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ABSTRACT 

The text entry interaction between human and computer could be noisy. For 

example, the typing stream is a reflection of user typing behaviours which include 

user particular vocabulary, typing habits and typing performance. As computer users 

inevitably make effors, a typing stream generated from using computer QWERTY 

keyboard implies all users' self-rectification actions rather that a clean text. 

Therefore this research develops a novel intermediate layer language modeling 

framework called ALMIL (i. e. Adaptive Language Modelling Intermediate Layer) 

which is seen as a communication language layer between human and computer to 

analyze noisy language stream and provide users with two fundamental functions, 

namely Text Prediction and Text Correction. A specific research case of ALMIL 

called Intelligent Keyboard (IK) aiming to develop a user oriented hybrid 

framework with self-adaptive function to help people using QWERTY keyboard 

more effectively is also conducted. 

In order to explore the methodologies, influential factors and demonstrate the 

feasibility of the frameworks, a comprehensive neural networks and language 

modeling process is carried out. Several neural network models which include a 

Focused Time-Delay Neural Network model (FTDNN) to model non-noisy, noisy 

and typing stream datasets, a Time Gap Neural Network model (TGNN) to simulate 

and predict user typing time gap between two consecutive letters, a Prediction using 
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Time Gap model (PTG) to predict right symbols based on user typing speed, a 

Probabilistic Neural Network based model (PNN) to simulate 'Hitting Adjacent Key 

Effors', and a Word List real-time ranking model (VvLR) on prioritizing prediction 

results are developed. All the models have been demonstrated, and shown high 

performance through a set of experiments using a range of dataset. 

In essence, this research brings forth a creative concept - intermediate layer 

language modeling framework for noisy language processing, pioneers a 

comprehensive neural networks modelling process, and originally develops a hybrid 

solution to combine multiple correction functions based on an evolutionary ranking 

approach. It produces a significant contribution in the area of neural networks 

application and shows a direction for Human-Computer noisy language interaction 

research. Also a full report on disabled people typing behaviour, a development of 

EIM application and a universal pre-processing tool for all neural networks 

modelling and n-gram, calculation will benefit both research and commerce. 
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CHAPTER ONE 

INTRODUCTION 



1.1 Computer text entry system 

Computer text entry may be full of noises. For example, computer keyboard 

users inevitably make typing mistakes and their typing stream implies all users' 

self-rectification actions. These may produce a great negative influence on the 

accessibility and usability of applications that need text entry. Efforts have been 

made based on different technologies such as spell checking and natural 

language processing, but few tools can intelligently identify new genre of 

mistakes. Moreover although distinct solutions such as Metaphone [Philips, 1990] 

and n-grams have been implemented to correct user typing mistakes, an optimum 

solution is hardly identified among them. It is desirable to develop a hybrid 

solution based on these technologies to achieve an optimal result. 

For input efficiency and accuracy considerations, text entry requires text 

prediction as well as correction. Research on predictive text input technologies 

have been undertaken in multiple directions such as language modelling and 

natural language processing, and many products such as Dasher [Ward & 

MacKay et al., 1997-20081 and Prototype [Sensory Software International Ltd, 

2007] have been available on the market. However, those technologies have been 

used exclusively and the whole issue hasn't been addressed well. 

Neural Network is a non-linear statistical data modelling tool, which can be used 

to model complex relationships between inputs and outputs or to find patterns in 

datasets. Its related research has been flourishing in areas like human activity 

recognition and category classification, although they are hardly traced to be 

applied to noisy text entry such as user typing stream processing. 
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1.2 Noisy language modelling 

The goal of Statistical Language Modelling (SLM) is to build a statistical 

language model that can estimate the distribution of natural language as 

accurately as possible. Language model assigns probabilities to sequences of 

symbols or words, and is used in many natural language processing applications 

such as speech recognition and data prediction. For example, given string S= 

(student), some 2-gram prediction cases are, 

, st , --> 
'tu' --> Id' 
'en 91 't 9 

Compared with natural language modelling, noisy language modelling is used to 

estimate the probabilities of a set of symbols or words based on noisy historical 

data. For example given a noisy string S= (sutdent) whose corresponding right 

string should be 'student', where there exists a Letters Reverse error (V 4 T), 

some 2-gram. prediction with noise cases are, 

, su, u, 

, ut, Id' 
'en' -: > lt, 

As shown above, the prediction cases not only include one step forward symbol 

forecast but also symbol correction (e. g. 'su' --) V rather that 'su' 4 T). In 

language modelling area, quite a few of research have been carried out such as n- 

gram Prediction and Prediction by Partial Matching, which have been applied to 

clean text efficiently, but the usage on active text with noisy data is hardly found. 

For example, the research on typing stream generated by computer QWERTY 

keyboard user, which implies all users' self-rectification actions, has been 

underestimated [Soukoreff & MacKenzie, 2003]. 
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1.3 Motivation, aim and objectives 

Through computer, an individual interacts with applications by producing events 

which are triggered by appropriate input devices and transformed into values 

expected by a target system. Typical input devices which can help users with text 

entry include keyboard, mouse, and camera so on. 

As indicated in the previous section, the text entry interaction between human 

and computer could be noisy. For example, the typing stream is a reflection of a 

user's typing behaviour that includes a user's particular vocabulary, typing habits 

and typing performance. As computer users inevitably make errors, a typing 

stream implies all users' self-rectification actions rather that a clean text. Here is 

another example: one of the facial recognition functions is to allow computer to 

interpret the speaker's speech and spot the text they intend to express along with 

their facial expression changes, which is hardly completely accurate. 

Currently all these happen during a communication process without recognizing 

the mistakes that may be incurred by a user when using input devices. A 

requirement to design an intelligent framework as a communication interface 

between input devices and applications to tackle the noisy input in certain 

language context is needed. It will also provide a platform for cooperation 

between text entry applications and input devices, or between each two input 

devices such as the audio and video capture in bimodal speech recognition. 

Motivated by these requirements, this research is intended to propose a self- 

adaptive intermediate layer language modelling framework which can be seen as 

a mapping language layer as well as a filter platform between user and computer 

to process the noisy language stream. All input noises can be identified and 
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filtered through this layer, and a clean data stream can be presented to upper 

layers (e. g. applications). In turn, user feedback is used to further strengthen the 

accuracy of this intermediate layer. 

As the framework will be extremely useful for text entry such as typing stream 

from a computer keyboard, a demonstration will be studied aiming to help 

people in using a QWERTY keyboard more effectively. Simultaneously user 

typing streams can be researched in particular and simulated systematically by 

developing distinct neural network models both based on generally analyzing 

plain text, noisy data and user typing stream, and specifically studying specific 

user typing behaviours such as 'hitting adjacent key effors'. Some state of the art 

neural networks such as Focused Time-Delay Neural Network, Elman Network, 

and Probabilistic Neural Network can be investigated and further applied. The 

neural networks structures can be extendable both at input layer and at hidden 

layer, and able to handle real-time interaction issues. The neural networks 

experimental results are expected to be helpful in practical use such as in 

prediction and correction. 

The major purpose of this research is to demonstrate the feasibility and the 

rationale of the intelligent intermediate layer language framework through its 

development and related neural networks modelling. Factors which may have an 

influence on the functionality, accuracy and efficiency of the framework are 

expected to be identified. 

The objectives of research are intended to make the following contributions to 

knowledge by studying areas shown below, which are also the main hypotheses 

of this thesis. 
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1.3.1 An intermediate layer framework development and noisy language 

modelling 

To develop an intelligent framework to analyze noisy language stream data and 

offset the communication gap between a user and computer applications. This 

framework should provide two fundamental functions at least, namely, text 

correction and prediction. Through it, the noises of text entry can be filtered 

significantly; meanwhile the text entry efficiency can be improved. Along with 

the framework, several neural network language models will be developed. This 

will be a simulation to the designed intermediate layer framework on a global 

basis and require a time-efficient neural network with high computation and 

memory capacity. As prediction rates and correction rates can be varied with 

different neural network structures, an extendable neural network design might 

be needed. Moreover, the experimental datasets could be collected from 

difference sources such as articles and disabled user typing stream, and a noise 

incremental distribution scheme may be conducted along with the modelling 

process. 

1.3.2 Typing stream framework development and typing stream modelling 

As user typing stream from computer QWERTY keyboard is full of noises, it can 

be a good research case to demonstrate the intermediate layer framework. 

Because user typing behaviours are varied, particularly with disabled people, a 

user investigation needs to be conducted first. Subsequently a user oriented 

framework as an intermediate layer language model to filter typing mistakes and 

predict typing intention is required to be developed. Since it is difficult for a 
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single algorithm to deal with all the problems appeared in typing stream, distinct 

prediction and correction algorithms such as Metaphone and word 2-grarn may 

be integrated into this framework. As user typing streams imply user specific 

typing behaviours, it may also be possible to analyze this language stream using 

multiple neural network models. Distinct factors which may affect user typing 

efficiency and accuracy are expected to be identified. These neural network 

models are able to provide a comprehensive data analysis such as data prediction 

and correction on a noisy language basis. 

1.3.3 Framework with combination functions and word list ranking 

Given a vast variety of user typing behaviours, it is difficult to use a single 

algorithm to deal with the noisy text entry. In practice, a combination model 

based on multiple correction functions to present multiple answers for user 

selection may be a better solution, and it is also necessary to develop a ranking 

model to prioritize the answers. However, the ranking may be affected by many 

factors such as time, text content and user feedback, so an evolutionary ranking 

model based on data updates and neural network learning to combine distinct 

correction algorithms to produce an optimal prediction needs to be developed. 

Intermediate layer framework concept typing data stream neural networks 

modelling and word list online ranking are all unique and preliminary 

contributions. This thesis will lead to a new research area on noisy language 

modelling study. 
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1.4 Chapters overview 

The thesis is structured in chapters as shown in Figure I. I. Chapter 2 reviews 

related research work. The research work undertaken for this study is illustrated 

in chapter 3&4. Chapter 5 describes further work based on the findings of 

chapter 3&4. Following the figure, a more detailed description of each chapter 

is presented. 

1) 

ALMIL framework 

IK framework 

Literature Review 

(Chapter 2) 

FTDNN n-gram noisy 
language modelling 
NN typing behaviours 

4 
Conclusion and 
Recommendation 

(Chapter 6) 
I IK further development 

Figure 1.1 Chapters structure of Noisy Language Modelling 
Framework Using Neural Network Techniques 

Chapter I gives an introduction to noisy language modelling, and presents the 

motivation, aim, objectives and hypotheses of the research. 
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Chapter 2 reviews Neural Network models, Statistical Language Modelling 

algorithms, Data preprocessing methods and other technologies such as String 

distance algorithms and Fitt's law equation used in the research. 

Chapter 3 develops an intermediate layer noisy language modelling framework 

called ALMIL and presents a demonstration of the ALMIL framework called 

Intelligent Keyboard. 

Chapter 4 illustrates full neural network models development which includes 

novel Focused Time-Delay Neural Network language modelling with noise-free, 

noisy and typing stream datasets, Time gap modelling, Prediction with Time Gap 

modelling and a Probabilistic Neural Network model to simulate hitting adjacent 

key errors. 

Chapter 5 illustrates a further Intelligent Keyboard framework development 

based on the finding of chapter 3&4. A novel Word list online ranking using 

neural network BackPropagation algorithm and a pilot application called English 

Input Method are developed. 

Chapter 6 presents the research discussion, conclusion and recommendation for 

future work. 

Appendices include program source code, experimental plots, and published 

papers related to the research. Throughout the text, italic is used to emphasize 

defined terms, and bold is used to highlight main ideas. 
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CHAPTER TWO 

LITERATURE REVIEW 



2.1 Introduction 

Neural network language modelling is a method to apply particular neural 

network models to model natural languages. In this chapter both neural network 

models and statistical language modelling methods are reviewed. First, neural 

network rationale, architectures, learning algorithms and some state of the art 

networks which include Focused Time-Delay Neural Network, Elman Network, 

and Probabilistic Neural Network are described. Then the language modelling 

rationale, Prediction by Partial Matching (PPM) algorithm and entropy concept 

are introduced respectively. 

As well known, the raw data need to be preprocessed before it can be used by 

neural networks. A six-step approach with distinct algorithms for each step of 

neural networks data pre-processing to achieve best performance for the training 

dataset is introduced. 

One objective of the research is to develop a framework to deal with noisy data 

stream. Therefore, several text prediction and correction applications such as 

Dasher and ProtoType, and their related techniques are examined. However, the 

disadvantages of these technologies such as failure of meeting peculiar needs and 

the lack of self-learning ability are also mentioned. 

Finally two other useful technologies are reviewed, namely, String Distance and 

Fitt's law. String Distance is a method to compare the difference between two 

character sequences, whereas Fitt's law uses human-computer interaction 

technology to study user's typing movement. In this research both of them will 

be applied to user's typing behaviour models and framework development. 
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2.2 Neural networks 

The human nervous system may be viewed as a three-stage system, as depicted 

in the block diagram of Figure 2.1 [Simon Haykin, 1999]. 

Stimulus 

Figure 2.1 A representation of nervous system 

Response 

Signals received by receptors are processed in the neural network and the 

responses are delivered to the outside world by effectors. Artificial neural 

networks are motivated by neuro-biological theory involving the behaviour of 

the brain as a network of units called neurons, which constitute a massively 

parallel-distributed processor through connections, called synapses. It is 

estimated that the human brain is likely to have around 10 billion neurons each 

connected on average to 10,000 other neurons. 

The basic attributes of a neural network may be divided into architecture and 

functional properties. The architecture defines the network structure, that is, the 

number of artificial neurons in the network and their interconnectivity with 

familiar characteristics such as inputs, synaptic strengths, activation, outputs, and 

bias. Functional properties define how the neural network leams, recalls, 

associates and classifies. A basic model of a neuron i is illustrated in Figure 2.2 

[Stamtios, 19961. 
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Bias wo 

Xin 

Figure 2.2 A neural network model with a neuron 

The general neuron i has a set of n inputs fxi/... xy ... xi, ), where the subscriptj 

takes values from I to n and indicates the source of the input signal, accordingly 

associated with weights wij. In addition, it has a bias term wo, a threshold value 

that has to be reached or exceeded for the neuron to produce a signal, a 

nonlinearity transfer function Fj that acts on the produced activation signal Rj, 

and an output Oi after the nonlinearity function. The transfer function of the 

basic model is described as follows, 

n 

Oi=Fi 
Iw 

ii x 
as 

jýl 

n 

Ri -= 
I wijxj 
j=l 

(2.1) 

In general three fundamentally different classes of network architectures can be 

identified as, 

Single-layerfeedforward neural networks 

Multi-layerfeedforward neural networks 
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* Dynamic neural networkv. 

The two major categories of learning are the unsupervised and the supervised. 

As a feedforward topology network, Multi-Layer Perceptrons are composed of 

many simple perceptrons in a hierarchical structure with one or more hidden 

layers between input and output layers. The most commonly used leaming 

algorithm is BackPropagation. Its sigmoidal nonlinearity is expressed as, 

F, (R, ) =1+ 
exp (-kR, ) (2.2) 

Where Ri is the weighted sum of all synaptic inputs plus the bias of neuron i; k is 

the gain of sigmoid that varies monotonically from -oo to + oo, and Fj is the 

output of neuron i. 

BackPropagation is a supervised learning method, and is an implementation of 

the Delta rule, whose architecture belongs to feedforward network. Its actual 

algorithm can be illustrated as, 

1. Initialize the weights in the network 
2. Do 

For each example e in the training set do 
1.0 neural-net-outpui (network, e) 
2. T teacher outputfor e 
3. Calculate error (T - 0) at the output units 
4. Compute and update new_wifor all weights to output layer 
5. For each hidden layer 

1. Calculate error at the hidden units 
2. Compute and update new wifor all weights to hidden la er y 

3. Until all examples classified correctly or stopping criterion salisfied 
4. Return 
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There are no well-defined criteria for stopping its operation. One of sensible 

convergence criteria reported by Kramer and Sangiovanni-Vincentelli [1989] is: 

"The back-propagation algorithm is considered to have converged when the 

Euclidean norm of the gradient vector reaches a sufficiently small gradient 

threshold". By considering the cost function or error measure as stationary at the 

local or global minimum, Simon Haykin [1999] suggested a different criterion of 

convergence: "The back-propagation algorithm is considered to have converged 

when the absolute rate of change in the average squared error per epoch is 

sufficiently small". He concluded that the rate of change in the average squared 

error should lie in the range of [0.1%, IVo] per epoch. Practical methods are also 

used by verifying if the network performance is apparently adequate. 
I Given the MultiLayer Perceptrons as the basic building block, three different 

architectural layouts of dynamic networks based upon the additional signals at 

the side of input can be further defined. The signals may come from historical 

input, output layer or hidden layers. Then, dynamic networks can simply be 

divided into two categories based on whether they are feedback-related, for 

example, those that have only feedforward connections (e. g. Focused Time- 

Delay Neural Network), and those that have feedback, or recuffent connections 

(e. g. Elman Networks). Back-propagation through time algorithm (BPTr) is a 

leading learning algorithm for training a recurrent network, which is an 

extension of the standard back-propagation algorithm. Another typical learning 

algorithm for recurrent networks is a real-time recurrent learning algorithm. 

In the following sections, specific networks including Focused time-delay neural 

network, Elman Networks, and Probabilistic neural networks are discussed. 
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2.2.1 Focused time-delay neural network 

The Focused Time-Delay Neural Network (FTDNN) consists of a feedforward 

network with a tapped delay line at the input. This is part of a general class of 

dynamic networks called focused networks, in which the dynamics appear only 

at the input layer of a static multilayer feedforward network. 

This network is well suited to time-series prediction, which is stimulated through 

a short-term memory. Given an input signal consisting of the present value x(n) 

and the p past values, x(n-1), ... , x(n-p), stored in a delay line short-term 

memory of order p, a three layers structure with three hidden neurons and two 

outputs is shown in Figure 2.3. 

Input 

Output 

Figure 2.3 A three layer Focused Time-Delay Neural Network 

The tapped delay line memory captures temporal information contained in the 

input signals, and neurons embed that information in their own synaptic weights. 

The standard BackPropagation algorithm can be used as a learning method of 

FTDNN network. It does not require dynamic BackPropagation to compute the 
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network gradient. This is because the tapped delay line appears only at the input 

of the network, and contains no feedback loops or adjustable parameters. For this 

reason this network trains faster than other dynamic networks. 

The Focused Time-Delay Neural Network has been well applied to motion 

recognition used by surveillance system, multimodal human computer interface 

and traff ic control system. For example, Woo [2000] proposed a FTDNN based 

scheme to extract information from dynamic gestures of dance performance and 

learn dancer's emotional intention. The experimental results demonstrated that 

consistent emotional analysis can be achieved using F'FDNN based scheme, 

which maps between local features and symbolic representation of emotion in 

real-time. A Further development of FTDNN model based on both space and 

time domains was also proposed [Lin, 19991 for lip-reading. In the experiment, 

the space based FTDNN model was able to recognize the lip motions in a high 

performance based on the inputs of real image sequences. 

2.2.2 Elman network 

Compared to tapped delay method of Focused Time-Delay Neural Network in 

terms of input Elman networks [Elman, 19901 are three-layer BackPropagation 

networks, with the addition of a feedback connection from the output of the 

hidden layer to its input. This feedback path allows Elman networks to learn to 

recognize and generate temporal patterns, as well as spatial patterns. Elman 

[1990] used neural network architecture shown in Figure 2.4 to explain the 

network processing. 
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OUTPUT UNITS 

Figure 2.4 Elman neural networks architecture [1990] 

As can be seen from Figure 2.4, Elman network's input accept two categories of 

data: one is from out sources to input units, and another is from hidden units of 

itself to context units. 

Let's consider a sequential input with order sensitivity at time t=1, the input 

units receive the first input and the context units are initialized to a certain value. 

Both input and context units activate hidden units. Then hidden units feed 

forward to output units and simultaneously feed back to context units. If a 

learning algorithm is applied, the output will be compared with target output and 

the delta error will be backpropagated to adjust all the weights. At the next time 

step W the above sequence is repeated. Then at the time Q+]), the context units 

contain values, which are exactly the hidden unit values at time t. These context 

units thus provide the network with memorial history. 

Elman network can be used to recognize both spatial and temporal patterns. 

Schellhammer et al. [1998] used Elman network to learn sequences of word 

categories in a text. The grammar induced by the network was made explicit by 

cluster analysis. The output of k-means; cluster analysis is converted to state- 
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transition diagrams which represent the grammar learned by the network. Elman 

network was also applied to human activity recognitions by head movement 

from a set of color image sequences [Henry, 2003]. A considerable high 

recognition rate of 92.5% was achieved, compared to 85.5% and 87% obtained 

by the traditional k-NNR and HMM classifiers. 

2.2.3 Probabilistic neural network 

Probabilistic neural networks (PNN) are a type of radial basis network suitable 

for classification problems. It is a feedforward network built with three layers. 

They are derived from Bayes Decision Networks [Specht, 1988 & 1990]. The 

architecture of a PNN is shown in Figure 2.5. 

Irif. kit Ulihl 830 LIAY,. r Omp-mitin Lay; r 
r--'N r -N e 'I 

Ootpot 

Figure 2.5 A representation of Probabilistic Neural Network architecture 
[The MathWorks, 2009] 

When an input is presented, the first layer computes distances from the input 

vector to the training input vectors and produces a vector whose elements 

indicate how close the input is to a training input. The second layer sums these 

contributions for each class of inputs to produce a vector of probabilities. Finally, 
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a competing transfer function on the output of the second layer picks the 

maximum of these probabilities, and produces a 'P for that class and a '0' for 

the other classes. 

The probabilistic neural networks offer the following advantages [Wasserman, 

1993], 

+ Rapid training speed and enables incremental training. 

+ Robustness to noisy examples. 

* Guaranteed convergence if enough training examples are 

provided. 

As the BackPropagation algorithm is used for training multilayer neural 

networks, the probabilistic neural networks also possesses some other useful 

characteristics as presented below. 

Learning capacity. It captures the relationships between given 
training examples and their given classification. 
Generalization ability. It identifies the commonalities in the 

training examples and allows performing classification of 

unseen examplesfrom the predefined classes. 

GanchevI et al. [2002] applied Probabilistic Neural Networks (PNNs) as core 

classifiers to medium scale speaker recognition over fixed telephone networks. 

Two PNN-based open-set text-independent systems for speaker identification 

and speaker verification correspondingly were presented. The systems 

demonstrated a good reliability and robustness under noisy telephone conditions. 
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A Probabilistic Neural Network joint with fuzzy logic for human face 

identification [Anagnostopoulos 2003] was proposed to develop a computer- 

based face detection system. The Probabilistic Neural Network was trained for 

the identification of the facial areas, which were extracted using fuzzy logic rules. 

Experimental results showed that the overall identification performance was 

measured to be 83%. However, this performance level is achieved for frontal- 

parallel faces, since the classification performance deteriorates when extended to 

different views of a human face. 

2.2.4 Structuring neural network 

The number of layers and the number of processing elements per layer to a 

feedforward, back-propagation topology are important decisions. There is no 

universal answer to the layout of the network for any particular application. 

Some general rules have been followed as shown below. 

Rule one. - As the complexity in the relationship between the input data and 
the desired output increases, the number of the processing elements in the 
hidden layers should also increase. 

Rule two: If the proces's being modeled is separable into multiple stages, 
then additional hidden layer(s) may be required If the process is not 
separable' into stages, then , additional Jayers may simply 

. 
enable 

memorization of the training set, -. and not a true general solution effective 
with other'data. 

Rule three: The amount of training data available sets an upper boundfor 
the number ofprocessing elements in the hidden layer(s). The equation is, 

Nh = size(P) / (s - (N, + N,, )) 

"ere P is the number ofcases in the training dataset, Nj is the number of 
input neurons, N, is the number ofoutput neurons, s is a scalingfactor 
betweenfive and ten. Larger scalingjactors are usedfor relatively less noisy 
data. 
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2.3 Statistical language modelling 

The goal of Statistical Language Modelling (SLM) is to build a statistical 

language model to estimate the distribution of natural language as accurately as 

possible. A statistical language model is a probability distribution P(s) over 

strings S that attempts to reflect how frequently a string S occurs. It has been 

used in many natural language processing applications such as speech 

recognition, handwriting recognition and data compression. Simply, a probability 

to predict next symbol can be expressed as, 

P(next symbol I document sofar) (2.3) 

N-gram, Prediction by Partial Matching (PPM) and unbounded PPM are among 

those widely used statistical language models. N-grarn models are a type of 

probabilistic model for predicting the next item in a sequence. An n-grarn is a 

sub-sequence of n items from a given sequence. The items can be phonemes, 

syllables, letters, words or base pairs according to the application. 

For example, a one-gram statistics about relative frequencies of letters in general 

English plain text [Lewand, 2000] is shown in Figure 2.6. The Letter 'e' has 

been used most commonly and then the letter Y, while the usage of the letter 'z' 

is considerably rare in general English plain text. 
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Figure 2.6 ]-gram relative frequencies of letters in general English plain text 

2-gram (i. e., digrarn or bigram) are groups of two written letters, two syllables, 

or two words, and are very commonly used as the basis for simple statistical 

analysis of text. The consecutive letters in one word has a strong relationship 

with each other. For example, a 2-gram Frequency in the English language 

shows that the relationships between 'I' and W is much closer than 'v" and V. 

Here is the table of 2-gram frequency of English letters, 

th 50 tit 25 v 20 

er 40 en 25 io 18 

on 39 es 25 le 18 

an 38 of 25 is 17 

re 36 or 25 ou 17 

he 33 nt 24 ar 16 

in 31 ea 22 as 16 

ed 30 ti 22 de 16 

nd30 to 22 rt 16 

ha 26 it 20 ve 16 
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The 2-gram frequency of English letters shown here represents the expected 

number of occurrences per 200 letters. The 2-grams are not permitted to span 

across consecutive words. 

2.3.1 Prediction by Partial Matching 

The basic idea of Prediction by Partial Matching (PPM) [Cleary & Witten, 1984] 

is to use the last few characters in the input stream to predict the upcoming one. 

An improved version called PPMC [Moffat, 1990] was developed and became a 

benchmark version. If given a sequence S= Is, 
... s. 1, and finite-context models 

of order k (so-called k-gram), where k is the number of preceding symbols used 

and 0: 9 k:! ý n, Prediction by Partial Matching employs a suite of fixcd-order 

context models with different values of k, ranging from 0 up to maximum n, to 

predict upcoming characters. 

For each model k-gram, prediction probabilities are calculated from all 

characters occurrences that have followed every length k sub-sequence. Thus a 

predicted k-gram probability distribution is obtained. The PPM method can be 

viewed as blending several fixed-order context models together rather than any 

particular one to predict next symbol. An unbounded length algorithm (i. e. 

PPM*) [Cleary, 1995] to allow the context length to vary depending on coding 

situation was developed. The shortest detenninistic context which produces one 

absolute prediction and context trie which is used as search structure are adopted 

in the design. The unbounded PPM has reliably achieved superior results to 

PPMC (one of the popular PPM applications). The testing results demonstrated 

an improvement of about 6% over the old PPM method [Cleary, 1995]. 
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One further development of language modelling is Factored Language Model 

(FLM) [Bilmes & Kirchhoff, 2003]. In a factored language model, a word is 

= lfl, f2 
... 

fk viewed as a vector of k factors, so that w, IfI) 
factor can be word 

classes (e. g. noun, verb) or semantic features as well as words themselves if one 

considers English Language. An FLM provides the probabilistic model where 

the prediction of a factor is based on n parents. For example in speech 

recognition, if w represents a word token and t represents a word class for 

English, the expression AW, I WJ-A-A-1) gives a model for predicting current 

word token based on a traditional 2-gram model as well as the word class of the 

previous word. 

2.3.2 Information Entropy 

Shannon entropy [1951] or information entropy is a minimum message length 

necessary to communicate information. It is a measure of language modelling. 

Suppose that e= [Ej; iE I] in some finite probability space S. The entropy of c, 

denoted H(E), is 

P (E, ) log P (Ei) (2.4) 
iel 

Shannon estimated the entropy of written English to be 1.0 and 1.5 bits per 

character (hpc) or as low as between 0.6 and 1.3 bits per character by having 

human subjects guess successive characters in a string of text selected at random 
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from various sources. He proved that if the probability of taking r guesses until 

the correct letter is guessed is p, then the entropy, H (in bpc) is 

r (p, - p,,, ) log, r<H<P, 1092 1 (2.5) 
A 

2.4 Data pre-processing 

Although many factors affect the success of Machine Learning (ML) on a given 

task, the representation and quality of the instance data is first and foremost 

[Pyle, 1999]. Data preprocessing describes any type of processing performed on 

raw data to prepare for another processing procedure. For example, in a neural 

network, data preprocessing transforms the data into a fortnat that will be more 

easily and effectively processed. 

There are a number of different tools and methods used for Machine Leaming 

preprocessing. Kotsiantis et al. [20061 have suggested well known algorithms for 

each step of data pre-processing of Machine Leaming to achieve best 

performance for the training dataset. It consists of six steps, 

* Instance selection and outlier detection 

4 Missingfeature values. 

* Discretizatiom 

* Data normalization. 

* Feature selection. 

* Feature constructiorL 
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Using instance selection (i. e. sampling) and outlier detection, irrelevant data as 

well as noise and/or redundant one can usually be removed. In addition, when a 

dataset is too huge, it may not be possible to run a Machine Leaming algorithm. 

In this case, instance selection reduces data and enables a Machine Lcaming 

algorithm to ftinction and work effectively with huge data. 

Real word data tend to be incomplete. Missing data preprocessing function 

attempts to fill in missing values so as to allow the whole dataset to be processed 

smoothly. Discrctization techniques can be used to reduce the number of values 

for a given continuous attribute, by dividing the range of the attribute into 

intervals. Data normalization organizes data for more efficient access. For 

example, within a feature there is often a large difference between the maximum 

and minimum values, then normalization can be performed on the value 

magnitudes to scale to appreciably low values. 

Feature selection can pull out specified data that is significant in some particular 

context. It reduces the dimensionality of the data and may allow learning 

algorithms to operate faster and more effectively. On the other hand, by 

constructing new features from the basic feature set, it could provide a better 

discriminative ability than the best subset of given features and help improve the 

training data quality. 

As examples, several most popular methods used in data transformation and data 

sampling are presented here in detail. 

Data normalization [Han & Kamber, 20011 scale the attribute so as to fall within 

a small specified range, such as [4.0,1.0] or [0.0,1.0]. Min-max normalization 

performs a linear transfonnation on the original data. Suppose that V.,. and V. 
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are the minimum and maximum values of an attribute V. Min-max normalization 

maps a value v of V to v' in the range [ V. j., V.. ] by computing, 

=(v-Vi. )*(V'.. -V'. i. )/(V. -V. i. )+ V'. i. (2.6) 

Min-max normalization preserves the relationships among the original data 

values. 

Given attribute dataset V= ly, I 1:! ý i: 5 n) , define F and av as the mean and 

standard deviation respectively of attribute V, then one has 

n 
(2.7) 

av = (2.8) 

The continuous probability density function of the normal distribution is a 

Gaussian function. If one simply uses u and a to represent the mean and 

standard deviation of the continuous probability density function, the nonnal 

distribution can be expressed as, 

(X -ýJ )2 
1 

2er 2=1 

2x 
(X)= 

77=== e VP. 
u Z 

fp(X 
"), 

x (2.9) 
2, uu 
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Where, V (x (x )= Tý-, xER is the density function of the 
2 7r 2x 

"standard" nonnal distribution (i. e., the normal distribution with p=0 and or = 1). 

Then, in z-score normalization (or zcro-mean normalization) the values for an 

attribute V are normalized based on the mean and standard deviation of VA 

value v of V is normalized to v' by computing, 

1; = (V -IF)/ cr, 

Where V and a, are the mean and standard deviation respectively of attribute V. 

After normalization, the mean of the transformed set of data points is reduced to 

zcro. This mcthod of normalization is uscful whcn the actual minimum and 

maximum of attribute V are unknown, or when there are outliers that dominate 

the min-max normalization. 

Normalization by decimal scaling normalizes by moving the decimal point of 

values of attribute V. The number of decimal points moved depends on the 

maximum absolute value of V. A value v of V is normal ized to v' by computing, 

ý =V/Icv (2.11) 

Where j is the smallest integer such that max(I ý 1):! ý I. For example, given a 

dataset VE [1,100], then the maximum absolute value of V is 100 and j=2, so 

that V is normalized to the range [0.01,11. 
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Sampling can be used as a data reduction technique since it allows a large dataset 

to be represented by a much smaller random sample (or subset) of the data. The 

possible sampling methods [Han & Kamber, 200 1] for D are listed as, 

* Simple Random Sampling Without Replacement (SRSWOR) 

* Simple Random Sampling With Replacement (SRSWR) 

* Cluster sampling 

* Stratified sampling 

Suppose that a large datasd D contains M clusters, N records, and the size of 

sample is represented by n. Then the illustration with examples about those four 

sampling methods can be shown in Figure 2.7, where D= (TI, 12, ..., 720), N 

= 20, M= 4. 

SRSWOR samples are created by randomly picking data from source D without 

repetitive records. From Figure 2.7, a subset n=4 records (T12, T20, T3, T9) are 

created; SRSWR samples are created by allowing repeated samples, for example 

in the dataset (T5, TI 7, T5,72) created in the figure, the record T5 is drawn 

twice. 

Cluster sampling randomly chooses samples. Figure 2.7 shows two cluster 

samples - (T64TIO, T114T15) which are randomly picked up, where the 

whole number of cluster m=4. If a certain number of records are selected from 

each cluster, then this sampling process is called stratified sampling. In Figure 

2.7, stratified sample set (72, T9, T13, TJ 7) is created by selecting one record 

from each cluster. 
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Cluster sampling T 

T6 

T16 T7 

T11 
T8 

T6 
T9 
TIO 

Stratified sampling 
T2 
T9 
T13 
1-17 

Figure 2.7 An example of preprocessing sampling methods [Han & Kamber, 20011 

When applied to data reduction, sampling is one of the most commonly used 

methods. It is possible using the central limit theorem to deten-nine a sufficient 

sample size for estimating a given function within a specified degree of error 

[Han & Kamber, 2001 ]. 

2.5 String distance 

String distance is a method to measure the amount of difference between two 

sequences, which emerged from theoretical work on self-correcting binary codes 
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[Soukoreff & MacKenzie, 2001]. Different methods have been explored. 

William et al. [2003] classify these methods into three categories: statistics, 

databases and artiflcial intelligence. Furthermore, they investigated a number of 

specific functions based on this classification in order to find the best method. 

The functions include, 

* Edit-distance likefunctions 

+ Token-based distancefunctions 

+ Hybrid distancefunctions 

+ 'Blocking'orpruning methods 

Two similar concepts have been used popularly in String distance: Distance 

functions and Similarity function. Distance functions map a pair of strings s, and 

s2 to a real number d, where a smaller value of d indicates a greater similarity, 

while similarity functions is on the contrary, a larger value indicates the greater 

similarity. 

Levenshtein distance [Levenshtein, 1965] is a popular figure in Edit-distance like 

functions. The Levenshtein distance between two strings is given by the 

minimum number of operations needed to transform one string into another, 

where an operation is an insertion, deletion, or substitution of a single character. 

For example, 

hellu -: ý hello 

helloo 4 hello 

hat -; ý hello 

(d = 1) //a substitution of 'o'for V 

(d = 1) 11delete 'o' 
(d = 6) 11delete 'at'and insert 'ello' 
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Another similar method is Jaro metric [Jaro, 1995]. The Jaro distance metric 

states that given two strings s, and S2, 

1) Two characters aj, bj from s, and s2 respectively, are considered matching 

only if, 

min(I S, III S2 1) 

:! ý j: 5 i+ min(I 3,11182 
1) 

(2.12) 
22 

then their distance d is calculated as, 

S2 
2) d-- 

lr's' 
(2.13) 

3ýfsj Is2 I ls; l 

) 

Where I s, 1,1 s2 I are the numbers of sl matching s2and s2matching sl characters 

respectively, t is the number of transpositions. 

A variant of Jaro metric [Winkler, 1999] uses a prefix scale p, which is the 

longest common prefix of strings, and s2. Let's define Jaro distance as d, then 

Jaro-Winkler distance can be defined as, 

Jaro - Winkler(d +- max(p, 4) 
*(I-d)) (2.14) 

10 

A piece of open source code has been published by US Census Bureau. The 

result of the Jaro-Winkler distance metric is normalized into the range [0,1]. It is 

designed and best suited for short strings. 
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2.6 Fitt's law 

Fitts' law is a robust model of human psychornotor behaviour [Paul Fitts, 1954]. 

The model is based on time and distance. It enables the prediction of human 

movement and human motion based on rapid, aimed movement, not drawing or 

writing [Dov Te'eni et al., 20071. 

It is discovered that movement time was a logarithmic function of distance when 

target size was held constant and that movement time was also a logarithmic 

function of target size when distance was held constant. Mathematically, Fit& 

law can be stated as follows [MacKenzie & Buxton, 1992], 

Aff =a+blog, (DIW+I) (2.15) 

Where MT represents the movement time, a and b represent the regression 

coefficients, D represents the distance of movement from start to target center, W 

represents the width of the target. If one takes a computer keyboard as an 

example, the equation was rewritten by Zhai et al. [2000] as, 

MT=a+b'092(D. / Wj + 1) (2.16) 

Where D. is the distance moving from key i to keyj, W, is the width of keyj. 

