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Abstract 
The coupling of ever-increasing consumption of fossil fuels around the globe with the 

decrease in the availability of fossil fuel supplies has led to increased cost of energy 

commodities, which together with ever-expanding requirements for reducing the level of 

environmental pollutions has resulted in an ever-increasing deal of attention to alternative 

transportation schemes such as electric vehicles (EVs). Since decades ago, national 

governments and environmental activists have initiated various efforts towards reducing 

atmospheric pollutions. A part of such effort has been focused on reducing the use of 

internal combustion vehicles and rather replacing them with EVs. In this research, we 

attempt to fill in this research gap by presenting a mathematical model for minimizing the 

sum of travelled distance and recharging cost of EVs per a given period and then solving it 

by simulated annealing (SA) algorithm. Results of the proposed algorithm were then 

compared to those of coding in GAMS for 30 different sample problems with different 

counts of customers, EVs, and charging stations. Numerical results indicated good 

efficiency of the metaheuristic algorithm in terms of processing time and solution quality. 

Indeed, with the SA algorithm, the processing time was seen to increase gradually with 

increasing the problem complexity, while the rate of increase in processing time was much 

steeper with the GAMS. 

 

Keywords: electric vehicle (EV), green routing, delivery due date, mathematical 

programming, simulated annealing (SA). 

 

1. Introduction 

Global warming has become a serios threat to the humans and the nature. After adopting 

the so-called Paris Accordance by the United Nations Framework Convention on Climate 

Change in 2015, global efforts toward rapid reduction of CO2 emissions have been 

accelerated. Fossil energy is the largest source of CO2 emission in the world. Introduction 

of green transportation (e.g., hybrid and electric vehicles or EVs) represents an excellent 

example of the efforts toward using non-fossil fuels. Nevertheless, green transportation 

suffers from difficulties in scheduling and routing for complicated product distribution 

systems. Product distribution scheme has long been a challenging issue. In the past, 

shipping (consider a letter, for example) was aimed at nothing but to deliver an 

envelope/parcel from the sender to the receiver at the destination – a presumption that 

ruled out the necessity o accurate scheduling. Today, however, product delivery has 
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become crucially important because of various factors including air pollution, urban traffic, 

and possible savings in terms of time and money. Meanwhile, the demand time is almost 

known for particular products such as diaries for which customers demand on a relatively 

regular basis. Accordingly, shipping to this group of customers must be scheduled in such 

a way that shipping method is well determined for different periods. Considering such 

situations in the field of operational research following the general view to the product 

distribution, they usually represent periodic vehicle routing problems (PVRP). This means 

that the customers are not visited on a daily basis but rather on a periodic basis to satisfy 

their demand timely. Periodic decision-making imposes a substantial impact on the 

decisions adopted in various days. The fact that not every customer needs a delivery 

(product shipping) makes this problem a bit more complicated than the conventional 

vehicle routing problem. The reason of this increased complexity is that a conventional 

vehicle routing problem tries to address the routing for a particular day, while a periodic 

routing problem begins with assigning different customers to the corresponding visit days 

and then T vehicle routing problem is developed that must be solved. Therefore, green 

vehicle routing and scheduling are complex tasks in product distribution systems (Revesz 

et al., 2014). 

 

With the development of new technologies, various energies have been invented to power 

vehicles. Critical decrease in the availability of fossil fuel supplies, high cost of such fuels, 

and significance of environmental issues and air pollution have led to extensive 

development and rapid growth of electrical vehicles (EVs). A routing problem in which 

environmental concerns are further taken into consideration is referred to as a green 

vehicle routing problem. In this respect, the present research can be categorized in the field 

of green routing as it focuses on the EVs to lower environmental pollution. 

 

Numerous research works have been reported on periodic routing for vehicles, but only a 

few of them have specifically focused on EVs. The fact that we further consider the 

delivery due date can add to the novelty and attractiveness of the present research to 

practitioners. Considering various factors related to EVs in the modeling for periodic 

vehicle routing, the present work represents an attempt to not only fill in the research gap 

but also get the problem closer to reality to improve its practical applicability. Goeke and 

Schneider (2015) presented an EV routing problem considering delivery time windows and 

a mixed transportation fleet including commercial EVs and conventional vehicles. In this 

model, the researchers assumed that the fuel consumption is a linear function of traveled 

distance, with equations of fuel consumption, velocity, slope, and parcel weight applied as 

constraints. They employed neighborhood search (NS) algorithm to solve the developed 

problem. In another piece of research, Keskin and Catay (2016) relaxed the full charging 

constraint to let the EV to be partially recharged – a relaxation that pushed the problem 

closer to reality while reducing the recharging time. They then presented an integer 

programming model and utilized adaptive neighborhood search (ANS) to have it solved. 

Their modeling outcomes indicated that partial recharging can improve the routing 

decisions and that the proposed methodology could outperform similar methods in 

converging to high-quality solutions. Raeesi and Zografos (2020) presented a capacity-

constrained EV routing problem where the EVs could be recharged by mobile charger 

vehicles. They used large neighborhood search (LNS) algorithm for solving the problem. 

Based on the results, they further investigated differences between the proposed model and 

one where recharging was done at charge stations. 



