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A theoretical investigation of an averaged-structure 
eddy viscosity model applied to turbulent shear flows. 

By A. A. Khossousi. 

ABSTRACT 

The project is concerned with the study of a new 
mathematical model in which the structure of turbulence is 
described by averaging the effects of the eddies of various 
scales over the whole volume of flow. The model assumes that 
the turbulent stresses can be presented in a way analogous 
to the laminar stresses and the correlations between the 
point in question with those at other locations in the flow 
follow a distribution which may be assumed Gaussian. 

The model is initially applied to the steady incompress- 
ible turbulent Poiseuille flows between parallel flat plates 
and through circular pipes. The Navier-Stokes equations are 
simplified and solved analytically, with the aid of Integral 
Transform methods and asymptotic expansions. With the 
appropriate numerical values for the model constants, the 
approximate asymptotic solutions for the mean velocities are 
found in good agreement with the universal laws and with the 
experimental data. 

To test the model further, the steady incompressible 
turbulent boundary layer flow along the surface of a solid 
body is studied. It is shown that under the similarity 
transformations the boundary-layer equations may be 
simplified to give, to the first approximation, ordinary 
differential equations of order three. These equations are 
similar to the Blasius and the Falkner-Skan equations except 
for the presence of the additional terms representing' the 
turbulent effects. 

With the usual no-slip conditions at the wall, numerical 
solutions to these non-linear equations are obtained for 
various values of the flow parameters.. For the special case 
when the pressure gradient related parameter 13=-l, it is 
described how an approximate analytic solution can be 
obtained, by extending the existing solutions of the 
Falkner-Skan equation. * 



1. INTRODUCTION 

1.1 What is turbulence? 

In most text books which deal with the subject of 

turbulence, the authors begin their description of this type 

of flow by referring to its complex nature, and it is 

generally agreed that turbulence can not be defined 

precisely and universally. While some theories may apply to 

one flow condition, they may not apply to another, hence 

different turbulent motions may require different 

treatments. 

Earlier theories of turbulence were based on analogies 

with the kinetic theory of gases, and assumed discontinuous 

collisions between discrete fluid particles. Following G. I. 

Taylor (1935), who first proposed that the velocity of the 

fluid in a turbulent motion may be assumed as a random 

continuous function of position and time, Hinze (1959) 

defined turbulence as "... irregular condition of flow in 

which the various quantities show a random variation with 

time and space coordinates, so that statistically distinct 

average values can be discerned" [5]. 

This general definition however, does not describe the 

phenomenon adequately, for not all chaotic motions are 

describable in terms of random functions. Ruelle and Takens 

(1971), discuss various phenomena occuring in the motion of 

a viscous fluid when a flow parameter, such as the Reynolds 

number R, is increased. For sufficiently small values of R, 

the physical parameters describing the flow at any point are 

constant in time, if the system is not subjected to any 

external action. As R increases the motion may remain steady 

but change its symmetry pattern, or may become periodic in 
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time. If R increases further, the motion becomes very 

complicated, irregular and chaotic. This is referred to as 

turbulence. When statistical properties of a turbulent 

motion can not be obtained, then the chaotic solutions of 

the differential equations are usually sought as the 

explanation of turbulence. 

Fortunately, in engineering and meteorological 

problems no detailed description of the fluctuating fluid 

particles is needed and only the approximate effects of 

turbulence on the mean motion is considered adequate. This 

enables the problem of turbulence to be treated 

mathematically. 

1.2 Where the difficulties arise. 

The common practice in dealing with turbulent motions 

mathematically, is to split up the flow properties (such as 

the velocity and pressure) into a mean and a fluctuating 

component, and time-average the differential equations 

governing the flow. This process which is described in more 

detail in chapter two, gives rise. to the appearence of extra 

terms, formed by the (mean) products of the velocity 

fluctuating components, and are known as the Reynolds 

stresses. It is the determination of these stresses which 

has proved to be the major cause of difficulties. The usual 

method of solving this problem is to use mathematical models 

capable of approximating the effects of the Reynolds 

stresses in terms of other flow quantities. Examples of such 

models are presented in the next section. 

Another area of difficulty is due to the fact that the 

governing equations are three-dimensional. Although some 

problems of interest seem to be two-dimensional, turbulent 
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fluctuations are essentially three-dimensional in character. 

Any method of describing a turbulent field therefore, should 

be able. to take this into account. 

If solid boundaries are present, as in the channel and 

boundary layer flows, further complications develop, for a 

turbulent field experiences gradients. It is these types of 

flows we shall be investigating with the aid of our model in 

this report. 

1.3 Various turbulence models. 

The contents of this section is not intended as a review 

of the subject. We shall briefly discuss various approaches 

to the problem of turbulence, in particular the eddy- 

viscosity approach, as our aim is to identify and hence 

improve on some of the shortcomings and deficiencies 

associated with these models. 

The energy tensor of turbulent fluctuations Z*j (=-pu; u, 

arise from statistical correlation between streamwise and 

cross-stream velocity fluctuating components, u! and ut. 

They are known as the Reynolds or turbulent stresses and 

represent the exchange of momentum between adjacent layers 

of fluid by the fluctuating fluid velocities. 

In order to be able to solve the governing equations 

(2.9) for any type of turbulent flow, the Reynolds stresses 

must be known. Since, no direct ways of finding these 

stresses are known at present (except in cases such as 

isotropic turbulence formed behind grids [1, ch. VII]), it is 

necessary to replace them by mathematical models to 

represent their effects in terms of quantities which can be 

determined. 
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This kind of approach to the problem of turbulence was 

originated by Boussinesq in 1877. He suggested that the 

Reynolds stresses can be presented in a form analogous to 

the laminar stresses, by the product of the mean velocity 

gradient 2v/ry, and a turbulent or eddy viscosity at , which 

is a property of the local state of turbulence. 

However, experiments have shown that v, is not a 

property that can be determined locally. It is influenced by 

effects of the eddying motion at other locations in the flow 

and depends largely on the structure of turbulence at the 

point in question. 

-Among the well-known mathematical models, put forward to 

express a, in terms of calculable quantities. (like the mean 

velocity ü), are 

(i) Prandtl's (1925) mixing length hypothesis (MLH), 

-'t =t' 11 1, 
where . is the mixing length. This model is quite 

attractive to users for its simplicity, and is capable of 

producing a fairly good but not accurate picture of 

turbulence in two-dimensional flows. The difficulty with 

this model is the mixing length, which has to be prescribed, 

and its size varies according to the distance from the 

boundary. 

(ii) Von Kärmän's similarity 

This model avoids the 

mixing length, by assuming 

ar 
Since the mixing length 

hypothesis (1930). 

difficulty of specifying the 

1- 

is determined by the local 
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properties of the mean flow alone, the predictions made by 

this model, have been found to deviate from experiments, 

except in the regions close to a wall. 

(iii) Eddy-viscosity formulae. 

These models have the general form 

t '10 u"Y. f(Y)I 
where u, and yo are characteristic global velocity and 

length scales, respectively. The term f(y), refers to some 

function of position in the flow, and its form varies 

according to the type of flow under consideration. These 

models are" not very attractive, for they have a limited 

degree of universality. [18]. 

Simple models such as those listed above, determine the 

eddy viscosity locally, and lack the facility to capture the 

structural effects of turbulence. Furthermore, since the 

eddy viscosity is directly related to the mean velocity 

gradient (as in the MLH), it vanishes when the mean velocity 

is zero or has its maximum value, as at the centre of a 

pipe, where the Reynolds stresses are not only non-zero, but 

may in fact be quite large. 

Another class of models, capable of taking account of 

the non-local character of turbulence are the differential 

models. They determine turbulence properties from the 

convective transport differential equations. 

In his 1945 model, Prandtl proposed that the velocity 

scale, which in his earlier model was given by QMýau/ayý , 

should instead be presented by the square root of the 

turbulence kinetic energy, (=1/2 ut'uj=), which may be found 
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from the solutions of a differential transport equation for 

1C. The length scale still remained to be prescribed 

algebraically. Following this proposal and with the 

availability of high speed computers, various forms of 

differential models have since been introduced. A number of 

such models prior to 1972, are examined, compared and 

developed by Launder and Spalding [18]. The authors overall 

conclusions were: "In most circumstances, one-equation 

energy models are only marginally superior to Prandtl's 

mixing length' model, for the transport effects on the 

turbulence length scale are not accounted for". They added 

that the more complex Two-equation models in which the 

turbulence length scale is also determined from the 

transport equation, appears to be necessary, if a more 

accurate prediction of turbulence is desired. 

One of the most popular of the two-equation models, is 

the (linear) It -6 , in which the length scale appears in 

the form of a turbulence energy dissipation rate C, where 
3/2 

0e, A 

and the eddy viscosity is represented by 

et =C kIC-1, 
where c is an empirically determined constant. 

The k-E model is currently one of the standard models 

in use in engineering applications. Its performance in 

channel flows has been tested by Henry, Reynolds and El 

Telbany (1981,1984), and others. The model was found 

capable of predicting the velocity profiles (sufficiently 

away from the walls), with good agreement with measured 

data, but the turbulence energy and hence eddy viscosity 

were not well predicted. The model can not be applied in the 
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near wall regions, as the parameters become highly sensitive 

there. Consequently, the model equations are usually matched 

to an empirically determined equation, such as the 'law of 

the wall', near the boundary. 

With rapid advances in the computer technology, most of 

the research efforts in recent years have been directed 

towards the 'second-order' closure models, in which every 

component of the Reynold stress tensor is determined from 

the transport equations [19,21,221, and 'large-eddy' 

simulation, in which detailed computation of the time 

evolution of the three dimensional turbulent field is 

performed directly [20]. 

The difficulty with second-order models is the modelling 

of higher order turbulence correlations, required in 

deriving the transport equations for the Reynold stresses. 

As for the large-eddy simulation, finite computer capacity, 

prevents a direct numerical solution of eddies of small 

scales. This approach therefore, does not avoid the 

difficulty of modelling the turbulence in the near wall 

regions. The 'subgrid' models, which are usually used to 

simulate the small eddies in the vicinity of a wall, have 

been tested in channel flows by Kaneda and Leslie (1983). 

They examined the models of Schumann (1975) and Moin and Kim 

(1982), and found that they were in need of substantial 

improvements. 

In addition to the difficulties outlined above, there is 

another disadvantage with these approaches, namely the 

enormous amount of computer time and memory they require. 

These models are therefore not very practical in simpler 

engineering problems, -unless the necessity of using such 
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expensive models can be justified. 

Speziale (1987), noting the shortcomings of the k -ý 

model and the disadvantages of the alternative direct 

simulation and the second-order models, developed a 

nonlinear k -£ model, which appears to have improved the 

predictions of the normal Reynolds stresses in channel 

flows. This model, as well as suffering the same kind of 

complications as the linear A-6 mentiond earlier, requires 

the introduction of an additional model constant, which 

further complicates the calculations of a turbulent field. 

1.4 The aim of the project. 

In view of the great number of turbulence models which 

are available, scientists and engineers are often faced with 

the problem of choosing the most suitable, to serve their 

purposes. They have to decide on whether to employ a complex 

model to achieve a greater accuracy, or settle for a crude 

estimate and use a simple model. Considering those factors 

such as simplicity, time and costs, it is not surprising to 

find that many users favour simpler models, for a complex 

one can not always be guaranteed to produce a very accurate 

result after all. 

The non-local effects of turbulence, as mentioned 

earlier, play an important role in determining the structure 

of a turbulent flow. As far as taking account of these 

effects are concerned, it appears that a user is forced to 

resort to one of the complex models (such as the k-C ), or 

alternatively, disregard the non-local effects completely 

and choose a simple model (such as the MLH). 

This apparent gap in turbulence models, can be regarded 
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as the main inspiration of the work presented in this 

report. The aim is to develope a relatively simple 

mathematical model of turbulence in which the effects of the 

eddies of various scales, originating at some distance away 

from the point in question, are averaged over the whole 

volume of flow. Such a model should therefore be able to 

describe the 'average-structure' of a turbulent field. In 

addition, the three-dimensional character of turbulence is 

also presented, through the averaging process. 

The model is introduced in chapter two, along with the 

basic equations which will be used in the subsequent 

chapters. As the preleminary test, it is applied to the 

simple problem of fully developed Poiseuille flow between 

parallel flat plates, for which an approximate analytic 

solution is obtained. The method of solving the equations of 

motion with the aid of the integral transform method and 

asymptotic expansions are described in chapter three. The 

behaviour of the velocity curves, for different values of 

the model constants and the Reynolds number are presented in 

the form of graphs. 

In chapter four, the application of the model to the 

fully developed Poiseuille flow through circular pipes is 

examined. This flow is slightly more complicated than the 

channel flows. But once the equations are transformed into 

cylindrical polar coordinates, the method of approaching the 

problem is basically similar to that discussed in chapter 

three. Based on the approximate asymptotic solution present- 

ed for the mean velocity, an expression for the coefficient 

of resistance in smooth pipe is also presented. The results 

produced by this expression are compared with those given by 
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the Prandtl formula, deduced from the logarithmic profiles. 

Chapter five belongs to the boundary layer theory, which 

is the final problem to be investigated with the aid of the 

model. This flow is of great practical importance and is 

more complex in comparison with the Poiseuille channel and 

pipe flows. Following a short introduction, the method of 

approximating the governing equations to obtain the boundary 

layer equations is described. It is shown how these 

non-linear partial differential equations may be transformed 

through similarity variables, to give (to the first approxi- 

mation) an ordinary differential equation, similar to the 

well-known Falkner-Skan equation. It will be seen that when 

the pressure gradient is absent, this equation reduces to a 

Blasius type equation, applicable to turbulent flows. These 

equations are solved numerically, by using a Nag library 

routine. For the special case /3 = -1, it is shown how an 

approximate analytic solution may be obtained, by extending 

the laminar solution of the Falkner-Skan equation. In all 

cases, the no-slip boundary conditions at the walls are 

adopted. 

All turbulent shear flows investigated in this report 

are assumed steady and incompressible, for simplicity. 

The Vax 750 main frame computer at the City of London 

Polytechnic was used to produce the results and the graphics 

presented in this document. The programmes were written in 

Fortran and Double Precision variables were used to minimise 

the rounding errors and to achieve greater accuracy. 
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2. THE GOVERNING EQUATIONS, ASSUMPTIONS AND DEFINITIONS. 

Throughout this chapter, unless otherwise stated, all 

equations are written in the Cartesian coordinate system, in 

which u, v and w are the respective components of the 

velocity vector V in the x, y and z directions. 

2.1 The Navier-Stokes (N-S) equations. 

The mathematical equations governing the motion of a 

viscous Newtonian fluid are known as the Navier-Stokes 

equations. They consist of three equations of motion or the 

momentum equations and the continuity or conservation of 

mass equation. In this section we shall briefly discuss 

these equations and outline some of their important 

properties. 

Assuming the fluid as a continuous medium, the equations 

of motion can be derived by applying Newton's second law of 

motion to a small rectangular box of fluid contained within 

the flow and moving with it. That is to say the product of 

the mass and acceleration must balance the sum of the forces 

acting on this box of fluid. In laminar flows, the forces 

responsible for the motion of fluid are the body forces such 

as the gravity force and the surface forces or stresses 

which depend (linearly in Newtonian fluids) on the rate at 

which the fluid is strained by the velocity. 

The stresses acting on a cube of fluid form the 

components of the stress tensor, Zii (i, j=l, 2,3). The second 

subscript indicates the coordinate along which the stress is 

acting and the first refers to the direction normal to this 

coordinate. The stress tensor is symmetric and thus Tji=r,, - 

They are known as the shear stresses if i$j and normal 
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stresses if i=j. For a fluid at rest -P (i=j=1,2,3), 

where P is the pressure. 

The stresses can be regarded as a measure of fluid 

resistance to deformation through the action of velocity. 

The rate of deformation in Cartesian tensor notation is 

defined by 

U. tA 

which is known as the strain rate tensor and has the 

components 

°"xx U/ax ' °"ry = a%2y °'s= = aWýaz (2.2) 
and 

0= yz =ä (a "Yo l+ aý/a x) 11 
(2.3) 

0. yZ ý ir _ 2, 
( ßäV/az 1 

o- XZ = OZX --( 
au/az 

+ 
aW/ax). 

The stress-strain rate relationship for a Newtonian 

incompressible fluid in motion can be presented by 

ZL J+., u o- ji 
(2.4) 

-P Eli z (au, ýaxý + au; Ian 
where 

Sii =0 if i0j 

=1 if i=j, 

and ,u is the molecular viscosity [9]. 

In stating the above relationship, it should be noted 

that the fluid is assumed isotropic, so that the relation 

between the components of the stress and the rate of strain 

is the same in all directions. 

By considering the net balance of stresses acting in the 

direction i, on an elemental cube, (in the limit as the 
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sides of the cube tend to zero) and applying Newton's second 

law, the momentum equations can be obtained, which in 

Cartesian tensor notation are 

/o(. ui/at+"iaLÄ va )2 o-i1/2Xi+ß` ' rz_51 
where the fluid is assumed incompressible (i. e. /O= constant) 

and BI represents the body forces acting in the direction i. 

The terms within the brackets on the left hand side of (2.5) 

are the acceleration terms which include the so called 

convective acceleration, uj ? ui1aI j. 

Combining (2.4) and (2.5) yields the momentum equations 

(2.6a), which together with the continuity equation (2.6b), 

form the Navier-Stokes equations for an incompressible 

laminar flow with constant viscosity. 

a u; a u: aP-, 'al ui 
t p( at + ui a1; 

) _-6 axe + axe axe :, (2.6a) 
and 

au; /aX, =o. (2.6b) 

Detailed derivation of the momentum and continuity 

equations are given in references [9] and [17]. 

2.2 The governing equations for turbulent flows. 

The N-S equations (2.6) appears to be applicable to 

incompressible turbulent flows in which the effects of the 

chaotic motion at molecular scale is negligible compared to 

the smallest possible eddies which may be present in the 

flow. 

As mentioned in the previous chapter, various turbulent 

quantities may be expressed as having a mean and a 

fluctuating component. In turbulent flows, the dependent 
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variables vary as functions of time, regardless of whether 

the flow is steady or not. It is therefore convenient to 

take the time-average to represent the mean part of a 

turbulent quantity. 

For an instantaneous variable pl, define the time- 

average quantity . 
5, at a fixed point in space, by 

T +i 

fi(t)= 1 f 0(t) dt ; T. << t «T it 
, T. 

(2.7) 

where T, is the averaging time. The fluctuations are assumed 

to be very rapid, allowing a long enough averaging period, 

during which a significant mean to be formed and yet so 

short that there would be negligible variation in the mean 

in that period. A quantity averaged over such a scale can be 

regarded as instantaneous in the macroscopic scale. 

We can then write 0=ß+y!; where jl is the time-average 

and O'the fluctuating components. In taking time-averages 

the following rules apply. 