The equation is illustrated by the keyboard logical expression as shown in Figure 

2.8. 
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Figure 2.8 Fitt's law expression based on keyboard [Zhai ct al. 2000] 

Fitts' law has been used popularly to predict the performance of humans when 

using various input or output devices. 

2.7 Text prediction and correction applications 

Predictive text/word input technologies are some of the techniques that are often 

found useful by text entry users. There are many products available on the 

market to offer this support. Compared to pure prediction products, some efforts 

have also been made to reduce typing mistakes, although far few tools can 

intelligently identify new genre of mistakes. Here a full review based on both 

categories is given. 

2.7.1 Text prediction applications 

Using data compression methods such as PPM as language model to predict next 

letter, word or text are very popular technologies in prediction field. But it has 

been argued that the information available in the local context of each word 

based on statistics should be augmented by global sentence information. Jianhua 

Li & Graeme Hirst [2005] proposed a combination model by integrating 
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semantic knowledge with n-gram probabilities to predict semantically more 

appropriate words. 

First; a semantic knowledge base was generated for English words, especially for 

nouns, by exploring the semantic relatives. Then, the semantic knowledge is 

used to measure the semantic association of completion candidates with the 

context. Those that are semantically appropriate to the context are promoted to 

the top positions in prediction lists due to their high association with context. 

Figure 2.9 shows the combination model [Jianhua & Graeme, 2005]. 

Nn] sixiti 

Shut T" 

Model H m, -dt, i 
Ninmd Ent'ry r-<pai priediciioll 7 

Figure 2.9 Jianhua & Gracme word prediction model [2005] 

This model is a combination between n-garn model and semantic model. 

Semantically related words and their pointwise mutual information (PMI) are 

extracted from the British National Corpus World Edition (BNC). An algorithm 

that automatically determines the salient terms of a text during the prediction 

process was proposed to measure semantic association for a candidate whenever 

the candidates find no related words in the context. 
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By comparing the combination model with Fazly and Hirst's syntax-and-n-grarn 

model [2003], where part-of-speech n-gram. information was added to traditional 

n-gram model, the keystroke saving rate of the combination model increases to 

6%. 

Masaui & Nakayama [1994] proposed a simple and powerful predictive interface 

technique by making use of dynamic macro. When a user types a special 

"repeat" key after perfonning repetitive operations in a text editor, an editing 

sequence corresponding to one iteration is detected, defined as a macro, and 

executed at the same time. Although being simple, a wide range of repetitive 

tasks can be performed just by typing the repeat key. When another special 

"predict" key for conventional prediction techniques is used in addition to the 

repeat key, wider range of prediction schemes can be performed depending on 

the order of using these two keys. The complex rules for combination of two 

keys are given in Figure 2.10. 

Aktits; fp. hnn t-Y P. Pi ýý, -, YI 
Key 14n nuic of AfNýr 

's ,; - 
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M0 
immiep -00, I t-r-I 

. executo, 

POIýO 
M0 

iMeMif, vi 

st pa'a-ditm 6cheme C. cuatiti copf"T RA: Pa4itfintfillink-lis 
p. r. o'lix4lic-sy, -f tvtoilmy, m4ittint vsieý 

Figure 2.10 Repeat and Predict key composition rules [Masaui & Nakayama, 1994] 
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It combines editor and prediction function together by using two additional keys: 

Repeat and Prediction key. The emphasis of design focuses mainly on the 

interface design rather than prediction function itself Although Repeat key 

provides words based on a simple typing history, the memory would vanish after 

the editor is closed. 

An early work for text prediction is presented by Toshiyuki Masui [1999], called 

POBox, which consists of two steps for entering a word or a phrase. First a user 

enters a small part of the word or some other attributes, and POBox dynamically 

searches a dictionary for candidate words and shows them to the user for 

selection. The user then selects the desired word from the candidate list, and 

POBox enters the word into the user's document. 

POBox gives a simple and small-sized solution and has been developed for 

different languages. It can use the context of the user's document to help identify 

likely candidates. POBox and two-key technology are different in principle. The 

former gives a word of list for user's choice based on spelling, pronunciation or 

shape of characters. It is a useful tool for handheld or ubiquitous computers such 

as PDA or mobile phones. 

Another application worth mentioning is T9, which stands for Text on 9 keys, a 

patented predictive text technology for mobile phones, developed by Alex 

Robinson [1998]. It combines the groups of letters on each phone key with a 

fast-access dictionary of words. It looks up all words in the dictionary which 

correspond to the sequence of key presses. 

As it gains familiarity with the words and phrases the user commonly uses, it 

speeds up the process by offering the most frequently used words first and then 
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lets the user access other choices with one or more presses of a predefined Next 

Key. The dictionary can be expanded by adding missing words, enabling them to 

be recognized in the future. Its interface workflow is illustrated below. 

* Enter a word by tapping one key per letter. 

* Disp* the word withfirst priority. 

* Use Next key to choose or type further letter if the 

word is not the right one 

* Add it to dictionary if no right word in the list 

A series of research based on words vocabulary which apply both neural network 

and language modelling methods are also worth being mentioned here. One of 

the major representatives is Bengio and Ducharme [2001] with their neural 

probabilistic language modeling. They suggest a model to learn a distributed 

representation for words that allows each training sentence to inform the model 

about an exponential number of semantically neighboring sentences. Schwenk 

and Gauvain [2002] further address a related problem that the n-grarn space is 

highly sparse, by carrying out a probability estimation in a continuous space and 

enabling a smooth interpolation of the probabilities. However, due to the curse of 

dimensionality in the discrete space representation, they still have to narrow the 

vocabulary by using a shortlist which damages the prediction accuracy and fail 

to learn a long-span LM with n >> 3 gram, not to mention a broader word space 

with noises which may increase in a geometric degree. 

The research illustrated above describes different input modelling techniques in 

an effort to develop efficient and high perforinance text input techniques. They 
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are largely developed based on statistical language models, natural language 

process, interface-oriented or combinations of these. Some of them are not 

specially targeted for QWERTY keyboard user. However the software can be 

tailored or refined to suit the audience. 

2.7.2 Typing Correction Applications 

There are many types of errors caused by users, roughly such as spelling errors, 

hitting adjacent key and cognitive difficulties. Prediction technology can foresee 

users' typing intention, but can't directly correct typing mistakes. Some efforts 

have been made to reduce these mistakes, although far few tools can intelligently 

identify new type of mistakes. 

One way to improve accuracy is to install filters which modify the control 

signals generated by the device. Such filters can have a significant effect on the 

speed and accuracy with which a device can be used. For example, motor 

disabilities may have difficulties with a number of aspects of keyboard use, 

resulting in high error rates, fatigue and slow typing [Shari, 2003]. 

Most operating systems provide a suite of accessibility settings which can be 

used to configure the keyboard. Popular examples are NIS Windows and the 

Apple's accessibility features. Some of these features directly address the 

problems with the keyboard usage. For example, the keyboard accessibility 

features available under Windows are, 

* Key Repeat Delay 

* Key Repeat Rate 

* Stick Keys 
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De-bounce Time 

Key Acceptance Delay 

* Key Guard (it can be either physical or apiece of software) 

These features address the problem to some extent, and it is generally seen that 

people tend to use them. However, the problem lies with their complexity since 

not all users are good enough to set them at a desired level. Their precise setting 

is a time-consuming and error-prone task, and generally takes some time before 

they are configured properly. 

Attempts have also been made for example by IBM to devise intelligent 

mechanisms that could adjust the settings of the keyboard accessibility features 

by detecting the usage problems [Shari, 1998 & 2003]. They present a user 

model to examine the behaviour of a real computer user. The model 

encompasses four aspects of keyboard use which can present difficulties for 

people with motor disabilities, and bases its recommendations to configure the 

Accessibility Option of Windows on observation of users typing free English 

text. 

Initial feedback from 978 active users indicates that the key repeat delay 

adjustment is acceptable to users, but the key repeat rate adjustment algorithm 

needs more work, and the debounce feature may not be appropriate for dynamic 

adjustment. 

However, all they can control is only the accessibility features available under 

the belt of operating systems. Thus, they can only be viewed as a slightly 

intelligent layer over the set of accessibility features. 
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Another way is to use a spell checker to suggest corrections for wrongly spelled 

words. Customarily a spell checker consists of two parts: a set of routines for 

scanning text and extracting words, and a wordlist. Research aimed at correcting 

words in a text has focused on three problems [Karen, 19921 as follows, 

* Non word error detection 

* Isolated-word error correction 

* Context-dependent word correction. 

In response to non word error detection, it was suggested that in large samples of 

common English publication text 42% of all digrarn combinations are unlikely 

to occur. 

An alternative method called Dictionary Lookup, is a straightforward method to 

detect non-word, but response time and memory etc. become problems as 

vocabulary increases. So tailoring the vocabulary to set up a user-oriented 

dictionary is a good solution. 

Computer-user interaction is also being considered, for example by capturing 

and analysing user's typing actions. That is one of the motivation of KeyCapture 

[Soukoreff & MacKenzie, 2003] development. But unfortunately, William 

Soukoreff & MacKenzie put more attention on language models creation, and 

then ignored the importance of feedback from users' word correction. 

Other research such as Natural Language Processing modelling are also 

recommended. NLP tries to simulate specific language and generate a text by 

analysing specific language's words, syntax and semantics through symbolic, 
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statistical, connectionist approaches. For example, it can detect a misspelled 

word based on the context of the surrounding words. 

Spell checker applications are either stand-alone applications capable of 

operating on a block of text or as a feature of a larger application, such as a 

word processor, email client or search engine. It also provides another function 

offering to users the right to add abbreviation or habitual mistyping along with 

its corresponding right pair into a database. Then the repetitive typing mistakes 

can be identified. 

2.7.3 Dasher 

Dasher [Ward & MacKay et al, 1997-2008] is an inflarmation-efficient text-entry 

interface, driven by natural continuous pointing gestures, designed by Inference 

Group of Cambridge University. Dasher has a zooming interface. It is based on 

language model prediction, through which the space of interface is determined to 

each piece of text. Compared to improbable pieces of text probable pieces of 

text are given more space, so they are quick and easy to select. The language 

model of Dasher could learn all the time along with user's typing. 

Figure 2.11 is quoted from Dasher's demonstration web page. It shows the state 

of the Dasher interface while the user is writing the word 'objection'; alternative 

words that could easily be written at this point include 'objective', 'objects-', and 

- obJ ect-oriented'. 

52 



0 

a 

h 
u 

fo 
s- 

a re 

- orient 

Figure 2.11 A Dasher interface example [Ward & MacKay et al, 1997-20081 

The users only need to move their cursors toward the right choice. Then the 

interface zooms in, the place under the cursor passes through the central cross 

and then the choice is made. 

Dasher's screen layout is determined by probabilistic model and driven by 

continuously two-dimensional gestures: horizontal and vertical. Its division of 

right-hand is analogous to arithmetic coding. The real line [0,1] is divided into I 

intervals of lengths equal to P(x, = a, ), where a, stands for an alphabet [David 

et al., 2000]. 

Dasher uses an algorithm called PPM5D+ to predict words, which can compress 

most English text to around 2 bits per character. By renormalizing the probability, 

the same algorithm is used to determine the intervals. 
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Dasher's design lies on its novel interface and the use of language modelling. It 

suggests that a typing rate of up to 39 words per minute can be reached during a 

dictation task, compared with typical ten-finger keyboard typing rate of 40-60 

words per minute. However, it is useful to the users who operate a computer one- 

handed, by joystick, touch screen, trackball or mouse, which might be an 

inspiration for QWERTY keyboard tools development. 

2.7.4 ProtoType 

ProtoType is a product of Sensory Software International Ltd [2007]. It is a piece 

of software used to type text into other programs such as a word processor. It 

uses lists of words to help a user to type, which includes word prediction, 

spelling correction and word banks. 

As a user is typing, some of the automated features can highlight spelling errors, 

capitalise words, replace common spelling mistakes or expand abbreviations. Its 

architecture is shown in Fig 2.12. 

Figurer 2.12 ProtoType program flow diagram [Anon, 20061 

User's each touch would firstly trigger word predication list, and then Word 

Bank and Spelling Check function will be called in sequence. ProtoType is 

designed to improve spelling for people with dyslexia or spelling difficulties, but 

54 



it is unfunctional to correct the keystrokes mistakes made by most motor 

disabled people. 

Apart from those technologies, alternatives such as hardware are also developed. 

For instance, Keyguard is a plate that fits over a keyboard, which users can rest 

their hand on and make key press. It is useful for motor disabled people to avoid 

typing mistakes. Other hardware such as BigKeys, Intellikeys Keyboard and 

VisiKey Multimedia keyboard are also on the market. 

2.8 Summary 

First, Neural Network models which include Focused Time-Delay Neural 

Network, Elman Network, and Probabilistic Neural Network, and Statistical 

Language Modelling which includes language Modelling rationale, Prediction by 

Partial Matching algorithm and Entropy concept are described. Then, a unique 

data preprocessing process mainly based on Kotsiantis' suggestion - the six steps 

of data preprocessing to achieve best perfon-nance for neural networks' training 

dataset is introduced. Finally, String Distance functions which are used to count 

the amount of difference between two sequences, Fitt's law equation which is a 

measurement to estimate human's performance on using input device, and 

several word prediction and correction applications such as Dasher and 

Prototype are reviewed. 

The Focused Time-Delay Neural Network was well applied to motion 

recognition used by surveillance system, multimodal human computer interface 

and traffic control system etc. Elman network was used to recognize both spatial 
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and temporal patterns such as word category classification and human activity 

recognition. Probabilistic Neural Network was used by a computer-based face 

detection system as a core classifier. However, they are hardly seen to apply to 

noisy text entry processing such as user typing stream and its extracted sub- 

dataset, which implies all users' self-rectification actions, usees vocabulary, 

typing habits and typing performance. And also, although efforts have been 

made in multiple directions such as language modelling, natural language 

processing and user interface design, those technologies, if used alone, will fail 

to meet the user's particular needs. It is also worth arguing that those designs 

reviewed in the chapter (e. g. Figure 2.9) emphasize excessively on providing a 

global method, and lack 'user-oriented' feature. Furthermore they are short of 

self-adaptive ability (i. e. learning ability), and fail to fully recognize the right 

patterns from user's distinct performance. Finally the most impotence of current 

research is that it has neglected the significance of negative influence incurred by 

the text entry noises, which have badly affected the accessibility and usability in 

human computer interaction, and a systematic solution as a bridge between user 

and computer to filter noises and make text entry more effectively has never 

been on the agenda. 

This research is motivated by these arguments and user requirements to find an 

answer to those existing weaknesses and fundamental gaps. A comprehensive 

solution to develop a user oriented hybrid framework with self-adaptive ability is 

required. It would provide a combination of models with multiple features such 

as prediction and correction functions based on a neural network language 

modelling research. These will be fully discussed in following chapters. 
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CHAPTER THREE 

A NOVEL FRAMEWORK FOR 
NOISY LANGUAGE ANALYSIS 



3.1 Introduction 

Computer text entry is full of noises. For example, computer keyboard users 

inevitably make typing mistakes and their typing stream implies all users' self- 

rectification actions. These have produced a dramatically negative influence on 

the accessibility and usability of applications that need text entry from input 

devices. But the issue hasn't been addressed well. Therefore, a fundamental 

concept to develop an intermediate layer language modelling framework to 

analyze the language stream data with noises is required. The intermediate layer 

lies between computer input devices layer and applications layer. It requires the 

framework to be capable of reducing input errors significantly as well as 

increasing the input efficiency highly. This framework can be seen not only as a 

noisy language filter between input and output, but also as a bridge between a 

user and a computer, or among input devices. To illustrate the framework, in this 

chapter a specific case is also studied aiming to develop a user oriented hybrid 

system with self-adaptive function to help disabled people to use QWERTY 

keyboard more effectively. 

3.2 A novel intermediate layer language framework 

Via computer, an individual interacts with applications by producing events, 

which are triggered by appropriate input devices and then transformed into 

values that are expected by the target system. Typical input devices include 

keyboard, mouse, camera and so on. 
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Text input is one of the purposes of some typical input devices. For example, one 

of the facial recognition functions is to allow computer to interpret the speaker's 

speech and spot the text they intend to express along with their facial expression 

changes. As another example indicates, although for computer keyboard it is 

much easier to generate a text from symbols to phrases and then sentences, the 

typing stream shows a complicated and user related input process, where it is full 

of rectification, repetitive keystroke mistakes and almost hardly identified. These 

problems are reflected due to the flaw of input devices as well as human 

inevitable mistakes when interacting with a computer. 

These prove language based text input is a fundamental function in human and 

user interaction, which imply the requirement to design a user friendly 

framework which is a communication interface acting as a mapping layer 

between input devices and applications. As a result of the design under a specific 

input device, it will become easier (or if necessary) to carry out further 

personalization with respect to adjusting the mapping between the input device 

and applications. It may also provide a platform for the cooperation between two 

input devices such as bimodal speech recognition's recorder and a camera. 

In this research an intermediate layer framework called Adaptive Language 

Modelling Intermediate Layer (ALMIL) with two fundamental language 

modelling functions, namely, text prediction and text correction functions is 

presented. As a text input processing platform, ALMIL is transparent for both 

lower layer such as input devices (including related system drivers) and higher 

layer such as applications. 
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In the framework, the values produced by the input devices as a result of user 

interaction with computer, are represented by vectors. Each vector is composed 

of attributes, which include time, predecessors and IDs. For example, the word 

identified by speech recognition can be represented by its predecessors, genre 

(speech recognition) and probability of the word, which are then converted into a 

quantified vector. 

ALMIL is mostly designed as a language model dealing with noisy input stream 

triggered from different sources. It makes recommendation both for wrong and 

uncompleted input. It combines with several technologies which include n-grarn 

statistics, neural networks and human computer interaction technology, and then 

designed in units as shown in Figure 3.1. 

The intermediate layer framework includes eight working units, namely, Vector 

Generation unit, Pre-processing unit, Prediction unit, Correction unit, Short-term 

Memory, Long-term Memory, Inference Engine unit and Interaction Port. Vector 

Generation unit, Pre-processing unit and Interaction Port deal with the 

interaction between input and outputý while the rest of units compose the data 

processing centre and information storage centre. 

The input of ALMIL can be a single symbol such as an alphabet, a logical set 

such as a word, or a context set such as a phrase or a sentence. The input stream 

also represents an input process evolving from a symbol to a complete word, 

then a sentence. 

As shown in the dash circle of Figure 3.1, the logical set is composed of 

consecutive symbols while the context set is made up of consecutive logical sets. 

Let's take computer QWERTY keyboard as an input device and English 
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language as a user's typing language. Then the symbol set is a subset of ASCII 

set. The English words are referred to as logical sets and the context is 

represented by English phrases and sentences. 

Vector Generation 

Figure 3.1 Adaptive Language Modelling Intermediate Layer Framework (ALMIL) 

The different compositions trigger distinct logical process. For example, let's 

imagine a speech recognition process: an English user speaks word by word, 
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which can be considered as a logical set while phonemes are considered as 

symbols. Then each identified word triggers a process to verify correctness of the 

word. As soon as a sentence is composed, a distinct function (e. g. grammar 

checker) or several functions referred to a sentence is triggered and the whole 

sentence is verified. In Figure 3.1, each distinct function refers to a logic unit. 

The unit may integrate multiple functions to deal with a particular requirement, 

for example, a spell checking function and a grammar checking function could 

both correspond to Correction Unit to correct a typing mistake. 

While the input is a one-way flight whose data always flow from input device to 

Vector Generation unit of ALMIL, the output represented by Interaction Port 

always collects data from both sides, namely, Inference Engine unit and user's 

feedback. The user interface functioned by Interaction Port participates in an 

apprentice-like dialogue to enable the users' response directly or indirectly 

influence the framework. 

As an interface with input device, the Vector Generation unit inspects the whole 

input process. It identifies and selects the attributes or dimensions to be included 

in a further process and converts the input into successive vector sets. The 

Vector Generation unit is also a portal to multiple input data streams. An 

identifier (ID) is included in the vector to distinguish between different input 

devices, and it is also used to indicate the relationship between them. 

The Pre-processing Unit handles the noisy, missing and inconsistent data based 

on the generated vector sets. The handling methods are derived from data mining 

preprocessing which includes data cleaning, data integration, data normalization 

and data reduction. This unit is set to be configurable both based on manual and 
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automatic work. Some user's distinct typing characters can be configured by 

setting up a related user profile. 

The memory is designed based on the MHP architecture - Model Human 

Processor architecture, which was suggested as one of the human computer 

interaction theory to human cognition. As a simulation to human mind, the 

memory of ALMIL is divided into short-term memory and long-term memory. 

The long-term memory includes a knowledge base which is represented as a set 

of rules and facts which are used to match the rules. Each rule specifies a relation, 

strategy or heuristic with a certain structure such as IF ... THEN structure. 

The problem-specific information such as current input and recently used but not 

frequently used words which don't exist in long-term memory, are stored into the 

short-term memory. The frequently used terms such as words, phrases and 

production rules are stored into long-term memory. All other units are able to 

communicate with long-term memory and short-term memory directly. 

The ALMIL is designed to provide users with two major functions, namely, 

prediction function and correction function. For example, let's consider that 

ALMIL is processing a user's typing stream generated from a computer 

keyboard. The user's typing stream includes all self-corrections of the user, the 

useesvocabulary, typing habits and typing performance. Based on the analysis 

of Inference Engine to the user's typing history and online feedback, the 

prediction unit is able to predict user's typing intention, while the correction unit 

is able to correct user's real-time typing mistakes. 

The central unit of this framework is the Inference Engine. Its learning comes 

mostly from users' real-time feedback. Each feedback is converted into rewards 
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assigned to specific facts, weights, rules saved in the database. The rewards are 

partly generated based on specific intelligent learning algorithms. Their values 

are adjusted as soon as the Inference Engine receives feedback from the 

Interaction Port. The Inference Engine is also designed to learn from the offline 

analysis of historical data stream derived from input devices, and deduce the 

association rules. Then the rules are kept in the database and used to improve the 

furictionalities of the prediction and correction units. 

More specifically, an appropriate leaming oriented technology such as neural 

network learning algorithm, generic algorithm or a hybrid algorithm can be 

applied to the inference engine. The design of hybrid inference engine can be 

based on specific requirements. It is also required to refer to the features of that 

particular technology. For example probabilistic reasoning mainly deals with 

uncertainty, while fuzzy logic and evolutionary computation mainly deal with 

imprecision and optimization respectively. 

ALMIL has some substantial differences from the other models such as Jianhua 

model. First, it is designed as a generalized intermediate layer language 

modelling framework that lies between computer input devices and applications 

layer to analyze the noisy language stream such as typing or bimodal input 

stream, whereas Jianhua model is developed as a word prediction application 

based on a combination of n-gram. model and semantic model with a simple 

ranking strategy. ALMIL as an input behaviour analyzer deals with the original 

data stream that are directly taken from input devices with full of noises rather 

than that Jianhua model does a half-processed structured data. ALMIL is a 

hybrid system that introduces a variety of state-of-the-art technologies such as 
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neural network, natural language processing and data mining, with high self- 

learning requirement while Jianhua model is a two models combination only 

with a limited learning which is based on the pointwise mutual information. 

Moreover ALMIL consider HCI as its part of architecture which emphasizes 

user-oricntcd, short-mcmory and long memory, and user interface design, while 

Jianhua model focuses on the word prediction functionality only. 

In order to illustrate the process of ALMIL, Bimodal Speech Recognition data 

stream is given as an example here. As human mouth cavity is part of vocal tract 

lips and tongue, teeth mouth jaw and chin play a very important role on speech 

generation. Then bimodal Speech Recognition (visual and audio) was suggested 

to defy the noisy environment where the performance of audio speech 

recognition degrades drastically. It identifies a user's speech by analysing both 

their facial and voice phonemes. Given the ALMIL framework, the data stream 

marked with time stamps and IDs is transformed to distinct vectors within 

Vector Generation module, where the IDs are distinguished based on visual and 

audio phonemes. Then the preprocessing unit synchronizes the vectors based on 

time stamps and IDs, and tackles noise problems such as filling the missing 

values and removing the outliers. 

The Correction Unit makes a quick decision on where correction is required. 

Correction solutions are generated when needed, and a cross-correction function 

is applied for the bimodal recognition if one considers this specific case. The 

Prediction Unit can process data stream simultaneously. Then both results are 

presented to the Inference Engine unit. Based on neural network or other 

inference algorithms, a comparison between Facial Expression Recognition 
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results and Speech Recognition results is carried out. Eventually, the results 

marked with ranking probabilities or a direct highest ranking presentation is 

presented to the user. In turn, the user's feedback is used to improve the 

inference algorithms performance. 

The next two sections are a further demonstration of ALMIL. Firstly a 

comprehensive disabled user investigation is carried outý and then an Intelligent 

Keyboard directed towards analyzing disabled users' typing stream is presented. 

3.3 Disabled keyboard users investigation 

Computer users with motor disabilities or cognitive problems may have 

difficulties in accurately manipulating the QWERTY keyboard. The aim of this 

investigation is to offer researchers an opportunity to closely observe this group 

of users' typing behaviour. During the investigation, about twenty seven people 

have been interviewed. Both old and disabled people are involved. Their 

performance can be classified as below. 

+ 'Unfamiliar with computer' performance 

Difficult to find keys: Especiallyfunction andpunctuation keys (e. g. T12'. 

'Enter' key puzzle: Some computers are with no "enter" or "shift" printed 
on the key surface, so it is difficuitfor oldpeople to find where they are. 

Compound 
'keys 

puzzle: Due to, different definitions in distinct software, 
compound keys cause confusion to many people., 
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* 'Motor disability' performance [Trewin & Pain, 1998] 

Long key press: 7lieSe occur when an alphanumeric key is unintentionally 
pressedfor longer than the default key repeat delay. 

Modifier keys: For example, 'Shift'-ý VI One-hand typists in particular 
mayfind it difficult topýess two keys at once. 

Additional keys: Some users oftenpress keys adjacent to the target keys. 

, Bounce errors: These occur when the, user unintentionally presses a key 
more than once. 

Easily tired: It is a hard task for some -disabled people to type more than 
certain number of words in succession 

Prefer big keys: Some users can't Cope with laptop well because of the 
smaller keys. They prefer big keys, like "space bar" 

* 'Dyslexia people' performance 

Miss letters or add letters: For instance, "student" ->ý "studw 

Reverse letters: For instance, "student "studnet" 

Spelling e rrors: For instance, leave vowel out ofword, "magic"-> "mjc 

Mix up similar words: For instance, "does 

Phonetic form: For instance, "shud"-> 7should" 

* Other typing performance 

Miss words: Leave out Words in the typed sentences. 

Reverse words: Reverse words in a sentence. 

Mix lines: If there are some similarities (for example, include some same 
words) between two or among more lines, users could mix the lines. ', ', 

Non-sense sentences: From the context ofparagraph, the sentences which 
user typed are not what they intend to type. 
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Additional words: User could add additional words to a structured and 
fully meaningful sentence. 

One-hand users: There are unclear different difficulties for left hand and 
right hand user in using the same kind ofkeyboard 

* User special characters 

The font and size influence: The font and size of a document could affect 
user's cognitive ability. 

Environment influence: Noise, music could lead a positive or negative 
influence while disabledpeople are typing. 

Background color, influence: Some users Prefer for example, ' to' have a 
yellow color background on both ofscreen and keyboard. 

Image influence: Dyslexics'are, usually more comfortable with computer, 
images than words., 

Capital 'errors: Typing capital letters is a difficulty for some d, isahled 
people. The occurrence of errors is high.; 

Habit mistakes: For exa, MPle, one may type SPACEBAR after each ivord,, 
but sometime the required maybe a punctuation mark, 

* Reflected questions 

More efficient typing: Generally their typing speed is far' slower than 
average. If the document isn'tfinished on time, the frustration couldfurther' 
badly affect their typing performance. 

Higher typing error tolerance: The MS word does have, certain tolerance 
to spelling errors, but typing mistakes made by disabledpeople may vary. 

+ Required solution from user 

Learning and evolving: These require a system lying between input device 
and applications, which is able to analyze users'typing behaviour, and then 
predict user's typing intention and correct mistakes accordingly. The' system 
should have the knowledge of user's characters and be able to learn and 
recognize the new patterns over time., 
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3.4 Intelligent Keyboard framework 

As illustrated in the last section, computer users with motor disabilities or 

cognitive problems may have difficulties in accurately manipulating the 

QWERTY keyboard. As for motor disability this may be seen in a form of 

tremor owing to a certain disease such as Parkinson's or any other factor, for 

instance reduced range of hand motions due to Arthritis. Cognitive problems 

usually are caused by loss of the ability to process, learn and remember 

information. For example, Dyslexia can cause significant problems in 

remembering even short sequences of numbers in the correct order. 

This section is a further demonstration of the designed ALMIL framework by 

analyzing and developing a particular case. Based on the disabled user 

investigation on computer QWERTY keyboard in section 3.3, an innovative 

framework - Intelligent Keyboard (IK) hybrid framework is designed to analyze 

disabled users' typing stream, and accordingly correct typing mistakes and 

predict users' typing intention. 

Also, this section intends to give a user-oriented solution to help disabled people 

to use keyboard more efficiently. Based on the design, user's input typing stream 

can be checked in sequence by each module along with user's typing process. 

Assumption: The hybridftaniework has a. hierarchy structure. 'Thefunctions 

'in the hybrid architecture are categorized into two levels: the first level is 

named as 'unit '(e. g. Error correction unit); under the first level (sa y, 

sublevel, 'e. g., Motor Checker function) functions' or, unified functions (e. g. 
Noise processfunction) are named as 'module'. 
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3.4.1 Intelligent Keyboard framework and Rationale 

For an implementation of cognitive tasks, it is shown that rather than seek 

solutions based on symbolic Artificial Intelligence e. g. neural networks alone, a 

more potentially useful approach would be to build structured connectionist 

models or hybrid system. Then it is able to combine more functions for some 

specific purposes based on machine leaming model, which includes four 

fundamental elements, namely, Environment Analysis, Learning Elements, 

Knowledge Base and Performance element [Simon Haykin, 1999]. All of these 

units could be divided into more subdivisions, to form a highly efficient hybrid 

framework, while the whole framework would be taken as a noisy language 

modelling layer (named as Intelligent Keyboard) between keyboard and 

applications to analyze users' typing stream and filter possible noises. 

Intelligent Keyboard hybrid framework which combines neural network, 

statistics and natural language model together is designed and intends to provide 

users with two fundamental functions, namely, text prediction and typing 

correction. User's typing data stream can be checked, rectified, and predicted in 

sequence by going through each unit following user's typing process. Through 

this way, the noises in typing stream are filtered significantly and the language 

interaction between user and computer becomes smoother. 

Multiple units and a database (long-term memory and short-term memory) have 

been presented according to distinct technologies. The designed Intelligent 

Keyboard architecture is shown in Figure 3.2, which is thoroughly explained 

through an example in the next section. The architecture includes four processing 

units: Text prediction unit, Inference unit, Natural Language Processing unit 
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(marked in dash line, which is currently not considered given the scope of this 

project), and Error correction unit; and two additional modules, namely, User 

interface module and Noise process module to enable the interaction of the user 

with outside environment such as computer keyboard. 

The two additional modules function as data pre-processing, post-processing and 

interaction interface. They correspond to machine learning model's Environment 

Element and part of Performance Element respectively. The Knowledge Base 

element is represented by Long-term Memory and Short-term Memory. The 

rules inferred from Inference Engine and some other facts such as user profile 

and frequently used texts, are saved in the Long-term Memory. Other facts such 

as recently used new words are stored in the Short-term Memory which will be 

transferred to the long-term memory if a certain threshold is reached. 
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Intelligent keyboard is invoked by user's key strokes. As much of the typing data 

stream could be un-preprocessed, incomplete and noisy, for example, a long key 

press generates more than one Window's message, so the data stream needs to 

undergo Noises Processing module first. Tbrough this module the input vectors are 

further exploited, which would include the key-up signals, key-down signals, the 

time difference between two consecutive strokes and so on. The definition of noises 

can be given according to the user profile. 

Subsequently, a representation vector which includes a time stamp and Virtual Key 

Code (VKC) message is chosen to be sent to the processing units, namely, Text 

Prediction unit and Error Correction unit. Both units process the vectors based on 

the association rules, dictionaries and some other facts retrieved from the memory. 

Text prediction unit is composed of different algorithms developed based on 

different scientific methods such as statistics and phonemics (see more details in 

chapter 5) while Error Correction unit is designed based on users' performance. 

Firstly, a spell checker function is used to detect if a mistake occurs. In the case of 

no mistakes being traced, the unit processing is stopped and the result is passed on 

to Inference Engine. Otherwise, the function such as motor checker to process motor 

disability errors would be evoked if spell checker fails to present a result. These two 

units (Text Prediction unit and Error Correction unit) can process data stream 

simultaneously. The typing mistakes which are still under doubt are further checked 

by word n-gram function, which is used as an alternative to Natural Language 

Processing unit in this project. In the future the Natural Language Processing unit 
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could be implemented and used to check syntax and semantics errors. Finally, the 

results are refurbished and shown to the user by User Interface unit. 

The results (e. g. a list of words) generated from Text Prediction unit and Error 

Correction unit, which are usually more than one, are presented to Inference Engine 

unit. 'Me Inference Engine unit ranks the results based on their probabilities to 

generate a word-list or directly presents a highest ranking presentation to the user. 

The user's feedback such as selections and correction actions is recorded by the 

inference algorithms (here is a neural network algorithm), and transferred to rules or 

rewards to be stored into the memory. 

From Figure 3.2, blue boxes and their connections represent the system's input and 

output process. An input of a sentence is a process passing through different 

structure status from letter, word to sentence, during which distinct units are evoked 

up according to the structure status changes. 

The processing units from left to right, which has been marked as light yellow, are 

named as Text prediction unit (No. 6), Inference engine unit (No. 7), Error 

correction unit (No. 8), and Natural Language Processing (NLP) unit (No. 9). Data 

storage (No. 12) is divided into short-term memory and long-term memory, where 

the temporary and permanent information are stored. There are two additional 

modules: Noise process module (No. 10) and User interface module (No. 11), which 

are responsible for the interaction with the outer environment such as keyboard. 

(Further details ofall units and modules can befound in Appendix E). 
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3.4.2 Intelligent Keyboard framework demonstration 

Let's assume a one-hand user is typing the sentence: Tomorrow shall we go to the 

park? Capital letter is a big obstacle to one-hand users, as they have to type twice 

when inputting a capital 'T' ('Shift'->release-> 't' ->release). 

After receiving these two Windows Messages, the Noise Process module analyses 

and assembles them to one letter - 'T', then send it to Text Prediction unit to provide 

the user with a list with ranked words, as shown in Example 3.1, 

T_ 

1) Talk 2) That 3) The 4) Them 5) They 6) This 

Example 3.1 Words List Interface -1 

Since the target word did not appear in this list, the user continues to type the next 

letter "o", and the following list of words starting with "t-o" appears, as shown in 

Example 3.2, 

To- 

1) Today 2) Tomorrow 3) Tonigbt 

Example 3.2 Words List Interface -2 

Then the user can choose the word "Tomorrow" at once. Dyslexia users often 

reverse letters, e. g. 'shall' to 'sahll', as shown in Example 3.3. As a complete word 

(i. e. a string between two non-alphabets), it is sent to Error correction unit for 
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verification. Some errors are filtered out after spell checking. For the remaining 

errors, one of these modules, namely, 'motor checker' or 'dyslexia checker' is 

chosen as a further solution. Eventually 'sahll' reaches Dyslexia checker module 

and is corrected to 'shall'. 

Tomorrow sahll 

1) shall 2) sheR 3) should 

Example 3.3 Words List Interface -3 

The typing moves on, as shown in Example 3.4, 

Tomorrow shall we go park? 

Tomorrow shall we go to park? 

Example 3.4 Words List Interface -4 

No other units could cope with such error (e. g. not 'go park', but 'go to park') 

(attention: the Inference Engine unit could learn and recognize after rounds of 

training. ), until the sentence is sent to word n-gram module to conduct a syntax 

analysis. 

During the whole process, each unit frequently communicates with memory 

database to fetch user profiles, association rules and system configuration. 

Meanwhile the results of units' analysis, user's keystrokes (e. g. correction action 

&wrong letter'-> user press 'Del'->right letter'), and user's responses are sent back 
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to Inference Engine unit. According to user's feedbacks, Inference Engine unit again 

optimizes its model and related vectors. In the mean time, it also re-ranks the display 

list before sending it to User interface module. 

In some way Text Prediction unit and Noise Process module are responsible for the 

mimmum input unit (i. e. letter) errors' correction; Error correction unit is in charge 

of word checking; word n-gram helps to wipe off the rest of errors based on the 

analysis of sentences' syntax and semantics. User's input context is checked in 

sequence by each unit with user's typing process, corresponding to the blue boxes 

which circles the architecture, and are marked as 'Incomplete word', 'Word' and 

'Incomplete sentence'. 

3.5 Summary 

This chapter develops a novel intermediate layer noisy language modelling 

framework - ALMIL, which lies between computer input devices layer and software 

applications layer, to analyze language data stream with noises and provide a user 

with data prediction and correction functions. This framework highly emphasizes on 

its adaptability, learning ability and compatibility, which can be used by text entry 

applications such as computer keyboard and bimodal related applications as a 

standard intennediate layer noisy language processor. 

Following a disabled user investigation, a demonstration of ALMIL through 

Intelligent Keyboard framework aiming to design a user oriented hybrid framework 
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with self-adaptive function to help disabled people in using QWERTY keyboard 

more effectively is developed. 

