact table

is horizontally partitioned based on the dimension tables, we will never have a partitioned

join (i.e. the case where a HF of the fact table has to be joined with more than one HF of the

same dimension table will not occur). A simple join operation (see figure 4.3) has three

advantages [Bellatreche et al. 99]:

• It avoids costly total distributed join of fact table F with each and every HF Ay (1

< i < mi) of each and every dimension table A,-. •

• It guarantees the elimination of some partitions from join and selection. For

example, if the fact table SALES has been partitioned into 12 fragments (using the

attribute Month of the dimension table TIME), the system can satisfy a query that

asks for only last two months of data by processing only 2 of 12 fragments.

39

• It facilitates parallel processing of multiple simple joins (each HF Fi of the fact

table joins with exactly one HF A* of Dj).

Partitioned start schema with simple joins

Figure 4.3: Simple join in Star Schema

4.7 Summary

The design of data warehouses is an optimization problem requiring solutions to several

interrelated problems of data fragmentation and allocation that include: designing the

conceptual schema of the integrated database, mapping the conceptual schema to storage

areas and determining appropriate access methods.

In this chapter we have discussed different approaches for distributed data Warehouse design

and studied the problem of partitioning the data warehouse when data is modelled using star

schema. The chapter presented construction techniques for the design of data warehouse

physical structures that can optimize performance of a given workload searching for an

optimal fragmentation schema using quantitative and qualitative information of applications.

This work presents a framework to handle the fragmentation problem during the design of

distributed data warehouses. The framework works in the conceptual level, and thus uses the

40

relational data model to capture the application semantics represented by the user and

addressing the needs mentioned by [Ozsu and Valduriez 99].

The next chapter will discuss different horizontal and vertical partitioning algorithms that

have been proposed in the literature to handle horizontal and vertical fragmentation problem

during the design of distributed databases.

41

Chapter 5

Related Research and Developments

5.1 Introduction

Distributed and parallel processing is an efficient way of improving performance of database

management systems (DBMSs) and applications that manipulate large volumes of data. Such

improvement comes from limiting queries to data that are relevant to their respective

transactions. This is one of the main design goals of distributed databases according to [Ozsu

and Valduriez 99].

The primary concern of DBMS design is the fragmentation and allocation of the underlying

database. The distribution of data across various sites of computer networks involves making

proper fragmentation and placement decisions. The first phase of distribution in a top-down

approach is fragmentation which clusters information into fragments for simultaneous access

by applications. This process is followed by the allocation phase which distributes, and if

necessary, replicates the generated fragments among the nodes of a computer network. The

use of data fragmentation to improve performance is not new and commonly appears in file

design and optimization literature.

Partitioning based on attributes has been studied earlier in [Babad 77], [Baiao 01], [Hoffer

76], [Navathe et al 84], Stocker and Deamley discussed implementation of a self

reorganizing DBMS that carries out attribute clustering [Stocker and Deamley 73]. They

showed that it is beneficial to cluster attributes of a database where storage cost is low

compared to the cost of accessing subfiles. Such is the case because increases in storage costs

will be offset by savings in access cost. Hoffer developed a non-linear, zero-one program

which minimizes a linear combination of the costs of: storing, retrieving and updating, with

capacity constraints for each file [Hoffer 76]. Navathe et al used a two-step approach for

vertical partitioning. In the first step, they used the given input parameters in the form of an

Attribute Usage Matrix (AUM) to construct an Attribute Affinity Matrix (AAM) for

clustering [Navathe et al 84]. After clustering, an empirical objective function is used to

42

perform binary partitioning iteratively. In the second step, estimated storage cost factors are

considered for further refinement of the partitioning process. Further details about AUM and

AAM matrices will be provided in the next paragraph.

Cornell and Yu extended Navathe et al approach to decrease the number of disk accesses for

optimal binary partitioning [Cornell and Yu 87], Their extension involved specific physical

factors such as: the number of attributes, their length and selectivity, the cardinality of the

relation and so on. Navathe and Ra developed a new algorithm that follows graph theory

partitioning techniques [Navathe and Ra 89], Their algorithm starts from the AAM matrix,

which is transformed into a graph called the Affinity Graph (AG). An edge in AG is labeled

with a weight that represents the affinity between its vertices, where: vertices represent

attributes, affinity between vertices represents the number of queries in which the attributes

occurred simultaneously. For the interest of clarity of presentation we will define what an

AAM matrix is. For more details, interested readers are referred to reference [Navathe et al

84], Basically, an n x n AAM matrix is one whose AAM(/, j) entry represents the number of

queries that simultaneously access the attributes represented by i and j. Based on the AAM,

an iterative binary partitioning method has been proposed in [Cornell and Yu 87] and

[Navathe et al 84], The authors first clustered the attributes and then applied empirical

objective functions and/or mathematical cost functions to perform fragmentation.

5.1 Horizontal Partitioning Algorithms

Although, a lot of work has been done on the partitioning in relational [Ceri and Pelagatti 84],

[Ceri et al 82], [Ozsu and Valduriez 99] and object models [Bellatreche et al 00] but not that

much work has been done on horizontal partitioning in relational data warehouses. Ceri,

Nergi and Pelagatti [Ceri et al 82] show that the main optimization parameter needed for

horizontal fragmentation is the number of accesses performed by the application programs to

different portions of data (file of records). They define applications in terms of boolean

predicates and use access pattern information to achieve the design. Predicates are collected

into sets of minterms which form the horizontal fragments. Navathe, Karlapalem and Ra

[Navathe et al 90] define a scheme for simultaneously applying the horizontal and vertical

fragmentation on a relation to produce a grid. A technique similar to the vertical

fragmentation schemes discussed in [Navathe and Ra 89], In 1991, Shin and Irani partition

43

relations horizontally based on estimated user reference clusters (URCs). URCs are estimated

from user queries but are refined using semantic knowledge of the relations, hi 1999,

Noaman et al proposed a construction technique of a distributed data warehouse by adapting

the work done by Ozsu and Valduriez, 99. Noaman et al suggested a horizontal fragmentation

algorithm of the fact table based on the fragmentation schemas of the dimension tables.

However, they neither took into account the number of fact table fragments, nor showed how

horizontal partitioning can be used to speed up query processing and how it can help in

fragment allocation. Sufficient effort has been extended to speed up the OLAP query

processing in DWs. Materialized views [Gupta and Mumick 95], advance indexes [O’Neil

and Quass 97], sampling and parallel computing technologies [Datta et al 98] are among the

techniques used to enhance DW performance. Ozsu and Valduriez [Ozsu and Valduriez 99]

define the database information needed for horizontal fragmentation of the universal relation

and show how the database relations are re-constructible using joins. In 1983, Ceri et al

model this relationship explicitly using directed links drawn between relations via equijoin

operations. The relation at the tail of the link is called the owner of the link and the relation at

the head of the link is the member. Primary horizontal fragmentation is performed on all

owner relations, while derived horizontal fragmentation is performed on all member relations

of links. In 2001, Kalnis and Papadias proposed an architecture for caching dynamically

generated results of OLAP queries in a network of cooperating cache servers. The authors

considered any horizontal fragmentation schema of the data cube as a candidate for caching.

In 2004, Sanjay et al suggested using horizontal and vertical partitioning as a part of the

physical database design. In 2004, Papadomanolakis and Ailamaki proposed an algorithm

called AutPart that automatically partition database tables by using prior knowledge of a

representative workload.

In 1994, Karlapalem et al identify some of the fragmentation issues in object base including:

How are subclasses of a fragment of a class handled? Which objects and attributes of the

objects are being accessed by the methods? What type of methods are considered: simple

methods that access a set of attributes values of an object or complex methods that access a

set of objects and instance variables?2 Further, they argue that a precise definition of the

processing semantics of the application is necessary. They did not present solutions for

horizontally fragmenting class objects but argue that techniques used by [Navathe et al 90]

They take complex methods as being synonymous with an application

44

for fragmenting relations could be applied. All these works neither did consider the data

partitioning selection problem nor did propose algorithms to solve it.

In this work we will consider that the data warehouse is partitioned using the star schema

[Kimball et al 98] which has two kinds of tables: dimension tables D = {Dj, D2, D,/}

where each table D, has a primary key K̂ »,, and a fact table F where it is primary key is

composed of the concatenation of the dimension tables keys.

To the best of the author’s knowledge, the proposed work is one of the first articles that

address the problem of selecting a partitioning schema in a relational data warehouse. It

proposes an algorithm that minimizes the query processing cost and time under the

maintenance threshold constraint representing the number of fragments that the warehouse

administrator can maintain.

5.2 Vertical Partitioning Algorithms

Vertical partitioning is the process that divides a relation into sub-relations called vertical

fragments, containing subsets of the original attributes [Chen and Su 96], [Niamir 78],

[Kittler 76],

Vertical partitioning is used during design of a database to enhance the performance of query

execution [Navathe et al 84], [Ma et al 06]. In order to obtain improved performance,

fragments must closely match the requirements of the query workload. The advantage of

vertical partitioning is that if query involves only few columns then unnecessary fetching of

other columns will be avoided. This saves the I/O bandwidth and avoids unnecessary

processing.

The input to most of the exisiting vertical partitioning algorithms is the Attribute Usage

Matrix (AUM). AUM is a matrix, which has attributes as columns, and queries as rows and

the accesses frequency of the queries as values in the matrix. The attribute usage matrix

represents the use of attributes in set of queries. Each row refers to one query, the 1 entry in a

column indicates that the query accesses the corresponding attributes. The attribute usage

matrix quoted from [Navathe et al 84] for 10 attributes and 8 queries is shown in Figure 5.1.

45

^ " \ A t t r i b u t e s

Queries

1 2 3 4 5 6 7 8 9 10 Access
Freq

Query 1 1 0 0 0 1 0 1 0 0 0 Accl=25

Query 2 0 1 1 0 0 0 0 1 1 0 Acc2=50

Query 3 0 0 0 1 0 1 0 0 0 1 Acc3=25

Query 4 0 1 0 0 0 0 1 1 0 0 Acc4=35

Query 5 1 1 1 0 1 0 1 1 1 0 Acc5=25

Query 6 1 0 0 0 1 0 0 0 0 0 Acc6=25

Query 7 0 0 1 0 0 0 0 0 1 0 Acc7=25

Query 8 0 0 1 1 0 1 0 0 1 1 Acc8=15

Figure 5.1: Attribute Usage Matrix (Taken from [Navathe et al 84])

Most of earlier data fragmentations algorithms use an Attribute Affinity Matrix (AAM)

derived from the AUM. An attribute affinity matrix (see Figure 5.2 quoted from [Navathe et

al 84]) is a matrix in which for each pair of attributes, the sum total of frequencies of queries

accessing that pair of attributes together is stored. Attribute affinity between attributes i and j

is defined as:

Affij = HkeT acch j

Where acckij is the number of accesses of query k referencing both attributes i and j. The

summation occurs over all queries that belong to the set of important queries T. This

definition of attribute affinity measures the strength of the bond between the two attributes,

predicated on the fact that attributes are used together by queries. Based on this definition of

attribute affinity, the attribute affinity matrix is defined as follows: It is an n x n matrix for

the n-attribute problem whose (i, j) element equals Affij.

A diagonal element AA(/, i) equals the sum of the elements in the attribute usage matrix for

the column which represents a , . This is reasonable since it shows the strength of that attribute

in terms of its use by all queries.

Most of the proposed vertical partitioning algorithms do not have a mechanism to evaluate

the “goodness” of partitions that they produce. The results of the different algorithms are

sometimes different even for the same attribute affinity matrix indicating that the objective

functions used by these algorithms are different.

46

Attributes 1 2 3 4 5 6 7 8 9 10

1 75 25 25 0 75 0 50 25 25 0
2 25 110 75 0 25 0 60 110 75 0
3 25 75 115 15 25 15 25 75 115 15
4 0 0 15 40 0 40 0 0 15 40
5 75 25 25 0 75 0 50 25 25 0
6 0 0 15 40 0 40 0 0 15 40
7 50 60 25 0 50 0 85 60 25 0
8 25 110 75 0 25 0 60 110 75 0
9 25 75 115 15 25 15 25 75 115 15

10 0 0 15 40 0 40 0 0 15 40

Figure 5.2: Attribute Affinity Matrix (Taken from [Navathe et al 84])

Some approaches that handled vertical fragmentation problem during the design of distributed

databases are: Bond Energy Algorithm (BEA) [Hoffer and Severance 75] which used to group

the attributes of a relation based on the attribute affinity values in AAM. This algorithm takes as

input the attribute affinity matrix, permutes its rows and columns, and generates a Clustered

Affinity Matrix (CAM). Generation of the clustered affinity matrix is done in three steps:

initialization, iteration and row ordering. BEA is considered appropriate because the AAM is

symmetric and the final groupings are insensitive to the order in which items are presented to the

algorithm. Binary vertical partitioning algorithm [Navathe et al 84] extended the results of

[Hoffer and Severance 75] by giving algorithms to quantitatively cluster the attributes together

and taking into account blocks of attributes with similar properties. The binary vertical

partitioning algorithm uses the clustered affinity matrix to partition an object into two non

overlapping fragments. The approach of this algorithm is splitting rather than grouping with the

objective of finding sets of attributes that are accessed mostly by distinct set of applications.

Navathe and Ra have developed a new Graph-based vertical partitioning algorithm based on a

graphical technique [Navathe and Ra 89], This algorithm starts from the attribute affinity matrix

by considering it as a complete graph called the “affinity graph” in which an edge value

represents the affinity between the two attributes, and then forms a linearly connected spanning

tree. The algorithm generates all meaningful fragments in a single iteration by considering a

cycle as a fragment. In this algorithm, a linearly connected tree that has only two ends is

constructed by including one edge at a time such that only edges at the “first” and the “last” node

of the tree would be considered for inclusion. Then “affinity cycles” are formed in this spanning

tree by including the edges of high affinity value around the nodes and “growing” these cycles as

47

large as possible. After the cycles are formed, partitions are easily generated by cutting the

cycles apart along “cut-edges”. The major disadvantage of this algorithm is the relative

complexity involved in implementation. Figure 5.3 shows the affinity graph corresponding to the

affinity matrix of figure 5.2.

Figure 5.3: Affinity Graph (Taken from [Navathe et al 84])

All these Algorithms use the attribute affinity matrix formed from the attribute usage matrix.

Attribute affinity, measures the bond between two attributes of a relation according to how they

are accessed by applications. Apart from the workload characteristics of queries we must also

take into account their expected frequency of invocation. This frequency information along with

the attribute information of each query can be used to compute a cumulative statistics of

expected access frequency for all the queries. This is expressed as the expected frequency of

accessing each attribute in each relation in a selection predicate over all the queries.

5.3 Limitations of the presented Vertical Portioning Algorithms

I believe that the partitioning suggested in the aforementioned vertical partitioning algorithms

suffers from the following disadvantages:

48

1) The database designer has to wait until enough data is collected on the frequencies of

queries. Hence, the partitioning is not applicable to a newly designed database and its

distribution among various sites of an organization requires another approach.

2) The frequency of queries may be a function of many variables including time, users,

and future plans which may call for additional sets of attributes.

3) The bond used to group attributes in a partition is the access frequency, which is of

dynamic nature, hence, partitions may not be valid all the time.

Based on the third point above, the author decided to call the frequency based partitioning a

dynamic partitioning versus the static partitioning proposed in chapter seven of this thesis.

5.4 Summary

In this chapter, we have presented different approaches that handle horizontal and vertical

fragmentation problem during the design of distributed databases by assessing different

horizontal and vertical partitioning algorithms. We have studied and compared some vertical

partitioning algorithms like bond energy algorithm, binary vertical partitioning algorithm and

graph based vertical partitioning algorithm and identified the problems and limitations

associated with these algorithms.

In the next chapter an enhancement to the graph algorithm presented in this chapter will be

proposed by adopting a grouping algorithm that uses two factors to improve the resulting

partitions. The author will verify that different fragmentation algorithms can come-up with

the different fragmentation results with varying performance efficiency measures.

49

Chapter 6

Proposed New Grouping Approach to Enhance Graph
Based Vertical Partitioning Algorithms

6.1 Introduction

Distribution design involves making decisions on the fragmentation and allocation of data

across the sites of a computer network. Vertical partitioning is the process of subdividing the

attributes of a relation to generate fragments. In this chapter, a new vertical partitioning

algorithm is proposed. The algorithm uses grouping approach to enhance the previously

discussed graph based vertical partitioning algorithms.

In the proposed grouping vertical partitioning algorithm the author explores how vertical

partitioning is an important aspect of physical design in relational warehouse database system

that has a significant impact on performance. This study addresses the vertical partitioning

problem in distributed warehouse database systems during the design phase of distribution. It

starts from where previously proposed vertical partitioning algorithms have been stopped by

providing solutions and enhancements to the Graph-Based Partitioning Algorithm of Navathe

& Ra [Navathe & Ra 89] with regard to database performance. The proposed algorithm starts

from the attribute affinity matrix [Ozsu and Valduriez 99] and generates initial groups based

on the affinity values between attributes. Then, it attempts to merge the initial groups to

produce final groups that will represent the fragments.