For any two variables a and b and a constant c, 

if a=ä+ a' and b=b+ b', 

then a+b=a+b, 0, 

a. b = a. b +a. b' , 2a/ax = 13ä/2x (2.8) 

ä=ä fadx= Jädx, 

and c. a = c. ä 

By putting u1 = üý + ui and P=P+ P' in (2.6) and 

taking time-averages of both sides of the equations in 

accordance with (2.7) and (2.8), we can obtain after 

simplifying and rearranging, the momentum and continuity 

equations for incompressible turbulent flows, as 
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10ýý+ý, 
öP 

-, ýo uu(2.9a) 
't xi i 

and 

a'"i /axi - o, [9 ]. (2.9b) 
The above equations are similar to the laminar flow 

equations (2.6), -except for the presence of the terms 

involving the Reynolds stresses tti (_ -p uj uff ). These terms 

reflect the turbulence effects on the mean motion and 

as mentioned before, represent the rate at which the 

momentum is exchanged between layers of fluid through 

fluctuations. 

Various methods of determiningthe Reynolds stresses, 

were outlined in chapter one, where the disadvantages of 

some of the popular turbulence models were briefly noted. 

Let us now introduce a model, in which the Reynolds stresses 

are determined by averaging the structure of turbulence over 

the neighbouring points. 

2.3 An 'averaged-structure' turbulence model. 

The model we are about to introduce is based on the 

Boussinesq assumption that the Reynolds stresses may be 

presented in a form analogous to the laminar stresses. Hence, 

by analogy to (2.4), we propose a form for the the Reynolds 

stresses which at any point X, with the mean velocity and 

at time t, is represented by 

Ti (X u; �j 

_ -P P(X, t) Sjj -P f F(X , t1 X-X'1 ý{, ý 
(2.10) 

voI 
M .r Je: /V ýj(V Ai t)J Výy Iý ) 

where 

-P Pt(X, t)stj are Reynolds normal stresses, 

and 

P F. are Reynolds shear stresses. 
311 iI Ii 
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The weighting function F, which varies with space, time 

and position, represents the correlation between X and X', 

where X' is any point within the flow. The effects of the 

eddies formed at the points X' on the point X, are averaged 

by means of a volume integral, which is taken over the whole 

volume of flow. 

We may choose F to be given by the products of a 'shape 

function', F,, and a 'position function', F: . In steady 

flows for example, we might have 

F(X , X-X' )=öF, (X). F, (I, (2.11) 

where c, is a constant. 

The shape function is required to represent the rate at 

which large-scale turbulent motions, draw free-stream fluid 

into a boundary layer. In addition, since near a wall 

viscous friction predominates, we might choose a form for F, 

which would vanish at the walls and varies with the space 

coordinate normal to the direction of mean motion alone. 

Another property that a shape function needs to possess, is 

to have a diminishing variation with the distance away from 

the boundaries, so that it would behave like a constant in 

the free-stream region of a flow. The exact form of the 

shape function varies according to the problem under 

consideration. The equations (3.6), (4.5) and (5.40) are 

examples of the shape functions, satisfying the requirements 

noted above. 

For the dependence on IX-X( , we choose an isotropic 
wN 

variation of rapid decay, like the Gaussian distribution 

function 

F1 (IX-X'I) = exp(-2e(X - X' )'' ). (2.12) 

The standard deviation parameter o- , is a measure of 
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spread of the points X'with respect to the point X, so that 

the smaller this parameter is, the closer the points X'are 

located to X and hence a greater influence is exerted on the 

body of fluid at X, by the eddies of small scales. If on the 

other hand, the effects of the eddies formed at some 

distance away from the point in question is considered, then 

o- would be of larger magnitude. 

In the following chapters, the model is examined by 

applying it to some of the standard problems of fluid 

dynamics. 
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3. FULLY DEVELOPED STEADY POISEUILLE FLOW 
BETWEEN PARALLEL FLAT PLATES. 

In this chapter the application of the model to the 

relatively simple and well-known problem of incompressible 

steady turbulent Poiseuille flow between, two stationary 

parallel flat plates, at a distance 2h apart, is examined. 

The governing equations for this particular problem and an 

approximate analytical solution for the mean velocity is 

presented in the following sections. The method of solving 

the equations with the aid of the integral transform method 

and asymptotic expansions is described in considerable 

detail. With the appropriate numerical values for the model 

constants, the predicted mean velocity profiles are compared 

with the results produced by some of the similar models and 

the experiments. 

3.1 Equations of motion. 

Let the x axis be parallel to the direction of mean 

motion and ü, v and w denote the respective components of 

the mean velocity vector in the x, y and z directions. The 

main characteristic feature of the Poiseuille channel flows 

is that the components of the mean velocity vector V, may be 

assumed independent of the space coordinates x and z and the 

only non-zero component is the one along the direction of 

mean motion [15]\. Hence, we can write 

V= {ü(y) ,0,0}, (3.1) 

and the time-average momentum equations (2.9a) reduce to 
1 

,o 
aP/ö xi =a 

51/2Aj2x1 
+* äz; j/. axj (3.2) 

assuming steady flow with negligible body forces, and y(= ý 

is the kinematic viscosity. 

Combining (3.2) and (2.10 ), and dropping the bars above 
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the mean quantities for convenience, yields 

I 2P EIL Ui +? P S-' f F. C äßt+ : d'}(3.3) 
ýJ 

Vol 
which can be written as 

(P/ +P) .aptr, yfF. ad x' . Y" N 

( P/P t P-tý 
-i 

2r % 
F, äyß (3 

.4) 

and aCP/P+Pt)c 0, 
where 

and F, . exP{-1o-a(x -X')ý [see (2.12)], (3.5) 

Bearing in mind the purposes which the shape function F, 

is required to serve (as discussed in previous chapter), the 

following form for the function F, (y) is proposed. 

e F (y) = 
h/'ýI 

cost, ( h/), ) - cvsiCY/7º)), (3.6) 

which is an even function of y due to the parabolic nature 

of the velocity profile. Here, h is the distance of a wall 

from the centre line (y=0), 'is a characteristic length 

scale, and the parameter co is to be determined experimenta- 

lly. 

y=h 

u(y)'-ý ------- ------- --------- x 

y=-h 

Schematic illustration of flow. 

The boundary conditions to supplement the system (3.4) are 

u=F=O aty=: h. (3.7) 

-The volume integral in (3.4) may be presented in a 

simpler form, as shown below. 

Vol 
F" 

d yýr') 
c X' = C, F y) f Fa iX- X' 

ýc 
X' 

poi y 
m ep k 

= Co 1=, 
fff 

exe f-., [ (x- X. ), + (y_y")'+ (Z 1) } du äj'oiz'drý 

-" -0 ý dy' 

=2w ß- cF%ý ex? {-C Y-Y')7 &}iy 
, _Ih 

Y' 
1 



It can be seen that the volume integral depends on y 

only and from the second and third of the equations (3.4) we 

can write 

and therefore (P//, 3 +Pt) varies with x alone. Hence the 

equations (3.4) reduce to (remember u depends on y only) 

( P/P+f1t =V4: -U , +n o? C. yF Jexp{_ ö,. (Y-y')1} ýý, 
oly'= k. 

where K is a constant. 

Integrating once with respect to y, yields 

h L+ 
7TCtI F exp f- , (y-y')z} ýy, ýy' ky+ kß(3.8 

Y ;'') 

where K, is a constant. 
The second term on the l. h. s. of (3.8) can be simplified 

by integrating by parts. 

fh 
ºý 

,( y- y")ý}U(y") dy. 
. h ezr{ 1o , (y-r')2 }d 

y' - fa y, exP{-zCO, 
d% 

exp{ spaC 
Y-y")"'} tI(Y') alY, 

since 
Y 

-ý 

ä 
y, ezP{- y-y')zj =- ^y ezP{-ýý, (y-y')1}. 

Hence, the equation (3.8) reduces to 

V -ý- TT Co-" C. FY=ky+k. , (3.9) 

where 

V(Y) =J Q(y') exp{ - zä 
As u(h) = u(-h), then u and therefore Qr are even 

functions of y. Since F, is even, then the l. h. s. of (3.9) 

is odd, and hence the r. h. s. must also be odd, which implies 

K, = 0. 

Before attempting to solve the equation (3.9), it must 

be made dimensionless by the usual scaling method. 
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3.2 Equation of motion in non-dimensional form. 

Define the dimensionless variables ü, 'J, l', a, b and c by 

u=u, ü(y), y= h'7 , y'= hi', 

h= EL 
, o' = bh ,k= -u /h , 

R=u,, h/, ý and c =7Tc. h1/u,, (3.10) 

where u. is the friction velocity defined by U. =, /Cr/yý zoaý, dul 
dr1: 0 

and R is'the Reynolds number. 

Combining (3.9) and (3.10), gives the dimensionless 

equation of motion 
jU go) (3.11) 

Robs JI 
where 

a 

costi a- cos%% a (3.12) 

and 
0ä(, 1) 

ü 

The circumflexes, 

boundary conditions 

u(1) = fA . 

rP{-s'6'("1-ý,, 
1Jdi'" 

(3.13) 

indicate dimensionless quantities. The 

(3.7), become 

(1) =0 at "] =! 1. (3.14) 

3.3 An approximate analytical solution. 

In solving the implicit equation (3.11) for ü, we seek 

an approximate series expansion in powers of "1 to represent 

the product of F, (1) and dß! (1) /d1 , which would then enable 

us to evaluate the mean velocity by simply integrating 

(3.11) across the channel. 

For reasons which will become apparent, it is convenient 

to multiply throughout (3.11) by exp{-lb, (j -7 )1 } and 

integrate from -1 to 
, 
1. The circumflexes are dropped for 

convenience. 
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d'7 
+`baf'F cl 

_- /' IexP{_ b=(I-1 }c1 . 
But 

r' du 
exP{ - ýL 

C- ý)1} d1_-f Iu 01, 
ý 

So if we put 

'Y' (1) =d oCT)/dI 
, 

and 
1 

1)= 
1 

ezp{-262( (3.16) 
_, 

(3.15) 

then I 

ý(ý) + £'[, F(l)exP{-2,6L(1-, )2}«l) 4l_-RYI), (3.17) 

where 

e= Rcb1. (3.18) 

This equation is now to be solved for , ý(J). 

Two possibilities need be considered in solving (3.17). 

(i)- if E is smaller than the lowest eigenvalue in which 

case (3.17) could be solved as a Neumann series, by 

assuming a solution of the form 

00 
Lin 

(3.19) 

=o 

(ii)- if I is not sufficiently small to ensure the converge- 

nce of the above series, then a direct solution of the 

equation seems desirable. 

Here we shall briefly discuss the first case and just 

indicate, without actually solving the equation, how a 

solution may be arrived at. The second case, which is more 

complicated and of more interest (at least from a 

mathematical point of view), is studied in depth. 
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CASE (i)- 

Substituting (3.19) into (3.17), we obtain 
00 W 

A 

, 
ý7 E IAn( ä) 4- ý; 6"'' f'Ifff. 1) >",, (1) oll =-9 3(1), 

where f% `o -I 

k(ß. 7) = exP{- jb, (J-11)1} F (4t). 
Equating the coefficients of equal powers of( yields 

ý; =-R9, 

or 
f. 

,�- (-I)'' f k� (7,1) ('7)01 
To find the reccurence relation for k, we write 

r'r 

(41) 01 

= 
foft(()Jk(, 1)kn.. (h11 l_I 

Therefore 

° (3.20) 

Since we are interested in u, the integration can in 

fact be performed on (3.11) directly. Combining (3.11), 

(3.15) and (3.18) gives ýO 

=- 97 -F (i) du/d, q ßf0 

Integrating once w. r. t., 7 gives the solution in the form 

06 
n rl 1 

F (7-) (3.21) uiRt 1-'71) - Y- 6 
il 

ncG 

where 
1 

ýý(1') _ (-')"J k(1'1) ) )d n=t, 2,.... 
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The first term on the r. h. s. of (3.21) reflects the 

laminar profile, while the remaining terms represent the 

effects associated with turbulence. 

CASE (ii)- 

The situation in which F is large is of more interest, 

mainly because a straight forward series solution does not 

appear to be possible, and on, the other hand, since the 

parameter F is directly proportional to the Reynolds number 

(according to 3.18), it seems reasonable to expect z to have 

large values in turbulent flows. 

An alternative approach to the problem in this case 

would be to work with the transformed version of the 

equations and seek a solution in the form of an asymptotic 

series. 

Let f(s) denote the Fourier Transform of f(1), defined 

by 

0f fci }_ ý(S =fe s1 f(n, d1, (3.22a) 
00 

and 
f" 1S"j 

J{ {Cs)ý . {C'j) _ ýn 
{(S) c1S, 231. (3.22b) 

If we extend the definition of Fß(1) to the whole real 

line and put 

for Ill >, 1, 

then (3.17) gives a continuation of f to the whole real line 

and transforms to 

Q( s)+ FL dy eF. (-I) ex P{-=(1-ý)aý 0) 

--R2CSý (3.23) 

The double integral in above can be simplified by making 

use of the Convolution theory [23]. 
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Let 
00 

� 
dgT 

Pf 
00 

(3.24) -r -I 
_. o 

where -oo 

ex P{- ±j(J. 
_hl)a} (3.25) 

and 

12. (1) = F(i)ý("1)- (3.26) 

The inner integral in (3.24) represents the convolution of 

and k1 , and we can write 

T dj eýsý jkýýf) k1Cý)ý . kýCs) klcs), (3.27) 

00 where 

ki(S)= f ýe(Sj 
exp{- ' 

1-ý11 cý3 2 b 
(3.28) 

_ 1(20) 6 eXP {- i 1,2S2} 
and 

k1(s)., ' e`s3F(C)#*WdJ 

(s) * ACS). = sn (3.29) 
F 

Hence (3.27) becomes 

cxP{- ; -, 6'S" Cs I (s) 

= b//(1W) exP f-z 6"s 
1! FC st 

(3.30) 

where -"o 
tae {Qcosha s s-s5:. ý, cý, coss}. F CS) = S(V+as) 

(3.31) 

[see appendix Al]. 

Having simplified the double integral, the equation 

(3.23) becomes es, 

ACS) _ -R 9(S)- e (S) (3.32) 

where 

S) = '142 IT) Lb J«, FC S-t) -(t) dt. (3.33) 
Substituting Wi(t) in the above, by (3.32), yields 

) cb[ RfF, CS-f) 9Ct) df' 
-ov 

-, 6Zt 
f4110 

g. 

+ F, (s-t)e ýýt)dt7. 
It is convenient to write -00 
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. ýi(s)_{'CS)a-J(s). (3.34) 

where 
(s) 

�[_ 
(RfF (S-rt) 9 Cf) dl 

(3.35) 
2. A) 

and 2 
00 - ý- bt 

&6 00 FC s-t) e1'W cit. (3.36) 

To solve (3.34), we make the assumption that b >>l and 

look for an asymptotic series solution of the form 

5) N 6/a 
(3.37) 

j. 0 
where the exponent 10 is a constant to be determined in the 

process. 

Physically, large b implies that the neighbouring points 

X, whose effects on the point in question we are averaging, 

are more widely spread. This in effect means that the eddies 

of larger scale, which may have been formed at some distance 

away from the lump of fluid under consideration, will show 

their effect. 

Let us now turn our attention to the integrals involved 

in (3.34), namely f(s) and J(s), and see how they may be 

presented in asymptotic forms. 

First consider f(s), as given by (3.35). The integrand 

in this equation contains g(t), the method of evaluating 

which is described below. 

9(t) J' e` f (3.38) f yc )d J, C)O 
where 

9(i) =f1 exPl-s61(Y-1)1} di. 
If we put 

-1 bx and As by 

so that 

dJ A6 dx and dý . , 
/! 6 oly) 
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then '/Jab 

Ch 1) . 26 2 dy 
-'fh b 

/h 6 
61e-x1 yexP{zxy-y'}dy 

Wa6 
26e xa t'H, 

ß(1) 
iYdy (3.39) 

Age A% w, io 
where Hn(x) is the Hermite polynomialdefined by 

n1 x1 >1n x1 
ý^ 

-x1 
Hýcx)=1Ä. _ {e }ý . C-I) ee dr YWo di 

with the generating function 
00 

exp{sxy - ri} _ Y"H�(Y)/n, , (31]. 

The integral in (3.39) vanishes if n is an even integer and 

hence 
1 pp J1 xN 

iaºýý 
W 

`rn J2 6 x) .e (+3)(a-% 
V"W0 (3.40) 

where dlm+I - x: xl 
e +I 

The convergence of the series in (3.40) is proved in 

appendix A2. 

Replacing the series expansion given by (3.40) for g, in 

(3.38) gives 
00 

(1/2b2)n' f 
Oi/Z6fx 

d2m+I _XZ 9(t) _ -2 
Le 

dif2v" ed 
M=o -oo 

To evaluate the above integral, let 

fi Abt 
Ib e dx1M. ý e dx . 

Successive integration by parts, yields 

from which one can deduce 
2s "M 12,4% = C-2.6 t) Iý , 

where 
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! °° /1, l x -x2 1% _Je 
de 

- ao dz 
dx 

Hence, the expansion for g(t) reduces to 
ý 

9(t) 2. jLA bi 
Co 

-5 
cam+3ýc2Mýii! 

tlý, ete 3b t1 

ý, _, (3.41) 

Combining the above equation with (3.35) gives 

C sý EbRfp (-ýýM aY, + , -3 tilt= 
f{Fcs -t1 e d. ý C1+ht3)ý1"naý), 

-ao '1eo 

which after splitting the integral can be presented in the 

form 
.oI 

{'Csý =-st6R J 
C_ý, t 

Il CS-t)- FCs+t)} C ý(t. C1mt3)(2wl4 )ý 

The above integral is of the Laplace type, and since b 

is assumed large, the major contribution to the integral 

arises from the region close to the origin within which t 

is small. In this region we can write, using Taylor's 

theorem, 

e0 
_ (). k +1) 

FCS_t)_F, CS4-'0T ikýý F Cs1 t /2K'! 
' (3.42) 

kca 

(the exponent whithin brackets denotes repeated differentia- 

tion). Hence 

(Ile *0 1k 
ota 

flF, 1e (sN kE bR Cs1 fl 
C1ý++3)C1. n+1 .t dt 

° , wie 1Ca k+01 1, 
Ka* 

_. b1ti 1 00 ýw 2142k 

4tbRj f- Ej)t di. 
O k=" W4 =a 

We can write for convenience 

*' °O 2k+2 bata 
fCs) ýrE6R 

fE 
Ak(s)f e ät, (3.43) 

where k 
Ak( S) (s1 (3.44) 

mso C2. hý3)C1.., +ý)! C1k-2Mr. 
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To estimate the integral in (3.43) for large b, Watson's 

lemma is employed to give 
,o k+3/i ik 

Csl R/b AkCs)i [7(1<tä [6 . p. 48]. (3.45) 
k=o 

Since 

f= Rc61, 

then f(s) = 0(E/b) = O(b). 