The Intelligent Keyboard framework provides disabled people with a comprehensive 

solution to use QWERTY keyboard more effectively. It can learn from user's typing 

history and feedback based on neural network algorithm. The user's typing intention 

is predicted based on user's input history, and the typing errors in data streams are 

gradually corrected as the data stream goes through each module. Through this way, 

the noises in typing stream can be filtered significantly and the language interaction 

between a user and a computer becomes smoother. 

The modules of Intelligent Keyboard architecture are extendable according to 

distinct user profiles. It is developed as a practical demonstration of ALMIL 

framework. Multiple technologies such as statistics and neural network are applied 

to the framework and multiple modules such as motor checker and dyslexia checker 

are integrated into this framework. It fills the gap between input device (i. e. 

keyboard) and user applications as a noisy language filter. Hence, the ALMIL 

framework builds a foundation for this research. In the next chapter an intensive 

neural network modelling based on the analysis of both plain text and user typing 

stream is fully presented. 

78 



CHAPTER FOUR 

NEURAL NETWORK AND 
LANGUAGE MODELS 

DEVELOPMENT 



4.1 Introduction 

The previous chapter proposes an intermediate layer noisy language modelling 

framework called ALMIL to analyze language data stream with noises. In order to 

demonstrate and simulate the noisy language modelling process, a comprehensive 

neural network models development based on the analysis of both plain text and 

user typing stream is carried out. Firstly, an amount of datasets including a part of a 

book and two user typing stream logs are determined and collected. Furthermore, a 

preprocessing tool is developed, and data extraction and coding method are 

proposed. Then, a Focused Time-Delay Neural Network Model with extendable 

input and hidden units is designed and performed with noise-free, noisy and typing 

stream datasets respectively. Distinct numbers of grams with distinct numbers of 

hidden neurons are cross-experimented. Based on different noise rates, the noisy 

language text is modeled with a 27 symbol set, while the typing stream model is 

designed and implemented based on a larger symbol set. 

Following a general language modelling on noise-free, noisy and typing stream 

datasets, several distinct neural network models are developed based on a specific 

dataset extracted from user typing stream, for example, the influence of Time Gap 

on user's typing performance is studied through Time Gap modelling and Prediction 

with Time Gap modelling. Finally, a novel Probabilistic Neural Network model is 

developed to simulate the 'Hitting Adjacent Key errors' based on Key Distances, 

Time Gap and Error Margin Distance elements. 
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4.2 Experimental clatasets 

One of the objectives in this research is to design neural network models and test 

these models by applying experimental noisy datasets, to estimate their prediction 

and correction accuracy rates. The approach adopted here is to construct distinct and 

extendable intelligent models according to the varied data samples and related 

features. Various neural network models are trained by the minimization of an 

appropriate error function defined with respect to the training dataset. Several pieces 

of data samples are collected from different sources. The main experimental datasets 

used by this research are described below, 

* DATASET ONE: a novel -Tar from the Madding Crowd' was written by 

Thomas Hardy [1874], which is his fourth novel and first major literary 

success. It has been used as a testing sample by some compression 

algorithms such as PPM*. The version used here is extracted from Calgary 

Corpus [2009] with a size of 751kb. An example is shown below. 

V don't think it isfor you, sir, 'said the man, when 
he saw Boldwood's action. "Though there is no name 
I think it isfor your shepherd. ' 

Due to system performance restriction, a continuous 100k segment is 

extracted from dataset one as a testing sample, and is subsequently divided 

into training dataset, validation dataset and testing dataset in a proportion of 
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70%, 20% and 10% respectively. The training subset is used to estimate 

weights and thresholds of neural network models; the validation subset is 

used to determine when to stop training. Error estimates using training and 

validation data will be biased as both are applied to design the neural 

network, so the testing subset is involved to obtain an unbiased estimate of 

the generalization error. 

* DATASET TWO: it is extracted from Disability Essex helpline keystroke 

log. Ile associated computer is used as a question recording, database query 

and email writing tool by a disabled volunteer. From the reflected keystroke 

log, the typing mistakes are predominantly about adjacent key press and 

prolong key press effors. The keystroke recording tool used in this research 

is KeyCapture software [Soukoreff & MacKenzie, 2008], which has been 

modified and adjusted for the purpose of this research. It runs in background 

under Windows enviromnent to collect keystrokes without interfering with 

user's work. A typical structure of generated log is demonstrated in Figure 

4.1. 

01929 KeyPress 20080605-132ld9-593 IT, Status-(down) Key(81) Extra(Dxl4) KeyDistance(3.500000) Timegap(307) 
01930 KeyPress 20080605-132119-615 IT, Status=(up) ley(84) Extra(OxcOH) KeyDistance(O. 000000) Ti=Gap(62) 
01931 KeyPress 20080605-132119-658 'HI Status=(down) Key(72) Extra(Ox23) KeyDistance(2.500000) TinGap(3) 
01932 KeyPress 20080605-132119-691 IHI Status--(up) Key(72) Eidra(OxcO23) KeyDistance(O. 000000) TiNwGap(36) 
01933 KeyPress 20080605-132119-804 'A, Status-(down) Key(65) Extra(Oxle) KeyDistance(5.000000) limeGAP(Ilo) 
01934 KeyPress 20080605-132149-992 W Status--(up) Key(65) Extra(OxcOle) KeyDistance(D. 000000) ThReGap(188) 

Figure 4.1 A piece of KeyCapture log sample 
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KeyCapture can answer the following questions: What editing keys are really 

used when entering text? How much time does a typical user spend using the 

mouse, as opposed to entering text? Or, what applications does a user use, 

and for how long? [Soukoreff et al., 2003]. In Figure 4.1 each line contains 

nine columns as illustrated below. 

Column 1: sequence number 
Column 2: key press - used to distinguishfrom mouse action 
Column 3: action date and time (ms) 
Column 4: key pressed 
Column 5: key status (up or down) 
Column 6. - the value of Virtual Key Code 
Column Z key press informationfrom Waram 
Column 8: distance between two keys ofa standard keyboard 
Column 9: time gap between two consecutive keypresses. 

According to Windows system, each key stroke evokes two messages, 

narnely, key-pressed (either WM-KEYDOWN or WM_SYSKEYDOWN) 

and key-released (either WM-KEYUP or WM-SYSKEYUP), which are 

associated with two 32 byte parameters, wParam and Waram. In Figure 4.1, 

every couple of lines marked with status equal to 'up' or 'down' represents a 

complete key press. The time gap is the margin value of each two rows in 

Column 3. The key distance is the sum of horizontal and vertical distance 

from one key to another. A half key (0.5) distance is counted if two keys' 

distance is not an integer multiple of one-key distance. 
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The Helpline dataset is collected within a period of twenty three days with a 

capacity of 6.5 mega bytes. As an example generated in a real-time, the 

occurrences of alphabet (recorded in virtual key codes) counted in keys up 

and keys down are shown in Figure 4.2. 

Figure 4.2 A statistic of alphabet occurrences in typing stream 

* DATASET THREE: typing samples from people with Parkinson disease 

and motor disability are also gathered. The segment chosen and used by 

intelligent models is as follows, 

ORIGIN -- 'the quick brown. fi)xjumped over Ihe lazy, dog' 
TYPED - 'hthe quick brrooownn figow jummppefd 

iobverelhe lwqazy doogg/g' 

The 'ORIGIN' refers to a typing reference, and the 'TYPED' refers to a 

user's typing sample shown in a Notepad editor. These are recorded in a 

plain text format. Its associated keystrokes are also tracked and saved by the 

software KeyCapture. 

94 



Some other testing datasets are also used in this project. They will be 

explained along with the description of associated intelligent models. 

All the datasets collected here lie in two categories: non-noisy or noisy dataset, 

which are closely related to the research hypotheses made previously. Dataset one as 

a clean dataset (i. e. non-noisy) having a considerably large size will be used by the 

general noisy language modeling process. The noises can be added gradually into 

the clean dataset to model noise-prediction rates. Dataset two will be taken as a 

-specific research case and applied to type stream models. However, user typing 

behaviours in dataset two are ambiguous that may be difficult to be classified clearly 

into a sp ecific category, therefore, a separate typing stream research case aiming at 

processing the 'hitting adjacent errors' (i. e. dataset three) is collected. Certain 

factors such as Time Gap and Key Distance will be addressed in the related model 

development. 

4.3 System environment 

System environment including computational capability and memory capacity may 

have a great influence on the intelligent models' testing process. Therefore, it is 

necessary to fully present the related system environment of all testing. In this 

research, all experiments are carried out based on Lenovo T60 (IBM) platform, 
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Windows XP operating system, and MATLAB and its Neural Network Toolbox. A 

detailed system environment description is given as follows, 

4 Operating System: 

Microsoft Windows XP Professional Version 2002 
Service Pack 3 

* Hardware Configuration: 

Intel@ Corel"2 CPU T5600 @1.83GHz, 3. OOGB of RAM 
Hard disk 120GB 

* Toolbox and Configuration: 

MATLAB Version 7.4.0 (R2007a) Neural Network toolbox 
Physical Memory (RAM): Total - 3070 MB 
Page File (Swap space): Total - 4445 MB 
Virtual Memory (Address Space): Total - 2047 MB 

4.4 Data processing tools 

Data collection procedure has been followed in two ways: hand sampling from 

sources such as compression websites and wikipedia, and automatic collection using 

KeyCapture software (see Figure 4.3). As manual extraction and pre-processing of 

data fed to intelligent models from different sources is tedious and the chance of 

human error is high, all gathered raw data need to be further processed prior to being 

used by intelligent models as input vectors. However, no particular software or 
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functions have been found to perform the extraction and pre-processing. To 

overcome this problem, a piece of software called Enstatistics is developed that is 

capable of providing a platform to pre-process dataset by reading the raw data from 

different sources and transforming them into text files to meet the requirements of 

intelligent models. The overall process is shown in Figure 4.3. 

I Hand Sampling I 

Dataset 1&3 
EnStatistics (MFC) 

Dataset 2 

I KeyCapture I 
Intelligent Models 

(MATLAB) 

Figure 4.3 Schematic representation of intelligent modelling 

Enstatistics is developed based on Microsoft Foundation Class (MFC) Library to 

convert the datasets to an appropriate input format for neural network models. The 

software interface within a data pre-processing description diagram is shown in 
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Figure 4.4. Each function will be illustrated following the latest introduction of 

specific intelligent models. 

Figure 4.4 gives a clear demonstration of data preprocessing related to this research. 

'Me datasets are interpreted by distinct functions of Enstatistics based on specific 

requirements. Each function may correspond to a particular neural network model or 

a particular requirement. For instance, function TextAnalysis is used to analyze the 

English plain text and calculate the occurrences of letter 1,2 & 3-gram and word 1, 

2& 3-gram; function StrokeAnalysis is used to analyze dataset two and generate 

data for N-Grarn Prediction with Typing Data Model. In this research, 

MATLABBP2, MATLABLVQ and StrokeStat functions are not used by intelligent 

models. TestFunc is used as a program interface to test some internal functions used 

by Enstatistics. 

For most of the designed neural network models, the research has used unary coding 

as their input coding method, illustrated in detail in section 4.5. Enstatistics can be 

used independently as a statistics tools to calculate the target ASCII and word 1,2 & 

3-gram. Also it can be used for any neural network model for data conversion with a 

minimal alteration of the existing code. The performance and the accuracy of the 

software have been verified within this research. 
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DATASET2 
DATASET3 

Z 

TextAnalysis StrokeAnalysis 

MatlabBP Ma labBP2 
BE 6ý. Mao 

.-. 
-. --' -I 

MatlabLVý 
7 

5ýrokeStat 
0- ff --Mmý .ý W-ýý 

TimeGap LRonRHP 

LRonRHT TestFunc 1 

Cancel 

J: ý 
.. I... 1.0. 

... I,,, -2.0. ,I,., 
3.0. 

... I,,. -4.0. ... I. 5.0. 
, L-L 

ilioooo(: Iciclclclclclocloooc101-11-1clocloon 

2000000000000100000000000000 
3000000000000000000000000001 

4000000000000000000000000001 
5000000000000000000000000001 
6000000000000000000000000001 

7000000000000000000000000001 
8000000000000000000000000001 
9000000000000000000000000001 

Figure 4.4 Interface representation of intelligent models data pre-processing 
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4.5 Input coding 

Let's model a typing data sequence D= td, I" 
, on an alphabet basis of size 

space A=ýa,..., zj , where d, EA. A neural network model can be designed to 

compute the probability of each symbol in A in the next occurrence. The method 

how to code their inputs before feeding the datasets to the models is important. Here, 

two input coding methods based on unary code and ASCII code are illustrated. For 

example, some samples coded by unary code and ASCII code are shown in Table 

4.1. 

Alphabet Unary code ASCII[Code 

a 1 97 -'01100001' 

b Ol 98 ='01100010' 

c 001 99 ='01100011, 

d 0001 100=101100100, 

e 00001 101=101100101, 

Table 4.1 Unary code and ASCII samples 

Unary coding is an entropy encoding that represents a natural number, which is a 

symbol here, using n-I zeros followed by a one, for instance, 'a' is represented by 

a'F while V is represented by two zeros followed by a one. The ASCII code uses a 

fixed length (e. g. 8 bits) with its value to represent a symbol as shown in table 4.1, 

where 'a' is represented by '01100001' which consists of three ones and five zeros. 
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The unary codes can be adapted to a fixed length to fit the requirements of neural 

networks without changing the number of input neurons. For example, let's consider 

a dataset within a three symbols la, b, c) space, these three symbols can be coded as 

fixed unary codes f100,010,0011 or a ASCII style code ý01,10,11). Let's suppose 

there is a training iteration of neural network where the input is a symbol 'c' and the 

target output is W, then the designed neural network architecture with unary coding 

and ASCII coding with two and three hidden layer neurons respectively is illustrated 

in Figure 4.5 and Figure 4.6. 

OutDut Laver 

Hidden Laver 

InDut Laver 

Figure 4.5 Neural Network with unary coding Figure 4.6 Neural Network with ASCII coding 

At the input layer of Figure 4.5, only one neuron is activated once at a time while 

the rest of the inputs are set to zeros. Figure 4.6 shows neural network architecture 

with ASCII style coding, which is able to use only two neurons at the input layer to 

represent a dataset. For a neural network with ASCII coding, less neurons are 
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required than unary coding at input layer, but more neurons are required at hidden 

layer, and the time cost of training based on ASCII coding is higher. This research 

has applied the unary coding both to the input neurons and output neurons of neural 

network models where it is necessary. The determination of number of hidden layer 

neurons is based on adjustable, experimental and heuristics methods. 

4.6 Neural network models development outline 

The text entry prediction and correction using neural network models can be 

achieved based on historical data through designing two types of models; or can be 

developed using a single neural network architecture if the correction can be 

considered as one specific case of prediction - the model produces the right symbol 

based on the inaccurate historical data. At this point several models based on 

Historical network, Focused Time-Delay neural network modelling, traditional 

BackPropagation neural network and Probabilistic neural network associated with 

different datasets are designed and implemented in the following sections. Both 

general languages based modelling using Focused Time-Delay neural network and 

specific data extraction based modelling using traditional BackPropagation Neural 

network and Probabilistic neural network are tested. Figure 4.7 demonstrates the 

experimental procedure with datasets one, two & three. 
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Altogether seven models (marked as No. 1 - 7) are designed. They are trained 

separately by using three different datasets colored in blue, turquoise and yellow. 

The algorithms or commands used in MATLAB neural network toolbox are elm, 

newfRd and newff [Demuth et al., 1992-2008]. BackPropagation learning algorithm 

is used by models No. 1 -6. 

Probabilistic Neural Network (PNN) model is designed and shown in box No. 7. The 

training of the PNN model is much simpler than the models based on 

BackPropagation learning algorithm. There is a maximum of one pattern unit for 

each training example in PNN model. However the pattern layer can become quite 

huge if the distinction between datasets categories varies significantly. 

4.7 Focused time-delay neural network modelling 

A traditional Elman Network is a BackPropagation historical neural network with an 

addition of a feedback connection from the output of the hidden layer to its input, so 

it can be explored to support one gram prediction exactly through tracing back one 

symbol. As a result, an experiment has been carried out with dataset one. 

In comparison with other neural networks models developed in this research, 

although a less number of hidden layer neurons, and thus less memory in practice, 

are required in the designed Elman network, the experimental results based on a 27- 

3-27 three layer structure show Elman network is time and memory consuming 

network. Under the current system environment, the experiment demonstrates that 
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training using dataset one with >=1500 symbols (contrast to aI OOK dataset used by 

FTDNN) has failed to reach a final result with an 'Out of memory' error. A further 

test with a training data of 1000 symbols and a testing data of 500 symbols is 

performed. The test shows the time cost is significant. It takes about 42 minutes 

(2557 seconds) for the designed Elman network to complete a training process. The 

result shows that a prediction rate lies at 45.09% of First Tbree (FT) Hitting Rate 

and at 28.26% of First Hitting Rate. 

Focused Time-Delay Neural Network belongs to dynamic network, which consists 

of a feedforward network with a tapped delay line at the input. In this research 

Focused Time-Delay Neural Network is selected because it can represent and 

explain the unclear and complex relationship between current typed sequence and its 

preceding one, and this is reflected by the associated probabilities. 

Focused Time-Delay Neural Network is suitable for time-series prediction. Studying 

user"s typing behaviour would require the network to study user's history and trace 

back length of context to some extent (so called n-gram) to predict the next probable 

occurrence of symbols. Adding one more grain requires one more time delay. Simon 

Haykin [1999] has demonstrated that the FTDNN is more reliable in response to 

time and memory requirement, while the design using Elman network to support n- 

gram prediction is complicated. However, a comprehensive research on Focused 

Time-Delay Neural Network language modelling has never occurred. In the 

following sections an extendable FTDNN n-gram prediction is developed to predict 

noise-free, noisy and typing stream datasets. 
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4.7.1 FTDNN N-Gram Prediction 

* FTDNN N-gram prediction definition: let's assume existing string 

S= lslsi. sj. sk. s. I i.: 5 j: 5 k: ý m} and (j-i) = n, (k-j) =1 where 

s, sj, sk, s. are symbols and i, j, k, 1, m, n are natural numbers, if one builds a 

relation R,, = {x, yIx= (s,... s, ),, -> y= (s,., -> sk)j) , then the relation is 

defined as n-gam's I- prediction; if one considers the special case i=i, then 

the relation is called n-gram's one-prediction, or n-gram prediction for short. 

For example, given string S= (student), some 2-gram. prediction cases are, 

«st' -: > u, 
'tu' V 
'en' it 9 

+ Symbol-Distribution Definition: Given a certain ranking level m and a 

symbol set A= (a,..., z, space) , one defines the n-garn Symbol-Distribution 

in ranking level m is D. ' = (x, yIx, -> yj 1, where X, E symbol set A, and y, is 

the level m Hitting Rate corresponding to each symbol. 

Due to the system environment limitations in this research, rather than adopting the 

whole dataset, a chunk of data ranging from zero to 100k is selected from dataset 

one in order to train and test the designed neural network models. The dataset is 

subsequently divided into training data, validation data and testing data. A symbol 
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set with twenty-seven elements, A= (a ... z, space), is applied to simplify the dataset 

one. The corresponding function in EnStatistics is MATLABBP2 whose processing 

logic followed by a sample of results is illustrated below, 

for each symbol s, E context C, where C= {s, S,, ) 

I 
if 'a'< s, < 'z'then write unary code tofile 

else if 'A' < s, < 'Z' then convert to (a,..., z) and write unary code 

tofile 

else convert to blank and write unary code tofile 

} 

? Ioabcdefgh ij klmnopqr stuvwxyz " 
000000000000000000010000000 %It, 
000000010000000000000000000 Wh' 
000010000000000000000000000 We' 

First, all of the capital letters are converted to their corresponding lower case. The 

other symbols which do not belong to symbol set A are converted to space. Then 

each symbol is converted to a twenty seven length unary code. As shown in the 

example above, the word 'the' is successfully converted. 

97 



For this n-grarn prediction model, a three layer FTDNN network shown in Figure 

4.8 with twenty-seven input neurons, twenty-seven output neurons, extendible 

numbers of hidden layer neurons and extendible numbers of time delays is designed. 

TDL 

I 

I 
N 
p 
u 
T 

Figure 4.8 Architecture of Focused Time-Delay Neural Network 

Figure 4.9 further demonstrates FTDNN n-grarn language modelling process and the 

relation between n-gram, FTDNN and level m Hitting Rate. Studying user's typing 

behaviour requires the network to study user's history and trace back certain length 

of context (i. e. n-gram) to predict the next probable occurrence. Here, n time delays 

(i. e. n-TD) correspond to n-gram. Adding one more gram requires one more time 

delay. Variable m represents the number of the language symbol set as well as the 

0 
u 
T 
p 
u 
T 
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number of output neurons, then a level m Hitting Rate set related to the symbol set is 

generated in a testing iteration. 

text sequence 

input 

FTDNN 

m 

output 

Figure 4.9 Presentation of n-grarn FTDNN language modelling process 

Both input and output are encoded in unary code. The 'purelin' and 'logsig' 

activation functions are applied to the input and output respectively. A post 

processing function which ranks the twenty-seven output of 'logsig' in a descending 

order has been used to produce the unary code results: the maximum value is 

converted into one and the rest of the values are converted into zeros. For instance 

let's consider those three letters sample ('the') shown above, which produces the 

following outputs, 

0.02 0.03 0.01 0,01 0.01 0.01 0.01 0.88 0.01 0.01 0.01 0.01 0.01 0.01 0.0 
0.010.010.010.01 0.010.010.010.010.010.01 0.010.01 
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0.02 0.04 0.01 0.01 0.9 7 0.01 0.010.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
0.010.010.010.010.010.010.010.010.010.010.010.01 

0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.010.01 
0.010.010.010.010.010.010.010.010.010.79 0.010.01 

The maximum value of each line (i. e. 0.88,0.97,0.79) is converted into one and the 

rest of the values are converted into zeros. This is nained as First Rank Conversion 

Values and the related sample result is shown below. The unary code, which is 

converted based on the use of the second biggest value amongst output, is named as 

Second Rank Conversion Values. Ile unary code based on the use of the third 

biggest value among output, is named as Tbird Rank Conversion Values and so on. 

%a bcdefgh ij klmnopqr stuvwxyz " 
000000010000000000000000000 %h' 
000010000000000000000000000 We' 
000000000000000000000000100 %y 

Then as a 2-grarn prediction model, the generated relationship between input and 

output is as follows, 

it 1 
V 

In order to weight the experimental results, two concepts are introduced here, 

namely, Hitting Rate and First Three (FT) Hitting Rate. If given a testing metrics 

P, a target metrics T and a testing result metrics R with their nwnbers of lines and 
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columns equal and expressed as gm respectively, then the Hitting Rate is 

HR = (hr, I hr, = 
zeros(T -R'. ) 

,i r= m} , where R, is a vector of the P* Rank 
n 

Conversion Value of R, and zeroso is the function to compute the numbers of zero 

vectors included in the metrics. For instance, the second Hitting Rate is the second 

best option for the symbol prediction in all output neurons of FTDNN, while the 

third Hitting Rate is the third best option etc. Obviously the sum of all Hitting Rates 

k 
is HR HRI = 100%. 

Let's define the FT Hitting Rate as the sum of hr,, hr.., hr3, where k=3. Based on 

the previous example, the testing metrics P= (the 7, R= (hey 7, n=3 and m=27. 

Let's assume the target dataset T= (hem 7, while dataset R is the so called I" Rank 

Conversion Value. Then the first Hitting Rate 

zeros(T-R, ) zerosehem! -'hey) 2 
hr ==-= 66.67%, where two letters (i. e. 'h' In33 

and 'e ) are predicted correctly by the result R, that is, zeros('hem'-'hey )=2. In a 

similar way, the 2 nd and 3"d Rank Conversion Values based on the previous sample 

are, 

--2 nd rank conversion values 

Yoabcdefgh ij klmnopqr stuvwxyz " 
010000000000000000000000000 %b' 
010000000000000000000000000 %'b' 
100000000000000000000000100 %a' 

101 



--3 rd rank conversion values 

%abcdefgh ij klmnopqr stuvwxyz 
100000000000000000000000000 %a' 
100000000000000000000000000 %a' 
000000000000100000000000000 WMI 

zeros('hem'-'bba) 0 zerosehemý-'aam) I 
Where hr2= 

33 and hr3= 
33 

Then the 

FT Hitting Rate is 
2+0+I 

=100%, which is an ideal case. In this research its 
333 

average rate based on FTDNN model is just below 50%. 

During the FTDNN model training and testing using dataset one, the numbers of 

grams - [1,2,3,5,7,9,11,131 which are represented by time delays, and the 

numbers of hidden neurons - [1,2,3,5,7,9,15,25,50,100] are cross-designed and 

implemented. Thereinto, as the gram reaches 11 and the number of hidden neurons 

reaches 100, or as the gram reaches 13 and the number of hidden neurons reaches 15 

or onwards, the memory of current system is beyond its limit. Therefore, the 

experimental results are abandoned from G-I I& H-I 00 onwards. 

Based on the various grams and hidden neurons, several types of plots have been 

designed. Figure 4.10 shows one type of design with two examples, namely, ]-gram 

Hitting Rate and 11-gram Hitting Rate plots. Both plots illustrate four different 

ranking level Hitting Rate curve, these are, First Hitting Rate - hr, (in blue), second 

Hitting Rate - hr2 (in cyan), third hitting Rate - hr3 (in black) and their aggregation 

- FT Hitting Rate - hr, + hr2 + hr3 (in red). 
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In Figure 4.10, the X-axis represents the increase of hidden neurons numbers with a 

maximum value of 100, and Y-axis represents Hitting Rate, whose maximum value 

is 100%. The first plot of Figure 4.10 shows that the Hitting Rate reaches a stable 

point from twenty-five hidden neurons onwards. On the contrary it is more difficult 

to reach a stable point for a neural network prediction model with more grams as 

shown in 9-gram plot. The figures with [1,2,3,5,7,9,11] grain shown in 

Appendix D, clearly demonstrate that from seven-grain onwards the n-gram. 

prediction results become more diverse, and the uncertainty also becomes higher 

under the current training dataset. 

As shown in the first plot, ]-gram Hitting Rate quickly convergences towards a best 

Hitting Rate from one hidden neuron to twenty five hidden neurons where it reaches 

first level HR = 31.5%, second level HR = 14.0%, third level HR = 10.8% and FT 

Hitting Rate = 56.2%. The second plot - 9-gram Hitting Rate Curve shows unstable 

Hitting Rate with an increase of hidden neurons. It reaches a maximum at fifty 

hidden neurons, where first level HR = 33.5%, second level HR = 9.4%, third level 

HR = 5.8% and FT Hitting Rate = 48.7%. 

In order to demonstrate the effect of different grams on the hitting rate, a new type 

of plots are produced based on the same experimental results, as shown in Figure 

4.11. It has [1,2,3,5,7,9,11] grams associated with various number of hidden 

neurons. It is evident that 2,3 & 5-gram give the best three First Hitting Rates while 

1,2 & 3-gram give the best three FT Hitting Rates (in a smaJI margin 2-gram, gives 

the best FT hitting rates and 3-gram gives the best First hitting rate). 
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Figure 4.10 One & nine-gram Hitting Rate curves 
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Figure 4.11 N-gram First and First Three Hitting Rate curves 
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From both plots of Figure 4.11, the lower grams (1,2 & 3) show a better 

convergence toward the maximum Hitting Rate (i. e. FT HR is around 56%, First HR 

is around 33%). Both figures illustrate that smaller Hitting Rates occur from 4-gram, 

onward. This proves that the more historical dataset input the more learning neural 

network space is needed, and the more training is needed toward convergence. 

Under the current training sample the results suggest that there is a best gram with 

certain number of hidden units to suit the prediction best. Beyond a critical point of 

prediction rate, further increase of gram or hidden unit doesn't help to achieve a 

better performance. Figure 4.11 also shows that the number of neurons in hidden 

layer affects the model's learning ability and Hitting Rate. For example, the number 

of neurons in hidden layer should not be too small to a structured symbol set (q, ... , 

z, space} distribution; otherwise, it would be difficult for neural network to reach a 

good hitting rate. 

Looking at the black curve generated in Figure 4.11, the 11-gram testing stops at 

fifty neurons; a 27-100-27 three layer FTDNN model has failed to complete the 

training process under the current system environment as it runs out of memory 

error. The hierarchy hitting rates generated by this model can be used by the 

prediction ranking functions. 

Another type of plots are produced in order to illustrate the variation with increasing 

grams and fixed number of hidden neurons. The plots are shown in Figure 4.12. The 

testing results of full Hidden neurons vector [1,2,3,5,7,9,15] with larger figures 

is displayed in Appendix D. 
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In Figure 4.12, there are various hidden neurons corresponding to each specific gram. 

In general, Figure 4.12 shows the difficulty for the designed FTDNN model with 

one or two hidden neurons to obtain a constant Hitting Rate under current training 

dataset and language space, {a-z, space). It also demonstrates the FT Hitting Rate 

and First Hitting Rate are getting lower as the number of grams increases. The more 

the number of grams increases the more diverse the symbols composition become. 

Then it becomes more difficult for a neural network language model to learn fully 

without more neurons being added in hidden layers. 

The size of training dataset, the occurrence of each symbol in training dataset and 

the relationships among symbols of the training dataset all play an important role in 

the determination of a neural network language modelling prediction accuracy. 

These also lead to an introduction of another measurement - sampling entropy, 

which will be presented later in this section. 

The output of neural network language models are converted to unary code (so- 

called normalization), and its values range is limited wiffiin a certain symbol set, for 

example, {a-z, space). Let the symbol set and its occuffences be associated with 

x-axis and y-axis respectively, then the symbols' distribution histogram is created 

within the coordinate called Discrete Prediction Symbols Distribution (DPSD). 2& 

3-gram FTDNN models have demonstrated better Hitting Rates (both First HR and 

FT HR) with twenty-five hidden neurons onwards, hence they are chosen to 

generate the Discrete Prediction Symbols Distribution under First Hitting Rate. 

Figure 4.13 shows the Discrete Prediction Symbols Distribution, which displays a 

comparison between prediction symbols occurrences and target symbols occurrences. 
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In total, 10k symbols have been tested and predicted. From Figure 4.13, symbol 

'space' has shown the highest occurrence under all circumstances, which is mainly 

due to its high frequency in the testing dataset and the pre-processing symbol 

conversion strategy. The histogram colored in yellow shows the true occurrence of 

target dataset; those colored in lavender and red demonstrate 2&3 gram prediction 

results respectively. As a comparison, they show that the prediction based on unary 

coding has generated more centralized results. It is mainly biased towards the 

symbols such as 'a, 'e, V and 'space'. On the contrary, for example for V, V, 

V. their occurrences of prediction have been sacrificed to complement other 

symbols although they've truly occurred in the target dataset, e. g. o(q)=72, 

o(v)=196, o(w)=14. 

The Discrete Prediction Symbols Distribution generated by FTDNN models can be 

finther quantified through the calculation of their related entropy values. 

Information entropy is a measure of the uncertainty in language modelling [Shannon, 

1948]. According to FTDNN model, the entropy equation can be written in the 

following way, 

* Let's define C as a symbol string of the testing dataset, ICI represents the 

number of symbols in C, and (a,..., z, space) is the distinct symbol set, then 

the testing sample entropy H,, (x)=-jP(XMog2P(Xd 9 where 
W 

iE (a,..., z, space), n= 27 which is the number of the distinct symbols, x, is 

110 



the occurrence of symbol i in C and p(x, ) is the probability occurred of x, 

compared with IC1. 

* Given a constant 'GRAM' which represents the number of grams used by 

FTDNN model, let's calculate its Neural Network-entropy (n-entropy) H,,. 

n 

of the testing sample, H (y) P(YI) 1092 Ayd , where the probability 

of the sum of the output neuron i is y, a, ) / Y, m =1 CI -GRAM, a,, is 

the J th prediction conversion value of output neuron a, , and the sum 

R 
Y=F 

Here sample entropy (s-entropy) is defined as the entropy of testing clataset. Given a 

testing sample, the sample entropies are calculated according to the number of 

grams. If one considers a small gram range (e. g. < 11), then those sample entropies 

only have a very small difference in comparison with the capacity of the testing 

sample which is valued as less than 0.001 and can be ignored. 

A comparison between s-entropy (in blue) and n-entropy values (in red) based on 

various grams and hidden neurons is shown in Figure 4.14. It indicates that 1-grarn 

n-entropy has gradually reached the same value as s-entropy with an increase of 

hidden neurons, and that 2& 3-gram are well below s-entropy. However, it becomes 

more difficult for 7& 9-gram. to reach a stable value despite the dramatic increase of 
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hidden neurons. On the other hand, these also demonstrate that 1,2 & 3-grarn 

generate better results than other grams. 

It would be interesting to use a larger size training dataset with a heuristic content 

selection strategy to estimate the natural entropy of English language. But this will 

require much more computational ability and memory capacity of a computer. The 

learning algorithm could also be required to adapt to a parallel computation 

algorithm for efficiency consideration. 
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Figure 4.14 [1,2,3,5,7,91 gram s-entropy curves 

A full result metrics of this FTDNN model testing is given in Table 4.2. The column 

and the row represents the numbers of hidden neurons and GRAMs respectively. 

Each row has five sub-rows which list three levels Hitting Rates, s-entropy and n- 

entropy. Due to the computer capacity, the tests that are not fully implemented are 

marked as OOM (out of memory). 
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4.7.2 N-Gram Prediction with noise 

To test FTDNN neural network models' prediction ability, a noisy randomization 

method within the data pre-processing fimction is designed and applied to the 

training dataset and testing dataset. Generally speaking, some noises are randomly 

distributed into the dataset one after data unary code conversion. 

In practice, an Rand (n, m) function is developed, where n is the range of random 

values, m is the required number of noisy symbols. Then, the noise rate or mistakes 

rate can be expressed as mRate = ml ICI where ICI is the number of symbols in C. 

During the training and testing, first, iRand(I C 1, m) is applied to locate the symbols 

that need to be randomized, then, after resetting the status of random generator, 

function iRand(27, m) is used to assign each symbol located by iRandfl C 1, m) to a 

new value. The process is illustrated below. 

NoiseSymbolArraySequenceNumber[mI = iRando C 1, m) 

Set the state ofrandom generator 

NoiseSymbolArray[ml= iRand(27, m) 

For zero to m 

Do 

x= NoiseSymbolArraySequenceNumber[mI 

y= NoiseSymbolArray[m] 

set datasetl[xj to zeros 

datasetl[xl[y] =I 
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Endfiv 

For example, given m=I and unary code dataset below, 

%abcdefgh ij klmnopqr sluvwxyz '' 
000000010000000000000000000 
000010000000000000000000000 
000000000000000000000000100 

then the number of dataset's symbols IcI 

%'h' 
%'e' 
Wy I 

If 

NoiseSymbolArray, ýequenceNumber[l], that is, iRand(3,1) =2 and 

NoiseSymbolArray[l], that is, iRand(27,1) = 26, then, the dataset is randomized 

into, 

%a bcdc. I'g h ij k/mnopqrs1 11 v ii, xj,.,: - 
000000010000000000000000000 %'h' 
000000000000000000000000010 
000000000000000000000000100 %y 

According to this randomization strategy, several FTDNN models with 2,3,5 & 7- 

gram and extendable hidden units to study the noise prediction based on dataset one 

are developed. All the training, validation and testing data are preprocessed and 

mixed with randomized noisy data. Considering correction as a special case of 

prediction, the FTDNN modelling process is a symbol prediction as well as noise 

correction process tracing back n-gram history. 

116 



Let's define the noise rate range as [a,, 8], and the lower boundary and upper 

boundary used in this test as a=0.00 1 and 8=0.1 respectively. Three concrete 

values mr, (i = 1,2,3), namely, 0.001,0.01 and 0.1 are used in this test, and the 

numbers of randomized symbols can be computed based on the equation, 

m, = mr, *ICI. Based on the same FTDNN structure, the First Hitting Rate and FT 

Hitting Rate with various grams and hidden neurons are shown in Figure 4.15. 
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Figure 4.15 N-gram prediction with Noise Rate = 0.001 
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The blue curve represents the First Hitting Rate and the red one represents the FT 

Hitting Rate. The 2& 3-gram show the best FT Hitting Rate with fifty neurons 

under Noise Rate of 0.001. Their Hitting Rates tend to change less as the number of 

hidden neurons grows. On the contrary, it becomes difficult for 5& 7-gram to reach 

a steady value. All four figures show that the significant increase of hidden neurons 

(from fifty neurons onward) does not improve the prediction rates significantly. 