6.2 The Enhanced Grouping Algorithm

Before start describing the algorithm, some necessary terms that will be used in the rest of

this chapter need to be defined.

6.2.1 Definitions

The following notations and terminologies in the description of the algorithm will be used.

• a/, ci2 , an: denotes attributes.

• Independent Attribute: refers to the attribute that has not been joined to any group.

• Max(Aff): refers to the maximum affinity value between two attributes / and j.

50

• P(gk)'- denotes power of a group k.

• P(A): denotes power of the attribute which is the affinity of the attribute to itself aff{i,i).

• MinMerge: refers to the difference between the group power value before and after

merging.

• Attributes Link Factor (ALF): A factor to avoid having poor grouping between two (or

more) attributes.

• Groups Link Factor (GLF): A factor to avoid having poor grouping between two

groups.

• “Best extension refers to the extension that has maximum affinity value and

minimum MinMerge value and connects attribute A, in group k to Aj (whether

independent or not). If independent check whether aff[i,j) >P(gk)*GLF/l00 is true. But

if AjeP(g\) then check if condition P (gi) >P (g/J * GLF/100 is true.

6.2.2 Description of the Proposed Algorithm

The algorithm starts from the Attribute Affinity Matrix (AAM) generated from the Attribute

Usage Matrix (AUM) by considering it as a complete group. Figures 6.1 and 6.2 show AUM

and AAM of [Navathe et al 84] for a relation containing 10 attributes and 8 queries.

Attribute affinity between attributes i and j with respect to the set of queries Q = {qi,q2, ■■■,qQ}

is defined as: Aff0= Dkeg aCC^

Where a cc ^ is the number of accesses of query k referencing both attributes i and j.

^\^Attributes
Queries

ai a2 as a4 a5 a6 a7 a8 ag aio Access
Freq

Query 1 1 0 0 0 l 0 l 0 0 0 Accl=25
Query 2 0 l l 0 0 0 0 l 1 0 Acc2=50
Query 3 0 0 0 l 0 1 0 0 0 l Acc3=25
Query 4 0 1 0 0 0 0 l l 0 0 Acc4=35
Query 5 1 1 l 0 1 0 l l 1 0 Acc5=25
Query 6 1 0 0 0 1 0 0 0 0 0 Acc6=25
Query 7 0 0 l 0 0 0 0 0 1 0 Acc7=25
Query 8 0 0 l l 0 1 0 0 1 1 Acc8=15

Figure-6.1. Attribute Usage Matrix (Taken from [Navathe et al 84])

51

Attributes a, a2 as a4 as as a7 as a9 aio

ai 75 25 25 0 75 0 50 25 25 0

a2 25 110 75 0 25 0 60 110 75 0

a3 25 75 115 15 25 15 25 75 115 15

a4 0 0 15 40 0 40 0 0 15 40

as 75 25 25 0 75 0 50 25 25 0

a6 0 0 15 40 0 40 0 0 15 40

a7 50 60 25 0 50 0 85 60 25 0

a8 25 110 75 0 25 0 60 110 75 0

ag 25 75 115 15 25 15 25 75 115 15

aio 0 0 15 40 0 40 0 0 15 40

Figure-6.2. Attribute Affinity Matrix (Taken from [Navathe et al 84])

6.2.3 Grouping Algorithm Steps

• The algorithm consists of two steps:

Step 1. Iterate starting from the first attribute (first row in affinity matrix) trying to generate a

group by joining it to other attribute(s) with highest affinity value (Max{aff[i,j))

forming the first initial group. The resulted group will have a power factor P(g) that

takes the affinity value aff[i,j). Here three scenarios are possible:

First: the two attributes are independent (do not belong to any initial group), in this

case a direct grouping is performed if the selected highest affinity value a ffl i j) is

greater than or equal to P(At) * ALF/100.

Second: one of the attributes i or j belongs to a group k, in this case the independent

attribute will be joined to group k if the condition affljj) >P(,g*) is true.

Third: having attribute A, in group k and attribute Ay in group /, then the two groups

will be joined if P(gk) and P(gi) are equal.

By the end of this step all possible initial groups will be obtained.

Step2. Iterate starting from the first initial group produced in step 1, trying to search for

“best extension”. At this step there are two possible scenarios:

First: the “best extension” connects attribute A, in group k and attribute Aj that has

not been joined to any initial group in step 1, in this case the independent attribute Aj

will be joined to group k if the condition aff[ij) >P (gk) * GLF/100 is true, then the

extended group’s power will be equal to afj[ij) value.

52

Second: the “best extension” connects attribute A, in group k and attribute Ay in group

/, in this case the two conditions of a f f i , j) >P(gy) * GLF/100 and P(g{) ^-P(gk) *

GLF/100, need to be satisfied. The new group’s power will be equal to the power of

group /.

This last step will be repeated until there is no possible “best extension” found, and then we

will obtain the final groupings of our algorithm as follows.

ALGORITHM: GROUPING

Input: AAM, ALF, GLF
Output: groups of attributes (vertical partitions)
begin
// Step 1

for each A, in Relation R do
- find the maximum affinity Max{Aff) value between A, and Ay where:

• i
• a ffi j) >P (Ai) * ALF/100
• affli j) >P(gi) where Ai € gk or Aj e gk

- generate initial group by joining A, to Ay
- let P(g) *- MaxlAff)

end-for
// Step 2

while there is “best extension” do
for each A, in Relation R do

let “best extension” <- MaxlAfff) where
• i *j
• A, in group k
• a ffi,j) >P(gk) * GLF/100 is true
• if Ay in group / then

- check P (gì) >P (gk) * GLF/100 is true
- MinMerge *- P (gk)-P (gi)

else
- MinMerge <- P (gk)- a f f i , j)

end-if
• MinMerge is the minimum value,

end-for
if “best extension” found then

if Ay is independent then
join Ay to A, group
letP(g)*- affli, j)

else
join all attributes in Aj group to Ai group
let P(g) <- Power of Ay group

end-if
end-if
end-while

end-algorithm

53

6.2.4 Example 1:

To illustrate how this algorithm works, the Attribute Affinity Matrix of Figure 6.2 will be

used for the 10 attributes example employed by [Navathe et al 84], In this example, the

following values were used to our introduced enhancement factors: ALF = 55% and GLF -

60%. I used these values (neither very high nor very low) to ensure having attributes that are

mostly accessed together be placed in the same fragment and at the same time avoid having

poor grouping. To simplify the example explanation the used conditions are referred to by the

following short notations:

ALF-Cond ◄ _ ajftij) >P (AJ * ALF/100

GLF-Condi ◄ _ affiij) >P (gk)* GLF/100

GLF-Cond2 ◄ _ P (gi) >P (gk) * GLF/100

The implementation of the algorithm on the 10 attributes example is illustrated in the

following points:

L Start from the first row of AAM (i = ai) and search for the Max(Afftj). The Max(4$/) found

was 75, where j = as. Here the condition ALF-Cond (75 >75 * 0.55) is validated and it was

checked to be true. Then the first initial group that joins attributes a\ and as will be created.

The power of this group will be 75. As shown in Figure 6.3-(a).

2 Move to the second row of AAM (i = a2) and search for the Max(Affjj). The Max(Affy)

found was 110, where j = a8. The condition ALF-Cond (110 >110 * 0.55) is checked. Then

the second initial group that includes attributes a2 and a8 is created. The power of this group

will be 110, as shown in Figure 6.3-(b).

A For the third row the Max(Aff}j) was 115, where j = ag and ALF-Cond was true. And the

third initial group includes attributes â and ag, as shown in Figure 6.3-(c).

L For the fourth row the Max(Affij) was 40, where j = â and ALF-Cond was true. And the

fourth initial group includes attributes a4 and â . But, here there is another attribute (10) that

has the same affinity, so it will be added to this group as shown in Figure 6.3-(d).

54

& For the fifth row the Max(Affj/) was 75, where j = ai which was already included in the first

initial group. So, this affinity value will be skipped and we move to next Max{Affij) which

equals to 50, where j = a.j. However, because the current Max(Affij) is less than the power of

the first initial group (75) that includes attribute as, then the attribute a-j cannot be added to

this group. Since all remaining affinity values are less than the power of the first initial group

(75) we discontinue searching in this row and move to the next row.

<i Similar to step 5, no attribute can be added to the group that includes attribute a6.

Z For the seventh row the Max(Affy) was 60, where j = ai and which has already been

included in the second initial group. However, the power of the second initial group (110) is

greater than the current Max{Affy). So, we will skip attribute a2 and move to the next attribute

(attribute ag) that has the same affinity value (60). Because attribute ag belongs to the same

initial group of attribute a2 it will be skipped as well. Then we look for the second Max{Affij)

which is 50, where j = a\. Similarly, attribute ai belongs to the first initial group, and the

power of the first initial group (75) is greater than the current Max(Affj). So, we will skip

attribute ai and move to the next attribute (attribute as) which will also be skipped for the

same reason. The next Max(Affij) equals to 25 for j = a3 and j - ag and will both be skipped

because the power of their group is greater than 25. Thus, attribute ay will remain as

independent attribute.

& Attributes ag, ag and aio will be processed in the same way as above.

2i By completing this step four initial groups will be generated as shown in figure-6.3.

10- Moving to step 2, the algorithm will search for the “best extension”.

i i i It will start from the first row of AAM (i = ai) and search for the Ma x(Affij) for attribute j

where i ^ j , and attributes i and j are not in the same group.

The Max{Affij) will be equal to 50 for j = aj, in this case we must validate if GLF-Condl is

true i.e. if: (afftij) >P (g/J* GLF/100 -» 50 >75x60/100) is true.

Since the GLF-Condl was found to be true, then the Msx(Aff}j) will represent the current

“best extension” and the MinMerge value will be equal to P(gk)-4ffu -̂e- 75-50 = 25.

55

12. By moving to the second row (z = a2), and searching for the Max(Affy) we found that the

M a w a s equal to 75 for j = Here, because the algorithm is trying to join two groups

it will check if GLF-Cond2 is true i.e. if:

(P (gi) >P (gO* GLF/100-+ 115 ^ 10x60/100) is true.

And because GLF-Cotid2 is true and the current MinMerge -\P(gk) -P(gi)| = 5 is less than the

previous MinMerge(25), then the Max(4$/) will represent the current “best extension” and

the previous one will be discarded. The new MinMerge value will be equal to 5.

Now, and along the same row, the next Ma.x(AJfy) is equal to 75 for j = ag. And GLF-Cond2

is true but the MinMerge=5 which is not less that the previous MinMerge, so attribute 9 will

be skipped. By moving to the next Max(4$/) = 60 for j = a7. Here, because an independent

attribute need to be joined to a group, then the GLF-Condl need to be validated i.e. to check

if:

(affi^ij) >P (gk)* GLF/100 -> 60 >110X60/100) is true. However, the condition GLF-Condl

found to be false and thus attribute a7 was skipped. Moving along the same row all other

attributes were skipped for the same reason as above.

13. By repeating the previous step for the remaining attributes it was found that the “best

extension” will not be changed.

14. After getting the “best extension” that connects attributes a2 and a3 , then their groups will

be merged. And the power of the new group will become 110, as shown in figure-6.4.

13. Going back to search for the next “best extension” in the same way as above, it was found

that the “best extension” will be the previously discarded one that connects attributes ai and

a7 with Max(4$/) of 50, then the group of attribute ai will be extended to include attribute a7 .

And the power of the new group will become 50, as shown in figure-6.5.

16i Continuing the search for the next “best extension” none was found, therefore, the

algorithm stops.

IL. At the end, the results produced by our algorithm that represents final groupings are

presented in figure-6.5.

56

Figure-6.5. The final results of the enhanced grouping algorithm

57

6.2.5 Example 2:

In the second example the same global relation of 20 attributes and 15 queries of [Navathe et

al 84] were used. A system developed in C# was used to obtain the final results.

When using the same values for the factors as in example 1 (ALF = 55% and GLF = 60%),

three groups were obtained as shown in table 6.1. However, when changing the second factor

value (GLF= 70%), four groups were obtained as shown in table 6.2

A L F = 5 5 % G L F = 6 0 %

N o. P i g) A ttr ib u te s in th e grou p
1 55 a i, a4, a 5, an d as
2 65 a2, a9, a n , a]3 an d a 14

3 65 a 3, ay, a)0, a n , a 15, a i6, a 17, aig, a 19 an d a 2o

Table-6.1. The final three groups

A L F = 5 5 % G L F = 1 0 %

No. P i g) A ttr ib u te s in th e grou p
1 55 a i, a4, a 5, ag an d as
2 65 a 2, a 9, a 12, a ^ an d a j4

3 65 a3, a 7, aio, a , , , a n and a ^
4 65 a i5j a i6> a i9 an d a2o

Table-6.2. The final four groups

6.3 Summary

This algorithm is more flexible compared to previous access frequency based grouping

algorithms and more efficient for vertical partitioning problem because the added factors

provided more control on the final produced groups based on the problem specifications. The

major advantage of this algorithm is that it is simple to understand and easy to implement

(only two steps).

The final results using the 10 and 20 attributes examples were identical to that obtained by

[Navathe et al 84] and [Navathe & Ra 89] Graphical algorithms but with easier applicability

and more flexibility. This algorithm is more efficient for vertical partitioning problem because

it eliminates the limitations of binary partitioning and the complexity of graphical algorithm.

The method requires no complementary algorithms such as the SHIFT algorithm of [Navathe

58

et al 84] that shifts the rows and columns of the affinity matrix, and requires no objective

function of [Navathe and Ra 89] to control the process of partitioning.

The values of the enhancement factors for the grouping algorithm are chosen based on

several criteria, such as the network bandwidth, number of sites, number of attributes in a

relation, the queries frequency and their type (retrieval or update), etc.

In the next chapter a scheme for vertical partitioning of a distributed database at their design

cycles is proposed, where the database designer will be in a position to perform partitioning

and consequent distribution of fragments before the database is operational. This new

proposed scheme is independent of frequencies of queries thus, can be used as a stepping

stone for the grouping algorithm presented in this chapter and for its counterpart, the dynamic

partitioning technique.

59

Chapter 7

A Static Partitioning Algorithm for Vertical Fragmentation
Problem in a Distributed Environment

7.1 Introduction

Usually, the decision to partition a database is taken when there are problems with an

existing centralized data warehouse. Examples of such problems are: delays in query

response time, failure of database server, a number of users frequently accessing a

particular data, etc. However, there are many situations that occurred recently where

there is a critical need to design new database systems in a distributed fashion from the

beginning based on the nature of some organizations.

One of the drawbacks of database partitioning techniques that are discussed in previous

chapters is the fact that they depend not only on the entries of a database table, but also

on their empirical frequencies of use. Such restriction limits the options of a database

designer whose task is to distribute a newly designed database across various locations of

an organization. The partitioning suggested in the aforementioned algorithms suffers

from various limitations that will complicate the task of a database designer. These

limitations could be summarized in the following: 1) A database designer has to have

sufficient empirical data on frequency of queries 2) Frequency of queries is function of

several relatively independent variables that include time, users, and future needs of an

organization 3) Attributes are partitioned based on frequency of queries.

The first limitation makes the partitioning inapplicable to newly designed database

schemas that have to be distributed among various sites of organization. The second

applies to periodical queries. Furthermore, change in organizational structures or business

requirements may call for additional attributes. The third limitation comes from the

natural dynamicity of frequencies of queries.
In this chapter, an algorithm for partitioning a database at its early stage is proposed. That

is, the partitioning is performed at the schema phase of a warehouse database design. The

algorithm uses a set of queries that are expected to be employed for accessing a database.

60

A properly forecasted set of queries will enable a designer to establish partitions that are

consistent with those obtained using the frequency based techniques. A simulator was

written using C++ to test the proposed algorithm. Results of various simulation runs are

consistent with the hypothesis ensuring that partitions can be obtained in advance.

The common denominator in all three limitations is the frequency of queries. Therefore,

all partitions that are based on frequency of queries can be classified as dynamic. On the

other hand, the only way for a partition to be independent of frequencies of queries is

when it is based on a database schema. In this case it will be logical to classify the

partitioning as static. However, after the schema design phase is completed, and the

database is operational, then an algorithm that uses query frequency approach such as the

grouping algorithm discussed in the previous chapter can be used to further tune the

generated partitions.

7.2 Static Partitioning

In general, designers very frequently delay important steps to the end of design cycles

[Wiese 05], The design of efficient database system is not an exception because

partitioning is based on frequencies of queries. That means, the database has to be

operational and a large number of queries have to be performed before the partitioning is

decided. Thus, the time of partitioning and the parameters used there are weaknesses for

the algorithms discussed thus far.

Several surveys indicate that a significant percentage of data warehouses fail to meet

business objectives [Giorgini et al 08]. One of the reasons for this is that requirement

analysis is typically overlooked in real projects. Successful data warehouse design needs

to be based upon a requirement analysis phase in order to adequately represent the

information needs of DW users [Mazo et al 07]. For a newly developed database system

which is to be distributed among different sites of an organization, partitioning should be

decided at the design phase immediately after completion of the schema. It can be

decided even before the database tables are populated. For such a partition, which the
author calls static, the database designer must:

61

1. Gain sufficient knowledge about the business requirements of an organization

to design a stable schema.