 

 

In a PVRP, the aim is to design routes for a vehicle for some particular period. The PVRP 

was first introduced by Beltrami and Bodin (1974) for addressing the assignment of 

municipal waste compactor trucks in New York. Francis and Smilowitz (2006) considered 

an PVRP into which service selection was further taken into account. The objective was to 

find a tour for each vehicle along the time horizon, where traveled distance minus service 

profit was taken as the objective function and vehicle capacity and minimum visiting 

frequency were seen as constraints. In this problem, a required visiting frequency was 

defined for each customer and a constraint was declared by which the visiting frequency to 

each customer was surely higher than that minimum required visiting frequency. Finally, 

they used an exact method based on lower bound and Lagrangian method for solving 

small- and medium-scale problems and presented a heuristic method for addressing large-

scale problems. Baldacci and Bartolini (2011) formulated an exact method for solving 

PVRP. In this respect, they presented an integer programming model and then solved it 

using the exact solution method presented by Baldacci and Boschetti (2008) to come up 

with the lower bound to the problem. This methodology includes the calculation of a near-

optimal dual solution that is obtained by relaxing inequality constraints. They then utilized 

the dual solution to generate a reduced integer problem including the exact solutions. 

Finally, the reduced problem was solved using an integer programming solver. 

 

Optimization models can represent a physically existing phenomenon and, with help of 

rational mathematical relationships, produce the best possible mix of multiple variables for 

the sake of a particular objective, such as minimization of routing costs for EVs during a 

particular period of time. Nevertheless, unique features of optimization models have made 

them widely popular for routing problems. Noteworthily, an optimization model may not 

necessarily lead to actual optimality due to the special assumptions made to the problem 

complexity and/or assumptions made to build/run the model. Should the problem at hand is 

so large, evolutionary algorithms can be devised to avoid local optima and rather converge 

to universal optimum point. The evolutionary algorithms can identify the universal 

optimum point and have demonstrated promising potentials for solving real-world 

problems (Heidari et al., 2019; Mirjalili et al., 2016; Yang, 2010). So far, various 

researchers have been proposed numerous algorithms for solving optimization problems in 

the field of conjunctive utilization, of which one may refer to simulated annealing (SA) as 

an example. High efficiency of this algorithm for solving a wide spectrum of different 

optimization problems has convinced researchers toward using it for different applications. 

Accordingly, the present research, we use SA for minimizing the sum of distance traveled 

and recharging cost. 

 

Table 1 summarizes the literature on the use of EVs. An overview of the relevant research 

shows that majority of previous researchers have sought to minimize distance traveled as 

well as the costs of recharging and energy as objective function. In Late 2019, researchers 

started to consider simultaneous impacts of C (Capacity of vehicle), TW (Time Window), 

MIX (Mix fleet), LRP (Location routing problem), F (fixed charging time), L (Liner 

charging time), NL (Non-liner charging time), and PR (Partial charging). Only few studies 

have been published during the indicated period, where researchers have merely 

considered linear charging (L) (Poonthalir and Nadarajan, 2018; Wang et al., 2018). 

Hiermann et al. (2019) introduced a special VRP by combining conventional vehicles with 

EVs. EVs can avoid charging stations by using fossil fuels. This flexibility, however, leads 



 

to different decisions as one should identify the amounts of fossil fuel and electrical energy 

consumed by a hybrid vehicle as it goes through a particular route, and whether it needs to 

recharge its electrical batteries or not. In order to solve the problem, the authors designed a 

metaheuristic algorithm that was indeed a combination of genetic algorithm (GA) with 

LNS. 

 

 

 

 

Table 1. A summary of literature review on EVs. 

Author & 
year 

Problem 
type** 

C TW MIX LRP F L NL PR DFC BS TD H Objective function* 

Keskin and 
Çatay (2016) 

EVRPTW  ✓      ✓     Minimizing the traveled 
distance 

vincent (2017) HVRP            ✓ Minimizing fuel and routing 
costs 

montaya(201
7) 

EVRP         ✓  ✓  Total cost of Traveled 
distance 

 
Lu et al (2018) EVRP ✓  ✓  ✓      ✓  Operating costs of a taxi 

company 

Masmoudi et 
al (2018) 

DARP-EV ✓ ✓ ✓       ✓   Distance minimization 

Paz et al. 
(2018) 

MDEVLRP
TW 

✓ ✓  ✓  ✓  ✓  ✓   Distance minimization 

Pelletier et al. 
(2018) 

EFV-CSP       ✓ ✓ ✓    Sum of recharging costs 

Poonthalir & 
Nadarajan 

(2018) 

F-GVRP      ✓       Fuel consumption and rout 
cost 

Schiffer & 
Walther 
(2018) 

LRPIF ✓ ✓  ✓  ✓  ✓     Vehicle maintenance cost and 
facilities 

Wang et al. 

(2018) 

BEV 

routing 
     ✓       Travel time. Recharging cost, 

and charge consumption 

Zhang et al. 

(2018) 

E-VRP ✓            Energy consumption 

Basso et al. 

(2018) 

2sEVRP ✓ ✓    ✓   ✓    Energy consumption 

Breunig et al. 
(2019) 

GVRP      ✓        Count of vehicles and total 
traveled distance 

Froger et al. 
(2019) 

E-VRP-NL       ✓ ✓ ✓    Combination of travel time 

and recharging time 

Hiermann et 
al. (2019) 

H2E-FTW ✓ ✓    ✓  ✓    ✓ Sum of fixed and variable 

costs 

Jie et al. 
(2019) 

2E-EVRP-
BSS 
 

✓         ✓   Route and battery 

replacement costs 

Koyuncu & 

Yavuz (2019) 

MGVRP  ✓ ✓  ✓ ✓  ✓ ✓    Travelling cost 

Macrina et al. 