The plots of the n-gram predictions under noise rate of 0.01 and 0.1 are also 

displayed in Figure 4.16 and Figure 4.17. Similarly to 0.001 noise rate, 2-grarn 

reaches the maximum hitting rate (ýý 0.57) followed by 3-grarn (; tý 0.55). It becomes 

more difficult to reach a high Hitting Rate as more history data is studied by 

FTDNN models. The reasons are two folds. One is that more noise is included as 

more historical data are traced back. The other is that under the current dataset the 

symbol determination becomes more diverse. 
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Based on the same experimental results an alternative type of plots shown in Figure 

4.18 is produced, aiming to show the variation of First Hitting Rate (in blue) and FT 

Hitting Rate (in red). In the previous experiment, 2& 3-grarn obtain the best two 

hitting rates with fifty hidden neurons, so 2& 3-grarn FTDNN model are selected 

here. Figure 4.18 illustrates the prediction curves as the noise rate increases from 0 

to 0.3. Both figures show a decreased Hitting Rate as the noise rate increases. For 

example, when the noise rate reaches the value of approximately 30%, its 

corresponding First Hitting Rate is only 27% compared to the correction rate of 37% 

without noise. Figure 4.18 indicates that the maximum FT hitting rate (58%, in 2- 

gram) occurs when noise rate is zero whereas the minimum hitting FT rate (45%, in 

3-gram) occurs at the rate of 0.3, which is the lower boundary of noise rate. 
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3-Gram with fifty neurons prediction 
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Figure 4.18 2& 3-gram Hitting Rate curves under noise rates 

4.7.3 N-Gram Prediction with Typing Data 

From the above analysis, the designed n-gram Focused Time-Delay Neural Network 

models have shown that it can be applied to noisy data prediction with a high 

capability. Here, a user's typing data stream (dataset two) is used to further test the 

extendible FTDNN model. The users typing history is analyzed by FTDNN model 

to predict user's next typing intention. As the typing data stream is a typical noisy 

dataset which includes user's typing mistakes as well as self correction strokes such 

as symbols 'backspace' and 'delete', the FTDNN model not only would learn the 

habits of user using language but also would learn the self-correction actions which 
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occurs in typing stream. For example, a self-correction action from a wrong typing 

word 'desj' to the right word 'desk' can be broken down in a typing data stream as, 

=> e => s =>j => backspace => k 

This is a typical adjacent-key-press error usually made by some people with motor 

disability or Parkinson disease. Through training, the FTDNN model is able to learn 

2-gram prediction rules between the predecessor and successor, for instance, 

d4e 
e 4s 

From the typing stream shown above, the model will learn not only the existing 

noises such as 's' 4 J', but also the correction actions such as 'j' 4 'backspace'. In 

practice, users just continue their typing without stopping in spite of the possible 

mistakes. The model should be able to correct the mistakes automatically or specify 

recommendations later on. 

The collected data stream in dataset two is expressed in Virtual Key Codes. In this 

research only editing virtual keys are adopted, other keys such as arrows are 

discarded. Then, the size of symbol set originally used by FTDNN model is 

extended into fifty three individual symbols, which apart from alphabet also include 

some other symbols such as, 
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VK BACK => BA CKSPA CE key 
VK RETURN => ENTER key 
VK SHIFT => SHIFTkey 
VK DELETE => DEL key 

(A full list with fifty three editing virtual key codes is illustrated in the Appendix f). 

Based on the original design of FTDNN model, an extension to fifty-three units both 

at the input and output layer has been made. The dataset two has recorded both the 

key press 'down' status and 'up' status. Considering some disabled people specific 

typing behaviour such as prolonged key press which would generate more 'down' 

keys corresponding to one 'up' keys, the keystrokes with 'down' status are chosen 

by the pre-processing function for neural network training and testing. For example, 

a converted dataset sample from typing stream: 'j'->'backspace'->'k' after 

preprocessing can be presented as, 

000000000000000000000000010000000000 
00000000000000000 Yoj 

100000000000000000000000000000000000 
00000000000000000 %backsapce 

000000000000000000000000001000000000 
00000000000000000 %k 

Owing to the previous experimental results, the test with n-gram array used by 

training and testing is GRAMarray = [1,3,5,7,9]; the hidden neurons array used is 

HiddenA'euronsArray = [3,5,7,9,15,25,50,1001. Part of testing results is shown 

in Figure 4.19. (Full detail can befound in Appendix D). 
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Figure 4.19 [1,3,7,9] gram typing stream individual Hitting Rates 

The figure illustrates the variation of First Hitting Rates and FT Hitting Rates with 

the increase of hidden neurons. In general, it shows that I& 3-gram generate a 

better Hitting Rate than 7& 9-grams. The experiment indicates that from twenty 

five hidden neurons onwards, the First Hitting Rates and First Three Hitting Rate of 

7& 9-grarn are changing more sharply than the case with I& 3-gram. It further 
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confirms the previous experimental results which show that a lower gram (e. g. gram 

< 5) is a better solution to symbol typing prediction using current training dataset. 

A comparison among the gram set [1,3,5,7,9] based on various numbers of hidden 

neurons - [3,5,7,9,15,25,50,1001 is shown in Figure 4.20. The first plot 

demonstrates a comparison of several grams' First Hitting Rates with an increase of 

hidden neurons. The second plot is a comparison of FT Hitting Rate between 

difference grams. A sample entropy calculation is also carried out based on the fifty- 

three distinct symbol set, where the s-entry curve of the testing dataset is represented 

in blue and named as true values. 
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Figure 4.20 shows that I-gram produces the maximum FT Hitting Rate of 53% 

whereas 3-gram with fifty hidden neurons produces the maximum First Hitting Rate 

of 38.1%. Similar results have been obtained using dataset one: the lower grams (1, 

2& 3-gram) show a better solution using FTDNN model prediction under current 

circurnstances. Both datasets demonstrate a highly accurate prediction rate (FT 

Hitting Rate, approximately 50Yo) with FTDNN model. 

Figure 4.21 shows that the higher grams (e. g. 7& 9-gram) have the lower n-entropy 

than the lower grams (e. g. I& 3-grarn). This implies that the training and testing 

process using 7& 9-grarn of FTDNN model produce more convergent result 

datasets, and hence its prediction often focus on fewer symbols compared to what 1 

& 3-gram produce. 

4.7.4 FTDNN Modelling Summary 

The experimental results can be used to predict users' typing intention. In practice a 

higher prediction rate could be achieved by combining the FT Hitting Rate with an 

English word dictionary. As the typing stream includes all the users' correction 

actions and the predicted next symbol could be 'delete' or 'backspace', the 

experimental results can also be used to correct users' current typing mistakes. Both 

tests with dataset one & two show minimum number of hidden neurons is required 

in order to get a good hitting rate, but the testing also demonstrates the gram 

uncertainty in producing a best FT hitting rate (e. g. 2-gram shown in Figure 4.11 

and I-gram shown in Figure 4.20). Therefore, a combination of 1,2 & 3-gram is an 

optimum solution to keep a considerably high and stable hitting rate. 

127 



This research develops a Focused Time-Delay Neural Network model with 

extendible numbers of hidden layer neurons and extendible numbers of time delays 

to analyze noise-free, noisy and user's historical typing data. Approximately 50% 

FT Hitting Rate has been obtained from experimental results. In practice, the results 

can be applied to symbol prediction and correction. 

Further research which includes a distributed representation method to preprocess 

the typing symbols and applying FTDNN model to predict I-length string based on 

n-grarn's I-prediction is worthwhile, as more accurate prediction hitting rate can be 

achieved and more symbols can be predicted once at a time. 

4.8 Time gap modelling 

From Fitts'law [Paul Fitts, 1954], users input performance IP in bits per second is 

proportional to the variable movement time ID, which has a direct relation with the 

moving distance from one point to another. Let's consider a standard keyboard 

layout, the time gap between two consecutive strokes directly depends upon the 

distance between those two keys. As observed, the last key's position represented by 

the distance and angle with the target typing key could affect some of the disabled 

users'judgment on their typing accuracy and speed, which would be reflected by the 

time gap recorded on the computer log. Given the user's typing history, a I-grarn 

neural network model named as Time Gap Neural Network (TGNN) is designed 

here to simulate and predict the two consecutive typing letters' time gap, which uses 
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dataset two as its experimental dataset. A ftmction - OnBnClickedsuggesttimegap is 

programmed to pre-process dataset two. A fifty-four virtual key codes set is 

considered, which includes all fifty-three symbols used in 'N-Gram Prediction with 

Typing Data' section such as alphabets and space. The other symbols which appear 

in dataset two but do not belong to the fifty-three symbols set are classified as a 

designed symbol -'Other'. 

OnBnClickedsuggestfimegap function only extracts the keystrokes whose time gaps 

is in a range of [0,3000] ms. The rest which have been considered as either out of 

range or computer system related problems are ignored. 2-grarn dataset is created 

with their corresponding time gaps. This requires 108 (NumberOfSymbols * Gram) 

neurons in the input layer. All the time gap values are normalized into a range of [-I, 

11 according to Min-Max Normalization before they are used by Time Gap Neural 

Network model. The normalization equation is shown below, 

V. 
i. 

)*(V'.. - P. 
i. 

Xv.. - V. 
i. 

) +VI 
min 

Where V'max 1--- 11 V'min= 
-1 and variable v is the time gap value extracted from 

dataset two. The results of TGNN model will be reversed to their natural values 

based on the same equation. 

A traditional BackPropagation neural network is designed with a 108-7-1 three layer 

structure. The input includes two consecutive symbols represented by unary codes, 

and the output is the expected time gap between these two consecutive symbols. The 
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'fansig' and 'purelin' functions are considered as the hidden and output layer's 

activation function (see Appendix G). 

A reconstructed dataset extracted frorn dataset two is used as neural network's 

training dataset; another two datasets, 'abcdefghijklmnopqrstuvwxyz' (in an 

alphabetical order) and 'qwertyuiopasdfghjklzxcvbnm' (in a QWERTY keyboard 

layout order) are used as two testing cases. The experimental results generated by 

TGNN model based on these two datasets are show in Figure 4.22 and 4.23. 
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The time gap of QwaV sequenoe 
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Firstly, the TGNN model is trained based on dataset two. Then the Alphabet and 

QWERTY sequences are applied to the TGNN model. Figure 4.22 shows a 

simulation of the user's typing behaviour (e. g. speed and time gap) by typing an 

Alphabet sequence; Figure 4.23 shows a simulation of the user's typing behaviours 

(e. g. speed and time gap) by typing a QWERTY sequence. Due to no predecessors, 

both corresponding time gaps of the first keystrokes in sequence (in Figure 4.22 is 

V; and in Figure 4.23 is 'q') are counted as zero. 
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In Figure 4.22 and 4.23, x-axis represents user's typing sequence; y-axis represents 

the time gap in milliseconds. Between each two consecutive alphabets, a blue line is 

drawn to illustrate the elapsed time. The maximum time gap (637.4ms) occurs in 

Figure 4.22 when the finger moves from key Y to 'y'; while the minimum time gap 

(89.9ms) appears in both figures, when the finger moves from 7' to 'P. 

These two figures show that the current keystroke's predecessor has affected the 

user's typing behaviour (e. g. time gap) if one ignores the user's keystroke action 

itself and behaviour randomicity that human may have. Due to the distance 

difference between each two keys in computer QWERTY keyboard, the time gap of 

each two consecutive keys during user strokes varies. 

The red lines in Figure 4.22 and 4.23 represent the average time cost of all twenty- 

five movements, which show that the cost of typing an alphabet order sequence is 

384.44ms (see Figure 4.22), whereas the cost of typing a QWERTY order sequence 

is 342.50ms (see Figure 4.23). The test shows typing an Alphabet sequence is more 

time consuming based on a standard keyboard. This can be explained by movement 

cost, meaning that an alphabet order sequence would require more time for user to 

locate the keys from one to another. 

This research gives a glance at the idea that the Time Gap between two consecutive 

keystrokes is influenced by current symbol's predecessor. A further research tracing 

back more than one gram history accompanied with a larger dataset is necessary. 

The physical mobility control and energy cost can be involved in order to find the 

right patterns among movement direction, typing symbols composition and 
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keyboard layout. Subsequently researchers may be able to find a convenient, energy 

saving, fixed or adaptive keyboard layout for those users with special needs. 

4.9 Prediction using time gap 

People with motor disability or Parkinson disease using keyboard may press 

adjacent keys or stick keys. These can be shown from the time gap between each 

two consecutive key strokes. For example, a time gap between the windows 

keyboard messages caused by sticking keys can be much smaller than the user's 

normal typing speed; the opposite case may also happen when more time can be 

spent by disabled people aiming at the target before making up their mind. From 

observation, interestingly enough it is rare for those people to completely miss 

typing a symbol. According to these distinct behaviours, a neural network model 

using BackPropagation (newffi is designed by adding an extra Time Gap variable in 

the input layer, called Prediction using Time Gap (PTG). Here, a small sample typed 

by a Parkinson person is used to demonstrate the idea. The target typing sample is, 

the quick brownfogjumped over the lazy dog 

The user's true typing sample is, 

h1he quick brrooownn fgow jummppefd lobverethe lwqazy dooggfg 
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The typed sample is reconstructed for preprocessing, 

@the quick br@o@@wn@ @@J@ox@ jum@p@e@d @@o@ver the 
1@@azy do@g@@@ 

Where the symbol '@' represents an error or a NULL, compared to the right sample 

which should be recognized by PTG model. During preprocessing, the time gap 

value which is one of the input parameters is categorized into three levels and 

converted into three bits unary codes. In this case, 

'<= 10 milliseconds' 
'10< && <=1000 milliseconds' 
'>1000 milliseconds' 

over-fast => 001 
user-Speed => 010 
over-slow => 100 

The user's typing has been recorded both by Notepad and KeyCapture software. 

Prediction using Time Gap model is designed with three layers 30-7-28 structure, 

where the input requirement of PTG model is twenty seven length unary coding 

symbol {a'... 'z, space) and three length unary coding time gap, and the output 

requirement is twenty eight length unary coding limited in symbol set (T... IZI, 

space, '@'), where the symbol '@' is added to represent an additional or missed 

symbol. 

The correction rate distribution within one hundred times training is shown in Figure 

4.23, which has a mean value of 0.8480 and a deviation of 0.0501. The x-axis 

represents the correction rate based on the comparison between the target dataset 

and PTG generating dataset; the y-axis represents the absolute frequency of the one 
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hundred times training results, which illustrates the number of times a particular 

outcome occurs. 

Figure 4.24 demonstrates the range that PTG model's correction rate lies on. It 

shows that the results lie predominantly between 65% and 90%. Under this test 

sample there is about twenty-seven times where the correction rate has reached near 

90% and only once the correction rate happens to be less than 65%. 
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This test indicates that the time gap can be considered as an input element used by 

neural network model to correct wrong typed symbols. Due to no gram 

consideration and the size limitation of training dataset, the relationship built 

between input and output is a pure right-wrong relationship. This will lead to a 

further research on the n-gram. language modelling with larger training and testing 

dataset. 

4.10 Probabilistic neural network modelling 

* Assumption: the research carried out in this section is based on one finger 

typing user case. User's each key press and move rely entirely on a single 

finger. Skillful users' typing behaviour in controlling fingers may vary, and 

the distance of fingers move between two consecutive keystrokes could be 

more complex. 

* Key Distance Definition: According to the layout of a computer QWERTY 

keyboard, there exists a physical distance between each two keys. Let d,,, 

be the distance between key i and keyj, and define the measure unit as key- 

distance. Then, d,,,, =I shows that the distance between key 'A' and key 'S' 

is one key-distance; d., f =3 means there are three key-distances between 

key 'A' and key W. Users move their fingers toward the next key as soon as 
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they finish current key press. The distance between two keys affects a user's 

typing perfonnance. 

* Error Margin Distance (EMD) Definition: Based on Key Distance, a 

variable Ad,, f is further defined as a distance between a user's typed key - 

key, and target key - keyf and called Error Margin Distance. The Error 

Margin Distance is mainly caused by the user's 'hitting adjacent key error'. 

Key Distance Class Definition: Let's define a class, (ke I keyj chy, J yy 

by giving key, keylv E {key,,..., key., }, Where!, j: 5 n, n is the number of keys 

0---% 

related to a computer QWERTY keyboard, key, represents a key set around 

key, within j key-distances. For instance, a one key-distance set 

coffesponding to key T is, C,,, = Is, I s) ; ze {'D', 'E', 'W', 'A, 'Z', 'X') 

Noisy data prediction models such as FTDNN not only can be generally used to 

analyze a language text, but also can be explored to analyze some specific problems. 

For example, let's take the Helpline data as a real scenario. As observed, a typist is 

frequently making 'hitting adjacent key errors" mistakes. Therefore, all the typing 

IA Toy Problem - Three letters to determine a word: in a QWERTY layout, a typing word with hitting adjacent key errors can 
be separated into groups based on time gap similarity, where the consecutive letters associated with a certain shorter time gaps 
are assigned to the same group. Assume the number of letters in each group is more than one, then the toy question is: by 
picking up a letter from each group randomly to form a letters composition, how many maximum letters, that is groupsý are 
required to determine one and only one English word? (My estimation is 3) 
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mistakes are extracted from dataset two and used to identify the possible rules. A 

sample of 'hitting adjacent key errors' is shown below. 

'IQ" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGap(*) 
'IS" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGapM 
"BACK" Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(*) 
"D" Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(*) 

This is a typical 'hitting adjacent key errors' typing mistake that occurred within a 

user's typing stream. The user's intention is to type a letter W following letter 'q', 

but the letter T is mistakenly pressed. So the user has to go back and make a 

correction by pressing 'backspace' key shortly after the mistake is made (in virtual 

key code, the 'backspace' is represented by 'BACK'). Both Key Distance and Time 

Gap are calculated and recorded in the log. 

The user investigation shows users' hitting adjacent key behaviour is related to the 

positions of both the last key and the current key if one ignores the stroke 

randomicity that users' symptoms may cause. It also shows that a user's typing 

speed moving from one key to another also plays an important role in making such 

errors. For example, although a faster typing speed than a user's normal speed 

increases the occurrence of 'hitting adjacent key effors', the users' hesitation which 

leads to much slower typing speed does not always help to an increase of right 

typing rate, as observed. 

Here, the idea is to use these essential parameters, namely, Key Distance, Time Gap 

and Error Margin Distance to discover the fundamental rules behind uses' typing 
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mistakes. Let's start with the introduction of the most popular keyboard layout - 

QWERTY keyboard, and consider Figure 4.25 and 4.26, 

FQý E[IEI 
Caps Lock 

EI 11111 
Figure 4.25 A QWERTY keyboard layout sample 

) 

Figure 4.26 Relationship - angle between keys and its surrounding keys D, EA 

In Figure 4.25, key 'S' is surrounded by one key-distance dataset (I W'p E, 'A 'R 'D, 

'Z'j X') and two key-distance dataset ('Q, V, 'caps lock', T', 'I', 'C'). Given 
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certain inputs, if one requires the neural network model to be able to produce the 

right symbol that a user intends to type, the designed model not only need to deduce 

the dataset which the right symbol belongs to, but also the right angle the user 

intends to move towards. This is illustrated in Figure 4.26. All keys surrounding T 

are positioned with different angles. Let's assume the circle starts from right-hand 

side of T and turns in an anticlockwise direction. Then the key 'D' can be 

expressed by a three dimensions vector, keyd = (key=s, distance=], angle=O), 

where key=s' illustrates the dataset surrounding key 's', distance=] & angle =0 

represent the key which is one key-distance away from key 's' with an angle of zero 

degree. The key 'A' can be expressed as key. =( key=s', distance=], angle=; r), 

distance=], angle=r means the key is one key-distance away from key 's' with an 

angle of a degree. 

Tbe key distance and time gap between last two grams could determine the error 

margin between the wrong key and the right key. In order to prove this hypothesis, a 

Neural Network Topology (DAT model) with Distance, Angle and Time Gap 

vectors in the input layer, and the Error Margin Distance vector between the typed 

key and target key in the output layer is designed. These require a precise 

measurement on both input and output parameters. However, given the difficulty of 

QWERTY keyboard and its associated operating system to respond to an accurate 

simulation of users' movement and the difficulty of a neural network to provide a 

precise output, this solution, as it stands, is not practical. For example, the 

difference in angle between key 'S' 4 key 'E' and key 'S' 4 key 'R' is not 
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significant. This high precision requirement raises the design difficulty of a neural 

network model. 

In order to overcome these obstacles, a more robust neural network model with re- 

designed vectors on both input and output layers is developed in this research. The 

input of neural network model uses (x, y) coordinate expression instead of distance 

and angle, where x represents x-axis key-distance (i. e. horizontal distance), and y 

represents y-axis key-distance (i. e. vertical distance). X-axis key-distance refers to a 

user's horizontal move toward the typed key; y-axis key-distance refers to a user's 

vertical move toward the typed key (see Figure 4.27). The time gap parameter is 

kept unchanged, which represents the time difference (ms) between two consecutive 

key strokes. When the error margin is calculated, the coordinate centre lies at the 

current typed key. When the distance of last typed key and current typed key is 

calculated, the coordinate centre lies at the last typed key. The sign of key distance 

will be determined as soon as the coordinate centre is fixed. 

Horizontal key distance 

Figure 4.27 Key distances coordinate for PNN classification 
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In QWERTY keyboard there are maximum of six one key-distance keys around 

each key. The user investigation records suggest that most of 'hitting adjacent key 

errors' occur in an area where the keys are equal or less than one key-distance away 

from the target keys. Therefore, instead of computing a precise error margin Ad,. f , 

the output of neural network model can be designed as a six-classes classifier. If one 

counts the class in a wise-clock direction according to traditional coordinate, then, 

from Figure 4.26, V belongs to class one, 'e' belongs to class two and so on. Thus 

the question can be interpreted as finding an appropriate neural network model to 

solve a classification issue associated with input vectors: Distance, Angle and Time 

Gap. 

It is well known that radial basis networks can require more neurons than standard 

feedforward. BackPropagation networks, but quite often they can be designed in a 

fmction of the time it takes to train standard feedforward networks. One of Radial 

basis networks is Probabilistic Neural Networks (PNN) which can be used for 

classification problems. As PNN is a time-efficient and classification-solving 

solution, in this research a 3-N-1 structure model (DATP model) is designed based 

on PNN to predict where the target key could possibly lie against the wrong key 

press. 

The DATP model consists of three layers, input layer, hidden layer and output layer. 

The hidden layer - radbas layer compute the distance between the input vector and 

the hidden weights vector, and then produces a distance vector which indicates how 
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close the input is against the correct letter. The third layer would classify the results 

of radbas layer and produces the right class. 

In this experiment, thirty three 'hitting adjacent key errors' are identified from the 

file 'Helpline2008O6O5-lO3l26-843. txt' of dataset two, and are converted into the 

fonnat training dataset manually. At the same time another ten samples are extracted 

from the file 'Helpline2008O627-160526-312. txt' as test samples. Here an example 

is given to show the pre-processing procedure, 

"C" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGap(78) 
"J" Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(108) 
"BACK" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGap(78) 
"HII Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(923) 

4 3.5 1 108 4 

The first four lines are extracted from 'Helpline2008O6O5-103126-843. txt'. The line 

following an arrow is the data transformed manually from the lines above, which has 

four parameters, namely, horizontal distance, vertical distance, time gap between 

two consecutive keystroke, and class. 

The first line shows that the horizontal distance from 'C' to V is 3.5 key-distances, 

however, if the move are from V to 'C, the key-distance would be -3.5, the 

rationale has been shown in Figure 4.27; the vertical distance is one key-distance; 

the time gap from 'C' to V is 108ms (shown in red) and the class is '4' as the key 

'H' is at the left hand side of key V. In the case of overlapping keys, a half key- 

distance can be counted. For example, 
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"D" Status=(*) 
"G" Status=(k) 
"H" Status=(*) 

-jal 2.5 

Key(68) Extra(*) KeyDistance(*) TimeGap(93) 
Key(71) Extra(*) KeyDistance(*) TimeGap(218) 
Key(72) Extra(*) KeyDistance(*) TimeGap(3) 

0 218 

This is a typical key press with overlapped key 'G' and key 'IF. The time gap 

between 'G' press and 'I-F press is 3ms, which is much less than the user's usual 

typing speed. This has been proved by the user's correction which happened 

afterwards, as shown in dataset two. The horizontal key-distance between key 'D' 

and key 'G' is two key-distances, however, another 0.5 key-distance is added in pre- 

processing by taking into consideration the overlapping. The vertical distance 

between these two keys is zero, while the time gap is 218ms and the output class is 4. 

The experimental results show a correction rate of 50% which is five out of the ten 

testing samples. However, due to the highness of user's typing disorder and the 

small size of training dataset, a random training and testing dataset selection strategy 

is ftu-ther adopted. The thirty three samples from file 'Helpline20080605-103126- 

843. txt' and ten samples from file 'Helpline2008O627-160526-312. txt' are mixed up 

and the random function Rand is applied to randomly pick up the training dataset 

and testing dataset in a proportion of 213 and 113 respectively. Two groups of trials 

are carried out, and each group of them includes ten training and testing samples. 

The corresponding plots are shown in Figure 4.28. 
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Figure 4.28 Hitting adjacent key prediction rates based on PPN network 
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The x-axis refers to training and testing samples that are picked up randomly; the y- 

axis refers to the prediction rate of the DATP model. The dashed line in red shows 

the prediction rate of each testing dataset according to its training dataset; the line in 

blue is the random prediction rate which has been named as Basic Rate. 

The first plot of Figure 4.28 demonstrates that there are six rounds out of eight 

whose prediction rates are above Basic Rate, while the rest are below Basic Rate. 

The highest score (40%) occurs at the third round, while the lowest score occurs at 

eighth round (0%). The second plot indicates that there are seven rounds whose 

prediction rates are above Basis Rate, while the three remaining rounds are below 

Basic Rate. The highest score (36%) occurs at the tenth round while the lowest score 

(M) occurs at the third round. 

Both plots show that there are 70% of all tests scoring above Basic Rate. They also 

demonstrate a very unstable trend of user's 'hitting adjacent key errors' behaviour. It 

recommends that the training dataset with a small size of data may not be able to 

give a high prediction rate as the dataset has a bad convergence. In that case, several 

rounds of training with a random dataset selection strategy may be required. 

Further work to be carried out should focus on two areas: the DATP model 

development with larger scaled data to obtain a more accurate prediction rate, and a 

touch keyboard combining the sensitivity of touch screen and functionality of 

QWERTY layout to detect the users' finger movement more precisely to calculate 

the accurate Ad,, f . 
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4.11 Summary 

In this chapter an intensive Neural Network language modelling process is applied. 

Following testing datasets collection and data processing tools development, several 

novel neural network models are developed, whose functional ities, performances 

and related testing datasets are concluded in Table 4.3. 

Model Dataset Noisy Performance 

I Elm prediction with feedback Dataset I No First FIR = FT HR = 4iý',, ' 

2 FTDNN n-gram prediction Dataset I No 2 F irst HRý 33 ",,, FT HR= 56 

3 FTDNN n-gram prediction with noise Dataset I Yes Noise Rate/O. 0.3/ --) /37%, 27"Of 

4 FTDNN prediction with typed data Dataset 2 Yes First HR = 38"0, FT HR = 53 ,o4 

5 TGNN time gap modelling Dataset 2 No A= 384.44ins, Q= 342.5()MS5 

6 Prediction using time gap (PTG) Dataset 2 Yes correction rates c= 165(, ('), 90',, l 

7 Probabilistic neural network modelling (PNN) Dataset 3 Yes 701"(') >= Basic Rate 6 

Table 4.3 Neural Networks modelling and the related performances 

First, an innovative FTDNN language model is designed and performed with noise- 

free, noisy and typing stream clatasets (i. e. model 2,3 & 4). It is developed with 

extendible numbers of hidden layer neurons and extendible numbers of time delays. 

Based on user's typing history, a 38% First Hitting Rate and a 53% FT Hitting Rate 

are obtained (see model 4). The results suggest that this can be practically applied to 

'Time & memory consurning 
' The best performance 
3 First Hitting Rate (2-gram with fifty neurons) 
4 The best performance: 38% under 3-gram; 53% under I-grarn 
5 The cost of typing an alphabet order sequence is 384.44ms, while 342.50ms in a QWERTY order 
6 70% of all tests score above Basic Rate 
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symbol prediction and correction. In contrast, the Elm network (i. e. model 1) shows 

an un-extendible grarn prediction character and a time & memory consuming 

performance, thus, is not adopted in the research. 

Second, the influence of time gap on user's typing performance is studied, and a 

unique Time Gap model (i. e. TGNN-model 5) is developed. Experimental results 

show that the current keystroke's predecessor affected the user's typing behaviour, 

and the Time Gap between two consecutive keystrokes is influenced by current 

symbol's predecessor. Inspired by this conclusion, a fundamental PTG model (i. e. 

model 6) is developed. Its experimental results indicate that the correction rates 

predominantly lie in between 65% and 90% with the current testing sample. 

Furthermore, an innovative model based on Probabilistic Neural Network (i. e. PNN- 

model 7) is developed to simulate a specific user typing behaviour - 'hitting 

adjacent key errors' based on key distances. Results demonstrate that about 70% of 

all tests score above Basic Correction Rate. Results also show a very unstable trend 

of user's 'hitting adjacent key errors' behaviour, which suggest that several training 

trials with a random dataset selection strategy could be applied. 

On the whole, the seven models developments build a foundation for ftuther 

demonstrating the designed ALMIL framework and developing its related research 

case, i. e., Intelligent Keyboard. 
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CHAPTER FIVE 

INTELLIGENT KEYBOARD 
FURTHER DEVELOPMENT 



5.1 Introduction 

Chapter 3 introduced a fundamental concept which is an intermediate layer noisy 

language modelling framework called ALMIL, and its demonstration called 

Intelligent Keyboard QK), to tackle the noisy text entry originating from difference 

sources. Chapter 4 carried out a comprehensive neural networks modelling process 

to explore the methodologies and demonstrate the feasibility of the IK framework by 

generally analyzing both plain text and user typing strearn, and specifically studying 

particular user typing behaviour. This chapter carries out a ftu-ther development of 

Intelligent Keyboard framework. Different users may have distinct typing 

behaviours and requirements. Tberefore, specific and multiple correction and 

prediction fimctions can be integrated into the framework based on distinct language 

features and user characters. However each function may rarely generate a single 

answer, let alone multiple functions which may produce a larger list of suggestions. 

This requires developing an evolutionary and adjustable approach to prioritize the 

suggestions in this list. A word list online ranking approach (WLR) based on neural 

network BackPropagation learning algorithm can be an optimum solution to meet 

this requirement. Initial research adopts three distinct algorithms, namely, 

Levenshtein word distance algorithm, Metaphone algorithm, and Two-Gram word 

algorithm, with their word distance and evolving frequency difference parameters as 

input factors for the WLR model. Both time element and words similarity rate 

should be covered in the design. Furthermore, a pilot application - English Input 
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Method under Windows XP environment is developed for the purpose of the 

framework demonstration. It mainly consists of two fundamental fianctions, typing 

prediction and correction. Both are capable of real-time learning from user's 

feedback and evolving along with user's typing toward a more accurate prediction 

and correction rate. 

5.2 Further framework development 

As illustrated in chapters 3&4, Error correction unit of IK framework is designed 

intending to combine different algorithms based on distinct scientific methods to 

predict typing intention and correct typing errors. Several methods based on 

statistics and phonemics are integrated in this application. Metaphone [Philips, 1990] 

is a phonetic algorithm indexing words by their sound, which can be adjusted to 

coffect typing effors. Two examples are given below. 

able -> APL 

hello-> HL 

The right side of the arrow is words' phonetic keys. Let's assume that a user intends 

to type a word 'hello' but mistakenly typed 'hallo' instead, whose phonetic keys 

(HL) are identical. Subsequently, the system is able to index and retrieve possible 

words from the database based on the phonetic key, and present them to user for 

selection. 
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Levenshtein. distance [Levenshtein, 1965] is another function that needs to be 

explored. It is designed based on the calculation of minimum number of operations 

required to transform one string into another, for instance, 

hello <-> hallo // the string distance is one 
hello <-> all //the string distance is three 

After a comparison with each string stored in the memory, the pair with the least 

distance can be considered as having the highest similarity, and then the one or the 

group with the least distance can be presented through the user interface module. 

Mistakes Recording Function (MRF) is an alternative solution. User's typing 

mistakes and correction are recorded in a real-time. It builds relationships between 

the mistake and the correctness. The related occurrences of these relationships are 

also counted. This method is extremely useful to handle habitual typing errors. 

The same design can be applied to Text Prediction unit. N-gram. symbol counting 

and n-gram. word counting algorithm combined with the existing statistical results 

can be integrated together. A ranking function would assign a weight to each 

specific function used in the word prediction or correction. The weights would be 

adaptable by applying a BackPropagation, Neural Network learning algorithm. 
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5.3 Word list neural network ranking 

Multiple solutions can be integrated into Intelligent Keyboard (IK) framework to 

correct user's typing mistakes and foresee user's typing intention as illustrated in 

section 5.2. But these solutions rarely produce a single answer or share common 

results. Therefore, this requires a word-list with word priority (PRI) rather than a 

single word to be generated. For instance, a user intends to type a word 'hello' but 

mistakenly typed 'hallo' instead. Let's assume that two functions, namely, 

Metaphone method and Levenshtein distance, have been integated into the IK 

framework as correction ftmctions. Suppose that the results are produced as follows, 

Metaphone method generates words: 'hello'and 'hall'. 

Levenshtein distance generates words: 'hello'. 'all'. and 'allow'. 

Then a words list with 'hello', 'hall', 'all' and 'allow' is made available to the user. 

It is evident that a ranking algorithm computing each individual's priority is 

demanded before it is presented to the user interface module. 

As IK framework is a real-time model, it requires that the word-list priority 

computation is able to adapt itself timely based on the user behaviour and some 

other factors. In this research, this can be simplified by considering the word-list 

priority computation as a function of three variables, which are Time Change, 

Context Change and User Feedback. Therefore, a ranking algorithm, which is able 

to learn from user's selection and adjust the weights assigned to related objects such 
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as algorithms, words or specific attributes in a real-time, can be developed and 

deployed. 

In this research, the three variables can be further quantified and represented by 

frequency increase, word 2-gram statistic and a supervised learning algorithm 

respectively. Subsequently, a novel Word List Ranking neural network model 

associated with the variables is proposed and developed. First, let's give the 

definition of Word-list, N-formula prediction, Word-List Success Prediction Rate 

and Simulation Rate. 

* Word-list and N-formula prediction definition: Let's assume that one 

has distinct algorithms set A= {a,... a,... a,, } , where 1: 5 i: 5 n and i, n are 

positive integers. To process a sequences, if there exists a one-to-many 

mapping Is -> 0,1 associated with algorithm aj between input and output, 

where 0, = joJ II<j: 5 mj, oJ is a generated sequence from the algorithm, 

n 

m, are positive integers, then one has m, sequence generated, and the 

sequence set is defined as Word-list. The process based on the use of n 

algorithms to generate a word-list is called n-formula prediction. 

* Word-List Success Prediction Rate Definition: Given a word list 

generated by several algorithms to correct a wrong typing, if the intended 

word is in the word list, then it is a Success Prediction. If there is a set of 
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wrong typing, the proportion between the number of Success Prediction and 

wrong typing is called Word-List Success Prediction Rate (SP Rate). 

Let's define the number of Success Prediction as oI and the number of wrong 

t"ing as 02, then one has 0 1:! ý 02 and SP Rate "": 0 1/02- 

* Simulation Rate Definition: Given natural numbers i, m, P4 where i:! ý n and 

m:: ý n, let's simulate a testing dataset p,... P,... p,, with a trained neural 

network, and its target dataset tj ... tj ... t. , if output r, ... r, ... r,, has m elements 

which are r, = t,, then the Simulation Rate (SM Rate) is nVn. Given Word- 

List Success Prediction Rate SP and Simulation Rate SM, then the First 

Hitting Rate = SP * SM. 

As illustrated above, the word prediction function involves multiple algorithms. All 

algorithms would produce their self-interpreted results independently, which is the 

so-called Word-list n-formula prediction. These results could be rarely similar while 

user may require only one of them if Success Prediction is fulfilled. Then, a 

functional ranking model will play a major role to present an efficient word list with 

priority (PRI). If one considers the learning factor required by a word list and 

variability of its related dataset, a neural network model is a good choice with the 

dataset updated constantly. 

To test and implement this approach, Typing Correction function is adopted as a 

practical case in this research (Typing Prediction function can adopt the same 
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approach). Three Typing Correction algorithms, namely, Levenshtein word distance 

algorithm, Metaphone algorithm, and Two-Gram word algorithm (referred to as 

L. M. T) are chosen to predict right words based on the wrong typing. Levenshtein 

word distance algorithm is used to calculate the similarity between two words. 

Metaphone algorithm is used to retrieve the possible words from database against 

the current typed word. Two-Gram word algorithm is used to retrieve the context- 

related words from database against the last typed word. Based on the definition of 

Word-list n-fortnula prediction illustrated above, the correction can be defined as 

Word-list 3-formula prediction. Let's use the example introduced in section 3.4.2, 

where the word 'shall' is wrongly typed as 'sahll'. 

Tomorrow sahll we go to the park? 

and assume the database, which includes a ]-gram & 2-gram. table, has been 

initialized by a sentence, 

Out ofyour shell! Tomorrow all of us shall start a new training. 

Then, the correction result of word 'sahll' based on Two-Gram word algorithm is 

'all'; the two correction results based on Metaphone algorithm is 'shall' and 'shell'; 

and the two correction results based on Levenshtein word distance algorithm is 'all' 

and 'shall' respectively. 
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Let's suppose that corresponding to every wrong typing each algorithm generates a 

maximiun of two words in a descending order of frequency. Each word is 

represented by its two features: frequency and word similarity values. In a real-time 

database, the word frequency will be updated along with the user typing. Both, 

frequency and word similarity datasets are normalized before the neural network 

training and testing start. 

Based on the above analysis, a neural network model with 12-3-6 three layer 

structure is developed and shown in Figure 5.1, where the number of neurons in 

input layer is determined by the expression: Number of Algorithms (=3) * Number 

of Words predicted (=2) * Number of Features of each word (=2). The model 

having a competitive output layer is named as word list neural network ranking 

(WLR) model. BackPropagation algorithm is adopted as its leaming algorithm. Its 

inputs are wrongly typed words. Each algorithm generates two predictions based on 

the input. Each prediction is presented by two features, namely, Jaro-Winkler 

distance and word frequency. In Figure 5.1, the circles in blue are neurons of WLR 

model; the circles in grey are predicted words; the three rectangles represent the 

three algorithms; the shapes in yellow show the input and output of WLR model. 