A similar method, as described above, can be used to 

represent a(s) in an asymptotic form. So once again, 

splitting the integral in (3.36) gives 

8b ä Oti 

JCS) e `ý Ct) {Fc s-t)_ F, ct )} '(3.46) 
0 

Since fi(t) is an odd function, then for small values 

of t, it has the Taylor expansion 

00 

O(t) - 7- 
; =o 

`ý, 
i1ý+1) 2i4 

7 (os t 

(3.47) 

which together with (3.42), gives 

L 00 00 zs 

Jcs) = 1E6 I B. "(S) 
t1'"tl. e 

bt 
'a t, )0J VA (3.48) 

where 
... - (1- - 2e +1) (1i*%) 

ß (S1 = 
1: F' Ci) `ý (01 

`Io 
(s». -ýiýý)! (Zi+i)! (3.49) 

and from (3.37) 

N h/o -7 (1141) (1i+ý) 
co) 

CO 
T (o) . ]s0 

Watson's lemma is again used here to give 
J( 

N 
16b 

z1ý. 
+ a3 QMCS)ý( ) 2«, 

4.3/2 (1»ßa3) 
(3.50) 

�(a n) w_02D 
Since 

B,, (s) = 0(b*) and i= 0(b1 ), 

it follows that J(s) = O(bp). 
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Returning to the equation (3.34), since Sand J are both 

O(blo) and 1 is O(b), then choosing /0 =1 would make all the 

terms of equal order and of the forms (each term is written 

in full. i. e. E is replaced by Rcbl and A3(s), B,, (s) and 
(3i. 'ß 

(0) by their respective expansions) 

(, S) 
00 

b 
_j 

b 1'5 CS), 

_ 
s) 

3.0 

4 lý is 
eo k 

a 
cb 

i-ýýTM 2K rKa 3ý1i (2k-s",.; ) lk 
F csý b 

,., C c zw. 3)c zmý, ýý c1k_1. »týýý k. o VA vO 

and 
0o N, aý 

Jcs) -i- Rcb ýý>J 
n; [sQ 3Q 

Z pCM4.3/a) 
c(1», -1i+ß) 

Cii`) 62. 

(2. M-1i +I' ß (9i+')! 
r1 CSi 

ý] 

Having established the above asymptotic forms, we can 

now determine 'J (s); j=0,1,2,... , by collecting and 

equating terms of equal order from either side of (3.34). 

Since b»l, we shall retain terms of 0(1/b~) in the solution 

and ignore terms of O(1/b5) and smaller. Our solution will 

thus have the form 

CS) h CS) -ý Cs) +b s)+ b, ý3CS) 

+ 6ý + 6* CS) -4- 0('/65 (3.51) 

The reason for taking so many terms in the series, is 

that we found unless 4, (1) contains some terms of 0(1/b4), 

the final solution for u would be independent of b. In order 

to be consistent, if such terms are to be retained in 4-M, 

they must also be included in '(s). 

If we take terms of 0(b) we have 

Csý= �(lx) "R=C RcFýýýCs) 

Differentiating once w. r. t. s yields 
(1) CS) =3� z10) Ric 

, 

"'IcS1 
RC 

Putting s=0 and rearranging leads to 

_ Rc F cs) Cý) 
o) _; �tý n) 

i 

-RC 

(3.52) 
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and if substituted back in (3.52) and rearranged gives 

C5) �Caar) r RIC TO 
+. I Cr _? . - RCF, (0) (3.53) 

Terms of O(1), yields 

C s) Rc 

which by differentiating once and putting s=0, one can 

deduce 
ýi(S)= o (3.54) 

Similarly, by taking terms of 0(1/bl) and (1/b4), we find 

73 CSC =o and 4s CC) 0' 

respectively. 

Taking terms of 0(1/b) and following the same procedure as 

above, we get 

+2 Cs) = 
�Csrt) [Rc3 FC3)CS'S- S I' 

C1CS)} 
t 

�(sx) 
1-ýý3C1 F, 'ýa) 

(2) 

13F (off- SF CS) +j 1-RC T. (a) (O) 
F' C S) 

( T. F 121(o) TI CS)( S) + 
CO (1) (3.55) +3l", ( 0) F. (s)) }- 

Finally, terms of 0(1/b3), gives 

-Fy (S) = 
�Csn) i R1C 1 3o F Cs)(S) 

- -' (S)+-50- 

+ RC { "CS) wo(o) F (3ýs) ý1C')(0) }i F' (S) , jl(ý)Co) 

t F, is) (0) ä F(; (s)ý'a1(o)+'-FCS)ý; (SCo)ý. (3.56) 

By differentiating the above once and putting s=0, we 

can find *Pt' (O) . The derivatives of -P. and fl at S=0, 

which also appear in (3.56) can be found from (3.53) and 

(3.55). Considering the number of terms these substitutions 

generate, the expression for y(s) would be hopelessly 

complicated. Fortunately , as will be seen later, the 
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contribution from the terms in (3.56) to the solution will 

be 0(1/b6). The exact expression for 14(s) therefore, does 

not appear to be necessary, as we are neglecting terms of 

0(1/b5) and smaller. 

The above expressions for %P (s); j=0,2 and 4, contain 

the derivatives of F, (s) up to and including the sixth 

order. Obviously, differentiating F, (s), as given by (3.31), 

to this order, does not seem practical, and we shall use the 

more efficient technique of expanding F, (s) in the powers of 

s before performing the differentiation. From (3.31) 

tae"a 
FCs1= a cosý+ a V., S_ss. �º. a cos s 

SC s' az 

_Q 
°O 1J ao 

a ä) }{ ý (-i) QCostip_ QJ ek1 
C! (1k)! ' jso 

which can be written as 

-a °° s3 
FCsý=ze Z öj S, 

where 
3s0 

ask -23-1 a cosh (a 
_ 

5;. % V, a 
kvo 

f 
C1k+l)! Csk)! 

(3.57) 

Repeated differentiation yields 

F(.,, 1 _a oo _m 
(3.58) 

j. o 

Since F, (s) is an even function, then all its odd 

derivatives vanish at s=0 and the even ones reduce to 

Fc%)(0)=4eaö, F, (ý`) (0) =44ea '2 

and (3.59) 

Fýý6ý(0)= i. (5! )e ý3 

where 

_ -(-'-)1 CL 
{aCosa 

-S;. %ýoL - 
ý= ücas a(3.60) 

q 1I 1! 
and 

ö1= (Q'y {aC$ 4- %":. %, a1+(4' 1- a. casl. a - %ý-V0, S 

+ -k [ý CL cost. °` - vý ý 5: ý ý" a 
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4 
The expression for Y3 will not be required. 

Substituting the equations (3.58) and (3.59) into (3.53) 

and (3.55) and simplifying, gives 

4. (s) . c' d, 7 ý" S2J-1 (3.62) 

oJ and 
°° a1m ýi (s) _ý ýý J Yj S +t a. IC s7-ý)(7-ý) Yý Sý-3 (3.63) 
fCO f=a 

where 

do 8 
__A2. 

A) R 
___ 

Cea (3.64) 
3Cý-4RCe-`ý Y; ) 

and 

w/(2Pr)R'-c e-a at, =1 [3zRCe i'1- S(ý-4RCý (3.65) 
(l- (iRce- Q Y, ) 

With similar substitutions, (3.56). will have a form, 

like 

ý4Cs) =(i otZ j Yj 11-1 
+i d3 J (2J-i)(J-') YJ s7-3 

ISO Js0 

00 

c ý4 7(13-')0-()( 11-3)(2. ) S 
j=o 

where d2, oL3 and 0. are some constants, containing R, a, c 

and Yi. Hence, the asymptotic solution (3.51) of the equati- 

on (3.34), becomes 

QCs) b{ Y. Sf{ 
d' J Yj Ssj-1 3 J 

+ ýo J(2j -00-0yJ S1J-s} ý tjl Y" sa)-% 1 1f- 7 
'O 6 1$o 

+ da L j(1, ý-ý)(J-ý)ýj SýJ"j +i o( 1C1J-ý)(J-ý)ýij-3)iJ-s) 
1"o jto 

Returning to the equation (3.3f) and combining it with 

(3.41) and the above series, we find 

/ý'Cä)^i-ý°; 
baS{141R)týQb °° ý (-1) 

Ssn+ I 

of 0 
C1h,. I)(1rný1)i 

/b /b J iiT 51 

00 
Iwo 

+ (d'/6 ; '1'/b3ýý j(if-i)(j-i) Y3 5'J-3 

OP 
+c 014/bl SCir-ý)(T-ý)(: J-z)(J-1)YJ SJ"S (3.66) 

J"0 

+o (1%bi) }. 33 



This series is the Fourier Transform of the function of 

interest, namely p, which can now be evaluated by taking 

the Inverse Fourier Transform, according to 

03 

-00 
Substituting (3.66) in the above and integrating term by 

term, gives (method of integration is presented in the 

appendix A3) 
00 1n+3 /('/, r) R q�(7) ('(. n+1/3, l/b) 

ft0 

-, (10 -b ýdI/b- 61=Ib3) 2 ßkC3) P( K4, '/2)(ý1/b)1k+i 
a 

- 21 ýd4ýbsý EýCý)17(r-3/2 )(12/b), 2 (3.67) 

where 

ws0 

k k-i 
3ik-Ai-I 

1ö ßk 
(1kj j=o 

ip-=J *ý 
YJ DR J _J (2j-I)(1J-ý) 

ISO Csp_zj+l) 

3 -i7+ß 

L-- C1r-1 3C1J_`)(J-ý)ýsý-s)(J-s)1! ß 
and j. e 3*1ý 

By = D" = D, = E. = E, =E1=0. 

Since -v (s) has an error of 0(1/b$), then -P(J) will be 

accurate up to 0(1/b`*). We may therefore neglect terms of 

O(1/bs) and smaller in (3.67). Hence 

'#(J) N- 2R 1 R. (3)/6i+ 3 A, (i)/b''] " /anýý °(" ßi(3)/b= + 

+ 3. t, +-d, (ýiýSVC) + O( 1/bs) 
) 

(3.68 ) 

where 

+1 Y2 
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and O2. =%1ö2. S. (3.69) 

Having found b, we return to the equation of motion 

(3.11), which combined with (3.15), can be written as 

du/dj = -RI - Rch2F( I)4(11). (3.70) 
It now remains to replace -)b in (3.70), by its 

asymptotic expansion (3.68), and integrate it once to obtain 

an expression for the mean velocity profile. 

Combining equations (3.70), (3.68), (3.69), (3.64) and 

(3.65) together with (3.12), simplifying and rearranging 

yields 
JU/i1 

=-RI-( cosh a- cosýal)(d"7+ß13), (3.71) 

where 

of 
Rý 

ýý 
r3+ 

sbl 
ý2bi 

i 
(3.72) 

ö 

t1 61 (3.73) ö, a 
and 

)_-ý-Rce 4 ýý 
, (3.74) 

To find the mean velocity u, at a distance ''I from the 

wall the equation (3.71) must now be integrated. 

Thus 

U= 
JR 

l'- (c 
c, sh Q- c-cp Sk al I)( at I 1+ 13,7,3) } -11 

_ý JJ 

where '7' is a dummy variable. 

Integrating the above equation by parts, gives the final 

expression for the mean velocity profile for this particular 

problem, in the form 

U=1R Ci-ý )+d i(%-1,1) '-(iä (i iha7 GL 

Q2 

+Qs;, ý Q'7 Css4 a"ý - cask cL) (3.75) 

+ 
Ql (ý S; nk a*I - %%., 11 a) -a (Cos4OL i- Cvs1, a)1. 
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The first term on the r. h. s. of the equation (3.75), 

corresponds to the laminar solution, while the remaining 

terms represent the turbulent effects. 

In a fully developed turbulent channel flow, it is known 

that the effect of turbulence on the velocity distribution 

is to slow down the flow in the middle parts of the channel 

[29]. In the sketch below therefore, if curve (1) represents 

a typical laminar velocity profile, then curve (2) is an 

indication of the type of velocity distribution one could 

expect if the flow was turbulent. 

------- --------------- 

flow direction ---> (i0 

The extent to which the curve is flattened, is dependent 

on the level of turbulence present in the flow. 

The terms representing the turbulent effects in (3.75), 

are expected to illustrate such changes in the velocity 

curves. The model constants a, b and c, and the Reynolds 

number R, can be varied to allow us to examine and observe 

the flow patterns under different conditions and varying 

turbulence level. The determination of the model constants 

and their effects on the flow, is the subject of the 

following sections. 
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3.4 Determination of the model constants. 

To fit a set of numerical values to the model constants 

a, b and c, in order to obtain the desirable mean velocity 

profiles, we shall use the method called the 

"overall-prediction" by Launder and Spalding [18]. The 

technique would be to guess some initial values for the 

constants, and then improve them gradually in the process of 

comparing the results with the experimental data. There are 

however, disadvantages with this technique, namely that it 

is time consuming, expensive on the computer, and it does 

not usually lead to a unique set of values. But it is useful 

in the sense that it can at least, provide a range of values 

within which the constants may vary, and it allows us to 

observe the behaviour of the velocity curves during the 

process. 

To choose the initial values, it is usually possible to 

do better than a wild guess. As for instance, we know in 

our problem that all the constants are positive and that b 

is assumed large compared with unity. Although what is meant 

by large, still remains a question. 

It may also be possible to establish some approximate 

upper or lower bound values for some of the constants, by 

studying the equation (3.75) in the limits, as these 

constants tend to their extreme values in different 

combinations. 

Taking c as unity for simplicity, the possible cases 

which could arise, as far as the constants a and b are 

concerned, are examined below. 

Case 1- small a, large b: 

Letting b --'ý co , we have 
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o( r 
Rg-ý %ý 

and ß --> 0, 
i 

and (3.75) reduces to 

U1 (1-. 11' +- c S, (3.76) 

where 
Sc-I(1-i)IS; - aI - SýºAV% o') 

(3.77) 

_ 
'1(CO\%O)-cost, C . 
0. 

Since a is assumed to be small, the hyperbolic functions 

in S and Y, may be replaced by the first few terms of their 

Taylor series, namely 
a 

S in1, ý OL 3ý... , CL 

and 1 

COSL 0. +f... . 

This would simplify the expressions for S and ö, as 

j' -- 
p1 ( %-I1) . 0( 0"*) , 

(3.78) 

and 

Q1 ''" O(Q4) " (3.79) 

Also for small a, the expression for d can further be 

simplified as shown below. 

01 
N Ra-0 

where 

OL + 2.1 
Hence 

N+ 
s6 Rä + 0ca3). (3.80) 

Replacing >. and Y, by their respective series in the 

above, yields 
11 

of ý-sý 
16/V Ra 

+ 16/s! R as . 
But 

(t+ 
by the Binomial series, provided 16/5-, R°(1 or O. < %/z R 
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Thus 

bL ZR1C- 34 R)+o(&). 
(3.81) 

Hence 

Ný^ 
~, 

L 

Finally, combin 

uNR (1-71) - 

Since u >, 0 and 0 

relationship can be 

0 

ing (3.76) with the above, we obtain 
11 

R1 10 4)" 
(3.82) 

ý< 7$ 1, the following (approximate) 

deduced from (3.82). 

<Q ý< 
J(6/R). (3.83) 

Case 2- small a, moderate b. 

Here the assumption is that b is not very large, and 

therefore the contribution from the third term in (3.75) is 

significant. Thus 

U= CdS+(iT, (3.84) 

where S is given by (3.77), and 

T=-0- 7'+ ) cos ha +- Q (q 3S0. j CL 

ä ("11 cosh. 0 ̂ ý - costi a) ä3 (^ý h al - s; ºý1,0. ý 

_ 
(cos t. OL I- cos1.0- . (3.85) 

a 
Once again, since a is small, the expressions for S and 

Y, may be simplified as in the previous case [see (3.78) and 

(3.79)], and by applying the same technique, i. e. using the 

Taylor's and the Binomial series, we can approximate the 

expressions for d and 13 as follows. 

14 

-o . a1 Ca ̀ ý 
, 

R2ý3 4- 
S6 4S 

R OL" 
ýýS b CL 

and 

ý3N Ri (% -= Rae) + o(o) . 
S6 % is 
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The condition of convergence of the series for oL and I3 is 

Q1 < 15/2R. 

Forming the products dJ and ßT from the above equations 

and substituting them in (3.84), leads to 

UN Riý(I-I'. )I(1- ti ) 
1 

71 b1 (3.86) 

Since u >, 0, then 

R=(1-"ß'')Z(1- 
, 

ý+ Riý`1(2'J6-31"+I)> 
zýOb 7161 

--As R>0, b >-1 and 0< ^1' ý< 1, then every term in the 

above is positive, and we require this inequality to hold 

even when the second term (the one with negative factor), 

has its largest value, i. e. when '7 = 0. Thus 

R_ R1o1 
_3 

R1 a 
2.11 to 61 

ý+ 
72 ba 

or 

a2(14_ 
Is 

7 
10 

R, 
approximately. (3.87) 

The situations in which a is large have little physical 

significance and do not give much information as far as the 

equation (3.75) is concerned, as in such cases, the presence 

of the negative exponentials in a, reduce this equation to 

the laminar flow problem. 

The approximate relationships (3.83) and (3.87) obtained 

above for the special cases, can be used as a guide in 

choosing the initial values for the constants. As for 

instance, they provide the information as to how large or 

how small the constants can be for a given Reynolds number. 

Once we have a set of initial values, the equation 

(3.75) can be fed into the computer, which on inputting R, 

a, b and c, would enable us to plot the mean velocity curves 

across the channel. 

The computer results and the behaviour of the curves 
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when the constants are varied are presented and discussed in 

the following section. 

3.5 RESULTS AND DISCUSSION. 

We examined the solution (3.75), with many different 

values of the model constants and the Reynolds number. It 

appears that although b can take any value greater than 

unity, the parameter a can only take small values. The 

relationships (3.83) and (3.87) seem to support this 

statement. It was found that for Reynolds numbers up to 107, 

we can expect a to be of 0(l6'), approximately. As far as 

the parameter c is concerned, it seems that the mean 

velocities depart from their parabolic profiles for large 

values of c. - 

Figure 3.1 is typical of the many profiles we obtained 

for various values of a, b and c. It shows the variation of 

the mean velocity with the Reynolds number, for a=0.005, 

b=10 and c=0.01. It is noted that when R=103, the solution 

describes the laminar profile. Beyond some critical Reynolds 

number which is of 0(103), we know that turbulence sets in 

and the profiles become fuller in the middle parts of the 

channel. This effect is clearly visible in figure 3.1 as R 

is increased from 103 to 107 . 

The effects of the parameters a, b and c on the mean 

velocity, are illustrated by figures 3.2,3.3 and 3.4, 

respectively. The solution appears to be very sensitive to 

small changes in a, whose limiting value (in this example) 

was found to be about a=0.01, i. e. for values less than 0.01 

all profiles can be presented by the same curve. Such 

limiting value for b in the example shown by figure 3.3, was 

found at about b=10 
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The variation of the mean velocity with c is examined in 

figure 3.4, and the departure from the parabolic profiles in 

this example appeared for values of c<2.5 . 