2. Gather necessary and sufficient information from potential users of the database

to determine a complete set of queries that would be of immediate use. This step

requires very careful consideration and thorough understanding of the business

requirement of an organization.

3. Gather information about future plans of an organization to determine

additional queries that may be needed in the future.

In the proposed static partitioning scheme these issues are considered and an improved

strategy is adopted. Our approach starts partitioning right upon completion of schema

design. Queries that will be used to access the database must be determined in advance.

Once the schema design phase is completed, and the database is in operation then the

generated partitions can be further tuned using Grouping Algorithm [Abdalla et al 07] or

Graph Based Algorithms (GBAs).

A simulator was written to test the algorithm using randomly generated queries. Given a

database schema with a set of attributes A = {A/, A?,, A„j, the simulator scheme uses

a Random Number Generator (RNG) to determine a random set of queries Q = {q¡, qj,

....., q„}. The RNG will mainly associate a subset of A with each member of the set Q.

Since Q is determined using an RNG for simulation purpose, one can say that the

proposed scheme is not restricted to specific query parameters. The use of the RNG may

be replaced by a forecasted set of queries for partitioning real schemas. Such set can be

reached by a comprehensive study of the business requirements that would lead a Data

Base Designer (DBD) to predict the set.

In general, if the set Q is chosen successfully, then the partition determined by the

scheme can be further enhanced using any query-frequency based algorithm. That is, the

results of this scheme would give supersets of the sets of partitions independently

generated using frequency based dynamic algorithms. The primary difference between
this static scheme and the dynamic algorithms is that the former is based on the number

of occurrences of an attribute within a set of queries while the latter is based on

62

frequencies of query accesses to these attributes. In the next subsection the simulator will

be discussed.

7.2.1 The Simulator

The simulator for the proposed scheme is a multi-module package that will enable a

database designer to partition a newly designed database at the schema level. The output

of the simulator may range from 0 to 100 percent partitioning where 0 percent means the

schema could not be partitioned and 100 percent means every attribute is placed in a

partition by itself. Along with the schema, a complete set of queries and parameters are

needed to run the simulator.

Based on the AUM matrix of [Navathe et al 84] presented in Table-7.1 as input, the

output of the first module of the simulator is a symmetrical table an example of which is

shown in Table-7.2. This table will be referred to as the Symmetry Matrix or SM for

short. Entries of the SM matrix are computed using the following equations:
n

SM [j,j] = ^ AUM[z, y] for / = 1 to n (1)
z=i
n

SM [z,y] = ^ AUM(k, z)*AUM(k, y) For i and j —1 to n and i (2)
k=\

-----Attributes
Queries ---- aj «2 a3 a4 a5 ao a 7 as a<) aw
Query 1 l 0 0 0 l 0 l 0 0 0
Query 2 0 1 1 0 0 0 0 1 l 0
Query 3 0 0 0 l 0 1 0 0 0 1
Query 4 0 1 0 0 0 0 1 1 0 0
Query 5 1 1 1 0 1 0 i 1 l 0
Query 6 1 0 0 0 1 0 0 0 0 0
Query 7 0 0 1 0 0 0 0 0 1 0
Query 8 0 0 1 1 0 1 0 0 1 1

Table-7.1. Attribute Usage Matrix (Taken from [Navathe et al 84])

An example of attribute usage matrix (AUM) generated by the first simulation module is

shown on Table-7.1. The table shows the relationship between 10 attributes and 8 queries

63

that have been randomly generated by the simulator. Table-7.2 shows the SM Matrix

derived from the attribute usage matrix of Table-7.1.

A ttr ib u te s a , Cl2 a s Cl4 a s a<s a 7 a s a g a i o

a l 3 1 l 0 3 0 2 1 1 0

a 2 1 3 2 0 1 0 2 3 2 0

a 3 1 2 4 1 1 1 1 2 4 1

a 4 0 0 1 2 0 2 0 0 1 2

a 5 3 1 1 0 3 0 2 1 1 0

a 6 0 0 1 2 0 2 0 0 1 2

a 7 2 2 1 0 2 0 3 2 1 0

a .8 1 3 2 0 1 0 2 3 2 0

a 9 1 2 4 1 1 1 1 2 4 1

a l O 0 0 1 2 0 2 0 0 1 2

Table-7.2. SM Matrix

Diagonal entries of the SM matrix give the usage degree of an attribute. If the matrix is

transformed into a graph, then an attribute would be represented by a vertex. Each

attribute must have a usage degree of at least one. In Table-7.1 the usage of attribute “a2”

is “3” (total number of l ’s in attribute a2’s column). The same usage value is also shown

on the second diagonal entry on the SM matrix. A non-diagonal entry defines the

symmetry between the corresponding attributes and is equal to the number of queries that

include both. For the corresponding graph, the symmetry is modelled by an edge

connecting the two vertices. The SM matrix is itself symmetrical across the diagonal.

64

The second module of the simulator partitions the SM matrix into sub-matrices each
corresponds to a partition of the schema.

In the next section more details on how the static partitioning is performed will be given.

7.3 Static Attribute-Based Partitioning (SAPA) Algorithm

The proposed SAPA Algorithm handles some of the drawbacks of its frequency based

counterparts that are discussed in the introduction section. In this section SAPA steps will

be illustrated. SAPA starts from the SM matrix of Table-7.2 which is a tabular

representation of a connected graph (or affinity graph). The affinity graph that

corresponds to the SM matrix is shown in Figure-7.1. For discussion of the steps of the

algorithm in the next sub section the following definitions are necessary.

Definitions:

1. w(vj): defines the affinity weight of a vertex Vi.

2. affinity cycle: defines any cycle in the affinity graph.

3. w(dfi defines the affinity weight of an edge di.

4. cycle edge: is any of the edges forming a cycle.

5. extension o f a cycle: refers to a cycle being extended by pivoting at the cycle
vertex.

7.3.1 Description of SAPA Algorithm:

The following steps illustrate how SAPA algorithm works:

a) Construct the affinity graph based on the SM table.

b) Start from the vertex with the highest affinity weight w(v).

65

c) Branch down along the two (highest and the second highest) weighted edges of

the selected vertex in step b starting by the highest weighted edge w(d).

d) Connect to the vertex with the highest affinity weight among the possible choices

of vertices with which it has a link. If there are several highest weighted vertices,

then any one could be randomly selected.

e) When reaching this step, discontinue moving along this route, go back to step c

and extend the cycle along the second highest selected edge route, following the

same rules specified in d.

f) After getting to a balanced hierarchy of vertices, to have a further extension of the

cycle, start from the vertex with the highest affinity weight among the newly

branched two vertices in previous steps, and expand down to include a vertex with

largest affinity to the already selected vertex following the same rules specified

earlier.

g) This iteration will end when reaching a dead end where the cycle extension

process takes you back to one of the already included vertices.

Let us start the explanation of the algorithm to show the mechanism for forming vertical

fragments based on the definitions specified above.

1. In Figure 7.2, suppose we started from vertex a\ where edges '40' and '30' were

selected for being the edges with highest and second highest affinity weights

among the edges of that vertex. The selected edges '40' and '30' formed the initial

“affinity cycle” by connecting vertex a\ to vertices ‘a2 ’ and ‘a3 ’. The number

between quotes represents the order of connection. For example, because the

weight (affinity) between vertices at and a2 is higher than that of a\ and a3 , then

vertex a2 was connected first followed by vertex a3. The order of a connection is

shown in between parenthesis next to the vertex number.

66

2. To further extend the cycle, we have to start from the vertex with the highest

affinity weight among the two vertices ‘a2 ’ and ‘a3’.

3. Assuming that vertex ‘a2 ’ was the vertex with highest affinity weight, we select

the largest cycle edge emerging from vertex ‘a2 ’ to extend the cycle by connecting

vertex to the highest weighted vertex in the remaining vertices linked to it.

4. If there are several vertices with the same weight, then select the vertex that will

lead to the best extension, i.e. the vertex that will not take you back to an already
selected vertex.

5. Discontinue moving along this route, go back to step 2 and try to extend the cycle

using the other selected vertex ‘a3’ route, following the same rules specified

above.

6. Continue this process until the extension process forces you back to an already

selected vertex on one end of the cycle. On figure-7.2, the end vertices are

labelled a4 (l) and a4 (l). Clearly this means that both vertices a2 and a3 connect to

vertex a4 . However, the edge (connection) with the lowest weight should be

removed (cut). This is shown by the scribbled line separating vertex a3 from

vertex a4 .

7. If this happens then produce a cut on the last edge that leads to an already selected

vertex (a dead end) and consider all connected vertices as a vertical fragment.

Figure-7.2: Cvcle extension leading to a candidate partition

67

The result of applying the algorithm to affinity graph of Figure-7.1 is shown on Figure-7.3.

A third module of the simulator can optionally be chosen to reduce (collapse) the number

of attributes before the actual partitioning takes place. It is recommended in situations

where the number of attributes is extremely large. The use of this option will significantly

reduce the size of the corresponding graph and the time taken for partitioning.

In the next section the techniques used for collapsing attributes will be briefly discussed.

7.4 Attribute Partitioning

The collapsing technique uses vertices affinity weights as a basis for fragmentation. It

groups vertices (attributes) according to their weights, by collapsing attributes having the

same affinity weight values together. Thus, vertices with identical weights will end up in

the same fragment. For example, after applying the algorithm on Table-7.2, attributes (as

and ai) are grouped in one partition, attributes (ai, a2, as, a7, as) in another partition and

attributes (a4, a6 and aio) in a third partition with weights 4, 3 and 2 respectively.

After collapsing the affinity graph in Figure-7.1 we end up with a fragmentation scheme
as shown in Figure-7.4.

68

7.5 Summary

In this work, a vertical partitioning algorithm for improving the performance of

warehouse database systems was proposed. The proposed SAPA algorithm used the

number of occurrences of an attribute in a set of queries rather than the frequency of

queries accessing these attributes. This enabled the fragmentation of a database schema

even before its tables are populated. Thus, a database designer will be in a position to

perform partitioning and consequent distribution of fragments before the database enters

operation. This approach facilitated the possibility of building a distribution design that

could be complemented at a later stage with frequency based algorithms. The significant

advantage of the SAPA algorithm was that a database designer doesn’t have to wait for

empirical data on query frequencies before partitioning a database.

In this chapter and the previous one we focused on vertical fragmentation problem in

distributed environment. In the following chapter a horizontal partitioning method that

combines genetic and simulated annealing algorithms to solve the data partitioning

problem in a data warehousing environment will be considered.

69

Chapter 8

SAGA for Physical Warehouse Design and Implementation

8.1 Introduction

A data warehouse stores large amounts of consolidated, historical data. It is especially

designed to support complex business decision queries. This complexity is due to the

presence of hierarchies between attributes of the warehouse and the number of join and

aggregation operations. Data warehouses are typically updated only periodically, hence

they are mostly of read-only in nature.

Several query optimization methods were proposed: materialized views [Yang and

Karlapalem 97], indexes [Chaudhuri and Narasayya 98], clustering [Jagadish et al 99],

data partitioning [Sanjay et al 04], and parallel processing [Sf'ohr et al 00]. Data

partitioning is an important aspect of physical data warehouse design [Sanjay et al 04],

[Papadomanolakis and Ailamaki 04], It has a significant impact on performance and

manageability. Contrary to materialized views and indexes, data partitioning does not

replicate data, thereby reducing space requirements and minimizing update overhead

[Papadomanolakis and Ailamaki 04],

The main characteristic of data partitioning is its ability to be combined with other

optimization structures like indexes and materialized views [Bellatreche et al 04]. In the

context of relational warehouses, horizontal partitioning allows tables, indexes and

materialized views to be partitioned into disjoint set of rows that are physically stored and

accessed separately [Sanjay et al . 04], It can also be used for parallel data warehousing

[Sf'ohr et al 00],

To partition a relational warehouse modelled by a star schema (or snowflake schema)

having a set of dimension tables and a fact table, we advocate a fragmentation of the fact

table based on the fragmentation schemas of the dimension tables. Concretely, it consists
of partitioning some or all dimension tables using their simple selection predicates

70

defined in the set of most frequently executed queries, and then partition the fact table

using the fragmentation schemas of the fragmented dimension tables (the fragmentation

of the fact table is called derived horizontal fragmentation [Ceri et al 82]).

8.2 Horizontal Partitioning Selection Problem

In this section, the horizontal partitioning design will be highlighted. It is extensively

used to make the management of database servers easier. Several works and commercial

systems have shown its impact on optimizing OLAP queries [Sanjay et al 04], [Kalnis

and Papadias 01], [Sfohr et al 00], [Bellatreche et al 04]. But few studies have

formalized the problem of selecting a horizontal partitioning schema to speed up a set of

queries and proposed selection algorithms.

The performance of query processing depends on the physical schema design. A highly

normalized schema offers superior performance and efficient storage where only a few

attributes are accessed by a particular query. The star schema [Sanjay et al 04] provides

similar benefits for data warehouses where most queries aggregate a large amount of

data. Such a schema is an intuitive way to represent the multidimensional data of a

typical business, in a relational system. The queries usually filter rows based on

dimensional attributes, then group and aggregate the attributes of the fact table using

some dimensional attributes.

Suppose that warehouse modelled by a star schema with d dimension tables and a fact

table F. Among these dimension tables g tables were fragmented (g <d). Suppose that

the dimension table Z), (1 <i <g) is partitioned into mi fragments: {Du,Da,

where each fragment Dy is defined as:

Dy = oclj(Di) with c/y and a (1 < j <g, 1 <j <mi) represent a conjunction of simple

predicates and selection operator respectively.
Thus, the fragmentation schema of the fact table F is defined as follows:

Fi=F tx Du ix Du tx ... tx Dgi, (1 <i <m,j with tx represents the semi join operation.

71

To illustrate the procedure of fragmenting the fact table based on the fragmentation

schemas of dimension tables, let us consider the star schema presented in [Informix 97]

with three dimension tables: Customer, Time and Product and one fact table Sales. The

tables and attributes of the schema are shown in Figure 8.1. Suppose that the dimension

table Customer is fragmented into two fragments Custj and Cust] defined by the

following clauses: Custi = (Jsex=-M' (Customer) and Cust2 = Osex= F' {Customer).

Therefore, the fact table Sales is fragmented based on the partitioning of Customer into

two fragments' Salesi and Sales2 such that: Sales1 = Sales tx Custi and Sales2 = Sales tx

Cust2 . After partitioning Sales and Customer tables the initial star schema {Sales,

Customer, Product, Time) is represented as the union of two sub star schemas Si and Si

such as: Si: {Sales/, Custi, Product, Time) (sales activities for only male customers) and

S2 : {Sales2,Cust2, Product, Time) (sales activities for only female customers).

72

The number of horizontal fragments of the fact table generated by the partitioning

procedure (denoted by AO is given by the following equation:

N = mi
i=i

Where m, is the number of fragments of the dimension table £),. This fragmentation

technique may generate a large number of fragments of the fact table. For example,

suppose we have: Customer dimension table partitioned into 50 fragments using the State

attribute (using 50 states of the U.S.A), Time into 36 fragments using the Month attribute

(if the sales analysis is done based on the last three years), and Product into 80 fragments

using Package type attribute, therefore the fact table will be fragmented into 144000

fragments (50 x 36 x 80). Consequently, instead of managing one star schema, the data

warehouse administrator will manage 144000 sub star schemas. Indeed, it will be very

hard for her/him to maintain all these sub-star schemas. Therefore, it is necessary to

reduce the number of fragments of the fact table in order to guarantee two main

objectives: (1) avoid an explosion of the number of the fact fragments and (2) ensure a

good performance of OLAP queries. To satisfy the first objective, the DWA is given the

possibility to choose the maximum number of fragment that she/he can maintain

(threshold W). For the second one, the number of fragments can be increased to a limit

where the global performance will be satisfied. The problem of selecting an optimal

fragmentation schema includes finding a compromise between the maintenance cost and

the performance cost as shown in Figure 8.2 quoted fromy [Noaman and Barker 99]. In

order to satisfy this compromise, genetic algorithm [B'ack 95] is been used since it

explores a large search space.

Figure 8.2: Compromise between maintenance and the processing cost

73

8.2.1 A Formulation of Horizontal Partitioning Selection Problem

A formulation of the horizontal partitioning problem is the following: given (1) a set of

dimension tables D = {Di,D2, ...,Dd} and a fact table F, (2) a set of OLAP queries Q =

{Qi,Q2, where each query (9, (1 < i <m) has an access frequency, and (3) a

threshold (W fixed by the DWA) representing the maximum number of fragments that

she/he can maintain. The horizontal partitioning problem is about determining a set of

dimension tables D / c D to be partitioned and using their fragmentation schemas to

partition the fact table F into a set of horizontal fragments {Fj, F2, Fn} such that: the

sum of the query cost when executed on top of the partitioned star schema is minimized,

and the maintenance constraint (N <W) is satisfied, where W is a threshold fixed by the

DWA representing the maximal number of fragments that she/he can maintain. The

respect of this constraint avoids an explosion of the number of the fact fragments.