(2019) 

GMFVRP

PRTW 

✓ ✓ ✓  ✓  ✓ ✓   ✓  Energy costs per km of route 

Macrina et al. 

(2019) 

GMFVRP

PRTW 

✓ ✓ ✓  ✓  ✓ ✓     Costs of recharge, route, 
pollution emission limit 

Normasari et 
al. (2019) 

CGVRP ✓    ✓        Count of vehicles and total 
traveled distance 

Zhang, G. EVRP       ✓      Minimizing total times (fuel 



 

* full-words of objective functions are given at Appendix A 

**full-words of problem types are given at Appendix A 

 

 

 

Contribution of this work: 

Based on the literature review and Table 1, we found that PVRP considering delivery due 

and mixed charging rates is yet to be comprehensively studied. The novelty of the this 

work comes in the face of presenting a mathematical model where customers’ orders are 

due for delivery at a programing horizon, given that some customers must receive their 

orders prior to the delivery due date while some others can wait until the end of the 

programing period. On the other hand, utilization of EV fleet in logistics has been 

increasingly regarded in recent research works, motivating us toward opting for an EV 

fleet for distributing the orders in multiple periods in this work. We herein attempt to fill in 

this research gap by presenting a mathematical model and solving it by a metaheuristic 

algorithm. The developed optimization model is then solved by a robust SA algorithm, 

with the results compared to those of a nonlinear optimization algorithm implemented in 

GAMS software. 

 

2. Materials and methods 

2.1. Research workflow 

 

Given that the present research is aimed at minimizing the sum of traveled distance and 

recharging costs during each period, the framework shown in Figure 1 was followed to 

solve the relevant optimization problem. This was started by identifying the type of 

optimization problem and its assumptions. The assumptions and constraints of the 

problem, including the number of stations, maximum number of vehicles, continuity of the 

path, demand, and vehicle capacity, along with the mathematical model of the problem 

were designed appropriately. Some 30 sample problems with different numbers customers, 

vehicles, and charging stations were considered for different periods to evaluate the 

developed model. Each sample problem was launched independently of the others. The 

mathematical model was first implemented and run in GAMS, before having it solved by 

the SA algorithm. Results of the two algorithms on the 30 sample problems were compared 

to introduce the best algorithm for this problem. In the following, we begin by introducing 

the mathematical model and applied constraints and then continue to explain the SA 

algorithm and its structure. Details of the framework are illustrated in Figure 1.  

 

 

(2020).  and travel) 

kancharla 
(2020) 

EVRP ✓      ✓      Minimizing total times (fuel 

and travel)  

Ramin raeesi 
(2020) 

EVRPTW   ✓          Minimizing total costs  

Zhenzhong 
Wang (2021) 

DVRP ✓ ✓     ✓     ✓ Minimize total time and costs 

Current 

research 
PEVRP  ✓      ✓ ✓  ✓  Cost of distance and 

recharge 



 

 

Figure 1. Research framework 

 

 

2.2 Mathematical modelling  

To more understanding of the proposed model for this research, we have developed an 

illustration model in which describes the components of the problem and shown in Figure 

2. In this illustration, there are two vehicles. The first vehicle starts its movement from the 

warehouse and then customer visits customer C1 in addition to visiting the customer C2 in 

this place  performs recharge operations and then goes to the customer C5 and finally 

returns to the warehouse. However, the second vehicle performs recharge operations at F1 

charging station. 

Our main goal is to provide a mathematical model of periodic routing of electric vehicles 

with due date, in which customers are divided into two categories of customers with due 

date and without due date (optional) 

 

In this section, the assumptions of the model of this research are explained.  

 

Identify the problem type 

and assumptions 
Prepare mathematical 

model of the problem 

Coding in GAMS 

Test the 

model 

Prepare mathematical 

model of the problem 

Run the model on a small-

scale problem Configuring SA algorithm Compare and interpret the 

results of GAMS and SA 

Yes 

No 



 

 
 

            Charging station              Customer                  Warehouse                Vehicle 

 

              

            customer with recharging operations    

 

 

Figure 2. Illustration of the proposed electric vehicle routing Problem 

 

Assumptions: 

1. The inputs of the problem are definitive and fixed. 
2. Customers with a due date should be visited prematurely, but customers without 

due date could be visited in any period of planning horizon. 
3. The amount of used charge is dependent on mileage. 
4. The amount of recharge at the charging station is complete and in the customers 

location could be partial. 

 

  

  

 



 

Notations: 

𝑉: set of nodes  

𝜈′: set of customers 𝑣 ′ ⊆ 𝑉 

𝐶: set of customers without due date 𝐶 ⊆ 𝑣 ′ 

𝑉𝑓: set of charge stations 𝑉𝑓 ⊆ 𝑉 

𝐻: set of time periods  

𝑑𝑖𝑗: traveling distance from node 𝑖 to  𝑗                                                

𝐶𝐴𝑃: vehicle capacity  

  𝑄: battery capacity of the electric vehicle 

ℎ: energy consumption rate of the electric vehicle per unit of distance 

𝑟𝑖: time of ready to deliver for customer 𝑖’s order 

𝑑𝑙𝑖: due date delivery of customer 𝑖’s order 

𝑞𝑖: demand of customer  𝑖 

𝑝𝑖: cost of each recharge unit at node 𝑖 

𝑎 : cost coefficient per unit distance 

𝑚: number of available vehicles  

 