Generally speaking, the WLR model is designed to predict a highest ranked word 

amongst every six recommendations. Then a ranking matter is converted to a neural 

network classification question solving issue. At the output layer of WLR model, 

there is only one neuron fired once at a time. To normalize the difference between 

the typed word and the predicted word, Jaro-Winkler metric method [Jaro, 1995; 

Winkler, 1999] is applied. It normalizes the words difference, also called words 
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similarity value, into a range of [0,1]. The dataset of another parameter called word 

frequency is normalized by Normal Probability Density function based on their 

mean value and standard deviation. 

I 
N 
p 
u 
T 

Input layer -12 

Figure 5.1 Presentation of word list neural network ranking model (WLR) 

A pilot application introduced in section 5.3 - 'edpa. ime' and its related Access 

database - 'WordsDiamA'are used as a software tool to generate an experimental 

dataset for WLR model. The related database has been initialized by the words' I& 

2-grarn frequency statistics of dataset one [Tar from the Madding Crowd (1874)] 
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before the experimental dataset is generated. The database initialization has 

followed these rules, 

*A word is defined as a sequence of alphabets between two 

separators. 

* Any symbols are considered as a separator except alphabets. 

* ALL uppercase would be converted into lowercase, e. g. 'If -; ý 

'if, then 'If is counted as 'if 

Other special cases are not considered For example, 'read' and 
'reading'are considered as two independent words. 

Based on the listed rules, the word dictionary table and 2-gram dictionary table 

including their words frequencies are initialized in the database (WordsDIct. mdb). 

Moreover, for the purpose of database efficiency, all the records of 2-gram whose 

occurrences are less than two are eliminated. About 79.10% of all 2-grarn records 

[ (74084 -15485) / 74084 szý 79.10% ] are eliminated, which only has a very limited 

influence on the performance of WLR model with thousands of repetitive trials. The 

occurrences of the words' I& 2-gram are kept updated along with user's typing 

progress (The new 2-gram words and their occurrences - 'initially, =1' are inserted 

into the database if they happen to be typed). Therefore, these updated frequencies 

can well represent a user's temporal typing state captured and stored in a database. 

As a good simulation to dyslexic's typing, an extra testing sample [Davis, 2003] is 

used as an experimental dataset for the designed WLR model. It is shown below. 
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If yoll hvae raed AS far you 
414 /501 079 38 042 75 / 502 
1-85-1 1-61--l 1---O-l 1-1 --- I 1----O--l 1-0--i 

Oil be albe to ffisith the w1ohe 
-7( 234 811 j05 9 43 

1-24-11-25-11 --- 9---j 1-29--l 1-2-1 1-2-1 1-33-1 

lihs sehel wohlitit any dcuitIffiv 
043 5 /-? / 226 

1--]--l 1--46--l 1--O--l 1-0-1 1-41--j 1-0-1 

irsehoweir. Oerlilsiwe J-011 tilil h vae 
0 1503 235 680 

1---O--l 1---O---l 1-0-1 1-25-1 1-8-1 

gevin UP now. 
I 33 325 73 451 

1-7-1 1-2-1 1-5-1 1-1-1 

Some words within sentences are wrongly typed, such as 'hvae' (should be 'have') 

and 'raed' (should be 'read). The numbers which are right under each word (in red) 

indicate the frequency of the word after the database initialization. For example, the 

frequency of the word 'If is 414 and the frequency of the word 'you' is 1501 in the 

database. The numbers in black indicate the two-gram frequency between two 

consecutive words. For example, the frequency between the first two words 'If and 

'you' is eighty-five, shown as 'I --- 85 1'. 

Let's assume the frequencies of the words shown above gradually increases in the 

database while other words are rarely typed. Consequently, the change of other 

words' frequencies will not have a big effect on the algorithms. Therefore, a 

simulation can be performed by using the testing dataset which has ignored the 

influence brought by other words' frequency changes. In this research, 5505 trials of 
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test samples are inserted into the database gradually without considering other 

words' frequency changes. 

Let's define a sampling point as a starting point of sampling in these 5505 trials, and 

define a sampling step as a gap between two consecutive sampling actions. Twenty 

five sampling points are set up to collect the three algorithms' prediction results in 

this research. Only those wrongly typed and completed words are considered at 

every sampling point. For example, the prediction results for words such as 'hvae' 

and 'raed' are collected; while the prediction results for right words such as 'if, 

4you' and uncompleted words such as 'hva' of 'hvae' are ignored. At each sampling 

point, the whole dataset are gathered and called a sample. Then, twenty five samples 

are gathered. The determination of sampling points and sampling step is based on a 

heuristics method, which shows that the influence of initial frequency updating is 

essential ývhile further updating influence is waning. 

Figure 5.2 illustrates the sampling procedure. The x-axis refers to the frequency of 

the whole sample; the y-axis refers to the numbers of sampling. The sampling points 

are classified in four categories [045,10450,554505,150545505]. As 

illustrated above, the influence of frequency updating is waning from one category 

to another although the sampling steps are actually increasing. In Figure 5.2, the red 

line shows these four categories. For example, five samples have been collected with 

the frequency being changed from zero to five (i. e. the sampling step is one), and ten 

samples are collected when the frequency changed from 55 to 505 (i. e. the sampling 

step is 50). 
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Figure 5.2 Sampling Points representation of WLR modeling 

The first two subsets of sample one generated by program - edpa. ime are shown in 

Figure 5.3. 

Figure 5.3 A sample of WLR model experimental dataset 

Figure 5.3 lists the predicted results of two mistakenly typed words, 'hvae' and 

'raed'. The first line marks the three algorithms name and 'output'. Each of the three 

algorithms has generated two words shown in columns as two predictions of the 
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target word. For instance, Levenshtein word distance algorithm gives two 

suggestions to the word - 'hvae', which are 'have' and 'hae'. 

Next to each word, the word's frequency and the similarity values to the target word 

are displayed. For example, the frequency of the word 'have' is 679 and its 

similarity to 'hvae' is 0.925. 

The last six columns of Figure 5.3 clearly show the required output for the WLR 

neural network model. Each of those columns corresponds to one of the words that 

the three algorithms could generate. If the prediction is true, the corresponding 

column is set to one, otherwise it is set to zero. 

For example, the first line of Figure 5.3 is a prediction for mistakenly typed word 

'hvae'. Among the six predictions generated by the three algorithms, only the first 

result of Levenshtein word distance algorithm is predicted correctly. Therefore, the 

first column of the output is set to one while others are set to zeros. By default, the 

processing would stop at the first 'I', and subsequently, the others will be set to 

zeros. So the output would have a maximum of one 'I'. Hence, a competitive layer 

can be appropriately applied to WLR model. 

The data shown in Figure 5.3 still can not be used by WLR model directly, as 

ftirther data processing is required. Thus, the following procedures are applied, 

* Delete the redundancy such as the words ofeach line. 

* Normalize all ftequencies by applying Normal probability 
densityfunction 
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Apply missing data processing rules where it is needed - Ifsome 

algorithms' prediction results are less than two items, then the 
ftequency and similarity values ofthe missing items will be set to 

zeros instead; if none of the algorithms are able to generate 

results, then this line will be deleted 

The sampling points are set up according to a heuristic method which analyzes the 

frequency distribution of the database. For example, the first five frequency 

updating procedures are considered to be more influential than the case when the 

frequency changes significantly (e. g. >1000). So, the sampling step of the first five 

is set to one while the rest are sparser. 

In this experiment, a vector [5,5,10,5] of samples are collected from the four 

categories and their sampling steps are set to [1,10,50,1000]. For example, the first 

five samples are collected in a step distance of one, the third ten samples are 

collected in a step distance of fifty. 

Tlle dataset is further separated into training dataset [4,4,7,3], and testing dataset 

[1,1,3,2]. The post-processing of WLR model follows a 'winner takes all' rule - 

the neuron which has the biggest value among the six outputs are set to one while 

others are set to zeros. 

After the training process, the Hitting Rates of the testing dataset associated witli 

each category are shown in Figure 5.4 (A full ALI TLAB program can be found in 

Appendix A). 
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Neural Network Ranking First Hitting Rate and L. M. T Hitting Rates 

IM 
90% 
80% 
70% 

Co 60% 

40% 
30% 
20% 
lo% 
0% 

Levenshtein algorithm 
MMetaphone method 
NTwo-Gram method 
0 Neural network ranking 

Figure 5.4 The comparison of Neural network ranking First Hitting Rate and 
L. M. T Rates 

From Figure 5.4, the x-axis refers to the increase of words frequency difference, and 

it is also evident that the samples are separated into four categories based on the step 

distance, [1,10,50,1000]; the y-axis refers to the hitting rate of the algorithms. The 

bars in dark blue from left to right represent the evolution of neural network ranking 

first hitting rate. For example, the first histogram shows a 57.50% Ranking First 

Hitting Rate with the samples of category one; the fourth histogram shows a best 

achievement of 74.69% Ranking First Hitting Rate with more samples collected 

between frequency 1505 and 5505 in five separated sampling points. The other bars 

colored in pale blue, sky blue and light blue represent Levenshtein, Metaphone and 

Two-Gram prediction methods respectively. 

Figure 5.4 shows an increase of ranking hitting rates as words frequency difference 

and the amount of testing samples increase, and that the WLR model achieves the 

best results in all stages, which is partly influenced by the three algorithms (i. e 
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L. M. T) that have learning factors. All the algorithms are adjusting gradually toward 

a better prediction rate as trials increase. From the figure, Levenshtein and Two- 

Gram methods improve dramatically as the words frequency increase while 

Metaphone method improves less. 

The experimental results shows neural network as a learning tool can provide a good 

solution to learn from different algorithms and adjust to reach a high ranking Hitting 

Rate. In practice, the online neural network learning can be implemented to 

propagate rewards to each algorithm and word. 

Currently WLR model adjusts its ranking based on the change of frequency and 

word similarity. More parameters can be explored such as time element (e. g. 'the 

most recently used'), and more algorithms can be integrated such as Abnormal 

Table function, which records the relationship between the wrong and the right word. 

Then, an improved WLR model with larger scale dataset collection can be 

developed. 

5.3 A pilot application 

For the purpose of further Intelligent Keyboard framework demonstration, a pilot 

application has been developed in this section. The pilot application is named Essex 

Disabled People Association (EDPA) English Input Method (EIM), which provides 

a user with two main functions, namely, Text Prediction and Typing Correction. It is 

designed specially for people with special needs. Ilie user's typing intention (i. e. 

166 



shown on computer screen as a list of words) is predicted based on user's input 

history. The user's typing errors in data streams are gradually checked and corrected 

when the typing stream goes through each module. 

The EIM is developed based on the design of IK framework. Input Method Editor 

(IME) API and VC are used as developing tools within Windows XP environment. 

It provides EIM with a way to communicate with most of the Windows applications. 

The database is designed based on Windows sharing memory and MS Access 

software and separated into long-term and short-term memory. The relationship 

between Windows, applications and EIM is illustrated in Figure 5.5. 

Keyboard Event Applications 

10 0 

USER32. EXE - Windows 

Input Method Manager 

10 

.I 

Figure 5.5 Relationship of Windows, applications and EIM 
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The keyboard events are re-represented by user32. exe and then sent to Input Method 

Manager (IMM). English Input Method is the intermediate language layer which is 

responsible for receiving and analyzing Windows messages and its related context. 

Its result is a word-list with ranked prediction or correction words. Via Windows, 

applications can send commands to English Input Method on their own initiative as 

indicated in process No. 7. 

The interface examples of EDPA EIM are shown in Figure 5.6, which has used 

Notepad editor as an application. The two figures demonstrate two major functions 

of the IK application: Text Prediction and Typing Correction. The first figure shows 

a word list which is a response to the user typing, 'he'. The second figure shows a 

word list which is a prediction to the wrongly typed word, 'sutdy'. 

OEM= 
Fie Edt Format Vlow H* Fie EcIt Format View 

h% 
j1 

hello 
2 he 
3 hell 
4 he 
5 head 
6 headache 
7 heading 

h dline e: 
u he dq arters 

0 heal th 
EOPAldfilbl 

- fý, I 

-IMIXI 

EDPAjd6jlbj 

Figure 5.6 EIM interface demonstration 

A correction measurement has been used to evaluate the correction rate of EIM. 

Let's assume the maximum number of prediction words of a word list is fixed. Then 
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given n words mistakenly typed, if m words are correctly predicted (no matter which 

position these words lie in the list), then the correction rate c is expressed as, 

c=mln (5.1) 

An experiment is carried out with the designed EIM application to correct user's 

typing mistakes with L. M. T algorithms adopted in this application. The same data 

and the same number of trials as in section 5.2 are used. Figure 5.7 shows the 

evolution of EIM correction rate. 

100% 

75% 

c 

50% 

25% 

Trials of words typing 

Figure 5.7 Swnpling - Evolution of Correction Rates 
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It shows that the correction rate has improved as the typing trials increase. The first 

several trials have generated a sharp influence on the improvement. Under current 

testing dataset, 69% correction rate is achieved in the first trial. The 100% correction 

rate can be reached under ideal condition, that is, without having new mistakes 

generated. From Figure 5.7, the 100% correction rate is met after 105 trials. 

The reason behind typing mistakes is complex. It depends on numerous factors such 

as, user mobility, computer environment and typing context, which require specific 

strategies to deal with. Further development of this application can focus on 

individual typing behaviour study and more featured algorithms integration. As the 

correction rate c is not a constant in the IK framework, its learning ability I need to 

be studied further. 

5.4 Summary 

This chapter is a further development of Intelligent Keyboard framework both based 

on the ALMIL framework and the neural network models development. Multiple 

correction and prediction functions including Levenshtein word distance algorithm, 

Metaphone algorithm, and Two-Gram word algorithm are tailored and integrated 

into the fi-amewoprk based on distinct language features and user characters. 

A word list online ranking method - WLR to prioritize words in the word list based 

on neural network BackPropagation algorithm is developed. A preprocessing 

method using Jaro-Winkler metric and Normal Probability Density function is 
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applied to the model's input vectors. All three elements, namely, Time Change, 

Context Change and User Feedback are principal vectors in WLR model 

development. In this research, they are quantified and represented by frequency 

increase, word 2-gram statistic and a supervised learning algorithm respectively. 

Experimental results show that 5750% Ranking First Hitting Rate with the samples 

of category one and a best Ranking First Hitting Rate of 74.69% within category 

four are achieved. It shows that as a learning tool, neural network can provide a 

good solution to learn from different algorithms and adjust to reach a high ranking 

Hitting Rate. In practice, the implementation capable of real-time learning based on 

propagating rewards to each algorithm and word is a potential research. 

For IK framework demonstration purpose, a pilot application - English Input 

Method is also developed under Windows XP environment. The experiment shows 

that the correction rate is improved as typing trials increase. The first several trials 

generate a sharp influence on the improvement. The correction rate of 69% is 

achieved in the first trial with the current testing dataset. 
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CHAPTER SIX 

DISCUSSION, CONCLUSION AND 
RECOMMENDATION FOR FUTURE 

WORK 



6.1 Discussions and conclusions 

The goal of Statistical Language Modelling (SLM) is to build a statistical language 

model that can estimate the distribution of natural language as accurately as possible, 

which has been widely used to predict the next item in a sequence. The associated 

algorithms include n-gram prediction and prediction by partial matching [Cleary & 

Witten, 1984] etc. However, language text entry such as typing stream are full of 

noises, and this issue hasn't been addressed well both in its related research and 

application area. In this study, an ALMIL framework, a related practical research 

case called Intelligent Keyboard and a comprehensive neural network noisy 

language modelling process to analyze noisy text entry including typing stream are 

developed. Other useful software tools are also implemented. 

6.1.1 Adaptive language modelling intermediate layer framework 

It is known that the text entry interaction between human and computer could be 

noisy. However present research such as Dasher [Ward & MacKay et al., 1997-2008] 

and Windows Control Panel mainly focused on either general or specific user 

requirements, and failed to meet both cases. Moreover, these research and related 

applications are rarely compatible with each other. In contrast, this research 

develops a novel intermediate layer language modelling framework called ALMIL, 

which is a communication language layer between user and computer applications to 

analyze the noisy language stream. The advantage of this development is its 
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immense functionalities and transparency. Through ALMIL the noises of a language 

stream are filtered significantly and the text entry interaction between user and 

computer becomes smoother without considering input devices in detail. This 

fi-amework simplifies and speeds up the process of Human-Computer text entry 

Interaction, which may lead to a simplistic HCI language development. 

6.1.2 Intelligent Keyboard and its pilot application 

Predictive text input technologies are some of the techniques that are often found 

useful by text entry users. Compared to pure prediction products, some efforts such 

as Prototype [Sensory Software International Ltd, 2007] have been made to reduce 

typing mistakes, although far few tools can intelligently identify new genre of 

mistakes. Furthermore, they are short of self-adaptive ability and fail to fully 

recognize the right patterns from user distinct performance. In contrast this research 

develops an Intelligent Keyboard framework derived from ALMIL to offer a user- 

oriented hybrid system with self-adaptive function to help people, disabled people in 

particular, using QWERTY keyboard more effectively. 

Currently, researchers mostly intend to find a unique solution to correct typing 

mistakes. Although some distinct functions such as n-gram and Metaphone [Philips, 

1990] have been developed, an optimum solution is hardly identified and a 

combination of those multiple solutions is never on the agenda. Moreover, these 

solutions such as T9 [Tegic 1993] rarely produce a single answer or share common 

results; the answers may change within different context; and the solutions are also 

required to evolve based on user's feedbacks. All these require a development of 
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hybrid solution which put all merits of those distinct functions together, and then to 

produce an optimal prediction with learning and evolutionary factors. Therefore in 

comparison with traditional single solution, in this research a hybrid solution is 

designed and integrated into Intelligent Keyboard framework to correct user's typing 

mistakes as well as foresee user typing intention. Simultaneously a novel word list 

online ranking method based on neural network BackPropagation algorithm is 

developed. This novel approach takes advantage of three distinct factors, namely, 

Time Change, Context Change and User Feedback to learn from different algorithms 

in order to find an optimum ranking solution. The advantage of this method is that it 

fully considers the factors that influence the ranking mechanism in a nonlinear 

leaming modal instead of the traditional linear method. The experimental results 

show that 57.50% Ranking First Hitting Rate using category one samples and a best 

Ranking First Hitting Rate (74.69%) within category four are achieved. 

The research also results in the production of a dictionary database and a piece of 

software - EnStatistics that is capable of providing a platform to pre-process dataset 

to meet intelligent models requirements. The software can be independently used as 

a statistics tools to calculate the target's ASCII and words' 1,2 &3 grams. It can be 

expanded further into n-gram. letters, n-gram. words and natural entropy computation 

assisted with internet crawling. 

6.1.3 FTDNN language modelling 

Current language modelling research to estimate the probabilities of a set of symbols 

or words are mainly based on the clean text with statistics techniques such as PPM 
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[Cleary & Witten, 1984] and PPM* [Cleary, 1995], while noisy language modelling 

such as user typing stream modelling using neural network are hardly traced. In this 

research, a novel Focused Time-Delay Neural Network model with extendable 

hidden neurons and input vectors is developed to analyze a plain text extracted from 

a novel. Subsequently, noises are added to the plain text with uprising NoiseRates of 

0.001,0.01 and 0.1 before a user typing stream is applied to FTDNN model. 

Approximately 50% FT Hitting Rate has been obtained from the typing stream 

testing. The key production is that the research pioneers a comprehensive neural 

network language modelling process based on the cross-experiments between the 

extendible inputs, hidden neurons and noise rates, while statistics based traditional 

methods have failed to consider the possible noises of a language stream. This 

approach also produces a significant contribution in the area of neural networks 

application. 

6.1.4 Specific typing behaviours analysis using neural networks 

Current research [Karen, 1992] on user typing mistakes correction mostly originates 

from spell checking techniques. No typing stream research coupled with neural 

network technology has been seen. Most applications simply consider a typing 

string as an input without recognizing the influence from other factors such as 

keyboard layout, Time Gap between two consecutive keys and a user finger moving 

route. Instead of developing a global application alone, in this research, user's 

particular behaviours are extracted from dataset and studied through developing 

several distinct neural network models. An innovative Time Gap model is designed 
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to study the influence of time gap on user's typing performance. Its experimental 

results demonstrate that the time gap between two consecutive keystrokes is 

influenced by the current symbol's predecessor. This has led to a development of an 

advanced Prediction using Time Gap neural network model. The related 

experimental results show that the model's correction rates lie predominantly 

between 65% and 90% using current test sample. 

'Hitting adjacent key errors' occurs frequently in motor disabled people's typing 

stream. Traditionally [Abbott, 2004], they are tackled based on the keyboard layout 

coupled with an English dictionary. All possible compound character sequences 

have to be checked by conforming to the dictionary even it is considerably 

computation and memory consuming. In comparison with such an exhaustion 

method, this research develops a time-efficient and classification-solving solution 

based on Probabilistic Neural Network model using Key Distance, Angle and Time 

Gap factors. A distinct approach which suggests adding more training trials using a 

random dataset selection strategy is adopted during the neural network testing. The 

experimental results show that about 70% of all tests have scored above Basic 

Correction Rate. 

6.1.5 Conclusions 

Overall this research has fulfilled the listed hypotheses made prior to the main 

investigation. It originally brings forth a novel concept, intermediate layer language 

modelling framework called ALMIL for noisy language processing, which fills the 

gap between input device (i. e. keyboard) and user applications as a noisy language 
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filter, and develops numerous innovative neural network models which include 

Focused Time-Delay Neural Network models, Time Gap model, Prediction with 

Time Gap model, Probabilistic Neural Network Model and Word-List Neural 

Network Ranking model. The experimental results produced by neural network 

models have shown some very high language stream prediction and correction 

performances. Through neural networks modelling, several vital factors which may 

have an influence on user input behaviours and subsequently affect ALMIL and 

Intelligent Keyboard framework's functionality, accuracy and efficiency are 

identiftcd. 

This research pioneers a comprehensive FTDNN language modelling process using 

noise free, noisy data with distinct NoiseRates, and user typing stream both on a 

general and specific analysis basis. It develops a hybrid solution to combine 

multiple correction functions based on an evolutionary ranking approach. All these 

produce a significant contribution in the area of neural networks application, and 

show a direction for Human-Computer noisy language interaction research. Also 

this work generates a full report on the disabled people typing behaviour using 

computer QWERTY keyboard, develops an Intelligent Keyboard framework and its 

related pilot application named as EDPA EIM for typist, and a universal pre- 

processing tool with statistical function for all neural networks modelling and n- 

gram estimation. The research and its generated software package build a foundation 

for ftu-ther computer noisy text entry research. 
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6.2 Contributions 

*A novel intermediate layer language modelling framework called 

ALMIL is developed. As a communication language layer between user and 

computer applications, ALMIL is designed to analyze noisy language stream 

data. It learns from historical data and makes recommendation both for 

wrong typed and incomplete input. It combines several technologies which 

include n-grarn statistics, neural networks and human computer interaction 

technologies. ALMIL provides a language modelling platform lying between 

computer users or input devices layer and software applications layer, which 

lead to a clean text entry. It also provides a platform for the cooperative text 

entry justification among input devices. 

* An innovative noisy language model using Time-Delay Neural Networks 

(FTDNN) is developed. A comprehensive language modelling process 

using FTDNN model is carried out. Plain text dataset, automatically 

generated noisy dataset and user typing stream are tested in sequence based 

on extendable input, hidden neurons and uprising NoiseRates. Ile results 

indicate that Time-Delay Neural Network is a capable tool to model 

language plain text and noisy data. It suggests that a combination of 1,2 & 

3-gram is an optimum solution to keep a considerably high and stable 

Hitting Rate. In practice, the results can be applied to symbol prediction and 

correction. 
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+ An Intelligent Keyboard framework is developed. Intelligent Keyboard is 

derived from ALMIL. It is developed toward a user oriented hybrid 

framework with self-adaptive function to help disabled people to use 

QWERTY keyboard more effectively. Through Intelligent Keyboard, user's 

typing data stream can be checked, rectified, and predicted in sequence by 

going through each of its units and modules along with user's typing process. 

Multiple algorithms are integrated into the framework both based on users' 

specific characters and related language features. 

* Several neural network models to analyze user typing streams are 

developcd. Inspired by Fitt's law, a Time Gap Neural Network model 

(TGNN) is developed to simulate and predict a user's two consecutive 

typing letters' time gap. The experimental results suggest that the time gap 

between two consecutive keystrokes is influenced by current symbol's 

predecessor. This has led to a development of Prediction using Time Gap 

model (PTG). Time Gap between two consecutive keystrokes has influenced 

user typing behaviour. TPTG model is developed to predict right symbols 

based on an extra Time Gap variable at the input layer. Its experiments have 

proved that the Time Gap can be considered as an input element by neural 

network model to correct typing mistakes. This would also lead to a better 

understanding on the mobility control ability and energy cost of those 

people who have difficulties in using computer keyboards. 
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User investigation shows that user 'hitting adjacent key errors' behaviour is 

heavily related to the positions of both the last stroked key and the current 

key. So a Probabilistic Neural Network (PNN) based model is developed, 

which adopts Key Distance, Time Gap and Error Margin distance 

parameters to identify the possible rules behind uses' typing mistakes. 

About 70% of all test datasets have scored above the Basic Rate. It also 

demonstrates a relatively high randomicity of the user's 'hitting adjacent 

key errors' behaviour. 

+ An innovative approach on Word List real-time Ranking (WLR) using 

Neural Network BackPropagation algorithm is developed. As a 

combination typing correction function may generate multiple predictions, 

WLR model is developed to prioritize these predictions. Three distinct 

algorithms with word distance and evolving frequency difference 

parameters are used as WLR model's input vectors. The results indicate that 

neural network is a suitable learning tool to provide a good combination 

solution and reach a high ranking Hitting Rate. 

* Several useful 'by-products' are developed along with the project. An 

investigation report on disabled user using computer QWERTY keyboard is 

generated. About twenty-seven people who are elderly or disabled have 

been interviewed. Their performances are classified into five major 

categories. As least as three distinct typing behaviours has been concluded 

in each category. Reflected questions and required solution from users are 
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also recorded. This report builds a foundation for research on people with 

distinct typing behaviours so as to seek an alternative solution for improving 

computer's usability and accessibility. 

A pilot application called English Input Method is developed for disabled 

people community. This software is a demonstration of Intelligent 

Keyboard framework, and specially designed to meet disabled people's 

needs. It provides users a way to communicate with most of Windows 

applications by filtering typing errors. It presents two distinct functions for 

users, namely, typing prediction and typing correction. The experiment 

shows the correction rate is improved as the number of typing trials 

increases. The 100% correction rate can be reached without new type of 

mistakes generated. 

A universal statistics and preprocessing tool called Enstatistics is developed, 

which aims to provide a platform to pre-process dataset by reading raw data 

from different sources and transforming the raw data into text files to meet 

the requirements of all intelligent models. This software can be 

independently used as a statistics tool to calculate ASCII and word one, two 

and three grains. It can also be used for any neural network models for data 

conversion with a minimal modification on the existing code. 
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6.3 Recommendations for future work 

In this final section, an outline of research opportunities for future work is presented 

below. 

* Increase the scale of disabled user investigation, data collection and 

computer capacity to enhance Intelligent Keyboard processing. 

One limitation of this research is down to the external environments. The 

research has predominantly focused on motor disability, but typing 

behaviours are various, even motor disability typing behaviours may include 

wider range of features than the current cases addressed in this research. 

Hence, a more comprehensive disabled user investigation with typing stream 

log is required. Furthermore, an intensive research on users' hands motor 

control can be conducted. 

A statistics of QWERTY keyboard user key strokes and related analysis also 

need to be explored further. Nestor Prediction Measurement (NPM) [Nestor 

1997], which used keystrokes to calculate the typing occurrence saving, can 

be used to combine with Fitts law or other energy computing methods to 

calculate and evaluate user's typing effort saving rate. 

As presented in chapter 4, neural network language modelling demands not 

only large training dataset but also large capacity of memory and computing. 

An improved FTDNN model along with an implementation of parallel 
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processing on large-scale computing machine can be investigated and 

conducted. 

With the larger computer capacity, one may integrate more complex 

algorithms based on NLP such as grammar checking into Intelligent 

Keyboard framework. This will be able to deal with the errors which are not 

well solved by the Coffection unit using the incompetent word n-grarn 

function illustrated in chapter 3. Then the performance of Intelligent 

Keyboard can be further improved. 

* Focused Time-Delay Neural Network modelling expansion 

A distributed representation method to preprocess the typing symbols, where 

each symbol is represented by several features such as key distance, time 

stamp and symbols can be applied to the FTDNN models. In such a case, the 

prediction will not be solely based on the symbols themselves but also on the 

related n-gram features. Another potential research is to apply FTDNN 

model to predict I-length string based on n-gram's I-prediction. Therefore 

with the same n-gram input as presented in chapter 4, more symbols can be 

predicted. 

* Prediction based on an online Markov chain method - an 

alternative to neural network models. 

In a Hidden Markov model, the state is not directly visible, but variables 

influenced by the state are visible. Each state has a probability distribution 
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over the possible output tokens. Therefore the sequence of tokens generated 

by an HMM gives some information about the sequence of states. 

Let's consider a user typing sequence as output tokens or a so-called 

emission and the intended typing sequence as series of states, then HMM can 

be used to calculate the maximum likelihood estimate of the transition and 

emission. Based on the computed probability of transition and emission 

matrix, the Viterbi algorithm can be applied to compute the most likely 

sequence of states given a sequence of emission, and then the most likely 

next symbol is predicted. 

Given a symbol set fl = {x,,..., x,, I and a temporal sequence s, ... Si S. , 

where 1: 5 i: ý m, s, E Q, to build a symbol prediction model based on HMM, 

the following work can be carried out, 

Collect and categorize massive t yping stream, according, 
_to, 

each 
individual user. 

Pre-process typing stream (for example, a particular symbol can be' 
added to represent some conditions happened during ing, e. g. an, typ * 
extra symbol which exists in emission sequence but stats sequence). 

Collect and calculate several general probabilities of stats between 
Symbols xi and xj based on particular daiaset, user's typing history 

andprevious research [Jones &, Mewhort, 20041., 
Design step ; 'junction, ' to 

, generate weight, parameters 
Wj'= (wil ... wjM) based 'on users' typing temporal and, -pervious - 
weight'set Wj', '. Then fuzzy lo& Method can be, used to blur, the' 
boundary between each two steps. 

Use Viterbi algorithm [Andrew Viterbl, 196ý], to deal with the new 
generated iyýingsequence. 

Estimate resultsand go back to 3. 
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(Forfuture work, a relevant pseudo code written in Matlab code is given in 

Appendix A). 

* Word-List Ranking neural network model (WLR) improvement 

Current WLR model adjusts its ranking based on the change of word 

frequency and similarity. Further research can focus on more parameters 

such as time element and more algorithms integration such as Abnormal 

Table function, which records the relationship between the wrong and the 

right words. An extendable hidden units experiment could be applied, and 

the First and FT hitting rates can be calculated along with the frequency- 

difference evolution. Furthermore, WLR model related application can be 

developed to propagate the rewards based on user feedbacks to all algorithms 

and words stored in the database. 

* An innovative design of touch keyboard towards a more precise user 

hand movement detection. 

Based on Fitts' law, a study [Card et al., 1978] that compared use of a touch 

screen (i. e. finger pointing), mouse, joystick and keystrokes, and used 

position time as a performance measure, shows that finger pointing with a 

touch screen is optimal, with text keys being the second slowest, while 

function keys is the slowest of all. Further research on a development of an 

efficient touch keyboard combined with the EIM application to precisely 

detect user hand movement is strongly recommended. This will lead to an 
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achievement of a more accurate prediction and correction rates. A radial 

basis network model with a linear layer at the output can be designed to 

compute the accurate Ad,, f . 

* English Context Dictionary via Internet 

The EIM application needs a proper dictionary with a statistics of ASCII and 

word n-gram. Based on the statistics, entropy can be calculated and 

evaluated through a comparison with other statistics methods. Specifically, a 

further research aiming to build a word dictionary with words occurrences 

and semantic-related n-grarn through searching vast amount of web pages is 

recommended. The relationship such as semantic similarity and grammatical 

relationship among the words should be highlighted. The dictionary will be 

integrated into EIM application. This function is an extension of the 

Enstatistics software package. 
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Appendix A 

MATLAB SOURCE CODE 



MATLAB - Backpropagation2. m 

% -------------------------------------------------------------- % 
% Function: NN with n-gram delay for key press prediction % 
% Author: Jun Li % 
% Create: 02/08/2008 % 
% Comment: Programming is referred to LongKeyPress. m % 
% -------------------------------------------------------------- % 

function Backpropagation2(GRAM, HiddenNeurons) 
% Turn on echoing of commands inside the script-file. 
%echo off 
% Clear command window. 
%clc 

%clear all 
%close all 

% Define GRAM 
%GRAM = 2-1; 
InputNeurons 27; 
OutputNeurons 27; 
%HiddenNeurons = 5; 

%Initialization 
load . /data/BPdataP. txt; 
Z BPdataP'; 
si size(Z, 2); 

clear BPdataP; 

load . /data/BPdataPValidation. txt; 
V= BPdataPValidation'; 
Vsi size(V, 2); 
VV. P con2seq(V(:, GRAM: (Vsi-1))); 
VV. T con2seq(V(:, (GRAM+1): Vsi)); 
clear BPdataPValidation; 
load . /data/BPdataPTest. txt; 
Test - BPdataPTest'; 
Tsi = size(Test, 2); 
TV. P = con2seq(Test(:, GRAM: (Tsi-l))); 
TV. T = con2seq(Test(:, (GRAM+1): Tsi)); 
clear BPdataPTest; 

PR = zeros(InputNeurons, 2); 
for i=1: InputNeurons 

PRU, :)= [0,11 ; 
end 

ID = zeros(l, GRAM); 
for i=1: GRAM 

IDW 
end 

%Pi the initial inputs for which the network will not have a target 
%P the inputs for which the network will have a target 
%T the targets 



%Pi con2seq(Z(:, l: (GRAM-1))); 
%P con2seq(Z(:, GRAM: (si-1))); 
%T con2seq(Z(:, (GRAM+1): si)); 

net = newfftd(PR, ID, [HiddenNeurons OutputNeurons], {Ipurelin' 
Ilogsig1l, ... 

Itrainrp'); 

net. trainparam. epochs=50; 
%net train(net, P, T, Pi); 
net train(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, (GRAM+1): si)),... 
con2seq(Z(:, l: (GRAM-1))), [1, VV, [1); 

%Y=sim(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, I: (GRAM-1)))); 
%T =Z(:, (GRAM+l) : si) ; 

%if use Test sample 
Y=sim(net, TV-P); 
Si Tsi; 
T Test(:, (GRAM+1): Tsi); 

% Strike any key to continue... 
%pause; 

%Post-processing... 
SymbolFreq = zeros(l, OutputNeurons); 
for i=1: OutputNeurons 

SymbolFreq(i) = 0.00; 
end 

Ybackup = Y; 
% --------- Hit-Rate-1 ---------- 
for i 1: (si - GRAM) 

Ma max(Y[il); 
Idx = find(Yli)==Ma); 
for j=1: OutputNeurons 

SymbolFreq(j) = SymbolFreq(j) + Y(il(j); 
YM (j) = 0; 

end 
Y(i)(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= [Y{: )]; 
%Comparison between Y and T 
Result =Y-T; 
Mumber of right Prediction 
Numl = 0; 

%alphabetYl, 2,3 will receive discrete results. 
alphabetYl = zeros(l, 27); 

alphabetY2 = zeros(l, 27); 

alphabetY3 = zeros(l, 27); 

alphabetT = zeros(l, 27); 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Numl = Numl + 1; 

end 



Idx = find(Y(:, i)==l); 
alphabetYl(Idx) = alphabetYl(Idx) + 1; 
Idx = find(T(:, i)==l); 
alphabetT(Idx) = alphabetT(Idx) + 1; 

end 

% --------- Hit-Rate-2 ---------- 
Y= Ybackup; 
for i 1: (si-GRAM) 

Ma max(Y{i)); 
Idx find(Y(i)==Ma); 
Y{i)(Idx) = 0; 
%find second maximum 
Ma max(Y(i)); 
Idx find(Yfi)==Ma); 
for j-1: OutputNeurons 

Y(i) M=0; 
end 
Y(i)(Idx) - 1; 

end 
%Convert Cell to Numeric Array 
Y= MOD 
%Comparison between Y and T 
Result =Y-T; 
%Number of right Prediction 
Num2 = 0; 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Num2 = Num2 + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetY2(Idx) - alphabetY2(Idx) + 1; 

end 

% --------- Hit-Rate-3 ---------- 
Y= Ybackup; 
for i 1: (si-GRAM) 

Ma max(Yfil); 
Idx = find(Y{i)==Ma); 
Y[i)(Idx) = 0; 
%find second maximum 
Ma = max(Y{i)); 
Idx = find(Y{i)==Ma); 
Y[i)(Idx) = 0; 
%find third maximum 
Ma max(Y{i)); 
Idx find(Y{i)==Ma); 
for j=I: OutputNeurons 

Y{iI U) = 0; 

end 
Y{i)(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= [Y(: )]; 
%Comparison between Y and T 
Result =Y-T; 
%Number of right Prediction 



Num3 = 0; 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Num3 = Num3 + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetY3(Idx) = alphabetY3(Idx) + 1; 

end 

%Write file... 
fid = fopen('Backpropagation2. txt', 'at'); 
fprintf(fid, I\n ------ %d-GRAM ------ %d-HiddenNeurons ------- \nI, 

GRAM, HiddenNeurons); 
Mit Rate level-1,2,3 
fprintf(fid, 'Numl=[%d]\nNum2=[%dl\nNum3=[%d]\n', Numl, Num2, Num3); 
fprintf(fid, 'Num =[%d]\n', (si-GRAM)); 
fprintf(fid, 'Numl/Num=[%fl\nNum2/Num--[%f]\nNum3/Num=[%f]\nI .... 