To respond to horizontal partitioning selection problem, a combination of genetic and

simulated annealing algorithms [B ack 95 and Bennett et al 91] was used.

8.2.2 Simulated Annealing and Genetic Algorithm (SAGA) Approach

Our approach, SAGA, first uses a genetic algorithm (GA) and then a simulated annealing

algorithm (SA). GAs has been widely used in database physical design, they are

particularly suitable for solving complex optimization problems and for applications that

require adaptive problem solving strategies. It is an adaptive search technique based on

the principles and mechanisms of natural selection and ‘survival of the fittest’ from

natural evolution. It can effectively search the problem domain and easily solve complex

problems.

Join query optimization problem [Ioannidis and Kang 90], materialized views selection

problem [Zhang and Yang 99] and automation of physical design of parallel databases

[Rao et al 02] can be cited. It has been adopted for optimizing join operation, and due to
the similarity between index selection problem and horizontal fragmentation selection

74

problem in the data warehouse environment [Bellatreche et al 04], GA have been

provoked to be used for this problem.

Genetic algorithms (first proposed by Holland in 1975 [Holland 75]) are a class of

computational models that mimic natural evolution to solve problems in a wide variety of

domains. They are search methods based on the evolutionary concept of natural mutation

and the survival of the fittest individuals. Given a well-defined search space they apply

three different genetic search operations, namely, selection, crossover, and mutation, to

transform an initial population of chromosomes, with the objective to improve their

quality. After the process of selection, recombination and mutation is complete, the next

population can be evaluated.

The process of evaluation, selection, recombination and mutation forms one generation in

the execution of a genetic algorithm [Whitley 93]. Fundamental to the GA structure is the

notion of chromosome, which is an encoded representation of a feasible solution. Before

the search process starts, a set of chromosomes is initialized to form the first generation.

Then the three genetic search operations are repeatedly applied, in order to obtain a

population with better characteristics. Figure 8.3 shows the basic structure of our GA.

An outline of a generic GA is as follows:

Generate initial population

Perform selection step

while stopping criterion not met do

Perform crossover step

Perform mutation step

Perform selection step

end while.

Report the best chromosome as the final solution.

75

Figure 8.3: The structure of the genetic algorithm

On the other hand, the Simulated Annealing (SA) is an evolution strategy that is also a

population-based form of search that has largely been developed for parameter

optimization problems. Evolution strategies generally use real-valued encodings and

emphasize the use of mutation rather than recombination. They use strategy parameters

that control mutation step size for each parameter on the chromosome.

SA avoids the problem of premature convergence inherent to GA by allowing uphill

moves to solutions of worse fitness. SA [Kirkpatrick et al 83] is a randomized technique

for finding a near-optimal solution of difficult combinatorial optimization problems. The

algorithm was originally proposed as a means of finding the equilibrium configuration of

a collection of atoms at a given temperature. It starts with a randomly solution candidate,

then it repeatedly attempts to find a better solution by moving to a neighbour with higher

fitness, until it reaches a solution where none of its neighbours has a higher fitness.

76

SA's major advantage over other methods is an ability to avoid becoming trapped at local

minima. The algorithm improves this strategy through the introduction of different

mechanisms. The most famous one is the so-called "Metropolis algorithm" [Metropolis et

al 58], in which some trades that do not lower the cost are accepted under certain

conditions when they allow the solver to explore more of the possible space of solutions.

Simulated annealing takes a variety of forms, but the method presented here is one of the

simpler ones. Simulated annealing basically involves perturbing the independent

variables by a random value, and keeping track of the value with the least error. To avoid

getting trapped in poor local optima, SA allows occasionally an uphill moves to solutions

with lower fitness by using a temperature parameter to control the acceptance of the

moves. The temperature takes on the form of the standard deviation used by the random

number generator. At a high temperature, a large range is sampled, but as the temperature

decreases so does the sampling range and as a result the error becomes smaller and

smaller.

The principal difference between a genetic algorithm and an evolutionary strategy like

simulated annealing is that the former relies on crossover to locate better solutions, while

the latter uses mutation as the primary search mechanism.

Algorithm 1 illustrates the behaviour of SA. In the inner loop, the temperature is kept

constant. A downhill move is always allowed. An uphill move is allowed with some

probability that depends on the temperature and the difference between the actual state’s

cost and the new state’s cost. The inner loop is finished when an equilibrium condition is
met.

Then the temperature is reduced and the inner loop is started again. The outer loop is

finished when a freezing condition is met. The parameters of SA are: initial state, initial

temperature, temperature reduction, equilibrium condition, and freezing condition

depends on the implementation of the process.

77

Algorithm 1 Simulated Annealing Algorithm
Input: initial state, initial temperature;
Output: minstate;
begin

minstate:= initial state; cost := Cost(initial state); mincost := cost;
temp := initial temperature;
repeat

repeat
newstate:=state after random move; newcost:= Cost(newstate);
if (newcost <cost) then state := newstate; cost := newcost

^ew cos/-cos/^

else with probability e > rand(0,l)
state := newstate; cost := newcost

end;
if (cost < mincost) then minstate := state; mincost := cost
end
until equilibrium not reached;
reduce temperature

until not frozen;
return minstate

8.3 Implementation of Genetic Algorithm

The most difficult part of applying GA is the representation of the solutions that represent

fragmentation schemas. Representation of a solution (chromosome) is one of the key

issues in problem solving. Traditionally, GAs uses binary string as their chromosomes

representation. In our study, a solution represents a fragmentation schema.

8.3.1 Coding Mechanism

To accomplish chromosomes representation, then application information need to be

defined on the tables to be partitioned [Ôzsu and Valduriez 99], like selectivity factors of

selection predicates and the frequencies of queries accessing these tables (Q = {Qi,...

>Qm})•

78

Before presenting the proposed coding mechanism of dimension fragments, dimension

tables that will participate in fragmenting the fact table should be identified. To do so, the
following procedure is employed:

(1) Extract all simple predicates used by the m queries.

(2) Assign to each dimension table Z), (1 ^ ̂ f) its set of simple predicates, denoted by SSPD

(3) Dimension tables having an empty SSPD will not be considered in the partitioning

process.

(4) Apply the COMM-MIN algorithm [Ozsu and Valduriez 99] to each dimension table

Dj of all dimension tables having a non-empty SSPD.

Note that each fragmentation attribute has a domain of values. The clauses of simple

predicates representing horizontal fragments define partitions of each attribute domain

into sub domains. The cross product of fragmentation attributes by all applicable sub

domains determines the total number of fragments schemas of the facts table.

Using the star schema of figure 8.1, consider two fragmentation attributes, Age and

Gender of dimension table CUSTOMER and one attribute Season of dimension table

TIME. The domains of these attributes are defined as follows:

Dom (Age) = {0 -120}. Dom (Season) = {‘Summer’, ‘Spring’, ‘Autumn ’, ‘Winter’}. Dom

(Gender) = { ‘M ’, ‘F ’}. Suppose that on attribute Age, three simple predicates are defined

as follows: p i : (Age < 18), p2: (18 < Age < 60), and p3: (Age > 60). The domain of this

attribute is then partitioned into three sub domains: Dom(Age) = dn u di2 u d^, with du

~ [0 - 18], du = [18 - 60], dn = [60 - 120]. Similarly, the domain of Gender attribute is

decomposed into two sub domains: Dom(Gender) = <7?; u rfe, with = {‘M’}, =
m .

79

Finally, domain of Season is partitioned into four sub domains: £>om(Season) = d^yj d32

u d33 u d34, where d3\ = {‘Summer’}, d32 = {‘ Spring’ }, d33 = {‘Autumn’ }, and d34 =

{‘Winter’ }. The different sub domains of all three fragmentation attributes are

represented in Figure 8.4 .

Age [0-18] [18-60] [60- 120]

Gender ‘M’ ‘F’
I----------1-------

1 2

Season ̂ ‘Summer’ ̂ ‘Spring’ ‘Autumn’ ̂ ‘Winter’

1 2 3 4

Figure 8.4: Sub domains of a fragmentation attributes

Each fragmentation attribute can be represented by an array with n cells, where n

corresponds to number of its sub domains. The values of these cells are between 1 and n.

Consequently, each chromosome (fragmentation schema or solution) can be represented

by a multi-dimensional array.

Gender 1 1

Season 2 1 3 3

Age 2 1 2

Table 8.1: An example of a possible solution

From this representation, the obtainment of horizontal fragments is just a matter of

generating all conjunctive clauses. If two cells of the same array have the same value,

then they will be merged.

For example, in table 8.1, it can be deduced that the fragmentation of the data warehouse

is not performed using the attribute Gender, because all its sub domains have the same

value. Consequently, the warehouse will be fragmented using only Season and Age. For

80

Season attribute, three simple predicates are possible: P*: Season = ’’Summer”, P2:

Season = ’’Spring”, and P3: (Season = ’’Autumn”) v (Season = ’’Winter”).

For Age attribute, two predicates are possible: P4 : (Age < 1 8) V (Age >60) and P5: (18 <

Age < 60) Therefore, the data warehouse can be fragmented into six fragments defined

by the following clauses: Cl\ : (Pi n P4), CI2 : (Pi n P5), C/3 : (P2 n P4), CI4 : (P2 n P5),

CI5 : (P3 n P4), and C1& : (P3 n P5). Note that each fragment is represented by a

conjunctive of simple predicates defined on fragmentation attributes.

The proposed coding satisfies the correctness rules of [Ozsu and Valduriez, 99]

(completeness, reconstruction and disjointness) and the new chromosomes generated by

crossover operations belongs to the relevant sub domains. This coding can be used to

represent fragments of dimension tables and fact table. This multidimensional array

representation may be used to generate all possible fragmentation schemas (using an

exhaustive search). This number is calculated as:

2 ' 1 , where K represents the number of fragmentation attributes and n corresponds

to number of their sub domains. Considering the three fragmentation attributes of Age,

Gender and Season (in the previous example), the number of all possible fragmentation

schemas is 2(3+2+4) = 29.

This number is quite similar to the possible minterms predicates generated by horizontal

fragmentation algorithm proposed by [Ozsu and Valduriez, 99].

8.3.2 Fitness Value

The quality of each chromosome is measured by computing its fitness value represented

by a cost model which calculates the sum of page accesses (inputs/outputs) incurred by

each query executed on the fragmented data warehouse. A cost model calculating the

81

number of inputs and outputs (IOs) for each query is used. To estimate the cost of

queries, it is assumed that all dimension tables are in the main memory. Let Dsel =

{Z)/sel,..., D,tsel} be the set of dimension tables having selection predicates, where each

selection predicate pj (defined on a dimension table Di) has a selectivity factor denoted

by Self (Se lf e [0,1]). For each predicate pj, its selectivity factor on the fact table is

P P Pdefined, denoted by SelFJ where Self * SelFJ .

Let’s consider the selection predicate Gender = ’’Female” defined on the dimension table

Customer. Suppose that its selectivity factor is 0.4 . This means that 40% of customers are

female and 60% are male.

To execute a query Qy over a partitioned star schema {Sj, S2, Sn}, the relevant sub star

schema(s) on which query Qy will be executed should be identified. To do so, we

introduce a boolean variable denoted by valid(Qk, Si) and defined as follows:

Valid (Qk,)
[1 i f the sub star schema S, is needed for query Qk
[0 otherwise

The number of IOs for executing a query Qk over a partitioned star schema is given by

the following equation:

Mj

c o m o = 'L va,id̂ ’si i [
j=1 1=1

Self x |1 F || xL
PS (1)

where Mj represent the number of selection predicates defining the fact fragment of the

sub star schema Sj, F the cardinality of the fact table (number of tuples), L the width in

bytes of a tuple of a table F and PS the page size of the file system (in bytes). The total

cost (TC) of executing a set of queries Q is given by:

m
r c (0 = X o ^ (&) (2)

A=1

82

8.3.3 Selection Operation

Selection in GAs determines the probability of chromosomes being selected for

reproduction. The principle is to assign higher probabilities to filter chromosomes. The

roulette wheel method (see Figure 8.5) proposed by [Holland 75] is used in our

algorithm. It works as follows:

• Add up the fitness o f all chromosomes

• Generate a random number R in that range

• Select the first chromosome in the population that, when all previous

fitnesses are added - gives you at least the value R

Individual i will have a m
1 / (0i

probability to be chosen

Area is
proportional to
fitness value

In this method, each chromosome is associated with its fitness value calculated using the

cost model defined in section 8.3.2. The chromosomes with high fitness values have

better chances to be selected. Table 8.2 and Figure 8.6 show a roulette wheel method

example of chromosomes selection.

83

No. Chromosome Fitness

1 12121233 1

2 11121223 2

3 12111122 1

4 12111234 3

5 11223344 3

6 11121111 5

7 12211224 1

8 22122344 2

Table 8.2: An example of chromosomes’ fitness representation

2 , 3 , 4 , 5 6_________ 7___ 8

____2___ ____]_____ 3____ _______ 5_______ 11 1 1 2_________]_____ 1 3 .1____ 2____ _______ 5_______ 1 ___ 2___I

t t t tT
0

T
Rnd[0..18] = 7

T
Rnd[0..18] = 13

T
18

Chromosome4 Chromosome6
Parent1 Parent2

Figure 8.6: Selection of the chromosomes

8.3.4 Crossover Operation

A two-point crossover mechanism has been used in the proposed GA to avoid that

attributes with high number of sub domains, like Season (with four sub domains) having

a greater probability to be crossed over than attributes with low number of sub domains,

like gender (with two sub domains). The rationale behind crossover operation is that after

the exchange of genetic materials, it is very likely that the two newly generated

chromosomes will possess the good characteristics of their both parents (building-block

hypothesis [Holland 75]). An example of a crossover operation is illustrated' in Figure

8.7.

84

1___1 1 1 2 3 4
1 1 1 1

t t t
Figure 8.7: Crossover of chromosomes 4 and 6

8.3.5 Mutation Operation

Although crossover can put good chromosome together to generate better offspring, it

cannot generate new genes. Mutation is needed to create new genes that may not be

present in any member of a population. It is an operation aiming at restoring lost genetic

material and is performed in our algorithm by simply flipping the selected bit with certain

probability, called the mutation rate.

A mutation rate between 6 to 30 percent has been chosen. Mutation rate of 30% gave

good performance as it enabled the algorithm to reach a reasonable number of possible

solutions in the search space. However, after several generations a mutation rate of 6%

was used to avoid redundant search [Bellatreche et al 06], Initialization of the first

generation is performed by randomly generating half of the population while the rest is

obtained from solutions previously found by the algorithm.

attribute 1 attribute2 attributed

Figure 8.8: An example of a mutation

In Figure 8.8, the initial chromosome has three fragments for the attribute 2. After the
mutation process, the resulting individual has also three fragments, but the intervals are

not the same. In practice, there could be more distinct intervals or merged intervals. In the
same way, mutations could occur on several attributes of the individual.

1 2

1 1

1 1 1 1 2 1 1
1 2 1 2 1 1 3 4

85

8.4 Implementation of Simulated Annealing Algorithm

The SA is applied on the final solution obtained by the GA. This means that the initial

state of SA is the fragmentation schema generated by the GA. Note that this solution is

represented by multidimensional arrays. Random moves used by SA are applied on the

final multidimensional array of GA. In order to facilitate their implementation, this array

is transformed into one dimensional array, by concatenating all its rows. This gives a new

representation of the fragmentation schema of fact table. The random moves generate a

new problem, called the validation of a solution. This is due to the fact that our SA is

concerned with modifying cell values of the array by incrementing or decrementing them.

However, this may cause an overflow of domain values of cells (Figure 8.9). To solve

this problem, a function that checks the validity of each solution generated by SA has

been developed.

Simulated annealing avoids the problem of being trapped in a local minimum through the

introduction of a method by which some “bad” random moves that do not lower the cost

are accepted when they serve to allow exploring more of possible solutions. Such "bad"

moves are allowed using the criterion that: e_A£l/r > R(0,1)

Where AD is the change of cost implied by the move (negative for a "good" move,

positive for a "bad" move), T is a control parameter, which by analogy with the original

application is known as the system "temperature", R (0, 1) is a random number in the

interval [0, 1] and D is the "cost function".

Figure 8.9: Example of SA

86

The fitness of each solution is calculated using the cost model (TC) developed in Section

8.3.2. The steps of our SA are shown in Algorithm 2.

8.4.1 A Concise Description of SA

1. Select a fragmentation schema using GA.

2. Check that chromosomes are transformed into an array of one dimension

by concatenating the rows of the array. This array gives a new

representation of the fragmentation schemas.

3. Choose two positions of the fragmentation schema and apply a smooth

transformation (random move) by applying a coefficient between 0 and 1

and add (or subtract) to the result of the old value.

