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Abstract

This thesis discusses how an iteratively re - weighted least squares algorithm can be used 

to fit a multinomial regression model, with logit link function or own link functions, with 

any number of explanatory variables. The responses of each individual can be aggregated 

and the data can then be represented in a contingency table as are given in examples used 

in this study.

A satisfying aspect of the iteratively re-weighted least squares (IRLS) algorithm gives for 

fitting a multinomial regression model is that the calculations only require a program 

which can handle ordinary least squares and hence can be handled by a range of standard 

statistical software.

The approach in this thesis applies an interesting and simple form of the Cholesky 

decomposition to a matrix that consists of diagonal sub - matrices to find the iterative

weight matrix W tj . This method requires no matrix algebra facilities as all the

calculations are carried out in an array format. This makes it amenable to implementation 

in most statistical software, including GLIM and shows how to fit a multinomial logit 

model without recourse to the Poisson trick approach of Francis et al. (1992).

The method given here also allows us to find the ‘hat - matrix’ as is needed in the 

calculation of leverages and Cook’s distances. These statistics in general can be used for 

diagnostic purposes or to detect the influential observations but in multinomial models 

the ‘hat - matrix’ may have a very little or no use at all for detecting any inappropriate 

observation. Our approach is in contrast to any potential naive use of the Poisson trick 

approach of Francis et al. (1992) model that would then produce inappropriate leverages 

and Cook’s distances.

We check that our approach gives exactly the same scaled deviance with correct degrees 

of freedom, parameter estimates and standard errors as are obtained from the Poisson 

trick approach with some minor rounding errors. Our approach has the freedom to
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consider any number of response levels or explanatory variables for fitting a multinomial 

regression model.

The method given here in this research for the multinomial data is quite general. It allows 

us to use different link functions, as is explained in more detail in chapter 4. We 

concentrate on use of so - called Box - Cox links. Interval estimates for different 

parameters in these user - defined ‘own’ link functions are also given in section 4.6, 

although, in the first three chapters the main concentration is on the logit link functions. 

Chapter 5 gives a suggestion as to how we can get sharper convergence by using re - 

parameterisation of the design matrix. This is useful as in some cases as without such a 

modified design matrix we may not get convergence even after 1000 iterations.. Chapter 

6 indicates with examples that the theory developed in the previous chapters works well 

in a more general form of a multinomial data and discusses how the startup values must 

be considered with some knowledge of the data. Chapter 7 suggests how to calculate the 

likelihood influence measure of Cook (1986) by the idea of a single case i deletion for our 

fitting of multinomial models and for the Poisson trick approach of Francis et al. (1992). 

This can be further used to detect any influential observations for the regression

parameter estimate of f t  only. Chapter 8 presents the conclusions and gives some 

guidelines for further extensions of the ideas presented in this thesis.
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Abbreviations / Notations

The following abbreviations and notations are used in this study

i ith case, i = 1 , 2 , 3 , . . . ,  m

j  jth  level of response variable, j  — 1 , 2 , 3 , . . . , /

r rth stacked observation, r = 1 , 2 , 3 , . . . , «

y.j ith observation for jth  level of response variable ( in cell (z, j)  )

y r rth observation in stacked data

z t Cell counts, i = 1 , 2 , 3 , . . . ,  n c = m J

n Total stacked observations = m (J  - 1)

j
ni ith case total, ni

;=i

nc Total number o f cells, nc = m J  

m Total number of cases

J  Levels of the response variable

K  Number of explanatory variables

p  Number of parameters in the fitted model

p tj Probability for cell (z, j)

hr Leverage coefficient in our approach 

rr Residual coefficient in our approach

rpr Pearson residual in our approach for y r 

rtF Modified Pearson residual

rr Standardized Pearson residual

rr Studentized residual

Deviance residual

Cr Cook’s distance (1977) for y r

Oj Log - odds of ith case and jth  level of response variable

r
rj 'j Linear predictor for cell (z, j)  = x  ■/} ¡3 £ J J = r]

k = i
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L t Likelihood function for case i , i = 1 , 2 , 3 , . . . ,  m 

/. Log - likelihood function for case i , i = 1 , 2 , 3 , . . . ,  m

v T Row vector (r}mT, 1}{-T)T, . . • j t}(J)T) of length m J

ß T Row vector , . . . , of length K J

(% Ip ) In our iterative fits it is assigned the linear predictor by the fit directive 

(% jv )  For non - iterative models (% //? )= (%  jv ')

A u Diagonal matrix in Cholesky decomposition

D

H

N

W

x ?

X U)

GLIM

GLM

IRLS

dr}.
Matrix o f ------ in our notations

Hat - matrix

New design matrix in our notation

Weight matrix in our notation

ith explanatory variable for response level j

Matrix of explanatory variable ( with 1 ’s in the 1st column )

Generalized linear iteractive modelling 

Generalized linear model 

Iteratively re - weighted least squares

General multinomial data notations are given as follows,

Level of response variable

Case 1 2 ........  j  ......... j Totals

Observations

1 Ln y  i2 ........  y i j  ........ y \ j n i

2
y  2i y  22 y  r.j ......... y 2 j n2

i Ln y i2 ........  y »  ......... y u n i

m y  ml y  m2 ......... y mJ ......... . y » , j nm



The stacking of data is adopted as follows,

Tn

T21

Response variable level 1
Tn

Trnl

T12 

T22

Response variable level 2
T ;2

y  m2

Tiy

T22

Response variable level j
ytj

Tmj

T u-1 

T 2J-1

Response variable level J - 1
Ti/-i

T mJ~\
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CHAPTER 1

Review and Some Basic Theory

1.1 Introduction

In this chapter we will review and give some basic theory for a new method developed in 

this thesis to fit a multinomial logit model using the direct iteratively re - weighted least 

squares (IRLS) algorithm. Our approach of fitting the model is based on using GLIM (an 

acronym for Generalized Linear Interactive Modelling), a statistical modelling package 

developed by the Royal Statistical Society’s GLIM working party and it can be 

formulated using some other statistical packages. An important aspect of our algorithm is 

that the calculations only require a simple program, which can handle using ordinary least 

squares. The method uses Cholesky decomposition applied to a matrix that has diagonal 

sub - matrices and makes the required matrix inverse straightforward to evaluate using 

standard statistical software that can only handle arrays ( e.g. GLIM ).

We can extract easily all the appropriate statistics using GLIM codes and will investigate 

the hat - matrix, leverages, Cook’s distances, parameter estimates, standard errors, fitted 

values, Pearson’s coefficient of correlation and residuals for fitting the multinomial logit 

model. It is noted that even when we find the appropriate hat - matrix, leverages, Cook’s 

distances and residuals but cannot be defined easily for the multinomial data. We will 

compare our results of fitting a multinomial logit model and the theory with the Poisson 

trick approach of Francis et al. (1992).
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In our approach for fitting the multinomial model we can use our own link functions with 

some knowledge about the start - up values in the macros. The modified design matrix 

may be used if the convergence is hard to achieve for lots of 0’s and l ’s in the response 

variable or for the data in an individuals each case i.

It may be considered that it is possible in our approach to use standard statistical 

techniques to detect any influential case i as is defined in section (1.8) for the multinomial 

data by investigating the leverages and Cook’s distances. The regression diagnostics for 

the normal linear models using leverages and Cook’s distance (1977) are well established 

in the literature and have been surveyed comprehensively by Cook and Weisberg (1982), 

Chatterjee and Hadi (1986), Belsley et al. (1980) and Wetherill (1986).

Many of these diagnostics use statistics that measure the effects of deleting a single case 

from the data. These statistics exploit the exact algebraic relationship between the least 

squares fit of the linear model to a complete set of m cases, and the fit of the m - 1 cases 

remaining after the deletion of a single case. The maximum likelihood (ML) estimation of 

most generalized linear models (GLMs) requires iterative methods. The maximum 

likelihood estimates from m - 1 cases cannot then be obtained as an explicit function of 

the results of the fit of all the m cases. Pregibon (1981) derives a useful one step 

approximation for the changes in the maximum likelihood estimate and deviance of the 

model when the single case is deleted, and he discusses some diagnostic methods that use 

these approximations.

Cook and Weisberg (1982) discuss GLM diagnostics briefly in section (5.4) and they 

make some use of the Pregibon’s results. McCullagh and Nelder (1989) discuss 

diagnostics in model checking. Williams (1987) described GLM model diagnostics using 

the deviance and single case deletions.

Unfortunately, for the multinomial data with a J  - level of response variable, the position 

is not so simple, as a ‘case’ typically depends upon J —1 observations. Hence a single 

point deletion is not adequate; in particular, Cook’s distances or the hat - matrix cannot be 

used in their usual way for detecting the influential cases and in chapter 7 we suggest the 

ways to find the likelihood influence measures of Cook (1986) for detecting any 

influential case i , i = 1 ,2 , . . . ,  m .

In chapter 2, we discuss how an iteratively re - weighted least squares (ERLS) algorithm 

can be used to fit a multinomial regression model and illustrated this at each stage using
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two different examples of multinomial data. We considered in this chapter a multinomial 

logit model for three level of response variable only. The extensions of the multinomial 

regression models those are given in chapter 2 are followed in chapter 3, for more then 

three level of response variable with any number of explanatory variables or for the 

different explanatory variables at each level of response variable. The design matrix and 

the y - variable for J  -  k  any arbitrary level of response variable are also given to fit a 

multinomial logit model.

In chapter 4, the multinomial model is extended further for an ‘own link function’ instead 

of the logit link function. Confidence limits for own link function parameters are also 

given in this chapter. The link function proposed is shown to be equivalent to the logit 

link function as the extra parameter tends to zero. This idea is quite useful for fitting any 

appropriate our own link function in a multinomial model and the extension is easily 

applicable for different own link functions with different parameters for each level of a 

response variable.

In chapter 5, an alternative form of a design matrix is derived using the idea of spectral 

decomposition of the covariance matrix of the parameter estimates from the fitting of a 

multinomial logit model. This alternative form of a design matrix improves convergence 

in fitting the multinomial logit model. Indeed, in some cases we need only a few 

iterations to get the same scaled deviance as can be obtained from the Poisson trick 

approach of Francis et al. (1992). The framework of this alternative design matrix is easy 

to generalize for any level of response variable.

In chapter 6, we will apply the theory and the methods developed in this study to fit a 

multinomial logit model for an appropriate selected model. The model may have been 

chosen from a forward or backward selection method or from any available criteria. We 

have fitted the selected models using the logit link function, our own link function and 

with the improved design matrix method. These different models results are compared 

with each other and it is found that for response levels 0’s and l ’s, the Poisson trick 

approach of Francis et al. (1992) is not a good one and gives unstable parameter estimates 

with very high standard errors. The multinomial models fitted using our approach here as 

is expected gives appropriate results even with the response levels 0’s and 1 ’s.

In chapter 7 we illustrated the method of finding the likelihood influence measure of 

Cook (1986) on the parameter estimate ¡3 only (as defined in section (1.13)) by using a 

single case deletion for a multinomial logit model. The estimates for the deleted cases are

3



needed in section (7.5) to find the likelihood influence measures L D (fi(i)) . The method

is easy to extend for any levels of response variable or with any number of explanatory 

variables. The macros are given in Appendix A with an explicit expression for calculating

/(/? ) and /(/?(,■)) • The likelihood influence measures of Cook (1986) for different other

regression parameter estimates as are defined briefly in section (1.10) can be found with 

the same ideas given in this chapter.

Chapter 8 gives the conclusions and some suggestions for further areas of investigation 

for multinomial regression models with or without an own link function.

1.2 Multinomial Distribution

The multinomial distribution is in many ways the most natural distribution to model a 

multi - level response variable. The application occurs in social survey data and as such is 

given in McCullagh and Nelder (1989) for an infinitely large population and a simple 

random sample of size n is taken, the question is raised as to how many individuals will 

be observed to have attribute Aj ? The answer is given by the multinomial distribution

Pr (Yx =yl , . . . , Y J =yJ \ n , p ) =  rf' . . . j? / ,
u v

( i . i )

j
where Pl, ..  . ,P j ( I  Pj = 1) are the attribute frequencies in an infinite population of

M

interest that possesses one and only of the J  attributes Ax , . . .  ,A j  and

y )

n\
' £ iy J = n > 0 < y j < n .  
j=i

Another way to express the multinomial distribution is that, if Yx , Y 2 , . . .  , Y j  are 

independent Poisson random variables with means / i , , , . . . , jUj, then the joint

4



conditional distribution of Y] , Y2 ,. . .  ,Yj  given that Y1 +Y2 + . . . +  Yj=Y, =n is given

jUj
by equation (1.1) with p .   ---- , //, +/u2 . . .4 - jUj = ju. .

P*

The multinomial distribution equation (1.1) can further be re - written as

f Y ( y / p )  =
f  n )

k Y J
P y i P j J

( n \

y
exp {Ti log Pi + y 2 lo§ P i  + • • • + y j  log P j }

U .
exp S  y j  log ( —  ) + n log p x } .

j  = 2 P i

( 1.2)

The above equation (1.2) is basically a vector parameter p = ( p : , p 2 P j Y

exponential family of the multinomial model equation (1.1) and can be denoted as

f y  i y / p ) =  h ( y ) exP 1 E  V j ( p ) Tj  ( y )  -  A  ( p )  }.
7-2

(1.3)

We define from above equations

p  .
natural parameter tj . ( p  ) = log ( — — ) , j  > 2

P i

• sufficient statistics T  . ( y  ) = y  . j  > 2

log - partition function A ( p )  = -  n l o g  ( j )

® base measure A ( y )
'  » ^

v y

5



• E ( y j ) = n p J V a r ( y . ) = n  Pj  ( 1 - P j )

and Cov ( y y , y  .. ) = n Pj  Pj . j  *  j '  .

In our approach for the multinomial data with J  - level of response variable of m ‘cases’ 

we need to expand our notation to consider the corresponding quantities for case 

i — 1 ,2 , . . . , m and we also need to define y n , y  i2 , . . . , y  u as independent

j
Poisson variables, conditional on £  y v = n i ■

7=1

For further explanations to motivate the theoretical development of our research we 

consider the sort of data considered by Collier et al. (2003), being data on whether young 

people intended to enter UK Higher Education (HE). The response is a three level 

variable; the levels are as (z) definitely plans to enter HE, (z'z) may possible enter HE and 

(Hi) definitely will not enter HE. In general, the response variable is to be explained by a 

number of explanatory variables but in this social survey the explanatory variables gender 

and age are nominal variables; we refer to these variables as explanatory factors. In this 

situation, the responses of each individual can be aggregated, so the data can be 

represented as a 3 - way contingency table. The following table is an illustrative example 

of a three level of response variable. (The actual data in Collier et al. (2003) is much 

larger).

Plans to Enter HE
Gender Age Definitely

Yes Possibly Definitely
No

Total

Male <21 6 9 5 20
21+ 5 4 1 10

Female <21 1 3 11 15
21+ 6 9 6 21

Table 1.1: 3 - way contingency table

The observations 6, 9, 5, . . . , 9, 6 are the observed cell counts but the data collection can 

be viewed as a multinomial response model (1.1). The first row of the Table 1.1 may be 

viewed as 20 males < 21 years old, of whom 6 definitely plan to enter HE, 9 possibly plan

6



to enter HE and 5 definitely do not plan to enter HE. Similarly we interpret the other 

rows. It is important to note here that the explanatory variables (Age and Gender) are 

regarded as nominal; they are often called as factors.

The straightforward way to model the data in Table 1.1 as a so - called multinomial logit 

model is via the so - called Poisson trick approach (McCullagh and Nelder, 1989).

In this technique, the cell counts z ; , z = 1 , 2 ,  . . . , n c in the multi - way table

are treated as independent Poisson response variates, with a constraint added that the 

fitted values must equal the observed values in the marginal table of the explanatory 

factors.

For the Poisson approach, the log - link is usually used i.e. r]t -  log//,. , i = 1,2, . . .  , nc , 

where the linear predictors 77,. are linear combinations of the explanatory factors and

/ i i = E {z i ). The Poisson assumption with the added constraints and the assumption of 

log - link results is the so - called multinomial logit model.

The required ‘fixing of the margins’ is achieved by ensuring that all linear predictors 

contain the multi - level interaction of all the explanatory factors e.g. in Table 1.1, we 

must include Gender* Age. The Poisson trick method can be used (Aitkin and Francis, 

1992) when some of the factors are continuous variates by expanding the data to the 

individual level, with a nuisance parameter for each distinct set of covariates, although 

the number of cases can get large.

Our approach presented here in this study will overcome this problem directly.

7



1.3 Notation

In general, we shall assume we have m observed values of a /  - level of response 

variable, which we denote byy.., i= 1 ,2 ,..., m, j  = \ 2 ,... ,  J , as is shown in Table 1.2 

and in the formulation of Table 1.1, we have m = 4 and J  = 3. Following Payne et al. 

(1993), we can use the neutral name ‘case’ to describe m rows in the Table 1.2 and the 

jth  column represents the jth  level of response for each case. The m - elements of 

vectors y • ; j  = 1 ,2 ,. . . ,  J  are defined as columns of the Table 1.2, as are shown below;

Responses Totals

Tn T12 ................. Tu

T21 T22 ................. T2J

nl

n2

^  ml y  ml y  mJ nm
Table 1.2: Table of counts

A basic assumption is that the totals ni , i = 1 , 2 , . . .  , m are fixed by design, where

j
Yj y  ij = n i ■ We may note that it is possible that the data are arranged so that
i=i

each ni = 1, i = 1 ,2  , . . . , m , although it is often convenient to aggregate the data 

so that n i ^  1 . We shall assume that the y n , y i2 , . . . ,  y  u follow a multinomial 

distribution for each i, i = 1 ,2 ,.  . . , m . We therefore assume that corresponding to 

each y.j in Table 1.2, there is a probability p tj which we wish to estimate, where

j
p  y = 1 , for i = 1 ,2 ,. .  . , m , as is in Table 1.3,

Responses Totals

Pi 1 P\2 ................. P\J

P21 P 22 ...............  P 2J

1.0

1.0

Pml P ml P  mJ 1.0
Table 1.3: Table of probabilities

8



since the sum of probabilities in each row is 1.0. Therefore, there are J  — 1 — J '  distinct 

probabilities to estimate for each case i = 1, 2, . . .  , m , so it is convenient to write the 

likelihood for each case i in terms of the J  log - odds 0i2, 0i3, . . . , 0U, where

0 n  = log ( — ) ,  e „  = log ( ^ - ) , . . . , e a = log
Pn Pn  Pa

For each i — 1,2,  , m , the likelihood is given after ignoring the constant term as

L ,= Pfin ■Pfr P%' P yu (1.4)

Now for clarity and simplification, we illustrate this technique for considering a special 

case for J  = 3 and the more general case follows similarly. The likelihood for case i for 

J  = 3 , after ignoring the constant term is given by

L Dy‘lPa n y‘2 n yn ■ P i  2 - P i  3 (1.5)

Then the log - likelihood for case i is

h  = lo§ L i = y ti Jog Pa + y ¡2 Jog P a  + y a Jog P n  (J-6)

= (n i -  y a  -  7/3) Jog Pn + 7/2 log P a  + 7/3 log P n  

= (n i ~ 7/2 -  7/3) log (J -  P a  ~ P n )  + 7/2 log P a  + 7 i3 log P n

= n t log ( 1 -  p i2 -  p i3) ~  y i2 log ( 1 -  p i2 -  p i3) +

7/2 Jog P i2 ~ 7/3 log ( 1 -  7/2 -  7/3)) + 7/3 l°g  P n

9



= n, log (1 -  p i2 -  p .3) + y i2 log (------^ ------ ) + y i3 log (------ — ------ )
1 -  P t2 ~ Pn 1 -  P 12 -  Pi3

= n, log (1 -  p i2 -  p i3) + y i2 log ( ^ - )  + y i3 log ( ^ - )
P a  Pa

= n t log ( p n ) + y i2 log ( ^ - )  + y n log ( ^ - )  . (1.7)
P a P a

Using the log - odds form, 0i2 — lo g ( ^ -  ) => p i2 = p / a,
Pa

On = loS(“ ) => Pa = P i / *  ■
Pa

Therefore p n + p i2 + p a = p  n (1 + e 912 + e 9‘3 ) =1.

We can rewrite the equation (1.5) in terms of the log - odds as follows,

l i = log L, = - n t log (1 + e 9‘2 + e 9n ) + y i20 ,2 + y i30 ,3 . (1.8)

The overall likelihood is given by

m m
1 = Z  loS L i = Z  (~ n i lo§ 0- + e&n + e<9'3) + yn °i2  + y n 0 n}  ■ ( L9)

¡=1 1=1
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1.4 Link Function

In order to fit a multinomial logit model, we assume that the probabilities p y are related

to the explanatory variables through the logit link: in other words for the (/, j)th  cell in 

Table 1.2 corresponding to case i and response level j  we have one or more explanatory

variables, which we denote by x \^  k  = 1,2,  . . . , K  . Thus there are K  different

explanatory variables for each level of response variable and for each case. The normal 

convention (Payne et al. 1993) is to denote the linear predictor for cell (i ,j) by

n,3 = i x i n 0 i n - (i-io)
4 = 1

The logit link makes the canonical link assumption that By = T] ..; that is the log - odds 

are linearly related to the explanatory variables (factors). There may be some other forms 

of relationships between 6 y and rj y , as are explained more in chapter 4.

Therefore the logit link can be formulated using equation (1.8) as

log ( Pu -) = Z *iJ’Pin
1 - P ,2 ~Pa■■■ -  Pu 4=1

( 1.11)

Note that this is the only link formulation possible when using the Poisson trick approach 

but our approach allows other link functions such as are defined in chapter 4 and can be 

easily extended further. To summarise, the logit link assumes for cell (z',y)

0 ,  = = S
K

X ik 'P,
4 = 1

or, using matrix notation,

( 1. 12)

V ( j ) e in (j) a (j )X U)/3 7 =  1, 2, J (1.13)
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It is usual to assume that = x ik, j  = 1, 2, . . . ,  J  ; that is ; X U) = X . This

assumption is, however, is not necessary in our approach for fitting multinomial logit 

model. Although our approach can be used more generally, and further details are given 

in the following chapters, we concentrate in this chapter only on the multinomial logit

link:, for which TJ.^ =  0 y , i.e. Tj(y) = 0 <"i) for j  — 1, 2, . . .  , Jan d  /? (y) = y6 .

One of our main objectives is to estimate the parameter |3 . Our approach is to ‘stack’ the 

data; i.e. to set y T = ( y  [  , y  \  , • • • , y  j  ) to be the row - vector of length m J  

and p T — (/?(1)r, P (T>T, • • • , to be a row - vector of length K J . We define the

m J  column vector fi = E(Y)  and the mJ  row - vector r f  — T](2}T, . . .  , ) .

Similarly we define f f  = (PV>T, 6fZ)T, . . . ,  P J)! ) as an m J  row - vector. In usual way, 

we shall let /?, , T]i and 6. be the ith element of P  , Tj and 0  respectively.

The overall design or model matrix is defined as

f w (1) 0 ........  0

D = 0 w (2) ...... ........  0

0 0 ........  X (J)

For logit link we have that 77̂. = .

Therefore tj n = 6 n  = log ) -  i0g
Pa Mn

= log (-------^ ------- ).
ni - Mi l  -  Mil

Similarly, 77 i3 = 0 i3 = log (----- — ---- -).
P ~Ma ~Mi

(1.14)

(1.15)
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Thus the equation (1.9) can be rewritten in terms of the Mj

h = l°g L i = ~ n i lo§ (1 +
Mi l  , M i  3+

n i -  Mil -  Mil n t -  Mil -  Mil

+ y a  lo§ (------ — -------- ) + log (------- — --------)
ni ~ Mil -  Mi ni -  Mil -  Mil

= y  n  log Mil + y t 3 log Mil + ( n t -  y  i2 -  y n )  log ( n t -  Mn ~  Mu ) -  «,• log n i

— T12 log Mn + T,-3 log Mu +( n t - y t2- y a) log ( -  Mu- Mu ' ) -  constant. (1.16)

1.5 Deviance

The essential aspect of GLIM’s fitting procedure is to minimize a measure of discrepancy 

(called the scaled deviance in GLIM) between the observed data and the corresponding 

fitted values. The GLIM package fits a model by choosing an estimate of the P ’s to be 

those values which give (J, ’s that minimize the deviance. The actual form of the 

deviance depends upon which member of the exponential family GLIM has been 

instructed to use. The GLIM user does not need to know the exact formula for the 

deviance if using a standard model (but in our case we do not use a standard model), nor 

how GLIM finds the fitted fj, ’s which minimize the deviance, as GLIM does all the 

calculations internally. In general this technique is the same as fitting the maximum 

likelihood estimates of the parameters /T  . Thus, GLIM can be thought of as a program 

for the maximum likelihood estimation in generalized linear models.

13



The deviance function is twice the difference between the maximum achievable log - 

likelihood and that attained under the fitted model. This can be expressed symbolically 

for three levels of response variable as from equation (1.14), as follows:

log L (/j ) -  log L (y ) = y i2 log Hi2 + y i3 log f i i3 + (n i -  y i2 -  y i3) l o g ( n i -  n i2 -  f i a )

-  {yn log y ¡2 + T/3 log y t3 -  («/ -  y i2 ~ t ,-3 ) i°g( «,• -  y i2 -  y a )}

= y ¡2 log —  + y i3 log —  -  («,•
T/2 y i3

-  y t2 -  y t3)log Oh z J j j i  
(n i y  ¡2

f in )
y » )

Hence we can have

-  2 [log L (/tn -  log L (yt)] = - 2  [ y i2 log t j 2 - +  y „  log
y  i  2

M ,~3
y  ¡3

-  K - T i 2 T i3 ) log O h  -  M il -  M i l ) ] 
( » /  -  T/2 -  T i3)

Thus

w m u u
Z { -2 [ lo g L (/ii)- l o g ^ f)]} = E { - 2 [ y ;2 log ^ ,.3 log H ' 3

T i 2 T ¡3

(” , - y n )iog (B| ^  ^ ,3)]}- (i.i7)
(*» -  T ,-2 -  T i3)

We have formulated this in a GLIM program and this is given in Appendix A for the 

examples presented in this study (with extension to more than 3 - levels of response 

variable, as appropriate).
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1.6 Hat - matrix

The hat - matrix H  in generalized linear models framework is given as

_i -L
h  = v ~ 2x ( x Tv ~ 1x y l x Tv ~ 2 ,

and is used to find the fitted values Y — HY  . The matrix H  provides a measure of 

leverage acting on Y to produce Y but in our approach the leverage coefficient
_ L _ i

h r -  x  r T v r 2 ( X  T V ~1 X  ) “1 v r 2 x r , of an observation y  r may, for example, 

be extracted in GLIM as %lv, which enable the user to ‘standardize’ the GLIM residuals 

and can be interpreted as the amount of leverage the value y r has in producing y r 

regardless of the actual value (Hoaglin and Welsch 1987). It is a measure of remoteness 

of the rth observation from the remaining n — 1 observations in the space of design matrix 

of the stacked data.

It is easy to see the following in our approach from the hat - matrix:

1® £  £  L  = £  hr = p  , where p  is the number of parameters
r = 1 q = 1 r =1

2« £  h , ,  = 1
r = 1

3 ® 0 < h r < 1 for all r

4 ® h r h > h]q for all r and q

5 ® -  0 .5  < h rq < 0 . 5

6 • h .. > [ Wetherill (1986)]

The literature on investigating the leverages gives some bounds on the values of h
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and as the values of hr > ----  are taken by Belsley et al. (1980) to indicate observations
n

with sufficiently high leverage to require some further investigations. Velleman and

2

Welsch (1981) consider h to be large when h >
3 p

n
. For a definition when the

leverage coefficient hr is large, Huber (1981) suggested to break the range of possible 

values ( 0 < h r < 1 ) into three intervals: values h r < 0 .2  appear to be 

safe, values 0 .2  < h r < 0 . 5  are risky and values h r > 0 .5  should be avoided.

Some further cut - off points for the leverage coefficient hr are also suggested in the 

literature [see Hadi (1992)].

We find the hat - matrix in our modified approach for multinomial models by using the 

equation (2.31) in chapter 2 to define H  as,

H  = N  ( N  T N t ,

where N  is a new ‘design matrix’ and is defined as

N  = A  i 
0 2mx2m

f

v

x {2)
0

0
X (3)

\

J  2/mx4

U , x (2> A a X ^

0 A i  x 0 ) j
(1.18)

The diagonal matrices Ay  are defined later in section (2.3) and the hat - matrix H  has a 

very special structure in our thesis for the multinomial data.
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1.7 Residuals

Since in regression analysis the random are unobservable, they are estimated by the

least squares residuals, which are actually the difference between observed and estimated 

responses when the least squares method is used to fit the model and in our approach the

rth residual for observation y  r is

rr = y r -  y r , for r = 1,2, ••• , n 

=  Y r  -  P  ■ (1 -1 9 )

In matrix notation, the residual vector is defined

r = y  -  x p  . ( 1.20)

It is of historical interest to note that in 1809, in a text of astronomy, Gauss introduced the 

concept of the errors in a Normal distribution with zero mean and constant variance and 

in Theoria Combinations in 1823, he abandoned the Normal distribution replacing it by a 

weaker assumption of constant variance. The extension of this weaker assumption was 

given by Wedderbum (1974) to generalized linear models. For generalized linear models 

we can extend the equation (1.18) to all the distributions that may replace the Normal. In 

this section, we use the theoretical form, involving / /  rather then / /  and define the 

generalized form of residual or Pearson residual as,

pr
y - f i

y W ) '
( 1.21)

This is just a raw residual scaled by the estimated standard deviation of y. The Pearson 

residuals have been used in model diagnostic procedures. The GLIM provides Pearson 

residuals by default, although other approaches to residuals are becoming increasing 

widely used. We introduce some of these concepts for future use or in some examples for 

model checking.

17



1.7.1 Modified Pearson residuals (the residual of GLIM)

The simplest approach (output by default with GLIM) is the Modified Pearson residual 

. For each unit r, we have:

( 1.22)

where k  is the scale parameter and the modification is the factor k j w r , which ensure that 

the denominator is a reasonable estimate of var'(y. ) . The f i r are the GLIM fitted values 

(stored as %fv). The r f  are available in GLIM as %rs .

1.7.2 Standardized residuals

The modified Pearson residual suffers from the obvious disadvantage that it does not take 

into account that the jur are merely estimates of jur and hence are correlated with the

responses y r . The estimated variance should ideally take into account this correlation. 

It is therefore desirable to adjust the modified Pearson residual by dividing it by a factor

•y (1 -  hr which compensates for the correlation between y r and jur . Thus we define 

the standardized Pearson residual as,

PS

v m
y  r -  t* r

l— V ( A  ) < l - h r )

(1.23)
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The calculation of this requires knowledge of the hr . These quantities are in fact the

diagonal entries in the hat matrix. The hr may be extracted in GLIM as %lv, which 

enables the user to ‘Standardize’ the GLIM residuals.