Numl/(si-GRAM), Num2/(si-GRAM), Num3/(si-GRAM)); 
%Alphabet Hit Rate level-1,2,3 
for i=1: 27 

fprintf(fid, lalphabetYl-[%d]= %d\nl, i, alphabetYl(i)); 
end 
for i=1: 27 

fprintf(fid, 'alphabetY2-[%d]= %d\n', i, alphabetY2(i)); 
end 
for i=1: 27 

fprintf(fid, lalphabetY3-[%d]= %d\n', i, alphabetY3(i)); 
end 
Entropyl = 0; 
for i=1: 27 

Entropyl = Entropyl + (alphabetT(i)/(si-GRAM)) 
log2(a1phabetT(i)/(si-GRAM)); 

fprintf(fid, 'alphabetT-[%d]= %d\nl, i, alphabetT(i)); 
end 
SFaddup = 0; 
for i=1: OutputNeurons 

SFaddup = SFaddup + SymbolFreq(i); 
fprintf(fid, 'SymbolFreq(%d)= %f\n', i, SymbolFreq(i)); 

end 
fprintf(fid, ISFaddup=[%f]\nl, SFaddup); 
Entropy2 = 0; 

for i=1: OutputNeurons 
Entropy2 = Entropy2 + (SymbolFreq(i)/SFaddup) 

log2(SymbolFreq(i)/SFaddup); 
fprintf(fid, 'SymbolFreq(%d)/SFaddup= %f\n', i, 

SymbolFreq(i)/SFaddup); 
fprintf(fid, IalphabetT(%d)/(si-GRAM)= %f\n', i, 

alphabetT(i)/(si-GRAM)); 
end 
Entropyl = abs(Entropyl); 
Entropy2 = abs(Entropy2); 
fprintf(fid, 'Entropyl=[%f]\nEntropy2=[%f]\n', Entropyl, Entropy2); 
fclose(fid); 

% Create a menu, so the user can select a test set. 
%K= MENU('Choose a file resolutionl, 'Test A', 'Test 01, 'Test 51, 'Test 
L', 'Test VI, 'Test WI, 'Test H', 'Test 1', 'Test GB'); 



MATLAB - CallBackpropagation2. m 

% -------------------------------------- ---------------------- -- % 
% Function: Call Backpropagation2 % 
% Author: Jun Li % 
% Create: 24/11/2008 % 
% Comment: % 
% -------------------------------------- ---------------------- -- % 

% Turn on echoing of commands inside the script-file. 
echo off; 
% Clear command window. 
%clc 
clear all; 
close all; 

%MaxNumberGRAM = 10; 
%GRAMarray = [1,2,3,5,7,9,13,17, 25,351; 

%MaxNumberHiddenNeurons - 10; 
%HiddenNeuronsArray = [1,2,3,5,7,9, 15,25,50,100]; 

%start GRAM-3, HN-15 
MaxNumberGRAM = 1; 
GRAMarray = [11,131; 

MaxNumberHiddenNeurons = 10; 
HiddenNeuronsArray = [1,2,3,5,7,9, 15,25,50,100); 

% Define GRAM and HiddenNeurons 
for i=1: MaxNumberGRAM 

GRAM GRAMarray(i); 
for j 1: MaxNumberHiddenNeurons 

HiddenNeurons = HiddenNeuronsArray(j); 
disp(sprintf('Backpropagation2 ... GRAM-[%d] ... HiddenNeurons- 

[%dl ...... It ... 
GRAM, HiddenNeurons)); 

Backpropagation2(GRAM, HiddenNeurons); 
end 

end 

%Backpropagation2(2,5); 



MATLAB - GenerateNoise. m 

% -------------------------------------------------------------- 
% Funciton: Generate Noisy Data in { BPdataP. txt, 
% BPdataPValidation. txt 
% BPdataPTest. txt 
% Author: Jun Li 
% Create: 28/11/2008 
% -------------------------------------------------------------- 
clear all 
close all 

rand(Itwister', sum(100*clock)); 
load . /data/BPdataP. txt; 
sil = size(BPdataP, 1); 
load . 

/data/BPdataPValidation. txt; 
si2 = size(BPdataPValidation, 1); 
load . 

/data/BPdataPTest. txt; 
si3 = size(BPdataPTest, 1); 

%Noise Rate 
NR = 0.3; 

n= (sil+si2+si3); 
m= round(NR*(sil+si2+si3)); 
rl = iRand(n, m); 

rand(Itwisterl, sum(100*clock)); 
%27 the number of symbols = input neurons 
r2 = iRand(27, m); 
for i=1: M 

if rl(i) <= sil 
Idx = find(BPdataP(rl(i), 1); 
BPdataP(rl(i), Idx) = 0; 
BPdataP(rl(i), r2(i)) = 1; 

elseif rl(i) <= (sil+si2) 
Idx = find(BPdataPValidation((rl(i)-sil), 
BPdataPValidation((rl(i)-sil), Idx) = 0; 
BPdataPVa1idation((rl(i)-si1), r2(i)) = 1; 

else 
Idx = find(BPdataPTest((rl(i)-sil-si2), :) == 1); 
BPdataPTest((rl(i)-sil-si2), Idx) = 0; 
BPdataPTest((rl(i)-sil-si2), r2(i)) = 1; 

end 
end 

%Write file... 
dlmwrite(IB2NoiseP. txt', BPdataP, 
dlmwrite(IB2NoiseV. txt', BPdataPValidation, 
dlmwrite(IB2NoiseT. txt', BPdataPTest, ' 1); 

% 



MATLAB - B2Noise. m 

% -------------------------------------------------------------- % 
% Function: NN with n-gram delay for key press prediction % 
% Author: Jun Li % 
% Create: 02/08/2008 % 
% Comment: Programming is referred to LongKeyPress. m % 
% -------------------------------------------------------------- % 

function B2Noise(GRAM, HiddenNeurons) 
% Turn on echoing of commands inside the script-file. 
%echo off 
% Clear command window. 
%clc 

%clear all 
%close all 

% Define GRAM 
%GRAM = 2-1; 
InputNeurons 27; 
OutputNeurons 27; 
%HiddenNeurons = 5; 

%Initialization 
load . /data/BPdataP. txt; 
load . /B2NoiseP. txt; 
B2NoiseP = B2NoiseP'; 
Z BPdataP'; 
si size(Z, 2); 
clear BPdataP; 

load . 
/data/BPdataPValidation. txt; 

load B2NoiseV. txt; 
B2NoiseV = B2NoiseV'; 
V= BPdataPValidation'; 
Vsi size(V, 2); 
VV. P con2seq(B2NoiseV(:, GRAM: (Vsi-1))); 
VV. T con2seq(V(:, (GRAM+1): Vsi)); 
clear BPdataPValidation; 

load . /data/BPdataPTest. txt; 
load . /B2NoiseT. txt; 
B2NoiseT = B2NoiseT'; 
Test = BPdataPTest'; 
Tsi = size(Test, 2); 
TV. P = con2seq(B2NoiseT(:, GRAM: (Tsi-1))); 
TV. T = con2seq(Test(:, (GRAM+1): Tsi)); 
clear BPdataPTest; 

PR = zeros(InputNeurons, 2); 
for i=1: InputNeurons 

PR(i, :)= [0,1] ; 
end 

ID = zeros(l, GRAM); 



for i=1: GRAM 
ID(i) = i-1; 

end 

%Pi the initial inputs for which the network will not have a target 
%P the inputs for which the network will have a target 
%T the targets 
%Pi con2seq(Z(:, l: (GRAM-1))); 
%P con2seq(Z(:, GRAM: (si-1))); 
%T con2seq(Z(:, (GRAM+1): si)); 

net = newfftd(PR, ID, [HiddenNeurons OutputNeurons], Jlpurelin' 
Ilogsig'), ... 

Itrainrpl); 

net. trainparam. epochs=100; 
%net train(net, P, T, Pi); 
net train(net, con2seq(B2NoiseP(:, GRAM: (si- 
1))), con2seq(Z(:, (GRAM+1): si)) .... 
con2seq(B2NoiseP(:, l: (GRAM-1))), [], VV, 

%Y=sim(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, l: (GRAM-1)))); 
%T =Z(:, (GRAM+l) : si) ; 

%if use Test sample 
Y-sim(net, TV. P); 
si Tsi; 
T Test(:, (GRAM+1) : Tsi) 

% Strike any key to continue 
%pause; 

%Post-processing... 
SymbolFreq = zeros(l, OutputNeurons); 
for i=1: OutputNeurons 

SymbolFreq(i) = 0.00; 
end 

Ybackup = Y; 
% --------- Hit-Rate-1 ---------- 
for i 1: (si - GRAM) 

Ma max(YUM 
Idx = find(Yjij==Ma); 
for j=1: OutputNeurons 

SymbolFreq(j) = SymbolFreq(j) + Yji)(j); 
Y{i} (j) = 0; 

end 
Y{i)(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= [Y(: H; 
%Comparison between Y and T 
Result =Y-T; 
%Number of right Prediction 
Numl = 0; 

%alphabetYl, 2,3 will receive discrete results. 



alphabetYl = zeros(l, 27); 
alphabetY2 = zeros(l, 27); 
alphabetY3 = zeros(l, 27); 
alphabetT = zeros(l, 27); 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Numl = Numl + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetYl(Idx) = alphabetYl(Idx) + 1; 
Idx = find(T(:, i)==l); 
alphabetT(Idx) = alphabetT(Idx) + 1; 

end 

% --------- Hit-Rate-2 ---------- 
Y= Ybackup; 
for i 1: (si-GRAM) 

Ma max(Y{il); 
Idx = find(Y{il==Ma); 
Y{il(Idx) = 0; 
%find second maximum 
Ma max(Yiil); 
Idx find(Yjij==Ma); 
for j=1: OutputNeurons 

Y{iI (j) = 0; 
end 
Y(il(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= [Y(: )]; 
%Comparison between Y and T 
Result =Y-T; 
Mumber of right Prediction 
Num2 = 0; 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Num2 = Num2 + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetY2(Idx) = alphabetY2(Idx) + 1; 

end 

% --------- Hit-Rate-3 ---------- 
Y= Ybackup; 
for i 1: (si-GRAM) 

Ma max(Y(il); 
Idx = find(Y{il==Ma); 
Y[il(Idx) = 0; 
%find second maximum 
Ma = max(YUH; 
Idx = find(Yjij==Ma); 
Y(i)(Idx) = 0; 
%find third maximum 
Ma max(Ylij); 
Idx find(Y{i)==Ma); 
for j=1: OutputNeurons 

Yfi) U) = 0; 



end 
Y[i)(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= MOD 
%Comparison between Y and T 
Result =Y-T; 
Mumber of right Prediction 
Num3 = 0; 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Num3 = Num3 + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetY3(Idx) = alphabetY3(Idx) + 1; 

end 

%Write file... 
fid = fopen(IB2Noise. txt', 'at'); 
fprintf(fid, '\n ------ %d-GRAM ------ %d-HiddenNeurons ------- \nI, 

GRAM, HiddenNeurons); 
Mit Rate level-1,2,3 
fprintf(fid, 'Numl=[%d]\nNum2=[%d]\nNum3=[%d]\n', Numl, Num2, Num3); 
fprintf(fid, 'Num =[%d]\nl, (si-GRAM)); 
fprintf(fid, 'Numl/Num=[%f]\nNum2/Num=[%f]\nNum3/Num=[%f]\nl,... 

Numl/(si-GRAM), Num2/(si-GRAM), Num3/(si-GRAM)); 
%Alphabet Hit Rate level-1,2,3 
for i=1: 27 

fprintf(fid, 'alphabetYl-[%d]= %d\nl, i, alphabetYl(i)); 
end 
for i=1: 27 

fprintf(fid, lalphabetY2-[%dl= %d\nl, i, alphabetY2(i)); 
end 
for i=1: 27 

fprintf(fid, 'alphabetY3-[%d]= %d\n', i, alphabetY3(i)); 
end 
Entropyl = 0; 
for i=1: 27 

Entropyl = Entropyl + (alphabetT(i)/(si-GRAM)) 
log2(alphabetT(i)/(si-GRAM)); 

fprintf(fid, lalphabetT-[%d]= %d\nl, i, alphabetT(i)); 
end 
SFaddup = 0; 
for i=1: OutputNeurons 

SFaddup = SFaddup + SymbolFreq(i); 
fprintf(fid, 'SymbolFreq(%d)= %f\nl, i, SymbolFreq(i)); 

end 
fprintf(fid, 'SFaddup=[%f]\nl, SFaddup); 
Entropy2 = 0; 
for i=1: OutputNeurons 

Entropy2 = Entropy2 + (SymbolFreq(i)/SFaddup) 
log2(SymbolFreq(i)/SFaddup); 

fprintf(fid, 'SymbolFreq(%d)/SFaddup= %f\nl, i, 
SymbolFreq(i)/SFaddup); 

fprintf(fid, lalphabetT(%d)/(si-GRAM)= %f\nl, i, 

alphabetT(i)/(si-GRAM)); 
end 



Entropyl = abs(Entropyl); 
Entropy2 = abs(Entropy2); 
fprintf(fid, 'Entropyl=[%f]\nEntropy2=[%f]\nl, Entropyl, Entropy2); 

fclose(fid); 

% Create a menu, so the user can select a test set. 
%K= MENU(IChoose a file resolution', 'Test A', 'Test 01, 'Test 51, 'Test 
L', 'Test VI, ITest WI, ITest HI, 'Test 11, 'Test GBI); 



MATLAB - CalIB2Noise. m 

% ---------- ------------------------------------- --------------- % 
% Function: Call Backpropagation2 % 
% Author: Jun Li % 
% Create: 24/11/2008 % 
% Comment: % 
% --------- -------------------------------------- --------------- % 

% Turn on echoing of commands inside the script-file. 
echo off; 
% Clear command window. 
%clc 
clear all; 
close all; 

MaxNumberGRAM - 4; 
GRAMarray = [2,3,5,7] 

MaxNumberHiddenNeurons = 2; 
HiddenNeuronsArray = [50,100]; 

NR 0.05; 
fid fopen(IB2Noise. txt', 'at'); 
fprintf(fid, I\n\n<< << << << << << NOISE RATE [%f] >> >> >> >> >> >>W, 
NR); 
fclose(fid); 
% Define GRAM and HiddenNeurons 
for i-1: MaxNumberGRAM 

GRAM GRAMarray(i); 
for j 1: MaxNumberHiddenNeurons 

HiddenNeurons = HiddenNeuronsArray(j); 
disp(sprintf('Backpropagation2... GRAM-[%d] ... HiddenNeurons- 

[%d] ...... 
GRAM, HiddenNeurons)); 

B2Noise(GRAM, HiddenNeurons); 
end 

end 

%Backpropagation2(2,5); 

I 



MATLAB - B2Helpline. m 

% -------------------------------------------------------------- % 
% Function: NN with n-gram. delay for Helpline Data prediction % 
% Author: Jun Li % 
% Create: 03/12/2008 % 
% -------------------------------------------------------------- % 

function B2Helpline(GRAM, HiddenNeurons) 
% Turn on echoing of commands inside the script-file. 
%echo off 
% Clear command window. 
%clc 

%clear all 
%close all 

InputNeurons 53; 
OutputNeurons 53; 

%Initialization 
load . 

/Stroke. txt; 
Z Stroke'; 
si size(Z, 2); 
clear Stroke; 

load . 
/StrokeTest. txt; 

Test = StrokeTest'; 
Tsi = size(Test, 2); 
TV. P = con2seq(Test(:, GRAM: (Tsi-l))); 
TV. T = con2seq(Test(:, (GRAM+1): Tsi)); 
clear StrokeTest; 

PR = zeros(InputNeurons, 2); 
for i=1: InputNeurons 

PR(i, :)= [0,11; 

end 

ID zeros(l, GRAM); 
for i=1: GRAM 

ID(i) = i-1; 
end 

%Pi the initial inputs for which the network will not have a target 
%P the inputs for which the network will have a target 
%T the targets 
%Pi con2seq(Z(:, l: (GRAM-1))); 
%P con2seq(Z(:, GRAM: (si-1))); 
%T con2seq(Z(:, (GRAM+1): si)); 

net newfftd(PR, ID, [HiddenNeurons OutputNeurons], I'purelin' 
Ilogsig'), ... 

Itrainrpl); 

net. trainparam. epochs=100; 
net = train(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, (GRAM+1): si)),... 



con2seq(Z(:, l: (GRAM-1))), [], [], []); 

%Y=sim(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, l: (GRAM-1)))); 
%T = Z(:, (GRAM+1): si); 

%if use Test sample 
Y=sim(net, TV. P); 
si Tsi; 
T Test(:, (GRAM+1): Tsi); 

% Strike any key to continue... 
%pause; 

%Post-processing... 
SymbolFreq = zeros(l, OutputNeurons); 
for i=1: OutputNeurons 

SymbolFreq(i) = 0.00; 
end 

Ybackup = Y; 
% --------- Hit-Rate-1 ---------- 
for i 1: (si - GRAM) 

Ma max(Y(i)); 
Idx find(Y{il==Ma); 
for j=I: OutputNeurons 

SymbolFreq(j) = SymbolFreq(j) + Yfil(j); 
Y(il (j) = 0; 

end 
Y(i)(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= [YI: H; 
%Comparison between Y and T 
Result =Y-T; 
%Number of right Prediction 
Numl = 0; 

%alphabetYl, 2,3 will receive discrete results. 
alphabetYl = zeros(l, 53); 
alphabetY2 = zeros(l, 53); 
alphabetY3 = zeros(l, 53); 
alphabetT = zeros(l, 53); 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Numl = Numl + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetYl(Idx) = alphabetYl(Idx) + 1; 
Idx = find(T(:, i)==l); 
alphabetT(Idx) = alphabetT(Idx) + 1; 

end 

% --------- Hit-Rate-2 ---------- 
Y= Ybackup; 
for i 1: (si-GRAM) 

Ma max(Yfi)); 
Idx find(Y(i)==Ma); 



Y(il(Idx) = 0; 
%find second maximum 
Ma = max(Y{ij); 
Idx = find(Y{il==Ma); 
for j=1: OutputNeurons 

Y{iI (j) = 0; 
end 
Y(il(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y= [Y{: H; 
%Comparison between Y and T 
Result =Y-T; 
%Number of right Prediction 
Num2 = 0; 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Num2 = Num2 + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetY2(Idx) = alphabetY2(Idx) + 1; 

end 

% --------- Hit-Rate-3 ---------- 
Y= Ybackup; 
for i 1: (si-GRAM) 

Ma max(Yfil); 
Idx find(Yji}==Ma); 
Y(i)(Idx) = 0; 
%find second maximum 
Ma max(Y{il); 
Idx find(Y{ij==Ma); 
Y{il(Idx) = 0; 
%find third maximum 
Ma = max(Y(il); 
Idx = find(Yfi}==Ma); 
for j=I: OutputNeurons 

Yfil M=0; 

end 
Y{il(Idx) = 1; 

end 
%Convert Cell to Numeric Array 
Y-= [Y{: }]; 
%Comparison between Y and T 
Result =Y-T; 
%Number of right Prediction 
Num3 = 0; 
for i=1: (si-GRAM) 

if(any(Result(:, i)) == 0) 
Num3 = Num3 + 1; 

end 
Idx = find(Y(:, i)==l); 
alphabetY3(Idx) = alphabetY3(Idx) + 1; 

end 

%Write file. ** 
fid = fopen(IB2Helpline. txt', 'at'); 



fprintf(fid, I\n ------ %d-GRAM ------ %d-HiddenNeurons ------- \nv, 
GRAM, HiddenNeurons); 

%Hit Rate level-1,2,3 
fprintf(fid, 'Numl=[%dl\nNum2=[%d]\nNum3=[%d)\nl, Numl, Num2, NuM3); 
fprintf(fid, 'Num =(%d]\nl, (si-GRAM)); 
fprintf(fid, 'Numl/Num=(%f]\nNum2/Num=[%f]\nNum3/Num=[%f]\nv,... 

Numl/(si-GRAM), Num2/(si-GRAM), Num3/(si-GRAM)); 
%Alphabet Hit Rate level-1,2,3 
for i=1: 53 

fprintf(fid, lalphabetYl-[%d]= %d\n', i, alphabetYl(i)); 
end 
for i=1: 53 

fprintf(fid, 'alphabetY2-[%d]= %d\n', i, alphabetY2(i)); 
end 
for i=1: 53 

fprintf(fid, lalphabetY3-[%d]= %d\n', i, alphabetY3(i)); 
end 
Entropyl = 0; 
for i=1: 53 

if alphabetT(i)/(si-GRAM) -0 
Entropyl = Entropyl + (alphabetT(i)/(si-GRAM)) 

log2(alphabetT(i)/(si-GRAM)); 
end 
fprintf(fid, lalphabetT-[%d]= %d\n', i, alphabetT(i)); 

end 
SFaddup = 0; 
for i=1: OutputNeurons 

SFaddup = SFaddup + SymbolFreq(i); 

, 
fprintf(fid, 'SymbolFreq(%d)= %f\n, i, SymbolFreq(i)); 

end 
fprintf(fid, 'SFaddup=[%f]\nl, SFaddup); 
Entropy2 - 0; 
for i=1: OutputNeurons 

if SymbolFreq(i)/SFaddup -0 
Entropy2 = Entropy2 + (SymbolFreq(i)/SFaddup) 

log2(SymbolFreq(i)/SFaddup); 
end 
fprintf(fid, 'SymbolFreq(%d)/SFaddup= %f\n', i, 

symbolFreq(i)/SFaddup); 
- fprintf(fid, lalphabetT(%d)/(si-GRAM)= %f\n', i, 
alphabetT(i)/(si-GRAM)); 
end 
Entropyl = abs(Entropyl); 
Entropy2 = abs(Entropy2); 
fprintf(fid, 'Entropyl=[%f]\nEntropy2=[%f]\nl, Entropyl, Entropy2); 

fclose(fid); 



MATLAB - CalIB2Helpline. m 

% ------------------------------------------------------------- -% 
% Function: Call B2Helpline % 
% Author: Jun Li % 
% Create: 03/12/2008 % 
% Comment: % 
% ------------------------------------------------------------- -% 

% Turn on echoing of commands inside the script-file. 
echo off; 
% Clear command window. 
%clc 
clear all; 
close all; 

%MaxNumberGRAM = 10; 
%GRAMarray = (1,2,3,5,7,9,13,17,25,35]; 

%MaxNumberHiddenNeurons = 10; 
%HiddenNeuronsArray = [1,2,3,5,7,9,15,25,50,100]; 

%start GRAM-3, HN-15 
%MaxNumberGRAM = 5; 
%GRAMarray = [1,3,5,7,91; 

%for GRAM-2 
MaxNumberGRAM = 1; 
GRAMarray = [21; 

MaxNumberHiddenNeurons = 8; 
HiddenNeuronsArray = [3,5,7,9,15,25,50,100]; 

% Define GRAM and HiddenNeurons 
for i=1: MaxNumberGRAM 

GRAM GRAMarray(i); 
for j 1: MaxNumberHiddenNeurons 

HiddenNeurons = RiddenNeuronsArray(j); 
disp(sprintf(IB2Helpline ... GRAM-[%d]... HiddenNeurons- 

[%dl ...... II... 
GRAM, HiddenNeurons)); 

B2Helpline(GRAM, HiddenNeurons); 
end 

end 

%Backpropagation2(2,5); 



MATLAB-IK Lm 

% ------------------------ -------------------------------------- % 
% Function: Miss-stroke right letter prediction neural network % 
% by Historical Networks. % 
% Author: Jun Li % 
% Create: 16/07/2008 % 
% ------------------------ -------------------------------------- % 

clear all 
close all 

%Load PR, TR 
load . /dataElmPR. txt 
PR = dataElmPR; 

clear dataElmPR; 
% Create a Elman Network. PR=input range; TR=output range. 
% trainlm is the default, fast but memory consuming. 
% Out of memory solution: 
% 1. setting net. trainParam. mem-reduc =2 or more; 
% 2. trainrp 
net = newelm(PR, (3,27], (Itansig', Ilogsig1j); 

%load P, T 
load . /dataElmP. txt 

Ptmp, = con2seq(dataElmP') ; 
si size(dataElmP, 1); 
P Ptmp(:, 1: (si-1)); 
T Ptmp(:, 2: si); 
clear dataElmP; 
clear Ptmp; 
% Train the network 
%net. trainParam. mem-reduc = 5; 
net. trainFcn = Itrainrp'; 

% There are other timers: etime, cputime, clock; 
tic; % starts a stopwatch timer 
net = train(net, P, T); 
toc; % reads a stopwatch timer 

% Simulation of Neural Ne twork 
%Y = sim(net, P); 



MATLAB - LPonRH. m 

% -------------------------------------------------------------- % 
% Name: Letter Prediction on Right History % 
% Function: Predict current letter based on the right history, % 
% which means correcting the current input. % 
% Also we add an additional Signal-'NULL', for letter % 
% absence and addition etc. % 
% Author: Jun Li % 
% Create: 06/08/2008 % 
% -------------------------------------------------------------- % 

% Data Conversion: NULL <=> @ e. g. % 
% hthe quick brrooownn fgow jummppefd iobverethe lwqazy % 

% fthe quick br@o@@wn@ @@f@ox@ jum@p@e@d @@o@ver the 1@@azy % 

function Numl = LPonRHO 

clear all 
close all 

% InputNeurons = Ngram * OutputNeurons 
%OutputNeurons = 52; % 53-[Backspace, Deletel+(NULL) 

% Temporarily, actually we can design an very small Symbol, e. g. % 
% Jq, w, a, s; 9.0, o, p}, each four are near each other. % 
% here, we consider 27 + addtional Signal '@I + time % 
% We distinguish time into three levels, % 
% over-fast => 001 % 
% user-Speed => 010 % 
% over-slow => 100 % 
% Could further give an degree, e. g. 001 => 000.75 % 

SymbolNeurons = 27; %26 + SPACE 
OutputNeurons - SymbolNeurons+l; %+ NULL 
TimeNeurons = 3; 
Ngram =2-1; 
InputNeurons = SymbolNeurons*Ngram + TimeNeurons; 

%Input Elements Range 
IER zeros(InputNeurons, 2); 
for = 1: InputNeurons 

IER(i, :)= (0,1]; 

end 
% Create a BPNN 
% For the speed reason, choose trainrp rather than trainlm. 
% About trainlm, can use mem_reduc to a little improvement. 

net = newff(IER, [7, OutputNeurons], ('purelin', Ilogsig'), Itrainrp'); 

net. trainParam. show = 5; 

net. trainParam. epochs = 100; 

net. trainParam. goal - le-3; 

%load data for key stroke analysis 



load . /LPonRHP. txt 
pl = LPonRHPI; 
clear LPonRHP; 
load . /LPonRHT. txt 
tl = LPonRHT'; 
clear LPonRHT; 
si = size(pl, 2); 

tic; % starts a stopwatch timer 
%Ngram predict current letter, which is the last letter of current 
column 
%net = train(net, pl(:, 1: si), pl((OutputNeurons*(Ngram-l)+l) ... 
% : (OutputNeurons*Ngram), 1: si)); 

net = train(net, pl, t1); 
toc; % reads a stopwatch timer 

%simulation 
%Y sim(net, pl(:, 1: si)); 

Y sim(net, pl); 
%ti -y 

% --------- Hit-Rate ---------- 
for i=1: si 

Ma = max(Y(:, i)); 
Idx = find(Y(:, i)==Ma); 
for j=1: OutputNeurons 

y (j, i) = 0; 
end 
Y(Idx, i) = 1; 

end 

%Comparison between Y and T 
Result =Y- tl; 
Numl = 0; 
for i=1: si 

if(any(Result(:, i)) == 0) 
Numl = Numl + 1; 

end 
end 

%echo on; 
%Numl 
%echo off; 



MATLAB - CaIlLPonRU. m 

% -------------------------------------------------------------- % 
% Name: Call LPonRH. m % 
% Function: LPonRH. m - Letter Predicton on Right History % 
% CallLPonRH. m to get distribution of LPonRH's results % 
% Author: Jun Li % 
% Create: 08/12/2008 % 
% -------------------------------------------------------------- % 
clear all; 
close all; 

Results = (]; 
ResultsNum = 100; 

for i=1: ResultsNum 

result LPonRH; 
Results [Results, result]; 

end 

%%Get by hand from matlab workspace where variable 'Results' is, 100 
%%elements 
%Results = [58 57 55 53 57 57 41 58 55 58 
55 55 45 51 58 54 50 52 57 56 56 56 
57 52 57 54 56 58 55 56 57 55 58 58 
51 57 51 57 51 51 58 53 57 57 50 49 
51 57 58 53 58 57 57 53 57 54 54 54 
54 58 56 47 56 51 58 57 58 55 58 58 
58 53 53 57 51 58 58 56 58 57 56 58 
51 51 56 58 52 56 58 56 57 58 58 57 
51 57 55 58 49 581; 



MATLAB - pnn. m 

%% -------------------------------------------------------------- % 
% Function: Miss-stroke right letter prediction neural network % 
% Based on Radial Basis Network (--newpnn) % 
% Origin: IK3 - but newbr couldnt give precise result % 
% Author: Jun Li % 
% Create: 23/12/2008 % 
% Comment: Only consider the motor movement without predecessor. % 
% Only consider those mistaken letters. % 

% Input => horizontal distance(between pre and cur)% 
% vertical distance % 
% time gap % 
% Output => horizontal distance % 
% vertical distance % 
% This is led to the possability of discovering the % 
% the relationship with mobility of hand. % 
% --------- ------------------------------------------------ ----- % 

%clear all 
%close all 
function Results = pnno 
load . /dataPNNTrain. txt; 

n= size(dataPNNTrain, 1); 
m= round(n/3); 
r= iRand(n, m); 
for i=1: m 

if(dataPNNTrain(r(i), 4) > 0) 
dataPNNTrain(r(i), 4) = -dataPNNTrain(r(i), 4); 

end 
end 
inputPl 
dataPNNTest 
for i=1: n 

if(dataPNNTrain(i, 4) > 0) 
inputP1 = [inputPl; dataPNNTrain(i, 

else 
dataPNNTrain(i, 4) = -dataPNNTrain(i, 4); 
dataPNNTest = (dataPNNTest; dataPNNTrain(i, 

end 
end 
dataPNNTrain = inputPl; 
clear inputPl; 

inputP dataPNNTrain(:, 1: 3)1; 
targetT dataPNNTrain(:, 4)1; 

%load . /dataPNNTest. txt 
inputPTest dataPNNTest(:, 1: 3)1; 
targetTTest dataPNNTest(:, 4)1; 

%Normalization 
%Horizontal 



%inputP(l, :)= inputP(l, :)/ 10; %Assumely 
%inputPTest(l, inputPTest(l, 10; 
Wertical 
%inputP(2, inputP(2,5; 
%inputPTest(2, :)= inputPTest(2,5; 

%Time gap: gauss->netlab 
ft = mean(inputP(3, 
%c = cov(inputP(3, 
%inputP(3, :)= (inputP(3, m)/c; 
%inputPTest(3, :)= (inputPTest(3, :)- m)/c; 
%[inputP(l, psl] = mapminmax(inputP(l, 
%[inputP(2, ps2l = mapminmax(inputP(2, 
%[inputP(3, ps3] = mapminmax(inputP(3, 
%[inputPTest(3, psTest] = mapminmax(inputPTest(3, 
%inputPTest(l, mapminmax(lapplyl, inputPTest(l, : ), psl); 
%inputPTest(2, mapminmax(lapplyl, inputPTest(2, : ), ps2); 
%inputKest(3, mapminmax(lapply', inputPTest(3, : ), ps3); 

spread = 0.1; 
T= ind2vec(targetT); 
net = newpnn(inputP, T, spread); 

% Show results -1 
%plot(inputP, targetT, I+I); 
%title('Miss-stroke Distribution'); 
%xlabel('Keystroke Motor Distance'); 
%Ylabel('Stroke Away Distincel); 

% Simulation 
Y= sim(net, inputP); 
YTest = sim(net, inputPTest); 

y= vec2ind(Y); 
YTest = vec2ind(YTest); 
%compare YTest with targetTTest, Y with targetT 
Z=Y targetT; 
Ztest YTest - targetTTest; 

Numl = 0; 
for i=1: size(Z, 2) 

if(Z(l, i) == 0) 
Numl = Numl + 1; 

end 
end 

Num2 = 0; 
for i=1: size(Ztest, 2) 

if (Ztest W == 0) 
Num2 = Num2 + 1; 

end 
end 

Results = Num2/size(Ztest, 2); 



fid = fopen(lppn. txt', 'at'); 
fprintf(fid, Ir=[ 
for i=1: m 

fprintf(fid, '%d r(l, i)); 

end 
fprintf(fid, ']\n'); 
fprintf(fid, 'Results %d/%d - [%. 2f]\n\nl, Num2, size(Ztest, 2), 
Num2/size(Ztest, 2)); 

%RandomResults = 1/6 
%fprintf(fid, 'RandomResults - [%. 2f]', 1/6); 
f close (f id) ; 



MATLAB - suggestTimeGap. m 
% -------------------------------------------------------------- % 
% Function: Suggested time gap between two consecutive letters by% 
% using backpropagation neural network % 
% Author: Jun Li % 
% Create: 12/08/2008 % 
% -------------------------------------------------------------- % 
clear all 
close all 

Knitialization 
IutputNeurons = 54; % letter coding 
OutputNeurons = 1; % timeGap parameter 
Ngram = 2; 

%Load 
load . /suggestTimeGap. txt; 
lines = size(suggestTimeGap, 1); 
Z= suggestTimeGap(l: (lines-3), 
P= Z(1: IutputNeurons*Ngram, : ); 
T= Z((IutputNeurons*Ngram+l): (IutputNeurons*Ngram +1), 
[T, ps] = mapminmax(T); 

%MaxTG = suggestTimeGap((lines-2), 1); % maximum time gap 
Mean = suggestTimeGap((lines-1), (IutputNeurons*Ngram+l)); 
Deviation = suggestTimeGap(lines, (IutputNeurons*Ngram+l)); 
%MinTG = 5; % minimun time gap 
clear suggestTimeGap; 
clear Z; 

IER zeros(IutputNeurons*Ngram, 2); 
for = 1: IutputNeurons*Ngram 

IER(i, :)= (0,1]; 
end 

% Create a BP-NN 
net = newff(IER, (7, OutputNeurons], i'tansig', 'purelin1j, 'trainlm'); 
net. trainParam. show = 10; 
net. trainParam. epochs = 100; 
net. trainParam. goal = 0; % can we make it better? 