Decision variables: 

𝑥𝑖𝑗
𝑡 : binary variable and equal to 1 if the electric vehicle travels from node 𝑖 to node 𝑗 at 

period 𝑡, 0  otherwise 

𝑟𝑖
𝑡: binary variable and equal to 1 if the electric vehicle is charged from node 𝑖 to node 𝑗 at 

period 𝑡, 0  otherwise 

𝑙𝑗𝑖
𝑡 : total shipped demand on path 𝑖𝑗 at period 𝑡 

𝑦𝑖
𝑡: level of vehicle charge while reaching to node 𝑖 at period 𝑡 

𝑤𝑖
𝑡: amount of charge taken by vehicle at node 𝑖 at period 𝑡 

𝑢𝑖
𝑡: Empty battery capacity of vehicle at node 𝑖 at period 𝑡 

 
2.2.1. Objective function 

In this work, the objective function is to minimize the sum of traveled distance and cost of 

recharging the EVs during a particular period of time. In this regard, the first term in Eq. 1 

refers to the traveled distance while the second term denotes total recharging cost. 

 

In fact, Eq. 1 is the objective function of the model. The objective function is included two 

parts. The first part seeks to minimize total travelled distance. In addition, the second part 

aims to minimize total recharging cost, during each period. 

 

   𝑀𝑖𝑛 𝑧 = ∑ ∑ 𝑎. 𝑑𝑖𝑗. 𝑥𝑖𝑗
𝑡

𝑡∈𝐻𝑖,𝑗∈𝑉 + ∑ ∑ 𝑝𝑖. 𝑤𝑖
𝑡

𝑡∈𝐻𝑖∈𝑉                                                 (1)              

 

 



 

 

2.2.2. Constraints  

Various constraints were applied to solve the optimization model, as expressed in the 

following. Eq. 2 ensures that customers with a due date are visited in the period from the 

end of lead time to the delivery due date. Eq. 3 guarantees that the customers with no due 

must be visited during any of the periods. Eq. 4 sets an upper bound of 1 to the times a 

charging station can be visited. In other words, this constraint ensures that a charging 

station is visited only if the vehicle needs a recharge. The fifth constraint (Eq. 5) refers to 

the path continuity, according to which there exists at least one output path from each node 

for each input path to that node. Eq. 6 guarantees that the number of utilized EVs per 

period will not exceed the available number of vehicles. Eqs. 7 and 8 evaluate the demand 

carried along each path during each period. These constraints eliminate the chances of sub-

tours to develop. The 9th constraint (Eq. 9) ensures that the demand carried along each path 

does not exceed the vehicle capacity. Eq. 10 expresses that the vehicle’s battery is fully 

charged when the EV leaves the warehouse, while Eq. 11 evaluates the battery level at the 

destination based on the charge level at previous check point. According to Eq. 12, if a 

recharging process is performed at a charging station in a particular period, the battery 

level reaches 100%. Eq. 13 sets that recharging at customer location increases the battery 

level to at most the battery capacity (allowing partial recharging at customer location). 

Based on Eq. 14, the charging the battery at customer location cannot increase the battery 

level beyond the battery capacity. Finally, Eq. 15 ensures that the battery level is at some 

feasible level (> 0) when a customer is visited. Eqs. 16 through 18 express the types and 

ranges of the decision variables. 

 

∑ ∑ 𝑥𝑖𝑗
𝑡 = 1                 𝑖 ∈𝑡∈[𝑟𝑖,𝑑𝑙𝑖]𝑗∈𝜈  𝜈ˊ\𝐶     (2               )  

∑ ∑ 𝑥𝑖𝑗
𝑡 = 1                   𝑖 ∈𝑡∈𝐻𝑗∈𝜈 𝐶      (3               )  

∑ ∑ 𝑥𝑖𝑗
𝑡 ≤ 1                   𝑖 ∈𝑡∈𝐻𝑗∈𝜈 𝑉𝑓      (4               )  

∑ 𝑥𝑖𝑗
𝑡

𝑗∈𝜈 = ∑ 𝑥𝑗𝑖
𝑡

𝑗∈𝜈                   𝑖 ∈ 𝜈, 𝑡 ∈ 𝐻       (5              )  

∑ 𝑥0𝑗
𝑡

𝑗∈𝜈 ≤ 𝑚                                   𝑡 ∈ 𝐻     (6              )  

∑ 𝑙𝑗𝑖
𝑡

𝑗∈𝜈 − ∑ 𝑙𝑖𝑗
𝑡

𝑗∈𝜈 = 𝑞𝑖 ∑ 𝑥𝑖𝑗
𝑡

𝑗∈𝜈       𝑖 ∈ 𝜈 ∪ 𝑉𝑓ˊ, 𝑡 ∈ 𝐻   (7       )        

∑ 𝑙0𝑗
𝑡

𝑗∈𝜈 − ∑ 𝑙𝑗0
𝑡

𝑗∈𝜈 = ∑ 𝑞𝑖𝑥𝑖𝑗
𝑡

𝑗∈𝜈     𝑖 ∈ 𝜈 ∪ 𝑉𝑓ˊ, 𝑡 ∈ 𝐻   (8            )  

𝑙𝑖𝑗
𝑡 ≤ 𝐶𝐴𝑃. 𝑥𝑖𝑗

𝑡                     𝑖, 𝑗 ∈ 𝐴, 𝑡 ∈ 𝐻     (9            )  