1.7.3 Studentized residuals

In residual plots, we are generally interested in the pattern rather then the size of the plots 

so it is usually not necessary to scale the residuals by an estimate of the unknown scale 

parameter (/) . However following McCullagh and Nelder (1989) scaled residuals can be 

defined as Studentized residuals. For the standardized (modified) Pearson residuals, the 

Studentized version is:

PS
PS

V iH 1 -  h r

y r  -  A r

v ( A r )(i - K )

(1.24)

1.7.4 Deviance residuals

The deviance plays a central role in inferential aspects of generalized linear modelling. A 

deviance residual r/J can be defined as

sign(yr -  f i r > 7^7  • (1.25)



where sign ( )  indicates that the deviance residual is taken as positive if y r — jj.r > 0 , 

and negative if y r — fur < 0. Here the d i are the deviance increments and the values of 

the d r may be extracted in GLIM as %di.

1.7.5 Standardized, Studentized deviance residuals

As with Pearson residuals, it is better to standardized the deviance residuals defining by

DS

a/ 0  -  K )

sign ( y r -  y  ) a/ L

a /(1 -  h r
(1.26)

It may again be convenient to divide these standardized residuals by an estimate of (j) to 

give the Studentized version

(1.27)

Some other residuals are also suggested, see William (1987) and Atkinson (1985).
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1.8 Case i

In this research we are dealing with the distribution to model a multi - level response 

variable y ij, i = l, 2 , ,  m, j  = \, 2, J , as are described in section (1.3) for 

m observed values (cases) of a J  - level response variable. The cell (i, j ) denotes the 

response variable level j  of case i, i.e. case i has observations y a , y i2, y i3 ... , y u , 

and see Table 1.2. For data on individual set each case i is one individual so y„ = 0 ory V

Our method of fitting the multinomial models in this research naturally gives the Cook’s 

distance and the Hat - matrix for the observation y r of stacked data for the J  level of 

response variable. We shall see in the following chapters that this has a little diagnostic 

value. Instead, the likelihood influence measure of Cook (1986) for a case i is calculated 

and the details are suggested in chapter 7.

1.9 Cook’s distance (1977) as an influence measure

The leverage coefficient hr given in section (1.6) alone cannot tell us if our linear 

predictor is being affected strongly by an observation y r . Another measure in statistics is 

a Cook’s distance (1977) and is commonly used to estimate the influence of the data 

points when using the standard regression analysis. In our approach for fitting a 

multinomial logit model for a univariate response variable, Cook’s distance (1977) can be 

used as a measure of influence for an observation y  r and is given as

j
where as for the aggregated data, each case i consists of ni individuals,

j

C r (1.28)
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The quantity Cr is a measures of the change in the vector of all n predicted values when 

observation y r is not used in estimating J3 and can be extracted using the GLIM code 

%cd. We may use the alternate definition based upon the deviance residuals, namely

h.
( rrDS ' )

P Q  -  h r )
(1.29)

A Convenient search for influential cells in a traditional GLM is carried out by looking 

for larger values of Cook’s distance (1977), but no clear rules can be given for what 

constitutes a large value of Cr . A simple index plot of the statistics against case number

can be useful in determining the largest value. The observations y r with large values of

C r can then be weighted out of the analysis and a test carried out of the change in the 

scaled deviance. The significant changes in the scaled deviance lead us to consider the 

status of the observation in question.

However, we will see that, when considering influence, it is not appropriate to consider 

merely the observation y r , rather we conclude that we must consider the case i 

(consisting of observations y  a , y  i2 , y i3 . . . ,  y  u ) and as the Cook’s distance (1977) 

approximate the likelihood influence measure of Cook (1986). But the likelihood 

involves y n , y i2 , y i3 > . . . , y u (or y n , y i2 , y i3 _ . . . ,  y u _1 , n t ), so if we wish to 

find the likelihood measure we must delete the whole case i.

We will thus decide that we need a measure of the influence of the case i and Cook’s 

distances (1977) for y n , y  i2 , y  i3 _ . . .  , y  u might provide some information on the

influence of the case i. However, with adequate computing power, likelihood diagnostics 

using single case i, deletions can be determined using the full likelihood influence 

measure of Cook (1986) and can be seen in chapter 7.
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1.10 Influential observations

Influential observations are those observations that, individually or collectively, 

excessively influence the fitted regression equation as compared to other observations in 

the data set. It is therefore important to be able to locate such observations or in this 

research to locate case i and assess their impact on the model. More specifically, Belsley, 

Kuh, and Welsch (1980) define an influential observation “one which, either individually 

or together with several other observations, has a demonstrably large impact on the 

calculated values of various estimates - - - than is the case for most of the other 

observations” .

An observation, however, may not have the same influence on all the regression results. 

The question “Influence on what?” is, therefore, an important one. For example, an

observation may have influence on P , the estimated variance of P , the predicted 

values, and/or the goodness - of - fit statistics. In this study we discuss how observation 

may influence the regression parameter p .

We consider the available tools such as leverage, Cook’s distance and how these might 

provide some information on influence points. In our approach for a multi - level 

response variable we need to investigate the influence effect of the case i instead of the 

influence of an observation y . . .

1.11 Assessment of influence by deletion

John F. W Herschel (1830) mentioned in A Preliminary Discourse On the Study of  

Natural Philosophy “ To arrive inductively at law of this kind, where one quantity 

depends on or varies with another, all that is required is a series of careful and exact 

measures in every different state of the datum and quaesitum. Here, however the 

mathematical form of the law being of the highest importance, the greatest attention must 

be given to the extreme cases as well as to all those points where the one quantity changes 

rapidly with a small change of the other” .
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To detect the influential observations it is necessary to study what sort of effect they 

produce on the estimation of regression parameter (3. For that we need to change the 

usual structure of the analysis by deleting observations or by perturbing them.

1.12 Ideas for the deletion of individual observations/cases

Influential points may occur because of a variety of reasons and decisions how to deal 

with them must be made according to context. In our situation, we will need to 

distinguish between what we call ‘observations’ and what we call ‘cases’. Some 

influential observations (in our situation cases) are not necessarily undesirable and can 

often, in fact, provide more important information than other data. Improperly recorded 

cases, whether caused by measurement errors during the original experiment or by simple 

transcription errors later in the analysis, should be corrected if possible, or otherwise be 

deleted from the data set. However, if, say, deletion of a case from the data set 

considerably changes the value of an estimated parameter, then relevant inference 

concerning that parameter may be in doubt.

The method and the theory presented in this research for fitting the multinomial models 

calculates a ‘correct’ Cook’s distance (1977) and ‘hat - matrix’ fory.j. However, the use

of deletion statistics for a single observation y tj will not provide total information on the 

effect of deleting a case ( y n , y i2 , y i3 . . . ,  y u ).The individual Cook’s distances for

y a , y  i2, y {3 . . . ,  y u ,  etc might be used to provide some indication, however, of the

potential likelihood displacement.

The theory presented in the next section gives the method of finding the likelihood 

influence measure of Cook (1986) using the deletion of a single case. The method for 

finding the likelihood influence measure in our fitting of multinomial model is delete (or 

in other word to weight out) the case i. The details of deleting the case i can be found in 

macros and the framework of data entry as in example 1 of section (7.3.1) for deleting the 

casez =1, (which consists of two ‘observations’, as we have a trinomial response). We 

used the equation (7.1) to find the likelihood measure for the full data then we deleted out 

the case i — 1, which is in our setup is 1st and 5 th observation in the macro given and
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finally the equation (1.29) gives us the likelihood influence measure of Cook (1986). We 

will repeat this process for each i = 1 ,2  , . . .  , 5 and the Table 7.3 is formed for these 

influence measures of the data in Table 7.1

1.13 Likelihood influence measure of Cook (1986)

The likelihood Cook’s distance (1986) idea is based on the likelihood approach for the 

hypothesised model and for the perturbed model (deletion of an observationy tJ) , but in

multinomial data the perturbation is a case i, i = 1, 2 , . . .  , m . The log - likelihood of 

the perturbed model with deletion and the unperturbed model without deletion are used to 

measure the influence of the perturbation or deletion.

For clarity we consider here a univariate response variable (rather then multivariate 

multinomial case) and suppose we have the response values y , ,  y  2 , ■ •• , y  m with

each y.  having the probability density function /,• ( T /1A )> z' = 1> 2 , , m where

P is a p  x 1 vector of unknown parameters. If l t (A ) = log ( y {; A ) then the log - 

likelihood is given by

We now introduce the perturbation of model via deleting the ith observation and denoting 

log - likelihood corresponding to the perturbed model by /(/?(,)) and assume there exists

a null perturbation with log - likelihood l(JJ) . The maximum likelihood estimators of [3

III
(1.30)

and ¡3(i) found from 1(J3) and /(^;)) are respectively A and A(,)

The likelihood influence measure

¿Z)(A(0) = 2 [ / (A ) - / (A (0)], (1.31)
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is simply twice the difference of the maximised log - likelihood of the perturbed 

model and null perturbed model and is always nonnegative. It can be used to assess the 

influence of the perturbation (deletion of ith observation).

The likelihood influence measure LD{/3(i)) may also be interpreted in terms of an

asymptotic confidence region in a similar way to the interpretation of Cook’s distance 

(1977). One can consider the general asymptotic confidence region result

{ P  ■ 2 [ / ( / ? ) -  / ( / ? ) ]  < % \ c c - p ) }

where Z 2(a;p) is the upper a  point of the chi - squared distribution with p  

degrees of freedom, and p  is the dimension of (3 . Then

U > i P w ) = 2 [ / ( / ? W ( A o )]

can therefore be calibrated by comparison to the %2 <» distribution. The effect of 

removing the ith case of the data on (5 is to consider (now ¡3̂ )  moving to the boundary 

of the 100(1 - a ;)% confidence ellipsoidal region where a i is such that

2 [ l ( P ) - l ( P it))] = X 2(oci ;p ) }  . (1.32)

Thus a very small level of significance implies very great influence since (3(i) is 

moved a long way from ¡3 .

The so - called Cook’s distance given in equation (1.28) is a one step approximation to a 

likelihood influence measure Z i ^ / ? ^ ) , for the case of a univariate response variable.

However, consideration of a multivariate response variable (e.g. the multinomial with J  - 

level case deletion) involves the deletion of J  -1  observations. In this case, the simple 

single observation Cook’s distance (1977) is not an approximate influence measure.
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CHAPTER 2

Fitting a Multinomial Logit Model

2.1 Introduction

In this chapter we will give a formulation and the derivation of the iterative re - weighted 

least squares (IRLS) algorithm for fitting a multinomial logit model given in equation 

(1.5) by using Cholesky’s decomposition approach applied to a matrix which has 

diagonal sub - matrices. We initially consider a special case for a three level of response 

variable with one explanatory variable and the further extensions on these results are 

given in the following chapters. For clarity and simplification we denote /  = 3 level of 

response variable as follows,

Response variables

Yi ^2 3̂ Totals

Til y  i2 y  i3 n\

y  2i T22 T23 n2

y m\ y m2 y  m3 n ,n

Table 2.1: 3 - Level of response variable
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In Table 2.1, for example, y i2 is the ith observation for response level 2 and ni is a total 

of the various observations for case i with the assumption that the ni , i = 1,2, . . . ,  m 

are fixed. We assume that y n , y i2, y i2 follow a multinomial distribution for each i. We 

also assume that corresponding to each y.. there is a probability p tJ that will be

i — 1 , 2 ,  . .  . ,  m . Thus in this case there are 3 - 1  = 2 distinct probabilities to be 

estimated for each i ; more detail on probabilities can be found in section (1.3). The 

section (2.2) formulates the basis for parameter estimation using the IRLS algorithm with 

the derivation in section (2.3). The section (2.4) gives a brief description for fitting more 

than one explanatory variable and section (2.5) is an application of these results using two 

different types of data. The results found in section (2.5) are compared with estimates 

obtained using the Poisson trick approach of Francis et al. (1992). The remarks on some 

difficulties that arises in the application to a particular type of data are given in section 

(2.6) with a summary in section (2.7).

2.2 Estimation of parameters using IRLS

As explained in the GLIM manual, the iterative re - weighted least squares (IRLS) 

algorithm can be used to fit more general regression models than just within the 

framework of generalized linear models. In this section, we will give a derivation of the 

IRLS algorithm for maximum likelihood estimation in fitting the multinomial logit 

model, a more general class. The theory here provides an explanation for the success of 

the method as we have a probability model for the distribution of responses and the 

explanatory variables, they can be decomposed into a random component and a 

systematic component as follows,

The random component: The log - likelihood function / for y  depends on the 

explanatory variable x and the unknown parameters J3 only through the values of a finite 

dimensional vector of predictors rj . Thus / is a specified function of y  and Tj .

3

estimated and the sum of probabilities over J  is equal to l
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The systematic component: The predictor vector 77 is a prescribed, deterministic, 

function of the explanatory variables x and the unknown parameters /? .

When modelling the data as a multinomial model, we have in general the freedom to 

choose the predictors. We write

V = X P .  (2.1)

In our approach here for a three level of response variable in equation (1.11),

V 2>' ' x a)p m '

W X il,p e , /
(2.2)

As the data y  (response variable) and x  are observed, the model - fitting by maximum 

likelihood consists of maximising a composite log - likelihood function /(ViP))  (we are 

suppressing y and x from the notation for clarity), and it is a numerical calculation that 

IRLS algorithm is well - adapted to.

It is required to solve the maximum - likelihood equations

But in this framework,

dl_=nrdl_
dp d p ’

where D is the matrix of derivatives with

D„
drti

lJ dpj

(2.3)

(2.4)

(2.5)
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These equations cannot be solved explicitly, so iteration is needed. The most familiar 

approach is the Newton - Raphson algorithm:

P new P + H dl
dp ’

where
d 2l

= D r
d 2l

D + dl
d 2rj

d p i d p j _ dVi drjj dr] dP i dP j _

Kendall and Stuart (1967) suggest replacing H  by D r W D ,

where W, = E ( -
d 2l

dVi dr] ,
■)

Therefore = p  + ( d t wd) - ' | f
d p

We can rewrite

= P  + (D  T WD ) 1D d l  
d ij

= ( D TWD ) - ' d t w  ( D / i  + w  - ' T L ) ,
O T]

or equivalently

( D t WD ) /? „ „  = D r W  ( D f )  + w
d 77

(2 .6)

(2.7)

(2 .8)

(2.9)

(2 .10)

(2 .11)
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2.3 Parameter estimates P new f o r / = 3

In this section we will illustrate the procedure and the algorithm to find the parameters 

Pnew by considering a three level of response variable in equation (2.11) using a standard

81
least squares method. In equation (2.11) we need to find the matrices D , W  and ---- ,

drj

where D is a matrix of derivatives and from equations (2.5);

D
(  X ( 2 ) 0 "N

X  (3)
/  2 m x 4

(2.12)

Here X is a matrix of explanatory variables for the response variable k. It is here 

assumed, although it is not necessary, that X  (2) — X  (3) .

d 2i
The matrix W  can be written ( W ■■ ) = E(-

d V id V j
(2.13)

) =
W  Wrr li rr i12

wvr 21 w 22 /  2mx2m

where using the Cholesky decomposition of symmetric positive definite matrices, we can 

rewrite and more details can be found in Appendix B

Wn
w\rr 21 W2 2)

A n 0

V^21 l 22 J

A n
0

A
A

\
12

22

a :

V^21A n

A n A u

^ 2 1 ^ 1 2  +  ^ 2 2  J

l ll
^21^11

•^11^12
^ 1 2  +  ^ 2 2  J

(2.14)

The W.. and A., are diagonal matrices and we can write,

An = W n => A n = sqrt ( W u ),

A n A u = W n => A u = W n A^ , (2.15)

^12 "f A 22 — W22 A 22 ~ sqrt (JE22 ~ A l 2 ) •
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The notation sqrt{W) for some diagonal matrix W = ( Wu ) , here means the diagonal

matrix with diagonal entries ^jWu .

The equation (1.8) for three level of response is

h = log L, = y i20i2 + y i3Oi3 -  n, log(l + e a + e$n )

Or equivalently

h = lo g Lt = y n ri\2) + y i3V ? ] ~ n t log(l + e tiil + e°n ) ,On i 0,-y (2.16)

where is a logit link for the observation for case i and response level j .

Now to find W .. in equation (2.14), we need the following derivatives in equation (2.16),

dl. n ; e
~ W  = y n

Bn

dr]\ 1 + e a + e iZ

and
a 2/,. 0n /1 i i \ 0n 0nni e ,2 (1 + e 11 +e  13) -  ni e a .e a

(l + e9il + e 0a)2

en e 12
= —n.

(1 + ee‘2 + e°a ) 1 + e9il + e9iZ

-ni ee‘1p n + n j (e9,1 .pn)2

= -«,• p i2 + n t p -2 = - n ,  p i2 (1 -  p i2) (2.17)

Thus E(-
d 2l

d r j W d v l 2'
-) = n, p i2 (1 -  p n )

1 - ^ - ) (2.18)
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Similarly E ( -
a 2/.

Or for i ^  j  in equation (2.16) we have,

a 2/,.

d T j \ 2^ d r j (p  d r j {2) ■ { y

n , e
i 2

1 + e en + e

= 0
n. e

d r j {2) \  + + e Or.
-} = 0 .

Thus we have E  (-
a 2/,.

a tj .2) a rj {2)■ ) =  0 .

Similarly
a/,.

{ T ¡3
«, e

a77/3)a 77 ¡.3) a ^ ;.3) ,3 i + e * « + e ®»
-} = 0

and E ( -
a 2/,

d r j i 3)d r j j 3) ■) = 0

Now to find the 2nd derivative of lt with respect to different 7]i in equation (2.16),

dl, a
a 7 ;(3)a 77.2) d r/j(3 ) { ^ - 2

n e

1 + e 0'2 +

72; e 61'2 { —e*9'3 (1 + e tiil + e y'3) 2}-2 ■

, &i2 „0n „2 - ̂ ' 2 n >̂3» ¡ e  e p n = n, p ne “ p ne

Hence we have E ( —
a2/.

-) = -M Mn _  MnMa
^ ‘2 n, ~ n t

(2.19)
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We can write these derivatives for clarity if  i = 1 and j  = 2  ,

_ a / j
3 7] (2) = ^ ¿2

nx e 11

1 + 6 12 + e L
: JO'2 Eil ’

and
a 2/j

drj[2)dri[2)

nl e 9 '2 (1 +  e6n + e9u ) -  nue 0 '2 .e9u 

(1 + e*a + e9u ) 2

so E ( -
d 2 lx

3 7) / 3) 3 77 j(3)
) = M u  0 - ^ ) .

Also
a/ j

3 77 / 2} ö 7  2(2) drj 22) ■{J12 -
«j e

1 + e 0'2 +
-} = 0 ,

and £ ( -
a  2/ x

d ?j x{2)d Tj {22]
-) = o

Also
3 /,

3 77 / 3} 3 77 / 2 3 3 77 / 3}
{ 1 2

Hj e
1 i #19 , #n1 +  e 12 +  e 13

-} ,

and E ( -
3 77 /  3 } 3 77

/f 12 A 13

n x

Similarly we can find derivatives for different values o f i and j .
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If for clarity we define Wjk (z) as the ith diagonal element of the diagonal matrix W jk , 

(see equation 2.18) then, we have

1̂1(0 = ̂ 2 0 - — )
n ,

w n  (0  = / ' o ( l - — ) (2.20)
ni

Wn (i) = - ^ L .
n i

Since W  is a symmetric matrix, W n (z) = W 21 ( z) . (2.21)

In GLIM code we can define these equations as follows; further details are given in the 

Appendix A:

O') = %M0* 0 -%/v(01 »(0) >

W22 (z) = % fv (n  + i) * (1 -  % f>(n + z) / n{i)) ,

Wu  (z) = -% > (z) * %yv(zz + z) / zz(z) .

For the observations z = m and /  = 3 level of response variable, the matrix W  is 

summarised in Appendix B and the matrix D  is given in equation (2.12).

We here define the matrix N  as

(.D TWD ): D A n A
0 A

21

22 y

A
0 A

12 D N r N  ,
22 y

where N A  u A
0 A

12 D
22 y
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Then the equation (2.11) further can then be rewritten as,

( N TN ) P new = D 1
V̂ 21

V

‘22 7V

*11
V

*12

l22 J\
DJ3 + W - l —

d v ,
(2 .22)

(Yl  o 1 Y a , a , ,1 f  Au A„)
D r 11 11 12 DP + 11 12 w~l —

,4 A
V*21 *̂22 7 Vv ^ ^22 y V ^ ^22 7 drj J

/
( A„ A„ ( A n A „ ^ . dl  1

iV r 11 12 D P  + 11 12 F F “1
V V 0 ^22 7 v ^ ^  22 y 5 ^  J

[4 , y4 , 2 ' x m 0  N
+ ' ¿ n ^*12 FF 5 / '

h ° ^ 2 2  y , 0 x (3)y 1 / 7 l  o y4 22 7 Qrjj

(Ux ^12
^ 2) o N( p 4-(b , i 0 '

\
dl

1 1 ° ^22 y 0 1/7
\

^21 B22 J dr,ly
(2.23)

where B  ii
V B  2i B 22 J

11 12

22

w -1

^11 ^12
\ ( f

0 A

A n 0

22 7 VV 21 *22  7

^11 ^12
\Y

0 A 22 7 7

f *xx 0 " X 0 ^

4^21 ^22 y V^21 B 21 j
(2.24)
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From equation (2.24) we have the equivalences,

^11^11 ^  B\\ = A i •

^ 2 2 ^ 2 2  -^22  =  ^ 2 2  •

^ 2 1 ^ 1 1  + ^ 2 2 ^ 2 1  ^  ^ 2 1  = _( ^ 2 1 ^ 1 1  ) ^ 2 2

= - ( A 2lA; l)A~l  . (2.25)

dl
We are only left now to fin d ----  in equation (2. 23) to find /?neM,, but in our case in

crj
equation (2.2)

77 = for i = 1 ,2  , . . . ,  m

We are assuming canonical links, and we have,

dl:
d T) 7 1 7 =  = y n - n i P ae = y  n  ~ M i2 •

Thus 5 /
3 T] (2) F 2 -  / /  2 , where Y j  = (>7 y 2i . for j  = 2,3

Similarly
3 /

dr] (3) “  ^3 ^3

Thus we can write 3 /

drj

i Y 2 -  ju2 ^

V ^ 3  J

(2.26)
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The final form of equation (2.23) becomes,

N TN ß m = N '
f i A  A

y\ ^ ^22 y

(  X (.2) Q N\

o x (3)
i  (

\ Y )
+ *n 0 

V*21 * 2 2  J

f  T/ yAY2 Hi

VF3

= N 2
\ \  0 2422 j

(  (  A A ^  v(2)/ in /\.l2
X 0)yv 1 y

+ *11 o v r 2 - / / f t

V*21 *22 y V^3 J

(2.27)

TV3
^C a  AA \\ ^12

I f t  ^  ^ 2 2  J v T f
+ * n  0

V * 2 1  * 2 2  y

f t  - / / f t

v^3 “ f t  y

:iVJ
( ( A n rt2) + Ani f ^  f

VV A i r fT) + *n(^2 -  A )
*2l(F2 - M l )  +  B 22(^3 “ A )

f t

v y

(2.28)

But in GLIM code we have (% //;) :
f  A u tj(2) + A n r j (3)^

V ^22*7(3)

So, equivalently, equation (2.28) becomes

N T N ß  = N 3r '  new (%lp) +
v v

*11(^2 /ft 
.*21 Ĉ 2 — /ft ) T -£>22 0 ^3  _ /ft )

f t

f t
(2.29)

The equation (2.29) is of the form which gives a least square solution and can be 

rewritten in the simplest form as follows,

P new= { N TN)~ lN TY.  (2.30)
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In equation (2.30) we have the new design matrix

N A\\ X (2) A n X
a 22x

(3) h
(3)

y 2 m x  2 m

and the y - variable

f  f

(%lp) +
B n ( Y2 - M 2)

\ kB 21 (Y2 ~ Ml ) + B 22 y J l m x l

Equivalently, the y - variable is given by

f  (

(%lp) +

V V

A \ l  (Y2 - / / 2) V

— {Ai2A 22)An (Y2 — p 2) + A 22(Y2 —//3)J

where (%//») =
^ 2i  ( a W 2)+ a u V ^

Ip A n 0)\  A 22 V y

Then, equivalently r](3) = A 22 Ip 3 ,

T]{2) = A; l ( Ip2 - A u T]i2)).

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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The procedure defined here is very simple to find the matrices D , W  and N  using 

GLIM software. The y - variable in equation (2.32) depends on % Ip and can be 

calculated from equation (2.34). The GLIM macros to find these matrices for different 

data used in this study are given in Appendix A.

The equation (2.30) is basically a standard least squares equation and can be used to fit 

any multinomial model. The fitting is demonstrated in section (2.5) with the Poisson trick 

approach of Francis, et al. (1992).

The hat - matrix and Cook’s distance or some other statistics are easy to extract from our 

approach to search for the influential observations or cases (although some extra care is 

needed to interpret these statistics for multinomial data).

2,4 Cholesky Decomposition

The Cholesky decomposition of the symmetric positive definite weight matrix W  in 

equation (2.11) can be formulated using some other available methods in literature 

instead of standard Andre - Louis Cholesky decomposition equation (2.14). A simpler 

reasonable approach can be square - root - free Cholesky decomposition of the variance - 

covariance matrix of the multinomial distribution given by Tanabe and Sagae (1992). It 

requires much fewer arithmetic operations than does the general Cholesky algorithm and 

is not affected by an ill - conditioned matrix. This approach is useful when elements of 

the probability vector are different orders of magnitude. An explicit formula of the 

Moore - Penrose inverse for the general ill - condition variance - covariance matrix is also 

given for the multinomial distribution.

The Cholesky decomposition general equation (2.14) used in our approach requires only 

diagonal sub - matrices and makes the required matrix inverse much simpler. Our 

multinomial model is basically a some - sort of least squares method that involves at each

step these diagonal sub - matrices to find the equation (2.30) for estimating J3new . We 

are using GLIM algorithms and it makes much easier to manipulate these matrices for
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fitting the multinomial model. The square - root - free Cholesky decomposition of the 

variance - covariance matrix given by Tanabe and Sagae (1992) is much simpler than 

general decomposition equation (2.14) but it will not give our least square equation 

( j3new = ( N TN )~ l N tY )  for fitting the model.

2.5 A lternative approach  to find W tj

We can also use the standard result of Fisher Scoring to find the variance - covariance 

d 2l
matrix E  ( --------------- ) equation (2.14) and the log - likelihood equation (2.16) as

dritdri

h = E  y y ° v  ~ n t lo§( 1 + E  e9ii ) ' ¿ = 1 , 2 , . . . ,j=2 7=2
m (2.36)

From equation (2.36) we get

dl. n t e
8 0 a ~ y " 3

1 + Z

y  j  -  n i P y

7 = 2

a h
d e a. y ik -  n i p  ik ■

We are using here the logit link or the canonical link 6 ¡j = T] [ J ] ^  v -kJ * (3 )
k = 1

and more details can be found in section (1.4). The variance - covariance’s diagonal 

matrices can be obtained as follows

E{- d l i  ̂ d l- ) = E {—
dT]\J)d7)\J) d e ,

-) = E ( y v -  n i P i j ) :
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Var ( y ,  ) = n, p ,  (1 -  p ,  ) = p  „ (1 -  ^ JL-)
n ,

d 2l

• £ ( ' e ^ » ) ^ ( W r x l t } = £  { ( r » '  ~  ) } -

= Cov ( y y , y lk ) = -  n, p.jP.k A y M ik

The above results for J  > 3 level of response variable can be extended easily and more 

details other than the logit link function or the Box - Cox link function are given in 

chapter 4 with full derivation in Appendix D.

2.6 More than one explanatory variable

We consider here in this section a case for a J  = 3 level of response variable with two 

explanatory variables and x2 . The x } and x2 in general can be two different 

explanatory variables for each level of response variable or in general for some data in 

Table (1.2) for ‘m’ can be different for each level of a response variable. The theory and 

the results given in the previous section are still applicable.

We consider here for illustration the artificial data in Table 1.1, with Plans to enter HE as 

a 3-level of response variable Y  with levels ‘Definitely Yes’, ‘Possible’, and ‘Definitely 

No’. We have Age = x 1 and Gender = x2 as two explanatory variables. The Age=x j and

Gender = x 2 are considered as two explanatory variables for each response level in 

sections (2.6.1). This data are also considered for further analysis in section (2.7.2) using 

the Poisson trick approach in section (2.6.2) and the theory is demonstrated when there 

are different explanatory variables for each response level.
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Let Age=Xj and Gender = x 2 be two continuous explanatory variables for the 3 - level 

variable ‘Plans to enter HE’ as response variable Y . Then assuming = X (3) = X , 

the link function 77 and the matrix D  in the previous section (2.3) become

2.6.1 Estimates pnew for two explanatory variables

(  (2) Xj j ( )
' x

A A A where
) m x 3  5

(2.36)

d P j

^  Xy 0 0
v0 0 0 1 Jt;

0 \

)  2 /nx6
(2.37)

Now to recall equation (2.29):

(  f

(%lp) +

V V

B „ ( r 2- f i 2) V

B 2\ ( Y 2 ~~ B 2 )  B 22 ( F 3 ~  /¿3  )  J y

(2.38)

with a new design matrix

ÀL
Hn x4n Xj ^l lX2 ^12 H12Xi Au x,

0 0 0 ^22 A22x1 A22 x.

X
2
2  /  2 ? « x 6

and the y - variable is as in equation (2.32),

(  f

(%//>) +

V v

^11 (Y 2 -  Ml)

B 2\ (Y 2 — p 2 ) "b B  22 (E3 — p 2
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For a general case if we consider in section (2.4.1) that X (2) and X (3) are two different 

explanatory variables then we have

2.6.2 Estimates ¡5new for different explanatory variables

V
O r (2)/? (2)^

x (3)/? (3)
where (2) ,

(1 *1 *2 U s

x (3) = (l x \ x'2 )mx3 and
rl x l 0 0 0"

v0 0 0 1 xl x2y 2mx6

with a design matrix

N  =

(

\

A l Al-*-2 A 2 A 2 ”*1 A n x

0 0 0 A 22 A 22x x A 22x

" 'I 
2

2 72 mx6

The y - variable will stay the same as in section (2.6.1).

It is not that difficult from section (2.6.1) or (2.6.2) to fit a least square model of Y  

versus N  . Effectively, we fit a GLIM model of main effects without the constant term. 

This will then be equivalent to a Poisson trick approach of Francis et al. (1992) for two 

explanatory variables x 1 and x 2, The above approach is more flexible to fit any required 

model. (For example, it is not easy to fit the same model via the Poisson trick for the case 

where x x , x 2 are continuous).
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2.7 Examples

In this section we will use two different sets of data from a social survey to apply the 

theory and the methods developed in this chapter for fitting a multinomial logit link 

model. The statistics found in our approach for fitting a multinomial logit link model are 

compared with those obtained by the Poisson trick approach of Francis et al. (1992) and 

some remarks are given for fitting the multinomial logit link model when lots of 0’s and 

1 ’s exists for the individual response level data

2.7.1: Data set for J —3 response variable

As an application of our method for fitting a multinomial logit model, we will use as an 

illustrative a set of data from the US 1984 General Social Survey, as provided by Green, 

M., of the Centre for Applied Statistics, Lancaster University, U.K. 1473 respondents 

were asked a question (Health) regarding their state of health: the response categories 

were l=excellent, 2=good, 3=fair and 4=poor. To illustrate our methodology, we ignore 

the ordered nature of the response, and fit a multinomial logit model to the data using age 

of the respondents as an explanatory variable. In this first illustrative example we will 

consider only three response categories l=excellent, 2=good and 3 > fair; age of the 

respondents is the explanatory variable. We will continue this data set in the following 

chapters and the data are attached in a compact disk at the last page. More information 

about the data can be obtained from the compact disk.