%train without validation set 
net = train(net, P, T); 

%simulation 
y= sim(net, P); 
%Convert Y to time gap 
Y= mapminmax(Ireversel, Y, ps); 

% if the program - Enstatistics has used mean=O and deviation=1 
%TG =Y* Deviation + Mean; 
% clear Y; 

%when testing, use below to pre-processing first. 
%y2 = mapminmax(lapplyl, x2, ps) 



MATLAB - RankAlgorithms. m 
% -------------------------------------------------------------- % 
% Name: BackPropagation three word correct algorithms % 
% Funciton: Ranking => output the most probable word % 
% Auther: Jun Li % 
% Create: 30/09/2008 % 
% -------------------------------------------------------------- % 
function Numl = RankAlgorithms(RankAlgorithmsPl, RankAlgorithmsTestl) 
%clear all 
%close all 

%Initialization 
NumOfAlgorithms = 3; 
%number of words of each algorithm 
NumoOfWords = 2; 
%output of each word: distance and frequency 
NumOfFeature = 2; 

IutputNeurons = NumOfAlgorithms*NumoOfWords*NumOfFeature; 
HiddenNeurons = 3; 
OutputNeurons = NumOfAlgorithms*NumoofWords; 

%Load 
%load . /data/RankAlgorithmsPl. txt; 
%RankAlgorithmsPl = RankAlgorithmsPll; 

%load . /data/RankAlgorithmsTestl. txt; 
%RankAlgorithmsTestl = RankAlgorithmsTestll; 

Mormalization 
x=H; 
for i=1: 2: IutputNeurons 

x= Cx RankAlgorithmsPl(i, : )]; 
end 
xmean = mean(x); 
xstd = std(x); 
for i=1: 2: IutputNeurons 

RankAlgorithmsPl(i, 
xstd); 

RankAlgorithmsTesti(i, 
xstd); 
end 

= normpdf(RankAlgorithmsPl(i, : ), xmean, 

:)= normpdf(RankAlgorithmsTestl(i, : ), xmean, 

P- RankAlgorithmsPl(I: IutputNeurons, : ); 
T= RankAlgorithmsPl((IutputNeurons+l): (IutputNeurons+OutputNeurons), 

testP = RankAlgorithmsTestl(l: IutputNeurons, 
testT = 
RankAlgorithmsTestl((IutputNeurons+l): (IutputNeurons+OutputNeurons), 
%clear RankAlgorithmsPl; 

%value scope of each input 
IER zeros(IutputNeurons, 2); 
for = 1: IutputNeurons 

IER(i, :)= [0,11; 



end 

% Create a BP-NN 
%net. trainParam. epochs =1000; 
%net. trainParam. goal =0.01; 
101 
%net. trainParam. lr =0.001; 
[0.01] 
%net. trainParam. show =1; 
[25] 
%net. trainParam. time =1000; 

(Max no. of epochs to train) [100] 
(stop training if the error goal hit) 

(learning rate, not default trainlm) 

(no. epochs between showing error) 

(Max time to train in sec) [inf] 

net = newff(IER, (HiddenNeurons, OutputNeurons], {Ipurelin', Ilogsig1j, 
Itrainlml); 
net. trainParam. show = 10; 
net. trainParam. epochs = 100; 
net. trainParam. goal = 0; 
net. trainParam. lr =0.001; 

%train without validation set 
net = train(net, P, T); 

%simulation 
Y= sim(net, testP); 

%compet, 
for i 

Ma 
Idx 
for 

to generate result 
1: size(testT, 2) 
max(Y(:, i)); 

find(Y(:, i)==Ma); 
j=1: OutputNeurons 
y (j, i) = 0; 

end 
Y(Idx, i) 

end 

Result =Y- testT; 

%Number of right Prediction 
Numl = 0; 
for i=1: size(testT, 2) 

, if(any(Result(:, i)) - 0) 
Numl = Numl + 1; 

end 
end 



MATLAB - Hmm. m 

% -------------------------------------------------------------- % 
% Funciton: Using hmmestimate & hmmviterbi to have a learnable % 
% program for language modelling % 
% Auther: Jun Li % 
% Create: 28/06/2008 % 
% -------------------------------------------------------------- % 

% First load a heuristic Transition and Emission Matrices based on bi- 
gram 
% P(ajlai)=P(ai, aj)/P(ai) 

% <successor> 
% a(A) ... Z(Z) NULL 
% <predecessor> -------------------------------- 
% a(A)IP(ala) ... P(zIa) P(Null1a) 
%I 
%I 
% ZMI 
% NULLI 

% Calculated based on MICHAEL's bigram and book <<Penguin 1978>> 
% Format: uu -> ul -> 11 -> lu 
load BigramMatrix. txt; 

% Estimating Transition and Emission Matrices, where Transition Matrix 
% is acquired from the statistics to particular text reference, where 
% Emission Matrix from the action to particular user's typing record. 

% the probability of transition from ai to aj of user's typing record 
% as emission sequence. 
load seq. txt; 

% the probability of transition from ai to aj of right text 
% as states sequence. 
load states. txt; 

% The following takes the emission and state sequences and returns 
% estimates of the transition and emission matrices. 
[TRANS-EST, EMIS-ESTI = hmmestimate(seq, states); 

% Generate Ti, Tj Based on Multi-Parameters <=> STEP FUNCTION 
% (discontinuous). Using Fuzzy Logic method to blur the boundary of step 
% function. 
%Ti = t(Xi); 
%Tj = t(Xi); 

% Generate TRANS based on adjusted weights Ti, Tj. 
% Ti for BigramMatrix. txt; Tj for TRANS EST. 
TRANS = Ti * BigramMatrix + Tj * TRANS-EST; 

% Generate EMIS based on adjusted weights Ei, Ej. 
% Ei for seq; Ej for EMIS EST; 
EMIS = Ei * seq + Ej * EMIS-EST; 



% Given the transition and emission matrices TRANS and EMIS, the 
function 
% hmmviterbi uses the Viterbi algorithm to compute the most likely 
sequence 
% of states the model would go through to generate a given sequence seq 
of 
% emissions. 
% likelystates is a sequence the same length as seq. 
likelystates = hmmviterbi(seq, TRANS, EMIS); 



MATLAB - iRand. m 

% -------------------------------------------------------------- % 
% Funciton: iRand => integer random for 1-n % 
% Author: Jun Li % 
% Create: 28/11/2008 % 
% Parameter: n => the range of number % 
%m => the number of rand-number % 
% -------------------------------------------------------------- % 

function r= iRand(n, m) 
Unitialize RAND to a different state each time. 
%suggest only do this when start a session. 
rand(Itwisterl, sum(100*clock)); 

%Generate integers uniform on the set 1: n. 
r= ceil(n. *rand(l, m)); 

%Generate uniform values from the interval [a, b]. 
%r =a+ (b-a). *rand(100,1); 



MATLAB - NgramFrequency. m 

% --------------------------------------------------------- ----- % 
% Funciton: To Get the N-gram frequency of English % 
% Author: Jun Li % 
% Create: 12/08/2008 % 
% Comment: % 
% --------------------------------------------------------- ----- % 

% Turn on echoing of commands inside the script-file. 
%echo on 
% Clear command window. 
%clc 

clear all 
close all 

load . /data/u. txt; 
load . /data/l. txt; 

load . /data/uu. txt; 
load . 

/data/ul. txt; 
load . 

/data/lI. txt; 
load . /data/lu. txt; 

[lines, columns] = size(uu); 
UUf = zeros(lines, columns); uut = 0; 
Ulf = zeros(lines, columns); ult = 0; 
llf = zeros(lines, columns); llt = 0; 
luf = zeros(lines, columns); lut = 0; 
for i=1: lines 

for j=1: columns 
if uu(i, j)== 0.00 

Uuf(i, j) = 1; 
elseif uu(i, j) == -1 

uuf(i, j) - 0; 
else 

uuf(i, j) = round(exp(uu(i, j))); 
end 
uut = uut + uuf(i, j); 
% ----------------------------- 
if ul(i, j)== 0.00 

ulf(i, j) = 1; 
elseif ul(i, j) == -1 

Ulf(i, j) = 0; 
else 

ulf(i, j) = round(exp(ul(i, 
end 
ult = ult + ulf(i, j); 
% ---------------------------- 
if 11(i, j)== 0.00 

llf(i, j) = 1; 
elseif 11(i, j) == -1 

llf(i, j) = 0; 
else 

llf(i, j) = round(exp(ll(i, 



end 
lit = lit + lif(i, j); 
% ---------------------------- 
if lu(i, j)== 0.00 

luf(i, j) = 1; 
elseif lu(i, j) == -1 

luf(i, j) = 0; 
else 

luf(i, j) = round(exp(lu(i, 
end 
lut = lut + luf(i, j); 

end 
end 

%uuf = uuf/uut*100; 
%Ulf = Ulf/ult*100; 
%lif = llf/llt*100; 
%luf = luf/lut*100; 

% Caculate, the 1-gram probability 
Ut = 0; 
lt = 0; 
for i 1: 26 

Ut ut + U(i); 
lt lt + l(i); 

end 
Uf = u/(ut+lt)*100; 
lf = 1/(ut+lt)*100; 

% Caculate the 2-gram probability 
Uuf = uuf/(uut+ult+llt+lut)*100; 
Ulf = Ulf/(uut+ult+llt+lut)*100; 
llf = llf/(uut+ult+llt+lut)*100; 
luf = luf/(uut+ult+llt+lut)*100; 

% Calculate p(ajlai)=p(ai, aj)/p(ai) 
for i=1: 26 

uuf(i, uuf(i, : )/Uf(i); 
Ulf(i, Ulf(i, : )/uf(i); 
llf(i, llf(i, : )/lf(i); 
luf(i, luf(i, : )/lf(i); 

end 

% Write file-BigramMatrix. txt for Hmm. m 
% But have added the Frequency between NULL and other letters 
Fbm. = fopen('BigramMatrix. txtl, lwl); 
if Fbm <0 

error(['Could not open file: 1, 'BigramMatrix. txtl]); 
end 
fprintf(Fbm, '%% ATTENTION: need double check with the equation and 
number before publish\n\n'); 
for i=1: 26 

for j=1: 26 
fprintf(Fbm, 1%6.4f 1, uuf(i, j)); 

end 
fprintf(Fbm, I\nl); 

end 



fprintf(Fbm, I\nl); 
for i=1: 26 

for j=1: 26 
fprintf(Fbm, 1%6.4f 1, ulf(i, 

end 
fprintf(Fbm, I\nl); 

end 
fprintf(Fbm, I\nl); 
for i=1: 26 

for j=1: 26 
fprintf(Fbm, 1%6.4f llf(i, 

end 
fprintf(Fbm, I\nl); 

end 
fprintf(Fbm, '\n'); 
for i=1: 26 

for j=1: 26 
fprintf(Fbm, 1%6.4f luf(i, 

end 
fprintf(Fbm, I\nl); 

end 
fprintf(Fbm, I\nl); 
fclose(Fbm); 

%using weighting to further calculation. 

%echo off; 



Appendix B 

MAIN ENSTATISTICS SOURCE CODE 



CEnStatisticsDig:: OnBnClickedTextanalysis 

this->UpdateDataO // initialize data in a dialog box 

LPCTSTR strFilter _T('Txt 
Files (*. txt)l*. txtIAll Files 

CFile f, fDict; 

CFileD! alog FileDlg(TRUE, 
-T(. 

txt"), NULL, 0, strFilter); 

if ( Fi leDlg. DoModal 0= IDOK 
I 

if( f. Open(FileDlg. GetFileNameo, CFile:: modeRead) = FALSE 
return; 

CArchive ar(&f, CArchive:: load); 

TCHAR lpBuf[801, wCurr[201, cLast2, cLastl, cCurr; 
int wCurrSeq, wLastlSeq, wLast2Seq; 
struct wordChain *lastUnit, *currUnit; 

struct EnDictionary *dictCurrPtr, *dictLastPtr; 

cLast2 = cLastl = cCurr = 0; 
wCurrSeq = wLastlSeq = wLast2Seq = -1; 

headerUnit = (struct wordChainHeader *)malloc(sizeof(struct wordChainHeader)); 
headerUnit->numUnit = 0; Hnot sure if will use. 
memset(headerUnit->idxChain, NULL, 256); //not sure how to use. 
headerUnit->next = NULL; 

memset(lpBuf, 0,80); 
memset(wCurr, 0,20); 

flallocate memory 100*1000 elements for dictionary 
dictBasePtr = (struct EnDictionary *)calloc(120*1000, sizeof(struct 

EnDietionary»; 

/*dictCurrPtr = dictBasePtr; 
for(int i=O; i<120*1000; i++) 

memset(dictCurrPtr->word, 0,20); 
//dietCurrPtr->seq = 0; 
dictCurrPtr->frq = 0; 
dietCurrPtr++; 

I */ 
dictCurrPtr = dictBasePtr; 
dictLastPtr = dictCurrPtr; 

dictOffset LT('a')] = 0; 
//load dictionary 
TCHAR tmpStr[MAX_PATH+1001; 

memset(tmpStr, 0, MAX 
- 

PATH+100); 

_tcscat_s(tmpStr, 
currDirectory); 

-tescat-s(tmpStr, -T('\\es. 
txt)); 

if(fDict. Open(tmpStr, CFile:: mOdeRead) = FALSE) 



MessageBox(_T('Couldnt find the dictionary es. txt)); 
MessageBox(currDirectory); 
return; 

CArchive arDict(&fDict, CArchive:: load); 
CString dictLine = -T("); int i=0; 

// a simulation of ReadSring to ASCII code text 
/*char aux [21; 
CString m_sLine; 
while (m-bMoreChars = m-rArchive. Read (aux, M 
I 

if ((aux [01 == ' \n' )II (aux [01 ý- '\r')) 
break; 
m-sLine += aux [01; 

while(arDict. ReadString(dictLine)) 
I 

must be exact size 

CString word, freq; 
Hword 
AfxExtractSubString(word, dictLine, 0, ,, ). 
//frequency 
AfxExtractSubString(freq, dictLine, 1, 

memset(dictCurrPtr->word, 0,20); 

-tescpy-s(dictCurrPtr->word, 
(word. GetLengthO+I), word); Hcaution: 

dictCurrPtr->frq = 
-ttoi(freq); dictCurrPtr->seq = i++; 

if(dictCurrPtr->word[Ol != dictLastPtr->word[Ol) 

dictOffset[dictCurrPtr->word[OlI = dictCurrPtr - dictBasePtr; 
dictLastPtr = dictCurrPtr; 

I 
dictCurrPtr++; 
if(i >= 100000) break; 

//if(i = 100000) or < 100000 are all same, give an endpoint 
dictCurrPtr->frq=O; 
dictCurrPtr->seq = i; 
memset(dictCurrPtr->word, 0 20); 

arDict. Close 0; 
Mict. Close 0; 

while(ar. Read(lpBuf, M Htext must be saved as ASCII? 

cCurr = 1PBuf[O]; 
alphabetFrequency[cCurrl++; 
bigramFrequency[cLastll[cCurrl++; 
trigramFrequency[cLast2l[cLastll[cCurrl++; 

if(! ((cCurr>='a') && (cCurr<='z')) U ! ((cCurr>='A') && (cCurr<='Z')) && 
(cCurr != '-')) 



Uthen we think a word has been met 
// using an ordered chain 
wCurrSeq = checkDict(wCurr, 1); Hif word is new, add to space 

which starts from 100*1000+1 
if(wCurrSeq = -1) continue; 

/*TCHAR strl[1001; 

memset(strl, 0,100); 

_stprintf - s(strl, -T('wCurr = [%sl wCurrSeq = [%dl'), wCurr, wCurrSeq); 
AfxMessageBox(stri); */ 

//check chain to get the right place for wCurrSeq 
//if((wCurrSeq != -1) U (wLastISeq != -1) && (wLast2Seq != -1)) 
//because I we calculate word bi-gram as well, so the first two 

words give problem. Have to ignore U (wLast2Seq != -1) 
if((wCurrSeq != -1) && (wLastlSeq != -1)) 

/*TCHAR str[1001; 

-stprintf-s(str, -T('start checkChain [%dl[%dl[%dl'), 

wCurrSeq, wLastlSeq, wLast2Seq); 
AfxMessageBox(str); */ 

currUnit = checkChain(headerUnit, wCurrSeq, wLastlSeq, 

wLast2Seq); 

memset(wCurr, 0,20); 

wLast2Seq = wLastlSeq; 
wLastlSeq = wCurrSeq; 

I 
else 
I 

__: 
tcscat_s(wCurr, lpBuf); 

cLast2 = cLastl; 
cLastl = cCurr; 

end of while 
ar. Close 0 
f. CloseO; 

//AfxMessageBox(-T('start print)); 
Uprint statistics; 
CFile fResult; 
CArchive arResult(&fResult, CArchive:: store); 

memset(tmpStr, 0, MAX 
- 

PATH+100); 

-tcscat_s(tmpStr, currDirectory); 

_tcscat_s(tmpStr, _T(\\statistics_result. 
txt')): 

if(fResult. Open(tmpStr, CFile:: modeCreatelCFile:: modeWrite) = FALSE) 
I 

MessageBox(_T("Couldnt create the statistics-result. txt file')); 
MessageBox(tmpStr); 
return; 

//printf I-gram 



arResult. WriteString(-T('ý- =ý==LETTER GRAM-1 ----==\r\n')) 
CString str; 
int letterTotal = 0; 
for(int i=O; i<16. i++) 

for(int j=O; j<16; j++) 

str. Format(-T("%8d'), i*16+j); 
arResult. WriteString(str); 

arResult. WriteString(-T('\r\n'))-. 
for(int j=O; j<16; j++) 

arResult. WriteString(-T('- 

arResult. WriteString(-T('\r\n')); 
for(int j=O, j<16; j++) 

letterTotal +-- alphabetFrequency[i*16+jl; 
str. Format(-T('%8d'), alphabetFrequency[i*16+jl); 
arResult. WriteString(str); 

arResult. WriteString(-T('\r\n\r\n")): 

str. Format(_T('IetterTotal = [%dl\r\n\r\n'), letterTotal); 
arResult. WriteString(str)-. 

Hbelow is added temporally for Matlab hmmm 
arResult. WriteString('%below is added temporally for Matlab hmmm\r\n'); 
arResult. WriteString('32 45 97 98 99 100 101 102 

103 104 105 106 107 108 109 110 ill 112 113 114 
115 116 117 118 119 120 121 122\r\n"); 

arResult. WriteString(' - 

\r\n ); 
str. Format(-T('%-8.4f'), (double)alphabetFrequency[321/(double)letterTotal); 

arResult. WriteString(str); 
str. Format(-T('%-8.4f'), (double)alphabetFrequency[451/(double)letterTotal): 

arResult. WriteString(str); 
for(i='a' ; i<='z' ; i++) 
I 

str. Format(-T('%-8.4f'), 
(double)alphabetFrequency[il/(double)letterTotal); arResult. WriteString(str); 

I 
arResult. WriteString('\r\n\r\n'); 

arResult. WriteString(_T('\r\n\r\n =ý-LETTER GRAM-2== 
//printf 2-gram 
arResult. WriteString(_T(' 
for(int i=O; i<256; i++) 

str. Format(-T('%-8d'), i); 
arResult. WriteString(str); 

arResult. WriteString(-T('\r\n\r\n')); 



for(int i=O; i<256; i++) 

str. Format(_T('%-8d'), i); 
arResult. WriteString(str): 
for(int j=O; j<256; j++) 
I 

str. Format(-T("%-8d'), bigramFrequency[i][il); 
arResult. WriteString(str); 

arResult. WriteString(_T('\r\n')); 

//below is added temporally for Matlab hmm. m 
arResult. WriteString('\r\n%below is added temporally for Matlab hmm. m\r\n); 
arResult. WriteString(-T(' 
for(int i='a'; i<='z'-, i++) 
I 

str. Format(-T('%-8d'), i); 
arResult. WriteString(str); 

str. Format(_T('%-8d'), 32); 

arResult. WriteString(str); 

str. Format(-T('%-8d'), 45); 

arResult. WriteString(str); 

arResult. WriteString(_T('\r\n')); 
for (int i='a' ; i<='z' ; i++) 

str. Format(_T("%-8d'), i); 

arResult. WriteString(str); 
for(int j='a' ; j<='z' ; j++) 
I 

str. Format(-T('%-8d'), bigramFrequency(i][il); 

arResult. WriteString(str); 

str. Format(-T('%-Bd'), bigramFrequency[i][321). 

arResult. WriteString(str); 
str. Format(-T('%-8d'), bigramFrequency[i)[451); 
arResult. WriteString(str); 
arResult. WriteString(_T('\r\n')); 

//print 32 and 45 
i= 32; 
str. Format(_T('%-8d'), i); 

arResult. WriteString(str); 
for(int j='a' , j<='z' ; j++) 

str. Format(_T('%-8d'), bigramFrequency[i][il); 

arResult. WriteString(str); 

str. Format(-T('%-8d'), bigramFrequency[i][321); 
arResult. WriteString(str); 
str. Format(_T('%-8d'), bigramFrequency[i][451); 
arResult. WriteString(str); 
arResult. WriteString(-T(*\r\n')); 



i= 45: 
str. Format(-T('%-8d'), i); 
arResult. WriteString(str); 
for(int j='a' -. j<='z' ; j++) 

str. Format(-T('%-8d'), bigramFrequency(i][il); 
arResult. WriteString(str); 

str. Format(-T('%-8d'). bigramFrequency[i][321); 
arResult. WriteString(str); 
str. Format(-T('%-8d"), bigramFrequency[i][451)-. 
arResult. WriteString(str); 
arResult. WriteString(-T('\r\n')); 

arResult. WriteString(_T('\r\n\r\n=ý-=ý=ýý-LETTER GRAM-3 
//printf 3-gram 
for(int 1=0; i<256; i++) 

for(int j=O; j<256; j++) 
I 

for(int k=O, k<256; k++) 
1 

if(trigramFrequency[il[jl[kl != 0) 
1 

str. Format(-T('[%d %d %dl=[%dl\r\n'), i, j, k, 
trigramFrequency[i][j][kl); 

arResult. WriteString(str); 

arResult. WriteString(-T('\r\n\r\n--=ýý-WORD GRAM-1ý- 
//printf word frequency 1 
dictCurrPtr = dictBasePtr; 
while(dictCurrPtr->word[Ol != 0) 
I 

if(dictCurrPtr->frq != 0) 
1 

str. Format(-T('[%sl = [%dl\r\n), dictCurrPtr->word, 
dictCurrPtr->frq); 

arResult. WriteString(str). - 
1 
dictCurrPtr++; 

dietCurrPtr = dietBasePtr + 100*1000 + 1; 
while(dictCurrPtr->word[03 != 0) 

if(dietCurrPtr->frq != 0) 
1 

str. Format(_T(»[%sl = [%dl\r\n'), dietCurrPtr->word, 
dietCurrPtr->frq); 

arResult. WriteString(str); 

dictCurrPtr++-, 



arResult. WriteString (-T ('\r\n\r\n===ýýýý-==WORD GRAM-20 
//Printf word frequency 20 

currUnit = headerUnit->next; 
lastUnit = currUnit; 
BOOL isBiBegin 1; 

while(currUnit NULL) 
I 

struct EnDictionary *dictPtrl, *dictPtr2, *dictPtr3, tmpdict; 

memset(tmpdict. word, 0,20); 
if(currUnit->wordSeq[Ol >= 0) 

dictPtrl = dictBasePtr + currUnit->wordSeq[01; 
else 

dictPtrl = &tmpdict; 
if(currUnit->wordSeq[ll >= 0) 

dictPtr2 = dictBasePtr + currUnit->wordSeq[ll; 
else 

dictPtr2 = &tmpdict; 
if(currUnit->wordSeq[21 >= 0) 

dictPtr3 = dictBasePtr + currUnit->wordSeq[21; 
else 

dictPtr3 = &tmpdict; 
if(isBiBegin) 
I 

//if(iriMyArray(dictPtr2->word)) 

str. Format(_T('%sl%s = %d\r\n'), dictPtr2->word, dictPtrl->word, 
currUnit->bifrq); 

arResult. WriteString(str); 

//AfxMessageBox(-j(*after isBiBegin")); 
/*if(currUnit->frq != 0) // never 
I 

str. Format(-T('%sl%sl%s = %d\r\n'), dictPtr3->word, dictPtr2- 
>word, dictPtrl->word, currUnit->frq); 

arResult. WriteString(str)-, 
I*/ 
lastUnit = currUnit; 
currUnit = currUnit->next; 
if(currUnit = NULL) break; 
if((lastUnit->wordSeq[Ol == currUnit->wordSeq(01) && (lastUnit- 

>wordSeq[ll = currUnit->wordSeq[l1)) isBiBegin = 0; 
else isBiBegin = 1; 

I 

arResult. Close 0 
f Result. Close 0: 

I 
else 

return; 

//Flag that indicates whether dialog box is being initialized (FALSE) or data is being 
retrieved (TRUE). 

this->UpdateData(FALSE); 



CEnStatisticsDIg:: OnBnClickedStrokestat 

this->UpdateDatao; // initialize data in a dialog box 

LPCTSTR strFilter = -T('Txt 
Files (*. txt)l*. txtIAll Files 

CFile f; 

CFileDialog FileD1g(TRUE, 
-T('. 

txt»), NULL, 0, strFilter); 

int vkc-nn[I OxO8, OxOD, OxlO, Oxl4, WO, 
WE, 000, Ox3l, Ox32, Ox33, Ox34,005, Ox36, Ox37, 

008, Ox39, 
Ox4l, OA2, OA3, Ox44, OA5, Ox46, Ox47, Ox48, Ox49, 

Ox4A, Ox4B, OAC, Ox4D, Ox4E, OxV, Ox5O, Ox5l, Ox52, Ox53, Ox54, Ox55, Ox56, Ox57, Ox58, Ox59, 
Ox5A, 

OxBA, OxBB, OxBC, OxBD, OxBE, OxBF, OxCO, 
OxDB, OxDC, OxDD, OxDE 

int lvq[] 0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
01 01 01 

0,0,0,0,0,0,0, 
0,0,0,0 

int a[21 [2561 = (0) ; 
while(l) ( 

if ( Fi leDlg. DoModal 0= IDOK 

W f. Open(FileDlg. GetFileName 0, CFile:: modeRead) = FALSE 
return; 

CArchive ar(&f, CArchive:: Ioad); 

Cstring ptr = 
-j("); 

int upORdown = 0, stepup = 0, stepdown = 0; 

while(ar. ReadString(ptr)) 
I 

if(ptr. GetLengthO = 0) continue; 

CString word, strnum-. 

if(! AfxExtractSubString(word, ptr, 0, ' ')) 

continue; 

//AfxMessageBox(word); 
if(word ý 'UP') upORdown = 0; 
else if(word == 'DOWN) upORdown 
else continue; 

int i=0, ta 0, getNum = 0; 

while(Ptr[il 0) 



if((ptr[il >= 
_T('O')) 

&& (ptr[il<=_T('9'))) 

strnum = strnum + ptr[i]: 
getNum = 1; 

else 

if(getNum) 

if (upORdown) 

a[l][stepdown++] += atoi(strnum); 

else 

//AfxMessageBox(strnum); 

a[01[stepup++] += atoi(strnum); 

strnum -T("); 
ta = 0; 
getNum = 0; 

if (strnum != 
-T(")) 

if(upORdown) 

a[l][stepdown++] += atoi(strnum); 

else 

a[ol[stepup++] += atoi(strnum); 

ar. Close 0 
f. Close 0 

else 

break; 

CFile fResult; 
CArchive arResult(&fResult, CArchive:: store); 

TCHAR tmpStr[MAX 
- 
PATH+1001; 

memset(tmpStr, 0, MAX-PATH+100). 

jcscat_s(tmpStr, currDirectory); 

_tcscat-s(tmpStr, 
J("\\Strokestat. txt")); 

if(fResult. Open(tinpStr, CFile:: modeCreatelCFile:: modeWrite) = FALSE) 



MessageBox(-T('Couldnt create the Strokestat. txt file")); 
MessageBox(tmpStr), 
return; 

//AfxMessageBox(-T('step... 1')); 
CString strResult; 
double totup=O, totdown--O, totUPothers=O; 
for(int i=O; M6; i++ 

arResult. WriteString(' 
for(int j=O-. j<16; j++) 

strResult. Format('%8x', i*16+j); 
arResult. WriteString(strResult); 

arResult. WriteString('\r\n 
for(int j=O; j<16; j++) 

strResult. Format 
arResult. WriteString(strResult): 

arResult. WriteString('\r\nUP 
for(int j=O; j<16; j++) 

totup += a[01[i*16+jl, 
strResult. Format(*%8d', a[O]Ei*16+jl); 
arResult. WriteString(strResult); 
int rtn keINvkc-nn(i*16+j, vkc_nn, sizeof(lvq)/sizeof(int)): 
if(rtn -1) 

lvq[rtnl = a[01[i*16+jl; 

else 

totUPothers +-- a[03[i*16+jl; 

arResult. WriteString('\r\nDOWN 
for(int j=O; j<16; j++) 

totdown += a[l][i*16+jl; 
strResult. Format('%8d', a[l1[i*16+jD; 
arResult. WriteString(strResult); 

arResult. WriteString('\r\n\r\n\r\n'); 

double all = 0; 
for(int i=O; i<(sizeof(lvq)/sizeof(int)); i++) 

//strResult. Format('freq[%xl=[%dI [%0.4f percentagel\r\n\r\n, 
vkc-nn[i], lvq[i], double(lvq[il)/totup). 

strResult. Format('%0.4f double(lvq[il)/totup)*, 
arResult. WriteString(strResult); 
all += atof(strResult); 



double ddd = totUPothers/totup; 
//strResult. Format('freq[othersl=[%dI E%0.4f percentagel\r\n\r\n', int(totUPothers), 

ddd) ; 
/Aere we use I-all rather than ddd 
//strResult. Format('\r\n%0.4f = %f\r\n\r\n', ddd, (1.00 - all)); 
strResult. Format('%0.4f\r\n\r\n', (1.00 - all)); 
arResult. WriteString(strResult): 

strResult. Format('TOTAL-UP = [%4. Ofl\r\nTOTAL-DOWN = [%4. Ofl\r\nTOTAL-OTHERS 
[%4. Ofl\r\n', totup, totdown, tottJPothers); 

arResult. WriteString(strResult); 

arResult. Close 0 
fResult. Close 0; 

this->UpdateData(FALSE); 



Appendix C 

MAIN INTELLIGENT KEYBOARD - 
ENGLISH INPUT METHOD 

PROGRAMS 



NAME , FUNCTION 
backpropagationx 

- 
Neural Network BackPoropagation algorithm implementation which has 

backpropagatioý. h been used to rank the word-list based on words frequency and distance which 
is between the typed word and the table words 

backspacex Record the relationship between wrong string and right string into table 
backspacel 4arules' as soon as backspace is typed. That is a many-to-many relationship 

(lefts -> right) and will trigger when a typing complete 
clipboard. c Get string from Clipboard to analyze (count the gram of letters and words 
clipboardl etc) 
DateTimex Date and time processing (e. g. 
DateTime. h 

edpax Main All file (converted to dme after compilation) used as an English IME 

edpa. h Main header file shared by all files 

edpalib. c Two main libraries of edpadll 
handlex 

edpa. def Defines the functions of input method editor api and shared memory - 
'edpasm' 

global-c Define and initialize all global variables shared by files 

globall 
grunx One & two letter gram, two words gram operation 
gmm. h 
imm-C IME Entry fitnctions which are corresponding to edpa. def 
imm. h 
jarox Calculate distance between two words based on Jaro algorithm 
jaro-h 
KeysAround. c Adjacent key press processing (only consider three consecutive letters) 
KeysAround. h 

metaphonex Calculate the similarity of two words based on metaphone algoridim. 
metaphonel 
parameterx Configuration parameters of edpadme 

parameterl 
preprocess. e Pre-process before the typed string is delivered to prediction and correction 
preprocessl 

functions (prolong key press is processed at this stage) 
Correspond to the architecture's pre-processing unit. 

rank. c Uses neural network and heuristic method to rank the word-list 
rank. h 

scheck-e A simple spell checking based on Diego C. Barrientos's function using 
scheck. h Levenshtein Word Distance. 

shortm. c Using short memory to record the particular words (e. g. used recently) and 
shortm. h calculate the ranks 

tcheck. c Tables Operations (used by edpaime) 
tcheck. h 



Appendix D 

NEURAL NETWORKS MODELLING 
RESULTS DIAGRAMS 



N-Gram Prediction - with varying hidden neurons 
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N-Gram Prediction with varying Grams 
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Local Entropy of N-Gram Prediction 
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N-Gram Prediction with noisy 
2-Gram with Noise Rate [0.001] 
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2-Gram with Noise Rate [0.01 
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Appendix E 

INTELLIGENT KEYBOARD - UNITS 
AND MODULES ILLUSTRATION 



No. 1-5, Blue boxes and their connections: represent the system's input and output 
process. A sentence's input should be a process passing through different structure status 
from letter, word to sentence, during which distinct UNITS will be evoked up 
corresponding to the structure status' change. 

The processing units from left to right, which has been marked as light yellow, are named 
as Text prediction unit (No. 6), Inference engine unit (No. 7), Error correction unit (No. 
8), and Natural Language Processing (NLP) unit (No. 9). There are two additional 
modules: Noise process module (No. 10) and User interface module (No. 11), which are 
responsible for the interaction with out environment, here are keyboard and users. 

No. 6, Text Prediction unit: help user reduce the number of keystrokes necessary for a 
typing words. It monitors the input letter-by-letter, and produces a list of words beginning 
with the letter sequence recorded. Each time a letter is added, the list is updated. When 
the target word appears in the list, it can be chosen and inserted into the ongoing text with 
a single keystroke. 

No. 7, Inference Engine unit: as a central unit of the system, it is responsible for 
analyzing user behavior of input, summing up related association rules and maintaining 
user profile. These will run in real-time by applying Neural Network model and statistics; 
database can be further analyzed in background by using other technologies such as data 
mining, which is both time and resource consuming. Inference Engine unit also 
communicate with other units to give user information, system configuration information 
etc. 

No. 8, Error correction unit: deal with the known behaviors of users, such as spell error, 
miss-stroke error, phoneme mistakes with dyslexic. The more behavior is generalized, the 
more modules could be added to this unit. 

No. 9, NLP (Natural Language Processing) unit: This is a reinforce processing unit to 
those errors that can't be analyzed by other units, but could be studied in term of input 
context based on the syntax and semantics analysis. At this stage the unit will not be 
considered so it has been marked in dash line. 

No. 10, Noise process module: provides pre-process for just input data stream, which 
includes analyzing and wiping off illegal letters, composing keys and sending data to 
Text prediction unit and Error correction unit for fin-ther process. It also works with user 
interface unit waiting for typing signal. 

No. 11, User interface module: In order to provide a user-friendly interface, this unit 
would require frequent communication with learning unit. This unit's theoretical basis is 
HCI- 



No. 12, Data storage: the memory of IK is divided into short-term memory and long-term 
memory. The long-term memory has included knowledge base which is represented as a 
set of rules, and facts which are used to match the rules. The rules inferred from Inference 
Engine and some other facts such as user profile and frequently used text dictionary are 
saved in long-term memory database. Other facts such as recently used new words are 
stored in short-term memory which will be turned to long-term memory if a certain 
threshold is reached. All other units are able to communicate with long-term and short- 
term memory directly. 