4. If the score of the resulting fragmentation schema is better than the

previous one then save the new result, otherwise, compute the difference

between the scores of the current and the previous fragmentation schemas,
— Delta

called Delta and compute the deterioration as: e TemPera,ure _

5. A random number is drawn, if the deterioration is greater than this number

then still save the new result and continue the search, otherwise go to 2.

6. Reduce the temperature.

7. Repeat step 2-6 for t number of temperatures until certain number of

iterations without improvement.

87

Figure 8.10: The structure of the SA algorithm

The implementation of the SA algorithm is remarkably easy. Figure 8.10 shows its basic

structure. The following elements must be provided:

• a representation of possible solutions,

• a generator of random changes in solutions,

• a means of evaluating the problem functions, and

• an annealing schedule - an initial temperature and rules for lowering it as the
search progresses.

88

Algorithm 2 Simulated Annealing Algorithm (Checking validity of each solution)
Input, initial state represented by the fragmentation schema generated by GA, initial temperature;
Output', minstate;
begin

minstate:= initial state; cost := TC(initial state); mincost := cost;
temp := initial temperature;
repeat

repeat
newstate:=state after random move; validation_ check(newstate);
newcost := TC(newstate);
if (newcost <cost) then state := newstate; cost := newcost

«̂ewcos/-cos/̂
else with probability e ,emperu,ure >rand(0,l)

state := newstate; cost := newcost
end;
if (cost < mincost) then minstate := state; mincost := cost
end
until equilibrium not reached;
reduce temperature

until not frozen;
return minstate

end

8.5 Experimental Studies

Our proposed solution has been implemented using APB-1 benchmark [OLAP Council

98], The experimental results are encouraging and show the applicability of the approach.

The star schema of this benchmark has one fact table: Actvars (Product level, Customer

level, Time level, Channel level, UnitsSold, DollarSales, DollarCost), and four dimension

tables: Prodlevel (Code level, Class level, Group level, Family level, Line level, Division

level), Custlevel (Store level, Retailer level), Timelevel (Tid, Year level, Quarter level,

Month level, Week level, Day level), Chanlevel (Base level, All level). The Star Schema
of APB-1 Benchmark is shown in Figure 8.11.

89

Custlevel

Store_level
Retailer_level

Actvars
Customerjevel
Product_level
Channel_level
Time_level
UnitsSold
DollarSales
DollarCost___

24786000.........

► Code_level
Class_level
Group_level
Family_level
Line_level
Division level

Prodlevel

Figure 8.11: Star Schema of APB-1 Benchmark

The experimental studies went through three steps: (1) firstly the good parameters for the

genetic algorithms were identified, (2) secondly, experiments based on these parameters

were run, (3) finally, experiment by combining genetic algorithm and simulated

annealing algorithm was conducted. This warehouse has been populated using the

generation module of APB1. Each dimension table can be joined with the fact table

through its first attribute.

Our simulation software was performed using C++ on a DW built on Oracle 9i platform

on a Pentium IV 1.5 GHz microcomputer (with a 256 MB memory). The architecture of

our software is described in Figure 8.12. Oracle DBMS was chosen because it is

equipped with enough features and technologies by which data warehouse can scale to
very large data volumes for analysis.

Table Number of tuples Width of tuples

Actvars 24786000 74

Chanlevel 10 24

Custlevel 1000 24

Prodlevel 10000 72

Timelevel 24 36

Table 8.3: Sizes o:'tables

90

Figure 8.12: Architecture of SAGA

8.6 Experimental Setup and Configuration of GA and SA Parameters

15 queries have been considered. Each query has selection predicates, where each one

has its selectivity factor. The page size (PS) is 8192 bytes and 9 fragmentation attributes

were used. The number of sub domains generated by these attributes is 40. An exhaustive

algorithm should generate 240 fragmentation schemas to get the optimal solution. Due to

this large number an exhaustive search was not considered. After conducting our

experiments the identified good parameters of the GA were: (1) number of generations,

(2) number of chromosomes, (3) crossover rate and (4) mutation rate. Using these
parameters, GA was run and then the SA

The good parameters obtained by the first experimentation were: 500 generations (40

chromosomes per generation), crossover and mutation rates were 70% and 30%,

respectively, in the beginning. After several generations, the mutation rate of 6% was
used to ovoid a redundant search.

91

8.6.1 Experimentation of GA

In Figure 8.13, generation number was varied from 1 to 10000, and for each generation,

the cost of evaluating the set of 15 queries was computed. A conclusion reached was that

more than 500 generations are enough to produce good results. Note that the number of

final fragments does not depend on the number of generations (see Figure 8.14).

Figure 8.13: Number of generations vs. query processing

In Figure 8.15, the variation of the number of chromosomes in each generation was

studied. The result shows the importance of this parameter to get a better performance of

the GA. A reduced number of chromosomes do not allow the exploration of a large space

of search and thus do not improve the quality of the final solution because it increases the

number of identical chromosomes. Therefore we varied this number from 1 to 400. We

concluded that 40 chromosomes can be enough to obtain good results.

In Figure 8.16, we study the effect of varying the crossover rate and see its impact on

performance. Our results confirm the theoretical studies which states that a small

crossover rate does not allow for an improvement of the solution. In our experimentation,

we vary this rate from 0 to 100. Starting from 60 per cent, the performance becomes
better.

92

Fig. 8.15: Number of chromosomes per generation Fig. 8.16: The impact of crossover rate on Performance

Similarity, experimentation to see the impact of mutation rate has been conducted. The

results show that a mutation rate with 30% gives a good performance (Figures 8.17,

8.18).

Fig.8.17: The impact of mutation rate on fragment number Fig. 8.18: The impact of mutation rate on IOs

8.6.2 Experimentation of the SA

Parameters used in our SA are: initial temperature was 400 which is decremented by 2

every 100 iterations, threshold was 2000, and the number of generations with

improvement was fixed at 21000. The effect of GA and SA on different queries has been
studied. The reduction was significant when using the SA.

93

It has been noticed that among the initial set of queries (15 queries), some queries do not

get benefit from the application of SA. This is because, their selection predicates do not

match the fragmentation predicates generated by SA (see Figure 8.19). Finally, Figure

8.20 shows the impact of SA on global query processing cost reduction. It was reduced

by 44% after applying the SA. It can be concluded that combining GA and SA allows us

to get good results (SA is complementary to GA).

Figure 8.19: Profitable queries Figure 8.20: Query reduction after SA

8.7 Strengths and Weaknesses of SAGA for Data Fragmentation

Efficient query processing is a critical requirement for data warehouse systems as

decision support systems often require minimum response time to answer complex

queries having aggregations and multi-joins over vast repositories. This objective can

be achieved by fragmenting warehouse data. In this chapter we introduced a new

technique for horizontal partitioning a data warehouse star schema. The SAGA

algorithm for horizontal partitioning presented in this chapter is characterized by

many strengths and little weaknesses that can be summarized in the following:

Strengths:

1. Reducing irrelevant data accesses and queries execution time. The star schema

partitions generated by the algorithm facilitate parallel execution of queries.

94

2. The choice of the best dimension tables, performed by the algorithm, for

fragmenting the fact table plays an important role on the overall performance.

And the number of partitioned dimension tables had a great impact on reducing

query processing cost.

3. The algorithm gives good results when the concern is about the overall data

warehouse performance, this is because even if the performance of some few

queries will be degraded by the horizontal partitioning process, the majority of

queries performance will be enhanced. After applying SA the global query

processing cost was reduced by 44%.

4. Since OLAP queries mostly require portion of the data then SAGA fragmentation

causes queries to be executed on the right fragments as much as possible thus,

minimizing query response time.

5. The produced fragments can be allocated to sites in such a way where each

fragment can be a functional unit of allocation.

Weaknesses:
1. The algorithm may degrade the performance for the queries that have selection

predicates that does not appear in the partitioning specifications or that doesn’t

have selection predicates at all. This is because to evaluate such queries the

algorithm need to access all sub-star schemas and then perform union operation

8.8 Summary

Physical data warehouse design includes materialized views, advanced indexing schemes,

and data partitioning. In this chapter the focus was on horizontal partitioning of relational

warehouses. The problem was formalized as an optimization problem and its complexity

was presented. It has been shown how the number of fact fragments generated by the

proposed partitioning methodology can be very huge and thus would be difficult for the

95

data warehouse administrator to maintain all resulted fragments. To solve the data

partitioning problem, a hybrid (SAGA) method combining genetic and simulated

annealing algorithms was proposed.

Genetic algorithms are good for optimization problems with a large search space.

Simulated annealing algorithms are used on solutions obtained by genetic algorithms in

order to avoid the problem of premature convergence inherent to genetic algorithm by

allowing uphill moves to solutions of worse fitness.

The fitness is calculated by cost model evaluating the cost of a set of frequently used

queries on the partitioned relational warehouse schema. This model is also used to

measure the quality of the final solution.

Our experimental studies went through three steps: firstly good parameters for the genetic

algorithms were identified, secondly, experiments based on these parameters were run,

finally, experiment by combining genetic algorithm and simulated annealing algorithm

was conducted. The experimental results are encouraging and show the feasibility and

applicability of the approach.

In the next chapter we will consider the fragment allocation problem which is a

distribution design techniques that also aims at improving system performance.

96

Chapter 9

Using a Greedy-Based and SAGA Approaches for Solving
Data Allocation Problem in a Distributed Environment

9.1 Introduction

Data allocation is a key performance factor for distributed database and data warehouse

systems. A major cost in executing queries in a distributed environment is the data

transfer cost of fragments to sites [Boukhalfa et al 08]. Therefore, a primary objective of

a data allocation algorithm is to locate the fragments at different sites to minimize the

total data transfer cost incurred in executing a set of queries while increasing

performance.

Finding optimal solutions for data allocation in a distributed environment is a difficult

problem to deal with. This is mainly because many design factors are considered in

allocation for optimal data distribution design.

Assuming that the database is properly fragmented, the designer has to decide on the

optimal allocation of the fragments to various sites on the network and determine which

copy or copies of data to access, where to process and how to route the data.

Typically, users at each site or node have their own set of information requirements.

Some of these involve data that is unique to users at a single node. Others require data

that is shared among users at multiple nodes.

However, to satisfy a user request in a distributed environment, you need to determine

where the needed data is located and a strategy that specifies which copy of the data to be

accessed and where it will be processed should be identified. Furthermore, final proces

and respond to the requesting node via an optimal route must be specified.

97

For a distributed warehouse system to function efficiently, the fragments of the database

need to be located carefully at various sites across the relevant communications network.

The problem of allocating these fragments to the most appropriate sites is a difficult one

to solve, however, most available approaches rely on heuristic techniques usually based

on mathematical programming and formulations.

The proposed greedy approach presents a mathematical modelling technique for the data

allocation in a distributed warehouse environment that considers network

communication, local processing, and data storage costs.

Similarly, the SAGA approach contributes in determining best possible allocation of a

data fragment in a distributed environment based on the fragment access patterns and the

cost of moving data fragments from one site to the other.

9.2 Related Work

A distributed database comprises a set of fragments of databases stored at multiple sites

that work together and appear as a single database to the user. Each database server in the

distributed database is controlled by its local database management system. The objective

of data distribution is to meet the information needs of business organizations having

different sites with one or more computer systems connected via some communications

network.

In a distributed warehouse database system the allocation of data over different sites or

nodes of the network is a critical aspect of database design effort. A poor distribution can

lead to higher loads and hence higher costs in the nodes or in the communication

network, so that the system cannot handle the required set of transactions efficiently.

Fragments allocation problem has been extensively studied in both static and dynamic

environments. In a static environment where the access probabilities of nodes to the
fragments never change, a static allocation has been proposed prior to the design of a

database depending on some static data access patterns. However, in a dynamic

98

environment where these probabilities change over time, the static allocation solution

would degrade the database performance. Initial studies on dynamic data allocation give

a framework for data redistribution and demonstrate how to perform the redistribution

process in a minimum possible time. In [Brunstroml et al 95] a dynamic data allocation

algorithm for non-replicated database systems is proposed named optimal algorithm, but

no modelling is done to analyze the algorithm. In [Ulus and Uysal 03] the threshold

algorithm is proposed for dynamic data allocation algorithm which reallocates data with

respect to changing data access patterns with special focus on load balancing issues.

Many authors have considered various aspects of the allocation problem, in a variety of

contexts. For example, [Mei et al 03] incorporate security considerations into the

fragment allocation process [Sto'hr et al 00] consider allocation in the context of

multidimensional databases [Lin and Veeravalli] present an algorithm for allocation and

replication that adapts to the changing patterns of online requests [Agrawal et al 04]

consider incorporating partitioning into an automatic design framework, and [Chin 02]

considers incremental allocation and reallocation based on changes in workload.

[Zhuo et al 03] consider the related problem of distributing the documents of a Web site

among the server nodes of a geographically distributed Web server. The problem of

replica placement is considered in [Cook et al 02] for networks using a read-one-write-all

policy, and in [Karlsson and Karamanolis 04] for wide-area systems, while [Buchholz

and Buchholz 04] consider it in the context of content delivery networks.

Various approaches have already been adopted to solve the data allocation problem in

distributed systems [Corcoran and Hale 94], [Chin 02], [Buchholz and Buchholz 04],

Some approaches are limited in their theoretical and implementation parts [Apers 88],

[Huang and Chen 01]. Other approaches present exponential time of complexity and test

their performance on specific types of network connectivity [Ahmed et al 02].

A major cost in executing queries in a distributed database system is the data transfer cost

incurred in transferring fragments accessed by a query from different sites to the site

where the query is initiated. The objective of a data allocation algorithm is to determine

99

the assignment of fragments at different sites so as to minimize the total data transfer cost

incurred in executing a set of queries.

In this chapter a new approach for data allocation based on constrained quadratic

program (CQP) and SAGA is going to be presented and analyzed.

9.3 The Allocation Problem:

Fragment allocation is a distribution design technique to improve the system performance

by reducing the total query costs. The allocation problem involves finding the optimal

distribution of fragments to sites. Optimality can be defined with respect to two

measures, cost and performance. In the proposed work it is assumed that the fragments

have been determined, and the focus will be on the problem of allocating them in such a

way as to minimize the total cost resulting from transmissions generated by user queries.

The objective of the proposed fragment allocation method is to determine which

fragments are used by each query being hosted at specific sites such that all queries are

satisfied while minimizing the communication cost, processing time, and storage costs,

and in the same time not violating storage capacity and processing time constraints.

To describe fragment allocation problem, let's assume that we have a distributed database

which is composed of m sites S = {S/, S?,, Sm), where 1 <i <m and each site S, is

characterized by memory, CPU and a DBMS and all sites are connected by a

communication network and assigned a set of F fragments, where each fragment Fj, is

characterized by its size zj

F= {z1.z2 .z3,zj....... . zn}.

Each fragment is requested by at least one of the sites. The site requirements for each

fragment are indicated by the query matrix,

100

qi,i qi ,2

0 = q2 ,i q2 ,2

qm,l qm,2

qi,n

q2 ,n

qm,n

Where qtJ indicates the requirement for fragment j by site i.

A theoretical framework is provided for this problem within the context of relational

model that deals with it as a space optimization problem to be solved using a greedy

algorithm and then SAGA algorithm.

9.4 The Cost Function Model:

For any distributed warehouse database system to work well, the fragments have to be

dispersed over the available sites in such a way as to minimize the total cost of query

processing. Query processing cost consists of processing cost and transmission cost.

Thus, one major aspect to be considered in the data allocation problem is the unit data

transfer cost among sites. Hence, our main objective will be to obtain a site that for a

given number of fragments minimizes the transmission cost.

In a partitioned (non-replicated) database environment, Let us assume that n fragments

need to be placed into m sites and we want to find the optimum placement for «,•

fragments in each site, where ty is the transmission cost for fragment j to site i for the n

fragments so that the capacity of any site is not exceeded, given that each site is being

characterized by its storage capacity C, and fragment limit FL. And each fragment is

characterized by its size zy- and storage cost sy associated with maintaining fragment j at

site i. Each fragment j is required by at least one site.

The volume of data transmitted due to a query depends on the query type. While it might

be possible to handle some queries locally, others might require communication with and
among sites other than the query originating site. The data transfer cost model represents

101

the unit data transfer cost from one site to another following the minimum cost path such

that the site capacity and limit constraints are not violated.

9.5 The Problem Formulation:

The allocation problem, attempts to find an allocation schema that minimizes a combined

cost function (the cost of querying Fj at site S, the cost of storing each Fj at site Si and the

cost of data communication) that has two components: query processing and storage.

Subject to the storage capacity (C,), fragments limit (FL) and the processing time (PT)

constraints of queries.

The proposed model has the following form: The decision variable is q,y.

if fragment j is requested by site S(-
otherwise

m n m nm n

Minimize Total Cost (TC) - S E «vxss (i)
/=1 7=1 i=l 7=1

Subject to:
n

(2)

m

m n

I S', * PT (4)

m

V ,,l< z <n (5)
j=l

S-j > 0 V,1 <i < n

102

Equation (1) represents the overall cost (TC) of the allocation problem to be minimized.