We have a three level of response variable and we consider ‘age’ as a continuous 

explanatory variable. The data (responses) are arranged in three columns of observations. 

Here m=1456, since 17 observations are missing. The fourth column is the explanatory

variable age and fifth column is the total of responses, y  n , y  n  , y  n  . The response

l=excellent will, in effect, not be needed in the analysis, as we know that these values are 

given in the total. In the notation of GLIM, the ‘standard length’ of our data for our 

approach defined will be 1456 + 1456=2912,  as we stack the data and are shown 

previously in section (2.3).
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The design matrix in fitting the multinomial logit model is,

f A A '
N  =

0 A

( X (2) 0

22 / 0 X (3)

f AnX {2) AnX {3)^

0 A22X (3)
11 /  2912x4

Here An , An , A22 are diagonal matrices of dimension 1456 x 1456 and in our notation 

X (2) = X (3) are matrices of dimension 1456x2, where the 1st columns of X  (2) and 

X  (3) matrices are all l ’s and the 2nd columns are the explanatory variable, age.

The y - variable is given as equation (2.32)

(  (  
(%lp) +

B n ( Yi - M

V kB2 1(Y2 \i 2) + B 2 2(Y3 p.3)
2/2912x1

The multinomial logit model with main effects is fitted in GLIM using macros given inn 

the Appendix A with starting value defined in the macro startup. A reliable appropriate 

starting value in the macro startup is needed to obtain the correct degrees of freedom in 

the model fitting; otherwise the multinomial logit model fitting gives the incorrect 

degrees of freedom.

We can use the GLIM code $use startup $use loop$ repeatedly in our macro until 

convergence occurs. In this macro the model with main effects fitted using $fit dl  + d2 + 

dpi + dp2 -  1 $ (i.e. without the constant term) and the fitted values are equivalent to 

those obtained using the Poisson trick approach of Francis et al. (1992). We repeat $use 

loop$ once more after convergence in order to obtain the correct standard errors.
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We have in the macro

d l dpi

f  a  ̂A\\

v  0  y 2912x1 V 7

r A u Age^

0

d2 dp2

f  i  \
■*12

V ^22  J

f  A n Age^

\A 21Age j

and after fitting the multinomial logit model with main effects without the constant term, 

we get the these statistics:

scaled deviance = 2957.5 at cycle 9 

residual df= 2908

estimate s. e. parameter

1 0.1826 0.1630 dl

2 -2.056 0.2147 d2

3 0.006864 0.003675 dpi

4 0.03814 0.004299 dp2

Table 2.2: Parameter estimates and standard errors in logit model 

scale parameter 1.000

The above statistics in Table 2.2 are exactly the same as are obtained using the Poisson 

trick approach of Francis et al. (1992) as shown in Table 2.3 (with some minor rounding 

errors in standard errors).

The fitted model is

7 = 0.1826<i2 -  2.056<i2 + 0.006864dpi + 0.03814^2, (2.39)
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and

= 0.1826dl + 0.006864dp, 

tj 2 = -2.056d2 + 0.03814dp2.

We can interpret from above that a unit increase in dl  gives an increase in rjl and 

similarly a unit decrease in d2 gives an increase in r/2 respectively. We can illustrate that 

the fitted multinomial logit model with main effects gives a good fit. In fact, we will be 

able to check that there is no clear indication of any serious violation of basic 

assumptions.

We can easily extract from the fit, Leverages, Cooks distance, fitted values and Pearson 

residuals and the interpretations of these statistics may be quite difficult.

2.7.2: Poisson trick approach of Francis et al. (1992)

The Poisson trick approach of Francis et al. (1992) for the above data set is given as 

follows for the comparison and verification of the results found in our multinomial logit 

model approach. The macro is given in Appendix A and more information about the 

macro can be found on the compact disk.

$fit +group*age (case) $di e $ (2.40)

scaled deviance = 2957.5 (change = -96.69) at cycle 4 

residual df = 2908 (change = -2 )
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The parameter estimates and standard errors for this Poisson trick fit are as below. We 

keep here the, same scale parameter as 1.00 but we can have any scale parameter in our 

approach

estimate s. e. parameter

1 0.1826 0.1629 GROUP(2)

2 -2.056 0.2135 GROUP(3)

3 0.006864 0.003672 GROUP(2).AGE

4 0.03814 0.004281 GROUP(3).AGE

Table 2.3: Equivalent model of equation (2.39)

scale parameter 1.000

It is obvious from above that our approach to the multinomial logit model and the results 

using the Poisson trick approach of Francis et al. (1992) gives the same results with 

exactly the same scaled deviance 2957.5 and degrees of freedom 2908.

Our multinomial logit model approach can be preferred to the Poisson trick approach as 

we have the choice to consider equal or unequal response levels at each level J  in our 

analysis. We can extract the available statistics from equation (2.39) and that is not a case 

when fitting via the method of directive (2.40).
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2.7.3: Data set with two explanatory variables

Here we consider the artificial illustrative data from Table 1.1, regarding a social survey 

of young people’s intentions to enter higher education (HE). We here consider a 3 - level

response, ‘definitely yeSj ‘possibly 2 ‘definitely no3 with explanatory variables Sex 

and Age. This can be arranged as a multinomial data with Sex and Age as categorical 

variables.

Explanatory
Variables Responses

Total
Sex Age level x level2 level3

1 1 6 9 5 20

1 2 5 4 1 10

2 1 1 3 11 15

2 2 6 9 6 21
Table 2.4: Rearranged illustrative data of Table 1.1

Here the expanatory variables are labelled as Age 1 , ‘< 21’, Age 2, ‘21+’ , and Sex 1, 

‘Male’ , Sex 2 , ‘Female’ , and the macro for fitting the multinomial logit model for the 

above data is given in Appendix A. The multinomial logit model for main effects without 

the constant term is as follows:

T] -  ß xd \  + ß 2d l  + ß i dp\ + ß 4d p 2 + ß 5dp3 + ß 6d p 4 (2.41)

In the macro we have,

pyl + Aur\(2) + A nr| (

Y = and

py 2  + A22 r| (3)
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d]_ d2 dpi dp2 dp3 dy4

( a  \  A \\ ( a  's A \\ ^AnSex's '  A n Sex' (  A nAge ' ' A n .Age

V ^ /  8x1 V^22 ) m v 0 J 8xl KA 22SexJm  y 0 Jgxl , An Age

After fitting the above model we get the output

scaled deviance = 0.40353 at cycle 5 

residual df = 2

estimate s. e. parameter

1 0.4079 1.179 dl

2 -0.2430 1.308 d2

3 0.1077 0.6893 dpi

4 2.273 0.8125 dp2

5 -0.6071 0.6893 dp 3

6 -2.103 0.8032 dp 4

Table 2.5: Parameter estimates of model (2.41) 

scale parameter 1.000

Here we have

tj -0A079dl -  0.2430d2 + 0.6071dpi + 2.273dp2 -  0.6071 dp3 -  2A03dp4

JJ1 =  0.4079<i7 +  0 .6 0 7 1 d p i  +  2.273dp2 

?)2 = -  0.2430(72 -  0.607ldp3 -  2.\Q3dp4.
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We now compare the above statistics with those obtained by the Poisson trick approach 

with Sex and Age as explanatory variables. The macro is given in Appendix A.

$fit+group*sex(case)+group*Age(case)+Sex(case)$ (2.42)

scaled deviance = 0.40353 (change = -14.64)at cycle3

residual df = 2 (change = -4)

estimate s. e. parameter

1 0.4079 1.179 GROUP(2)

2 -0.2430 1.308 GROUP(3)

3 0.6071 0.6892 GROUP(2).SEX

4 2.273 0.8123 GROUP(3).SEX

5 -0.6071 0.6892 GROUP(2).AGE

6 -2.103 0.8030 GROUP(3).AGE

Table 2.6: Equivalent model of equation (2.42)

scale parameter 1.000

The above Table 2.6 and Table 2.5 are almost exactly the same but obtained with two 

different methods. The method given in this study and the Poisson trick approach of 

Francis et al. (1992) give exactly the same - scaled deviance and parameter estimates if 

the data entered in the macros are in the same form; otherwise the parameter estimates 

change as explained with more detail in section (5.3).
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2.8 Important aspects

The following important aspects are needed in the process of fitting a multinomial logit 

model equation (2.30). The macros are given in the Appendix A, where Y  and N  are some 

special matrices and are found in section (2.3). It is easy to see that we can fit any 

multinomial models.

a) We need to have a good knowledge about the initial start - up values in the 

macro. If they are not near to be the correct values, we may not get convergence 

or the correct degree of freedom

b) We will need to repeat the GLIM code $use startup $use loop$ until convergence 

is achieved.

c) We have to set a reasonable number of cycles in the macro loop. For example, we 

can set the program to a maximum of 500 cycles using the GLEM code Scycle 

500 2 1.0 e-5 $. The higher number of cycles can be important for obtaining 

convergence.

d) If many response levels values have zeros then we need some extra care about the 

statistics found in our model because we may get the scaled deviance equal to 

zero. We need not to be worried if this is the case, instead we keep repeating code 

$use startup $use loop$ and look for convergence with the correct degree of 

freedom for the fitted model.

e) We can obtain the scaled deviance, degree of freedom and parameter estimates as 

are obtained in the Poisson trick approach without improving the weight matrix at 

each cycle. After observing convergence, we can use the code $use loopS to get 

the correct updated weight matrix, and hence the correct standard errors.

f) If we have many 0’s or l ’s in the levels of the response variable, we need to 

make 0’s either to the nearest 0’s or increase the cycle levels. We may change the 

convergence criteria for easy convergence in fitting the model.

g) To generalize our approach, we need only some minor changes in our macros 

given in Appendix A.

53



2.9 Summary

In the approach presented in this research we need only to calculate the equation (2.11) 

for fitting a multinomial logit model. We have also given a procedure to find the

dl
matrices D , W  and —  those are needed in the equation for a J  = 3 level of

cb]

response variable.

The following matrices are obtained for fitting a multinomial logit model and are denoted 

as follows,

a) 27 = ( N t N  ) 1 where N  is defined in equation (2.31).

b) H  = N ( N TN ) ~ l N T

= A D  ( D TA TA D  y l D TA T

= A D  ( D t WD Y xD t A t ,

where A  is defined in section (2.3) and the y - variable is given in equation (2.32). We 

fit a multinomial logit model as sort of a least square fit of Y  versus N  with any number 

of explanatory variables. Our fitting procedure fits the explanatory variables without the 

constant term. The results in our approach are equivalent to the Poisson trick approach of 

Francis et al. (1992). Our fitting of a multinomial logit model is reasonably 

straightforward and a satisfying aspect of the algorithm is that the calculations only 

require a program that can handle ordinary least square so could be handled by a range of 

standard statistical software. Our approach uses a simple form of the Cholesky 

decomposition applied to a matrix which consists of diagonal sub - matrices. The 

formulation involves matrix inversion using array calculation. This approach is quite 

general can allow us to use any link function.
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We can extract the correct standard statistics but the interpretation of these statistics may

be quite difficult. The hat - matrix and Cook’s distances are easy to extract for influence 

purposes in each cell. This can be contrasted with the ‘Poisson Trick’ approach for the 

multinomial logit which produces the inappropriate leverages and Cook’s distances. 

More detail on influence measures is given in chapter 7.
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CHAPTER 3

More than 3-levels of the response
variable

3.1 Introduction

This chapter is an extension of chapter 2 for fitting a multinomial logit model with more 

than 3 - level of response variable. It is not that hard to extend the theory and the results 

for any number of explanatory variables for any levels of response variable. First we 

consider the case with J —4 levels of response variable, with one and more than one 

explanatory variables. The extension for J  —k  levels of response variable, where k  is any 

number of levels of response variable is given in section (3.4). An application with two 

explanatory variables and a 4-level response variable is given in section (3.5). The scaled 

deviance and parameter estimates are also compared to those obtained using the Poisson 

trick approach in section (3.5).

As defined in the previous chapter that the response value y.j is the ith observation for 

the response level j  and ni is a total for the ith case with the assumption that ni are 

fixed. We also assume that y  n , y  i2 , y  i3 , y  i4 follows a multinomial distribution 

for each case i. We further assume that corresponding to each y tJ there is a 

probability p i}, which we will estimate.
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3.2 For / =  4 levels of response variable

In this section we will illustrate the form of f3new in equation (2.11) for the case where 

there is a 4 - level of the response variable. In this case,

D U

r

\

x {2) 0 0
0 x (3) 0
0 0 x (4)

\

' 3wx6

(3.1)

Here we assume that X (2) = X (3) = X (4) is a common design matrix of explanatory 

variables for the different level of response variable,

(w *12 w  'lrr 13
and W  = ^22 wrr 23 , where

*31 ^32 Wrr 33 yi 3>mx3m

d 2l
W.. = E ( ---- —-----)

d r \ , d r \ /
(3.2)

Using the Cholesky decomposition of symmetric positive definite matrices, as is given 

section (2.3) and equation (2.14),

W *12. * 1 3  ' (  A2 A\ \A\2 A A ^

Wrr 21 ^22 ^23 = AuA21 A\2 + ^22 ^21^31 + ^22^32
Wrr 3i ^32 W33y AuA31 ^21^31 + ^22^32 ^13 + ̂ 23 + A33 j

where W~ and are diagonal matrices and A.. = A~ ; also Wtj = W ~.

Then, as before, A n = sqrt ( W u ) ,  A n =  W n A 1~11 ,

A 13 ~ W 13 A n , A22 — sqrt(W22 —A12),

A 23 ~ ( *  23 — A 21 A 3 J )  A 22 ,

and A33 = sqrt(W33 -  A 2 -  A23) .
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The equation (1.8) here become

h = 1°gLi = y n V i2) + y ¡3Vi3) + y t,V i4) - n t logO + e^2 + e n + e" ) ,,(3) (4) (3.4)

where 7 is the logit link for observation i and of response level k.

Now we again further need to find Wy  = E  (-
d 2l

d v  i d 71 j
-) in equation (2.16) and from

equation (3.4) we have that

d l;

dr/]
,̂ ) = y i2 - l i n > as before

and
d2l

dp\2) drj\2)
= —ni p j2 (1 -  p j2) , as before (3.5)

Thus E(-
d 2l

■) = = f l i2 (1 -  -^4.) , as before
d7i\2)dri\2) n.

(3.6)

Similarly E ( -
d 2l ;

d rj ¡ 3)d 7] ;(3) -) =
n :

and £ ( -
d 2l :

d 71 ; 4) d 7J ¡ 4) ■) = )n ;

For z *  y in  equation (3.4), E  (
5 2l:

d p ¡ 2)d 7] {2)
-) = 0 , as before

Similarly E  (-
d 2l

-) = E ( -
d l .

d p \ 3)d p (3) d 7j f4)d 7]
-) = 0

Likewise
d l

d p f )dri\2)
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Thus E ( -
d 2l.

8 r/.2) ) =
Mi 2 Mil (3.7)

We denote (d ' w d )-- D 3

A2l A31 
A A*̂22 ^32

V 1 ° 0 ^33 j

A „ ^12 ^13
where iV = 0 ^22 A 23

0 0 ^33

A 11 ^12 ^13
0
0

^22 ^23
0 A

D N rN ,

D

J Imxlm

Similarly to equation (2.25) we have,

R — A~l R -  A~l R — A~l" l l  ~ *̂11 > "22 — *̂22 ’ "33 — *̂33 >

-®21 = —(^ 2 1 ^ 1 1  ) ^ 2 2  = — ( ^ 2 1 ^ 1 1  ) ^ 2 2  J 

^ 1  = —( ^ i ^ j + ^ 2̂ l) ^ 3  = _ (^ 31^11 'h ^ 32(—̂ 21^11 ) ^ 2 2 )^ 3 3  ’ 

J?32 = —(^32^22)^33 = — (^32 ^22 )^33 • (3.8)

Now we need , where ri ■■
8tj

3 ,0 )3

1
(3)

< 2

for z = 1 ,2 , . . . ,  m

and for the logit link rj / 2) = 6*l2 , 7 / 3) = <9i3 , 77 ;(4) = 6* it

As before (e.g. equation 2.26),

_0/_
drj

■̂2 Ml

VF<

■//3

/A /  3 / « x l

(3.9)
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Here ( N  T N  ) f i t

N 0

0

■ 12

22

V „  (2) \■ 13

23

33 a

(3 )

(4 )

+

B

B 21

^  31

B
B

22

32

0

0
B

-

33 A  4

y“ 2

/*3

A A

F , - ^ A J J

= N 1
f  f  Autj{2) + Anr]0) + Anrjw ^ 

A l V {i) + ^23/7(4)

vv

+
^ 1, (F2 - / / 2)

5 2l(F2 - / / 2) + .622(73 ->“3)

,-®3l ( F 2 — f*2 ) +  ^32 (F3 — /^2 ) + -633^4 —/ / 4)y

But in GLIM code we have

(%lp) =

A u tj{2) + A u tj(3) + A 13tj{4)^ 

¿ 22*1 0) + A 23tjw  

A 33V W '  3 w i x l

(3.10)

Thus using equation (3.10),

TV7 AT? = JVf 3r '  new 3nx3n

f  r

<%ip)+

^11 (f2 - a )

•^2i(F2 a  ) + B 22 (73 a )

W

v V5 3 l ( F 2 fl2) "h -632 ( 7 j  fJ3)+B33(Y4 A  )JJ3

.(3.11)

wxl
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The above equation is same as equation (2.30), with the design matrix

' AnX {2) a I2x °> a 13x ^ )
N  = 0 a 22x 0] A 23 X ( 4 )

,  0 A33X ^ \
y 3mx3m

(3.12)

and the y - variable

(%/p) +

^11(^2 - M 2 )

B 21 0^2 — Ml ) "I" B 22 0̂ 3 ~~ Mi ) 

i i j j  (Y2 — / / 2 ) +  B32 (^3 ~  Ml ) +  -®33 (^4 ~  Mi, )

(3.13)

2 /  3mxl

Or equivalently the y - variable is

(%//>) +

4 7 (^2  - Ä )

'('^12^22)^11(^2 ~~Mi)2"^22(-^3 — Mi)

W

v (̂ 31̂ 11 ^ ̂ 32 ( ^ 21^ 11)^22)^33(^2 Ml) (^ 32̂ 22)^ 33(^3 Mil) 3̂3 0̂ 4 Ma)j J

i i  > lPi X v (2) + ^ 127(3) + ^ , 37(4)N

where 11

lPi = ^ 2277(3) + A2lV(4)
\ lP4 y K A 33 V{4)

(3.14)
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In other words

77(4) = A ~ llp , ,

V ~~ ^22 (JPl _ ^23^7 ) ~~ ^22 (4*3 

tj{2) = A ; I  ( Ip 2 -  A u J)(i) +  A n p w )

=  A n (Ip 2 ~  ^ 2 ^ 2 2  (Ip 2 ~  ^23^33 A ) ^13^33 ¿PA ) • (3.15)

This derivation can thus be seen to be a simple extension of the section (2.3) and the 

equation (3.15) is a simple extension of equation (2.35).
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Let us consider here x, , x 2 and x 3 that we have three explanatory variables with a 

J  = 4 level of response variable. Then, we may consider that

3.3 More than one explanatory variable

( y 2 ) > ' x  0

V = 7 (3) = X  p m
(4)

V' 2
X  p

(3.16)

In this case, v = ( i “ 3 J , „ x 4 ’

where x { , x 2 and x 3 are column vectors of dimension n x  1 ,

(  X 0 o N
and D 0 X 0

, 0 0 X  X

! *1 x 2 x 3 0 0 0 0 0 0 0 0
= 0 0 0 0 1 Xj x 2 X LtJ o o 0 0

0 0 0 0 0 0 0 1 Xj x 2 x 33

As in equation (3.12) the new design matrix N  becomes

' A u A\2 A  \*̂13 f x 0 0 'I
N  = 0 A  22 ^23 0 X 0 (3.17)

, 0 0 ^33 j , 0 0

' a u A ¡¡x, A ¡ ¡ x 2 A uX3 A12 Anx i Al2X2 A12 X3 An Anx l Au x 2 A13 X3
0 0 0 0 A 22 A 22 X1 A22 X2 A 22 X3 An An -*:i A 23 x 2 A2 3 x 3

v 0 0 0 0 0 0 0 0 An A 33 x i A33 X 2 A33 X 3 j
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and the y - variable,

A i (Y2 -M i )

{%lp)+ -  ( A ^  Mit (Y2 ~ Ml) + A22 (F3 “  Mi )

- ( A n A ^  +An ( - A 2lA ; : ) A - ^ ( Y 2 - ä ) - ( ^ 2 ^ G ) ^ ( F 3 - //32) + ̂ 33 (^4 " / O

From above we can fit the model of Y  versus N. As before the equivalent fit to that model 

can be obtained by the Poisson trick approach, with some minor changes in the macros 

given in Appendix A.

3.4 For J  = k  levels of response variable

If we have k - levels of response variable then, from section (3.2),

D

x (2) 0 0
0 at(3) 0

0 0 x (k)

(3.18)

where ATw  is a design matrix for response level k.

Using the Cholesky decomposition of symmetric positive definite matrices, we have

( w wn .. w  ^........  rrVc-\ f Al
0 ... ...... 0 "1 A\ A i  ••••......Au-i 1

w ~
w"21 w22 .......... = An A i  ••• ...... 0 0 A12 .... ...... Ak-1

wV'k-U ....... t̂-12 ......4-vt-J s 0 0

Since Wjj and Ay  are diagonal matrices and Aij - A y ,  Wy = Wfi , Wtj can be found and
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are given in section (3.2).

The equation (1.7) for J=k level of response variable is, 

h =y ii n f ) +T,-3^3) + ■ • ■ + j r f ) ~ ni log(l + e5'2 +e9» + . . . + / * ) .  

Now taking derivatives we get, as before,

d \ ni e9il (1 + e9tl + e9n + . . .  + e9‘k) - n i e9tle9il

d7]f)d7]f') (1 + / 1'2 + ee* + . . .  + e9‘k)2
~ n i P ¡2 C1

Therefore £ ( - a  ll____ ) = „  t l - H n . )
d r j ;2)d r i i 2)> '

The same applies to all such derivatives; i.e.,

E(-
d 2i

d r/ d rj j r)
) = Mir (1 “  - —") , for r = 2 ,3  , . . . ,  k  .

n.

a 2/,.
Also for i & j  E { -  - — (py-— j — ) = 0 , for r = 2 , 3 , . . . ,  k

0 7] > 0 7] ) ’

We have E  ( ■
d 2 L

-) M ¡2 M ¿3
d V ■3 ) d 7] / 2} n .

similarly for all pairs of denominators.

The basic equation (2.31) is ( D  T W  D  ) = N  T N  ,

where N  =

( D T w

A i ^12
0 A  22

0 0

^ \ k -1 
^■2k-l

A
™k-\k-\

D

(3.19)

-  P n )  ■

(3.20)

65



The equation (3.11) becomes

(Al Az ••••......  4 , - , ) 0 ...........  0 )

(n tn )/3 , „ = N t
0 A i  ■•••......  Ak-\ 0 ...........  0 7

A 0 .... ......  Ac-ii-l; ° 0 U J

i  ^ o .... . . .  0 ^
A l Az . . .  0 dl

-  ? (3.21)

A - u A -n  .... . . . A-lk-lJ

dr]

U i 0 . . . ...............  0 "I ( A o  . . . .............  0

where 4 i 4 i  ••• ...............  0 A i Bn — .............  0

k4-n 4 - 1 2  ■■■.... 4-lk-lJ A - u 4 - 1 2  " • .... A-lk-l)

(3.22)

The B tj can be found in equation (3.8).

Now we need only ----  where
drj V

v ;
(3)

J
(*)

for i = \  ,2  m

For the logit link

dlt n, e

dr](2) = y ¡2 -
1 + e n + e n +. . .  + e *

y  1 2  -  M  i 2 '

Similarly
dl

dr] (O = Yr -  p Ti for r = 2 , 3 k
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f Y 2 -  Mi '

Thus, as before
d l Y i ~ Mi
d 77

J k ~ M k 1

The equation (3.21) can be written after some manipulations, as previously,

(n t n )p „„ =

= N ' (%lp)

B u (Y2 - M l )

B 2\ (Y2 Ml ) T B 22 (^3 Ml )

\\

+

\B k-ll(^2 Ml ) + B k-12 (Y3 Ml) + .....................+ B k-\k-l(Yk Mk) J J

The above equation is exactly as equation (3.11) with new design matrix

( A n X (2) a 12x (3) ... ... A u _tX<‘> )

N  =
0 a 22x (3) ... ... A 2i_ , x w

l 0 0 A X  ^^k-lk-l^- J

and the y - variable is
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B n(Y2 ~M i )
W

('Zolp) +
-®21 (Y2 Ml ) ^22 (,Y3 Ml )

V V B / e - n ( Y 2 M 2 )  +  B  k _n ( Y 3 M i )  + .............................+  B k - \ k - l ( Y k M k ) '  J  m ( k - l)x l

Here

r lp2 )  { A u V {2) + A u T]0) + ................................ +A *-i?7(*n

{%lp) =

lP k - \

\  lP u  J

A-k-lk-lP^ + A k-2k-\P (k)

A k-lk-l V(*)
J  m { k - l ) x l

V(k) = A ~k\k-JPk-

v (k-x) = ^ 2( f e ,  - A k-2kWk))

— A k-2k-2 QPk-l ~ A 23 Ak-lk— JPk ) •

V {2) = A U  ( lP i  - A i V ™  +  • • • +  A \ k - \ r ] {' k ) )  •
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3.5 Example

We continue section (2.5.1) here for the response categories l=excellent, 2=good, 3=fair 

and 4=poor. In this case we use all 4 - level of response variable. Ignoring the ordered 

nature of the response, we fit a multinomial logit model to the data using age of the 

respondents as an explanatory variable. The data (responses) are arranged in four columns 

of observations. Here m=l 456, since 17 observations are missing. The fifth column will 

be the explanatory variable and the sixth column is the total of responses. The 

Tii > y  n  i y  n > y  ¡4 follow a multinomial distribution and response level l=excellent is 

not needed in our analysis. The standard length of our data will be 4368 because the first 

response l=excellent is known when we know the total y.  and the responses 2=good, 

3=fair, and the 4=poor.

The design matrix in fitting the multinomial logit model is,

( A n X (2) A n X ^ a 13x ^ )

N  = 0 a 22x (3) a 23x (4)

, 0 a 33x (4\
4 3 6 8 x 6

Here Aij are diagonal matrices of dimension 1456 x 1456 and in our notation X^j) are the

matrices of dimension 1456x2, where the 1st column of these matrices is all l ’s and the 

2nd column is the explanatory variable age and they  - variable is given in equation (3.11),

(Y2 -  Mi )

(% ip )+ b 2I(¥2 - f t ) + s 22( r 3 - f t )

^31 (Y2 Ml ) T 3̂2 (̂ 3 Ml ) T ^33 (E4 Ma)J
3  3 m x l
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The multinomial logit model is fitted using macros given in Appendix A. We repeatedly 

use the GLIM code $use startup $use loop$ until convergence is achieved but in some 

cases the convergence is not easy to reach. In this case the best approach is not to update 

the weight matrix in each cycle. In this macro the model of main effects $fit dl + d2 + 

d3 + dpi + dp2 + dp3 - 1 $ (without the constant term) gives a fit equivalent to use of the 

Poisson trick approach. Both of these models are fitted here as a cross check of our 

results.

Here we have,

dl d2 d3 dpi dp2 dy3

( a ( a  > *̂12 ( a  i ' A n Age* '  A n Age' ' A X3.Age'
0 ^22 ^23 0 A 2 2  age A 2 2  Age

lo J v̂ 33 , , o , l o J KA 33Agey

and after fitting the model, we get the following statistics

scaled deviance = 3264.4 at cycle 12 
residual df = 4 362

estimate s. e. parameter

1 0.1801 0.,1636 dl

2 -1 . 904 0., 2240 d2

3 -5 .487 0..4832 d3

4 0.007 0.0037 dpi

5 0.031 0.0046 dp2

6 0.061 0.0080 dp 3

Table 3.1: Parameter estimates and standard errors in logit model 

scale parameter 1.000
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The Table 3.1 gives the same statistics as in Table 3.2 below, with some minor rounding 

errors in the estimates and the standard errors. The standard errors obtained by each 

method will be obviously different if the weight matrix is not updated at each cycle.

The Poisson trick approach equivalent to our approach (with results in Table 3.1) gives 

the following output:

$fit +group*age(case)$dis e$

scaled deviance = 3264.2 (change = -123.4) at cycle 6 

residual df = 4 362 (change = -3) .

estimate s. e. parameter

1 0.1801 0.1636 GROUP(2)

2 -1.904 0.2238 GROUP(3)

3 -5.485 0.4943 GROUP(4)

4 0.007 0.0037 GROUP(2).AGE

5 0.031 0.0046 GROUP(3).AGE

6 0.071 0.0080 GROUP(4).AGE

Table 3.2: Equivalent model of equation (3.14) 

scale parameter 1.000
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CHAPTER 4

Multinomial Model with Own Links

4.1 Introduction

In this chapter we will give some more general formulation and theory for the fitting of a 

multinomial model when we have a user defined link function. In previous chapters, we 

concentrated on the logit link function only but here we will broaden that concept with so 

called ‘own link functions’. The own link functions used in this chapter are given in 

section (4.2) and can be used to form an equation equivalent to (1.7), which used for the 

logit link when determining the weight matrix W.j .

An alternative approach to find the weight matrix W tj is given in section (4.4) by using a 

simple equation (4.19) and it can also be used in general to find W ;j . The extension of 

section (4.3) is given in section (4.5) with the general form of W tJ . A practical example

is given in section (4.6) with an interval estimate for a single parameter of a link function. 

We also give interval estimates and some contour plots of the deviances for different 

parameter values in our own link function.

The confidence limits for parameters in our own link functions can be found from a plot 

of the likelihood, as in section (4.6.2), and are illustrated for one and more than one 

parameter. It is explained there in examples of section (4.6) that for particular values of
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the parameter in our own link function, that coincides with logit link function given in 

previous chapters.

4.2 Our own link function

In this section we consider link functions that can be applied easily within the framework 

of fitting a multinomial logit model explained in previous chapters. Using the notation in

section (1.4), for rj^dy and equation (1.13), we have for the logit link that

V n~  ° n  -  lo§ ( * ’ ) 
Pa

and 77 / 3 = 9 n  = log ( ¿ i L )  .
P n

Equivalently, we have

e,2 = io g ( ^ )  =>
Pn

ee* = Pi2 
Pn

9n
=> P ¡2 = Pne ■ (4.1)

e,i = io g (— ) s .  
Pa Pn

=> Pn = P i / "  ■

We shall now keep these definitions for the log - odds but remove the logit link 

assumption that rjy = .