In figure 3.5, a velocity profile, given by the equation 

(3.75), is compared with the universal velocity distribution 

laws for turbulent channel flow (equation 3.88), deduced 

from Von Kärmän's similarity hypothesis, and equation (3.89) 

deduced from Prandtl's theory: 

u, (3.88) 

U. ü- U- 1n y 
' (3.89) 

where y is the distance from the wall, u. is the frictional 

velocity and the dimensionless constant 'X is determined from 

experiment. The maximum velocity u,,,,., is the velocity at the 

centre of the channel, [29, pp. 553-555]. 

It can be seen that the velocity profile produced by the 

equation (3.75) is in good agreement with those given by the 

above universal laws. It is also noted that unlike the 

universal laws which show indefinite values for the velocity 

at the wall, our prediction shows a finite value there. 

In plotting the equations (3.88) and (3.89), we have 

replaced y/h (=I ) by 1-y/h, so that y measures the 

distance from the centre line. 
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F- 

Fig. 3.1 Variation of the mean velocity (eqn. 3.75) 
with R, for a=0.005, b=10 and c=0.01 . 
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J 

Fig. 3.2 Variation of the mean velocity (eqn. 3.75) 
with a, for R=104' , b=5 and c=0.1 . 
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a o 

Fig. 3.3 Variation of the mean velocity (eqn. 3.75) 
with b, for R=105' , a=0.005 and c=l. 
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Fig. 3.4 Variation of the mean velocity (eqn. 3.75) 
with c, for R=10v , a=0.005 and b=5. 
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Fig. 3.5 Comparison of eqn. (3.75) with Von Kärmän's 
and Prandtl's velocity distribution laws. 
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4. FULLY DEVELOPED STEADY POISEUILLE FLOW 
THROUGH CIRCULAR PIPES. 

This type of flow is chosen to examine the model 

further, for its great practical importance and the many 

experimental results that are available for comparison. 

The governing equations are transformed into 

cylindrical polar coordinates, and an approximate analytical 

solution is presented in this chapter. 

The method of solving the equations with the aid of the 

integral transform method and asymptotic expansions is 

described in detail. 

With the appropriate numerical values for the model 

constants, the predicted mean velocity profiles and the skin 

friction coefficients, are compared with the results 

produced by similar models and experiments. 

The governing equations and the method of solving the 

equation of motion for this problem are basically similar to 

the one discussed in the preceding chapter. Therefore, 

unless otherwise stated, the definitions and the assumptions 

made in the previous chapters, remain valid here. 

4.1 The governing equations in cylindrical polar coordinates 

Let r, 9 and z denote the radial, azimuthal and axial 

coordinates, and u,, ua and uZ denote the components of the 

mean velocity vector V, in the respective directions. 

v ý. N 
Z 
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Since, in the Poiseuille flows, the only non-zero 

velocity component is assumed in the directin of the mean 

motion and depends on the distance from the wall [see ch. 3], 

we have 

N= {0,0, u(r)}. (4.1) 

where 

u(r) = u=(r), 

and the time-average momentum equation (3.3) can again be 

used here. 

Transforming this equation into cylindrical' polar 

coordinates r, A and z, by means of the following 

transformations, 

x=r cose ,y=r sine ,z=z, 

x' = r'cosÄ , y'= r'sin6' , z'= z', (4.2) 

and d x' dy'd z' = r' dr' de' d z', 

together with (4.1), we obtain 

är(P/P +Pt) = 0, 

z 
ä and 

zC 
P/P + Pt, äui+ IU 

.a ý' +ra`f 
ýJ1 

F(M 
, r'-S') -ý r'är'o O'dZ'}, (4.3) 

Once again, the weighting function F, represents the 

correlation between the point r and any other point r'within 

the flow, and may be presented as the product of a shape 

function F, and a position function F1 [see ch. 2], i. e. 

F=c. r/r'F, (r)F1(jr-r'j), (4.4) 

The shape function varies with r alone, and to meet our 

requirements, as outlined in chapter two, the following form 

for Fis introduced. 
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F, (r%=I_-c(h 
r)/X_ h_r 

C 
V, /-A 

1 (4.5) 

where h is the radius of the pipe, 'A is a characteristic 

length scale, and c. is to be determined experimentally. 

The position function is again presented by the Gaussian 

distribution function (2.12), which in the cylindrical polar 

coordinates has the form 

F1( ß -f"1) = exP{--' r1 r'_2rý'cos(A-Aý)+Cz-Z')1] }. (4.6) 

The reason for introducing the ratio r/r'in the model is 

that if we have a small volume of fluid at a point A with 

the coordinates (r', A', z') and another at point B, at some 

distance away, with the coordinates (r, 6, z), then the eddies 

responsible for turbulence at point A would affect the 

volume of flow at point B, and the correlation between these 

points is in fact presented by F. Since we are trying to 

correlate the effects at a distance r with those at r', and 

if r'is of moderate size and r is small, we are 'packing' 

the effects in. The 'crowding' is thus in the ratio of the 

rings, i. e. 21%nr' or r/r'. This ratio would remove the 

singularity at r=0, which is the result of the focusing 

effects of the eddies originating at a radius r'around the 

centre of the pipe. 

The equation (4.3), combined with (4.4), yields 

. 
ý. (P1ý, +Pt)_y(ä1 

u+f 

+ -1- 
ä {r'F(r)f Fa(l. -0) 

JU dt'oýA'(4710 
(4.7) Vol 

Consider the volume integral on the r. h. s. of the above 

and denote it by. n.. Then substituting for F1 from (4.6), we 

can write 
fher{_i(r1+t, 1) } 

dr, rr ex? I Pa rr'Cos(9-9')3de' 

ae (4.8) 

"f exP{-io-z (Z-z')1} dz. 
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The third integral in the above can easily be evaluated 

to give 
f ýexP{-1o-. 

(Z-Z')L) Jx, 
= (), 

Al 
n) . (4.9) 

The second integral is more complicated and the method 

of evaluating it, using the Bessel functions, is described 

below. 
ir 

Let Al = 
f; CXP{_'-ý% rr'c's[e-e')ý äe 

If we put ö= rr'/o-+, then the integrand can be written as 

ex? f öcos(e-e')} , 
which is equivalent to 

exp{i[ -i Y cos(e-e')]}. 
This can be expressed as a series of Bessel coefficients 

of order n, Jy, (z), using the result 

J*, -2ý cosC1Xý)J3Cz){... ) 

[35, P. 351]. Thus 

a-e")3ýC-ý X) exP{ý[-iYcosce-a"ýý = 7, (-cr)+1i COS( 

+ 2c 1 
cos[ 2ce-e')1 3 (-cY)+. .. 

Since the. above. Bessel coefficients have purely 

imaginary argument, it is convenient to replace them by the 

Modified Bessel functions, I�(z) , defined by 
00 (. L Z) k Iß(2)_ ý" � fN (cz) T 

ký Cntk)ý 
(4.10) 

[35, p. 366]. Thus 

exp{i[-ii cos C9-9')]} 

I COS( e-e') i 11C-1C)+1iicos[IC6-6')]i1I1(-Y)+""" 

In 
iI Cos[nCe- e")ý I�(-ö). 

Hence WIsI 
Ir 

00 j' 1h ý1 ý 
_ý 

l Týiýöý +2LT ý_ýý CoS ýH8-9)]} do. 

hs% 
Using the identity 

Cot[ n(O-e]= Cos (n O) Cos(n g) f S; n (n 8) Sin in 6, )i 
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we can write ,r CO I 
10 ý-Y) de, 

+ i 
I: 

C. 
A 

I( Y) 
{ 

cos nef Cos(h 

-if �a1 

r1/ 

But T f 
Cos( nQ') ä8'=0 

forn>, 1, 

and 
f S'"C n 9ý) CIO=0 for all n. 
-1 

Hence, the second integral reduces to 

. n-Z= 17' I. (-ö), 

where, from (4.10) 

and = rr' 

Therefore 

(4.11) 

where ,o" Zk (Irrfisv-1) 
rIr - k12 (4.12) 

Combining (4.9) and (4.11) with (4.8), reduces the 

volume integral to 
iz= dU ' 

.a= C2.3/l Jh{. r. (4.13) 

Recalling the equation (4.7), since the volume 

integral is a function of r, then the r. h. s. of this 

equation is a function of r only, whereas the l. h. s. varies 

with z alone. So we can write 
ý(P/P+Pt 

'P (d -' r) -t- 
A 1C Co Or (r2 FI ((') 

jk r)) =k, (4.14 ) 

where K is a constant, and 

ex z C1+ V2" rr' du O(r)=o P{'do-)}T, (o- )ýL olf, (4.15) 

Note that the partial derivatives have been replaced by 

total derivatives in (4.14), since u is a function of r 
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alone. 

Multiplying throughout (4.14) by r and integrating once 

w. r. t. r, yields 

yr da/a, 
, /i if3/`Co o-+'1 (, r) Ja(r) r1+ ko 

where'K, is a constant. 

Putting r=0 in the above, implies that K0=O, and we can 

divide throughout this equation by r, to find 
d 0/d 

r +- A tT'3/: C, o- O- F, C r) OC') _kr" (4.16) 

This is the equation of motion for the steady Poiseuille 

turbulent flows through circular pipes, the dimensionless 

version of which is presented in the following section. 

4.2 Equation of motion in non-dimensional form. 

Define the dimensionless variables ü, h , 1", a, b and c, 

by 

u=u. ü(1) 
, r=hl, r' =hl', 

h= a'A = bh ,R=u. h/- , (4.17) 

K= -2u; /h and c .= 
/2 it 

3/4 
c. h2/u. 

where u, is the friction velocity (as defined in chapter 3) 

and R is the Reynolds number. 

If we combine (4.16) with (4.17), we find the 

dimensionless equation of motion in the form 

90)=-1 (4.18) d+Cb1 F(^l) 

where 
sq h' dU, 

X0'("1)=, 
f ezP{- b 

Oilý 
01 (4.19) 

and 

ee (4.20) 

The boundary conditions for (4.18) are 
ü(1) = FI (1) =0 at '1= 1. (4.21) 
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4.3 An approximate analytical solution. 

To solve the equation (4.18), a similar method as that 

discussed in section 3.3 may be used here to approximate the 

products of F(1) and 0(1) by a series expansion in powers of 

'j, before performing the integration. Removing the 

circumflexes for convenience, we multiply throughout (4.18) 

by 

and integrate from 0 to 1. Thus 

lö(ýý +f 'I F(1 0(1) e%P{--b' ý1f, ýsý} I° (ýý/61ý äý 

-2- qýý> (4.22) 

where 
cJ 

263 6oil (4.23) 00) = 
J-' 

9 (1) =f 41 exý{1b: 
i 1+ "j 1ý} T° (ý'ýýblý 

oý ̂) (4.24) 

and 

C= Rcb. (4.25) 

The equation (4.22) is equivalent to the (3.17) of the 

preceding chapter, and the chosen method of solving this 

equation, is again dependent on the size of E. 

The situation in which e is smaller than the lowest 

eigen value, may be approached by a similar method we 

discussed for (3.17), and we shall not go into it any 

further here. Instead, we shall again concentrate on the 

more interesting case when C is large and seek a solution in 

the form of an asymptotic series. 

The Hankel transform, as opposed to the Fourier which 

was used in the previous case, seems more appropriate for 

this problem. 

Define the Hankel transform pair fy(s) and f9(x) by 
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-Fý (5) =f {'y (x) Jy(YS) X oý x, (4.26a) 
0 

and 
00 

ýý (X)= J fvý CS)JV0'S) SdS [23]. (4.26b) 

If we extend the definition of F, (1) to the positive 

real line and put 

F, (7) =0 for>, 1, 

then transforming (4.22) in accordance with (4.26a), yields 
! öCs) Ef *"J5 

7,, ( fo"7 F(^1)2r(^i)exp{- zb"(I+11) G0 

di s 9(S) , 
(4.27) 

where 
00 

fÖCs) =J äý 3y(ýS) f 
eYP{ 2b, 

4.28) 
ov oil 

and 
.O' 

9(S)= f Qs)3 f1 
exPl -ibs (Jl+11)10 W)dI. 

0 66 (4.29) 

The expression for g(s) can be presented in a simpler 

form by using the following result 
00 

-P 
Its 

2 P1 - exP{-4 P, CQ1tb1)ýIv(ab/Ip%), feJ, 
7( at) j0(bt) t dt = .! 

(4.30) 

where Re(v) > -1 and jarg pj < n/4, [34 , p. 395]. 

To apply the above result to the equation (4.29), we 

need to rewrite it as 

16 CO 2 

c sý =de -stoa 9f"1IeJ,, (fs) I, C1ý/b=) dý" 

By putting V=0, and using (4.10), the second integral 

in the above becomes 

, f°° e'J'/26' J9(3 S) 7. ( `11/b') 3 J3 
1 

and by comparing it to (4.30), can be written as 

6' etpf 6%CS'- 12 )} %Cis-O) 

which is equivalent to 
6ssa 

b' 6ý e. cJCs 1ý . O 
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Hence 
9Cs)61 c1s, l ^1J. us7)dl. 

0 
Replacing J(sj) by its expansion, using 

J(Z) 
k! (n+k 

kza 

and integrating, we find 
bl53 O° K i= S ý2 k+l 

3(s)=566e' 

=-L6 e 's 
The second term on the 1. h. s. of 

[35 , p. 350], (4.31) 

(4.32) 

(4.27) may also be 

simplified in a similar fashion, by putting v =0 and making 

use of (4.10) and (4.30), to find 
PI OO 

EVc5j IF, (^1) C^1)J, Csý)d^1, 
a or if we put 

'yL = Fi"1), 0rii)ý 
(4.33) 

we have 

£61e Cs), 
(4.34) 

where-. f(s) is the Hankel transform of i" (h), according to 

(4.26a). Hence, the equation (4.27) becomes 

Cs)_- 1R 9Cs)-eb'e_}b35a4Cs). 

To find =ý (s) , where 

. Cs)= j7 JoCs-7) F(1) 07,7) dl 
, 

we use (4.26b) to replace 9(i) by 
00 

A((o-) , (10-) d o- , 0 

so that 

(4.35) 

00 

QCs) . J' d'7 J. 1) fýA'(o-)J. (1a)o-do-. 
00 

If we replace co-) p'in the above by (4.35), we find 
Co 

QCs) =f dl iIe1 
Cýý T CO'. 

It is convenient to write the above as 
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.c s) =T (S)+ PCs) 
11 (4.36) 

where 
00 

o0 

fC s) _-if "I '7 ,ýCS ý) F C'7) f9 Co-) Jo ý"l o-) a- oý cr (4.37) 

and ° 
00 2t 

pCs)=-ý61 f dýýºJ, Cs^1)F(7) fe ý', 

ýl, ýo-)3(? o-)o-clo-4.3s) 
0pv 

To solve (4.36), we once again make the assumption that 

b»l and look for an asymptotic solution of the form 

C S) N b'° 'ý ýb 
"ýýCsý, (4.39) 

two 

where the constant 4 will be determined in the process. But 

first, we need to evaluate f(s) and p(s) in the forms of 

asymptotic series. 

To find E(s): 

Consider the second integral on the r. h. s. of (4.37) and 

denote it by I. Replacing J. (1 o-) and 'g(-) by their series 

expansions, given by (4.31) and (4.32), respectively, and 

simplifying, gives 

I =f 009 (o-ý V-160-) o- c la. , 0 

6l jdo e 
200- e0 (_ I)k p-1 

k 
(. %1 11 

13 
0-23 

ýo G- k! Ck -H)! 2 ko 320 
a 

00 - 

0- e &13 
T- 'tk! 

(K*01 2214*1 k J20 k-o 

0-s'. - gei ba o-2j v- (4.40) 6l f ýý- ni 
0 jao JI 

where 

AJ ý"iý - 2. ''J. 1 kl (k+ý)! (j _tc i2 ^j: 
j-a k" 

(4.41) 

Applying Watson's Lemma [6] to estimate the above 
integral for large b, and simplifying, yields 

.o 

IN AM) P(i+) 21 1_-1J 

Finally, substituting the above back into (4.37), 
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together with (4.41), gives 
00 {ýs) R1F (-1)J pol) h 1J 

ij-1 k. 1 (4.42) sifJ. (s7) Fý9)'t Jiro k=o 11*ý ký Cktý). (j-k)! all. 
To find D(s): 

A similar method as the one described above, may be used 

to find p(s) in an asymptotic form. 

Let L denote the second integral in (4.38), then 

uo _L 6A aA L-Jeý (v-) J. C'ý o) o- of O- 
(4.43) 

0 Since 
00 

and 

J. (-0-'7) = J. (0-")), 

then y (a) is an even function, and its Taylor expansion is 

_ 
OP _CaM)( 1^ 

0'C-) = F- o) 0. 
=o 

Replacing ,, in (4.43) by the above and J. by its series 

expansion (4.31), gives 

=, f o-e o- ° M. o 
(. wý)! k. o k! 1 

21k 
" or 

--ý-öao- 012 k C2-) .. ik-1"ý 

e '. 2k 

o C1ý+)! (k_ý, )ýa st -sem, ka0 wAs0 

: kýý i bav-t g 
kN (4.44) 

kro ro 

where 

ß N (4 45) k M)! Ck-, -4)! O . 

and from (4.39), 
00 

ýC1M)(o) =bbt NýC. 1`")(o) 
" 

(4.46) 

Using Watson's Lemma again, the integral in (4.44) 

reduces to 

zk-s L ný Qký"1) ýik+)) 1ö 
k: 0 

Combining the above with (4.38), together with (4.45) and 
(4.46) an simplifying, we find 
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_ 
oo k oo 

__ ý7 
k 

P(s) N-C 
ýý 

I 
(K )ä bp_t _s k (-11 - 

(0) 

' 
,ýj 

(s°l)F, (7)ý 
el ^j . (4.47) 

Having established the asymptotic forms for f and p, we 

now compare the orders of magnitude of each term in (4.36). 

From the equations (4.39), (4.42) and (4.47), with E= Rcb , 

we get 

ýý5ý =f CS) + PCs) 
(4.48) 

0(b") o(') o(bp}') 

Since we must at least have two terms of equal orders in 

this equation, we choose O= -1, and the terms in (4.48) 

become 

QCs) ,ý b-f b- , ,t Cs), 
too 

P(14) 6-23 M (s), f cs) N- Rio 
1J k! (k+i)! (j-k)! 1 I'k 

and J"o k"o 

PCs) N -RC 
I Z: Z: 

1) 
-k6i k- t (') 4'*. ( 

i'^)(0) 

ktý M Cs), 
where 

kro ». o ts" (k-.., )11 

M (s) j 
1) F, (4.49) 

00 

0 
Note that 

M.,, 0(s) = F'(s) if m=n. (4.50) 

The solution we seek is of the form 

"ýs) N b' b ttCs) 
. t"0 

and since b»l, this can be approximated to 

(4.51) ACS) b''. CS) rb rf; (S) + b; ý, (s) t 0( 1,4) 

To find ; (s), for t=0 to 2, we can again use the 

method of successive approximations, by collecting and 

equating terms of equal orders from either side of (4.48). 
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If we take terms of 0(1), then 

0=-4M Cs) _ Rc 4. (s) M0,0 Cs) 

Hence 

, *o(0)=-1/4c " 

Terms of 0(1/b), yields 

1. o(S)=-Rc (O)M0,0(S)" 

Putting s=0 in the above and 

(4.52) 

(4.53) 

comparing it with (4.52), we 

have 

AA, ( 0) = ý/LI. Rci Mo, 0 (0) 

and subsequently 

. )C. CS) (S)/4c MO, (o) 

Terms of O(1/b1), gives 

(4.54) 

(4.55) 

, *, (s). R/p " M,,, Cs)+ R/ij. M,., (s) - Rc 1(a) Mo, o(S) 
+ V. RC . , (v) (M,,, (s) - Rc 4. "'(o) M, 

1, 
(S) . 