The capacity constraint (equations 2) specifies that no site should receive more than its

capacity i.e. the total size of all fragments in site i should be less than or equal to the

storage capacity Q. Equation (3) states that each allocated fragment should be stored in

only one site (no replication). The constraints represented by equation (4) represents the

total transmission time for all fragments is considered as the processing time PT for the

overall allocation process. The overall allocation time must not exceed PT, i.e. the

transmission time must not be more than expected. Such constraint forces the fragments

allocation to be faster than traditional approaches of [Chin 02], [Corcoran and Hale 94]

and [Zhuo et al 03], The constraint in equation (5) specifies that each site should not

receive more than a given number of fragments, denoted by fragment limit (FL). And sy

in equation (6) is the cost of maintaining fragment j at site i.

This new formulation is an improvement to that considered by [Menon 03]. This model

wants to limit the fragments transmission throughout the data warehouse. Note that this

approach is of the form of the constrained quadratic program (CQP), with the addition of

a single cardinality constraint Sj > 0. This observation motivates the use of efficient

greedy heuristic methods based on CQP to be applied to the problem considered here.

While the proposed model appears to be a natural representation of the problem, several

solution methods proposed in the literature for solving data allocation problems are based

not on the quadratic model but instead on an equivalent linearization of the form being

used by [Menon 03].

There are some heuristic approaches that have recently been reported in the literature for

a non-restricted method of fragment allocation where multiple copies of the same data

fragments are allocated over the sites without restriction [Hababeh et al 06]. These

methods are not applicable to the model considered here where a constrained non-

replicated approach is adopted.

103

A greedy approach to fit our problem formulation is presented. The greedy algorithm

works in an iterative fashion. In the first iteration, all the M sites are investigated to find

the least occupied site(s) for a total of N fragments.

Consider that fragment j was chosen for allocation. The algorithm recursively makes

calculations based on the assumption that all the users in the system request for fragment

j. Thus, the algorithm has to pick a site that yields the lowest cost of allocation for the

fragment j . In the second iteration, based on the choice of the already allocated fragment

j, the algorithm now would identify the next fragment for allocation, which, when added

to the fragment already being picked, yields the lowest allocation cost that satisfies

equation (1). Note that this assignment may or may not be for the same site i. The

algorithm proceeds in its iteration until either one of the constraints are violated.

ALGORITHM: FRAGMENT ALLOCATION

Input: Set of fragments {Fi, F2,..., Fn}, Set of sites {Si, S2, Sm}, FT, FL.

Output: Fragments allocation to sites

begin

while there are still fragments to be allocated do

for each Fj in the set of fragments F do

Investigate all the M sites to find the least occupied site(s) for a total of N

fragments

Pick a site that yields the lowest cost

Identify the next fragment for allocation

Add to the fragment already being picked if it satisfies equation 1 and

doesn’t violate constraints 2 ,3,4,5

Calculate total cost

Recursively make calculations for fragment j

end-for

end-while
end-algorithm

104

9.6 Experiments

In order to evaluate our work, the model was tested on a benchmark where sensitivity

analysis has been carried out by varying PT and FL parameters in a problem of 12

fragments that need to be allocated at 6 sites to see how sensitive the solution to the

changes in these two parameters.

Our greedy-based quadratic modelling approach was used to solve a standard test

problem. This problem is similar to some problems appearing in [Menon 03]. The

fragments and sites specifications are given in Table 9.1 and Table 9.2 respectively.

fl f2 D f4 f5 f6 f7 f8 f9 flO f l l fl 2

Fragment

Size 25 28 30 45 18 87 16 28 17 58 17 11

Table 9.1: Fragments specifications

Site Capacity Ci FL
1 1 0 0 6

2 90 7
3 80 5
4 70 3
5 60 3
6 50 2

Table 9.2: Sites specifications

For each site, a capacity C, and a fragment limit FL values are given, which correspond to

the capacity and a fragment limit that a given site can handle. Also, for each fragment a

specific size is allocated.

Table 9.3 summarizes the fragments allocations to each site. The first column of the table

gives the site number. The following twelve columns give the allocated fragments for

each site. For instance, for site 3, the allocated fragments are {f2, f5, f7 and f9}. The

105

solution found respects the capacity constraint and the fragment limit constraint (recall

Table 9.1 and 9.2). The overall initial process time (PT) constraint used for this solution

was 60s. The computational results reported for our CQP approach were obtained by

running our heuristic on a 1.96 GHz PC.

Site _______________________Fragments
fl f2 f3 f4 f5 f6 17 f8 f9 flO f l l f!2

1 X X X

2 X

3 X X X X

4 X X

5 X

6 X

Table 9.3: Fragments allocations

Since the results were based on a constant value of PT, then best values need to be

found for PT and FL of our problem. By varying the initial values of PT and FL with

a specific delta A pt and A fl, the best values that fit the current problem could be

found.

As presented in table 9.4, the first column presents the percentage changes of the

initial value of PT. The second column presents the percentage changes of the initial

values of FL (recall table 9.2). The last column presents the change of the solution

found for the problem. As shown, the best values which gave best solution were: Apt

= +30% and A fl = +30%, which means, with approximately the same values of the

FL provided in table 9.2 and with PT= 78s, a better solution could be reached.

It is also obvious from table 9.4 that, as both process time and fragment limit

increases better solutions are obtained. This is similar to a relaxed problem, where the

process time constraint and the fragment limit constraint are removed.

106

Apr Afl Quality
+ 1 0 % + 1 0 % + 12.5%

- 1 0 % -18%
+2 0 % +2 0 % +26%

-2 0 % -47.3%
+30% +30% +78.1%*

-2 0 % - 1 1 2 .6 %
- 1 0 % + 1 0 % +13.3%

- 1 0 % - 1 2 .8 %
-2 0 % +2 0 % +0.3%

-2 0 % -89.5%
-30% +30% -178.6%

-2 0 % -144.2%

Table 9.4: Sensitivity analysis

9. 7 Using SAGA Approach for Data Allocation

SAGA algorithm is a combination of the two algorithms of simulated annealing (SA) and

genetic algorithm (GA). In SAGA model for data allocation, the GA algorithm starts first

by generating the initial population that will be used in the implementation process. It

assigns a fitness value for each chromosome (solution) for further filtration of solutions.

Then, the SA will be incorporated to allow for occasional uphill moves to solutions with

lower fitness by using a temperature parameter to control the acceptance of the moves

9.7. 1 Genetic Algorithm for Data Allocation

In computing terms, genetic algorithms map strings of numbers to each potential solution.

Each solution becomes an individual in the population, and each string becomes a

representation of an individual. There should be a way to derive each individual from its

string representation. The genetic algorithm then manipulates the most promising strings

in its search for an improved solution. The algorithm operates through a simple cycle:

1. Creation of a population of strings.

2. Evaluation of each string.

107

3. Selection of the best strings.

4. Genetic manipulation to create a new population of strings.

Figure 9.1 shows how these four stages interconnect. Each cycle produces a new

generation of possible solutions (individuals) for a given problem. At the first stage, a

population of possible solutions is created as a start point. Each individual in this

population is encoded into a string (chromosome) to be manipulated by the genetic

operators. In the next stage, the individuals are evaluated to determine how fit this

individual is in relation to the others in the population. Based on each individual's fitness,

a selection mechanism chooses the best pairs for the genetic manipulation process. The

selection policy is responsible to assure the survival of the fittest individuals.

Figure 9.1: Reproduction Cycle Taken from [Basseda and Tasharofi 05]

Below is a brief description of how Genetic Algorithm for data allocation works [Basseda

and Tasharofi 05]:

(1) Initialize population. Each individual of the population is a concatenation of the

binary representations of the initial random allocation of each data fragment.

(2) Evaluate population.

(3) No of generation = 0

(4) WHILE no of generation < MAX GENERATION DO

108

(5) Select individuals for next population.

(6) Perform crossover and mutation for the selected individuals.

(7) Evaluate population.

(8) No of generation ++;

(9) ENDWHILE
(10) Determine final allocation by selecting the fittest individual. If the final allocation is

not feasible, then consider each over-allocated site to migrate the data fragments to other

sites so that the increase in cost is the minimum.

9.7.2 Simulated Annealing for Data Allocation

Simulated Annealing is a kind of single point based search strategy that is an iterative

improvement scheme with hill-climbing ability, which allows it to reject inferior local

solutions and find more globally near-optimal solutions. Similarly, it does not guarantee

to find the global functional optima as well. But if the function optimization problem has

many good near-optimal solutions, SA should find one near optimal solution.

The generic problem-space simulated evolution is as below [Basseda and Tasharofi 05]:

(1) Construct the first chromosome based on the problem data and perturb this

chromosome to generate an initial population;

(2) Use the mapping heuristic to generate a solution for each chromosome;

(3) Evaluate the solutions obtained;

(4) No of generations = 0;

(5) WHILE no of generations < MAX GENERATION DO

(6) Select chromosomes for next population;

(7) Perform crossover and mutation for these set of chromosomes;

(8) Use the mapping heuristic to generate a solution for each chromosome;

(9) Evaluate the solutions obtained;

(10) No of generations = no of generations+1;

(11) ENDWHILE
(1 2) Output the best solution found so far;

109

9.8 SAGA Algorithm for Data Allocation

In the proposed SAGA algorithm, GA starts by generating 100 solutions (chromosomes)

randomly as the initial population. This population is then used to produce the next

generation using the GA operations of selection, crossover and mutation. The newly

generated population will contain 100 offspring (new solutions). The process of

producing new generations will be repeated 50 times. We will refer to the process of

generating 100 initial chromosomes to reproduce 50 generations as Test-1. This operation

of Test-1 will be run 100 times to obtain 100 x 50 x 100 chromosomes, accumulating to

500,000 solutions, and each solution has a cost of allocation (fitness value) calculated

according to Table 9.6.

SA role in SAGA starts at the parents’ selection step of GA. Mainly, SA forces GA to

select the parents from a wider space of population by accepting low fitness

chromosomes (bad solutions) with the hope to improve solutions in future generations.

We implemented the entire operation of producing 500,000 solutions 4 times, every time

using different method:

• First, using GA with random single-point crossover (GA).

• Second, using GA + SA by increasing the temperature from 0 to 100 (SAGA

0- 100).

• Third, using GA + SA by decreasing the temperature from 100 to 0 (SAGA

100-0).

• Fourth, using GA + SA by fixing the temperature at 100 (SAGA 100).

Note: The first implementation (GA) is equivalent to SAGA when fixing the temperature

at zero. And the fourth implementation (SAGA 100) is equivalent to GA when we select

the pair of parents from the entire population (zero fitness).

110

To obtain accurate and comparable results for the four implementations we used the same

input (the initial population) in the four methods. Therefore, we created a repository

containing 1 0 0 compartments and in each one we randomly generated and saved 1 0 0

initial chromosomes. Then we forced each of the four implementations to get its initial

population from the generated repository instead of creating it randomly (step 1 of GA

described in section 9.7.1).

For example, in SAGA 0-100 method, to understand the effect of SA on how the GA

creates a set of parents, let’s assume that we want to produce 25 generations in the whole

test and we have 100 chromosomes in the initial population from which GA selected the

fittest 25% (25 chromosomes) in the generation number 1. Thus, the remaining 75

chromosomes that represent bad solutions should be included gradually to the set of

parents in the subsequent generations controlled by the temperature parameter of SA. The

SA will gradually increase the temperature from 0 to 100 at an interval of 4 per

generation. At each step of temperature increment the SA forces GA to accept more bad

solutions (3 in our example) from the remaining 75%. So, in generation number 2 we will

include 3% more chromosomes to the already selected 25% to have a total of 28%. This

process will continue until the entire range (1 0 0 %) of the chromosomes is included by the

end of the 25th generation.

Similarly, if we reverse the selection of chromosomes from 100% to 25% then this will

represent movement from high temperature to low temperature (100-0). At a high

temperature, a large range is sampled, but as the temperature decreases so does the

sampling range until the algorithm stops when a freezing condition is met.

9.9 SAGA Implementation Results

To test the SAGA algorithm we used the same data sample used by [Corcoran and Hale

94] as a benchmark and adopted their butterfly network topology (see Figure 9.2).

I l l

Figure 9.2: Butterfly Topology

The distributed database used by [Corcoran and Hale 94] was containing 15 fragments

that need to be allocated over 5 sites, and it was assumed that each site requires specific

fragments as presented in Table 9.5.

Site Required Fragments
1 6 , 9, 10, 12, 13, 14
2 7,11
3 3, 4, 5, 6 , 10, 12, 13, 14
4 2,4, 5, 8 , 9, 10, 11, 14
5 1,2, 3,6, 10, 15

Table 9.5: Required Fragments

In [Corcoran and Hale 94] there was a constraint that each site can host only up to 3

fragments. This constraint has been relaxed in our SAGA approach for data allocation to

obtain more feasible solutions. The proposed SAGA allocation model considers only the

communication cost and attempts to find an allocation schema that minimizes the total

cost function of query processing.

i.e. TC = 1 1 qtj x ty is minimum.
<=i y=i

Where qtj indicates the requirement for fragment j by site / and ty is the transmission cost

for fragment j to site i for the n fragments.

112

It is also assumed that the cost of data movement from one site to the other is only one unit

(see Table 9.5). According to these assumptions the cost of allocating fragments to sites

based on data movements is shown in Table 9.6.

S/F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 3 3 4 4 3 1 2 2 5 3 2 2 4 1

2 1 2 2 2 2 3 0 1 2 4 1 2 2 3 1

3 2 3 2 1 1 4 1 1 3 5 2 2 2 3 2

4 2 2 3 1 1 5 1 0 2 5 1 3 3 3 2

5 0 2 2 4 4 3 1 2 3 5 3 3 3 5 0

Table 9.6: Cost of Fragment Allocation

To see how the communication cost presented in table 9.6 is calculated let's see for

example how the allocation cost for fragment 9 is calculated.

If we allocate fragment 9 to site 1, given that fragment 9 was required by sites 1 and 4

(according to table 9.5). Then the total cost of fragment 9 allocation is composed of two

costs:

Cost(9) = Cost(l, 9) + Cost(4, 9) = 0 + 2 = 2

As fragment 9 was already allocated to site 1, then the cost of requesting fragment 9 from

site 1 to site 1 will be zero as it will be local request i.e. Cost(l, 9) = 0. However, the

Cost(4, 9) = 2 because the request for fragment 9 from site 4 passes through site 2, i.e. it

involves two movements, from site 1 to site 2 and then from site 2 to site 4.

Similarly, if we want to allocate fragment 10 to site 4 then the total cost will be:

Cost(10) = Cost(l, 10) + Cost(3, 10) + Cost(4, 10) + Cost(5, 10) = 2 + l + 0 + 2 = 5

Any chromosome (solution) consists of 15 genes (15 fragments) and each gene will take

a value between 1 and 5 representing a site number (5 sites). And the total cost for a

solution will be calculated according to Table 9.6. For example, the solution

(543435241221135) that cost 23 is calculated in table 9.7.

113

Fragment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Site 5 4 3 4 3 5 2 4 1 2 2 1 1 3 5
Cost 0 2 2 1 1 3 0 0 2 4 1 2 2 3 0

Table 9.7: Calculating the cost for a sample solution

After executing the aforementioned four implementations we obtained two million

solutions (500,000 for each implementation). Table 9.8 illustrates the number of solutions

for each cost resulted for the four implementations which is also represented graphically

in Figure9.3.

Cost GA SAGA(0-100) SAGAO00-0) SAGA(100)
23 2 3 5 429
24 4 5 12 4227
25 9 11 22 16112
26 15 32 133 33622
27 38 41 1522 45268
28 1686 2104 3784 63096
29 2632 3154 4255 64666
30 14327 15757 17702 55075
31 29343 21259 25488 46955
32 30898 26034 45802 39372
33 39297 59258 51252 33640
34 68097 70634 65991 26983
35 67394 66529 66106 21918
36 64491 47294 53069 16548
37 64015 48025 43202 12066
38 43514 60717 46003 8132
39 32238 31425 34558 5551
40 22585 24403 25602 3223
41 12611 13054 12503 1690
42 3865 5876 2053 953
43 2835 2902 887 322
44 40 56 27 103
45 38 1396 15 38
46 26 31 7 11

Table 9.8: The number of solutions per cost

114

N u m b e r o f S o u l t i o n s
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000
5000
0

49 47 45 43 41 39 37 35 33 31 29 27 25 23

Figure 9.3: The number of solutions per cost

9.9.1 Comparing the Results of Different Methods of the Proposed
SAGA Algorithm

At the beginning we started with GA and compared its results with that of SAGA 0-100.

A little improvement was found when using SAGA 0-100 compared to GA. In the next

phase we used SAGA 100-0 which outperformed both GA and SAGA 0-100. However,

both of the used SAGA methods didn’t significantly enhance GA results and were far

below of our expectations. Therefore, we introduced the SAGA 100 method by fixing the

temperature at 100 to enforce GA to accept bad solutions with the hope (which come to

be true) to improve the obtained solutions as the reproduction process proceeds.