4.2.1 A convenient single parameter own link function

We define here own link functions rji2 and r]B in a similar way to equation (1.13), 

namely

( ^ r  - 1 ,

7 , 2 = — ----------  => ^ = ( 1  + 0 7 ,2 ) “ - (4.2)
a Pn

i  e a9n - 1
Thus ee‘2 =(l  + arji2) a => V n - ---------- • (4-3)

a
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It can be shown using L’ Hospital’s rule that

*7/2

aOn  -Ie 12 - l

a
-»

0n e ad'2
0 ¡ 2  3-S Sl —^  0 (4.3a)

a=0

Thus rjn

ct 0: 'j -ie 12 -  1

a
can be thought of as a general form of logit link function.

Similarly i) i3

(Z iT )«  _  l
Pn

ad,, 1e '3 - 1
=> *7/3 (4.4)

Using equations (4.1) and (4.2), we can rewrite the link functions in terms of the log - 

odds as follows

ei 2 = - lo g ( l  + fl77<2),
a

— log (1 + ar]n ) . 
a

We now derive the log-likelihood in terms of iji2 and rji3.

From equation (4.2), p i2 = p n (1 + a p i2) a , (4.5)

and from equation (4.4) p i3 = p n (1 + a 7) i3) "

(1 + a T] ., ) a 
Therefore p  i3 = p  i2 ---------------------------- f

(1 + a p i2 ) a

Since P n  = 1 “  P n  ~ P i 3 >
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1
, ( 1  +  a V ,3 )  8we can write p n = 1 -  p l2 -  p  i2 ---------------------- f

(1 + a rj i 2 ) a

-  (1 + a rj /3 ) a
Using equation (4.5) p i2 = (1 + a r]i2) ( 1  - p a -  p  n — -------------- )  ,

(1 + ar / i2) a

I I I
or p i2[\ + (\ + arii2) a +(\  + arii3) a}=(\ + arii2) a ,

(1 + a 7j i2 ) a
i.e. we have p  i2 = ------------------------ y------------------------— . (4.6)

[1 + (1 + a r i n ) a + (1 + a rjn ) a ]

(1 + arjn ) a
Similarly p n - --------------------- -------------------- —

[1 + (1 + arii2) a + (1 + ar/i3) a ]

and p n = -------------------j -----------------—  .

[1 + (1 + a P n ) a + 0  + a P n ) a]

Thus the equation (1.5) for the log - likelihood form can be rewritten as

log L, = n t log ( p n ) + y i2 log (— ) + y n lo g (— )
Pn Pn

= ~ n i lo§( 1 +  e *i2 +  e * n  ) +  ■

1 1 1
= - n i log[ 1 + (1 + a r / n ) a + (1 + a r/n ] + y  i2 {— log( 1 + a r j i2)}
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(4.7)+ y ¡ 3  { —  log( 1 + a p i3 )}. 
a

The above equation is a log - likelihood of multinomial model as is equation (1.7) in 

terms of our ‘own link function’. This is an important equation in our study to find the

parameters f3 new and is used in section (4.3).

4.2.2 A more general own link function

We can generalize our own link functions for p i2 and p B given in the previous section

by utilising different parameters ‘a’ and ‘b ’ for p i2 and rjn respectively. Using different 

parameters, we assume that

Vn  =

- i
Pa

a Pi
( arl i 2 + 1 )“ ,

and Vi, =

p - ) b - 1
Pa Pi3

Pn
(b7]n + 1 ) 6 . (4.8)

Then the equation (4.7) becomes,

log L ,  = n,  log ( p  n ) + y i2 log ( - ^ - )  + y i3 log ( ^ A )
P n P n

P n

-  -  1
-  - n i log[ 1 + (1 + ar}n Y  + (1 + b p n ) b ]+ y  i2{— log( 1 + a p i2)}

a

+ y  i 3 { —  log(
b

1 + b p  (3 )} (4.9)

76



4.3 Parameter estimates f i new for J =  3

We will illustrate here how to estimate J3 new using our single parameter own link

function for a 3 - level o f response variable. An alternative derivation o f this is also given 

in section (4.4). Section (4.4) is much more succinct and the reader may omit section

(4.3) for ease o f reading.

To find the W-- we need the derivatives,

d l i , 1 X- — = y i2(------------- )0 77,-2 1 + £7 77 ,-2
nj (1 + a r / i2) a

[1 + (1 +  a rjl 2 ) ° + (1 + £7 77 ,.3 ) ° ][ 1 + a 77 ;2 ]

1

(1 + a 77,-2) y t2 ~
n t (1 + a V n )

i2 y
{1 + (1 + 077,-2)° + (1 + a r j i2) a }

5 2/,.
Thus

a
d 77,-2 (1 + a 77,.2 ) ‘

n, (1 + £777,-2)'
y  ' 2  -  — -------------- T-----------------r -

(1 +  (1 +  £777,-2)° +  (1 +  a V n ) “}
1 +

-  n.
(1 +£7 77,-2)

I-i
(1 + 077,-2)° {1 + (l + ß 7 /2) 8 + (l + a Vi3)a } - ( l  + aVi2 ) a 0 - + ar/i2) a

1 i
{1 + (1 + 077,2 ) °  + (1 + £7 77,.3 )° }2

-  a
(1  +  a 77 ,.2 )

y  , '2

n e e ,,

{ 1 +  e e i2 +  e 6 13 }
> +
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fl .

(1 + a rj n  )

0 ; 9 Ç -1 . 6 . 0 n  'j # ,• 9 # .• 9n (. e 12 {1 + e '2 + e } — ft,- e e 12 

{1 + e e¡2 + e 0'3} 2

{ y i 2 -  « / P i 2 } + - — {-», z n Pn + ni (/ n Pa?)
(1 + a 77l2 ) (1 + arii2)

(1 + a rj i2 )
a— { y n - n , e ^ P n ) +

(1 + a 77/2 )

Ö2/,.
Thus E  (-----------) = 0 + « * P i 2 0  -  /> 12 )

a  77,2 (1 +  f l í / ¡ 2 )

« i (1 + « Vi l  )

a 2/,. »
Similarly ¿T ( -  ------ ) = ¡J- , 3 ( 1 -  — — )

5 P i  rli (1  +  a. 77,3) 2 •

Now, for i & j  in equation (4.7),

a 2/.
3 f  1

d Vn di7,2 a ? , ,  (1 + 07,2)
T

», (1 + <27,2) a
¡2

{ l  +  ( l  +  û 7 7 , . 2 ) a  +  ( 1  +  a r j i 3 ) a }

}

, (4.10)

(4.11)

(4.12)
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a 2/,. a 2/,.
Since for the own link function E  (-------------- ) = E  ( -  —---------) = 0 , as for the logit

dVndVji Srji3dTjj3

link function, the own link function does not make much difference in the calculation of 

the weight matrix.

Now
a 2/.

3  <- 1
a 77,-3a77,.2 d v*  (i + « 7 /2)

y

n, (1 + at]i2y
a 2. I

{1 + (1 + ar]i2) a +(1 + arjii) a}
}

0 +  — { --------- ------
a  77,.3 (1 +  arji2)

n t (1 + arji2) a
i  i

{1 + (1 + a r / i2) a + (1 +  a r / n ) a }

= {
1

(1 +  ar j i2)

I - i
n, (1 +  ar j i2) a (1 +  ar / i2) a

{1 + (1 + a r / i2) a + (1 + a r j i2) a

1

(1 + a v  n  X 1 + a V n )
6 • o 0 ■ -y

n i Pn e Pi ie •

3 1 u
Thus E ( ----------- ------) = ----------------------------------- { - M u

d V i i d V n  (1 +  « 7 , 2 X 1  +  a r j n ) n,

1
(1 +  a rji2 )(1 +  «77,-3)

j _  M ¡2 M ¡3 ■>

n ,
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dl
W e require ----  in equation (4.7) where we have 77 =

drj
' Vn for i = 1 , 2 , 3 , ,  m

and 77
a d n  -1e 12 -  1

¡2 , 6>i2 = —  log( 1 + a ? j i 2 ) ,
a

a e , 1
V

1, e  ,3 =  —  log( 1 + a 77,-3 ) . a a

Here
5 /,

d77,. = y, 2 (— -------)
n,  (1 + ar j n )'

1 1
12 1 + a 77.,

[1 + (1 + arju ) a + (1 + a V n ) a ][1 + ar! n \

1

(1 + «77,-2)

«,• (1  +  a r ]  n ) a
y n ---------------------------- T--------------------- —

{1 + (1 + a 77,-2)“ + (1 +  a V u ) a >

{ W / 2 -  ” i P 12 }
1 +  a 77 i 2

{ -h 1 2 P  i 2 } 1

1 + £7 77 ,-2

Thus
5/

dTh
= { ^ 2  -  ^ 2 } ---------- , where YJ  = (t  1 j  y 2j • • • y nj) r 7 = 2 ,3

1 + a r |2

Similarly —-----=  {Y3 — 3 }
dr\: l + ar).
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Or
d l
<3r|

(  1 A
{Y2 -  | x 2 } - - - - - - - - - - - - -

1 + ar\ 2
1

{ r 3 -  m i 1 + ar\ 3 y

(4.13)

The equation (2.23) can be rewritten,

)Vr M3 = N tr new
M l 12

0 A 22 0 X (3)
Ypl

J y
+ B n

\ B  21 B 22 J

{Y2 - n 2} 

{F3 - ^ }

1 >0

l + flTla
1

1 + ar\ 3 JJ

N- ‘ 11 12

*22 y

T1 2 + B 11 

V-̂ 21 5 22 y {M

m2)

m3)

1 \ \

1 + ar \ .
1

1 + ar[ 3 yy

:iVJ
^ l l 1̂  + ^12T13

ŷ22Tl3

+

Y\
3 A  - M i ) l + £?r|2

B2\(Y2 M2) t +-^22(^3 M3) 1l+ « r |2 I+12TI3JJ
(4.14)

In GLIM code (% //> )  =
 ̂^  u V  2 A  u V  2

a  22 -n 3 y
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Thus equation (4.14) is equivalent to

B u (Y2 -V-2)

N TNp>new= N : (%lp) +
1 + ar\:

B 2, ( ¥ 2 - v.l ) — }— + B 22( r 2- n 3)
1 + ar\: 1 + ar\ 3 JJ

where 1̂1 "4 2 ' x m 0 " ' a „ x (2> A n * 0’ )

V 0 ^22y K ° l  0 a 22x ° > /

and the y - variable is

A l (f2 - h2)
y \

(%ip)+
l + a r |2

(4.15)

- n 2) + ̂ 422 (F3 (j.3 )
1 + <2T|2 1 + ari 3

where

V P  3 J

A u ri 2 + A n 7j 3

v A  22 7  3 >

(4.16)
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Or we have V i  — A  22 Ip i ,

Vi ~ ^ n  (Jp 2 ^-nVi) ■ (4.17)

The way we have calculated the weight matrix here to find P new may not used for some 

other own link functions because it is not easy in every case to write the equation (4.7). If 

this is the case then an alternative formulation to find the weight matrix W- is given in 

the next section.
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4.4 An alternative derivation of W..

The parameter estimates J3new calculated in the previous section depends on the log - 

likelihood approach of section (2.3) for finding the weight matrix Wy . The derivatives to 

find Wy can be found easily using our own link function and log - odds without the 

assumption rjy — 6y as follows:

a/,. _ dit d e n

drj t 2 d e a dr/n  ’
(4.18)

where
d O l2

are found from the equation (4.7) without the assumption rjy = 0..

and also where we can write 9 0 J 2  
d  V  i 2

1

3 V j 2
d 0 n

Thus from equation (4.3) d V n  
dO  i2

ae a e ,

= e a e ,

a
= (1 + a r j i2) and the

equation (4.18) can be rewritten as

dl,
d V n

ÖL 1---- -— x ---------------
d O i2 1 + a tj n

d l ,
d O i2

x i 2

and d 2 h

3 2V i2
3 < d l,

d d l2 d 0 i2
e - a e i 2

} 9 0 , 2
3  V  ¡ 2

The full derivation with all the derivatives of the weight matrix Wy  is given in the

Appendix D. This approach is recommended to find Wy  in any general case, without the 

need to use the log - likelihood approach of equation section (2.3).
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4.5 More than one parameter in our own link function

We can estimate the parameters ¡3new using our own link function with more than one 

parameter. For illustration we use Green’s data as in the example of chapter 3. We fit a 

multinomial model using age of the respondent as an explanatory variable and using our 

own link function with more than one parameter. The data are arranged as before with 

responses in the first four columns and with the fifth column containing the sole 

explanatory variable, age. The sixth column is the total of responses.

We assume y  n , y  i2 , y  i3 , y  ;4 follows a multinomial distribution with ‘own link 

functions’ with different parameters as follows:

V n

_  i
P a

a = (1 + a V n ) a

P ¡2

V P a
) b -  1 be,,

n = (1 + a V ,3 ) b

V i 4

(Z iW )c  _  ! 
P n

c
(1 + a?i i 4 ) c

The log - likelihood equation (4.7) can be rewritten as

log L i = n t log ( p n ) +  y i2 log ( ^ - )  + y ;3 log ( ^ )  + y i4 log ( ^ - )
Pn Pn  Pn

L L L
= ~ n log[ 1 + (1 + a T] i 2 ) a + (1 + b p  n ) b + (1 + c 77 n  ) c ]

+ y ¡2 { -  iogC1 + a Vn )} + Ti3 4  log(! + *7/3 )} + yi4 l̂og (1 + c T] i4)} . (4.19)
a b c
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The equation (4.14) becomes

rAn ri(2) +An ti(3) + 4 3n(4>̂

4 2ri(3) + 4 3ti{4)

(4)

Bu(Y2 ~ ft) l + ar|2

B 7 ](Y 2 f t ) ,  +  B 22( Y i  P3)l + or|2 l  +  èri3

A S A  - v2) ~ ^ — +b32(yì - f t ) - ^ ^
1 +  ot]2 1 +  o r |3 1 +  c r |4

with the design matrix

U , x m A i2X i3> A n X ^ )

N  = 0 A 21X m a 23x (4)

l 0 A 33X (4)y
3mx3m

and the y - variable

f  f

f 4 a(2) +42'n(3) +43'n(4)l
i Y|Bn(Y2 - \ i2)--------

1 + oti2

42Ti(3)+ 4 3'n(4)

4 3h(4)

V

V

+  B 2 i ( Y 2 M -2),  +  -®22 ( ^ 3  f t ) ,  ,l + ar|2 I+0TI3

ASY2 -ft)-^—+ ̂ (73 - ^ ) ^ -  + jB33(F4
v 1+ffn2 1+èrb 1+CTI4 j j

The above design matrix and the y - variable for such link functions with different 

parameters can be generalized further without any major problem.
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4.6 Examples

We continue here to use Green’s data, as given in example of chapter 3 when applying a 

Box - Cox own link function with a single parameter ‘a’ (with a 4 - levels of response 

variable and age as a explanatory variable). These data are here further used for more 

general Box - Cox own link functions, and confidence limits for parameters in these link 

function are illustrated. The confidence limits indicate that a logit link function is 

acceptable for this particular data set.

4.6.1 Single parameter own link function

As we have a data for four levels of response variable and with one explanatory variable, 

the own link functions in this case will be taken as

. aS,- aSn
V:n > *7,3 and j]l4 =

eae“ -1

a

The design matrix for fitting the multinomial model is

N  =
4 i * (2)

0
0

A n X ^ ^1S*(4)
a 22x (3)

0 a 33x (4)

12 ! ^  13 5A  22 5 A - ;

y  3 nx6

dimension 1456 x 1456 and AT(2) = = X ^ ’ are the matrices of dimension(4)

1456 x 2, where the 1st column of matrices is all l ’s and the 2nd column is a explanatory 

variable ‘age’. The y - variable is given as in equation (4.15) and the multinomial logit 

model is fitted using the macros given in Appendix A.
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We fit the model for fixed values of the link parameter ‘a’ using a looping macro. We 

first fit the model with a = 0.0001, which should be close to the logit link fit.

The GLIM linear predictor of ‘main effects’ only (without the GLIM constant term) is

T] -  P x d l  + P 2 d l  + J33 d l  + /?4 dpi  + d p i  + d p i . (4.20)

We have in equation (4.20)

dl

V  ^  2  4 3 6 8 x 1

d2

f  A  A 

^22 

v0 7

d3

f A  A^13
^23

V ^ 3 3  J

dpi

f A n X
0 
0

( 2 ) 1
dp2

(

dp 3

A n X
a 22x

(3)1
(3) a 23x (4) 

a 33x (4)
V  2  4 3 6 8 x 1

We get the statistics

scaled deviance =  32 64.2 at cycle 9

residual df =  4 3 62

estimate s. e. parameter

1 0.1801 0.1636 dl

2 -1.904 0.2240 d2

3 -5.486 0.4834 d3

4 0.0069 0.0037 dpi

5 0.0306 0.0046 dp2

6 0.0705 0.0079 dp3

Table 4.1: Parameter estimates of model (4.21)

scale parameter 1.000
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We can write the linear predictor as

77 = 0.1801J1 -1 .904 d 2 -  5.484J3 + 0.0069dpi + 0.0306dp2 + 0.0705 dp3 (4.21)

It may be observed that the fit here is almost identical to the logit link fit in chapter 3, as 

expected.

4.6.2 Interval estimate for single parameter ‘a’ in our own link function

Now we investigate if the logit link function seems acceptable in this example. The 

model is fitted for different values of ‘a’ (see section 4.6.1) and the overall maximum 

likelihood (minimum scaled deviance) can be found by inspection. An interval estimate 

of ‘a’ can then be found. Here we give the scaled deviance for different values of 

parameter ‘a’.

a D eviance

-0.04 N o C onvergence

-0.02 3264.9

-0.01 3264.7

-0.0001 3264.4

0.0001 3264.2

0.05 3263.4

0.1 3262.8

0.2 3262.4

0.3 3263.3

0.4 3265.4

0.5 3268.9

0.55 N o C onvergence

Table 4.2: Scaled deviance for different values of parameter ‘a’.
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The above Table 4.2 gives the deviance for different values of parameter ‘a’. For 

-  0.02 < a < 0.5, convergence is achieved. There may be the case that for 

a > 0.50000009 or some other values of ‘a’ the convergence can be achieved but it will 

be a very tiny increase or decrease in the scaled deviance outside limits -  0.02 < a < 0.5. 

The minimum scaled deviance (maximum likelihood) estimate of parameter ‘a’ can be 

found for plotting the deviance (or likelihood) as a function of ‘a’, as illustrated in the 

following figure.

Graph of deviance versus a

a

Fig. 4.1: Graph of Deviance versus ‘a’ in model (4.21)
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The maximum likelihood estimate a can be obtained by visual inspection of this graph. 

Using a Chi-square approximation to the distribution of the scaled deviance, a 95 percent 

interval estimate for the parameter ‘a’ is then given by set of values of parameter ‘a’ such

that, Scaled deviance (a) -  Scaled deviance (a) < 3.84 =Xo.o5(q (GLIM manual page 

290) . For cases where the scaled deviance equals the deviance (as for the multinomial), 

this interval estimate is { a \ D{a) < D(a)  + 3.84 }. Thus in this example we have,

{ a | D(a) < 3262.4 + 3.84 },

or [ a  | D(a)  < 3266.24} i.e. approximately (-0 .02 ,0 .4).

It appears that a = 0 lies within the 95% confidence interval, hence the logit link seems 

acceptable within the Box - Cox link family with just one extra parameter ‘a’. We 

generalize this in the case of more than one parameter in the following section.

4.6.3 Different parameters own link function

We continue further here the data used above for different parameters ‘a’, ‘b’ and ‘c’ for 

the Box - Cox own link functions, with four levels of response variable and with ‘age’ 

of the respondents as a covariate. Thus we have

Vi¡2 V n

and 7) iA
. c8,. -  1

C
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The design matrix and the y - variable are obtained with some minor changes from the 

single parameter own link function case. The multinomial model is first fitted using the 

macros given in Appendix A.

We fit the GLIM linear predictor of ‘main effects’ only without the constant term as 

follows:

T]  =  / ? j  d l  +  P 2 d l  +  /?3 d l  +  /? 4 dpi  +  J35 d p i  +  /?6 d p 3 . (4.22)

We mutually set a = b = c = 0.0001, and get the statistics as,

scaled deviance = 3264.2 at cycle 9 

residual df = 4 3 62

estimate s. e. parameter

1 0.1801 0.1636 dl

2 -1.904 0.2240 d2

3 -5.486 0.4834 d3

4 0.0069 0.0037 dpi

5 0.0306 0.0046 dp2

6 0.0705 0.0079 dp3

Table 4.3: Parameter estimates of model (4.22) 

scale parameter 1.000
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Equivalently, we can write

77 = 0.1801^/1-1.904<72 -  5.486^3 + 0.0069 dpi + 0.0360dp2 + 0.0705 dp3 (4.23)

This is almost the same fit as equation (4.21) because the parameter values in the Box - 

Cox links give links that are almost equivalent to the logit link. This model can have 

different parameter estimates with different scaled déviances if the own link function 

parameter values are changed. These scaled déviances for various ‘a’ , ‘b ’ and V  values 

is calculated and is given in Table 4.4.
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4.6.4 Interval estimate for different parameters in own link function

W e now check to see if  the logit link function seems acceptable for the model (4.22) by 

fitting different parameter values o f ‘a ’, ‘b ’ and ‘c ’. The overall minimum scaled 

deviance can be found from the following table.

a \ b
c

-0 .0 2 -0 .01 0 .0 0 0 1 0 .1 0 .2 0.4 0.5

-0 .0 2

-0 .0 2 3264.9 3265.4 3265.5 3269.8 3274.8 3284.3 3288.6

-0 .01 3265.2 3265.4 3265.6 3269.9 3274.8 3284.3 3288.6

0 .0 0 0 1 3265.5 3265.6 3265.8 3270.0 3270.0 3284.3 3288.6

0.1 3266.8 3267.2 3267.3 3275.4 3275.4 3284.5 3288.7

0 .2 3268.3 3268.6 3268.7 3275.9 3275.9 3284.7 3288.8

0.4 3270.8 3270.0 3271.1 3277.0 3277.0 3285.9 3289.1

0.5 3271.9 3271.8 3272.3 3277.8 3277.8 3285.1 3294.7

-0 .0 1

-0 .0 2 3264.3 3264.5 3264.8 3269.1 3274.1 3283.8 3288.2

-0 .01 3264.5 3264.6 3264.9 3269.2 3274.2 3283.8 3288.2

0 .0 0 0 1 3264.7 3264.8 3265.1 3269.3 3274.2 3283.8 3288.2

0.1 3266.2 3266.4 3266.6 3270.2 3274.7 3284.0 3288.3

0 .2 3267.6 3268.0 3268.0 3271.2 3275.2 3284.2 3288.4

0.4 3270.2 3270.6 3270.6 3273.1 3276.3 3284.5 3288.6

0.5 3271.4 3271.8 3271.8 3273.9 3276.8 3284.5 3288.9

0 .0 0 0 1

-0 .0 2 3263.5 3263.8 3264.0 3268.4 3273.4 3283.2 3287.7

-0 .0 1 3263.7 3263.9 3264.2 3268.5 3273.5 3283.3 3287.7

0 .0 0 0 1 3263.8 3264.1 3264.4 3268.5 3273.6 3283.3 3287.7

0.1 3265.5 3265.7 3265.9 3269.5 3274.1 3283.4 3287.8

0 .2 3267.0 3267.3 3267.3 3270.1 3274.6 3283.6 3287.9

0.4 3269.9 3269.9 3269.9 3272.1 3275.8 3284.0 3288.2

0.5 3272.1 3271.2 3271.1 3273.0 3276.1 3284.2 3288.3

0.1

-0 .0 2 3257.7 3257.9 3258.1 3261.6 3267.0 3278.0 3283.1

-0 .01 3257.9 3258.1 3258.2 3261.7 3267.0 3278.1 3283.8

0 .0 0 0 1 3258.1 3258.2 3258.4 3261.8 3267.1 3278.0 3283.1

0.1 3259.8 3259.8 3260.0 3262.8 3267.5 3278.2 3283.2

0 .2 3261.2 3261.3 3261.5 3263.9 3268.2 3278.4 3283.2

0.4 3263.9 3264.6 3264.5 3266.0 3269.3 3278.8 3283.5

0.5 3266.2 3265.9 3265.7 3266.7 3270.1 3279.3 3283.5

Table 4.4: Scaled deviance for different parameter values.
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a \ b
c

-0 .0 2 -0 .01 0.0001 0.1 0 .2 0.4 0.5

0 .2

-0 .0 2 3255.3 3255.2 3255.2 3257.1 3261.6 3272.8 3278.4

-0 .01 3255.3 3255.3 3255.4 3257.2 3261.5 3272.8 3278.4

0.0001 3255.5 3255.4 3255.5 3257.3 3261.6 3272.9 3278.4

0.1 3256.6 3256.6 3256.6 3257.9 3261.9 3272.9 3278.4

0 .2 3258.0 3258.0 3257.8 3258.8 3262.4 3273.0 3278.5

0.4 3260.2 3260.6 3260.5 3261.0 3263.5 3273.3 3278.4

0.5 3261.7 3261.8 3261.6 3261.7 3264.3 3273.7 3278.7

0.4

-0 .0 2 3258.4 3258.3 3258.3 3257.9 3259.0 3265.9 3270.7

-0 .01 3258.4 3258.3 3258.3 3257.9 3259.0 3265.8 3270.7

0.0001 3258.5 3258.6 3258.3 3257.9 3259.0 3265.8 3270.7

0.1 3259.0 3258.7 3258.7 3258.1 3259.1 3265.7 3270.5

0 .2 3259.4 3259.2 3259.1 3258.4 3259.1 3265.6 3270.4

0.4 3261.2 3260.1 3260.1 3258.9 3259.7 3265.2 3270.3

0.5 3260.7 3261.8 3260.6 3259.5 3259.5 3265.2 3270.2

0.5

-0 .0 2 3262.9 3262.9 3262.8 3262.3 3262.4 3266.2 3269.6

-0 .01 3263.0 3262.8 3262.9 3262.2 3262.5 3266.1 3269.6

0.0001 3263.1 3262.9 3262.9 3262.2 3262.5 3266.2 3269.6

0.1 3263.3 3263.1 3263.1 3262.3 3262.5 3266.1 3269.5

0 .2 3263.5 3263.3 3263.3 3262.4 3262.5 3266.0 3269.4

0.4 3263.9 3263.6 3263.7 3262.5 3262.7 3265.8 3269.0

0.5 3264.1 3263.8 3263.7 3261.7 3262.8 3265.2 3269.2

Table 4.4: Continued for different parameter values.

The minimum scaled deviance (3255.2) occurs at abou ta  =  0.2, ¿> = 0.0001 and 

c =  -0 .0 2  . The contour plots for different fixed values o f the parameter ‘a ’ given in the 

above table and for -  0.02 < ¿>, c < 0.02 are plotted in Fig. 4.2 and Fig. 4.3.

95



0.2

X2
0.1

0.0

-- 3257.95
-- 3258.10 
-—  3258.25
—  - 3258.40
—  3258.55
-- 3258.70
-- 3258.85
-—  3259.00 
-- 3259.15 
-- 3259.30

C
Fig 4.2: Contour plots o f scaled deviance for a=0.4

The above contour plot for a = 0.4 shows that the m in im u m  for a = 0 .4  appears to 

occur at about b = 0.08 and c — — 0 .02 . This minimum appears to be at the 

boundary of the region of convergence. Or it appears overall we might reasonably 

take a -  b = c = 0 , i.e. the logit link function in all cases
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--  3255.45
-- 3255.70 
-—  3255.95
-- 3256.20
—  3256.45
-- 3256.70
-- 3256.95
-- 3257.20
-- 3257.45 
-- 3257.70

C
Fig 4.3: Contour plots o f scaled deviance for a=0.2

Similarly as Fig 4.2, we see from the above contour plot that the minimum for the 

parameter a = 0.2 appears to occur at about b = —0.02 and c = —0.02. The minimum 

appears to be at the boundary of the region of convergence. The contour plots for all other 

parameter values in Table 4.4 are drawn and no obvious shape or pattern of convergence 

is found as in Fig.4.2 or Fig. 4.3.
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4.7 Testing link function

We explain here the data analytic procedure of Pregibon (1980) to examine the adequacy 

of the Box - Cox link function used in our approach for fitting the multinomial regression 

model in section 4.6.1. We attempt to aid the reader by outlining the procedures for the 

Box - Cox link function specification only.

We fit the multinomial model with the hypothesized link function T)a = g (  0a ) when in

fact, the correct link function is r/'2 = g ( 6n , a )  for some unknown parameter a but in 

general, there could be more than one unknown parameters.

Now using a first - order Taylor series expansion about the hypothesized link function, 

we have the approximate relationship as

7 n = g ( On . a = 0 ) + ( a - 0 ) —  g ( Gi2 )
o a a = 0 + -------- (4.24)

= *7,2 + a
d

a 8 ( 0  ,2 ) +

For Box - Cox link a S g  
d a

a d ,

a = 0 = a
d a a a = 0

/
1 +  Cl 0 i 2 +  CL l0;2 / 2 ! + a  6y2 / 3 ! + a 0.il

'  a=0

Hence the link modification in our case for section 4.6.1 be refonnulated easily in terms 

of original hypothesized link function with the additional factors as follows

0 il = 0 il +
a 0 il +

Similarly 77 ’3 7 ¡'3 +
b e i 3 + (4.25)
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7/4 = 7
c 6 i 4

i 4 +

Here ^ i2 = log 0 i2 , t]b = log ÛB and r/i4 = log 7;4

To test the adequacy of the link function we fit the multinomial model with the logit link

e l  e l  e l
and than fit an ‘auxiliary variable’ ----  ( or ----  , ----  ) to give us an estimate of

2 2 2

the unknown parameter a (or b c ) .

A significant reduction in the resulting deviance will indicate the departure from the 

original link function or this corresponds to the fact that the wrong link function is a 

systematic mis - specification of fitting the model.
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CHAPTER 5

Improving convergence by Re- 

parameterisation

5.1 Introduction

In this study for fitting the multinomial logit model with the methodology of chapter 2, 

the data can be collected and stored for each individual, rather than being grouped. The 

response variables will then have only yes or no type responses (typically, a row of zeros, 

with just one 1.0), as for the data attached with the compact disk. For this type of data 

convergence of the model fitting can take a long time and many iterations by our method. 

(In some of the examples given in this study, convergence took more then five hundred 

iterations). To minimize these iterations some changes in the design matrix are given. 

These changes to the design matrix make the convergence very sharp, as in some cases 

we only need few iterations to obtain convergence (to the same scaled deviance as we can 

get from the Poisson trick approach). More details of these changes in the design matrix 

is given in section (5.2). Our initial changes in the design matrix were derived from the 

idea of spectral decomposition of the covariance matrix of the parameter estimates 

obtained from fitting the multinomial logit model. The spectral decomposition of this
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covariance matrix yields the principal components of the response variable as orthogonal 

variables. The multinomial logit model on these orthogonal response variables converges 

very fast and needs only few iterations. To illustrate this idea, we may note that, in 

section 5.3 (a), the covariance matrix can be extracted as follows:

0.0416 -0 .0 1 7 8 0.0155 -  0.0067
-0 .0 1 7 8 0.0091 -  0.0067 0.0034

0.0155 -  0.0067 0.0404 -0 .0 1 7 4

-  0.0067 0.0034 -0 .0 1 7 4 0.0090

The diagonalized form of 2  uses the spectral decomposition i.e. Z = r A T f , where 

A = diagonal matrix of eigenvalues of Z .