𝑦0
𝑡 = 𝑄                             𝑡 ∈ 𝐻       (10           )  

𝑦𝑗
𝑡 + ℎ. 𝑑𝑖𝑗. 𝑥𝑖𝑗

𝑡 ≤ 𝑦𝑖
𝑡 + 𝑤𝑖

𝑡 + 𝑄(1 − 𝑥𝑖𝑗
𝑡 )                        𝑖, 𝑗 ∈ 𝑉, 𝑡 ∈ 𝐻 (11           )  

𝑤𝑖
𝑡 + 𝑦𝑖

𝑡 = 𝑄. 𝑟𝑖
𝑡                         𝑖 ∈ 𝑉𝑓 , 𝑡 ∈ 𝐻      (12           )  

𝑤𝑖
𝑡 + 𝑢𝑖

𝑡 + 𝑦𝑖
𝑡 = 𝑄                         𝑖 ∈ 𝑣′ , 𝑡 ∈ 𝐻     (13           )  

𝑤𝑖
𝑡 ≤ 𝑄. 𝑟𝑖

𝑡                                 𝑖 ∈ 𝑣′ , 𝑡 ∈ 𝐻     (14           )  

𝑢𝑖
𝑡 ≤ 𝑄. (1 − 𝑟𝑖

𝑡)                         𝑖 ∈ 𝑣′ , 𝑡 ∈ 𝐻     (15           )  



 

𝑥𝑖𝑗
𝑡 ∈ {0,1}                                 𝑖, 𝑗 ∈ 𝑉, 𝑡 ∈ 𝐻     (16          )  

𝑟𝑖
𝑡 ∈ {0,1}                                 𝑖 ∈ 𝑉, 𝑡 ∈ 𝐻           (17         )  

𝑙𝑗𝑖
𝑡 , 𝑤𝑖

𝑡, 𝑢𝑖
𝑡, 𝑦𝑖

𝑡 ≥ 0                                𝑖, 𝑗 ∈ 𝑉, 𝑡 ∈ 𝐻    (18         )  

 

 

where 𝑥𝑖𝑗
𝑡  is 1 if the vehicle travels from the point 𝑖 to the point 𝑗 in the time period 𝑡, and 0 

otherwise; 𝑙𝑗𝑖
𝑡  is total demand traveled along the path 𝑖𝑗 in the period 𝑡; 𝑦𝑖

𝑡 is the battery 

level of the EV when it reaches the node 𝑖 in the period 𝑡; 𝑤𝑖
𝑡 is the charge loaded into the 

EV battery at the node 𝑖 in the period 𝑡; 𝑢𝑖
𝑡 is the discharged capacity of the EV battery 

when it reaches the node 𝑖 in the period 𝑡; and 𝑟𝑖
𝑡 is a binary variable which takes a value 

of 1 if the EV is charged at the node 𝑖 in the period 𝑡 and 0 otherwise. 

 

2.3. SA algorithm 

Simulated annealing (SA) algorithm has been inspired by the annealing process in the 

metallurgy. It was first introduced by Kirkpatrick et al. in 1983. The SA algorithm 

emulates the process of material cool cooling gradually down to a temperature where the 

material takes a stable solid form. This algorithm converges toward optimal solution in a 

stepwise fashion by iteratively generating new solutions and having them evaluated. For 

this purpose, a new neighborhood is randomly generated and evaluated at each iteration. In 

this method, the points near a considered point in the search space are investigated. 

Accordingly, if a point was found to be superior (i.e., returns a lower value of the cost 

function) to the considered point, it replaces it and serves as the new selected point in the 

search space, and if it is rather worse than the considered point (i.e., returns a higher value 

of the cost function), it has still chances of being selected according to a probability 

function. To put it simply, in order to optimize the cost function, search is monotonously 

led toward lower values of the cost function although there are still chances that an 

increase in the cost function occurs. The acceptance of the next point is usually based on a 

criterion called metropolis criterion (Eq. 19). 

 

(19) 
𝑃{𝑎𝑐𝑐𝑒𝑝𝑡} = {

1                             ∆𝑓 < 0

𝑒−
∆𝑓
𝑐                  ∆𝑓 ≥ 0           

 

where  P is the probability of acceptance for the proceeding point, c is a control parameter, 

and ∆𝑓 denotes the change in cost. 

 

The control parameter in SA resembles the temperature in physical phenomena. Initially, 

the particle (i.e., the current point in the search space) is fixed at its place by a huge level 

of energy (i.e., a high value of control parameter, c). This high level of energy allows the 

particle to avoid from a local minimum, and as the search process continues, the particle 

has its energy level reduced (i.e., c decreases) to an eventual point where the search leads 

to universal minimum. It must be noted that the chances of avoiding the local minimum 

decreases at lower temperatures, implying that the higher the initial level of energy, the 

higher the probability of ending up at a local minimum. 

 



 

The SA optimization starts with a randomly generated initial solution for the decision 

variables and produces, again on random basis, a new solution near the initial solution 

using an appropriate neighborhood structure. Accordingly, an important issue in SA is the 

procedure for generating the neighborhood. The following three elements are required for 

implementing the SA algorithm (Figure 3): 

 

1. Starting point: a point in the search space from where the search process is 

initiated. This point is usually set on random basis. 

2. Motion generator: this generator is responsible for generating the next state. 

Accordingly, by calculating the costs at the current point and the next point, it 

determines the way algorithm moves toward the final solution. 