Combining the above with (4.52) and simplifying, yields 

r; (S) =- cc ; (o) (100(s) +{ RIi, - Rc ")(v) } M'., CS). 

But from (4.50), 

NO s) (4.56) 

Hence 

(S) _- Rc, (o) + R/16 RC fj. 
(t)(0), 

mo, atLs). (4.57) 

Differentiating (4.53) twice and putting s=0, gives 

,,. " (o) _ -Rc , 
(o) Mo, a 2)(o). 

Substituting the above in (4.57), 'together with (4.54), 

gives 

'F'(5) _{- RC f,. (O) +R116 + Ri 
-1,2 

CO) } Meo(S) " (4.58) 
Maio (o) 

If we now put s=0 in this equation and compare it with 

(4.54), we have 
(1) 

-1 1 Ma. 0 (0) '/. c { Oct Maý2 (0) tw+ 
Mo, o (o)ýý 

}. (4.59) 

Finally, substituting the above back in (4.58) and 

simplifying, yields 
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I Mo. _ (S) 
4RC Mo, o CO) 

Terms of 0(1/b'), yields 

(4.60) 

ß'1(S) _- Rc , FS (0)M,. QCS). i RC.; rý(0)M1)o(S)- Rcrf; ý1(a)MýýýCS)14.61) 

Combining the above with (4.54) and (4.60), together with 

(4.56), gives 

gi(s)=-PC 4-3(G)Mv, 
v(S)+ 

M, s) 
_. 

Mom 
boo(s). 

pc N1o)o (O) 4c Ma, ö (o) ' 

If we again put s=0 in this equation and compare it with 

(4.59), we get 
a,. 

Mo. ö1) (0) 
_ 

Mi, o_o_ 
- 

i? C ißt, 
=(o) 4R1cs s (o) 16C Mo o(o) 1CM1 (o) $C /q 1 CO) 

o, o 
Mal' 

o, o 

Finally, combining the above with (4.61), yields 

k1 CS) = __- {)! 
-_ 

MI,, (°) Mo. ci)[o)l 

4C Mo, o(O) 
RIC"Mö 

o(o) 
'º 1 M., OC0 

+ 
Mo,. (v) JM 

+ Mo. # CS) (4.62) 
It r1, bo 

(o) 
It now remains to evaluate M 

m,,, 
(s); m, n =0 and 1, and 

their derivatives, which appear in the expressions for 7., ; 

t=0,1 and 2. 

Consider 

Ms) J, (S F(7) 12 
in -1 . tf 

00 

where 

From the equations (4.26a) and (4.50), we have 

MO,, ($) _MltCS) =F(. s). 
Hence 

Fý S_fJ. Cs-1) F, (1) 7 c/y = 
f19(sl) 

F, (1) 1 13(1 ) 
0 

since F, (1) =0 for *1>, 1. 

Substituting for Fß(1) from the above, and for J, (s y) from 

(4.31), gives 
°° %ý)k Slk 

14 
iktl 

ae i FAS) - kýi ýk kto 1 
J1. 

Therefore 

Fi(s)= M,,, (s) = NA,., (S) 
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0o k lk -a ik"t � r. 11 n (-%) f I- a[ 
+ße 1) (ik. +1)! a 

12W 
l 1k+i 1k"3 -ýý C2+l-4-)! r! (n+rtl)e. 

}' 4.63) 
k so Aso Aso 

The method of evaluation of the above integral is 

presented in the appendix A4. 

Putting s=0 in (4.63), yields 
Ma,, ýO)=Mýýýýýý= 

QC-0. t3 aC a- 
fT %1i 0. 

r. o A: o 
C %- r) ýý (, itr+l) n, 

n Ii 

ý=Q º1+ ýnt21 

--6ae 
,. o Cýrz)! 

The above equation can be written as 

Mo. 
o(0) - Mß. 

1 
(°) = =, --ae 

a- ý` Ceai +a) 
(4.64) 

Now consider a 

A similar technique as the one used in evaluating Moo(s), is 

again applied here, to find 

(''pit S=k 1_ a e-a 
k: o 

kii g1k 41k +4 

1 k. 

tap n: (? 

.ß ac 

1k; S 

%1) {n(Zk. S)! a 

Lk. 3-r)1r; (etr+i) 1? 
84.65) 

Putting s=0 in the above, yields 
a .a3m /_I) *n 1M 

4 C1-o. )t S4e_lsa (4.66) 
3 

-1) Q' (1_33_1 'j =4 
l0 aG 

ný l ht) htL 
+ 

ArS "4-4 J 
n so 

1 -a lid QM 
=4- jo aC _6 

'1 O 
(nt4)1 

We can write the above as 

I 
.o ,'soae W-11 c-'2- %+a-: al+ ' a3) . (4.67) 

Finally, to find Mö '(0), we differentiate (4.63) twice and 

put s=0. Hence 

(a) f _a 
3 ýýn n Mo, 

o 
(0) =-ilv (1-aý )+ s Qe 

a- ý-ý) 3! a 

ßs0 �: O ' 

Comparing the above with (4.66), we can write 
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C11 
M0.0 (0) _-iM, 

90(0). 
(4.68) 

and the equation (4.62) reduces to 

(s) _+ý. e 
4c Mol°(o) R1CLM ý4 ?C Ma"(a) 

At this point let us put 

M° = M,, 0(0) and MI 
for convenience. 

With the expressions we obtained above for y{ ; t=0,1 

and 2, the equation (4.51) becomes 

ICs) ,., ( b° + bi t 
n2) M,, 

o(s) + ,, °Cs) , 
(4.69) 

L3 63 
where 

Pý 
4- C1 Mo'4 /Z Cf1 Ms 

_I11 M, 

(4.70) 

and 
1 

A3- QcM, 

Note that A3 = -A. /2. 

Returning to (4.35) and substituting (4.69) in this 

equation, we find 
7052 

, 
Y(S)" 

-2 
R9CS -F12e 

{(b 
+6+b, )M9,8csý- b M1 

OCs)1 . 

Combining the above with (4.32), (4.63) and (4.65), together 

with (4.25), yields 
f(s)N- Rbs-z615' ý_ýýr5sJ 

1e sits 0+0 Is* 1 

- Rce- t (-I2k ä1K Eµ }1(4.71) 
keo k, '1 kM 

where 
_a -a Ih, oo stn n 

E_ I-Qe 
+ OLd (-i) (_k+_)! a (4.72) k Lk, -zk. 3 " 

Aso n: " 
ý2k+i-r)1 fl (A}rt1) A 

Note that 

E, =Mo & E, =M%. (4.73) 

We can now find 0(1), by taking the inverse Hankel 
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Transform according to (4.26b). i. e. 

ON =f 
00 

ýr J, (is) 
0 

cs) s ds . 
Hence 

1J+1 -+S 

(j *Ilk 0 f 
ao ºr '^ 

t 

k 9.1 
- 

ECT 
_ 

=ak 
omA 

tiýb+'nx" - +A. E1cýýý 
(4.74) 

*° 
. ds 

To evaluate the integrals in the above, let 

b2s a 
' 

1. Cs, 7) eisx j+1 
as 

and put so that dsd 

Then 
00 1 base 00 efI 

2jtj 
J. _' 

1: J+s Jo J) ea (3a 
ý. 

17 

To evaluate this integral, the following result can be used. 

-sat 1lätt. M) ý 
. (lam 1i 

dt IF, 0vt 24+1 S .. ý tJ ti S 

where 

Re (. w+*0 )>0 and arg ý <R/4 [31, p. 173], 

and F, is the confluent hypergeometric function [31 , p. 112]. 

Comparing our integral with the above, we find 

27 P04-1) 
6- 

(4.75) 
0*2 

where 

00 

jFj 
No 112 

i! (4.76) 

Combining (4.74) and (4.75) and simplifying, yields 

4, 
l 1)J F (3+1 ;1; -i 

fo 

zJ II 

_RC 
Aý. 

ý k- '' F(kHjI "1 8). (4.77) 
k'a k"'' 66 ab k. 1 I 

To be consistent with the assumption we made at the 

beginning of the analysis, we shall ignore terms of 0(1/b") 
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and smaller in the above equation and approximate it to 

f 
ýF 

(1 11, -ýý,, aý bj ,F 
(1, , -"ý /Zba i} 0(1) N-4 

- RC{(Ao+ A, /b . 
Al/bi)E, - A., b' E} 

RcI(RýbstA'/bs)Eý} -"ý3/s b2)+OCý/b`+). (4.78) 

Recalling the equation (4.76), we can approximate this 

equation to the same order, so that 

ao Fý(º; 1; -"I1/sb'ý = ib')t 
7% + 0(Yet) 

and 

Fý2ýý, -ýs/1b1ý _ (ltl)''7la" WY Z) 
P to 

Combining these equations with (4.78) and simplifying, 

yields 

ýýiýý- R{ 4 ibl CýA, t t 
biýtý-C bi E, -cbE. } 

(4.79) 

where E, = M. and E, = M, [see (4.73)]. 

If we substitute for E, and E, from the above, and for 

AG, A, and Az from (4.70), the equation (4.79) simplifies to 

*1 1 o("1) - {t - RbcMe lb1M. 
}+ 

VCb3M. ýrbCMo (4.80) 

This equation can now be substituted back into the 

equation of motion (4.18), which together with (4.20) 

becomes 

1_ Q4 -4(1) 
cýUýý- ae 'ý -e }{oý'NPll 0%('4.81) 

where 

{R_ P, M, } 
4 Ma be M. W tA. 

R 
46i ýlö 
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and M. and Mare given by (4.64) and (4.67), respectively. 

To find the mean velocity u, we simply integrate (4.81) 

once w. r. t. 1 to give 

di1-Qeß)"li+ 3 0lcie", ºý3 

-a()-'f) i -a(1-9) Qy 
-°ý{Q 7e-ze} (3(I-a e- ) 

a 

+S oat -a S.. i ß{_ýre 
Q-°1e 

+6Cä -ä )ý }+k, 

where K is a constant of integration. To determine K, we use 

the boundary condition u=0 at 1=1, to find 

a a& 
aca+ ßCý- 3+C --L). a all a3 a" 

Hence, the final solution for the mean velocity in the 

steady turbulent Poiseuille flows through circular pipes, 

has the form 

Qa 

-ß{ (ý-ac"ý)(ý-74)ý S ac aCi-ýs)- ä [i-13c a(I-ýº)ý 

t -°1 e [I 
a, 2 (4.82) 

where t 

ýrM bcdlo sb' M. gbaMý: 

-0 i (e - a! 

and 

asLI3 420 
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The approximate analytical solution presented above, 

includes the laminar solution as well as the terms represen- 

ting turbulence effects. The laminar profiles emerges when 

the tubulent effects are small, i. e. when a and b both tend 

to infinity in (4.82), in which case 

61 I> R/2 and a --* 0 as a and b --+ ac 

and hence 

which is the velocity distribution in the laminar Poiseuille 

pipe flows [29]. The remaining terms in (4.82) are expected 

to illustrate the effects of turbulence on the velocity 

profiles. These effects which were discussed in the previous 

chapter, depend largely on the Reynolds number and the model 

constants a, b and c. In the next section, we discuss how 

these constants may be determined. 

4.4 Determination of the model constants. 

The same strategy as the one described in section 3.4, 

may be used here to fit a set of numerical values to the 

model constants. So once again we need to choose some 

initial values for our parameters, and then by observing the 

plots of the velocity curves, try to arrive at the optimum 

values for the constants. 

To assist us with choosing the initial values, the 

equation (4.82) was examined as a and b approached their 

extreme values, in order to see how they may be related to 

one another. But unlike the case we discussed in the chapter 

three [see (3.84) and (3.87)], the constants here did not 

appear to be dependant on each other or the Reynolds number. 

The reason for this is that although the equations (3.75) 
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and (4.82) are similar, the model constants and the Reynolds 

number appear in different orders in each eqution, partly 

due to the difference in the shape functions used in each 

case. 

In view of this situation, it seems that the best choice 

for the starting values would be those which have produced 

satisfactory results in the previous case. 

Before examining our solution with such values, let us 

look at the coefficient of resistance for smooth pipes and 

its relation to the velocity distribution in turbulent 

flows. Such relationship can further assist us with choosing 

the model constants. 

4.5 The coefficient of resistance in smooth pipes. - 

The frictional resistance in smooth pipes has been the 

subject of numerous investigations, both theoretically and 

experimentally, since the beginning of this century. Among 

the first to establish an empirical formula for the 

dimensionless coefficient of resistance in fully 

developed turbulent pipe flows was Blasius, who in 1911 

discovered that this coefficient is related to the Reynolds 

number, in the form 

7, = 0.3164 R. [29, p. 561], (4.83) 

where R. =üd/,, is the Reynolds number in which ü is the mean 

velocity over the cross-sectional area and d is the diameter 

of the pipe. The experimental values obtained by Nikuradse, 

shows that this formula produces accurate results up to 

R=10r. 

The relationship between the coefficient of resistance 

and the mean velocity profile can be obtained by considering 
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'the balance of forces due to the sum of the laminar and 

turbulent shearing stresses on the circumference and the 

pressure difference on the end faces of the pipe. This 

relationship is 

T 8( u-/tr) [29, p. 573], (4.84) 

where u. is the friction velocity. 

If the logarithmic mean velocity distribution law is 

combined with the above, we obtain the Prandtl's universal 

law of friction for smooth pipes as 

2.6D (R. ýa) 
- o" 8, [29, PP. 572- 575 ]. (4.85 ) 

We shall now try to arrive at a similar relationship by 

using-the velocity distribution given by (4.82) instead of 

the logarithmic law, to see how it compares with the Prandtl 

and the Blasius equations. 

The mean velocity of flow ü, over the cross-sectional 

area is given by 

üf ýn^j u dý 
, 

On substituting for u in the above from (4.82), integrating 

and simplifying, we obtain 

4-c Gý - (3 G, (4.86) 

where 
-q -a 

G=- 42e -+? 4. (ý-e ) 
I9aa al a3 av 

and 
t1 ae _1+$ 

IQ 
-f- 

Co 120 
Gý -6_ 42 a7- as ay 

_ 
aS 

+ 116 iI- Ca 
a6 

The Reynolds number R, in (4.86) which is formed by the 

friction velocity u. , and the pipe radius h, may be 

rearranged as shown below. 

R u. ti_tu. üJ 
:1u. R yýüyzo 
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where 

R0-uý 
But from (4.84) 

LI 
_IV, . U1 Jz 

Thus 

R_ Ja VO 
(4.871 4, A 

and (4.86) becomes 

Iil _ 
R. A, 

(4.88) 

where 

M' 
Lt /z 4M. R. ýa bcM; 4 6' 

and 

_ R. �ý 
31�s61MýFinally, 

combining the above expressions for q and (3 

with (4.88), and simplifying, we find 

_ °ý " 
R. ýý 

ý" ý. 
, 

(4.89) 

where 

U, 
GIL 

zMo zb=M 
and 

ß° 
�z bcM. ' 

The above relationship is compared with the Prandtl's 

universal law of friction (4.85), for Reynolds numbers 

ranging from 103 to 2x104 (Fig. 4.1a), and 5x105 to 10 7 

(Fig. '4.1b). The agreement appears to be fairly good, 

considering we are comparing a logarithmic relationship with 

an asymptotic one. 
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4.6 RESULTS AND DISCUSSION 

In comparing the frictional resistance (eqn. 4.89) with 

the Prandtl's formula, we found values of o(0 andß., for which 

the best least square fit was obtained. These values are 

shown in figures 4.1a and 4.1b for various values of the 

Reynolds number. To assign numerical values to the model 

constants, we look for values of a, b and c, such that 

2.582x10 <iz. <6.925x10-4 and 4.197<R, <8.995 

One set of values which satisfies the above constraints, 

is a=2.6315, b=8 and c=0.009, and it gives L. =2.945x105 and 

/3. =5.525 

In figure 4.2, the solution (4.82) is examined with such 
14 7 

values for Reynolds numbers ranging from l0to 10. The same 

effects which were observed in the study of Poiseuille 

channel flow in the previous chapter are also noted here: 

The velocity profiles become fuller with the increase in the 

Reynolds number. 

The effects of the variations in a, b and c on the 

profiles are shown by figures 4.3,4.4 and 4.5 respectively. 

It appears that the solution is most sensitive to small 

changes in these parameters when they are of small order of 

magnitude. 

Comparison with the von Kärman's and Prandtl's Universal 

velocity distributions for smooth pipes (eqns. 4.90 & 4.91) 

and with experimental results, is made in figure 4.6 . 

The agreement appears to be fairly good in the middle 

parts of the pipe. But as the boundary is approached our 

profile seems to deviate from the universal profiles. 

However, we note that at the boundary where the universal 

laws can not describe the velocity, our profile is capable 
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of determining the velocity there. 

UVRCLI u0X{ ýnýl-ýi1- iý/h il /iý %)) 
(4.90) 

U ,-U=s. 75 109(h, i. ua (4.91) 

where y is measured from the wall, h is the radius of the 

pipe, u, is the frictional velocity and the dimensionless 

constant % is determined from experiment. The maximum 

velocity uri4y, is the velocity at the centre of the pipe, 

[29, pp. 570-571]. 

Note that in figure 4.6, the wall distance y/h (=7), is 

measured from the centre of the pipe. 
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Fig. 4.1b, R.: 5x10 --k 10 

Frictional resistance in smooth pipes. 

+: Prandtl formula (4.85), : Equation (4.89). 
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4.2 Variation of the mean velocity (eqn. 4.82) 
with R, for a=2.6315, b=8 and c=0.009 . 



Cl' 

:5 

75 

Fig. 4.3 Variation of the mean velocity (eqn. 4.82) 
with a, for R=10r , b=8 and c=0.01 . 



1 

DL 

=5 

Fig. 4.4 Variation of the mean velocity (eqn. 4.82) 
with b, for R=10r , a=2.6315 and c=0.01 
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Fig. 4.5 Variation of the mean velocity (eqn. 4.82) 
with c, for R=105' , a=0.5 and b=5. 



n 
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ýJ 

Fig. 4.6 Comparison of eqn. (4.82) with Von Karmän's and 
Prandtl's universal velocity distributions. 
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5. BOUNDARY-LAYER (B-L) THEORY. 

The final problem to be examined with the aid of our 

model, is the steady incompressible turbulent boundary-layer 

flow along the surface of a solid body. This type of flow is 

more complex in comparison with the Poiseuille channel and 

pipe flows, for the equations governing the motion of a 

fluid in the B-L are non-linear. The non-linearity arises 

from the fact that in the regions close to a wall, the 

inertia and the viscous terms in the N-S equations are of 

the same order of magnitude, regardless of how small the 

viscosity might be., 

The B-L concept was first introduced by Prandtl in 1904, 

when he realised that the change in the velocity from its 

zero value at the boundary, to its maximum in the free 

stream, takes place in a very thin layer close to the wall. 