T = orthogonal matrix whose columns are standardized eigenvectors.

=> r r '  = i  or r '  = r _1.

=> r  ' z  r  = a  . (5.i)

and from equation (5.1) we say that F ' diagonalizes Z . The spectral decomposition of 

Z yields the principal components and using the notation in our macros we can get 

transformed explanatory variables as

vdl= - 0.288<27 -  0.653(72 + 0.284dpi + 0.64dp2 

vd2= - 0.282dl -  0.64ld2 - 0.291 dpi - 0.62ldp2 

vd3= 0.636(72 -  0.279d2 - 0.657dpi + 0.292dp2 

vd4= - 0.658dl + 0.292d2 - 0.625dpl + 0.282dp2.

Hence, if we write dl - dpi = u l, d2 - dp2 = u3 and dl + dpi = u2, d2 + dp2 = u4, 

then we can rewrite the transformed explanatory variables as approximately
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vdl= - ul -  2u3, 

vd3= 2ul -  u3,

vd2= - u2 -  2u4

vd4= - 2u2 + u4

The two alternative sets of variables u l, u2, u3, u4 or vdl, vd2, vd3, vd4 can be fitted 

instead of the original variables dl, dp i , d2, dp2, and both sets improve convergence. 

Thus, when fitting the multinomial logit model with the above transformed explanatory 

variables convergence is achieved quickly, only needing a few iterations to get the same 

scaled deviance as can be obtained from using Poisson trick approach. This transformed 

variate approach requires at least approximate knowledge of the covariance matrix, which 

might be obtained from the least squares estimates of the parameters. This might be 

achieved by using estimates from a restricted number of iterations; perhaps from just one 

iteration. However, our initial idea has led us to consider a further different approach; in 

particular, we now consider an approach based upon a simple alternative form of the 

design matrix.

5.2 Alternative form of design matrix

In chapter 2; we find P new in equation (2.11), where D  is a matrix of derivatives which 

is defined as

^ X (2) 0 N
0 X (3)y

V  /  2 m  x  4

and the design matrix is
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N  = ‘ii ‘12 D =
22 y

(aux (2) a12x (3))
0  a„x (3)

ZZ J  2 « x 4

If we have, for example, only one covariate x and m = 4 , then we can rewrite D  as 

follows;

(a) D

and N

^ 0  0^

1 x̂  0 0
1 Xj 0 0
1 x4 0 0 
0 0 1 ^
0 0 1 Xj

0 0 1 Xj

with parameters

or

\ P
0 1 x4J

(  A m  Ai 0 0 0 / i (1)A 2

0 ¿(2)Al 0 0 0
0 0 A (3)Ai 0 0
0 0 0 a (4)A i 0
0 0 0 0 A (1) S I  22
0 0 0 0 0

0 0 0 0 0

V 0 0 0 0 0

' A x A UX ^12 A n X
N  =

v 0 0 x422 A 22X

a (2) A2
0
0
0

a {2)/ l 22
0

fix
a 2

v  A  y

o
o

a (3)A \2
0
0
0

a (3)A 2

0

0

0
a (4)A2

0
0
0

a {4)A 2 y

0 0 
0 0

(5.2)

1 jq 0 0
1 Xj 0 0
1 ^ 0 0  
1 x4 0 0
0 0 1 x}
0 0 1 Xj

1 x̂
1 X'4 y

(5.3)
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In the macros we have given the notation as

d l  d 2  d p i  d p 2

( a  " lA l\ 'a X ( a  > " A n x "

l  0 J 8x 1 l  0 J 8x 1 \ A i  ^ 8x 1

For a sharper convergence we can consider an alternative parameterisation using 

an approach similar to that obtained from diagonalizing the covariance matrix. We 

consider replacing D  ¡. by the following alternative form:

(b) D

1 *1 0 0 ^
1 X 2 0 0
1 x 3 0 0
1 X 4 0 0
1 Xi 1 Xi
1 x 2 1 x 2
1 X 3 1 x 3
1 *4 1 *4 J

with parameters

7 i 
8 ,  

r  2
v 8  2 J

(5.5)
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or (5.6)
A l + ^12 A n X  + A 12X A 2 A UX

^22 ¿ 2 2 * ^22 a 22x

The equivalence in the parameterisations in equation (5.2) and (5.5) is as follows:

a x = y  j or

A = A

a 2 = Ti + r 2 

A  = A  +  S2

r  i = « i

A =A 

r 2 = ^ 2 ~ a \

A = A - A •

We have given the notation in macros as

dl_ d2_ dpi dp2

A l + ^12 ' a ux  + a ,2x ' ( a  \  *̂12 'A „  X

^22 Axl \  ^ 22V  Jgsl v^22y8xi \ A 22X

Now in the next section we will use the alternative form of the design matrix with the 

original design matrix in an example of a yes or no type three level response variable. For 

illustration, we use with one covariate and are able to show that this alternative form of 

the design matrix gives exactly the same findings as is the original design matrix but with 

many less iterations required for convergence.
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5.3 Example

We consider the data here in this example by Collier et al. (2001) on whether young 

people intended to enter UK Higher Education (HE). These multinomial data were 

collected on many variables but for the simplicity and clarity of the ideas presented in this 

chapter, we consider only ‘friends encouragement’ as a three level response variable and 

Age as a explanatory variable. The data is attached in a compact disk. The data consists 

of 1742 cases

The multinomial logit models are fitted here with the design matrices given in section

(5.2) to compare how quickly convergence is achieved when using the original and 

alternative form of design matrices. The results are also compared with the Poisson trick 

approach.

(a) We first fit the model Y  = d\ + d2 + dpl + dp2 using the original design matrix 

equation (5.2) and the notation in chapter 2, with macros in the Appendix A.

We need to repeat the GLIM code in the macro $use startup$use loop$ to get the output 

as follows:

scaled deviance = 1471.4 at cycle 12

residual df = 17 38

estimate s . e . parameter

1 0.2262 0.2026 dl —a  j
2 0.3589 0.0951 d2 = A
3 0.3826 0.2034 dpi = a 2

4 0.7774 0.0954 dp2 CNII

Table 5.1: Parameter estimates and standard errors for (a)

scale parameter 0.8466
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(b) We now fit again the model Y = dl + d l  + dpi + d p i  but using the alternative 

form of design matrix equation (5.5), with new parametric notations.

Again, starting up by repeating the GLIM code $use startup$use loop$ until convergence 

occurred and exactly with same parameter estimates as in (a). In this case, we again need 

12 iterations but these results can also be achieved with fewer iterations.

scaled deviance = 1471.4 at cycle 12

residual df = 17 38

estimate s. e . parameter

1 0.2262 0.2026 d l  = y 1

2 0.3589 0.0951 d2 = 5 X

3 0.1564 0.2265 d p i  = y 2
4 0.4184 0.1065 dp2  = 5 2

Table 5.2: Parameter estimates and standard errors for (b)

scale parameter 0.8466

In parametric equivalence for (a) and (b) we can write

(a) (b)

a 1 =  0.2262 or y i =  0.2262

J3l =0.3589 ' S 1 =0.3589

a 2 = 0.3826 y 2 = 0 .3 8 2 6 - 0.2262

p 2 =  0.7774 <?2 = 0.7774 - -0.3589
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(C) For verifications of the parameter estimates and the scaled deviance found in (a) 

and (b) we fit the same model via Poisson trick approach of Francis et al. (1992) 

as follows;

$c macro for Poisson trick approach of Francis et al. (1992)$ 

$c level of response variable declared in data file$

$calc vyl=(fr==l):vy2=(fr==2):vy3=(fr==3)$

$calc nl=l$c response variables total?

$num vl$

$calc vl=3*%sl$c 3*standard length?

$ass freq=vyl,vy2,vy3$c freq y-variable$

$ass ag21=ag,ag,ag$c explanatory variable?

$var vl case group?

$calc case =%gl (%sl,1) :group =%gl(3,%sl)$

$fact case %sl group 3$

$eliminate case $error p$yvar freq?

$fit+group*ag21(case)$dis e$

scaled deviance = 14 71 . 4  ( c h a n g e  = - 4 2 . 8 0 )  a t  c y c l e  5 

residual d f = 1738 ( c h a n g e  = -2)

estimate s. e o parameter

1 0.2343 0.2830 GROUP (2) = a x

2 0.4006 0.2593 GROUP (3) = cc2

3 0.3490 0.1579 GROUP(2) .AG21=

4 0.7649 0.1444 GROUP(3).AG21=fl2

Table 5.3: Parameter estimates and standard errors for (c) 

scale parameter 1.000
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From above we see that the parameter estimates and the scaled deviance in (a), (b) and (c) 

effectively have exactly the same values. Any small differences can be considered as 

being due to the rounding errors.

5.4 Generalization

W e generalize here the alternative design matrix given in section 5.2 (b) for any number 

o f response levels and any number o f covariates. This approach will produce exactly the 

same findings as are given in chapter 3, but with different parameterisations. The equation 

(3.1) can be rewritten in the form of a new design matrix given in section (5.2) as follows:

D >J

X  (2) 0 0
x (2) X  (3) 0
X  (2) x (3) x (4)

with parameters

f  \
71

72
S 2

73

)

(5.8)

The X ® is a design matrix of explanatory variables for response k. We then have N  

defined as:

' a u x (2) + a 12x (2) + a 13x (2) a 12x (3> + a 13x (3° A l3X ^

N  = a 22x (2) + a 23x (2) a 22x <3> + a 21x 13' a 23x (4)

v A * X ™ A » X ™ a 33x 4̂\

Although it is not necessary we usually consider X (2) = X (3) = AT(4). The notational 

representation in the macros will then be:
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M dyl d2

A i  +  A 2  +  A 3 '  A UX  + A UX  + A n X ' ( A  4 . A  \A12 +  A Xi

A 2 +  A 3 A 2 2 X  + A 23X A 22 + A 23

u> 3 n x l V ^ 3 3 ^ "  23 n x l v  A 3 y

dp2 d3 dp3

A UX  + A UX ' ( a  ^^ * 1 3
<Aa X

^ 2 2 ^  ^ 2 3 ^ A 3 a 21x

^ 33X  ,
3 n x l v A 3 j 3 / j x l

^ x433X

We can fit the model Y - d l  + d p l  + d 2  + d p 2  + d 3  + d p 3 ,  which has the same 

parametric interpretation as is given in section 5.3. It is very easy to see from above that it 

can be generalized in any number of response levels with any number of covariates. The 

parametric equivalence in section 5.3 can be extended as follows:

Original parameterisation Alternative parameterisation

Four response levels

a x

A
a 1

ß i
or

Yx = « i

s  = A
Y2 =CC2 ~ a 1

A =ßi -  A
«3

.A3

y3 = a 2 -  a 2 

A  ~ ß i  ~ ß  2

Thus from above it can be extended further without any problem to any number of levels 

of response variable.
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CHAPTER 6

A More General Example of Fitting A 

Multinomial Model

6.1 Introduction

In this chapter we will illustrate a more general example to illustrate how the theory and 

the methods developed in the previous chapters are applicable for any number of response 

levels, with any number of explanatory variables. For this purpose, dermatology data 

from Nilsel liter, Gazi University, and H. Altay Guvenir, Bilkent University, Ankara, 

Turkey is used to fit a multinomial regression model with a logit link function, with our 

own link function with different parameters, and using the improved version of design 

matrix for the reduction of iterations.

This dermatology data was used in the past by G. Demiroz, H. A. Guvenir and N. liter to 

determine the type of Eryhemato-Squamous Disease. The data contains 34 attributes, 33 

of which are continuous and one is nominal.

The differential diagnosis of erythemato - squamous disease is a real problem in 

dermatology. They all share the clinical features of erythema and scaling, with very little 

differences. The diseases in this group are psoriasis, seboreic dermatitis, lichen planus, 

pityriasis rosea, cronic dennatitis and pityriasis rubra pilaris which are to from the six 

levels our of response variable. Usually a biopsy is necessary for the diagnosis but
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unfortunately these diseases share many histopathological features. Another difficulty for 

the differentiation is that a disease may show the features of another disease at the 

beginning stage but may have the characteristic at the following stages. Patients were first 

evaluated clinically with 12 features. Afterwards, skin samples were taken for the 

evaluation of 22 histopathological features. The values of the histopathological features 

are determined by an analysis of the samples under a microscope.

Previous studies on this data have considered the selection of a linear combination of the 

explanatory variables. Thus, here, the six variables parakeratosis, spongiosis, PNL 

infiltrate, koebner phenomenon, follicular horn plug and focal hypergranulosis are

considered as explanatory variables, with levels of a response variable. The Class Code 

(Disease) for four levels of the response variable can be described as follows:

Class Code Class Number of instances

1 psoriasis 112

2

+

seboreic dermatitis 

cronic dermatitis 113

3 lichen planus 72

4
+

pityriasis rosea 

pityriasis rubra pilaris 69

Total 366

The clinical and histopathological attributes in the data take values 0, 1,2, and 3 unless 

otherwise indicated. More information about the levels of response variable and

explanatory variables can be found in the attached compact disk.
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6.2 Selecting an appropriate model using the Poisson trick

The Poisson trick approach is used here to fit a model for four levels of response variable 

and with six explanatory variables. The backward selection procedure is adopted to find 

the significant explanatory variables in the model by deleting one explanatory variable 

from the main effect model, and comparing the fit of each reduced model. It was found 

each time that the deleted explanatory variable has a significant effect. Therefore, the 

main effects model with all six explanatory variables is considered as an appropriate 

model in this case for the dermatology data.

The following macros were written to fit the main effects model using the Poisson trick 

approach of Francis et: al (1992). It does not converge using the default number of cycles. 

The number of cycles was increased to obtain convergence. It is noted that the parameter 

estimates change when the number of cycles are changed to achieve the convergence.

$c macros for the Poisson trick model for the dermatology data and all 

other notations can be found in the attached compact disk$

$cal nl=l$

$cal codl=(cod==l)+2*(cod==2)+2* (cod==5)

+3*(cod==3)+4*(cod==4)+4*(cod==6)$

$calc vyl=(codl==l) : vy2=(codl==2)$

$calc vy3=(codl==3) : vy4=(codl==4)$

$num vl$

$calc vl=4*%sl$

$ass freq=vyl,vy2,vy3,vy4$

$var vl case group$

$calc case=%gl(%sl,1) :group=%gl(4,%sl)$

$fact case %sl group 4$

$eliminate case$error p$yvar freq$

$c number of cycle and the convergence criteria$

$cycle 20 2 1.0e-4$

$fit group +group*koe(case)+group*pnl(case)+group*par (case) + 

group*foc(case)+group*spo(case)+group*fol(case)$
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The above macros are executed and the statistics obtained are given here; these can be 

compared further in the following sections with the theory and the methods developed in 

this thesis.

Using number of cycles and convergence criteria as $cycle 20 2 1.0e-4$, we get the 

parameter estimates and standard errors as follows

scaled deviance =148.57(change = -846.7) at cycle 17 

residual df =1077

estimate s. e . parameter

1 5.707 1.401 GROUP(2)

2 -17.56 47.89 GROUP(3)

3 3.297 1.468 GROUP(4)
4 -4.006 0.9385 GROUP(2).KOE

5 28.40 44.35 GROUP(3).KOE

6 0.4075 0.6033 GROUP(4).KOE

7 -1.944 0.5390 GROUP(2).PNL

8 -10.83 74.86 GROUP(3).PNL

9 -3.091 0.7215 GROUP(4).PNL

10 -3.245 0.7116 GROUP(2).PAR
11 -60.46 87.11 GROUP(3).PAR
12 -3.495 0.7732 GROUP(4).PAR
13 -29.31 190.0 GROUP(2).FOC
14 149.5 251.1 GROUP(3).FOC

15 -24.09 172.5 GROUP{4).FOC
16 15.27 113.7 GROUP(2).SPO
17 1.455 116.5 GROUP(3).SPO
18 15.75 113.7 GROUP(4).SPO

19 14.73 343.6 GROUP(2).FOL
20 -25.13 485.7 GROUP(3).FOL

21 18.76 343.6 GROUP(4).FOL

Table 6.1: Poisson trick model of 4 -level of response & six explanatory variable

scale parameter 1.000
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The above statistics have some unstable parameter estimates with very high standard 

errors. This leads us to explore more about the data and to investigate why we are getting 

some unusual parameter estimates. This may be because there are a great number of 

observed counts are zeros and ones. This suggests that the Poisson trick method may be 

less suitable for this type of data when convergence is not achieved on the default number 

of cycles. We shall observe in the next section that the multinomial regression method 

works well and produces the parameter estimates with what appears to be acceptable 

standard errors.

6.3 Using our approach model

We fit here the same multinomial model using our approach as is selected in section (6.2) 

and gets the parameter estimates with some apparently acceptable standard errors. The 

macro converges but needs to increase the number of cycles for the convergence criteria. 

The macros are given in appendix A, leading to the following output:

Scaled deviance = 149.68 at cycle 35 

residual df = 1077

estimate s. e. parameter(Francis )

1 5.705 1.186 dl (Group2)
2 -4.484 2.456 d2 (Group3)
3 3.290 1.264 d3 (Group4)
4 -4.003 0.919 dpi ('GROUP2 . KOE)

5 8 . 630 0.954 dp 2 ("GROUP 3.KOE)
6 0.409 0.571 dp 3 ("GROUP4 .KOE)
7 -1.944 0.463 dp 4 (GROUP2.PNL)

8 -4.682 2.266 dp 5 (GROUP3.PNL)

9 -3.093 0.661 dp 6 ("GROUP4 . PNL )
10 -3.244 0.606 dp 7 ("GROUP2 . PAR)

11 -19.24 1.471 dp 8 ("GROUPS. PAR)

115



12 -3.492 0.673 dp 9 ("GROUP4 . PAR)

13 -8.302 3.261 dplO ("GROUP 2.FOC)

14 48.64 3.3 95 dpll ("GROUP3. FOC)

15 -6.916 4 . 992 dpi 2 ("GROUP4.FOC)

16 14.21 1.436 dpi 3 ("GROUP2.SPO)

17 10.97 1.676 dpi 4 ("GROUP3.SPO)

18 14.68 1.461 dpi 5 ('GROUP4 . SPO)

19 10.21 4.126 dpi 6 ("GROUP2.FOL)

20 -28.18 6.465 dpi 7 ("GROUP3.FOL)

21 14.24 4 . 157 dpi 8 ("GROUP4 . FOL)

Table 6.2: Four levels of response and six explanatory variables

scale parameter 1.000

The data entered in the macros for fitting the multinomial logit model in section (6.3) are 

exactly the same form as was entered when using the Poisson trick approach in section

(6.2), in order to keep Table 6.1 and Table 6.2 in the same formats. The parameter 

estimates in Table 6.1 for GROUP3, GROUP3.KOE, GROUP3.PNL, GROUP3.PAR, 

GROUP2.FOC, GROUP3.FOC, GROUP4.FOC, GROUP2.SPO, GROUP4.SPO, 

GROUP2.FOL, GROUP3.FOL and GROUP4.FOL do not appear very sensible; they all 

have unstable standard errors. The fitting of our multinomial logit model in Table 6.2 

gives some sensible looking parameter estimates with reasonable standard errors. The 

standard errors for parameters in the same group have exactly the same values when the 

macros are not upgraded at each cycle, but we get approximately the correct scaled 

deviance in this case (The macro is given in Appendix A at page 154). This is because we 

may not have much knowledge about the start - up values or how we have chosen the 

initial values in the macros.
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6.4 Variance - Covariance matrix not upgraded at each cycle

The variance - covariance matrix in section (6.3) is of a symmetric form for each level of 

response variable when it is not upgraded at each cycle. Since the GLIM code for macro 

startup is Scale %fv=0.25$ with four levels of response variable and responses are either 

zeros or ones only and we have

V(Pnew{i) ) = ( N TN r V ( Y i ) ,

= ( D r WD)~1V(Yi ) .  (6.1)

The (D tWD) in the standard form of the design matrix X  be interpreted as

f  X 0 0 >r (wr r  l i wu w ^rr 13 6 x 0 0 N
Cd t w d ) = 0 X 0 W 2l w22 wr r  2 3 0 X 0

0 * 2 Wn w i2 Wr r  3 3  yl 0 * 2

In this case we have %fv=0.25 and the weight matrix in equation (6.2) will be as

wu(i)=M,20--—)= w22(o=ft,(i- —) = (o=ft.a■-—) .
ni nt ni

w n  ( 0  = -  ^ i2jUi3 = w l3 (0  = -  MaMi4 = w 23 ( 0  = -  E j i E i x
n t n, n,

If we denote Wn (i) = W22 (i) = W33 (i) = /l l mxm and

(.D TWD) =

Wvz(i) = Wl3(i) = w 23(0 3  ^  mxm » then we have

'  X  T u x X  T S I X X  T S I X  "

X  T S I X X  T XLX X T S I X (6.3)

X  1 S I X X T SEX X  7 M X
2  3  p x 3 p
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The above symmetric positive definite matrix has the diagonal matrices of dimensions 

p  x p  and the diagonal elements of the inverse of these be involved in finding the 

standard errors of the parameters.

If we consider the improved form of design matrix X  that we will use in section (6.6) 

then the matrix (D 7 WD) will be as

X  7 X I X

X  7 M X  + X  7 S I X  

X  T X I X  + 2 X  TS I X

X  T XL X  + X  7 S I X  

2 [ X  T XLX  + X  T S I X  ] 

2 [ X T X I X  + 2 X T SEX  ]

X  T X I X  + 2 X T S I X  

2 [ X  T X I X  + 2 1  7 S I X  ] 

3 [ X T XLX  + 2 1  7 S I X  ]

To find V {Pnew{i)) in equation (6.1) we need the y - variable that involves special inverse

matrices and (%lp). The erf is formulated in the macro using macro devcalc. It make

some sense that the parameter estimates for each group of response variable have the 

same standard errors when observed counts are zeros or ones only and macro startup with 

GLIM code is Scale %fv=0.25$.
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6.5 Our own link model

We fit in this section a multinomial model using our own link function as is given in 

section (4.2.2) with different values of the link parameters. We fitted the parameter values 

as a = b = c= 0 .0 0 0 1 ,a s  this is approximately equivalent to the multinomial logit model. 

The macros are given in Appendix A and we get the statistics as

Scaled deviance = 149.69 at cycle 35 

residual df = 1077

estimate s.e. parameter

1 5.705 1. 186 dl
2 -4 .445 2.455 d2

3 3.287 1.263 d3

4 -4 .011 0. 919 dpi

5 8 .598 0. 956 dp 2

6 -0. 411 0. 571 dp 3
7 -1. 944 0.463 dp 4
8 -4 .687 2.265 dp 5
9 -3. 095 0. 661 dp 6

10 -3.:244 0. 606 dpi

11 -19 .19 1.469 dp 8

12 -3. 492 0. 672 dp 9

13 -8 .318 3..259 dplO
14 48 . 50 3 . 392 dpi 1
15 -6. 934 4. 988 dpi 2

16 14 .50 1..436 dpi 3
17 11 .20 1.. 676 dpi 4
18 14 to CO 1..460 dpi 5

19 10 . 61 4 ,. 125 dpi 6
20 -27 .26 6,.455 dpi 7
21 14 . 65 4 .. 155 dpi 8

Table 6.3: Four levels of response and six explanatory variables

scale parameter 1.000
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The above Table 6.3 almost produces the same statistics as in Table 6.2 and that we 

expect in sections (6.3) and (6.5). This table has the same interpretation as in section (6.3) 

but the minor difference in parameter estimates can reasonably be attributed to the 

different parameter values in own link functions.

6.6 Multinomial model with improved design matrix

We use here the improved version of design matrix as is given in section (5.2) in order to 

reduce the iterations to obtain convergence. We only need in the macros to change the 

design matrix equation (5.3) for the improved version of design matrix equation (5.6). We 

need to be careful about entering the data and the notations in macros of the parameters in 

order to preserve the equivalence of results to those of previous sections. The macros for 

the improved version of design matrix are given in Appendix A with the following 

statistics being output:

S c a l e d  d e v i a n c e  = 1 4 9 . 6 8  a t  c y c l e  400 

r e s i d u a l  d f  = 1077

estimate s.e. parameter

1 5.705 1.. 186 Pi
2 -10 .19 2.185 p2

3 7 .774 2. 176 p3

4 -4 .003 0. 991 pdl

5 12 . 63 1. 117 pd2

6 -8 .222 0.800 pd3

7 -1. 944 0.463 pd4
8 -2. 738 2.235 pd5

9 1.589 2.212 pd6

10 -3.:244 0. 606 pdl

11 -16 oo 1.361 pd8

120



12 15.75 1.330 pd9

13 -8.302 3.261 pdlO

14 56.95 3.574 pdll

15 -55.56 5.103 pdl2

16 14.21 1.436 pdl3

17 -3.232 0.861 pdl4

18 3.7 08 0.839 pdl5

19 10.21 4 . 126 pdl6

20 -38.39 5.038 pdl7

21 42.42 4.965 pdl8

Table 6.4: Multinomial logit model for improved version of design matrix

s c a l e  p a r a m e t e r  1.000

There is no change in the scaled deviance as in section (6.3) with the interperation of 

parameter estimates and standard errors. The parametric equivalence in the Table 6.4 and 

Table 6.3 can be seen as,

p i d l

p2 d 2 - d l

p3 d 3 - d 2

p d l = d p i

p d2 = d p 2 - d p l

p d 3 = d p 3 - d p 2

p d4 dp 4

p d 5 = d p 5 - d p 4

p d 6 = d p 6 - d p 5

p d l = dp  7

pd8 = d p 8 - d p 7

p d 9 = d p 9 - d p 8
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pdlO = d p i  0

pdll = d p i  1 - d p i  0

pdl 2 = d p l 2 - d p l l

p d l 3  = d p i  3

pdl4 = d p i  4 - d p i  3

pdl5 = d p i  5 - d p i  4

pdl 6 = d p i  6

p d l l  = d p i  7- d p i  6

pdl 8 = d p i  8 - d p i  7

The above parametric equivalence can be interpreted in the reverse order for the 

interpretation of the standard multinomial logit model with or without own link function 

for different parameters. It is noted here unusual for this data that we need 400 iterations 

for the improved design matrix or we may need to consider different startup values.
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6.7 Comments for fitting a appropriate model

The following considerations are needed for the dermatology data used in fitting a more 

general multinomial regression model. This may not be the case when the data counts 

have not so many zeros and ones. These considerations become more important when the 

convergence does not occur with the default number of cycles and we need to increase the 

number of cycles or to relax the convergence criteria.

a) The Poisson trick approach of Francis, et al. (1992) can give large s.e.’s so may be 

not appropriate one for multinomial counts with zeros and ones when convergence is 

not achieved with default cycles only. It would seem that it can give unstable 

parameter estimates with very high values of standard errors.

b) The multinomial regression model method given in this thesis works very well for 

the multinomial counts with zeros and ones but for the convergence criteria some 

extra care is needed with respect to the number of cycles.

c) It is noted here that the use of improved version of design matrix in the multinomial 

counts with zeros or ones for the larger data set may not reduce the iterations but this 

is not the case in real counts for level of response variable.

d) The standard errors of parameter estimates appear as blocks of equal (incorrect) 

values for our approach to fitting multinomial counts with zeros or ones if the GLIM 

code for updating the weight matrix at each cycle is omitted. The initial startup 

values for %fv plays an integral part in determining the ‘standard errors’ in these 

blocks. It also depends how we are entering the data in macros for the model fitting.

e) The form of the design matrix in the macros for model fitting does not essentially 

affect the multinomial regression model theory as given in this study, but you do 

have to identify the parameter estimates. It does not have any effect on the scaled 

deviance or the degree of freedom.
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CHAPTER 7

Likelihood Influence Measures Using 

Cook’s Distance (1986)

7.1 Introduction

The regression diagnostics for normal linear models are well established in the literature 

since early 1960s. The principal ideas of assessment of influence may be found in Cook and 

Weisberg (1982), Belsley et al. (1980) and are surveyed comprehensively in Chatterjee and 

Hadi (1988), especially in chapter 4 and 5, a general approach for sensitive analysis in the 

linear regression models, there is detailed discussion about assessing the effects of 

observations.

An assessment of local influence in regression models using the likelihood displacement 

influence measures and the ideas of global influence are found in Cook (1986). These ideas 

of influence measures Cook (1986) are introduce here for the multinomial data using case i , 

( = 1 ,2 , . . . , m deletion method.

The general reference on empirical and theoretical influence functions are found in Hample et 

al. (1986) and some work by Pregibon (1981) gives notions about the influence function in
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linear logistic regression models. Thomas and Cook (1989) gives an assessment of influence 

on regression coefficient in generalized linear models and also Thomas and Cook (1990) 

using local influence methods, assesses the effect of perturbations of data on prediction from 

generalized linear models.

Preisser and Qaqish (1996) proposed the deletion diagnostic for generalised estimating 

equations. They consider the leverage and residuals to measure the influence of a subset of

observations on the f t  and on the estimated values on the linear predictor.

Andrews and Pregibon (1978), Atkison (1982) and Geisser (1982) proposes the diagnostics 

based on observation (case) deletion schemes. Moolgavkar et al. (1984) used cases deletion 

for non - linear regression diagnostics with application to matched case - control studies, and

Storer and Crowley (1985) give diagnostics for the parameter estimate ¡3 using the changes 

in the maximum likelihood due to deletion in logistic and linear regression models.

The diagnostics for examining the influence on confidence intervals or on confidence regions 

for regression coefficients is given by Thomas (1990), Pena and Yohai (1993) and Chatterjee 

and Hadi (1988) analyse the eigenvectors corresponding to the non - zero eigenvalues of the 

hat - matrix. Ellis and Morgenthaler (1992) used the diagonal elements of the hat - matrix as 

the diagnostic indicators.

Davis and Snell (1991) give a discussion about residuals and diagnostics and Davis and Tasi 

(1992) a critique about regression diagnostics, including residuals and influence but these 

may not have any use in the multinomial data used during this research.

The regression analysis in the context of masking and boosting is given by Lawrance (1995) 

and classifies the possible effects on pairs of cases on Cook’s distance (1977). Hjort (1992) 

considers the diagnostics in the parametric survival data studies. Lustbader and Moolgavkar 
(1985) gives the diagnostics statistic for hypothesis testing by observation change in the score 

statistic after deletion of observation.

Critchley (1985) develops the influence function for the detection of influential observations 

in the principal component analysis by applying the perturbation on the symmetric matrices. 

Critchley and Vitiello (1991) discussed pairs of cases, as well as single cases for use of case 

weight perturbation.
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Many of these diagnostics for influence measures use statistics that measure the effect of 

deleting a single observation from the data and more details of deletion a single case i , 

i = 1 ,2 , . . . , m or deletion of cell (i, j ) can be found in section (1.8). These statistics 

exploit the exact algebraic relationship between the least squares fit of the linear model to the 

complete set of m cases, and the fit to the m -1  cases remaining after the deletion of a 

single case i. The maximum likelihood (ML) estimation of generalized linear models (GLMs) 

requires iterative methods. The maximum likelihood estimates from m — 1 cases cannot then 

be obtained as explicit functions of the results of the fit to all m cases.