3. A plan for annealing the parameters that determine the annealing scheme of the 

algorithm. This plan defines the initial and final temperatures and the rate at 

which the temperature decreases.  

 

Different stages of this algorithm are shown in Figure 3. 

 

 

Generate initial candidate solution s 

randomly 
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Generate candidate solution s′ randomly based on 

the current solution s and a predefined 
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𝑇  
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Decrease temperature, T 
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End 

Stop criterion for internal loop 

satisfied? 

Stop criterion for external loop 
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Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 



 

Figure 3. Flowchart of SA algorithm (Rajan, 2010). 

 

Steps demonstrated in Figure 3 can be explained as follows: 

 

1. Generate an initial candidate solution on a random basis and evaluate the cost 

function, Z, for the initial candidate solution. 

2. Randomly generate a new solution in the neighborhood of the current candidate 

solution and evaluate the cost function for this new solution. 

3. Accept the new solution if it returns a better value of the cost function. 

4. Conditional acceptance (if the new solution is not any better than). 

5. Update the best solution found. 

6. Decrease the temperature and go to step 2, if needed (i.e., the stop criteria are 

not satisfied). 

 

Before a problem can be solved by the SA algorithm, one should design a solution vector 

for the problem. For this purpose, a T × I matrix was designed where T is the number of 

programing horizons and I is the number of customers. All elements of this matrix were 0s 

and 1s, with the 1s indicating the period in which the customer i is visited (Table 1). For 

instance, consider 5 customers that must be visited in 3 periods. Accordingly, a random 

candidate solution for visiting the customers in different periods can be of the following 

form: 

 

The matrix presented in Table 2 implies that the customers 𝑖1 through 𝑖5 are visited in 

periods 1, 3, 2, 2, and 3, respectively. When establishing this matrix, one should take care 

to assign 1 to the customers with delivery dues for the lead and delivery periods. 

 

Table 2. Vector of customer visiting in different periods. 

𝑖12 𝑖11 𝑖10 𝑖9 𝑖8 𝑖7 𝑖6 𝑖5 𝑖4 𝑖3 𝑖2 𝑖1 Periods/vector 

1 0 1 0 0 0 1 0 0 0 0 1 𝑡1 

0 0 0 0 1 1 0 0 1 1 0 0 𝑡2 

0 1 0 1 0 0 0 1 0 0 1 0 𝑡3 

 

 

Following with the algorithm, one should identify a route for each vehicle and the 

customers at which place the recharging shall be done (Table 3). In order to assign the 

vehicles to different nodes and prioritize the visits and recharging cycles, a three-row 

matrix was used, where the first row defines the vehicle number to visit the considered 

node, the second row gives the visiting priority of the node, and the third row indicates 

whether the vehicle is to be recharged (1) or not (0) at that node. The visiting priority is a 

number in the range of [0, 1] whose lower value implies that the corresponding customer 

will be visited sooner. For example, considering 2 vehicles and customers (obtained from 

the previous matrix) that must be visited in the second period, Table 2 gives a random 

vector of customer assignment and visiting priority. 

 

 



 

 

 

Table 3. Customer assignment and prioritization in period t2. 

𝑓𝑠2 𝑓𝑠1 𝑖8 𝑖7 𝑖4 𝑖3 

2 1 1 2 1 2 

0.014 0.510 0.162 0.409 0.746 0.245 

0 0 0 0 1 0 

 

3. Solution method and results 

3.1. Taguchi’s method 

Taguchi’s method is one of the most popular statistical methods in the field of design of 

experiments (DoE) for performing sensitivity analysis on the outputs of a process. It helps 

optimize different parameters of a process to achieve the best possible output by 

performing only a fraction of all experiments that were otherwise required to identify the 

optimal levels of all parameters. In this method, once finished with defining different 

levels for each of the parameters affecting the experiment outputs, several DoEs are 

proposed to the researcher, of which the researcher can opt for one depending on the 

selected levels and type of experiment. After performing the selected set of experiments, 

the results are returned back to the Taguchi’s method for analysis. Results of this analysis 

then led us toward understanding the effect of each factor on the dependent variable. This 

method compiles repeated data from the experiments into an indicator called signal-to-

noise ratio (SNR). An objective of the Taguchi’s method is to maximize this SNR. Table 4 

presents the levels considered for different parameters of the SA algorithm, where low, 

fair, and high levels are defined for each parameter. Table 5 gives a list of the experiments 

performed to find optimum values of different parameters. These include a total of 9 

experiments. According to the table, the cost function returned the minimum value 

(6583.99) at the third iteration with T0 = 3 and α = 3. 

 

Table 4. Levels of different parameters of the SA algorithm. 

High(3) Medium(2) Low(1) Parameters 

3000 2000 1000 MaxIt 

100 75 50 T0 

0.9 0.85 0.8 alpha 

 

 

Table 5. Designed experiments for SA algorithm.  
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Parameter tuning was performed in Minitab software. Figure 4A shows that data repeating 

frequency was maximal in the second stage, while Figure 4B demonstrates that the 

frequency is minimal in the same stage. This indicates that, among the three ranges of 

number of iterations, the best results were anticipated with 2000 iterations. In a similar 

way, optimal values of T0 and α can be found considering Figures 4A and 4B, as reported 

in Table 5. 

 

  
(B ) A)) 

 

Figure 4. Results of Taguchi’s method for optimizing the parameters of SA algorithm: (A) 

SNR plot of SA algorithm, and (B) means of means diagram. 