Therefore, the space rate of change of the shearing stress 

is large in this layer and the viscous terms may no longer 

be neglected. This thin layer which is known as the boundary 

layer, has a thickness S, which increases as the distance 

from the leading edge of the wall increases, or when the 

flow becomes turbulent. 

The number of exact solutions to the N-S equations, 

where the inertia and the viscous terms are both present, 

are very limited, even when the flow is laminar. Examples of 

such solutions may be found in [9 ch. III]. It appears 

therefore, that the N-S equations need to be approximated, 

if the problem of boundary layers is to be treated 

mathematically. The method of approximation as suggested by 

Prandtl, is developed and described by Goldstein [9]. The 

resulting equations are known as the B-L equations. A number 
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of exact and approximate solutions to these equations in the 

case of laminar boundary layers are presented and described 

by Goldstein in the same book, and by Rosenhead [27 pp. 

222-252]. Among them are some of the original and classic 

solutions given by Blasius (1908), who arrived at the 

similarity solutions for the B-L flow along a flat plate at 

zero incidence, and the more generalized solution of the 

Falkner-Skan equation (1930), applicable to laminar flows. 

Blasius: f'""( ^'j )+ 1/2 ff"= 0. (5.1), 

Falkner-Skan: f'"(^j) +ff*+ 13 (1-fl) = 0. (5.2) 

Solutions to these equations satisfy the boundary conditions 

f= f'= 0 at I= 0 and f'--i" 1 as 7 -+ *a . (5.3) 

The above well-known ordinary differential equations 

which were obtained by transforming the B-L equations 

through the similarity variables, may easily be integrated 

numerically. Analytic solutions to the Blasius and special 

cases of the Falkner-skan equations are also possible. An 

example of such solutions is given by Yang and Chien, who 

solved the Falkner-Skan equation for 13 =-1 [37]. 

More recently, Hastings and Troy derived an analytic 

solution for 13 <-1 and proved the existence of periodic 

solutions for /3 >1 [12]. Further discussions on the 

existence and on the behaviour of the solutions to the 

Falkner-Skan equation, for both positive and negative values 

of ß, may be found in [9,10 and 11]. 

In turbulent boundary layers, two distinctive regions 

may be identified across the layer. An inner part, 

containing 10-20% of the B-L thickness, and an outer part 

making up the remainder. The inner part may further be 

divided into three layers: a very thin laminar sub-layer 
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next to the wall, a layer where the transition from laminar 

to turbulent takes place, and a fully developed turbulent 

layer. 

Since, the fluid experiences different shear and pressure 

gradients in different layers, most of the existing methods 

of calculating the turbulent boundary layers, treat each 

layer separately. They assume negligible turbulent stresses 

in the laminar sub-layer of the inner region and negligible 

laminar stresses in the outer region. Only in the turbulent 

parts of the inner layer, are the laminar and turbulent 

stresses both accounted for. These methods therefore, 

require different closure assumptions in different regions 

of the boundary layer. 

An example of such methods is the Cebeci-Smith 

differential model, in which the Reynolds stresses are 

related to the mean velocity through an eddy-viscosity 

approach which assumes different forms in the inner and 

outer regions. i. e. In the inner part: 

_'>t -(xy)1[ 1-CYf(Y1A)]1 au,, ar , 
where 'X =0.40 and A is a constant, and in the outer part: 

ýt = 0"o16 8 
where 

b 

6*=Y 
and 

X =f I+T. S ( Y/6)`I-, 
, X51. 

Another example is the popular A-E model discussed in 

chapter one. It assumes an eddy-viscosity representation of 

the Reynolds stresses, in the form 

s 
C le 

where c is an empirically determined constant. An immediate 
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set back for this model is that the model parameters do not 

remain constants in the near wall regions and adjustments 

are required there [18 section 5.15]. 

Methods using this kind of approach can successfully be 

applied to certain types of flows such as the incompressible 

two dimensional and axisymmetric boundary layers. However, a 

high degree of accuracy may only be achieved if high speed 

computers are available. 

These brief notes on the similarity solutions to the 

laminar B-L's and the difficulties associated with the 

calculations of the turbulent B-L's, are presented for the 

purpose of introduction, for our aim in this chapter is to 

arrive at equations similar to those of Blasius and the 

Falkner-Skan, which could make the calculations of turbulent 

B-L's more efficient. 

It should be noted that the concept of similarity 

solutions for turbulent flows, does not quite fit the 

definition given for the laminar profiles. Broadly speaking, 

the term 'similarity solutions', implies that the velocity 

curves are similar at different stations downstream along 

the wall and may therefore be presented by one curve, if a 

suitable scaling factor is chosen. Furthermore, the 

solutions are independent of the Reynolds number. In the 

case of turbulent boundary layers therefore, we require to 

make the assumption that the flow is already turbulent at 

the leading edge of the wall. This assumption also 

eliminates the difficulties of describing the complex 

process of transition of flow from laminar to turbulent. In 

addition, it satisfies the requirement that the B-L 

thickness should be kept small for the B-L equations to 
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remain valid. 

The equations we shall present, however, will depend on 

. the Reynolds number, but will be independent of the space 

coordinate, in sections along the mean flow direction [see 

(5.42) and (5.45)]. We might therefore, call our solutions 
'semi-similar', to avoid any possible confusions with the 

general definition of the similarity solutions. The presence 

of the Reynolds number in the equations is due to the fact 

that the viscous-dependent and the Reynolds stress-dependent 

parts of the profile require different length-scaling 

parameters [5]. 

The similarity solutions have been shown to exist in the 

past in the case of free shear turbulent flows. Such 

solutions in the similarity regions have been found by 

Vollmers and Rotta (1977), Wood and Leal (1983), and others, 

using various turbulent models. 

In the following sections, we shall describe how the N-S 

equations may be approximated in a way analogus to that 

described by Goldstein. It will also be shown that the B-L 

equations may be transformed into an ordinary differential 

equation through the similarity variables. 

We shall begin by considering the more general problem 

of B-L flow past a wedge, in which the pressure gradient is 

present. It will be shown that when the pressure gradient 

related parameter, /3 , is removed from the equation, the 

problem reduces to the special case of B-L flow along a flat 

plate at zero incidence, for which an equation similar to 

that of Blasius is obtained. 

The numerical method used in solving the equations are 

presented in section 5.5 . In section 5.4, we describe how 
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an analytic solution may be obtained for the Falkner-Skan 

equation with additional turbulent terms, when /3=-l. 

5.1 Turbulent B-L flow with pressure gradient. 

Consider an incompressible steady flow past a wedge of 

an included angle 7T13, as shown in the sketch below. Let the 

x-axis be parallel to the direction of mean motion and u, v 

and w denote the respective components of the mean velocity 

vector in the x, y and z directions. 

ya 

Grp 

The time-averaged N-S equations in the Cartesian tensor 

notation, have the form 

Uj I-ui= af 
-L -2-P ++ I -a a xJ Xj 

Tai , (5.4a) 
2zß a 'A p axj 

and 

ýUV9III =O, (5.4b) 

where u, is the mean velocity in the direction denoted by i, 

and TJ represents the Reynolds stresses, defined in chapter 

two, by 

T 
--i°Pt SFJ -i, /of F(X, X-X')v; j (X)cX 

where Vol 

01ý j(X) =i (aus/a, 
J + ÖuJ/a 

z; 
) 

(The bars above the mean quantities are dropped for 

convenience. ) 

The z-component of the mean velocity, and the z- 

derivatives of all the velocity components may be neglected 

in the equations (5.4), since their contribution to the mean 

flow is quite small. This would reduce the momentum 
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equations (5.4a) to 

xay° ')x a xz 
aya '{t+ 

v� 
F. 

ay, 
dx1 

it 

a ai+iv dx' f 
yo 

ua 13v § la (av Z, / a aý au d '} 
at tv ay Pay +v aXý to TX {L FCax, + ar, 

) y 
vef 

-{-p la yf and Vi 

öz az 

and the continuity equation to 

au } av 
ax ay = 4 

where 

u= u(x, y) and v= v(x, y). 

The method of approximation we shall apply now, is based 

on the fact that in each of the above equations, some of the 

terms are of smaller order of magnitude than others and may 

be neglected. This method assumes the fluid has a small 

viscosity and the B-L thickness remains small. 

To work out the order of magnitude of each term, we 

begin by taking u and au/ax to be 0(1) and y. to be O(S). 

Then u=0(1) and au /a% =0(1) =x and a'u/-)X= = 0(1). 

The continuity eqn. together with a u/a X =O(i)=:!: p a V/a y= 0(1). 

avýay= 
0(1) and y= O() v= 0(b) and a"/sy'= 0(1/& ). 

v= 0() and x= 0(1) aý/3x and ' /ax' _'0(6). 

u= 0(1) and y= O(S) 9'dy= 0( 1/&) and aiuýay'= O('/C) . 
Since the viscous and the inertia terms are of the same 

order of magnitude in the boundary layer, then V =O(&3, ). 

Similarly, as the laminar and the turbulent stresses are of 

the same order here, we have F= 0(C). It then follows that 

(P/p +Pt) = 0(1) and är (P/p +Pt) = 0(6). ,ax 
It can now be seen that the x-momentum equation is 0(1) 
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and the terms of O(d'), may be neglected in this equation. 

The y-momentum equation is O(b) and terms of 0( dl ) may be 

neglected here. Hence, we obtain 

u au a'w a/ . ýu P/P+p u ýa -v- +v + ,/F. 
dx 

ax t ex ay ays 2 by "oi 2y, 

är(Pýý, tPt)ý-uaý -gay +ý äý 
+! ?JF. 

-- de' aX a y' 1 Vol 9ye ^. 0 

+2JF2. dx' 97 vQI ay- 
and (5.5) 

( P/p +Pt o. 
z 
Since äY (P/p +Pt) = 0( S) , then the total change of 

pressure throughout the boundary layer normal to the wall is 

O(& ) and may be neglected. Hence, the pressure may be taken 

as constant along such normal and equal to its value just 

outside the boundary layer. We can therefore put 
13 

y (P/P + P, 0, 

and from the potential flow theory 
du m (P/ia +Pt) _-u.. 7-1 , 

where u- is the velocity of the main flow 

boundary layer. However, 

(5.6) 

outside the 

if the velocity of the potential 

flow is constant (as in the flow along a flat plate at zero 

incidence), then 

ax (P/, o +Pt) =o 
In the neighbourhood of the leading edge of a flow past 

a wedge, the potential flow velocity is proportional to a 

power of the distance, measured from the stagnation point 

along the wall and can be presented by 

uc(x) =r+ x" 

where m and n are constants. The pressure gradient along the 

wall therefore, is given by 
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ä iP, i +Pt) U 
dX 

= _n.. ýl x1""ý " (5.7) 

and the equations (5.5), reduce to 

-n W%tX2 'u +V 2 alu +" +ua ax ay aye : ay 
f F. ay, dx (5.8) 

with the boundary conditions 

u=v=0 at y=0 and u=u,,, at y= oo . 

The correlation function F, has the usual form 

F= c9 F (y) F (I X- X'i) [see ch. 2], (5.9) 
1 #%0 

where the position function F. is given by the Gaussian 

distribution function, (2.12). The expression representing 

FI, will be presented later on. 

Next, we shall present the equations in dimensionless 

forms. 
I 

5.2 The B-L equations in non-dimensional form. 

Define the dimensionless variables u, v, X, X, b and c, 

by 
A 

u=u. u v=u�v 

x=dxy=dy z= d 
w 

x'=dx' y'=dy' , z'=dZ', 

o'= db, c=c. and R= y'ý (5.10) 

where u, k and d are characteristic velocity and length 

scales, respectively. 

Inserting (5.9) into (5.8) and combining the resulting 

equation plus the continuity equation with the above, we 

obtain the dimensionless B-L equation, in the form 

- hºýx1^"' +u 
au 

+-v 
au 

='1 +C F 
au a F, afudX, 

ax ay R ay1 ar i. , 
and Vol ( 5.11) 

au 
,} 

Zv 
=o ax ar 
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with the boundary conditions 

u=v=0 at y=0 and u= ua, at y =co . (5.12) 

The position function, with the dimensionless variables, 

becomes 

F1(IX-X'I) = exp{-bl(x-x')1+(y-y')'+(z-z'(5.13) 
The circumflexes representing the dimensionless quantities, 

are removed for convenience. 

Now the question is, can we obtain similarity solutions 

to the above system of equations. To answer this, we shall 

adapt a technique similar to that pioneered by Blasius and 

introduce similarity variables. 

5.3 The similarity variables. 

The idea behind the transformation of the equations 

through the similarity variables, is to reduce the number of 

independent variables to one, so that the partial different- 

ial equations can be transformed into an ordinary 

differential equation. 

Let us introduce the similarity variables 7 and ' and 

define them by 

7=Ayvx and 's %0 (5.14) 

and look for the solutions of the forms 

IA =f(j)U(, J) and v='i(f)V( 7). `(5.15) 

The z variable remains unchanged and the constants A and 

> will be determined in the process. From (5.14), we can 

write 

2u au aI au 'au 
.& 

au 
ax ay =A ýT 

and 
o tl sý a1 u 
aye 'a.? 2. (5.16) 

Equations (5.14) and (5.16), transform the equations 
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(5.11), to 

-n, "ýZýs"'l 
au 1; -l vu au 

+Aýaý 
au 

+U 3 211 131 

_ A: gsa alu+CAfý a 
,fF. A. " '" joI "d7'dz' 

Val 

and (5.17) 

,aU +'Xc' +A3' a i 
a7 

where J is the Jacobian of the transformation, given by 

ac1; 1') . acx'. y') ! 
assa ,_ 

t 0={ Axe''} 
y 

- al %a a^7/ýr" a"% A X'ý' 
x a1 (5.18) 

Under the similarity transformation, the position function, 

becomes 

Fi exp{-16, [(ý-ll'Sº-aýi+(z-z')1]}. 
(5.19) 

From (5.15), we can write 

au do au _ý 
dU aýu _ý. 

d'U 
as =U d' ' a7 d7 all di= 

IV and 
av dv (5.20) 

7$ 'al di 

Combining the above with (5.17), we-obtain 

W 1W J7 _j -I 

=R Al ý"'' ff ' d'ý 
fcAFF W(f) jý, d z' 

and (5.21a) 

(5.21b) 

where ý(Zý _ Je" o1idzý. 
If we assume f(') is a regular function and divide 
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throughout the continuity equation (5.21b) by Olf), we find 

u+ýý-'% dU aýv 
=0 (5.22) 

where 0/ d ?. 
Choosing V(ý), such that 

constant, 

and integrating the above w. r. t., ', we obtain 

0(n _ 
0, 

, 
(5.23) 

where of is a constant. 

On the other hand, differentiating (5.22) w. r. t. (, 

gives 

which implies 

IfV, 
'/'/ff. )=0 

12'/Z- 
= constant. 

Substituting for F1' in the above from (5.23) and 

rearranging, yields 

(5.24) 

where ö is a constant. 

The equations (5.21), together with (5.23) and the 

above, become 

fof U1 ixI 
201-1 

Uý- tý1öf 
2d-1 

V 
ýý 

a 
+cAý1ä FfF, 

-jI 
dtv 

Val and (5.25) 

u++ YVa-l =4 97 -i --I 

At this stage, we need to evaluate the volume integral 

in the above, so that the equations can be simplified 

further. 

Let 

I=f Fs ý, °` j0 dý, J1, dz: 
Vol JI 
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Substituting for F11 from (5.19), yields 
00 " 00 

I-fff exFI-s6'C(S- Ä ('7 t(z-ZT]} 
&c", 

at: 

The z'-integral can easily be evaluated and reduces to b /Cuff). 

The remaning double integral, however, can only be evaluated 

approximately. We shall estimate its value, by making a 

series of transformations and using power series expansions. 

This method is described below. 

Under the transformation 

'_. (I4-S) and (5.26) 

we have d9'=ýcl5 dý'. Si dt 
, 

and 
ao 06 

I. 6, /cýný ý°`tý r It exP 16ý 
C ýls'+ Äz 7=ý-1ýý ý_ ý; ts, ý )11} 

"(, +s)°' d U(I+-? f) ds dt. it (5.27) 

Assuming t <<l, the term d/dt{U( '/+ l t)} in the above, 

can be presented by its Taylor expansion 

J 
U( 

d "lktk dk UM Ik I1 dktK1 

Cif 
df k! dik (k-I d1k 

kro kT1 

Substituting this expression back into the integrand, we 

get 
Co k 

(k-, )! dik 
ksl 

f 
expý- baýýlsiý" Ä1 7iý"1ýº(1I+5)a 1lý}CliSýdýk(5.28) 

If we further put GIs dt 
. 

a, s and Y: Qq c-ý- , 
(5.29) 

where 

Ä and <0, 

then 

S= X/ai 
, -t =(I - Yvas)(I+X/a, )A_I 

, 
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and cls dt =TJ X0 . 
The Jacobian of transformation J, is 

Z(X) Y) I. - S, 
acs, t) 

}-l 
=- 3-I 

1-02 
(=-a, 

Under the above transformation, we obtain 
kdk 

U(1) 

(k-01 d? k 
ffk, 

" ý(x, -Y) exP{- -L- C X1+ Y")} dxdy , 262 
-a, a, 

where 
't Y/ 

' X/a) ýl1"4ix X0.1) 
-1]k-ý" 

3(X)-Y) (0 

The equation (5.30) can also be written as 

I=6f X+aL Ite 
(K_0) J jk krl 

(5.30) 

(5.31) 

00 ý 

'ff ý(X, y) e=P{-, 
b. ( 1+Y1)} dxdy 

. (5.32) 
aý 

If we assume b to be small, so that 1/2b' »1, then the 

double integral in the above may be regarded as of the 

Laplace type. The major contribution to the integrals 

therefore, arise from the neighbourhood of the origin, where 

g(X, Y), may be approximated by 

3()(, Y) N C4- [14c,, ""ß) x, 
0. 

/ajýcý + X/n, ý''f.. ý. 

The leading term in-the above expansion (when k=1) is unity. 

Thus, to the first order we have 

g(X, Y) N1+ higher powers of X and Y. 

Hence, (5.32), approximated to the same order, becomes 

I, 6Air) aýÄtat 
it) " 

where "ý 
1 

00 

I+ =ff 

We may now put 

ex _b ýX: +Y')} cl xdy. 
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X=r cosp' and Y=r sinful. 

Assuming Iasi < 10L, 
, then 

I+ý eb 
rdre1ß' blf 01 er 

,fp 00` 

2 )T 

with an error of 0(b'eß`(ab), which is asymptotically small as 

1/2ba »1. Hence, the volume integral, to the first 

order is given by 
a aýet dU T' (2n) 6 A, ( (5.33) 

From the physical point of view, since we have taken b 

to be small, then the points whose effects on 

the point X(ý, '1, z) we are averaging, are located fairly 

close to X. So in effect, it is the small scale eddies 

formed at these points which influence the behaviour of the 

flow at the point in question in this case. It is after all, 

eddies of small scale which determine the characteristic of 

a turbulent flow in the boundary layer. 