The approach we used here in this study to fit a multinomial logit model is some sort of least 

squares fit and it is very easy to extract Cook’s distances (1977), leverages and some other 

appropriate statistics for each cell (i, j ) in the multinomial data but these are of very little use

for the influence effect or for diagnostic of a case i on the parameter estimate /3 .

We find here the likelihood displacement influence measure of Cook (1986) given in the 

equation (1.29) for fitting a multinomial logit model for deleting a single case i , 

i = 1 ,2 , . . . , m . These may be interpreted to detect the influence of a case i for the

parameter estimate (3 only. More detail on likelihood influence measures of Cook (1986) is 

given in section (1.13) for deleting a single case i (note, for convenience of exposition, we 

there presented the theory about likelihood displacement in terms of a univariate response 

considering deletion of a single ‘observation’).

In section (7.2) we give some notations and the log - likelihood for the multinomial 

regression models. These can be used to find the likelihood influence measure of Cook 

(1986) to detect unusual cases in a multinomial data. In section (7.3) we consider two 

examples for finding the Cook’s distance (1977), leverages, Pearson residuals and the 

likelihood influence measure of Cook (1986). In section (7.4) we discuss the joint and 

multiple influence measure of Cook (1986). In section (7.5) we reuse the data of example

7.3.1 using the Poisson trick approach of Francis et al. (1992) to find the likelihood influence 

measures of Cook (1986) for a single case deletion; this will give the same result as section

(7.3). In section (7.6) the key findings and general difficulties in the application for a larger 

data are presented with some appropriate suggestions.
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7.2 Notations and the log - likelihood statistic

Repeating for clarity from section (1.3), we have for the multinomial model

r y i i y 12 y i i°c p  n  “  . P i2' 2 ■ P i  3‘3

A- = 7,1 log p n + 7 i2 log p  ¡2 + y ,3 log p  ,'3 + constant

= 7,2 logMn + 7,3 l o g +(«,  -7 «  ~ 7,3)log( n, - pi2 - R;3) + constant

and for GLIM code the log - likelihood omitting a constant is given in the macros as

l. = Scale devc = %cu(yv*%log(fv))$. (7.1)

We use the bracketed subscripts to denote the deletion case i when fitted the multinomial 

model of m - 1  cases or, equivalently, weighting out the case i . The calculation LD (f3(i))

of equation (1.29) for the multinomial model is given in section (7.3) exactly for each i and 

is computationally expensive, requiring m +1 fits of the model. Unthinking application of

asymptotic likelihood theory suggests the statistic 2[1(J3) — 1(J3(̂i))] is distributed

asymptotically as^ { a \ p )  as rz—>00 (as mentioned in equation (1.30)) where p  are the 

number of independent parameters.

When the linear predictor 7 = X(3 is tested for the outlier, when the identity of the potential

outlier is unknown or the statistic LD (J3(i)) is maximum over i , i — 1 ,2 , . . . , m . The

influence of case i can be measured by the change in the value of the likelihood ratio 

statistics when case i is deleted.

My own experience of such comparisons over a number of data during this research suggests 

that those cases whose deletion has a substantial effect on the likelihood influence measure of
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Cook (1986) or the significant change in the LD  (/?(;)) over case i , i = 1, 2, . . . , m 

leads us to consider the status of the case i in question.

The Cook’s distance (1977) in our study measures the influence of a cell (i, j )  on all the 

parameter estimates, but the main aim of fitting a GLM for the multinomial data may be the 

influence of case i that can be measured by the change in the likelihood ratio statistic when 

case i is deleted, and thereby identify those cases which most influence the likelihood ratio 

statistic.

In normal linear regression the influence of an observation y tj on the parameter estimate P

can be measured by Cook’s distance (1977), which calibrates j8 -  f3([J) by comparison to 

the confidence contours for [3 . An equivalent influence measure is the likelihood influence 

measure of Cook (1986), LD  (/?(i)) = 2p~l \l(/3) -  l {0 {i))\ which is approximated by 

equation (1.29) and is calculated for case i in the examples given in section (7.3).

It may be noted that we may farther be interested to assess the influence of an observation of 

particular interest both before and after the deletion of another observation; the latter is called 

conditional influence by Lawrence (1995). When the individual influence of an observation 

of interest is found to be more after the deletion of the other case, it is said to have been 

masked by the other observation and when it is less, this opposite effect is described as 

boosting. This is basically a conditionally influence measure of observation i after the 

deletion of observation j  and it is straightforward to find the masking or boosting for a case 

i in the multinomial data from the idea to find Likelihood influence measure of Cook (1986) 

and we have described briefly in section (7.4).
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7.3 Examples

We consider here two sets of data for fitting a multinomial logit model and calculate the 

likelihood influence measure of Cook (1986) that may lead us to determine the influential

effect of a case i on the parameter estimate p . We also extracted the Cook’s distance (1977), 

leverages and Pearson residuals to see any effect of each cell ( i j )  on a multinomial data.

7.3.1 Example 1

To create an illustrative example, we split the Quantal assay data taken from the classic Table 

V of Irwin (1937) into three response levels, to fit a multinomial logit model. These data were 

chosen for couple of reasons. Firstly they have been reanalysed by Copenhaver and Mielke 

(1977), Morgan (1985) and Williams (1987) and they are known to contain some features of 

interest. Secondly, they comprise only five observations or cases, and a variety of single case 

diagnostics can be completely tabulated and compared without taking much space. These 

data are intended to serve only as a numerical example. They cannot convincingly 

demonstrate the particular utility of single case deletions whose accuracy and computational 

advantages in the theory presented in this study increases as the number of cases increases.

The following artificial example of data is constructed from Table V of Irwin (1937) by the 

addition of an artificial extra response levels Y1 , Y2 and T3 of numbers of mice 

responding at dose X  as

Explanatory
Variable

Responses
Total

X *1 Y  1 2 3̂
1 0 0 40 40
2 2 0 38 40
3 9 5 26 40
4 13 6 21 40
5 20 10 10 40

Table 7.1: Modified version of Quantal assay data Table FIrwin (1937)
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We consider the level of response variable Yx , Y2 and the dose X  as an explanatory 

variable to fit a multinomial logit model. The data are arranged into four columns as in 

examples of previous chapters, 1st two columns of response levels, 3rd column of explanatory 

variable dose and the 4th column of the totals of the response levels. The standard length of 

the data will be 10 and the macro to fit a multinomial logit main effect model is given in the 

Appendix A. We extracted the standard Cook’s distance (1977), leverages and Pearson 

residuals for the cell (z, j )  as in Table 7.1, z '= l ,2 ,. . . ,5  and 7 = 1 ,2 ,3 .  The leverages 

extracted here follows all the properties given in section (1.6) and the Cook’s distance (1977) 

or the residuals appears appropriate for the cells (z, j ) . They can be tabulated here as follows

Cooks distance Leverages Pearson Residuals

1 0.0000 0 . 0000 - 0 . 7 6 2 0

2 0 . 0359 0 . 3950 - 0 . 3 6 4 7

3 3 . 5 6 5 0 0 . 5235 2 . 4873

4 0.1231 0 . 3395 - 0 . 7 9 5 5

5 1 .5700 0 . 8026 - 0 . 5 5 2 1

6 0 .0000 0 . 0000 - 0 . 2 7 4 5

7 0.0000 0 . 0000 - 0 . 9 3 0 0

8 2 3 . 0 2 0 0. 7952 2 .2034

9 0 .0421 0. 3372 - 0 . 4 6 8 3

10 1 . 4 7 5 0 0 . 8070 - 0 . 5 2 1 7

Table 7.2: Cook’s distance (1977), leverages and Pearson residuals

We examine the above Table 7.2 and clearly see that the Cook’s distance for response
n

level 7j , Y2 in Table 7.1 for cell (1, 3) and (2, 3) are quite large, ^  h. = p  = 4 and the
z=i

leverages for cells (1,3) , (1, 5) , (2,3) , (2, 5) are large. The Pearson residuals is large 

when indicate as the Cook’s distance is large but this is not enough for us to form any
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obvious conclusion that if there is any influential observation for the modified version of the 

quantal assay data Table 7.1. We may obtain some idea about the validity of values in cells 

(1, 3) , (2,3) , (1, 5) or (2, 5) but not for the case i = 3, 5 . To know about any influential 

case i we calculate the likelihood influence measure of Cook (1986) using equation (7.1) 

both for the full data and after deleting the single case i i.e. weighting out the case 

i — 1,2,... 5 in the data. For example for case i = 1 , we need to delete the cells (1,1) and 

(1, 2) and similarly for i = 2 the cells (2,1) and (2,2) and so on for other values of i . The 

macros are given in Appendix A.

We executed the macros and using equation (7.1) we found 2 _1 / (P ) = 305.0 then we 

weighted out each case for i = 1 ,2 ,..., 5 respectively. The likelihood influence measure of 

Cook (1986), 2 p  ~1 [ l ( P ) -  / ( |3 (i) ] , can be tabulated as follows:

i 2 ^ - ‘[ / ( P ) - / ( P (0)]

1 0.10

2 0.20

3 1.20

4 0.00

5 0.20

Table 7.3: Likelihood influence measure of Cook (1986) after 

weighting out observations i = 1,2, . .. ,  5

Looking for large values of likelihood influence measure of Cook (1986) the search for 

influential cases can be carried out; unfortunately, no clear rules can be given for what 

constitutes a large of the likelihood distance. Nevertheless, provided that the sample size is 

not too large, a substantial change in the likelihood influence measure leads us to consider the 

status of the case in questions. From the above Table 7.3 for case i — 3 the likelihood
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distance is relatively large which leads us to conclude that this case may have influential 

effect on the estimation of parameter estimate/?. It can be observed from Table

7.2 that the Cook’s distance for the response levels in the cells (1, 3) , (2 ,3) are quite large 

that also suggests that the case z = 3 is an influential case in Table 7.1.

7.3.2 Example 2

We reuse the artificial data based on Collier, et al. (2003) from a survey of young people as 

given in Table 2.5, for three response levels and for ‘Age’ as the explanatory factor.

Explanatory Variables Response Variables Total

i Age i i ^2 ^3

1 1 6 9 5 20

2 2 5 4 1 10

3 1 1 3 11 15

4 2 6 9 6 21

Table 7.4: Data of Table 2.5 with only ‘Age’ as explanatory factor.

The above data is arranged as usual to fit a multinomial logit model using the approach 

presented in this study. The standard length for this data in this format is 8. The macros for 

fitting multinomial logit model with ‘age’ as explanatory factor are given in Appendix A. The 

Cook’s distance (1977), leverages and the Pearson residual are extracted for the cells are as 

follows
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Cooks distance Leverages Pearson Residuals

1 2 5 . 9 5 7 3 8 7 0.8226 1.9925

2 0.512769 0.3774 1.4516

3 0.318787 0.2019 -2.0056

4 2 . 5 4 2 8 7 6 0.6368 -1.4516

5 3 . 3 5 3 5 1 7 0.5628 2.1347

6 0.002492 0.1792 -0.1935

7 1 . 3 8 1 2 5 8 0.4127 -2.1489

8 0.201966 0.8066 0.1935

T a b le  7.5: C o o k ’s d is ta n c e  (1977), le v e ra g e s  an d  P e a rso n  re s id u a ls

Examining the above Table 7.5 and the Cook’s distances for the response level Y1 , Y2 in 

Table 7.4 for cells (1, 4) and (2,1) are large, but for cell (1,1) is very large. A similar 

pattern exists for the leverages and Pearson residual but we cannot form any conclusion as to 

whether there is any influential case i . Therefore, we wrote the same macro as in the 

previous example to find the influence measure of Cook (1986). We executed that macros
—1 ^and using equation (7.1) we find 2p  /(P) =58.87 then we weighted out each case 

i = 1, 2, . . .  ,4  respectively for each i as in previous example. The likelihood influence 

measure of Cook (1986), -  /(P (;) ] , can be tabulated as follows

i 2 ^ - 1[ / ( P ) - / ( P , ) )]

1 3.29

2 0.22

3 1.77

4 1.27

Table 7.6: Likelihood influence measure of Cook (1986)

133



Examining the above Table 7.6 we see that the likelihood measure of Cook (1986) for case 

i - 1,3 and 4 is large but for case i = 1 is quite large. This may lead us 

to investigate further if case 1 may have some undue influential effect on the parameter 

estimate ¡3. We may note that Cook’s distances in Table 7.5 indicates case 1 might be 

influential (with Cook’s distances of 26.0 and 3.4)

In these examples that Cook’s distance is here large in those cells for the response level 

where we also have quite large likelihood influence measure for the case. Thus both the 

likelihood measure of Cook (1986) and Cook’s distance (1977) for the cells or units leads us 

to the same direction of finding the influential for the case i.

7.4 The joint and multiple Influence measure of Cook (1986)

In many practical data analytic problems, considerations of cases one at a time will provide 

the analyst with most of the information needed concerning the inference of cases on the 

fitted model. However, it can happen that a group of cases will be influential, but this 

influence can go undetected when cases are examined individually. To find the effect of 

multiple observations is important from the theoretical as well as the practical point of view, 

there may exist situations in which observations are jointly but not individually influential, or 

the other way around.

The generalization of likelihood influence measure of Cook (1986) is straightforward for 

joint and multiple cases problem and we give here for the deletion of pairs of cases and or 

more generally for a deletion of set of /  cases.

The joint influence measure based on the deletion of pairs of cases, can be defined as

L D ( 0 {u)) = 2 [ l ( P ) - l ( P a j ) )] 

and for example 7.3.1 we need the joint likelihood measures,

(7.2)
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2[/(/?) -  / (A  1,2) ] , 2[/(/?) -  / (A 1i3) ] , 2 [1(0 ) -  /(/?CIi4) ] , 2[/(/?) -  /(/?CU) ] ,

2 [ / ( / ? )  -  / ( A 2;3) ] , m h  -  / ( A 2.4 ) ] . 2 [ / ( £ )  -  /(A 2 .5 )  ] >

2[/ ( /?)- / ( / ? {3>4)] ,  2 [ Z 0 § ) - / ( A 3.s)] .  

2[ / ( A - / ( A « j]

to detect if there are any joint influence observations or generally we define the influence 

measure for a deletion of set of I  cases as

L D ( P w ) = 2 [ l ( P ) - K p {I))-\ . (7.3)

This topic could be a subject of the future study.
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7.5 LD(  P(0 ) using the Poisson trick approach

For completeness of exposition, we find in this section the likelihood influence measure of 

Cook (1986) for a single case deletion when the Poisson trick approach is used for example 1 

in section (7.3.1).

Using the Poisson trick approach, we weighted out the case i , i = 1,2, .. . ,  5 and fitted the 

model. We find the maximum likelihood / ( / ?  (i) ) for the weighted out model (macros to 

find / ( |3 ) and / ( P  (i) ) are given in Appendix A). The likelihood influence measure of 

Cook (1986) 2 p  ~’ [ / ( P )  -  / ((3 (i) )] can be tabulated as follows

i 2 p - ' [ / ( P ) - / ( P (0)]

1 0.10

2 0.20

3 1.20

4 0.00

5 0.20

Table 7.7: Likelihood influence measure of Cook (1986).

The above Table 7.7 and Table 7.3 gives exactly the same statistics but calculated using two 

different methods. Our approach is more flexible than used in Poisson trick approach of 

Francis et al. (1992) for calculating likelihood influence measure of Cook (1986) and is easy 

to use. Our approach mainly requires the reliable start - up or initial values.
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7.6 One - Step deletion diagnostics for (3

Preisser J. S. and Qaqish B. F. (1996) have introduced one - step deletion diagnostics for 

generalised estimating equations for the case of independent or clustered observations. In 

theorem 1 of their paper, they gave a general computational formula iorDEBTA m, the

approximate for ¡3 -  ¡3 (m), where ¡3 is the fully iterated p - dimensional generalised

estimating equations estimator of the marginal mean regression parameter and [3 (m) is the

fully iterated estimator after deletion of an arbitrary subset, denoted by m , of the 

observations.

Preisser J. S. and Qaqish B. F. (1996) also gave a special case that corresponds to the 

deletion, and influence of a single observation, as the weight matrix W  becomes a diagonal 

matrix, so the result reduces to the one - step approximation for generalised linear models 

with all cluster sizes equal to 1 and for example, the influence of the ith observation defined

by ¡3 -  (3 (i), is approximated as

P - (3 (i) = ( X TW X y 1X ?  W ] /2 (1 - h t r 1,2 rtK , (7-4)

where Wi is a scalar. In our approach, we stack the data by the response level and we do

not have a diagonal weight matrix W  and in our block - diagonal weight matrix the jth row 

corresponds to the jth level of the response variable, so a modified formulation of equation

(7.4) would be required using our approach.

Preisser et al. (2008) discuss how and the results provided in their paper (1996) can be 

extended to a broad class of regression models and their estimating equations that employ 

iterated least squares as a fitting algorithm and the proof of the theorem do not require the 

block - diagonal structure of the weight matrix and the derivation is based solely on the 

iteratively reweighted least square algorithm. The computational algorithm required to find 

the corresponding deletion measure to equation (7.4) involves iterative application of the 

Sherman - Morrison - Woodbury formula for the inversion of the matrices with special 

structure that occur in formulae for deletion diagnostics, and the use of Cholesky’s 

decomposition are illustrated.
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The changes of the influence effect in the individual /?y. ’s in equation (7.4) for the effect of

deletion of one or more observations are measured on the estimated values of the linear 

predictor and some plots are also proposed to see the influence effect b u t , for modest data, 

our approach of likelihood influence measure is simpler as a means to find the influence

effect on the regression parameter ¡3 .

This chapter could be extended further by implementing Preisser J. S. and Qaqish B. F. 

(1996) approach to multinomial logit regression method. This implementation could be 

particularly effective when using a large data sets.
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7.7 Key Remarks

Some important features are noted for fitting a full or a single case deletion models for

finding the likelihood influence measures of Cook (1986). These are pointed out here for

further multinomial data analysis with or without lots of zeros response entries.

a) If we have lots of 0’s or l ’s data entries in response levels then our approach for 

fitting a multinomial model may not converge on default convergence criteria. In this 

case, we need some careful considerations either for initial startup values or the 0’s 

can be changed to the nearest 0’s.

b) If in our approach convergence does not occurs then still we get all the statistics in 

the output exactly the same as Poisson trick model except the standard errors of the 

parameter estimates.

c) If the convergence occurs in our approach, the GLIM code $use loop$ used at the 

end of the macro only gives us the correct standard errors of parameter estimates

d) The macros given here to find the likelihood influence measure of Cook (1986) may 

be time consuming for a larger number of observations, especially for the joint and 

multiple influence measures.

e) The equivalence of parameter estimates between our approach and Poisson trick 

model method can be obtained either by the GLIM code ‘groups’ in macros of 

Poisson trick or using the respective response levels in our approach.

f) Our approach of finding the likelihood measures is flexible but requires a good 

knowledge for initial start-up values

g) Our approach can be preferred on Poisson trick approach due to the flexibility of 

fitting the model and for extracting some ‘correct’ statistics
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7.8 Innovations

Some important achievements are discovered during our new direct iteratively re-weighted

least squares (IRLS) approach of fitting the multinomial logit regression models and they can

be noted as follows:-

a) Our approach is quite simple with all the calculations in array format and uses an 

algorithm that can be handled via the ordinary least squares approach.

b) We identify the block diagonal nature of the weight matrix for the multinomial 

regression and indicate how Cholesky reduction can provide efficient parameter 

estimation.

c) We discuss Cook’s distance and the so called hat - matrix for the cells (i , j )  of a 

multinomial response variable and conclude that these have only a limited use for 

multinomial data.

d) Our approach can use link functions other than the logit link.

e) We discuss how interval estimates and confidence limits for the parameters in the 

Box - Cox link functions can be found from plots of the deviance.

f) We show how to achieve faster convergence in some cases by using re - 

parameterisation of design matrix.

g) We discuss how the diagnostic approach of cell or observation deletion for 

multinomial data is not appropriate and suggest that case deletion can be appropriate, 

based on the likelihood influence measures of Cook (1986).

h) We discuss considerations that are needed in the process of fitting multinomial 

regression models via our approach.

140



7.9 Use of some other statistical package

In our approach for fitting the multinomial logit model using glim, we basically fit the model 

equation (2.30) where iVand y - variable are defined by equations (2.31) and (2.32) 

respectively are of the form which gives a least square solution.

The glim procedure is defined to find N  = A , x m
o

and the y - variable (%lp) +
A i ( y 2 ~ m 2)

(Al 2 )A;t (Y2 - m2) + a ;1 (F3 - f i3)
where the

J)

number of parameters not intrinsically aliased in the current model are defined in the glim 

procedure are given by

(%!p)--
i lp2^

\Jp  3 y

f Anri(2) +  A12tj

a 22h(3)

0) \

and the ^ .a re  the diagonal matrices obtained from

Cholesky decomposition of symmetric positive definite matrices defined in equation (2.15).

Using some different statistical package other than glim such as ‘ R ’ , C ++ and S + , those

can give the Cholesky decomposition equation (2.15) to find the diagonal matrices A{j but 

still the equation (2.28) will be complicated to find the y - variable and the task to find the 

linear predictors equation (2.35) in our format seems impossible without knowing (%lp), 

which is easy to extract using the glim codes.

If we know how to extract (%lp) in any other statistical package then the macros of finding 

the linear predictors can be applied otherwise it will be more complicated to model the 

equation (2.30)to implemented our approach to fitting the multinomial logit regression.
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C H A PTER  8

Conclusions and Remarks on Future

Work

This study discusses a general technique for fitting a multinomial logit model. We have noted 

that the proposed method may not converge if we have lots of 0’s in the response variable, as 

in general is the case in our examples in this study. In such a case, it seems that, if we do not 

update the weight matrix at each iteration, convergence can still be obtained using the GLIM 

code $use startup$ $use loop$. The correct fitted values and parameter estimates are then 

obtained but correct standard errors are not obtained. However, one more iteration of the 

form $use loop$ is needed to upgrade the weight matrix, which then leads to the correct 

standard errors. If convergence is not achieved within reasonable number of iterations, we 

may revise the form of the design matrix as is discussed in chapter 5.

The theory and methods given in this thesis for grouped multinomial data, as in the example 

on page 46, appear to work well when updating the weight matrix at each iteration. This 

approach, with the weight matrix for updated at each iteration, will provide the correct 

standard errors.
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We may need to utilise some more knowledge about the data. For grouped data, we may use 

the observed proportions as start - up values; for non - grouped data, it is not sensible to use 

the observed proportions as start - up values. Hence random numbers are used by us as the 

start - up values and seem to work effectively. The theory and methods presented in this 

thesis can be extended to any number of levels of response variable, with any number of 

explanatory variables, without any major problem.

An interesting aspect of the method of this thesis is that the calculations only require a 

program that can only handle ordinary least squares, and so can be handled in a range of 

standard statistical software. This approach uses a simple form of Cholesky’s decomposition 

applied to the weight matrix that here consists of diagonal sub - matrices. The formulation 

gives the required matrix inversion straightforwardly using only array calculations, so can be 

effected in standard statistical software without explicit matrix inversion.

The fitted method allows us any arbitrary link functions. This is therefore more general than 

the standard Poisson trick approach which uses only logit link function (although we too have 

concentrated in this research mainly on the logit link function). We can fit any appropriate 

linear predictor with or without interaction terms. Our results for the logit link functions can 

always be checked with the Poisson trick approach.

This research can be further extended to incorporate the testing of link functions, using the 

methods given in chapter 4 for other appropriate link functions. It would not be difficult to 

form the weight matrix in the macros for fitting a multinomial logit model with the use of the 

Appendix D for our own link function and equation (2.35).

The Poisson trick approach for the multinomial logit link function necessarily produces 

inappropriate leverages and Cook’s distance. Our approach in this thesis produce the ‘correct’ 

leverages and Cook’s distance for each cell; i.e. each level of the response variable for the 

multinomial data. However, we note that the single cell influence statistics are not 

appropriate and case deletion is needed to find the influence of case i on the parameter

estimate ¡3.
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We may extend this research by further investigating the hat - matrix, Cook’s distance for 

each cell in the multinomial data as a cell influence on the parameter estimate (5 and some 

link functions different from the Box - Cox link functions could be considered.

In a practical situation, we may suspect the presence of outliers, or under or over - dispersion 

with respect to the multinomial assumption. The fitting of the multinomial logit model for 

contaminated data may become inefficient and can be biased. Because the estimates can be 

dragged towards the outlier and the variance estimate can be inflated, the result is that the 

outlier can be masked. In such a case we may further develop the theory given in this thesis 

for fitting a multinomial regression models in the context of robust estimation and outlier 

detection for over - dispersed multinomial models for grouped data, as for example discussed 

by Walter and Jasjeet (2004). They found a robust estimator - the hyperbolic tangent 

estimator - for over - dispersed multinomial regression models for grouped data. This 

provided accurate estimates and reliable inferences even when the specified model is not 

good for as much as half of the data. The examples that they considered were the votes cast 

for the President in the 2000 election in Florida, and the Polish parliament election 1993. As 

for the vote counts, the alternatives are the candidates or political parties that are competing 

for a particular office and the multinomial model is relevant when each voter cast one vote. 

Their model does not examine each individual separately but instead analyzes aggregates that 

correspond to the unit of observation. For vote counts the aggregates are usually legally 

defined voting districts, counties or provinces. Observations in this model measure the 

number of individuals in each unit who choose each alternative. In such a multinomial 

grouped data seriously ill - fitted counts were identified as outliers. The analysis of the 
example shows that with contaminated data, estimation fails with non - robust maximum 

likelihood estimator and the additive logistic model.

In general, the multinomial model treats the number of individuals in each observational unit 

as fixed and estimation focuses on how the proportion expected to choose each alternative 

depends on regressors. Each expected proportion corresponds to the probability of making 

each choice is usually modelled by the multinomial model. Usually in such analyses these 

probabilities are defined as logistic function of linear combination of regressors, as chosen in 

this thesis as our default option.

144



In practice the multinomial model may be inadequate, as in the example of Walter and Jaseet 

(2004) for vote counts. It has been widely recognised that aggregate vote data usually exhibit 

greater variability than the basic multinomial model can account for. In the basic multinomial 

model, the mean and the variance are determined by the same parameters. A common theme 

in several recently proposed models is to introduce additional parameters to allow the 

variance to be greater then the basic multinomial model would allow. Katz and King (1999), 

Jackson (2002) and Tomz, Tucker and Wittenberg (2002) allow not only the variance of each 

vote but also the covariance between votes for different candidates to differ from what the 

basic multinomial model specifies.

We may note that the recent analyses of count data in political science, such as Bratton and 

Ray (2002), Canes - Wrone et al. (2002), Hahn and Kenny (2002) , McDonagh (2002) and 

Monroe and Rose (2002), reduce the counts to percentages or proportions and hence ignore 

the over - dispersion. But ignoring the over - dispersion may result in incorrect statistical 

inferences. This could be the basis of our future work.

The work at a later stage could also be used the likelihood influence measure method given in 

chapter 7 for such a contaminated multinomial data to identify the part of the data for which 

the model is good and to separate those observations from the others, i.e. isolate the 

observations that are outliers relative to the specified model and not let them to distort the 

analysis. That would lead us further into the problem of the masking or boosting influence 

measure (Lawrence (1995)) of observation i after the deletion of observation j, and for these 

reasons it may not work out to try to identify the outliers one point at a time. It would seem 

desirable to have a method that locates all the outliers at once and further our ideas of

deletion diagnostics can be extended using the one - step deletion diagnostic for ¡3 of 

Preisser J. S. and Qaqish B. F. (1996).
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APPENDIX A

GLIM MACROS
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GLIM directives for J=3 level of response variable with one explanatory

variable for example 2.5.1

$c macro for fitting a multinomial logit model for Green's data$ 
$echo$
$sl 2912$c standard length of Green's data$
$num n$calc n=%nu/2$c n=1456, no.of response level$
$ass n2=nl,nl$c nl declared in Green's data file$

$c variables notations used in macros$
$var n wll w22 wl2 

all al2 a22

$ass nx=age,age$c explanatory variable$
$ass nw= vy2,vy3$c response variable are declared in Green's file$ 
$calc ystack=nw$

$c macros for initial values$
$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr(0)/2$
$endmac

$num npl twon$calc npl=n+l:twon=2*n$
$ass i=l...n :i2=npl...twon$

$c macro for calculating the deviance$
$macro devcalc 
$var n mul yl
$calc mul(i)=(n2(i)-%fv(i)-%fv(i2))$
$calc yl(i) = (n2(i)-ystack(i)-ystack(i2) )$
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l$c variance function$
$endmac

$c macro for calculating the equation (2.35)$
$var n etal eta2$
$macro etacalc
$calc %eta(i2) = (%lp(i2))/a22 (i)$
$calc %eta (i) = (%lp.(i) -al2 (i) *%eta (i2) ) /all (i) $
$endmac

$c macro for calculating the equation (1.6)$
$macro newlink2
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/ (1+expta(i)+expta(i 2))$
$calc %fv(i2)=

expta(i 2)/(1+expta(i 2)+expta(i))$

$calc %fv=%fv*n2:%dr=l$
$endmac

$c macro for calculating equation (2.15) and (2.20)$ 
$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i)/nl(i)):

w22(i)=%fv(i2)* (l-%fv(i2)/nl (i)) : 
wl2(i)=-%fv(i)*%fv(i2)/nl (i)$

$calc all=%sqrt (wll) :al2=wl2/all: 
$calc a22=%sqrt(w22-al2**2)$ 
$endmac
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$c macro for calculating the equation (2.33)$ 
$var n pyl py2$
$macro workvar
$calc pyl(i)= (vy2(i)-%fv(i))/all(i):

py2 (i) =- (vy2 (i) - %fv (i) ) * (al2 (i) /a22 (i) ) /all (i) 
+ (vy3(i)-%fv(n+i))/a22 (i)$

$ass tem=pyl,py2$
$calc %wvd=tem+%lp$c y-variable for the model$ 
$calc %wtd=l$
$endmac$

$var n one zero age$

$c macro for calculating the design matrix$ 
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $

$calc a6=all*age:a7=al2*age: 
a8=a22*age$

$ass dl=al,zero: d2=a2,a4$
$ass dpl=a6,zero :dp2=a7,a8$
$endmac$

$yvar nw$error own devcalc$link own newlink2$ 
$scale 1.00$

$method * etacalc workvar$

$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-5$
$fit dl+d2+dpl+dp2-l$
$di e $
$endmac

$use startup$use loop$c considers initial values at each cycle in loop$ 

$use loop$c upgrade the weight matrix at each cycle for correct s.e.$
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GLIM directives for /=  3 response variable with one explanatory variable in

Poisson trick approach of Francis et al, (1992) for example 2.5.2

$c green's data file is attached$
$ c macro for poisson trick approach of Francis et al(1992)$ 
$calc nl=l$

$c health declared in Green's data file$

$calc vyl=(health==l):vy2=(health==2):
vy3=(health==3):vy4=(health==4)$

$calc vy5=(health>=3)$

$num vl$
$calc vl=3*%sl$

$ass freq=vyl,vy2,vy5$c response variable$
$var vl case group$

$calc case=%gl (%sl,1) :group=%gl (3,%sl)$
$fact case %sl group 3$

$elimimate case $error p $yvar freq$

$fit group$dis e$
$fit +group*age(case)$dis e$c age is a explanatory variable$ 
$return
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GLIM directives with two explanatory variables for example 2.5.3

$c code notations can be found at page 134$ 

$c example 2.5.2 loglink(a2) 3.1 data file$ 

$echo$
$sle 8 $num n $calc n=%nu/2$
$var n vyl vy2 nl Sex Age$
$data vyl vy2 nl Sex Age$
$read

9 5 20 1 1
4 1 10 1 2
3 11 15 2 1
9 6 21 2 2

$ass n2=nl,nl$
$var n wll w22 wl2 

all a22 al2 
pyl py2

$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr(0)/2$
$c calc %lp=%eta=%log(nw/(n2-nw)) $calc %fv=ystack$ 
$endmac

$num npl twon $calc npl=n+l:twon=2*n: 
$ass j=l...%nu:i2=npl...twon $

$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n))$ 
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$ 
$calc %di=-2*%di$
$calc %va=l$endmac

$macro etacalc
$calc %eta(12)=(%lp(i2))/a22(i2-n)$ 
$calc %eta(i)=(%lp(i)-al2(i)*%eta(i2)

)/all (i)$
$endmac

$macro newlink2
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/ (1+expta(i)+expta(i+n))$ 
$calc %fv(i2)=

expta(12)/(1+expta(12)+expta(i2-n))$

$calc %fv=%fv*n2:%dr=l$endmac

$ass i=l...n $

$ass nx=Sex, Sex $
$ass nxl=Age,age $
$ass nw= vyl,vy2 $calc ystack=nw$

$yvar nw $error own devcalc $link own newlink2 
$scale 1.0$
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$method * etacalc workvar$
$initial startup?
$calc all=al2=a22=l$

$Macro loop
$use cholesk$use workvar$use newdesign?
$cycle 50 2 1.0e-5 $fit dl+dpl+d2+dp2+d3+dp3-l$display e$
$endmac

$macro cholesk
$calc wll(i)=%fv(i)* (l-%fv(i)/nl (i)) :

w22(i)=%fv(i+n)* ( l - % f v ( i + n ) /nl(i)):

wl2(i)=-%fv(i)*%fv(i+n)/nl (i)$

$calc all=%sqrt(wll) :al2=wl2/all:
$calc a22 = %sqrt (w22-al2**2)
$endmac

$macro workvar
$calc pyl(i)= (vyl(i)-%fv(i))/all(i):

py2 (i) =- (vyl (i) - %fv (i) ) * (al2 (i) /a22 (i) ) /all (i)
+ (vy2(i)-%fv(n+i))/a22 (i) $

$ass tem=pyl,py2 $
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac

$var n one zero $

$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $

$calc a6=all*Sex:a7=al2*Sex: 
a8=a22*Sex?