 

Table 6 reports the values considered for the parameters of SA algorithm in this study. 

According to this table, minimum and maximum numbers of iteration have been set to 

1000 and 3000, respectively, with the values of T0 and α set to range in 50 – 100 and 0.8 – 

0.9, respectively. Finally, optimum values of the three parameters are indicated in the same 

table. 

 

Table 6. Levels of parameters of SA algorithm. 

optimum values High

(3) 

Medium(2) Low(1) Parameters 

2000 3000 2000 1000 MaxIt 

100 100 75 50 T0 

0.85 0.9 0.85 0.8 alpha 

 

 



 

First of all, the presented mathematical model was validated. For this purpose, a sample 

problem was generated and solved in GAMS. This sample is presented in Table 7. In this 

stage, maximum processing time was limited to 2 h, meaning that the GAMS software was 

set to process the problem for no longer than 2 h. The SA algorithm was implemented and 

run in MATLAB R2017b. Table 8 indicates dimensions of the problem in this research. As 

is evident from Table 8, 30 sample problems with different counts of customers, periods, 

charging stations, and vehicles were considered. It is worth noting that the number of 

customers ranged from 5 (for problems 1 and 2) to 120 (for problems 29 and 30). That is, 

as the problem number increased, the problem complexity increased in terms of the 

number of customers and vehicles. The developed problems were solved by GAMS and 

the SA optimization algorithm, with their results analyzed and evaluated properly.  

 

Table 7. Dimensions of the produced problems. 
Vehicle Charging 

station 

Period Customer Sample 

problem 

Vehicle Charging 

station 

Period Customer Sample 

problem 

1 5 2 2 2 16 45 5 4 5 

2 5 3 2 2 17 50 3 4 5 

3 7 2 2 3 18 50 5 5 6 

4 7 3 2 3 19 60 4 5 6 

5 10 2 2 3 20 60 7 5 6 

6 10 3 2 3 21 70 4 5 6 

7 12 3 2 3 22 70 7 5 6 

8 12 4 2 3 23 80 4 5 6 

9 15 3 2 3 24 80 7 8 8 

10 15 4 3 4 25 90 4 8 8 

11 20 3 3 4 26 90 7 8 8 

12 20 5 3 4 27 100 4 8 8 

13 30 3 3 4 28 100 7 10 10 

14 30 5 4 5 29 120 4 10 10 

15 45 3 4 5 30 120 7 10 10 

 

 

 

Table 3 reports the results of solving the 30 sample problems by the two models. Focusing 

on this table, it is evident that the GAMS could return the solution for problems 1 up to 

problem 14. That is, any further increase in the complexity of the problem made the 

GAMS fail to produce the solution within the defined maximum processing time. In initial 

sample problems, both models returned the same or closely similar values of cost function. 

However, with increasing the numbers of customers, vehicles and charging stations, 

superior power of SA algorithm over GAMS became clearly evident. For instance, 

processing time of the GAMS solver for problem 13 was as long as 6181 s while the same 

problem could be solved by SA algorithm within no longer than 151 s. This was while both 

methods returned very close cost function values. For small-scale problems, the processing 

time of the GAMS code was shorter than SA, but it took much longer as the problem 

complexity increased, so that the processing time went beyond our measurement window 

from the problem 14 on. In general, it was observed that the SA algorithm gives exact 

solution for small-scale problems, indicating the suitability of this algorithm for such 

problems, so that it can be used to solve the model presented in this research. On the other 

hand, it was evident that the processing time for the exact solution method increased 

exponentially with increasing the problem size, making it infeasible to apply for large-

scale problems. This was while the processing time of the metaheuristic algorithm 



 

increased so slowly with increasing the problem size, indicating its suitability for solving 

large-scale problems. 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Values of cost function and processing time for running the sample problems. 

 
Optimality 

gap (%) 
Processing time (second) Objective function Sample 

problem SA GAMS SA GAMS 

0 7.48 2.24 1158.594 1158.594 1 

0 9.13 3.41 1175.352 1175.352 2 

0 9.4 10.47 1263.331 1263.331 3 

0 9.79 9.37 1301.31 1301.31 4 

2.22 36.69 112.41 1587.85 1571.671 5 

1.03 45.07 163.85 1610.128 1602.315 6 

0 38.09 235.19 1592.205 1592.205 7 

3.47 45.45 311.76 1686.749 1658.427 8 

4.67 87.16 1589.78 1862.55 1817.051 9 

4.02 83.35 1737.84 1809.73 1772.314 10 

2.66 86.94 3491.64 1890.61 1863.484 11 

3.69 101.62 3807.29 1948.96 1909.552 12 

4.69 151.05 6181.33 2384.22 2315.105 13 

6.22 169.95 6440.21 2510.84 2413.154 14 

- 151.02 - 1744.68 - 15 

- 158.11 - 1660.27 - 16 

- 267.04 - 2688.45 - 17 

- 254.77 - 3032.41 - 18 

- 299.5 - 2955.78 - 19 

- 319.42 - 3385.63 - 20 

- 360.19 - 3648.59 - 21 

- 400.99 - 3892.55 - 22 

- 397.78 - 4144.22 - 23 

- 443.22 - 3758.84 - 24 

- 459.32 - 7681.19 - 25 

- 520.63 - 7913.85 - 26 

- 493.36 - 8147.57 - 27 

- 696.32 - 10444.81 - 28 

- 725.29 - 10854.37 - 29 

- 742.01 - 11774.13 - 30 

 

 

 

 



 

 

Figure 5 shows the evolution of processing time with GAMS and SA. As mentioned 

earlier, with increasing the sample problem size, the processing time increased 

exponentially when GAMS software was employed, while it increased at a rather slow rate 

with SA. As is evident from the figure, focusing on problem 14, the two models returned 

processing times that differed by about 6270 s, highlighting the efficiency of the SA 

algorithm for large-scale problems. In addition, GAMS needed some 6500 second to solve 

problem 14 while SA algorithm could solve the same problem within about 200 s. 