Recalling the equations (5.25) and replacing the volume 

integral by the above expression, yields 

2n-1+otUiý2°L UdU, i *AVdU/d1 

R AiI 1'A +d d2 U/d'ýa +C& A1bjýýý+a1 [ F1 
du/ýý 1, 

and (5.34a) 

OL U +-X1 dU tAY dV/d, 
7 _o, /oil 

(5.34b) 

where C, = C23/1, c, 

In order to make the above equation independent of ', we 

choose n, of and X, such that 

2n-1 = Ta -% _a 'X, 4, ax # 
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which implies 

A= of -2 'X +1 . (5.35) 

Hence, the equations reduce to 

-( )x+')ml ±(L k%)Ua. Aj U 
dUVOI, 

+A 'V OAU/ji 

R Al d1 'l 
. ß' A"63 dtF, oIU/dI }) (5.36a) 

and 
dl 

(2 ate') U+aid u/c 1+ A lc d'v/d1 = o. 
(5.36b) 

To eliminate V from these equations, we put 

f(i) =f U(1) dI, 
so that 

ý/- U dU/01+1 

, SIG. i 

where f is the stream function, Cis the velocity and .u f" 

represents the shearing stress. 

On integrating the continuity equation (5.36b), we find 

AYV .f +K , 
where the no-slip conditions at the wall, make the constant 

K zero. 

Combining the above with (5.36a), yields 

R A, f�+C +ý) ff ýý+ (z- *%)(w - f'') 4 cýA3 63 
d. 1 

{FFp. 0. 

If we choose A, such that A1= R, and put '=1, then the 

above equation reduces to 

,. 
+ ('? {ý) f fy* (s. c, )+E {F, f «) 

=0, (5.37) 

where C is RCb 

Since 
OL 

f (1) j 
then for negative values of d, both u and u. become infinite 

at S =0, and the solution is artificial [9 , p. 1411. 
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If we put 

w(Y) =(-, +t)'ý' f(i) ,Y= Ca+týýý' ýI , 
and P= C11, t1)/(-), +tý, (5.38) 

then (5.37) becomes 

d3 
-ýW 

d1W 
+f 

ý ý-ýýW ýaý +E 
dtF ýw } o 

(5.39) 

dY C1 Y dY Y ' 
An appropriate form for the shape function F, is all 

that required now to enable us to solve the above equation. 

Let us try 

F, (5.40) 

where the scaling coefficient a, determines how fast the 

profiles fall in with the free stream flow. 

The shape function with the Y variable, has th e form 

, 
(y) _ý- (5.41) 

It is convenient to make a change in the no tation and 

rewrite (5.39), with W replaced by f, and Y by 1, so that it 

can be presented in the standard form 

f,,, + Tf 
�+ (ý 0 f'1) 6d { F, {'y }=O, (5.42) 

3 
where 

(5.43) 

The boundary conditions to be satisfied by the solutions 

of (5.42), are 

f= f'= 0, F, =0 at 47 = 0, 
' and f --,, 1as +) _: 30 oo . (5.44) 

We note that the equation (5.42) is identical to the 

Falkner-Skan equation, except for the presence the terms 

representing turbulent effects. Furthermore, if we choose 

=-1/2, so that (from 5.38) R =0, then the equation (5.37), 

reduces to 

r} =o 
Ti ff +e{F (5.45) . ) 
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where 
a 

(5.46) 

which is the Blasius equation, with additional turbulent 

terms, applicable to B-L flow along a flat plate with zero 

pressure gradient. 

It is worth pointing out that in order to arrive at 

(5.45) from the original equations (5.21), we choose pl to be 

a constant, rather than a regular function of', since we 

require that the free-stream velocity be independent of the 

space coordinate along the wall. 

Numerical solutions to the equations (5.42) and (5.45), 

with the boundary conditions (5.44), are presented in 

section 5.5 . In the following section, we show how an 

analytic solution to the equation (5.42) may be obtained for 

the special case /3 =-l. 

5.4 An analytic solution when 0 =-1. 

At the beginning of this chapter, it was pointed out 

that analytic solutions to the Falkner-Skan equation have 

been found in the past. Yang and Chien for example, 

presented two types of solutions when ß =-1 (37]. The 

boundary conditions they used were 

f (0)=Y , f' (0)=0 and f'(a')=1, 

where '( is the suction velocity. 

For Y) /2, f4(0)=1(Y a- 2), their solution is in terms of 

exponential and error functions, with f'(1) in a dominantly 

exponential asymptotic approach to unity. When 04 Y, </2, then 

f' (0)=0, and the solution is given in terms of confluent 

hypergeometric functions, with an algebraic approach from 

above. 
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Since the equation (5.42) is an extended version of the 

Falkner-Skan, it is worth investigating how solutions to the 

latter may be extended in connection with finding a solution 

to (5.42). 

If we take (3 =-1, then from (5.38), ). =-2/3, and (5.42) 

becomes 

f+ ff_ 1+ f' +Eä(F f) =0, (5.47) 
where 

-�sa F, e- (5.48) 

On integrating (5.47) once and using the no-slip 

conditions at the wall to find the integration constant, we 

obtain 

f+ fc'- .1- f"(o) +6F f" =o. (5.49) 
Since C= Rc1b3 and b<<1, then for moderate values of the 

Reynolds number E «1 and we may assume a straightforward 

expansion for f, in the form 

f-f. t If. * 0(£ý) . 
[26]. (5.50) 

Combining (5.49) with the above, we get 

t+EfI)(f; . "ý{; )_'7-Cf: (0)+F f"(o) 

1- E F(F; *eC%*) = 0. 
Equating the coefficients of equal powers of e, gives 

fö(0) = o, (5.51) 
and 

V+f 41' + i' f+F f" =0. (5.52) 

The boundary conditions for (5.52) are 

f1 (0) = f" (0) = f1'(0) = f" ( co) - 0. '(5.53) 

Equation (5.51) can be integrated once to give a Riccati 

equation 

c. +i( 
l--, 

1Z) - f., (o) 1=z fa (o). (5.54) 

Solutions to this equation are given by Yang and Chien. 
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Equations (3.10) and (3.11) in their paper represent the 

confluent hypergeometric function solution for 04Y412 . The 

exponential and error function solution for Y3/2, is given 

by equations (4.5) and (4.6) in the same paper. From either 

of these solutions we can substitute for fand f; in (5.52). 

First, let us simplify this equation further. 

Substituting for F, from (5.48) into (5.52) and 

integrating the resulting equation, we obtain 

f, '+cf. ++(I-e-�aI)4'-fis a , 
/ý c 

where -l'is a dummy variable and k, is a constant. 

Multiplying throughout the above by the integrating 

factor 

, *(-I) a el pl If. J1 }, 

and integrating once, 'we have 

-i'rp =J C13a )f. +ý/3Gt 
f 

exit)d1ý (5.55) 

where, 7+is a dummy variable. 

If for example, fo is given by the exponential and error 

functions [eqn. (4.5) Yang and Chien], then 

ßi'7) =T 
; ýk 

_: )ý 
- 9]3 tip 1h t) 7}, (5.56) 

where 

8_ �ý �AY' Z) ýJc_tý ei iý II( �Z �ý . 
The solution (5.55) is 

which together with (5.50) 

tic solution for (5.47). W, 

integrals in the above, 

techniques which can solve 

solutions for different 

below. 

presented in an integral form, 

constitutes an approximate analy- 

e make no attempt to evaluate the 

for there are efficient numerical 

(5.47) easily. Such numerical 

values of p and C, are presented 
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5.5 RESULTS AND DISCUSSION. 

To solve the equations (5.42) and (5.45), which are non- 

linear ordinary differential equations (O. D. E. ) of order 

three, we represent them by sets of first order O. D. E. 's, 

which may be solved numerically. To this end, we rewrite 

(5.45) as 

( %+6F, )f -+-( 2f --EF)fIt =z 0'# (5.57) 

which may be reduced to the following system of first order 

O. D. E. 's. 

t, 

and (5.58) 

F, 
where 

F, _%-e 
4-/ 

, 
Similarly, (5.42) reduces to 

and (5.59) 

14- E F, E F, 
where 

F, =I- exp I-a(1)I. 

The above systems are solved by the NAG Fortran library 

routine (D02HAF), which solves the two-point boundary-value 

problem for a system of N ordinary differential equations in 

an specified range (A, B), using Merson's integration method 

and a Newton iteration in a shooting and matching technique 

[381. This routine requires that the N known boundary values 

and an estimate of the remaining N boundary values for the 

dependent variables at A and B are specified initially. 
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By using the actual and the estimated values at A, the 

routine integrates the equations from A to B, and compares 

the values from integration with those specified at B. The 

differences (usually known as residuals) should be zero for 

the true solution. The generalised Newton method is used to 

reduce these residuals to zero (or near zero, depending on 

the size of the acceptable error), by calculating the 

corrections to the estimated boundary values. This process 

is repeated iteratively until convergence is obtained. 

The order of error we specified for the residuals was 

10. In most cases the convergence was achieved after a few 

iterations. The results were checked by varying the order of 

error and also by reproducing the solutions of the Blasius 

and the Falkner-Skan equations, i. e. putting £ =0. 

One difficulty we experienced was that since the range 

of integration goes from zero to infinity, we had to 

approximate the endpoint at infinity by a finite value, 

where the solution was expected to reach its asymptotic 

state. After many trials, it was found that for an upper 

range of integration of about '1=8, rapid convergence was 

achieved in most cases. 

Let us first present the solutions to the simpler system 

(5.58), with the, boundary conditions (5.44). This system 

represents the turbulent boundary layer flow along a flat 

plate at zero incidence, and contains two parameters, namely 

0 -and C. The former, as mentioned before, determines the 

rate at which the profiles fall in with the free-stream flow. 

The parameter E can be thought of as a measure of the level 

of turbulence present in the flow. When £ or a are zero, the 

problem reduces to the laminar flow (Blasius Eqn. Fig. 5.1). 
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Since E =Rcibs , we note that while the parameter b was 

assumed small, R may take large values. Hence, if c, is of 

moderate size, then E is not expected to be of very large or 

very small magnitudes. 

In the following pages, the effects of E and a on the 

solution are illustrated. Figure 5.1, shows the laminar flow 

solutions, in which the stream function f, the mean velocity 

f', and the shear stress (per unit of viscosity) f` are 

plotted against the distance from the boundary. Figures 5.1, 

together with 5.2 and 5.3, show the variations of f and its 

derivatives with , for a fixed value of a. The effects of 

the variations in a, while 6 is kept fixed, is shown by 

figures 5.3,5.4 and 5.5. 

It can be seen that as C increases, it does not bring 

about a great change in the stream function, f. But the f" 

variable which represents the sum of the laminar and 

turbulent stresses, appears to be increasing with & near the 

boundary and diminishing at greater distances away from the 

wall. This confirms the fact that in the vicinity of a wall 

the laminar and turbulent stresses are both contributing, 

and hence the increase, whereas in the outer regions where 

the laminar stresses have diminished, the turbulent stresses 

are still present and decaying at a slower rate. The effects 

of £. and a on the mean velocity, are better illustrated by 

figures 5.6 and 5.7, respectively. It is observed that for 

larger values of E and a, the velocity approaches its 

asymptotic state at greater heights, which implies that the 

boundary layer thickness becomes larger in turbulent flows. 

The variation of the turbulent shear-stress c*, which 

is given by 
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IR t* ='iC I- e 
I) 

f ", (5.60) 

where ( is the distance along the wall, measured from the 

leading edge of the plate, is presented by figure 5.8. As 

expected , the turbulent shear-stress rises sharply near the 

wall, and gradually decays as the free-stream region of the 

flow is approached. 

The expression (5.60) is obtained by taking the second 

term on the r. h. s. of (5.25), (which represents the gradient 

of the turbulent shear-stress), and replacing the volume 

integral by its estimate (5.33). We note that for this 

special case *L =0. 
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Z-1 

Fig. 5.1 The laminar solution as given by 
the Blasius eqn. f'+1/2ff"=0. 
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Fig. 5.2 Plots of f and its derivatives, 
eqn. (5.45), for C=l, 4=1. 
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Fig. 5.3 Plots of f and its derivatives, 
eqn. (5.45), for E=10, aal. 
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Fig. 5.4 Plots of f and its derivatives, 
eqn. (5.45), for E =10, a=0.1. 
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c- 

Fig. 5.5 Plots of f and its derivatives, 
eqn. (5.45), for t=10, a =10. 
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4- 

Fig. 5.6 Variation of the mean velocity (f') 

with c, fora 1. 
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Vý- 

Fig. 5.7 Variation of the mean velocity (f) 

with a, for Z=10. 
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A 
W 

F- 

Fig. 5.8 Variation of the turbulent shear-stress 
with E, for 0=1# f=l. 
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The system (5.59), corresponding to the equation 

(5.42), describes the turbulent boundary layer flow past a 

wedge. The solutions to this system satisfy he boundary 

conditions (5.44). 

In addition to the parameters et and C, the solutions in 

this case, are also dependent on the choice of 13 . This 

parameter varies with the angle of the wedge, and hence with 

the pressure gradient along the direction of the mean flow. 

It may take both positive and negative values, depending on 

whether the flow is accelerating (0>0) or decelerating (13<0). 

For 13 <-0.1988, separation occurs in laminar boundary 

layers, and a point of inflexion appears in the velocity 

profiles [29]. 

To demonstrate the effects of the parameters, we shall 

again present the solutions by a number of plots, in which 

the values of the parameters are'varied. To avoid having 

page after page of curves, only a selection of different 

values of p are included, and they appear in figures 5.9 to 

5.13 in decreasing order, ranging from 1 to -1.5 The 

parameters a and £ are kept fixed at A =1 and C -10. 

As /3 decreases, it can be seen that up to ( =-1, while 

the stream functions grow in amplitude, the velocity 

profiles' approach to unity becomes slower, and the 

shear-stresses which decrease at the wall, decay at greater 

heights away from the boundary. 

When f3 =-1.5, the whole pattern of the solution changes, 

and the velocity profile overshoots. For the same values of 

/land a, no such overshoot occurs, when E is raised to 

about 50, and. the profiles we get in this case are almost 

identical to those presented in figure 5.12 . 
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The effects of a and 6 are similar to those observed in 

the previous case. As an example, the variation of the 

profiles with F, for fixed values of 0 =-0. l and a =1, may 

be seen by comparing figures 5.14 and 5.15, in which E is 

chosen to be 0.1 and 10, respectively. Figures 5.16 and 5.17 

show the effects of a, when 13 and e are unchanged. 

in figure 5.18, the behaviour of the velocity profiles 

with the variations in E is compared. The effects of the 

variations of A on the velocity are illustrated in figure 

5.19 . As can be seen, when 13 =-0.2, the corresponding 

profile exhibits a point of inflexion, which indicates the 

occurence of the boundary layer separation. 

The influence of the parameters on the turbulent shear- 

stress r', are shown by figures 5.20,5.21 and 5.22. The 

expression for the shear-stress, at any distance ' from the 

forward stagnation point, is 

al( 2-13)VI 

�R z=C]_ fý-p) -e -F (5.61) 

It is noted that an increase in (3 , causes the turbulent 

shear-stress to rise near the wall, and the rate of decay 

becomes slightly faster. 

The above expression is again obtained from the second 

term on the r. h-. s. of (5.25). 
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T- 

Fig. 5.9 Plots of f and its derivatives, eqn. (5.42), 
for C=10, a =1 and R =1 . 
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Fig. 5.10 Plots of f and its derivatives, eqn. (5.42), 
for Z =10, a =1 and j3 =0. 
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Fig. 5.11 Plots of f and its derivatives, eqn. (5.42), 
for & =10, a =1 and /R =-0.3 . 
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Fig. 5.12 Plots of f and its derivatives, eqn. (5.42), 
for 1=10, a=l and (3 =-1. 
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F- 

Fig. 5.13 Plots of f and its derivatives, eqn. (5.42), 

for c =10,4 =1 and A =-1.5 . 
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Fig. 5.14 Plots of f and its derivatives, eqn. (5.42), 
for 6=0.1, a=l and ß =- 0.1 . 
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Fig. 5.15 Plots of f and its derivatives, eqn. (5.42), 
for 6=10, a =1 and 03 =-0.1 . 
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Fig. 5.16 Plots of f and its derivatives, eqn. (5.42), 
for =0.1, a =1 and 13 =0.1 
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Fig. 5.17 Plots of f and its derivatives, eqn. (5.42), 
for C =0.1, a =10 and 1 =0.1 . 
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Fig. 5.18 Variation of the mean velocity (f") with E 
for a =0.5 and 13=0.1 . 
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c 

, Fig. 5.19 Variation of the mean velocity (f') with (3 
for E' =1 and a =1. 
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Fl- 

Fig. 5.20 Variation of the turbulent shear-stress with e 
for a =1,13=0.5 and f=l. 
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IF- 

Fig. 5.21 Variation of the turbulent shear-stress with 
for il =0.5, £ =10 and S =2. 
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iF- 

Fig. 5.22 Variation of the turbulent shear-stress with 
for 6 =10, ß =0.5 and f =1. 
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6. CONCLUSION. 

In this final chapter various aspects of the work 

presented in this report are summarised. 

In chapter one, areas of difficulties associated with 

turbulence were identified and some of the most popular 

turbulence models and various approaches to the problem', 

(from the earliest models to the recent computer simulation 

methods), were briefly discussed. It was noted that the 

non-local effects of turbulence play an important role in 

determining the structure of the phenomenon. Since, such 

effects are only catered for in the more elaborate and 

complex models, we proposed a relatively simple mathematical 

model in which the structure of turbulence is described by 

averaging the effects of the eddies of various scales over 

the whole volume of flow. The model assumes that the 

turbulent stresses can be represented in a form analogous to 

the laminar stresses and the correlations between the point 

in question with those at other locations in the flow, 

follow a distribution which is assumed Gaussian. 

The correlation function which in steady flows varies 

with the space and position, was presented by the products 

of a shape function and a position function. The rate at 

which turbulence is drawn into the free-stream region of the 

flow was presented by the shape function which assumed 

various forms, depending on the type of flow under 

consideration. The variation of the correlations with 

respect to the position in the flow was assumed isotropic 

with rapid decay and hence presented by the Gaussian 

distribution function. 

The model was introduced in chapter two, where the 
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-properties of the shape and the position functions were 

,, 
listed. In the same chapter the basic assumptions and the 

equations governing the motion of a viscous Newtonian fluid, 

together with some of their important properties were 

presented. 

The application of the model to the fully developed 

steady Poiseuille flows between parallel plates and through 

circular pipes was investigated in chapters three and four, 

,,. respectively. Having transformed the N-S equations into 

cylindrical polar coordinates in the case of the pipe flow, 

,. we showed how the equations may be simplified in each case. 