If we look at Table 9.8 and Figure 9.3, it can be noticed that the number of low cost

solutions (like 23, 24 ...etc) are more when using SAGA (both SAGA 100-0 and SAGA

0-100) compared to GA. However, when comparing both SAGA results it is found that

SAGA 100-0 is more efficient than SAGA 0-100. This mainly because SAGA 100-0

115

starts with the entire range of initial solutions and iteratively filters them in the

subsequent generations based on the fitness value.

Furthermore, SAGA 100 produced much better results (low cost solutions) compared to

all other methods, mainly because it used the entire range of initial solutions without

filtration.

Additionally, when calculating the average cost for each generation (50 generations), it

was found that in SAGA 100 the average cost was noticeably decreasing all through the

implementation process. Table 9.9 and Figure 9.4 support the reached conclusions.

Generation GA SAGA(100-0) SAGA(0-100) SAGA(100)
1 35.194500 35.194500 35.194500 35.194500
2 35.467146 34.984095 35.466175 35.005905
3 35.335128 35.008849 35.461381 34.770667
4 35.453791 35.313231 35.349877 34.370095
5 35.498764 35.406731 35.398894 34.132857
6 35.405499 35.314650 35.450188 33.819524
7 35.353878 35.276196 35.465882 33.570476

— — — — —

24 35.626768 35.177943 35.557281 29.918286
25 35.595252 35.190128 35.576672 29.858667
26 35.651043 35.159493 35.608881 29.689048
27 35.657369 35.172636 35.591152 29.524571
28 35.686418 35.140526 35.599723 29.396571
29 35.630267 35.148423 35.602039 29.287429
30 35.601424 35.109528 35.640348 29.211714

— — — — —

44 35.342795 35.118235 35.431312 28.247238
45 35.332905 35.071217 35.475564 28.191810
46 35.380835 35.050242 35.422750 28.124381
47 35.247651 35.060435 35.459422 28.061714
48 35.269668 35.066640 35.449016 27.996952
49 35.292738 34.985655 35.462185 27.959810
50 35.266693 34.926487 35.483195 27.950571

Table 9.9: The average cost per generation

116

Figure 9.4: The average cost per generation

9.9.2 Proposed GA Results VS [Corcoran and Hale 94] GA Results

After comparing the different methods of the proposed SAGA algorithm among

themselves, I now present a brief comparison of the proposed GA to that proposed by

[Corcoran and Hale 94] with regard to the best result obtained for the allocation cost.

Both GA algorithms were tested using generational population model where GA saves

offspring in a temporary location until the end of a generation where offspring replace the

entire current population.

[Corcoran and Hale 94] used different combinations of crossover operators, however, this

study is only interested in the result obtained using single point crossover as it is the

crossover method being used in the proposed GA implementation.

The proposed GA implementations started with the same benchmark of [Corcoran and

Hale 94] considering a problem with 5 sites and 15 fragments, where the fragment size is

1. A fragment matrix was generated in both GA implementations to represent the

requirement of each fragment by the different sites (see Table 9.5).

117

The objective of both GA implementations was to place each fragment to the location

that yields the least cost.

The table below summarizes the result of the best result obtained by each GA

implementation using single point crossover (simple crossover).

Corcoran (GA) The proposed (GA)

Model Single Crossover
(Simple)

Best Result Obtained
(Least cost)

Generational 26 23

Table 9. 10 The Proposed GA Results VS Corcoran and Hale’s GA Results

Using single-point crossover, it is clear from Table 9.9 that the implementation of the

proposed GA results has outperformed the ones being produced by Corcoran’s GA, as the

best allocation cost obtained by the proposed GA was 23 while Corcoran’s best result

obtained was 26.

9.10 Summary

This chapter contributes by allocating data fragments to their optimal location, in a

distributed network, based on the access patterns for fragments. Two different approaches

for data allocation were discussed in this chapter. First, a greedy approach that allocates

fragments to nodes using a mathematical modelling method leading to the best possible

solution for fragments distribution was presented. Second, a SAGA approach for optimal

allocation of data fragments in a distributed environment was proposed, where the

mechanism for achieving this optimality relied on knowing the cost involved in moving
data fragments from one site to the other.

118

The computational results of implementing the greedy approach showed that for an

improved solution, the fragment limit constraint should be relaxed and better values for

the parameters PT and FL should be used.

In SAGA approach, different SAGA methods for data allocation were employed.

However, the implementation confirmed that SAGA 100 outperformed all other SAGA

and GA methods as it helped us to reach low cost solutions much faster.

When comparing the proposed GA results with the results obtained by [Corcoran and

Hale 94], it was found that the implementation of the proposed GA has produced better

results for the allocation cost compared to the one produced by Corcoran’s for a single

point crossover

However, extending our work using simulated annealing with genetic algorithm (SAGA)

has certainly improved the quality of solution for the data allocation problem.

119

Chapter 10

Conclusions and Future Work

10.1 Summary of contributions

The overall contribution of this thesis is in considering various algorithms for data fragmentation
and fragment allocation that are useful for data warehouse efficiency. These contributions are

related to the data warehouse performance improvement. A summary of the main

contributions of this thesis is as follows:

• Provided a simple to understand, easy to implement and efficient algorithms

compared to existing algorithms used for vertical partitioning problem. This is

obtained by adding some factors that allow for more control on the final produced

partitions based on the problem specifications.

• Proposed a static vertical partitioning algorithm for improving the performance of

distributed systems using the number of occurrences of an attribute in a set of

queries rather than the frequency of queries accessing the attributes. This enabled

the database designer to perform partitioning and consequent distribution of

fragments at early stages before the database enters operation.

• Proposed a methodology for the distributed data warehouse design using a

horizontal fragmentation algorithm to partition the huge fact relation into a set of

fragments based on the fragmentation schema of the dimension tables. Thus,

relations those need not to be accessed are identified and unnecessary processing is

avoided.

• Addressed and formalized horizontal fragmentation schema selection problem in

relational data warehouse, using a genetic and simulated annealing algorithms in a star

120

schema to select the right solution that improves the performance of OLAP queries by

avoiding unnecessary processing, and reduces the maintenance cost.

• Contributed in determining best possible allocation of a data fragment in a distributed

database environment using a greedy mathematical modelling approach and SAGA

algorithm that considers network communication cost to allocate site by site, leading

to a better solution for the optimal fragments distribution problem.

10.2 Conclusions

Executing an OLAP query in a data warehouse can be very expensive if the data is not

modelled properly. Moreover, if OLAP queries need only a portion of data, it is advisable

to fragment data so that a set of queries can be executed on the right fragment as much as

possible. Thus, leading to improvement in system performance by reducing query

response time and maintenance cost. This is mainly because queries will scan fewer

fragments than all, and in turn scans fewer rows than are stored in the original tables.

In this work I showed that data partitioning and allocation when properly and adequately

performed, may significantly improve query response time for applications running on

relational DWs.

Our work focused on understanding the difficulties involved in the fragmentation and

allocation of relational warehouse databases, evaluating different strategies and

techniques to handle the problem and proposing a unique methodology to obtain

distributed relational data warehouse that provides optimal application performance.

This work has highlighted the importance of data modelling in a data warehousing

environment and presented some analytical modeling techniques used in data

warehousing. It has been emphasized that consolidating the data models of each business

area before the real implementation can help assure that the result will be an effective

data warehouse and can help reduce the cost of implementation.

121

The thesis reviewed and defined data warehouse physical design techniques and provided

some guidelines to come up with proper structuring of data storage that guarantees good

performance. It showed that the design of data warehouses is an optimization problem

requiring solutions to several interrelated problems of data fragmentation and allocation

that include: designing the conceptual schema of the integrated database, mapping the

conceptual schema to storage areas and determining appropriate access methods.

A grouping algorithm for vertical partitioning problem was introduced where some added

factors provided more control on the final produced groups based on the problem

specifications. Also, an algorithm to handle the fragmentation problem during the design

of distributed data warehouses is presented. The algorithm used the number of

occurrences of an attribute in a set of queries rather than the frequency of queries

accessing these attributes. This enabled a database designer to perform partitioning and

consequent distribution of fragments before the database enters operation. Results of

simulations were consistent with those obtained using frequency based partitioning

algorithms. The significant advantage of the proposed algorithm is that a database

designer doesn’t have to wait for empirical data on query frequencies before partitioning

a database.

In this work we have studied the problem of partitioning the data warehouse when data is

modeled using star schema. The horizontal partitioning problem of relational warehouses

was formalized as an optimization problem and its complexity was shown. This work

illustrated how the number of fact fragments generated by the proposed partitioning

methodology can be very huge and thus would be difficult for the data warehouse

administrator to maintain all resulted fragments. To solve the data partitioning problem, a

hybrid method combining genetic and simulated annealing algorithms was adopted.

Our proposed solution has been implemented using APB-1 benchmark. Experimental

studies were conducted to identify good parameters for the genetic algorithms, then

experiments were run based on these parameters combining genetic algorithm and

122

simulated annealing algorithm. The experimental results were encouraging and showed

the feasibility of the obtained solutions.

Finally, this research presented an approach that allocates fragments to sites using a

mathematical modelling technique and SAGA algorithm leading to optimal solutions for

fragments distribution based on the cost of moving data fragments from one site to the

other. When comparing the proposed GA results with the results obtained by [Corcoran

and Hale 94], it was found that the implementation of the proposed GA has produced

better results for the allocation cost compared to the one produced by Corcoran’s for a

single-point crossover

10.3 Future Work:

There are a number of promising future directions beyond the work presented in this

research. Future works in this direction includes the adaptation of simulated annealing

and genetic algorithm (SAGA) algorithm to handle the dynamic aspect of a warehouse

due to the evolution of the schema and queries when query access information change.

There is no doubt that extending our work of using SAGA for data allocation has

certainly improved the quality of the obtained solution. However, the work of using

SAGA for data allocation need to be tested with a wider sample of data collection to

achieve better results.

I also, believe that the proposed fragmentation and allocation algorithms need to be tested

in a real life scenario where the interaction between the DW and organizations is

established and the effect of proper DW partitioning and distribution in supporting the

organization’s strategic goals is presented.

123

Finally, I am planning to further extend the greedy modelling approach for data allocation

to compare the implementation results obtained by the proposed greedy method with

some other methods.

124

References

[Abdalla et al 07] H. Abdalla, E. Abuelyaman and F. Marir, “A Static Attribute-

Based Partitioning Algorithm for Vertical Fragmentation in

DDBs”, Proceedings of the 2007 International Conference on

Parallel and Distributed Processing Techniques and Applications

(PDPTA'07), Volume II, pp 1017-1022, Las Vegas, June, 2007.

[Abdalla and Marir 06] H. Abdalla and F. Marir, "Vertical partitioning impact on

performance and manageability of distributed database

systems: A Comparative study of some vertical partitioning

algorithms", Proceedings of the 18th NCC, Riyadh, Saudi

Arabia, pp 85 - 92, March 26 - 29, 2006.

[Ahmad et al 02] I. Ahmad, K. Karlapalem, Y. Kwok, and K. So, Evolutionary

Algorithms for Allocating Data in Distributed Database Systems,

International Journal of Distributed and Parallel Databases, 11:5-

32, The Netherlands, 2002.

[Agrwal et al 97] A. Agrwal, A. Gupta, and S. Sarawagi. Modelling

Multidimensional Databases. Technical report research. 1997.

[Agrwal et al 04] S. Agrawal, V. Narasayya, and B. Yang, “Integrating Vertical and

Horizontal Partitioning into Automated Physical Database

Design,” Proc. 2004 ACM SIGMOD Int’l Conf. Management of

Data, pp. 359-370, 2004.

[Apers 88] P. Apers, “Data allocation in distributed database systems,” ACM

Transactions on Database Systems, vol. 13, no. 3, 263-304, 1988.

[Babad 77] M. Babad. A record and file partitioning model. Commun.

ACM 20, l(Jan 1977).

125

[Baiäo 01] F. Baiäo “A Methodology and Algorithms for the Design of

Distributed Databases using Theory Revision” D.Sc. Thesis,

COPPE/UFRJ, Dec 2001. httn://www.cos.ufrj.br/~baiao/thesis/baiaoDSc.pdf

(Last accessed June 2005)

[B"ack 95] B ack. Evolutionnary algorithms in theory and practice. Oxford

University Press, New York, 1995.

[Ballard et al 98] C. Ballard, D. Herreman, D. Schau, R. Bell, E. Kim, and A.

Valencic. Data Modeling Techniques for Data Warehousing.

International Technical Support Organization, IBM, February

1998

[Basseda and Tasharofi 05] Basseda, R. and Tasharofi, S., Data Allocation in

Distributed Database Systems, Technical Report No

DBRG.RB-ST.A50715, 2005.

[Basseda et al 06] Basseda, R., Tasharofi, S., Rahgozar, M., Near Neighborhood

Allocation (NNA): A Novel Dynamic Data Allocation Algorithm

in DDB, In proceedings of 11th Computer Society of Iran

Computer Conference (CSICC2006), Tehran, 2006

[Bellatreche 08] L. Bellatreche: Horizontal Data Partitioning: Past, Present and

Future, to appear in Encyclopedia of Database Technologies and

Applications, 2008

[Bellatreche et al 06] L. Bellatreche, H. Abdalla and K. Boukhalfa, "A Combination

of Genetic and Simulated Annealing Algorithms for Physical

Data Warehouse Design", Proceedings of the 23rd British

National Conference on Databases, Queen's University Belfast,
Northern Ireland, 18-20 July, 2006.

126

http://www.cos.ufrj.br/~baiao/thesis/baiaoDSc.pdf

[Bellatreche et al 06] L. Bellatreche, K. Boukhalfa, and H. Abdalla, "Algorithms for

Physical Data Warehouse Design to Speed up Decision-making

Processes", Proceedings of the 18th NCC, Riyadh, Saudi

Arabia, pp 93 -110, March 26 - 29, 2006.

[Bellatreche et al 00] L. Bellatreche, K. Karlapalem, M. Mohania and and Michel

Schneider,.: What can partitioning do for your data warehouse and

data marts?, International Database Engineering and Applications

Symposium(IDEAS'2000), 2000, pp. 437-446

[Bellatreche et al 05] L. Bellatreche and Boukhalfa K. An evolutionary approach to

schema partitioning selection in a data warehouse environment.

Proceeding of the International Conference on Data

Warehousing and Knowledge Discovery (DAWAK’2005),

pages 115-125, August 2005.

[Bellatreche et al 04] L. Bellatreche, M. Schneider, H. Lorinquer, and M. Mohania.

Bringing Together partitioning, materialized views and indexes

to optimize performance of relational data warehouses.

Proceeding of the International Conference on Data

Warehousing and Knowledge Discovery (DAWAK’2004),

pages 15-25, September 2004.

[Bellatreche et al 02] L. Bellatreche, M. Schneider, M. Mohania, and B. K.

Bhargava. Partjoin: An efficient storage and query execution

for data warehouses. Proceeding of the International

Conference on Data Warehousing and Knowledge Discovery

(DAWAK’2002), pages 296-306, September 2002.

[Benkrid et al 08] Soumia Benkrid, Ladjel Bellatreche and Habiba Drias, A

Combined Selection of Fragmentation and Allocation Schemes

in Parallel Data Warehouses, 4th International Workshop on

Data Management in Global Data Repositories (GREP'08), edited

by IEEE Computer Society Press, 2008

127

[Bennett et al 91] K. P. Bennett, M. C. Ferris, and Y. E. Ioannidis. A genetic

algorithm for database query optimization, in Proceedings of

the 4th International Conference on Genetic Algorithms, pages

400^407, July 1991.

[Boehnlein and Ende 99] M. Boehnlein and A. Ulbrich-vom Ende, “Deriving Initial

[Boukhalfa et al 08]

Data Warehouses Structures from the Conceptual Data Models

of the Underlying Operational Information Systems”, 2nd

International Workshop on Data Warehousing and OLAP

(DOLAP), Kansas City, MO, USA, 1999.

Kamel Boukhalfa, Ladjel Bellatreche and Pascal Richard, Primary

and derived Fragmentation: study of Complexity, Algorithms of

Selection and Validation under ORACLE 10g, LISI, Research

paper, No 01 2008, March, 2008

[Brunstroml 95] A. Brunstroml, S. Leutenegger and R. Simhal, Experimental

Evaluation of Dynamic Data Allocation Strategies in a Distributed

Database with changing Workloads, ACM Transactions on

Database Systems, 1995.

[Buchholz 04] S. Buchholz and T. Buchholz, “Replica Placement in Adaptive

Content Distribution Networks,” Proc. 2004 ACM Symp. Applied

Computing, pp. 1705-1710, 2004.

[Chaudhuri and Dayal 97] S. Chaudhuri and U. Dayal. An Overview of Data

Warehousing and OLAP Technology. SIGMOD Record,

26(l):65-74, 1997.

128

[Ceri et al 82] S. Ceri, M. Negri and G. Pelagatti. Horizental Data

[Ceri et al 83]

Partitioning in Database Design. Proceedings of the ACM

SIGMOD International Conference on Management of Data,

SIGPLAN Notices, pages 128-136, 1982.