$calc a9=all*age:al0=al2*age: 
al4=a22*age?

$ass dl=al,zero: dpl=a2,a4$
$ass d2=a6,zero :dp2=a7,a8 $
$ass d3=a9,zero :dp3=al0,al4$

$endmac$

$use startup$use loop?
?use loop?
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GLIM directives with two explanatory variables in Poisson trick approach of

Francis et al. (1992) for example 2.5.3

$c code notations can be found at page 136$

$echo $
$sle 4 $
$var n vyl vy2 n Sex Age$
$data vyl vy2 n Sex Age$
$read

6 9 20 1 1
5 4 10 1 2
1 3 15 2 1
6 9 21 2 2

$calc vy3=n - vyl - vy2$
$num vl$
$calc vl=3*%sl$
$ass freq=vyl,vy2,vy3$

$var vl case group$
$calc case=%gl (%sl,1) :group=%gl(3,%sl)
$fact case %sl group 3$

$eliminate case $error p $yvar freq$
$fit group$dis e$

$fit+group*sex(case)+group*age(case)$dis e$
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GLIM directives for example chapter 3

$code notations can be found at page 134$ 
$c EEAap23.2adata(41evels)glim file$

$echo $
$sle 4368 $num n $calc n=%nu/3 $
$ass n2=nl,nl,nl$

$var n wll w22 w33 wl2 wl3 w23 
all al2 al3 a22 a23 a33

$ass nw= vy2,vy3,vy4$
$calc ystack=nw$

$macro startup
$calc %lp=%eta=%sr (0)$c calc %fv=%sr(0)/3$ 
$calc %fv=0.25$
$endmac

$num npl np2 twon thren$
$calc npl=n+l:twon=2*n:

np2=twon+l:thren=3*n$
$ass i=l...n:i2=npl...twon :i3=np2...thren$
$macro devcalc 
$var n mul yl
$calc mul(i)=(n2(i)-%fv(i)-%fv(i2)-%fv(i3))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(12)-ystack(i3))$ 
$calc yl=l/3*(yl*%log(mul/yl))$
$ass ylstack=yl,yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac

$var n etal eta2 eta3$
$macro etacalc
$calc %eta(i3)=%lp(i3)/a33 (i)$
$calc %eta(i2)=(%lp(12)-a23(i)*%eta(13))/a22(i2-n)$ 
$calc %eta(i)=(%lp(i)-al2(i)*%eta(i2)

-al3(i)*%eta(i3>)/all (i)$
$endmac

$macro newlink
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/ (1+expta(i)+expta(12}+expta(13))$ 
$calc %fv(i2)=

expta(12)/(1+expta(12)+expta(i)+expta(13))$ 
$calc %fv(i3)=

expta(13)/(1+expta(13)+expta(12)+expta(i))$

$calc %fv=%fv*n2:%dr=l$
$endmac

$macro cholesk
$calc wll (i)=%fv(i)*(l-%fv(i)/nl(i) ) :

w22 (i)=%fv(i2)*(l-%fv(i2)/nl(i)) : 
w33 (i)= %fv(i3)* (l-%fv(i3)/nl(i)) : 
wl2(i)=-%fv(i)*%fv(12)/nl(i): 
wl3(i)=-%fv(i)*%fv(i3)/nl(i): 
w23(i)=-%fv(i2)*%fv(i3)/nl (i)$
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$calc all=%sqrt(wll):al2=wl2/all: 
al3=wl3/all$

$calc a22=%sqrt(w22-al2**2):a23=(w23-al2*al3)/a22$
$calc a33=%sqrt(w33-a23**2-al3**2)$
$endmac

$var n pyl py2 py3 py4 py5 py6 py7 py8$

$macro workvar
$calc pyl(i)={vy2(i)-%fv(i))/all(i):

py2 (i) =- (vy2 (i) - %fv(i) ) * (al2 (i) /a22 (i) ) /all (i)
+ (vy3(i)-%fv (i2))/a22 (i)$

$calc py3(i) = (vy2(i)-%fv(i))*((((al2(i)*a23(i)/a33 (i))/a22 (i)) 
-al3(i)/a33(i))/all (i))

- (vy3(i)-%fv(i2))*(a23 (i)/a33 (i))/a22 (i)
+ (vy4(i)-%fv(±3))/a33 (i)$

$calc py4=(vy2(i)-%fv(i))*(a23(i)*al2(i))/(all(i)*a22(i)*a33(i))$ 
$calc py5=-(vy2(i)-%fv(i))*al3(i)/(all (i)*a33(i)) $
$calc py6=-(vy3(i)-%fv(±2))*a23(i)/ (a22 (i)*a33 (i))$
$calc py7 =(vy4(i)-%fv(i3))/a33(i)$
$calc py8=py4+py5+py6+py7$

$ass tem=pyl,py2,py3$
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac

$var n one zero$

$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one:

a3=al3*one:a4=a22*one: 
a5=a23*one:a6=a33*one$

$calc a51=all*age:a52=al2*age:
a53=al3*age:a54=a22*age: 
a55=a23*age:a56=a33*age$

$ass dl=al,zero,zero :d2=a2,a4,zero : 
d3=a3,a5,a6$

$ass dpl=a51,zero,zero :dp2=a52,a54,zero : 
dp3=a53,a55,a56$

$cal dl=dl:d2=d2:d3=d3:
dpl=dpl:dp2=dp2:dp3=dp3$

$endmac$

$yvar nw$error own devcalc$link own newlink$ 
$scale 1.00$
$method * etacalc workvar$

$Macro loop
$cycle 500 2 1.0e-5$
$fit dl+d2+d3+dpl+dp2+dp3-l$
$dis e$
$endmac

$use startup$use loop$
$use loop$

154



$c codes notation can be found at page 136$
$c and attached Green's data file$
$pick HEALTH,AGE SEL$
$sort AGE,HEALTH $

$calc nl=l$
$calc vyl=(health==l): vy2=(health==2): 

vy3=(health==3): vy4=(health==4)$
$num vl$
$calc vl=4*%sl$
$ass freq=vyl,vy2,vy3,vy4$
$var vl case group$
$calc case=%gl(%sl,1) :group=%gl(4,%sl) $
$fact case %sl group 4$
$eliminate case $error p $yvay freq $
$fit group$dis e$

$fit +group*age(case)$dis e$
$return

GLIM directives of Poisson trick approach chapter 3
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Green’s GLIM directives file

$subfile GSS84 !
! title '1984 General Social Survey’.

$sle 1456$

$data 1473 id race age sex marital satjob hapmar life postlife
educ degree paeduc maeduc speduc income health hompop agewed sibs 

$ format {14,IX,II,12,IX,611,IX,12,II,12,12,12,12,II,12,12,12)
$comment
/ id 1-4 race 6 age 7-8

sex 10 marital 11 satjob 12 hapmar 13 life 14 postlife 15 
educ 17-18 degree 19 paeduc 20-21 maeduc 22-23 speduc 24-25 
income 26-27 health 28 hompop 29-30 agewed 31-32 sibs 33-34. 

variable labels
age "Age of respondent" 
health "Condition of health"

value labels
health 1 'Excellent' 2 'Good' 3 'Fair' 4 'Poor' 9 'Missing data' / 

missing value
age, educ, paeduc, maeduc, speduc, hompop, agewed, 
sibs, income (99) /.

$ ! end comment
$din 'a:gss84.dat' AGE HEALTH $
i
! omit missing data and sort on AGE
i

$cal SEL=(AGE<99)& (HEALTH>0)&(HEALTH<8)$
$pick HEALTH,AGE SEL$
$sort AGE,HEALTH $

$calc nl=l$
$calc vyl= (health==l) : vy2= (health==2) :

vy3=(health==3): vy4=(health==4) $

$return
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GLIM directives for example 4.1

$c codes notation can be found at page 134$ 
$c ElEaap23.dat(4.1)glim$
$echo $
$sle 4368 $num n step$calc n=%nu/3 $
$ass n2=nl,nl,nl$
$var n wll w22 w33 wl2 wl3 w23 

all al2 a!3 a23 a22 a33 
pyl py2 py3

$num a$
$ass a=0.0001$

$macro startup
$c calc %lp=%sr(0): %eta=%log(0.5 ) $calc %fv=0.25$ 
$calc %lp=%eta=%sr(0)$c calc %fv=%sr(0)/4 $
$c calc %lp=%eta=%log(nw/(n2-nw)) $c calc %fv=ystack 
$endmac

$num npl np2 twon thren $calc npl=n+l:twon=2*n: 
np2=twon+l:thren=3*n

$ass j=l...%nu:i2=npl...twon :i3=np2...thren$

$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n)-%fv(i+2*n))$
$calc yl (i) = (n2(i)-ystack(i)-ystack(i+n)-ystack(i+2*n))$ 
$calc yl=l/3*(yl*%log(mul/yl))$
$ass ylstack=yl,yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac

$macro etacalc
$calc %eta(i3)=%lp(i3)/a33(i3-2*n)$
$calc %eta(12)=(%lp(i2)-a23(i2-n)*%eta(13))/a22(i2-n)$ 
$calc %eta (i)=(%lp(i)-al2(i)*%eta(i2)

-al3(i)*%eta(13))/all (i)$
$endmac

$macro newlink
$calc %fv(i)=(l+a*%eta(i))**(1/a)/

( 1+
(l+a*%eta(i))**(1/a)+ (l+a*%eta(12))* * (1/a)+ 
(l+a*%eta (13))** (1/a) )$

$calc %fv(i2)=(l+a*%eta(12))**(1/a)/
( 1+

(l+a*%eta(i))**(1/a)+ (l+a*%eta(i2))**(l/a)+ 
(l+a*%eta ( 13) )** (1/a) )$

$calc %fv(i3)=(l+a*%eta(i3))**(1/a)/
( 1+
(l+a*%eta(i))**(1/a) + (l+a*%eta(i2))** (1/a) + 
(l+a*%eta (±3))** (1/a) )$

$calc %fv=%fv*n2:%dr=l$endmac 
$ass i=l...n $
$ass nw= vy2,vy3,vy4$
$calc ystack=nw$
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$yvar nw $error own devcalc $link own newlink 
$scale 1.00$
$method * etacalc workvar$
$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-5 $fit dl+d2+d3+dpl+dp2+dp3-l$dis e$
$endmac
$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i)/nl(i)}*(l/l+a*%eta(i) ) **2: 

w22(i)=%fv(i+n)*(l-%fv(i+n)/nl(i))*
(l/l+a*%eta(12))**2$

$calc w33(i)= %fv(i+2*n)*(l-%fv(i+2*n)/nl(i))*
(l/l+a*%eta(13))**2: 

wl2(i)=-%fv(i)*%fv(i+n)/nl(i)*(l/l+a*%eta (i))*
(l/l+a*%eta(12))$

$calc wl3(i)=-%fv(i)*%fv(i+2*n)/nl(i)*(l/l+a*%eta(i))*
(l/l+a*%eta ( 13)):

w23(i)=-%fv(i+n)*%fv(i+2*n)/nl(i)*(l/l+a*%eta(12))*
(l/l+a*%eta (13))$

$calc all=%sqrt(wll) :al2=wl2/all: 
al3=wl3/all$

$calc a22=%sqrt(w22-al2**2):a23=(w23-al2*al3)/a22$
$calc a33=%sqrt(w33-a23**2-al3**2)$
$endmac
$var n etal eta2 eta3$
$macro workvar
$calc pyl(i)=((vy2(i)-%fv(i))/all{i))*(1/(l+a*%eta(i))):

py2(i)=-((vy2(i)-%fv(i))*(al2(i)/a22(i))/all(i))*(1/(l+a*%eta(i))) 
+((vy3(i)-%fv(n+i))/a22(i))*(1/(l+a*%eta(12)))$

$calc py3 (i) = ( (vy2 (i) -%fv (i) ) * ( (al2 (i) *a23 (i) /a33 (i) /a22 (i)
-al3(i) /a33(i))/all(i)))*(1/(l+a*%eta (i)))
- ((vy3 ( 1) —

%fv (n+i) ) *((a23(i)/a33(i))/a22(i)))*(1/(l+a*%eta(12)))
+ (vy4(i) -%fv(2*n+i))/a33(i)*(1/(l+a*%eta (13)))$

$ass tem=pyl,py2,py3$
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac
$var n one zero$
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a3=al3*one:a4=a22*one: 
a5=a23*one:a6=a33*one$

$calc a51=all*age:a52=al2*age: 
a53=al3*age:a54=a22*age: 
a55=a23*age:a56=a33*age$

$ass dl=al,zero,zero:d2=a2,a4,zero: 
d3=a3,a5,a6$

$ass dpl=a51,zero,zero :dp2=a52,a54,zero : 
dp3=a53,a55,a56$

$cal dl=dl:d2=d2:d3=d3:
dpl=dpl:dp2=dp2:dp3=dp3$

$endmac$

$use startup$use loop$
$use loop$
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GLIM directives for example 4.2

$c codes notation can be found at page 134$ 
$c ElEaap23.dat(4.2)glim$
$echo $
$sle 4368 $num n step$calc n=%nu/3 $
$ass n2=nl,nl,nl$
$var n wll w22 w33 wl2 wl3 w23 

all al2 al3 a23 a22 a33 
pyl py2 py3

$num a b c$
$ass a=0.0001 :b=0.0001 :c=0.0001$
$macro startup
$c calc %lp=%sr(0): %eta=%log(0.5 ) $calc %fv=0.25$ 
$calc %lp=%eta=%sr(0)$c calc %fv=%sr(0)/4 $
$c calc %lp=%eta=%log(nw/(n2-nw)) $c calc %fv=ystack 
$endmac
$num npl np2 twon thren $calc npl=n+l:twon=2*n: 

np2=twon+l:thren=3*n
$ass j=l...%nu:i2=npl...twon :i3=np2...thren$
$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n)-%fv(i+2*n))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n)-ystack(i+2*n))$ 
$calc yl=l/3*(yl*%log(mul/yl))$
$ass ylstack=yl,yl, yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac
$macro etacalc
$calc %eta (i3)=%lp(i3)/a33(i3-2*n)$
$calc %eta(i2)= (%lp(i2)-a23(i2-n)*%eta(i3))/a22(i2-n)$ 
$calc %eta (i) = (%lp(i)-al2(i)*%eta(i2)

-al3(i)*%eta(i3))/all (i)$
$endmac
$macro newlink
$calc %fv(i)=(l+a*%eta(i))**(1/a)/

( 1+
(l+a*%eta(i))** (1/a) + (l+b*%eta (i2))**(l/b) + 
(l+c*%eta(i3))**(1/c) )$

$calc %fv(i2)=(l+b*%eta(i2))**(l/b)/
( 1+
(l+a*%eta(i))**(1/a)+(l+b*%eta(12))**(1/b)+ 
(l+c*%eta(i3))**(l/c) )$

$calc %fv(i3)=(l+c*%eta(13))**(1/c)/
(1+
(l+a*%eta(i))**(1/a)+(l+b*%eta(i2))**(1/b)+ 
(l+c*%eta (i3))** (1/c) )$

$calc %fv=%fv*n2:%dr=l$endmac
$ass i=l...n $
$ass nw= vy2,vy3,vy4$
$calc ystack=nw$
$yvar nw $error own devcalc $link own newlink 
$scale 1.00$
$method * etacalc workvar$
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$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-5 $fit dl+d2+d3+dpl+dp2+dp3-l$
$dis e $
$endmac
$macro cholesk
$calc wll (i)=%fv(i)*(l-%fv(i)/nl(i))*(l/l+a*%eta(i) ) **2 : 

w22 (i) =%fv (i+n) * (l-%fv (i+n) /nl (i) ) *
(l/l+b*%eta(±2 >}**2$

$calc w33(i)= %fv(i+2*n)*(l-%fv(i+2*n)/nl(i))*
(l/l+c*%eta(13))**2: 

wl2(i)=-%fv(i)*%fv(i+n)/nl(i)*(l/l+a*%eta(i) ) *
(l/l+b*%eta(12))$

$calc wl3(i)=-%fv(i)*%fv(i+2*n)/nl(i)*(l/l+a*%eta(i))*
(l/l+c*%eta (13)) :

w23(i)=-%fv(i+n)*%fv(i+2*n)/nl(i)*(l/l+b*%eta(12))*
(l/l+c*%eta(±3))$

$calc all=%sqrt(wll) :al2=wl2/all: 
al3=wl3/all$

$calc a22=%sqrt(w22-al2**2):a23=(w23-al2*al3)/a22$
$calc a33=%sqrt(w33-a23**2-al3**2)$
$endmac
$var n etal eta2 eta3$
$macro workvar
$calc pyl(i) = ((vy2(i)-%fv(i))/all(i))*(1/(l+a*%eta (i))) :

py2 (i) =- ( (vy2 (i) - %fv (i) ) * (al2 (i) /a22 (i) ) /all (i) ) * (1/ (l+a*%eta (i) ) ) 
+((vy3(i)-%fv(n+i))/a22(i))*(1/(l+b*%eta(12)))$

$calc py3(i)=((vy2(i)-%fv(i))*((al2(i)*a23(i)/a33(i)/a22(i)
-al3(i) /a33(i))/all(i)))*(1/(l+a*%eta (i)))
- ((vy3(i)-

%fv (n+i) ) * ( (a23 (i) /a33 (i) ) /a22 (i) ) ) * (1/ (l+b*%eta (±2) ) )
+ (vy4(i)-%fv(2*n+i))/a33(i)*(1/(l+c*%eta ( 13)))$

$ass tem=pyl,py2,py3$
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac
$var n one zero$
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one:

a3=al3*one:a4=a22*one: 
a5=a23*one:a6=a33*one$

$calc a51=all*age:a52=al2*age:
a53=al3*age:a54=a22*age: 
a55=a23*age:a56=a33*age$

$ass dl=al,zero,zero:d2=a2,a4,zero: 
d3=a3,a5,a6$

$ass dpl=a51,zero,zero :dp2=a52, a54, zero : 
dp3=a53,a55,a56$

$cal dl=dl:d2=d2:d3=d3:
dpl=dpl:dp2=dp2:dp3=dp3$

$endmac$

$use startup$use loop$
$use loop$
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GLIM directives for example 5.1

$c codes notation can be found at page 134$
$sl 1742$
$echo $
$num n $calc n=%nu/2$
$var etal eta2$
$ass n2=nl,nl$
$var n wll w22 wl2

all al2 a22 pyl py2
$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr (0)/2$ 
$endmac
$num npl twon $calc npl=n+l:twon=2*n:
$ass j=l...%nu:i2=npl...twon $
$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n))$
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl, yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l$
$endmac
$macro etacalc-
$calc %eta (i2) = (%lp(i2))/a22(i2-n)$
$calc %eta(i)=(%lp(i)-al2(i)*%eta(i2))/all(i)$ 
$endmac
$macro newlink2 
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/(1+expta(i)+expta(i+n))$ 
$calc %fv(i2)=

expta(i2)/(1+expta(i2)+expta(i2-n))$
$calc %fv=%fv*n2 : %dr=l$
$endmac
$ass i=l...n $
$c ass nx=age,age$
$ass nw= vy2,vy3 $calc ystack=nw$
$yvar nw $error own devcalc $link own newlink2
$method * etacalc workvar$

$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-5$
$fit dl+d2+dpl+dp2-l$
$di e $
$endmac
$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i)/nl(i)):

w22(i)=%fv(i+n)*(l-%fv(i+n)/nl(i)): 
wl2(i)=-%fv(i)*%fv(i+n)/nl (i)$
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$calc all=%sqrt(wll):al2=wl2/all:
$calc a22=%sqrt(w22-al2**2)$
$endmac
$macro workvar
$calc pyl(i) = (vy2(i)-%fv(i))/all (i) :

py2 (i)=- (vy2 (i) — %fV (i) ) * (al2 (i) /a22 (i) ) /all (i) 
+ (vy3(i)-%fv(n+i))/a22 (i) $

$ass tem=pyl,py2 $
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac$
$var n one zero $
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $

$calc a3=all*ag$

$calc a8=al2*ag:a9=a22*ag$
$ass dl=al,zero: dpl=a2,a4$
$ass d2=a3,zero :dp2=a8,a9 $

$endmac$
$use startup$use loop$
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GLIM directive for example 5.3 with improved design matrix (a)

$c codes notation can be found at page 134$
$ s1 1742$
$echo $
$num n $calc n=%nu/2$
$var etal eta2$
$ass n2=nl,nl$
$var n wll w22 wl2

all al2 a22 pyl py2
$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr (0)/2$ 
$endmac

$num npl twon $calc npl=n+l:twon=2*n:
$ass j=l...%nu:i2=npl...twon $
$macro devcalc 
$var n mul yl
$calc mul( i ) = ( n 2 ( i ) - % f v ( i ) - % f v ( i + n ) ) $
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n))$
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l$
$endmac

$macro etacalc
$calc %eta (i2) = (%lp(i2))/a22(i2-n)$
$calc %eta(i) = (%lp(i)-al2(i)*%eta(i2))/all(i) $ 
$endmac
$macro newlink2 
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/(1+expta(i)+expta(i+n))$ 
$calc %fv(i2)=

expta(i2)/(1+expta(i2)+expta(i2-n))$
$calc %fv=%fv*n2 : %dr=l$
$endmac
$ass i=l...n $
$c ass nx=age,age$
$ass nw= vy2,vy3 $calc ystack=nw$
$yvar nw $error own devcalc $link own newlink2
$method * etacalc workvar$
$initial startup$
$calc all=al2=a22=l$

$macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-5$
$ fit dl+d2+dpl+dp2-l$
$extract %pe$
$pr 'paral estimate' %pe$
$di e $
$endmac
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$macro cholesk
$calc wll(i)=%fv(i)* (l-%fv(i)/nl (i)) :

w22(i)=%fv(i+n)* (l-%fv(i+n)/nl(i)): 
wl2(i)=-%fv(i)*%fv(i+n)/nl (i)$

$calc all=%sqrt(wll) :al2=wl2/all:
$calc a22=%sqrt(w22-al2**2) $
$endmac

$macro workvar
$calc pyl(i)= (vy2(i)-%fv(i))/all(i):

Py2(i)=-(vy2(i)-%fv(i))* (al2(i)/a22(i))/all(i) 
+ (vy3(i)-%fv(n+i))/a22 (i) $

$ass tem=pyl,py2 $

$calc %wvd=tem+%lp$
$calc %wtd=l$
$endinac$

$var n one zero $

$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $

$calc a3=all*ag$
$calc a5=al+a2$
$calc a8=al2*ag:a9=a22*ag$
$calc a6=a3+a8$

$ass dl=a5,a4: dpl=a2,a4$
$ass d2=a6,a9 :dp2=a8,a9 $

$endmac$
$use startup$use loop$
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GLIM directives for example 5.3 with new design matrix (b)

$c codes notation can be found at page 134$
$ s1 1742$
$echo $
$num n $calc n=%nu/2$
$var etal eta2$
$ass n2=nl,nl$
$var n wll w22 wl2

all al2 a22 pyl py2

$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr(0)/2$ 
$endmac
$num npl twon $calc npl=n+l:twon=2*n:
$ass j=l...%nu:i2=npl...twon $
$macro devcalc 
$var n ruul yl
$calc mul(i)=(n2(i)-%fv(i)-%fv(i+n))$
$calc yl(i)=(n2(i)-ystack(i)-ystack(i+n))$
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l$
$endmac
$macro etacalc
$calc %eta(i2)=(%lp(i2))/a22(i2-n)$
$calc %eta(i) = (%lp(i)-al2 (i)*%eta(i2))/all (i)$ 
$endmac
$macro newlink2
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/(1+expta(i)+expta(i+n))$ 
$calc %fv(i2)=

expta(i2)/(1+expta(i2)+expta(i2-n))$
$calc %fv=%fv*n2 : %dr=l$
$endmac

$ass i=l...n $
$c ass nx=age,age$
$ass nw= vy2,vy3 $calc ystack=nw$
$yvar nw $error own devcalc $link own newlink2
$method * etacalc workvar$
$initial startup$
$calc all=al2=a22=l$

$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-5$
$fit dl+d2+d3+dpl+dp2+dp3-l$
$extract %pe$
$pr 'paral estimate' %pe$
$di e $
$endmac
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$macro cholesk
$ c a l c  w l l ( i ) = % f v ( i ) * ( l - % f v (i)/nl( i ) ) :

w22(i)=%fv(i+n)*(l-%fv(i+n)/nl(i)): 
wl2(i)=-%fv(i)*%fv(i+n)/nl(i)$

$calc all=%sqrt(wll) :al2=wl2/all:
$calc a22=%sqrt(w22-al2**2) $
$endmac
$macro workvar
$calc pyl(i)= (vy2(i)-%fv(i))/all(i):

py2(i)=—(vy2(i)-%fv(i))*(al2(i)/a22(i))/all(i) 
+(vy3(i)-%fv(n+i))/a22(i) $

$ass tem=pyl,py2 $
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac$
$var n one zero $
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $
$calc a3=all*ag$
$calc a5=all*ag*ag$
$calc a6=al2*ag*ag :a7=a22*ag*ag$
$calc a8=al2*ag:a9=a22*ag$
$ass dl=al,zero: dpl=a2,a4$
$ass d2=a3,zero :dp2=a8,a9 $
$ass d3=a5,zero: dp3=a6,a7$

$endmac$
$use startup$use loop$
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GLIM directives for four levels of response variable with six explanatory

variables for data in section 6.3

$c codes notation can be found at page 134$ 
$echo $
$sle 1098 $num n $calc n=%nu/3 $
$ass n2=nl,nl,nl$

$var n wll w22 w33 wl2 wl3 w23 
all al2 al3 a22 a23 a33 
pyl py2 py3

$macro startup
$calc %lp=%eta=%sr(0)$c calc %fv=%sr(0)/3$ 
$calc %fv=0.25$
$endmac

$num npl np2 twon thren $calc npl=n+l:twon=2*n: 
np2=twon+l:thren=3*n

$ass j=l...%nu:i2=npl...twon :i3=np2...thren$

$macro devcalc 
$var n mul yl
$calc mul (i) = (n2 (i)-%fv(i)-%fv(i+n)-%fv(i+2*n) ) $
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n)-ystack(i+2*n))$ 
$calc yl=l/3*(yl*%log(mul/yl))$
$ass ylstack=yl,yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac

$macro etacalc
$calc %eta (13)=%lp(13)/a33(i3-2*n)$
$calc %eta (12) = (%lp (i2)-a23(i2-n)*%eta(13))/a22(i2-n)$ 
$calc %eta(i)=(%lp(i)-al2(i)*%eta(i2)

-al3(i)*%eta(13))/all (i)$
$endmac

$macro newlink
$calc expta=%exp(%eta)$
$calc %fv(i)=expta(i)/ (1+expta(i)+expta(i2)+expta(13)) 
$calc %fv(12)=expta(12)/(1+expta(i)+expta(12)+expta(13)) 
$calc %fv(i3)=expta(13)/(1+expta(i)+expta(12)+expta(13)) 
$calc %fv=%fv*n2:%dr=l$endmac

$ass i=l...n $

$ass nw= vy2,vy3,vy4 $
$calc ystack=nw$
$yvar nw $error own devcalc $link own newlink 
$scale 1.00$
$method * etacalc workvar$

$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 $

$fit dl+d2+d3+dpl+dp2+dp3+dp4+dp5+dp6+dp7+dp8+
dp9+dpl0+dpll+ dpl2+dpl3+dpl4+ 
dpl5+dpl6+dpl7+dpl8-l$

$dis e $endmac
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$macro cholesk
$ c a l c  w l l ( i ) = % f v ( i ) * ( l - % f v ( i ) / n l ( i ) ) :

w22(i)=%fv(i+n)*(l-%fv(i+n)/nl(i))$
$calc w33( i ) = %fv(i+2*n)*(l-%fv(i+2*n)/nl( i ) ): 

wl2( i ) =-%fv( i ) *%fv(i+n)/nl(i)$
$calc wl3(i)=—%fv(i)*%fv(i+2*n)/nl(i):

w23(i)=-%fv(i+n)*%fv(i+2*n)/nl (i)$
$calc all=%sqrt(wll) :al2=wl2/all: 

al3=wl3/all$
$calc a22=%sqrt(w22-al2**2) :a23=(w23-al2*al3)/a22
$calc a33=%sqrt(w33-a23**2-al3**2)$
$endmac
$var n etal eta2 eta3$
$macro workvar
$calc pyl(i)= (vy2(i)-%fv(i))/all(i)$
$ c a l c  p y 2 ( i ) = - ( v y 2 ( i ) - % f v ( i ) ) * ( a l 2 ( i ) / ( a 2 2 ( i ) * a l l ( i ) ) )