The chosen method of solving the equations of motion for 

both problems were similar and appeared to be dependent on 

the size. of a flow parameter, E. For sufficiently small 

values of C, we showed how a solution could be obtained in 

: the form of a Neumann series. The more interesting case of 

large E, was studied in detail and approximate analytical 

solutions for the mean velocities were obtained for each 

problem. The technique we employed was to transform the 

equations via the integral transform methods and look for 

the solutions in the form of asymptotic series. Since the 

equations were in the integral form, we made the assumption 

that b»1, (where b is the dimensionless standard deviation 

parameter in the Gaussian distribution function), and 

employed Watson's lemma to find estimates for the integrals. 

Watson's Lemma has been frequently used in estimating 

the integrals in both chapters three and four. Closer 

inspection of such integrals at later stages of the work 

revealed that the estimates given by Watson's lemma were in 

fact exact solutions, provided the power series in the 
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integrands converged. As an example, the convergence of one 

such series is considered in the appendix AS. 

The terms in the asymptotic series solutions were 

determined by successive approximations, and since 1/b «l, 

only the first few terms were retained in the final 

solutions. 

Having obtained approximate analytic solutions for the 

mean velocities, the method of determining the model 

constants were described. In the case of the pipe flow 

problem, we showed how the comparison of the frictional 

resistance (deduced from our solution) with the Prandtl's 

universal law could be used in this respect. 

With the appropriate numerical values for the model 

constants, the mean velocity profiles predicted by the model 

were compared with those given by the universal laws of Von 

Karmin and Prandtl. The agreement appeared to be quite good, 

in particular for the case of the flow between parallel flat 

plates. In the pipe flow problem however, deviation from the 

universal laws and from experiment were observed as the 

profiles approached the boundary. But at the boundary itself 

where the universal laws showed indefinite values, our 

predictions were found capable of describing the velocity, 

and finite values were obtained there. 

The effects of the variations in the Reynolds number on 

the velocity profiles were examined and in both problems it 

was observed that the profiles became fuller with the 

increase in the Reynolds number. By comparing the behaviour 

of the profiles when the model constants were varied, we 

were able to study the sensitivity of the solutions and in 

most cases it was possible to establish a range within which 
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the constants could vary. 

As the model appeared capable of producing satisfactory 

results for the relatively simple problems of Poiseuille 

channel and pipe flows, we chose the more complex problem of 

turbulent boundary layer flow along the surface of a solid 

body, to test the model further. 

In chapter five, following a brief discussion on the 

similarity solutions of the laminar boundary layers, we 

outlined the usual methods of calculating the turbulent 

boundary layers. Noting the complications associated with 

such methods, namely, having to use different closure 

assumptions in different regions of the boundary layer, we 

proposed to derive equations similar to the Blasius and the 

Falkner-Skan, which could efficiently calculate every region 

of a turbulent boundry layer. 

Beginning with the more general problem of turbulent B-L 

flow past a wedge, we described how the N-S equations may be 

approximated in a way analogous to the laminar flows, to 

give the B-L equations. Representing the equations in 

dimensionless forms, we introduced the similarity variables 

and showed how the B-L equations could be reduced to give an 

ordinary differential equation of order three, similar to 

that of the Falkner-Skan equation. The volume integral was 

evaluated approximately, by making a series of transformati- 

ons and using power series expansions. On the assumption 

that b«l, it was showm that the volume integral, if 

approximated to the first -order, would make the equations 

independent of the space coordinate along the wall and hence 

form the basis for obtaining similar solutions. It was also 

shown that if the pressure gradient was absent, the problem 
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would reduce to the special case of B-L flow along a flat 

plate at zero incidence, for which an equation similar to 

that of Blasius was obtained. 

Reducing these equations to a set of first order O. D. E's 

and applying the appropriate boundary conditions, enabled us 

to solve them numerically, by using a Nag Fortran library 

routine. 

For the special case of ß =-l, it was shown how an 

approximate analytic solution could be obtained by extending 

the existing solutions of the Falkner-Skan equation. 

The numerical solutions were presented in the form of 

graphs for different values of the flow parameters. The 

effects of the variations in the parameters on the solutions 

and on the turbulent stresses, were also demonstrated and 

discussed for both equations. 

The significance of these solutions lies in the fact 

, 
that we have firstly shown that approximate similarity 

solutions to the turbulent boundary layers are possible, and 

secondly, such solutions can successfully predict the 

important features of a turbulent boundary layer (both in 

the inner and in the outer parts), for a variety of the flow 

parameters. 

On the whole the model appears capable of describing the 

effects of the fluctuations on the mean motion adequately. 

Furthermore, the simplicity of the model, as was shown, 

makes approximate analytic solutions to the equations 

possible, and hence allowing a better insight into the 

problem of turbulence as a whole. 

Another advantage of the model is its ability to 

describe an averaged picture of the structure of turbulence, 
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and hence better representing the three-dimensional 

character of the phenomenon. 

On the disadvantages of the model, it may be argued that 

when the geometry of a flow becomes more complex, complicat- 

ions could develop when it comes to formulating a suitable 

shape function and when constructing the volume integral 

over which the correlations could be averaged. Further 

research in this connection, we believe, could improve the 

model and its range of applicability, and hence open up a 

whole new range of problems to which the model could be 

applied. 

The predictions made for the mean velocity in the 

Poiseuille pipe flow problem, may also be improved by 

further investigating the expression representing the shape 

function. An increase in the rate of decay of this function 

near the boundaries, seems a possible area for further 

improvements. 

It should also be mentioned that the determination of 

some of the integrals, leading to the asymptotic solutions 

for the Poiseuille channel and pipe flows, and the approxim- 

ation of the volume integral in the boundary layer flow 

analysis, were based on the assumptions concerning the size 

of the model parameter b. Although, these assumptions were 

justified on the physical grounds, the question still 

remains over the validity and the accuracy of the results 

for the intermediate values of b. This aspect of the work is 

also worth some further investigation. Comparison with 

numerical solutions perhaps, could clarify some doubts. 
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APPENDIX Al 

To evaluate CO sI F (s) =/e F(7) d'1 

Since F, =0 for Ilk >1, we can write the above as 

S)= %1 i57 

�eF, (1) 

Substituting for F, from (3.12), we obtain 

(s) - e! 
a { cost, aIi 

'SO? ' is7 fe dý -fe cost. ay d"1} 

The first integral in the above reduces to 2/s sin s. If 

I denotes the second integral, then integrating by parts 

gives 
s a= IS G0S%% a S; M 

a 
5;,. 1\ OL Cos $_I 

Sa Sj 

Therefore 

S cast a 5; ý, S+4S; V% +a cos 
aý 

Hence 

FcS) .es Cos 1% a S\-s -1Z3(S Cas a St., s fas%Q co Si) 
0.. S 

:x 
_Q 2a e { 

fig CoSý A $: rº S-S$. »1º Q Co$ S3. 

S(a2.. s&) 
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APPENDIX A2 

To show the convergence of 

_x co ý 
9(612x)__ Is 6e 

H1., 'ýýxý ( '/21 . .... o 
C1".. 3)i. 2ý, rý)! (A2.1) 

Let M be the maximum of 

Y. H'I-'I C") on o<x< oo " 
The expansion for g certainly converges, as long as b is 

large enough to ensure the convergence of 

WM` 
C1wýliý 

týiV 
Jam. 

(A2.2) 
ý. o 

If we put Y=H,.,, (x), then Y satisfies the Hermite 

differential equation 

=o , 
K! 

and y=eV satisfies 

Y~+ 1rcy'+4 (m tt) y , =o 

Multiplying through by 'e11 X' 
, gives 

,. 
Y, 

2%= 2 ix 1(2x2 

Ye +sxy. e +4. ý, }, )yy'e moo, 
The above equation may be written as 

[31], (A2.3) 

(A2.4) 

ds r' 

dx 
fi-y' e-" }+dx{yZe }-? (-, mot)xexaya=o, 

Which can be integrated once to give 

to Y, CZXi + Zýº" ) y2 Lf 

Hence 

xý Xl fxei dx o. 
V. 

11 
{ Jr e: '' + s(ýýý)yi(x1)esx, } -{ Y"(x. ) e "' 

+ y«. )e 
x, } 

c4(ß,. 1) J re iý°ýr" (A2.5) 
1" 
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If we let x. and x, be consecutive maxima of y, so that 

Y, ( Y-. ) = Y'( x0 =a: CY. *> itp ) (A2.6) 

then (A2.5) reduces to 

Is 

2(ý, #1 eLX' 1 1ý' }. ? CM, ý) J, 
et eix y' J 'X . ý{ y ýx'ý 'Yýx"ý M (A2.7) to 

Since, the integral on the r. h. s. of the above is 

positive, it follows that 

I y(%%) e"' 
(>I 

yc %. ) eI 

and therefore 
I Y' I>1 Y'X-)I (A2.8) 

If on the other hand, (A2.4) is multiplied throughout by 

y' and integrated once, we have 

x1 
f{ yy~4.1 x y-2 4 (Wº+I yv'3 d z= o 

which is equivalent to 

1' s 
fd (_ y. t) .. I ty- + 4d C4 y'ýý dY =o dý 1 

The first term in the above vanishes due to (A2.6), and 

from the remaining terms, we can write 

(VV, ýýý { y'cx, ) - y'(,. )} y, I C'I I 
Once again, the integral on the r. h. s. of the above 

equation is positive, and we conclude that 

IYO0I < Iy(x. )) . (A2.9) 

Since y(0)=0, then the greatest value ofjyý is its first 

maximum to the right of x=0. To find this maximum, put 

-x" I 
_e Na..... ý+) .0 

and it follows that the maximum values of y, occur at zeros 

of H, 
_,, 

(x) , where 
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C x) _ ex HAM.: e 

If we further put 

y 
so that 

Y"' 

and 

Y" fL X't+ Cf X" s X') dz f'Z 
dx 

then (A2.4), becomes 

fx''d . cfx'+sf'x'tz cX')dx 
01 

YL 

+tf �+s: T'+4(-. 1) TJz =0. 
(Dashes denote differentiation w. r. t. x). 

If we choose f and X, such that 

(i) -4 X'' =4f 
(ii)- IX 

-F2fýX, t2ttf X =0 , 

(A2.10) 

then (i) implies X'=2, and therefore X=2x, 

and (ii) implies f '+xf =0, and thus f =exp {-xi /2 }. 

Substituting the above expressions for X and f in 

(A2.10), reduces this equation to the normal form 

i 

-+CV, #i) Z=6 (X1+w) z, 

which has a solution of the form 

Z=A Cos[ (N, "%)hx) k-8s;.. {(V. "0jA X) 

t 11fý, 4ý)'la J `'') Z(f) S"[(" 
0 

where A and B are constants 

Now since y=c (x) Z ()() 

and iii) 
= e- "'A 

(A2.11) 

(A2.12) 

(W. K. B. method, 31 pp. 75-77). 
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then it 
Z 'ý a HaM., C x) 

Therefore Z(O)=O, which implies A=O. 

Also since 
d? Izs0 

sZIcä{I( 0) 

ci X%d. s».. ý 1 _o 

[31, p. 192], 

=(-1)~ Cs^-1,0! ýºM, 
, [31, P. 1871 p 

and from (A2.12), 

cl 7- 
= rs 

which implies 

C. e_l V/1 

Hence, if m is large, then Z is approximately 

% 

the first maximum of which occurs at 

Since 

then y'3Z to the first approximation, and therefore 

Substituting the above estimate for M in (A2.2), gives 

Mf0 

which is an entire function and certainly converges. 
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APPENDIX A3 

To integrate 
00_ fS 

cis, 
-ýo 

where '(s) is given by (3.66). 

Combining (3.66) with the above, yields 

00 into Cý"ý. s)(sý. ýýý 
00 

t(°l'/6+-t3/0 ) JC1ý-ß)C7-1)yj S11-3 

? so 
-1 S 

7' 

+c ('ýý"i)> IC17i)CJ-t)Cij-i)C3 ) YJ s SJ 

9.. 

Since, all the terms in the integrand are of the similar 

type, we shall show the method of integration, by 

considering the first term only. 

Let .o iM +l 
I=f3a., Sclef "-ýýs)} ds, 

_ ob w^ .. 

where 
Qa, i 

'c, 

6 s,. 3)(II»rI)! 
Splitting the range of integration into a positive and a 

negative one, changing the order of the latter and rearrang- 

ing, yields 

ir5 t"fs 
1 

ýs 
I=- f a.. 5ýý,. ý 

c_e)cds. 
o W+. o 

The exponential terms within the brackets can be 

replaced by (2i sin (j s) }, which in turn may be replaced by 

its Taylor expansion. thus 
.o 24,01 - 611' 

°° 1M*1 0° 
I=-_ýf )-a. S c. «Sý e JS 

o Mu# ýýo 
Cantl)ý 

.1r aM 
C-ý) 1 ine -+Osa 

-st 
fSi 

dS 
. 

s 
" ... o ýv" 

ian-1w. t1ý 1 

It is convenient to write the above as 
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00 
00 _ b: sý -1i 

f 
A� S 1n+, 

e_ 
0 nco 

S 

where 

14 (-1) 
1% 

%T 

211 

Ms0 

Since b is large, Watson's Lemma can be employed to find 

CO 
T1 ýw 

1 In 
3ý1 NJ n+30 IN _2f 

Ago 

The remaining terms can be evaluated in a similar 

fashion. 
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APPENDIX A4 

To evaluate 

I= I'( (I - e_ ae-a (t-'7)J 71k+i di. 

This integral can be written as 

I=C1-ae-a) f 2. k+1d 
+ ae Q skt: e-aCý-'1) 1k+1 

0,17 
di - .l1 c17 

-ae-a ae -a0-7) Lk, l 
I k+1 1 k+1 '0 

e% 
011 

To find the integral in the above, 

put 
y= a(1-1). 

so that 7_'_ Y/ a and d1 s --a' all. 
Hence 

Ie 
a(o-'7) sk f1 ýo e 

y( 
'--i ) 

01°1Qaa% 
a 

-y ik+I Ir 

Qf6E Cz. k+%_r)l r! aiI 
0 Coo 

by the Binomial expansion. Hence 

ik*l r (-0 (2k. ) ý öý r +l 
ýý a 

(t k +I a 

where 

00 aey n+ý. ý 
YC f ye dr c 7_�a r+ý , a) = 

o ý. o (merri) n! ' (6, p. 13) 

Hence 

-a -Q 1-aýe 1kN ý rtM 

2k+t tk. i3 " 
P"O na0 

ýýi. ktlýýýý ý`ý ýJýfttýý 1l1 
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APPENDIX A5 

To examine the convergence of 

k 
ýýýýý- 

p(c+k)k! {(j-k)ý}' 
ks0 

where 0ý^j<l, C>O and j is a large positive integer. 

The above series can be written as 

'} 
(-J )3i 

+ 
Is 

+_ + 
('j)1(ý'3)1"ý-ýý11k 

C(C+i)... (c+K-I). k1 ý7) = r(c) f3ýý' C. to c (c i)) 21 

NO l1! ý' 
C (A5.1) 

where 1F, is the hypergeometric function [31]. 

It is convenient to represent (A5.1) by an Euler 

integral. Thus we write 

Pi {ý. } 
C. (A5.2) 

[31, p. 108], where kr-is to be chosen so that 

O'j (o) _ I/ r(c)I)i}1 , 
(A5.3) 

and it is sufficient to choose for c, a simple contour which 

has both 0 and 1 in its interior. 

From (A5.2), we can write 

0, (°) = 
r(cý 1 s* ,/t 

-C (t-')C+J_l dt, 
tl ý 

_ T`c)Ii! 31 
Ct 

and from (A5.3), we have 

. 
I= 

, ßn1 
f t'-I (I -t )Olt 
C 

If we expand c so that at every point Itl>1, we can 

write, using the Binomial expansion and the Residue theorem 

r(c)j! (A5.4) 

Using a similar idea, we have 
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IöC) _1R; 
f i-1 ý +2. -1 

P(ctj)-ji 
Substituting for , from (A5.4), yields 

PC `+ 2j) 
f r(c+j)1' Uºj' (A5.5) 

To obtain an estimate of the size ofoh) for intermediate 

values of 7, requires rather more analysis. The method of 

steepest descent [261, seems to offer an effective method. 

To that end we write 

ýy 
1 

NO d(t) -AP{ (A5.6) rý ii. } 
where 

-C C-1 

and 

4(t)_ 103 f t-º)ct-i) /. t I. 
It is fairly easy to see that there are saddle points at 

: 1j 
. At f17 , the line of steepest descent is along the 

real axis, while at -/I , it is perpendicular to this axis. 

Thus, we take c through and perpendicular to the real 

axis there. 

In practice it is more informative to adopt a rather 

more elaborate approach. Put for convenience, "j L, so that 

a possible form for curve c is the circle 

It -1/21 = S*''il 
Putting 

3z{+ 
so that 

3zti 
we can verify that taking c to be 
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i9 
t ±- (i-*3)e 7T4- 9 <n , 1 

the image of c is then the real axis -w<Z<oo, and we have 

- 

00 

0 Cf') _ 
(-0' k; 

,l 
G(z)P{ j FCz)3 d z, 

where 
tip 3 

I'c 
GCz)-(J 

and 

ffz-(i-, 'J)i 3c-1 

{0+J)z-%j`(3. -. ) 

FOZ )- IV f (JtI)tt. i JtI)1z -JsCl+J_J3)z' } 

1 1+1) -r led[ (- 
i (IT+))1 zi I 4 (1+-pt(I. 4; Z+Jc3+º) zs3 

We now consider two cases. 

(i) jj >>l, 

(ii) ij is 0(1). 

In case (i) we can clearly use a steepest descent method 

and obtain as the leading term 

(y)2J G. 't3 n/ ) If2 Its 
+ 3N NO (p on) 

C-10 k' 
ý, - 2i 

ýtfý(c) {; ýý'cnýj)ýýi 143) (A5.8) 

and if the Stirling approximation (311 is used in (A5.5), it 

can be seen that these two results are consistent. 

In case (ii), if we put j3 su and suppose u is 0(1), 

then 

where 

exp {j rCz)ý _I+u )1j 3 )j 

(21. +1)' 2' \w/ - '' - cl+3)2 { 1+iz*J(j+1)zjl 
and if j is very large 

ex P{ F(z)1 0 CXF{ uC1-w)j 
This will decay very fast as IZI increases and therefore 

in approximating ßJ' we can neglect powers of products of 3 
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and Z and hence put j =0 into all other terms. Thus 

erP; ü(1- dz. 

cý t tZ)C (A5.9 ) P(C) Iý X31 ýn -00 
We require a cut in the Z plane from i to ia, . We can 

then bend the contour of integration around the cut so that 
-3 , *"It iH/s 

on one side z=i +P c and on the other Ze 

Then 
I 1, 

I- C0' 
s,;. CA 

fp if-U X (I°+ /P)1 de 

C 

ell 
7r 

where (IU) is the usual modified Bessel function [31, 
c-s 

P. 162]. 

Again using the Stirling formula, we have 

1'(c) 

and hence 

Zu 
I- C 

1 as u -* 0 for 0<C<l. 
No F(I-C) 
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