Ultimately, SA algorithm needed only 750 s to solve problem 30, far better than the result 

of GAMS. All of these results indicated high efficiency of the SA algorithm for large-scale 

problems. 

 

  

(b) (a) 
  

Figure 5. Processing time for running the optimization model on different sample 

problems: (A) GAMS, and (B) SA. 

 

In Figure 6, it is evident that the processing time grows exponentially with increasing the 

problem size, indicating NP-Hard nature of the problem considered in this research. Our 

results show that the SA algorithm can produce similar solutions to those of GAMS for 

small-scale problems. With increasing the number of customers and periods, however, the 

processing time of GAMS software increased so much that it failed to converge to solution 

following several hours. This was while the SA algorithm returned much better solutions 

for the same problem. Therefore, SA algorithm is recommended for cases with larger 

numbers of customers. Figure 5 demonstrates the changes in the value of cost function 

with the problem size. According to this figure, it is trivial that the cost function value 

increases gradually with the problem size when SA algorithm is the solution method of 

choice. This was while the GAMS model could provide solutions for problems 1 through 

problem 14, failing to address further problems due to extended processing time. 

 



 

 
Figure 6. Values of cost function for SA and GAMS. 

Lack of real data on the parameters of this research represents the main limitation suffered 

by this study. As of present, utilization of EVs in the logistics systems and distribution 

networks is very limited. Indeed, today’s EVs are mostly developed for personal 

transportation applications, with the EV manufacturers largely ignoring the development of 

EVs for product distribution applications. In general, it can be stipulated that most of the 

research on EV routing has been merely academic. Due to lack of required infrastructures 

for EV transportation in Iran, it is almost impossible to find an Iranian company working 

on EVs for distribution and logistics purposes. 

 

4. Conclusion and further research  

In this research, a mathematical model and a metaheuristic algorithm based on simulated 

annealing (SA) were presented for a multi-period electric vehicle (EV) routing problem. In 

order to evaluate the performance of the proposed SA algorithm, its results were further 

compared to those of GAMS optimization model on 30 different sample problems with the 

same cost function. Focusing on the electrical nature of the vehicles, we assumed that the 

EVs can be recharged at not only the charging stations but also customer nodes where 

charging facilities were available. Considering the periodic nature of the problem, we 

assumed two groups of customers, namely those with a delivery due date and those without 

one. Operationally speaking, the present research possesses different aspects for executives 

at distribution companies. Indeed, this model can be applied if customers’ demands and the 

corresponding delivery dues are known beforehand. Our results indicated the superior 

performance of SA algorithm compared to GAMS for complex problems. The results 

further showed that the SA can well solve the optimization problem within reasonably 

short processing times, as compared to GAMS, as the problem complexity increases. The 

results also showed that a requirement for achieving optimal solution is proper setting of 

the SA algorithm parameters. All in all, this model can serve as an appropriate decision-

making model for managers in the distribution and logistics industry. There are some 

opportunity of future research based on the findings of this work for researchers.  Further 

researches may be conducted by focusing on considering a time window for customers in 

the corresponding period, application of a charging function for forecasting the recharging 

time, considering the parameters with associated uncertainties, and utilization of other 



 

optimization algorithms, other metaheuristic methods and comparing & benchmarking the 

results.  
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Appendix A: Full-words list: 

 

EVRPTW: Electric Vehicle Routing Problem with Time Window  

GVRP: Green Vehicle Routing Problem  

G-VRPPD: Green-Vehicle routing Problem with Pickup and Delivery   

HVRP: Hybrid Vehicle Routing Problem  

EVRP: Electric Vehicle Routing Problem  

DARP-EV : Dial-a-Ride Problem with Electric Vehicle  

MDVLRPTW: Multi-Depot Electric Vehicle Location Routing Problem with Time 

Windows  

EFV-CSP: electric freight vehicle Charge Scheduling Problem 

F-GVRP: Fuel efficient Green Vehicle Routing Problem  

LRPIF: location-routing problem with intra-route facilities  

2sEVRP: Two-stage Electric Vehicle Routing Problem  

E-VRP-NL: electric vehicle routing problem with nonlinear charging  

H2E-FTW: hybrid heterogeneous electric fleet routing problem with Time Window 

BEVRP: battery electric vehicle routing  

2E-EVRP-BSS: two-echelon capacitated electric vehicle routing problem with battery 

swapping stations   

MFGVRP: mixed-fleet green vehicle routing problem  

https://doi.org/10.1016/j.swevo.2021.100975


 

GMFVRPPRTW:  green mixed fleet vehicle routing problem with partial battery 

recharging and time windows  
CGVRP: Capacitated Green Vehicle Routing Problem  

PEVRP: Periodic Electric Vehicle Routing Problem  
DFC: design for changeability  

BS: Battery substitute  
TD: Time dependent  

H: hybrid 