+ (vy3(i)-%fv(n+i))/a22 (i)$
$calc py3(i) = (vy2(i)-%fv(i))*((al2(i)*a23(i))/ (a33(i)*a22 (i)*all (i)))

- (vy2 (i) — %fV (i) ) * (al3 (i) / (a33 (i) *all (i) ) )
- (vy3 (i) -%fv (n+i) ) * (a23 (i) / (a33 (i) *a22 (i) ) )
+ (vy4(i)-%fv(2*n+i))/a33(i) $

$ass tem=pyl,py2,py3$
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac
$var n one zero$
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one:

a3=al3*oiie : a4=a22*one : 
a5=a23*one:a6=a33*one$

$calc a51=all*koe: a52=al2*koe$ 
$calc a53=al3*koe: a54=a22*koe$ 
$calc a55=a23*koe: a56=a33*koe$
$calc a61=all*pnl: a62=al2*pnl$ 
$calc a63=al3*pnl: a64=a22*pnl$ 
$calc a65=a23*pnl: a66=a33*pnl$
$calc a71=all*par: a72=al2*par$ 
$calc a73=al3*par: a74=a22*par$ 
$calc a75=a23*par: a76=a33*par$
$calc a81=all*foc: 
$calc a83=al3*foc: 
$calc a85=a23*foc:

a82=al2*foc$
a84=a22*foc$
a86=a33*foc$

$calc a91=all*spo: 
$calc a93=al3*spo: 
$calc a95=a23*spo:

a92=al2*spo$
a94=a22*spo$
a96=a33*spo$
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$calc a41=all*fol: a42=al2*fol$
$calc a43=al3*fol: a44=a22*fol$
$calc a45=a23*fol: a46=a33*fol$
$ass dl=al,zero,zero :d2=a2,a4,zero : 

d3=a3,a5,a6$
$ass dpl=a51,zero,zero :dp2=a52,a54,zero : 

dp3=a53,a55,a56$
$cal dl=dl:d2=d2:d3=d3:

dpl=dpl:dp2=dp2:dp3=dp3$
$ass dp4=a61,zero,zero :dp5=a62,a64,zero$
$ass dp6=a63,a65,a66$■
$ass dp7=a71,zero,zero :dp8=a72,a74,zero $
$ass dp9=a73,a75,a76$
$cal dp4=dp4:dp5=dp5:dp6=dp6:

dp7=dp7:dp8=dp8:dp9=dp9$
$ass dpl0=a81,zero,zero:dpll=a82,a84,zero$
$ass dpl2=a83,a85,a86$
$ass dpl3=a91,zero,zero:dpl4=a92,a94,zero$
$ass dpl5=a93,a95,a96$
$ass dpl6=a41,zero,zero :dpl7=a42,a4 4,zero$
$ass dpl8=a43,a45,a46$
$calc dplO=dplO:dpll=dpll:dp!2=dpl2:dpl3=dpl3$ 
$calc dpl4=dpl4:dpl5=dpl5:dp!6=dpl6:dpl7=dpl7$ 
$calc dp!8=dpl8$

$endinac$

$use startup$use loop$ 
$use loop$
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GLIM directives for different parameters of four levels of response variable

with six explanatory variables data for section 6.5

$c codes notation can be found at page 134$
$echo $
$sle 1098 $num n step$calc n=%nu/3 $
$ass n2=nl,nl,nl$
$var n wll w22 w33 wl2 wl3 w23 

all al2 al3 a22 a23 a33 
pyl py2 py3

$num a b c $
$ass a=0.0001:b=0.0001:c=0.0001$

$macro startup
$calc %lp=%eta=%sr(0)$calc %fv=0.25$
$endmac

$num npl np2 twon thren $calc npl=n+l:twon=2*n: 
np2=twon+l:thren=3*n

$ass j=l...%nu:i2=npl...twon :i3=np2...thren$

$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n)-%fv(i+2*n))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n)-ystack(i+2*n))$ 
$calc yl=l/3*(yl*%log(mul/yl))$
$ass ylstack=yl,yl, yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac

$macro etacalc
$calc %eta(i3)=%lp(i3)/a33(i3-2*n)$
$calc %eta(i2)=(%lp(i2)-a23(i2-n)*%eta(i3))/a22(i2-n)$ 
$calc %eta(i)= (%lp(i)-al2(i)*%eta(i2)

-al3(i)*%eta(i3))/all(i)$
$endmac

$macro newlink
$calc %fv(i)= (l+a*%eta(i))**(1/a)/

(1+
(l+a*%eta(i))**(1/a) +(l+b*%eta( i 2 ) )** (1/b) + 
(l+c*%eta(i3))**(1/c) )$

$calc %fv(i2)=(l+a*%eta(i2))**(l/b)/
( 1+
(l+a*%eta(i))**(1/a)+ (l+a*%eta(12))**(l/a)+ 
(l+a*%eta(i3))**(1/a) )$

$calc %fv(i3)=(l+a*%eta(i3))**(1/a)/
(1+
(l+a*%eta( i ) )**(1/a) + (l+b*%eta (12))** (1/b) + 
(l+c*%eta(i3))**(1/c) )$

$calc %fv=%fv*n2:%dr=l$endmac
$ass i=l...n $

$ass nw= vy2,vy3,vy4 $
$calc ystack=nw$

$yvar nw $error own devcalc $link own newlink 
$scale 1.00$
$method * etacalc workvar$
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$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 $

$fit dl+d2+d3+dpl+dp2+dp3+dp4+dp5+dp6+dp7+dp8+
dp9+dpl0+dpll+ dpl2+dpl3+dpl4+ 
dpl5+dpl6+dpl7+dpl8-l$

$dis e $
$endmac

$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i)/nl(i))*(l/l+a*%eta(i))**2: 

w22(i)=%fv(i+n)*(l-%fv(i+n)/nl (i))*
(l/l+b*%eta(i2))**2$

$calc w33(i)= %fv(i+2*n)* (l-%fv(i+2*n)/nl(i))*
(l/l+c*%eta(13))**2:

wl2(i)=-%fv(i)*%fv(i+n)/nl(i)* (l/l+a*%eta (i))*
(l/l+b*%eta (12))$

$calc wl3(i)=-%fv(i)*%fv(i+2*n)/nl(i)* (l/l+a*%eta (i))*
(l/l+c*%eta(13)):

w23 ( i)= -% fv ( i + n ) *% fv(i+2*n)/nl(i)* (l/l+b*%eta ( 12))*
(l/l+c*%eta (i3))$

$calc all=%sqrt(wll) :al2=wl2/all: 
al3=wl3/all

$calc a22=%sqrt(w22-al2**2) :a23=(w23-al2*al3)/a22

$calc a33=%sqrt(w33-a23**2-al3**2)
$endmac

$var n etal eta2 eta3$

$macro workvar
$calc pyl(i) = ((vy2(i)-%fv(i))/all(i))*(1/ (l+a*%eta (i))) :

py2 (i)=- ( (vy2 (i) -%fv(i) ) * (al2 (i) /a22 (i) ) /all (i) ) * (1/ (l+a*%eta (i) ).) 
+ ((vy3(i)-%fv(n+i))/a22(i))*(1/(l+b*%eta (12)))$

$calc py3(i)=((vy2(i)-%fv(i))*((al2(i)*a23(i)/a33(i)/a22(i)
-al3(i)/a33(i))/all(i)))*(1/ (l+a*%eta (i)))

- ((vy3(i) -
%fv(n+i))*((a23(i)/a33(i))/a22(i)))*(1/(l+b*%eta ( 12)))

+ (vy4(i)-%fv(2*n+i))/a33(i)* (1/ (l+c*%eta(13)))$

$ass tem=pyl,py2,py3$

$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac

$var n one zero$

$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one:

a3=al3*one:a4=a22*one: 
a5=a23*one:a6=a33*one$

$calc a51=all*koe: a52=al2*koe$
$calc a53=al3*koe: a54=a22*koe$
$calc a55=a23*koe: a56=a33*koe$

$calc a61=all*pnl: a62=al2*pnl$
$calc a63=al3*pnl: a64=a22*pnl$
$calc a65=a23*pnl: a66=a33*pnl$
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$calc
$calc
$calc

a71=all*par: a72=al2*par$ 
a73=al3*par: a74=a22*par$ 
a75=a23*par: a76=a33*par$

$calc a81=all*foc: 
$calc a83=a!3*foc: 
$calc a85=a23*foc:

a82=al2*foc$
a84=a22*foc$
a86=a33*foc$

$calc a91=all*spo: 
$calc a93=al3*spo: 
$calc a95=a23*spo:

a92=al2*spo$
a94=a22*spo$
a96=a33*spo$

$calc a41=all*fol: 
$calc a43=al3*fol: 
$calc a45=a23*fol:

a42=al2*fol$ 
a44=a22*fol$ 
a4 6=a33*fol$

$ass dl=al,zero,zero :d2=a2 , a4, zero : 
d3=a3,a5,a6$

$ass dpl=a51,zero,zero :dp2=a52, a54 , zero : 
dp3=a53,a55,a56$

$cal dl=dl:d2=d2:d3=d3 :
dpl=dpl:dp2=dp2:dp3=dp3$

$ass dp4=a61,zero,zero :dp5=a62,a64,zero? 
$ass dp6=a63,a65,a66$

$ass dp7=a71,zero,zero:dp8=a72,a74,zero $ 
$ass dp9=a73,a75,a76$

$cal dp4=dp4:dp5=dp5:dp6=dp6: 
dp7=dp7:dp8=dp8:dp9=dp9$

$ass dpl0=a81,zero,zero :dpll=a82,a8 4,zero? 
$ass dpl2=a83,a85,a86$

$ass dpl3=a91,zero,zero;dpl4=a92,a94,zero$ 
$ass dpl5=a93,a95, a96$

$ass dpl6=a41,zero,zero:dpl7=a42,a44, zero? 
$ass dp!8=a43,a45,a46$

$calc dplO=dplO:dpll=dpll:dp!2=dpl2:dpl3=dpl3$ 
$calc dpl4=dpl4:dpl5=dpl5:dpl6=dpl6:dpl7=dpl7$ 
$calc dp!8=dp!8$

$endmac$

$use startup$use loop$ 
$use loop?
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GLIM Directives for improved design matrix for section 6.6

$c codes notation can be found at page 134$
$c GLIM Directives for improved design matrix example 6.5$ 
$echo $
$sle 1098 $num n step$calc n=%nu/3 $
$ass n2=nl,nl,nl$

$var n wll w22 w33 wl2 wl3 w23 
all al2 al3 a22 a23 a33 
pyl py2 py3

$macro startup
$calc %lp=%eta=%sr(0) $
$calc %fv=0.25$
$endmac

$num npl np2 twon thren $calc npl=n+l:twon=2*n: 
np2=twon+l:thren=3*n

$ass j=l...%nu:i2=npl...twon :i3=np2...thren$

$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n)-%fv(i+2*n))$
$calc yl(i) = (n2(i)-ystack(i)-ystack(i+n)-ystack (i+2*n))$ 
$calc yl=l/3*(yl*%log(mul/yl))$
$ass ylstack=yl,yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac

$macro etacalc
$calc %eta(13)=%lp(13)/a33(i3-2*n)$
$calc %eta (i2) = (%lp(i2)-a23(i2-n)*%eta(13))/a22(i2-n)$ 
$calc %eta (i) = (%lp(i)-al2(i)*%eta(i2)

-al3 (i)*%eta (i3))/all (i)$
$endmac

$macro newlink
$calc expta=%exp(%eta)$

$calc % fv(i)=expta(i)/(1+expta(i)+expta(i2)+expta(13)) 
$calc %fv(i2)=expta(i2)/ (1+expta(i)+expta(12)+expta(13)) 
$calc %fv(i3)=expta(13)/(1+expta(i)+expta(i2)+expta(i3))

$calc %fv=%fv*n2:%dr=l$endmac

$ass i=l...n $
$ass nw= vy2,vy3,vy4 $
$calc ystack=nw$

$yvar nw $error own devcalc $link own newlink 
$scale 1.00
$method * etacalc workvar?

$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 500 2 1.0e-4 $

$fit pl+p2+p3+pdl+pd2+pd3+pd4+pd5+pd6+pd7+pd8+
pd9+pdl0+pdll+pdl2+pdl3+pdl4+
pdl5+pdl6+pdl7+pdl8-l$

$dis e $endmac
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$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i))/nl(i)$
$calc w22(i)=%fv(i+n)*(l-%fv(i+n))/nl(i)$
$calc w33(i)= %fv(i+2*n)*(l-%fv(i+2*n))/nl(i)$ 
$calc wl2(i)=-%fv(i)*%fv(i+n)/nl(i)$
$calc wl3(i)=-%fv(i)*%fv(i+2*n)/nl(i)$
$calc w23(i)=-%fv(i+n)*%fv(i+2*n)/nl(i)$
$calc all=%sqrt(wll):al2=wl2/all: 

al3=wl3/all$
$calc a22=%sqrt(w22-al2**2):a23=(w23-al2*al3)/a22$ 
$calc a33=%sqrt(w33-a23**2-al3**2)$
$endmac
$var n etal eta2 eta3$
$macro workvar
$calc pyl(i)= (vy2( i ) - % fv ( i ) )/all( i ) $
$calc py2 (i) =- (vy2 (i) -%fv (i) ) * (al2 (i) / (a22 (i) *all (i) ) )

+ (vy3(i)-%fv(n+i))/a22 (i) $
$calc py3(i)=(vy2(i)-%fv(i))*((al2(i)*a23(i))/(a33(i)*a22(i)*all(i))) 

- (vy2 (i) -%fv (i) ) * (al3 (i) / (a33 (i) *all (i) ) )
- (vy3 (i) —%fv (n+i) ) * (a23 (i) / (a33 (i) *a22 (i) ) )
+ (vy4(i)-%fv(2*n+i))/a33 (i)$

$ass tem=pyl,py2,py3$
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac
$var n one zero$
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a3=al3*one:a4=a22*one: 
a5=a23*one:a6=a33*one$

$calc a51=all*koe: a52=al2*koe$
$calc a53=al3*koe: a54=a22*koe$
$calc a55=a23*koe: a56=a33*koe$
$calc a61=all*pnl: a62=al2*pnl$ 
$calc a63=al3*pnl: a64=a22*pnl$ 
$calc a65=a23*pnl: a66=a33*pnl$
$calc a71=all*par: a72=al2*par$ 
$calc a73=al3*par: a74=a22*par$ 
$calc a75=a23*par: a76=a33*par$
$calc a81=all*foc 
$calc a83=al3*foc 
$calc a85=a23*foc

a82=al2*foc$
a84=a22*foc$
a86=a33*foc$

$calc a91=all*spo: 
$calc a93=al3*spo: 
$calc a95=a23*spo:

a92=al2*spo$
a94=a22*spo$
a96=a33*spo$

$calc a41=all*fol 
$calc a43=al3*fol 
$calc a45=a23*fol

a42=al2*fol$ 
a44=a22*fol$ 
a4 6=a33*fol$
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$calc a7=al+a2+a3:a8=a4+a5:a9=a2+a3$

$ass pl=a7,a8,a6:p2=a9,a8,a6: 
p3=a3,a5,a6$

$calc a57=a51+a52+a53:a58=a54+a55:a59=a52+a53$

$ass pdl=a57,a58,a56:pd2=a59,a58,a56: 
pd3=a53,a55,a56$

$cal pl=pl:p2=p2:p3=p3:
pdl=pdl:pd2=pd2:pd3=pd3$

$calc a67=a61+a62+a63:a68=a64+a65:a69=a62+a63$

$ass pd4=a67,a68,a66:pd5=a69,a68,a66$
$ass pd6=a63,a65,a66$

$calc a77=a71+a72+a7 3 :a78=a74+a75:a7 9=a72+a73$

$ass pd7=a77,a78,a76:pd8=a79,a78,a76 $
$ass pd9=a73,a75,a76$

$cal pd4=pd4:pd5=pd5:pd6=pd6: 
pd7=pd7:pd8=pd8:pd9=pd9$

$calc a87=a81+a82+a83:a88=a84+a85:a89=a82+a83$

$ass pdl0=a87,a88,a86:pdll=a89,a88,a86$
$ass pdl2=a83,a85,a86$

$calc a97=a91+a92+a93:a98=a94+a95:a99=a92+a93$

$ass pdl3=a97,a98,a96:pdl4=a99,a98,a96$$
$ass pdl5=a93,a95,a96$

$calc a47=a41+a42+a43:a48=a44+a45:a49=a42+a43$

$ass pdl6=a4 7,a4 8,a4 6 :pdl7=a4 9, a4 8,a4 6$
$ass pdl8=a43,a45,a46$

$calc pdlO=pdlO:pdll=pdll:pdl2=pd!2:pdl3=pdl3$ 
$calc pdl4=pdl4:pdl5=pdl5:pdl6=pdl6:pdl7=pdl7$ 
$calc pdl8=pdl8$
$endmac$

$use startup$use loop$ 
$use loop$
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GLIM Directives for example 7.3.1

$c codes notation can be found at page 134$ 
$sle 10 $num n $calc n=%nu/2$
$var n vyl vy2 nl x$
$data vyl vy2 nl x$
$read
0.00000000001 0.00000000001 40 1
2 0.00000000001 40 2
9 5 40 3
13 6 40 4
20 10 40 5
$calc vy3=nl-vy2-vyl$
$ass n2=nl,nl$
$var n wll w22 wl2 

all al2 a22 
pyl py2

$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr(0)/2$
$c calc %lp=%eta=%log(nw/(n2-nw)) $calc %fv=ystack$ 
$endmac$
$num npl twon $calc npl=n+l:twon=2*n:
$ass j=l...%nu:i2=npl...twon $
$macro devcalc 
$var n mul yl
$calc mul(i)= (n2(i)-%fv(i)-%fv(i+n))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n))$
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$
$calc %di=-2*%di$
$calc %va=l 
$endmac
$macro etacalc
$calc %eta(i2)=(%lp(i2))/a22(i2-n)$ 
$calc %eta(i) = (%lp(i)-al2(i)*%eta (i2)

)/all (i)$
$endmac
$macro newlink2 
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/(1+expta(i)+expta (i+n))$ 
$calc %fv(i2)=

expta(i2)/(1+expta(i2)+expta (i2-n) )$
$calc %fv=%fv*n2:%dr=l$
$endmac
$ass i=l...n $
$ass nx=x,x$
$$ass nw= vyl,vy2 $calc ystack=nw$
$yvar nw $error own devcalc $link own newlink2 
$scale 1.00$
$method * etacalc workvar$
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$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 50 2 1.0e-4 $fit dpl+dl+dp2+d2-l$
$display e$
$extract %pe$
$endmac
$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i)/nl(i)):

w22 (i) =%fv (i+n) * (l-%fv (i+n) /nl (i) ) : 
wl2 (i) =-%fv (i) *%fv (i+n) /nl (i) $

$calc all=%sqrt(wll) :al2=wl2/all:
$calc a22=%sqrt(w22-al2**2)$
$endmac
$macro workvar
$calc pyl(i) = (vyl(i)-%fv(i))/all(i) :

py2(i)=-(vyl(i)-%fv(i))*(al2(i)/a22(i))/all(i) 
+ (vy2(i)-%fv(n+i))/a22 (i) $

$ass tem=pyl,py2 $
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac
$var n one zero$
$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $
$calc a6=all*x:a7=al2*x: 

a8=a22*x$
$ass dl=al,zero: dpl=a2,a4$ 
$ass d2=a6,zero :dp2=a7,a8 $ 
$endmac$
$use startup$use loop$
$use loop$

$macro like_del
$c some routines to calculate the log likelihhod kernel devc 

to test for removal of points , 
also devc times 2 divided by p$

$c to use this, first use it with the overall fit.
Then weight out points and fit again with loop 
and reuse this macro to see the effect of point deletion 

$num devc devc2p$
$calc dumi=%gl(5,1)$
$tab the %fv total for durni into tfvt$
$cal tfvt=nl-tfvt$
$ass fv=%fv, tfvt$
$ass yv=vyl,vy2,vy3$
$calc devc = %cu(yv*%log(fv))$
$calc devc2p=devc*2/%pl$
$pr devc devc2p$
$ENDMAC$
$use like_del$
$look fv yv$
$print yv$
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GLIM Directives for weighted out observation in example 7.3.1

$c codes notation can be found at page 134$
$sle 10 $num n $calc n=%nu/2$
$var n vyl vy2 nl x$
$data vyl vy2 nl x$
$read
0.00000000001 0.00000000001 40 1
2 0.00000000001 40 2
9 5 40 3
13 6 40 4
20 10 40 5
$CALC VY3=N1-VY2-VY1$
$ass n2=nl,nl$
$var n wll w22 wl2

all al2 a22 pyl py2
$macro startup
$calc %lp=%eta=%sr(0) $calc %fv=%sr(0)/2$
$c calc %lp=%eta=%log(nw/(n2-nw)) $calc %fv=ystack$ 
$endmac$
$num npl twon $calc npl=n+l:twon=2*n: 
$ass j=l...%nu:i2=npl...twon $
$macro devcalc 
$var n mul yl
$calc mul(i)=(n2(i)-%fv(i)-%fv(i+n))$
$calc yl(i)= (n2(i)-ystack(i)-ystack(i+n))$ 
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$ 
$calc %di=-2*%di$
$calc %va=l 
$endmac
$macro etacalc
$calc %eta(i2)=(%lp(i2))/a22(i2-n)$ 
$calc %eta(i)=(%lp(i)-al2(i)*%eta(i2)

)/all(i)$
$endmac
$macro newlink2
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/(1+expta(i)+expta(i+n))$ 
$calc %fv(i2)=

expta ( 12)/(1+expta(i2)+expta(i2-n))$
$calc %fv=%fv*n2:%dr=l$
$endmac
$ass i=l...n $
$ass nx=x,x$
$$ass nw= vyl,vy2 $calc ystack=nw$
$yvar nw $error own devcalc $link own newlink2 
$scale 1.00$
$method * etacalc workvar$
$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 50 2 1.0e-4 $fit dpl+dl+dp2+d2-l$
$display e$
$extract %pe$endmac
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$macro cholesk
$calc wll(i)=%fv(i)* (l-%fv(i)/nl(i) ) :

w22(i)=% fv(i+n)* (l-%fv(i+n)/nl(i)) : 
wl2 (i)——%fv(i)*%fv(i+n)/nl(i)$

$calc all=%sqrt(wll) :al2=wl2/all:
$calc a22=%sqrt(w22-al2**2)$
$endmac

$macro workvar
$calc pyl(i)= (vyl(i)-%fv(i))/all(i):

py2(i)=-(vyl(i)— %fv(i) )* (al2 (i)/a22(i))/all(i) 
+ (vy2 (i)-%fv (n+i) ) /a22 (i) $

$ass tem=pyl,py2 $
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac

$var n one zero$

$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $

$calc a6=all*x:a7=al2*x: 
a8=a22*x$

$ass dl=al,zero: dpl=a2,a4$
$ass d2=a6,zero :dp2=a7,a8 $
$endmac$

$calc w=l$
$calc w(l)=w(6)=0$
$weight w$

$use startup$use loop$
$use loop$

$macro like_del
$c some routines to calculate the log likelihhod kernel devc 

to test for removal of points , 
also devc times 2 divided by p$

$c to use this, first use it with the overall fit.
Then weight out points and fit again with loop 
and reuse this macro to see the effect of point deletion 

$num devc devc2p$
$calc dumi=%gl(5,1)$
$tab the %fv total for dumi into tfvt$
$cal tfvt=nl-tfvt$

$ass fv=%fv, tfvt$

$ass yv=vyl,vy2,vy3$
$calc devc = %cu (yv*%log (fv))$
$calc devc2p=devc*2/%pl$
$pr devc devc2p$
$ENDMAC$

$use like_del$
$look fv yv$
$print yv$
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GLIM Directives for example 7.3.2

$c codes notation can be found at page 134$ 
$sle 8 $num n $calc n=%nu/2$
$var n vyl vy2 nl x$
$data vyl vy2 nl x$
$read 
6 9 20 1
5 4 10 2
1 3 15 1
6 9 21 2
$CALC VY3=N1-VY2-VY1$
$ass n2=nl,nl$
$var n wll w22 wl2

all al2 a22 pyl py2
$macro startup
$c calc %lp=%eta=%sr(0) $c calc %fv=%sr(0)/2$ 
$calc %lp=%eta=%log(nw/(n2-nw)) $calc %fv=ystack$ 
$endmac$
$num npl twon $calc npl=n+l:twon=2*n: 
$ass j=l...%nu:i2=npl...twon $
$macro devcalc 
$var n mul yl
$calc mul(i) = (n2(i)-%fv(i)-%fv(i+n) ) $
$calc yl( i ) = (n2( i ) -ystack( i ) -ystack(i+n))$ 
$calc yl=l/2*(yl*%log(mul/yl))$
$ass ylstack=yl,yl$
$calc %di=ystack*%log(%fv/ystack)+ylstack$ 
$calc %di=-2*%di$
$calc %va-l 
$endmac
$macro etacalc
$calc %eta(i2)=(%lp(i2))/a22(i2-n)$ 
$calc %eta(i) = (%lp (i)-al2 (i)*%eta (i2)

)/all (i)$
$endmac
$macro newlink2
$cal expta=%exp(%eta)$
$calc %fv(i)=

expta(i)/(1+expta( i ) +expta(i+n))$ 
$calc %fv(i2)=

expta(i2)/(1+expta(i2)+expta(i2-n))$
$calc %fv=%fv*n2:%dr=l$
$endmac
$ass i=l...n $
$ass nx=x,x$
$$ass nw= vyl,vy2 $calc ystack=nw$
$yvar nw $error own devcalc $link own newlink2 
$scale 1.00$
$method * etacalc workvar$
$Macro loop
$use cholesk$use workvar$use newdesign$
$cycle 50 2 1.0e-4 $fit dl+d2+dpl+dp2-l$
$display e$
$endmac
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$macro cholesk
$calc wll(i)=%fv(i)*(l-%fv(i)/nl(i)):

w22 (i) = %fv (i+n) * (l-%fv (i+n) /nl (i) ) : 
wl2 (i)=-%fv(i)*%fv(i+n)/nl(i)$

$calc all=%sqrt(wll) :al2=wl2/all:
$calc a22=%sqrt(w22-al2**2)$
$endmac

$macro workvar
$calc pyl(i)= (vyl(i)-%fv(i))/all(i):

py2(i) = - (vyl(i)-%fv(i))*(al2(i)/a22(i) )/all (i) 
+ (vy2(i)-%fv(n+i))/a22(i) $

$ass tem=pyl,py2 $
$calc %wvd=tem+%lp$
$calc %wtd=l$
$endmac

$var n one zero$

$macro newdesign 
$calc one=l:zero=0$
$calc al=all*one:a2=al2*one: 

a4=a22*one $

$calc a6=all*x:a7=al2*x: 
a8=a22*x$

$ass dl=al,zero: dpl=a2,a4$
$ass d2=a6,zero :dp2=a7,a8 $
$endmac$

$use startup$use loop$
$use loop$

$macro like_del
$c some routines to calculate the log likelihhod kernel devc 

to test for removal of points , 
also devc times 2 divided by p$

$c to use this, first use it with the overall fit.
Then weight out points and fit again with loop
and reuse this macro to see the effect of point deletion

$num devc devc2p$
$calc dumi=%gl(4,1)$
$tab the %fv total for dumi into tfvt$
$cal tfvt=nl-tfvt$
$ass fv=%fv, tfvt$
$ass yv=vyl,vy2,vy3$
$calc devc = %cu(yv*%log(fv)}$
$calc devc2p=devc*2/%pl$
$pr devc devc2p$
$ENDMAC$

$use like del$
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GLIM Directives for example section 7.5

$c codes notation can be found at page 136$ 
$sle 5$data yl y2 y3$
$read
0 0 40
2 0 38
9 5 26
13 6 21
20 10 10
$cal x=%gl(5,1)$
$num vl$calc vl=3*%sl$
$var vl case group w$
$ass freq=yl,y2,y3$
$calc case=%gl(%sl,1): group=%gl(3,%sl)$ 
$calc group=4-group$
$fact case %sl group 3$
$elim case$error p$yvar freq$
$fit group:+group*x(case)$
$di e$
$extract %cd %lv %di$
$look %fv %yv group freq$

$num il i2 i3 devr devf$
$calc devf=2*%cu(%yv*%log(%fv))/%pl$
$print devf$
$calc il=l$
$macro fvs
$calc i2=il+5:i3=il+10$
$calc w=l:w (il)=w(i2)=w(i3)=0$weigh w$
$fit .$
$di e$extract %pe$
$calc fv=%fv$
$calc fv(il)=40*%exp(%pe(1)+%pe (4)*il)

/(l+%exp(%pe(1)+%pe(4)*il)+%exp(%pe (2)+%pe(5)*il))$
$calc fv(i2)=40*%exp(%pe(2)+%pe(5)*il)

/ (l+%exp(%pe(1)+%pe(4)*il)+%exp(%pe(2)+%pe(5)*il))$
$calc fv(i3)=40

/(l+%exp(%pe(1)+%pe(4)*il)+%exp(%pe(2)+%pe(5)*il))$
$calc devr=2*%cu(%yv*%log(fv))/4$
$print devr$
$endmac$

$use fvs$

$look %fv fv %yv$
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Weight matrix

APPENDIX B

a 2/
W{j = E(-------- — ) for J=3 response variable

drji drjj
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The Ŵj for J=3 level of response variable can be summarised in tabular form as follows:
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Derivatives of log-likelihood with respect to the logit link function
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APPENDIX C

Weight matrix Wtj for J=4 response variable
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W¡j for 4-level of response variable
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W¡j is a diagonal weight matrix namely I in
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APPENDIX D

Alternative approach to find Wij
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d 2l
Alternative approach to find W u = E (------------ )

dVi drj j

The standard approach used in this study to find the weight matrix is by using the log- 

likelihood function and the detail is given in section (4.3) but here we will give an

alternate form to find Wy . This approach is much easier to find any form of a derivative

of the weight matrix for any link function. The derivatives given in section (4.3) are given 

by using the log - likelihood general approach but these derivatives can also be found 

very easily as follows:
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Now
dl ,

d Q n d 6 ¡2

d

d O n
{T ¡2

n ; e e,-,

l + e 12 + e

= —ni e0il {—e9‘3 (1 + ee‘2 + e8>3) 2 }

= n t e e>1 e 6,3 p  2, = n t p  n e 9‘2 p  n e

= M i2
M n  = 
n .

M  12 M  , 3

n

Therefore
a 2/,.

E ( ~  t t 1" )  = E { -  
d V n

d 2ij , a / ,  , 1
d 20 i2 a  d O i2 (1 + a Vi 2) 2

= E { -
d 2e n

1
(1 + a 7j n  ) 2

Since E  { a 9 11 } = 0
a 6 ,¡2

Or E  (
d 2V r.

- ) =  jUi2 ( l -  ^ - )
« , (1 + a p i2 )

a 2/. a  2/ ;
Similarly £  (----------- ------) = £  ( ----------------- )

1

a 7,3'a 7/2 d d n d e i2 Q- + a i j n )(\ +ar / ^ )

1
« ,  (1 + « 77i2 )(! + ¿z 77,-3)

The other derivatives needed to complete the weight matrix can be found using own link 

function. This approach is much easier and can be applied in general for any link function 

to be considered.
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