S. Ceri, S. Navathe, and G. Weiderhold. Distributed Design of

Logical Database Schemes. IEEE Transactions on Software

engineering, 9(4), 1983

[Ceri and Pelagatti 84] S. Ceri and G. Pelagatti. Distributed Databases: Principles

and Systems. McGraw-Hill International Editions, 1984.

[Ceri et al 89] S. Ceri, S. Pemici, and G. Weiderhold. Optimization Problems

and Solution Methods in the Design of Data distribution.

Information Sciences Vol 14, No. 3, p 261-272, 1989.

[Chaudhuri and Dayal 97] S. Chaudhuri and U. Dayal. An Overview of Data

Warehousing and OLAP Technology. SIGMOD Record,

26(l):65-74, 1997.

[Chaudhuri and Narasayya 98] S. Chaudhuri and V. Narasayya. Autoadmin ’what-if

index analysis utility. Proceedings of the ACM SIGMOD

[Chen and Su 96]

International Conference on Management of Data, pages 367-

378, June 1998.

Y. Chen and S. Su, "Implementation and Evaluation of Parallel

Query Processing Algorithms and Data Partitioning Heuristics

in Object Oriented Databases”, International Journal of

Distributed and Parallel Databases, Kluwer Academic
Publishers, vol. 4(2), 1996, pp. 107-142.

129

[Chin 01] Chin, A. G., Incremental Data Allocation and Re Allocation in

Distributed Database Systems, Journal of Database Management,

Jan-Mar 2001; 12, 1; ABI/INFORM Global pg. 35.

[Cook et al 02] S. Cook, J. Pachl, and I. Pressman, “The Optimal Location of

Replicas in a Network Using a READ-ONE-WRITE-ALL Policy,”

Distributed Computing, vol. 15, no. 1, pp. 57-66, 2002.

[Corcoran and Hale 94] A. Corcoran and J. Hale, L. C., A Genetic Algorithm for

Fragment Allocation in Distributed Database Systems, ACM,

1994.

[Cornell and Yu 87] D. Cornell, and P. Yu, A Vertical Partitioning Algorithm for

Relational Databases. Proc. Third International Conference on

Data Engineering, Feb. 1987.

[Datta et al 98] A. Datta, B. Moon and H. Thomas, A Case of Parallelism in Data

Warehousing and OLAP, in the 9th International Workshop on

Database and Expert Systems Applications (DEXA 98), pages

226- 231, August 1998.

[Date 95] J. C. Date. An Introduction to Database Systems. 6th edition.

Addison-Wesley, 1995.

[Devlin 96] Barry Devlin, Data Warehouse: From Architecture to

mplementation, Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA, 1996.

[Dodge and Gorman 00] G. Dodge and T. Gorman. Essential Oracle8i Data

Warehousing. John Wiley and Sons, New York, 2000.

130

[Dowdy and Foster 82] L. Dowdy, and Foster, D. V., "Comparative Models of the

File assignment Problem,” ACM Press, 1982.

[Eisner and Severance 76] M. Eisner, and D. Severance. Mathematical techniques for

efficient record segmentation in large shared databases. J. ACM

23,4 (Oct. 1976).

[Elmasri and Navathe 99] R. Elmasri and S. B. Navathe. Fundamentals of

Database Systems, 3rd edition Benjamin/Cummings, 1999.

00] C. Ezeife. Selecting and materializing horizontally partitioned

warehouse views, Data & Knowledge Engineering 36 (2001) 185-

210, 19 April 2000.

and Barker 95] C. Ezeife and K. Barker. Comprehensive approach to

horizontal class fragmentation in a distributed object based

system, lntemationat Journal of Distributed and Parallel

Databases, 2, 1995.

[Firestone 97] J. Firestone, Data warehouse and data marts: A dynamic view

white paper 3, Executive Information Systems, Inc, March 1997.

[Giorgini et al 08] P. Giorgini, S. Rizzi, M. Garzetti. GRAnD: A Goal-Oriented

Approach to Requirement Analysis in Data Warehouses. Decision

Support Systems, vol. 45, n. 1, pp. 4-21, 2008.

[Golfarelli and Rizzi 08] M. Golfarelli, S. Rizzi. Managing late measurements in data

warehouses. In Data Warehousing and Mining: Concepts,

Methodologies, Tools, and Applications, J. Wang (Ed.),

Information Science Reference, pp. 738-754, 2008.

[Gupta and Mumick 95] A. Gupta and I. S. Mumick. Maintenance of materilized

views: Problems techniques and applications. Data Engineering

Bulletin 18(2):3-18, June 1995.

[Ezeife

[Ezeife

131

[Hammer and Niamir 79] M. Hammer, and B. Niamir. A heuristic approach to

attribute partitioning. In Proceedings ACM SIGMOD Int. Conf.

on Management of Data, (Boston, Mass., 1979), ACM, New

York.

[Hoffer and Severance 75] J. Hoffer, and D. Severance.

The Uses of Cluster Analysis in Physical Database Design In

Proc. 1st International Conference on VLDB, Framingham,

MA, 1975.

[Hababeh 06 et al] I. Hababeh, M. Ramachandran, N. Bowring, “A Mathematical

Approach for Modeling Data Allocation in Distributed Database

Systems” The Seventh Annual U.A.E. University Research

Conference, 2006.

[Hababeh 05] I. Hababeh, A Method for Fragment Allocation Design in the

Distributed Database Systems, The Sixth Annual U.A.E.

University Research Conference, 2005.

[Huang and Chen 01] Huang, Y. F. and Chen, J. H., Fragment Allocation in Distributed

Database Design, Journal of Information Science and Engineering

17, 2001,491-506, 2001.

[Hoffer 76] J. Hoffer. An integer programming formulation of computer

database design problems. Inf. Sei., July 1976, 29-48.

[Holland 75] J. H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, Michigan, 1975.

[IEEE97] IEEE, Information Technology, http://standards.ieee.org/

catalog/it.html (Last accessed Mav 2005)

132

http://standards.ieee.org/

[Informix 97] Informix Corporation., Informix-online extended parallel server

and Informix-universal server: A new generation of decision-

support indexing for enterprise data warehouses. White paper,

1997.

[Info 97] Informix Inc. The INFORMIX-MetaCube Product Suite.

http://www.informix.com/informix/products/new plo/metabro/

metabro2.htm, 1997. (Last accessed March 2008)

[Inmon 96] W. H. Inmon. Building the Data Warehouse. John Wiley &

Sons, second edition, 1996.

[Inmon 00] W. H. Inmon. What is a data warehouse? Inmon Enterprises

I.I.c., 2000. http://www.business.auc.dk/oekostyr/file/What is a
Data Warehouse.pdf.

[Inmon 00] W. H. Inmon. What is a data marts? Inmon Enterprises I.I.c.,

2000. http://www.billinmon.com/. (Last accessed May 2007)

[Ioannidis and Kang 90] Y. Ioannidis and Y. Kang. Randomized algorithms

algorithms for optimizing large join queries. Proceedings of the

ACM SIGMOD International Conference on Management of

Data, pages 9-22, 1990.

[Jagadish et al 99] H. Jagadish, L. V. S. Lakshmanan, and D. Srivastava. Snakes and

Sandwiches: Optimal clustering strategies for a data warehouse.

Proceedings of the ACM SIGMOD International Conference

on Management of Data, pages 37-48, June 1999.

[Kalnis and Papadias 01] P. Kalnis and D. Papadias. Proxy-server architecture for

olap. Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2001.

133

http://www.informix.com/informix/products/new
http://www.business.auc.dk/oekostyr/file/What
http://www.billinmon.com/

[Karlsson and Karamanolis 04]M. Karlsson and C. Karamanolis, “Choosing Replica

Placement Heuristics for Wide-Area Systems,” Proc. Int’l

[Kimball 96]

Conference Distributed Computing Systems (ICDCS), pp. 350-

359, Mar. 2004.

R. Kimball. The Data Warehouse Toolkit. Wiley-QED, New

York, 1996.

[Kimball et al 98] R. Kimball, R., Reeves, L., Thomthwaite, W., Ross, M.,

Thomwaite, W.: The Data Warehouse Lifecycle Toolkit. John

Wiley & Sons, Inc.(1998).

[Kirkpatrick et al 83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671-680, May 1983.

[Kittler 76] J. Kittler. A locally sensitive method for cluster analysis.

Pattern Recognition 8, 22-33, 1976.

[Levy 00] A. Levy. Answering queries using views: A survey. Technical

report, Computer Science Dept., Washington University, 2000.

[Levy 00] A. Levy, Logic-Based Techniques in Data Integration. In Minker,

J., Logic Based Artificial Intelligence, Kluwer Publishers, 2000.

[Lin and B. Veeravalli 03] W. Lin and B. Veeravalli, “An Adaptive Object Allocation

and Replication Algorithm in Distributed Databases,” Proc. 23rd

Int’l Conf. Distributed Computing Systems Workshops (ICDCSW

’03), pp. 132-137, 2003.

[Loney and Koch 00] K. Loney and G. Koch. Oracle8i: The complete reference.

Osborne McGraw Hill, Berkeley, 2000.

134

[Ma et al 06] H. Ma; Schewe, K.-D. Schewe and M. Kirchberg, “A heuristic

approach to vertical fragmentation incorporating query

information” 7th International Baltic Conference on Databases and

Information Systems, 2006 3-6 July 2006 Page(s):69 - 76.

[Mazôn et al 08] N. Mazon, J. Lechtenborger, J. Trujillo: Solving Summarizability

Problems in Fact-Dimension Relationships for Multidimensional

Models Proc. 11th ACM International Workshop on Data

Warehousing and OLAP (DOLAP), 2008.

[Mazôn et al 07] N. Mazon, J. Lechtenborger, J. Trujillo: Reconciling

requirement-driven data warehouses with data sources via

multidimensional normal forms (Data & Knowledge Engineering,

63 (3), 2007), 2007.

[Mei et al 03] A. Mei, L. Mancini, and S. Jajodia, “Secure Dynamic Fragment

and Replica Allocation in Large-Scale Distributed File Systems,”

IEEE Trans. Parallel and Distributed Systems, vol. 14, no. 9, pp.

885-896, Sept. 2003.

[Menon 03] S. Menon, “Allocating Fragments in Distributed Databases” IEEE

Trans. Parallel and Distributed Systems, vol. 164, no. 7, pp. 577-

585, Sept. 2003.

[Metropolis et al 58] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A.H.

[Mohania et al 00]

and Teller, E., Equations of State Calculations by Fast Computing

Machines, J. Chem. Phys. 21, 1087- 1092, 1958.

M. Mohania, S. Samatani, J. F. Roddick and Y. Kambayashi.

Advances and research directions in data warehousing

technology. Austuralian Journal of Information Systems, 2000.

135

[Muthuraj 92] R. Muthuraj. A formal approach to the vertical partitioning

problem in distributed database design. M.S. Thesis, Dept, of

Computer Science, Univ. of Florida, Aug. 1992.

[Navathe et al 84] S. Navathe, S. Ceri, G. Weiderhold, and J. Dou. Vertical

Partitioning Algorithms for Database Design ACM

Transactions on Database Systems, Voi. 9, No. 4, 1984.

[Navathe and Ra 89] S. Navathe, and M. Ra. Vertical Partitioning for Database

Design: A Graphical Algorithm. ACM SIGMOD, Portland,

June 1989.

[Navathe et al 90] S. Navathe, K. Karlapalem, and M. Ra. A mixed Fragmentation

Methodology for Initial Distributed database Design. In Technical

Report. CIS Dept, Univ of Florida, Gainesville, FL, 1990.

[Niamir 78] B. Niamir. Attribute Partitioning in Self-Adaptive Relational

Database System. Ph. D. Dissertation, M.I.T. Lab. for

Computer Science, Jan. 1978.

[Noaman and Barker 99] A. Y. Noaman and K. Barker. A horizontal fragmentation

[OLAP 97]

algorithm for the fact relation in a distributed data warehouse,

in the 8th International Conference on Information and

Knowledge Management (CIKM’99), pages 154-161,
November 1999.

OLAP Council. OLAP AND OLAP Server Definitions. 1997

Available at http://www.olapcouncil.org/research/glossaryly.htm

[Oracle Corp. 99] Oracle Corp. Oracle8i TM enterprise edition partitioning

option. Technecal report, Oracle Corporation, Febeuary 1999.

136

http://www.olapcouncil.org/research/glossaryly.htm

[Ozsu and Valduriez, 99] M. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, 2nd edition (1st edition 1991), New Jersey,

Prentice Hall, 1999.

[O’Neil and Quass 97] P. O’Neil and D. Quass. Improved query performance with

variant indexes. Proceedings of the ACM SIGMOD

[OLAP Council 98]

International Conference on Management of Data, pages 38-

49, May 1997.

OLAP Council. Apb-1 olap benchmark, release ii.

http://www.olapcouncil.org/research/bmarkly.htm, 1998.

(Last accessed April 2007)

[Sanjay et al 04] A. Sanjay, V. R. Narasayya, and B. Yang. Integrating vertical

and Horizontal partitioning into automated physical database

design. Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 359-370, June

2004.

[Shin and Irani 91] D. Shin and K.B. Irani. Fragmentation Relations Horizontally

using a Knowledge-Based Approach. IEEE Transactions on

Software Engineering, 17(9), Sept 1991.

[Shoshani 97] A. Shoshani. OLAP and statistical databases: Similarities and

differences, in Proc. ACM PODS, pages 185-196, 1997.

[Silberschatz et al 02] A. Silberschatz, H., Korth, and S., Sudarshan: Database

Syatem Concepts. McGraw Hill, 4th edition 2002.

[Sf'ohr et al 00] T. Sf'ohr, H. M"artens, and E. Rahm. Multi-dimensional

database allocation for parallel data warehouses. Proceedings of

the International Conference on Very Large Databases, pages

273-284, 2000.

137

http://www.olapcouncil.org/research/bmarkly.htm

[Tsichritzis 78] D. Tsichritzis and A. Klug. The ANSt/X3/SPARC framework.

AFIPS Press, Montval, N.J., 1978.

[Ramakrishnan and Gehrke 00] Ramakrishnan and Gehrke, Database Management
Systems, 3rd edition, 2000.

[Rao et al 02] J. Rao, C. Zhang, G. Lohman, and N. Megiddo. Automating

physical database design in a parallel database. Proceedings of

the ACM SIGMOD International Conference on Management

of Data, pages 558-569, June 2002.

[Richardo 04] C. Richardo: Databases Illuminated. Jones and Barlett, 1st

edition, 2004.

[Rizzi 08] S. Rizzi. Conceptual modeling solutions for the data warehouse. In

Data Warehousing and Mining: Concepts, Methodologies, Tools,

and Applications, J. Wang (Ed.), Information Science Reference,

pp. 208-227, 2008.

[Papadomanolakis and Ailamaki 04] S. Papadomanolakis and A. Ailamaki. Autopart:

Automating schema design for large scientific databases using

[Poe 96]

data partitioning. Proceedings of the 16th International

Conference on Scientific and Statistical Database Management

(SSDBM2004), pages 383-392, June 2004.

V. Poe. Building A Data Warehouse for Decision Support.

Prentice Hall, 1996.

[Stocker and Deamley 73] M. Stocker and A. Deamley. Self-organizing Data

Management Systems Com-puter Journal. 16, May 1973.

[Ulus and Uysal 03] Ulus, T., and Uysal, M., Heuristic Approach to Dynamic Data

Allocation in Distributed Database Systems, Pakistan Journal of

Information and Technology, 2003, ISSN 1682-6027, 231-239.

138

[Wiese 05] Wiese, D.: Framework for Data Mart Design and

Implementation in DB2 Performance Expert. Diploma thesis.

University of Jena and IBM Boblingen. 2005.

[Widom 95] J. Widom. Research Problems in Data Warehousing. In

Proceedings of CIKM, pages 25-30, 1995.

[Whitley 93] D. Whitley, a Genetic Algorithm Tutorial, technical report CS-

93-103, November 1993.

[Yang and Karlapalem 97] J. Yang, K. Karlapalem, and Q. Li. Algorithms for

materialized view design in data warehousing environment.

Proceedings of the International Conference on Very Large

Databases, pages 136-145, August 1997.

[Zaharioudakis et al 00] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and

M. Urata. Answering Complex Queries using Automatic Summary

Tables. In Proceedings of SIGMOD, pages 105-116,

2000.

[Zhang and Yang 99] C. Zhang and J. Yang. Genetic algorithm for materialized view

selection in data warehouse environments. Proceeding of the

International Conference on Data Warehousing and Knowledge

Discovery (DAWAK’99), pages 116-125, September 1999.

[Ziyati et al 07] Elhoussaine Ziyati, Kamel Boukhalfa and Ladjel Bellatreche, The

contribution of the not redundant structures of optimization in the

physical conception of the warehouses of data, in 8th International

Symposium one Programming and Systems (ISPS ' on 2007), in

May, on 2007.

139

[Zhuo 03] L. Zhuo, C. Wang, and F. Lau, “Document Replication and

Distribution in Extensible Geographically Distributed Web

Server,” J. Parallel and Distributed Computing, vol. 63, no. 10, pp.

927-944, 2003.

140