Appendix F 

VIRTUAL KEY CODES 



Symbolic constant 
name Value (hex) Mouse or keyboard equivalents 
VKLBUTTON 01 Left mouse button 

VK_RBUTTON 02 Right mouse button 

VK_CANCEL 03 Control-break processing 
VK-MBUTTON 04 Middle mouse button (three-button mouse) 
VK_XBUTTON1 05 Windows 2000/ XP/ 2003/ Vista/ 2008: X1 mouse button 
VK_XBUTTON2 06 Windows 2000/XP/2003/Vista/2008: X2 mouse button 

07 Undefined 

VKý_BACK 08 BACKSPACE key 

VK_TAB 09 TAB key 

OA-OB Reserved 

VK-CLEAR 0C CLEAR key 

VK_RETURN OD ENTER key 

OE-OF Undefined 

VKSHIFT 10 SHIFT key 

VK_CONTROL 11 CTRL key 

VK_MENU 12 ALT key 

VKPAUSE 13 PAUSE key 

VK_CAPITAL 14 CAPS LOCK key 

VK_KANA 15 Input Method Editor (IME) Kana mode 
VKHANGUEL 15 IME Hanguel mode (maintained for compatibility; use VK_HANGUL) 
VK_HANGUL 15 IME Hangul mode 

16 Undefined 

VKJUNJA 17 IME Junja mode 

VK_FINAL 18 IME final mode 

VKHANJA 19 IME Hanja mode 

VK_KANJI 19 IME Kanji mode 
1A Undefined 

VK_ESCAPE IB ESC key 

VK-CONVERT 1C IME convert (Reserved for Kanji systems) 
VK_NONCONVERT ID IME nonconvert (Reserved for Kanji systems) 
VK-ACCEPT 1E IME accept (Reserved for Kanji systems) 
VK_MODECHANGE IF IME mode change request (Reserved for Kanji systems) 
VK_SPACE 20 SPACEBAR 

VK-PRIOR 21 PAGE UP key 

VK_NEXT 22 PAGE DOWN key 

VK_END 23 END key 

VK_HOME 24 HOME key 

VK_LEFT 25 LEFT ARROW key 

VK-UP 26 UP ARROW key 

WRIGHT 27 RIGHT ARROW key 

VKDOWN 28 DOWN ARROW key 

VKSELECT 29 SELECT key 

VK_PRINT 2A PRINT key 

VK_EXECUTE 2B EXECUTE key 



VK-SNAPSHOT 2C PRINT SCREEN key for Windows 3.0 and later 

VK-INSERT 2D INS key 

VK_DELETE 2E DEL key 

VKHELP 2F HELP key 

VK_O 30 0 key 

VK-1 31 1 key 

VK-2 32 2 key 

VK_3 33 3 key 

VK-4 34 4 key 

VK-5 35 5 key 

VK-6 36 6 key 

VK_7 37 7 key 

VK_8 38 8 key 

VK-9 39 9 key 

3A-40 Undefined 

VK_A 41 A key 

VK-B 42 B key 

VK-C 43 C key 

VK_D 44 D key 

VK_E 45 E key 

VK-F 46 F key 

VK_G 47 G key 

VK-H 48 H key 

VK-I 49 1 key 

VK-J 4A 3 key 

VK_K 4B K key 

VK_L 4C L key 

VK-M 4D M key 

VK_N 4E N key 

VK-O 4F 0 key 

VK-P 50 P key 

VK-Q 51 Q key 

VK-R 52 R key 

VK-S 53 S key 

VK_T 54 T key 

VK-L1 55 U key 

VK-V 56 V key 

VK-W 57 W key 

VK-X 58 X key 

VK-Y 59 Y key 

VK-Z 5A Z key 

VK-LWIN 5B Left Wlndows key (Microsoft Natural Keyboard) 

VK-RWIN 5C Right Windows key (Microsoft Natural Keyboard) 

VK_APPS 5D Applications key (Microsoft Natural Keyboard) 

5E Reserved 

VK_SLEEP 5F Computer Sleep key 

VK_NUMPADO 60 Numeric keypad 0 key 



VK-NUMPADI 61 Numeric keypad 1 key 

VK-NUMPAD2 62 Numeric keypad 2 key 

VK-NUMPAD3 63 Numeric keypad 3 key 

VKNUMPAD4 64 Numeric keypad 4 key 

VK-NUMPAD5 65 Numeric keypad 5 key 

VKNUMPAD6 66 Numeric keypad 6 key 

VK-NUMPAD7 67 Numeric keypad 7 key 

VKNUMPAD8 68 Numeric keypad 8 key 

VKNUMPAD9 69 Numeric keypad 9 key 

VK-MULTIPLY 6A Multiply key 

VK-ADD 68 Add key 

VK-SEPARATOR 6C Separator key 

VK-SUBTRACT 6D Subtract key 

VK-DECIMAL 6E Decimal key 

VK_DIVIDE 61F Divide key 

VK-F1 70 F1 key 

VK_F2 71 F2 key 

VK-F3 72 F3 key 

VK-F4 73 F4 key 

VK-F5 74 F5 key 

VK-F6 75 F6 key 

VK-F7 76 F7 key 

VK-F8 77 F8 key 

VK-F9 78 F9 key 

VK-FIO 79 F10 key 

VK_FI1 7A F11 key 

VKJ12 7B F12 key 

VKJ13 7C F13 key 

VK_F14 7D F14 key 

VK_F15 7E F15 key 

VK_F16 7F F16 key 

VK1717 80H F17 key 

VK_FI8 81H F18 key 

VK-F19 82H F19 key 

VK-F20 83H F20 key 

VKF21 84H F21 key 

VK-F22 85H F22 key 

VKJ23 86H F23 key 

VK-F24 87H F24 key 

88-8F Unassigned 

VK_NUMLOCK 90 NUM LOCK key 

VK-SCROLL 91 SCROLL LOCK key 

VK_OEM_NEC_EQUAL 92 NEC PC-9800 kbd definitions: key on numpad 

VK_OEM_FJJISHO 92 Fujitsu/OASYS kbd definitions: 'Dictionary' key 

VK_OEM_FJ_MASSHOU 93 Fujitsu/OASYS kbd definitions: 'Unregister word' key 

VK_OEM_F1_TOUROKU 94 Fujitsu/OASYS kbd definitions: 'Register word' key 

VK OEM-FJ-LOYA 95 Fujitsu/OASYS kbd definitions: 'Left OYAYUBF key 



VK_OEM_FJ_ROYA 96 Fujitsu/OASYS kbd definitions: 'Right OYAYUBI' key 

97-9F Unassigned 

VK_LSHIFT AO Left SHIFT key 

VK_RSHIFT Al Right SHIFT key 

VKLCONTROL A2 Left CONTROL key 

VK_RCONTROL A3 Right CONTROL key 

VKLMENU A4 Left MENU key 

VK_RMENU A5 Right MENU key 

VKBROWSER BACK A6 Windows 2000/XP/2003/Vista/2008: Browser Back key 

VK_BROWSERFORWARD A7 Windows 2000/XP/2003/Vista/2008: Browser Forward key 

VK-BROWSER-REFRESH AB Windows 2000/XP/2003/Vista/2008: Browser Refresh key 

VK_BROWSER_STOP A9 Windows 2000/XP/2003/Vista/2008: Browser Stop key 

VKBROWSER SEARCH AA Windows 2000/XP/2003/Vista/2008: Browser Search key 

VK_BROWSER_FAVORITES AB Windows 2000/XP/2003/Vista/2008: Browser Favorites key 

VK-BROWSER-HOME AC Windows 2000/ XP/ 2003/ Vista/ 2008: Browser Start and Home key 

VK_VOLUMEMUTE AD Windows 2000/XP/2003/Vista/2008: Volume Mute key 

VK_VOLUME-DOWN AE Windows 2000/XP/2003/Vista/2008: Volume Down key 

VKVOLUMEUP AF Windows 2000/XP/2003/Vista/2008: Volume Up key 

VKMEDIANEXT TRACK BO Windows 2000/ XP/ 2003/Vista/ 2008: Next Track key 

VKMEDIAPREV TRACK B1 Windows 2000/ XlP/ 2003/ Vista/ 2008: Previous Track key 

VK_MEDIA-STOP B2 Windows 2000/XP/2003/Vista/2008: Stop Media key 

VK-MEDIA_PLAY-PAUSE B3 Windows 2000/XP/2003/Vista/2008: Play/Pause Media key 

VKLAUNCH MAIL B4 Windows 2000/ XIP/ 2003/ Vista/ 2008; Start Mail key 

VK_LAUNCH_MEDIA SELECT B5 Windows 2000/XP/2003/VWa/2008: Select Media key 

VK_LAUNCH-APPI B6 Windows 2000/XP/2003/Vista/2008: Start Application 1 key 

VK_LAUNCH-APP2 87 Windows 2000/XP/2003/Vista/2008: Start Application 2 key 

B8-B9 Reserved 

VK_OEM_1 BA Windows 2000/XP/2003/Vista/2008: For the US standard keyboard, 
the ';: ' key 

VK_OEM-PLUS BB Windows 2000/XP/2003/Vista/2008: For any country/region, the'+' 
key 

VK_OEM_COMMA BC Windows 2000/XP/2003/Vista/2008: For any country/region, the', ' 
key 

VK_OEM-MINUS BD Windows 2000/XP/2003/Vista/2008: For any country/region, the'-' 
key 

VK_OEM_PERIOD BE Windows 2000/XP/2003/Vista/2008: For any country/region, the 
key 

VK_OEM_2 BF Windows 2000/XP/2003/Vista/2008: For the US standard keyboard, 
the '/? ' key 

V1K_OEM_3 Co Windows 2000/ XP/ 2003 /Vista/ 2008: For the US standard keyboard, 
the " -' key 

CI-D7 Reserved 

D8-DA. Unassigned 

VK_OEM_4 DB Windows 2000/XP/2003/Vista/2008: For the US standard keyboard, 
the '[ý' key 

VK_OEM_5 DC Windows 2000/XP/2003/Vista/2008: For the US standard keyboard, 
the'\I' key 

VK_OEM_6 DD Windows 2000/XP/2003/Vista/2008: For the US standard keyboard, 
the '11' key 

VK_OEM_7 DE Windows 2000/XP/2003/Vista/2008: For the US standard keyboard, 
the 'single -q uote/dou ble-q u ote' key 



VK_OEM_8 DF Used for miscellaneous characters; it can vary by keyboard. 

EO Reserved 

El OEM specific 

VK-OEM-102 E2 Windows 2000/XP/2003/Vista/2008: Either the angle bracket key or 
the backslash key on the RT 102-key keyboard 

E3-E4 OEM specific 

VK_PRCICESSKEY E5 Windows 9S/98/Me, Windows INT/ 2000/ XP/ 2003/ Vista/ 2008: IME 
PROCESS key 

E6 OEM specific 

VK_PACKET E7 Windows 2000/XP/2003/Vista/2008: Used to pass Unicode characters 
as if they were keystrokes. The VK 

- 
PACKET key is the low word of a 32-bit 

Virtual Key value used for non-keyboard input methods. For more 
information, see Remark in KEYBDINPUT, SendInput 

, WM-KEYDOWN 
, and WM-KEYUP 

E8 Unassigned 

VK_OEM_RESET E9 Only used by Nokia. 

VK_OEM-JUMP EA Only used by Nokia. 

VK_OEM_PAI EB Only used by Nokia. 

VK_OEM_PA2 EC Only used by Nokia. 

VK_OEM_PA3 ED Only used by Nokia. 

VK_OEM_WSCTRL EE Only used by Nokia. 

VK OEM-CUSEL EF Only used by Nokia. 

VK_OEM_ATTN FO Only used by Nokia. 

VK_OEM-FINNISH F1 Only used by Nokia. 

VK OEM-COPY F2 Only used by Nokia. 

VK_OEM-AUTO F3 Only used by Nokia. 

VKOEM ENILW F4 Only used by Nokia. 

VK_OEM_BACKTAB F5 Only used by Nokia. 

VK_ATTN F6 Attn key 

VK_CRSEL F7 CrSelkey 

VK-EXSEL F8 ExSelkey 

VK_EREOF F9 Erase EOF key 

VK-PLAY FA Play key 

VK_ZOCIM FB Zoom key 

VK_NONAME FC Reserved for future use. 

VKPAI FD PA1 key 

VK_OEM_CLEAR FE Clear key 

FF Multimedia keys. See ScanCode keys. 

* Colored in orange (in all 53 VKCs) are specially considered by some neural network models in the research. 
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Evolutionary Ranking on Multiple Word Correction 
Algorithms Using Neural Network Approach 
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Abstract. Multiple algorithms have been developed to correct user's typing 
mistakes. However, an optimum solution is hardly identified among them. 
Moreover, these solutions rarely produce a single answer or share common 
results, and the answers may change with time and context. These have led this 
research to combine some distinct word correction algorithms to produce an 
optimal prediction based on database updates and neural network learning. In 
this paper, three distinct typing correction algorithms are integrated as a pilot 
research. Key factors including Time Change, Context Change and User 
Feedback am considered. Experimental results show that 5730% Ranking First 
Hitting Rate (1111) with the samples of category one and a best Ranking First 
I litting Rate of 74.691/o within category four are achieved. 

Keywords: Neural Network, Metaphone, Levenshtein distance, word 2-grarn, 
Jaro distance, Jaro-Winkler distance, ranking First Hitting Rate. 

Introduction 

Computer users inevitably make typing mistakes. These may be seen as spelling 
errors, prolong key press and adjacent key press errors etc [1]. Multiple solutions such 
as Metaphone [2] and n-grams [31 have been developed to correct user's typing 
mistakes, and each of them may have its unique features. However, an optimum 
solution is hardly identified among them. Therefore, it is desired to develop a hybrid 
solution based on combining these technologies, which can put all merits of those 
distinct solutions together. 

Moreover, each function may rarely generate a single answer, let alone multiple 
functions which may produce a larger list of suggestions. This requires developing an 
evolutionary and adjustable approach to prioritize the suggestions in this list. Also, 
the answers may change within different context; and the solutions are also required 
to evolve based on user's feedbacks. Therefore, this research is motivated by the 
requirement of combining distinct word correction algorithms and subsequently 
producing an optimal prediction based on dataset updates and neural network learning 
process. 



2 Typing Correction Functions 

There are many types of errors caused by users, for example, spelling errors, hitting 
adjacent key and cognitive difficulties. Some efforts have been made based on 
different technologies such as spell checking, natural language processing and control 
signals filter. In this paper, a pilot research is carried out and three distinct algorithms 
(referred to as L. M. T), namely, Levenshtein word distance algorithm [41, Metaphone 
algorithm, and 2-gram word algorithm are used. 

Metaphone is a phonetic algorithm indexing words by their sound, which can be 
adjusted to correct typing errors. These are two examples, 

able -> APL 
hello-> HL 

The right side of the arrow is words' phonetic keys. Lets assume that a user 
intends to type a word 'hcllo' but mistakenly typed 'hallo' instead, whose phonetic 
keys are identical. Subsequently, the system is able to index and retrieve possible 
words from the database based on the phonetic key and present them to a user for 
selection. 

Lcvenshtein distance is another function that needs to be explored. It is designed 
based on the calculation of minimum number of operations required to transform one 
string into another, where an operation is an insertion, deletion, or substitution of a 
single character, for instance, 

hello <-> hallo //the string distance is one 
hello <-> all //the string distance is three 

After a comparison with each string stored in the memory, the pair with the least 
distance can be considered as having the highest similarity, and then the one or the 
group with the least distance can be presented through the user interface module. 

Word 2-gram (i. e. word digrarn or word bigram) is groups of two consecutive 
words, and is very commonly used as the basis for simple statistical analysis of text. 
For instance, given a sentence, 'I am a student' , some word 2-grarn samples are, 

I am 
am a 

For example, under an ideal condition, 'am' can be predicted if its predecessor 'I' 
is typed. Then the predicted word 'am' can be used to make sure that user types it 
correctly. 

Another similar method to Levenshtein distance is Jaro metric [5]. The Jaro 
distance metric states that, given two strings s, and s2, two characters a. bj from s, and 
s2 respectively are considered matching only if, 

min (Is, 1, Is, 1) min (I s, 1,1 s, 1) 
1- 

2 :5+2 



then their distance d is calculated as, 
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Where I s; sý I are the numbers of sl matching s2 and s2 matching s, characters 

respectively, and I is the number of transpositions. 
A variant of Jaro metric uses a prefix scale p, which is the longest common prefix 

of string s, and s2. Let's define Jaro distance as d, then Jaro-Winkler [6] distance can 
be def i ned as, 

max(p, 4) 
Jaro - Winkler(d +-* (I - d)) (3) 

10 

The result of the Jaro-Winkler distance metric is normalized into the range of [0,1]. 
It is designed and best suited for short strings. 

3 Word List Neural Network Ranking and Definitions 

As the above solutions rarely produce a single answer or share common results, this 
implies that a combination will definitely be a more accurate solution. However, it 
requires a word-list with words priority rather than a single word to be generated. For 
instance, a user intends to type a word 'hello' but mistakenly typed 'hallo' instead. 
Let's assume that two functions, namely, Metaphone method and Levenshtein 
distance are integrated together and the correction results are produced as follows, 

Metaphone: 'hello', 'hall' 
Levenshtein distance: 'hello', 'all', 'allow' 

Then a words list with 'hcllo', 'hall', 'all' and 'allow' is made available to the user. 
It is evident that a ranking algorithm computing each individual's priority is necessary 
before a word list is presented to a user. 

In a real-time interaction, it requires that the word-list priority computation is able 
to adapt itself timely based on the user behavior and some other factors. In practice, 
this can be simplified by considering the word-list priority computation as a function 
of three variables: Time Change, Context Change and User Feedback. Therefore, a 
ranking algorithm, which is able to learn from user's selection and context changing 
over time, and subsequently adjust its weights, can be developed. In this research, 
these three variables are further quantified and represented by frequency increase, 
word 2-gram statistic and a supervised learning algorithm respectively, and 
subsequently a novel Word List Ranking neural network model associated with the 
variables is developed. The definitions introduced below are useful as they are part of 
the rules which dictate the whole process. 



First Rank Conversion Values and First Hitting Rate definition: In a 
neural network post processing, if its output follows a 'winner takes all' 
strategy, that is, the maximum value in output is converted into one and the 
rest values are converted into zeros, then the converted elements are named 
as First Rank Conversion Values. Given testing metrics P, target metrics T 
and testing result metrics R where their numbers of lines and columns are 
equal and expressed as n, m respectively, then the Hitting Rate 
is 11R = (hý I hý = zeros(T - R, )In, i r= m) , where R, is the i6 Rank 
Conversion Values of R, zeroso is the function to compute the number of 
zero vector included in metrics, and the First Hitting Rate is hý . 

Word-List n-formula Prediction definition: Let's assume that one has 
distinct algorithms set A=, where 1: 5 i: 5 n and i, n are 
positive integers. To process a sequence s, if there exists a one-to-many 
mapping (s 

-+ Q) associated with algorithm a, between input and output, 

where 0, = 
(oj II :ýj :5m, 

I, 
oj is a generated sequence from the 

algorithm, and J^ are positive integers, then one has : Lm, 
sequence 

generated and the sequence set is defined as Word-List. The process based 
on the use of n algorithms to generate a word-list is called n-formula 
Prediction. 

Word-List Success Prediction Rate Definition: Given a word list 
generated by several algorithms to correct a wrong typing, if the intended 
word is in the word list, then it is a Success Prediction. If there is a set of 
wrong typing, the proportion between the number of Success Prediction and 
wrong typing is called Word-List Success Prediction Rate (SP Rate). Let's 
define the number of Success Prediction as ol and the number of wrong 
typing as o2, then one has oi:! ýo2 and SP Rate = oj/67. 

Simulation Rate Derinition: Given natural numbers i, m, a where i: 5 n 
and m: 5 n, let's simulate a testing dataset p,... P,... p. with a trained neural 

network, and its target dataset, 1, ... if output has m elements 

which are r, = t,, then the Simulation Rate (SM Rate) is m1n. Given Word- 
List Success Prediction Rate SP and Simulation Rate SK then the First 
Ifilling Rate - SP * SM. 

As illustrated above, a word correction function can combine multiple algorithms 
and all of them produce their self-interpreted results independently, which is the so- 
called Word-List n-formula Prediction. The results could be rarely similar while a 



user may require only one of them if Success Prediction is fulfilled. So a functional 
ranking model will play a major role to present an efficient word list with priority. if 
one considers the leaming factor required by a word list and variability of its related 
datasct, a neural network model is a good choice with the dataset being constantly 
updated. 

In L. M. T combination, Levenshtein word distance algorithm calculates the 
similarity between each two words, where all the most similar ones are presented, 
Metaphoric algorithm retrieves words based on phonetic index while word 2-gram 
algorithm retrieves them based on last typed word index. From the definition of 
Word-list n-formula prediction, L. M. T correction can be referred to as Word-List 3- 
formula Prediction. Let's use the example shown below, where the word 'shall' is 
wrongly typed as 'sahlP. 

Tomorrow sahll we go to the park? 

and assume that a database, which includes a ]-grarn & 2-gram. table, has been 
initialized by a sentence, 

Out of your shell! Tomorrow all of us shall 
start a new training. 

Then, L. M. T correction result of word 'sahIr based on 2-grarn word algorithm is 
'al, r, the correction results based on Metaphone algorithm are 'shaIr and 'sheIr and 
the correction results based on Levenshtein word distance algorithm are 'all' and 
6shaff. 

4 Word List Neural Network Ranking Modelling 

Let's suppose that, corresponding to every wrong typing, each algorithm generates a 
maximum of two words in a descending frequency order. Each word is represented by 
its two features: word frequency and word similarity values. In a real-time database, 
the word frequency is updated along with user typing. Both, word frequency and word 
similarity datasets are normalized before the neural network training and testing. 

In this paper, a neural network model with 12-3-6 three layer structure is developed 
as shown in Figure 1, where the number of the input layer neurons is determined by 
the expression: Number of Algorithms (=3) * Number of Words predicted (=2) * 
Number of Features of each word (-2). The model is named as word list neural 
network ranking (WLR) model and BackPropagation algorithm is adopted as its 
learning algorithm. Each algorithm generates two predictions based on the input, 
which is a wrongly typed word. Each prediction is represented by its two features, 
namely, Jaro-Winkler distance and word frequency. 

Generally speaking, WLR model is designed to predict a highest ranked word 
amongst every six recommendations. Then, a ranking issue is converted to a neural 
network classification question solving issue. At the output layer of WLR model, 
there is only one neuron fired once at a time. To normalize the difference between the 



typed word and a predicted word, Jaro-Winkler metric is applied. It normalizes words 
difference also called words similarity value, into a range ofJO, 1]. Another parameter: 
word frequency, is normalized by Normal Probability Density function based on 
frequencies' mean value and standard deviation. 

I 
N 

Input layer -12 

0 
U 
T 
P 
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Fig. 1. 'Me circles in blue are neurons of WLR model; the circles in grey are predicted words; 
the three rectangles represent the three algorithms. namely, Levenshtein distance, Metaphone 
and 2-gram, the shapes in yellow show the input and the output of WLR model. 

An application and its related Access database are developed to generate an 
experimental dataset for WLR model. The related database has been initialized by, 
words' /& 2-grarn frequency statistics of a novel - 'Far from the Madding Crowd' 
171181 before the experimental dataset is generated. The database initialization has 
fiollowed these rules, 

*A word is defined as a sequence ofalphabets between two separators. 
* Any symbols are considered as a separator except alphabets. 
* ALL uppercase are converted info lowercase, e. g. 'ff' 4 'if, then '11"is 

counted as 'if' 
* Other special cases are not considered For example, 'read' and 

I reading'are considered as two independent words. 

Based on these rules, the word dictionary table and 2-gram dictionary table 
including their words occurrences are initialized in the Access database. Moreover. 
for database elliciency purpose, all the 2-gram records whose occurrences are less 
than two are eliminated. Overall, about 79.10% ol'all 2-grarn records are eliminated. 
This will only produce a very limited influence on the performance of WLR model if 



one considers thousands of repetitive trials in a neural network training and testing. 
The occurrences ofthe words* /& 2-gram are kept updated along with user's typing 
progress (it' there is a new 2-gram generated, the 2-grarn and its occurrence will be 
inserted into the database). Theretbre, these updated frequencies can well represent a 
user's temporal typing state captured and stored in a database. 

As a simulation to dyslexic's typing, a testing sample [91 is used as the 
experimental dataset for WLR model as shown below, 

-24-- -25- -9--", -29- -2--- 

ýýf üý s, -� ýýe 

0 -ZS 
-0- -2S- -8-1 

Fig. 2. The numbers in red and black indicate words / and 2-grarn frequencies respectively 

As shown in Figure 2, some words within sentences are wrongly typed, such as 
'hvac' (should be 'have') and 'raed' (should be 'read'). The numbers which are right 
under each word (in red) indicate the frequency of the word after the database 
initial ization. For example, the frequency ofthe word 'If' is 414 and the frequency of 
the word 'you' is 1501 in the database. The numbers in black indicate the 2-gram 
frequency between two consecutive words. For example, the frequency between the 
first two words'lt' and 'you' is eighty-five, shown as 'I --- 85--- 

Let's assume the frequencies of the words shown above gradually increases in the 
database while other words are rarely typed. Consequently, the change of other 
words' frequencies will not have a big effect on the algorithms. Therefore. a 
simulation can be performed by using the testing dataset which has ignored the 
influence brought by other words' frequency changes. In this research, 5505 trials of 
test samples are inserted into the database gradually without considering other words' 
frequency changes. 

Let's define a sampling point as a starting point of sampling in these 5505 trials, 
and define a sampling step as a gap between two consecutive sampling actions. 



Twenty live sampling points are set up to collect the three algorithms' prediction 
results. Only those wrongly typed and completed words are considered at every 
sampling point. For example. the prediction results for words such as 'hvae* and 
-raed' are collected, while the prediction results I-or right words such as *ir, 'you" and 
uncompleted words such as 'hva' of"hvae" are ignored. At each sampling point, the 
wholc dataset are gathered and called a sample. Then, twenty five samples are 
gathered. The determination of sampling points and sampling step is based on a 
heuristics method. which shows that the influence of initial frequency updating is 
essential while further updating influence is waning. 

Figure 3 illustrates the sampling procedure, which are classified in four categories 
10-; ý5.10450.554505.1505-; ý55051. As illustrated, the influence of frequency 
updating is waning from one category to another although the sampling steps are 
actually increasing. The four categories are shown in red lines of Figure 3. For 
instance, five samples have been collected with the frequency being changed from 
zcro to five (i. e. the sampling step is one), and ten samples are collected when the 
frequency changed from 55 to 505 (i. e. the sampling step is 50). 

Frequency of updating 

Fig. 3. X-axis refers to the frequency of the whole sample; y-axis refers to the numbers of 
sampling. 

The first two subsets of'sampie one are shown in Figure 4, which lists the predicted 
results ol'two mistakenly typed words, which are 'hvac' and 'raed'. 

Fig. 4. First line is a comment which marks the three algorithms names and 'output'. The rest 
are two prediction results based on the three algorithms. 

.5 
10 50 55 505 1505 . 550-5 



As shown in the columns of Figure 4, each of the three algorithms has generated 
two predicted words. For instance, Levenshtein word distance algorithm gives two 
suggestions to the word - 'hvae', which are 'have' and 'hae'. Next to each word, the 
word's frequency and the similarity values to the target word are displayed. For 
example, the frequency of the word 'have' is 679 and its similarity to 'hvae' is 0.925. 

The last six columns of Figure 4 clearly show the required output for WLR neural 
network model. Each of those columns corresponds to one of the words that those 
three algorithms could generate. If the prediction is true, the corresponding column is 
set to one, otherwise it is set to zero. For example, the first line of Figure 4 is a 
prediction for mistakenly typed word 'hvae' while among the six predictions only the 
first result of Levenshtein word distance algorithm is a correct prediction, therefore 
the first column of the output is set to one while others are set to zeros. By default, the 
processing stops at the first '1', and the others will be set to zeros. So the output will 
have a maximum of one']'. 

The data shown in Figure 4 still can not be used by WLR model directly, as further 
pre-processing is required. Therefore the following procedures are applied. 

+ Delete the redundancy such as the words ofeach line. 
* Normalize all frequencies by applying Normal probability density 

function 
* Apply missing data processing rules where it is needed - If some 

algorithms'prediction results are less than two items, then 1hefrequency 
and similarity values of the missing items will be set to zeros instead, if 
none of the algorithms are able to generate results, then this line will be 
deleted 

The sampling points are set up according to a heuristic method which analyzes the 
frequency distribution of the database. For example, the first five frequency updating 
procedures are considered to be more influential than the case when the frequency 
changes significantly (e. g. >1000). So, the sampling step of the first five is set to one 
while the rest are sparser. 

In this experiment a vector [5,5.10,5] of samples are collected from the four 
categories and their sampling steps are set to [1,10,50,1000]. For example, the first 
f ive samples are collected in a step distance of one, the third ten samples are collected 
in a step distance of fifty. 

The dataset is further separated into training dataset [4,4,7.3], and testing dataset 
[1,1.3.2]. The post-processing of WLR model follows awinner takes all' rule - the 
neuron which has the biggest value among the six outputs are set to one while others 
are set to zeros. 

After the training process, the Hitting Rates of the testing dataset associated with 
each category are shown in Figure 5. 
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Fig. 5. X-axis refers to the increase of words frequency difference, y-axis refers to the Hitting 
Rate ot'WI. R model ranking. 

Figure 5 shows that the samples are separated into four categories based on the step 
distance of 11,10,50,10001. For example, the first histogram shows a 57.50% 
Ranking First Hitting Rate with the samples of category one; the fourth histogram 
shows a best achievement of 74.69% Ranking First Hitting Rate with more samples 
collected between frequency 1505 and 5505 in five separated sampling points. Figure 
5 shows an increase of ranking I litting Rate as words frequency difference and the 
amount of testing samples increase. This is also partly influenced by the three 
algorithms previously introduced with learning factors. All the algorithms are 
adjusting gradually toward a better prediction rate as trials increase. 

Conclusion 

In this paper a hybrid solution based on multiple typing correction algorithms and a 
Word List Neural Network Ranking model to produce an optimal prediction are 
presented. Three distinct algorithms, namely, Metaphoric, Levenshtein distance and 
word 2-gram are used in a pilot study. Several key factors including Time Change, 
Context Change and User Feedback are considered. Experimental results show that 
57.50% ranking First Hitting Rate with initial samples is achieved. Further testing 
with updated samples indicates a best ranking First Hitting Rate of 74.69%. The 
findings demonstrate that neural network as a learning tool, can provide an optimum 
solution through combining distinct algorithms to learn and subsequently to adapt to 
reach a high ranking Hitting Rate performance. This may inspire more researchers to 
use a similar approach in some other applications. 
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In practice, an application using WLR theory can be implemented based on 
propagating rewards to each algorithm and/or word. Currently WLR model adjusts its 
ranking based on the change of word frequency and similarity. In the future, more 
parameters such as time element and more typing correction algorithms can be added 
to achieve a better performance. 
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ABSTRACT 

User's typing stream contains all the information of user's interaction with computer by using QWERTY keyboard, 
which may include usefs vocabulary, typing habit and typing performance. This paper suggests a Focused Time-Delay 
Neural Network model to analyze plain text and user's historical typing data. The experimental results demonstrate 
about 50% First Three (FT) I litting Rate, which can be explored to both typing prediction and correction. 

KEYWORDS 

Focused Time-Delay Neural Network, Unary Coding, First Rank Conversion Values, Hitting Rate, FT Hitting Rate. 

4. INTRODUCTION 

User's typing stream generated from using computer QWERTY keyboard is a reflection of user's typing 
behavior that includes user's particular vocabulary, typing habit and typing performance. For example, 
research shows disabled keyboard users have more various performance and make more various mistakes 
(e. g. prolong key press and adjacent key press [1]) than others. Computer users inevitably make errors [2] 
and their typing stream implies all users' self-rectification actions. 

N-gram prediction model is a type of probabilistic model for predicting the next item in a sequence [3]. 
It is widely adopted in natural language processing. But most current language modeling research have 
been using samples collected from some large corpus. Soukoreff and MacKenzie [4] argued that the corpus 
text is not a representative of user language, and it ignores the editing process and does not capture input 
modalities. 

This research explores a Focused Time-Delay Neural Network (FTDNN) model to predict user's typing 
intention within a Virtual Key Code character set based on the historical typing data from Windows users. 
N-gram prediction can be achieved by using adjusted time delay neural network model and correction can 
be achieved in the same way by considering the correction as a type of predictions, which produces the 
right symbol based on the inaccurate historical data. 

5. FOUCUSED TIME-DELAY NUERAL NETWORK MODELLING 

2.1 N-gram prediction and FTDNN 

N-gram prediction definition: let's assume existing string S= {s.. s,. sjs,. s. I i:! ý i :5k :5 m) and 

(j - 1) = n, (k - j) = I, where s,, sj, sk are symbols and 4 j, k 1, m, n are natural numbers, if one build a 

relation R. = Ix, yIx= (s 
... S). -4 y= (s.., -> sk), } , then we call the relation as n-gram's 

I- prediction; if one consider I=I the special case, then it's called n-gram's one-prediction, in brief, n- 
gram prediction. For example, given string S= (student), some 2-grain prediction cases are, 
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The Focused Time-Delay Neural Network [5] [6] consists of a feed-forward network with a tapped 
delay line at the input. It is part of a class of dynamic networks called focused networks, in which the 
dynamics appear only at the input layer. This network is well suited to time-series prediction. 

Studying user's typing behavior would require the network to study user's history and trace back to 
certain length of context (n-gram) to predict the next probable occurrence. Adding one more gram requires 
one more time delay. Experiment has shown the FTDNN is more reliable than some other networks in 
response to time and memory requirement [5]. 

2.2 Network design and data processing 
Two datasets have been used in this research: dataset one - novel 'Far from the Madding Crowd (1874)' 
and dataset two - Disability Essex [7] helpline keystroke log. The novel was written by Thomas Hardy [8]. 
It has been used as a testing sample by some compression algorithm researchers. The version used here is 
from Calgary Corpus [9] with a size of 75 1 kb. The computer of Disability Essex helpline has been used as 
a question recording, database querying and email tool by a disabled volunteer. As discovered in the log, 
the typing mistakes are predominately about adjacent key press and prolong key press errors. KeyCapture 
software [10] is modified to record user's typing log. It runs under Windows background and records 
keystrokes without interfering with user's work. A typical sample of the log is demonstrated below. 

01929 Keypress 20080605-132149-593 IT, Status-(down) Key(84) Extr&(Oxld) KeyDIstance(3.500000) TlmG&V(307) 
01930 KerPress 20080603-132149-635 IT* Status-(Up) Rer(ed) Extra(OXV014) RoyDistance(O. 000000) TimwGap(62) 
01931 Rwress 20080603-132149-630 In' Status-(down) Key(72) Extra(Ox23) KeyDintarkce(2.500000) TlmG&V(3) 
01932 Keypreffis 20080605-132149-694 Im" Status-(up) Key(72) Extra(0=023) KOYDIstance(O. 000000) Tln*Gap(36) 
01933 Rerpress 20080605-132149-804 W Status-(dmm) Key(65) Extr&(OKle) KeyDistance(S. 000000) ylmmGap(110ý 

01934 KeyPress 20080603-132149-992 *A" St&tUs-(UP) Ker(63) Extr&(UxcUle) KeyDlstance(O. 000000) TlmGap(IBB) 

As raw data, the gathered dataset need to be preprocessed before it can be used by FTDNN model to 
simulate the probability of each predicted symbol. Let's suppose to model a data sequence 
C= (S 

.... S,... s,, ) on an alphabet basis of size A=Ia,..., z) , where s, EA. Two input coding methods 
based on unary code and ASCII code can be considered. A sample is shown in Table 2.2.1, 

Table 2.2.1. Unary coding and ASCII coding sample 
Alphabet Unary Eoding ASCII Coding 
a 1 97 =01100001 
b 01 98 =01100010 
C 001 99 =01100011 
d 0001 100=01100100 
e 00001 101=01100101 

Unary coding is an entropy encoding [11] that represents a symbol by using n- I zeros followed by a 
one. From Table 2.2.1, 'a' is represented by a one while V is represented by two zeros followed by a one. 
The ASCII code uses a fixed length (here 8 bits) to stand for a symbol. As shown in the table, 'a' is 
represented by 01100001 which consist of three ones and five zeros. The unary codes can be adapted to a 
fixed length to fit the requirement of neural network unchanging number of input neurons. Let's consider a 
data set with three symbols (a, b, c), and then one can code it as fixed unary codes, (100,010,001). 

A twenty-seven symbols set (a ... z, space) is applied to dataset one. A preprocessing logic followed by 
an example is illustrated below, 

for each symbol S, e context C, where C= Is, 
... SO 



Y'a' < si < 'z'then write unary code lofile 

else if 'A'< s, < Wfhen convert to (a,..., z} and write unary code toftle 
else convert to blank and write unary code toftle 

%abcdefgh ij klmnopqr stuvwxyz " 
000000000000000000010000000 %It, 
000000010000000000000000000 Wh' 
000010000000000000000000000 We' 

At the output a post-processing function is used to generate unary code by ranking the twenty-seven 
outputs in a descending order. The output of the sample above is presented below: 

0.02 0.03 0.010.010.010.010.010.88 0.010.010.010.010.010.01 
- 0.01 0.01 0.01 0.01 0.010.01 0.01 0.01 0.01 0.01 0.01 0.01 
0.01 

0.02 0.04 0.010.010.97 0.010.010.010.010.010.010.010.010.01 
- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
0.01 

0.03 0.010.010.010.010.010.010.010.010.010.010.010.02 0.01 
- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.79 0.01 
0.01 

Firstly the maximum value of each line is converted into one and the rest values are converted into 
zeros. This is named as First Rank Conversion Values as shown below. The unary code, which is converted 
based on second biggest value among output, is named as Second Rank Conversion Values and so on. 

%abcdefgh ij klmnopqr stuvwxyz " 
000000010000000000000000000 %h' 
000010000000000000000000000 We' 
000000000000000000000000100 %y 

Then, according to the 2-gram prediction model the relationship between input and output is shown as, 

it f 
Ih I 
'e 

A piece of data (100k) is extracted from dataset one. It is subsequently divided into training data, 
validation data and testing data. For this n-grain prediction model, a three-layer Focused Time-Delay 
Neural Network with twenty-seven input neurons, twenty-seven output neurons, extendible numbers of 
hidden layer neurons and extendible numbers of time delays is designed. Both input and output are encoded 
in unary code. A piece of software is designed to extract Virtual Key Codes [12] values according to the 
keystroke status from dataset two. In this research only the most commonly used fifty-three Virtual Key 
Codes are adopted, others such as arrows and functional keys are deleted from the log. Then the three-layer 
Focused Time-Delay Neural Network model is adjusted to have fifty-three input neurons and fifty-three 
output neurons. 

2.3 Experimental results 

In order to evaluate the experimental results, two concepts are introduced here namely, Hitting Rate (HR) 
and First Three (FT) Hitting Rate. Given testing metrics P, target metrics T and testing result metrics R 
where their numbers of lines and columns are equal and expressed as n, m respectively, then the Hitting 



Rate is HR = {hr, I hr, = zeros(T - A)/n, iE m} , where A is the th Rank Conversion Values of R, 

zeroso is the function to compute the number of zero vector included in metrics, obviously the sum of all 

Hitting Rates is HR hr, = 100%. Then the First Hitting Rate and First Three Hitting Rate are hr, 

3 
and hr, respectively. Based on the previous example and above definition, then we have testing metrics 

P= ('the 7, testing result metrics R= (hey), n=3 and m= 27. Assume the target dataset T= (hem), 
then the first hitting rate is hr, = zeros(T - P,, )In = zerose hey'-'hem )/3 = 2/3 = 66.67%, whereas 
the 2nd and P Rank Conversion Values are, 

--2'd rank conversion values 
%abcdefgh ij klmnopqr stuvwxyz 

010000000000000000000000000 %b' 
010000000000000000000000000 %b' 
100000000000000000000000100 %a' 

Yd rank conversion values 
%abcdefgh ij klmnopqr stuvwxyz " 

100000000000000000000000000 %a' 
100000000000000000000000000 %a' 
000000000000100000000000000 

So, the First Tbree Hitting Rate is 2/3 + 0/3 +1/3 = 100%, which is an ideal case. The average rate is 
just below 50%. 

During the training and testing of the FTDNN model related to dataset one, the numbers of grams - [1, 
2,3,5,7,9,11,13] which are represented by time delays, and the numbers of hidden neurons - [1,2,3,5, 
7,9,15,25,50,100] are cross-designed and implemented. Thereinto as the gram reaches 11 and the 
number of hidden neurons reaches 100, the gram reaches 13 and the number of hidden neurons reaches 15 
onwards, the memory of current system is beyond its limit. So the experimental results are abandoned from 
G-11 & H-100 onwards. As illustrated, the model uses a 27-n-27 three-layer structure. The experimental 
results related to dataset one plotted with First Hitting Rate and First Three Hitting Rate are shown below, 
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Figure 2.3.1. First Hitting Rate with N-gram Figure 2-3.2. First Ilree Hitting Rate with N-gmm 

Fig 2.3.1 and Fig 2.3.2 show 1,2 & 3-grarn give the three best Hitting Rate (by winning in a small 
margin, 3-gram. gives the best First hitting rate and 2-grarn gives the best FT hitting rates), all of which 
show a better convergence toward the maximum Hitting Rate (about 56% of FT Hitting Rate and 33% of 
First Hitting Rate). Both pictures illustrate the smaller Hitting Rates from 4-grarn onward. The results 



Rate is HR = (hý I hý = zeros(T - )ý)In, iE M) , where Jý is the jh Rank Conversion Values of R, 

zeroso is the function to compute the number of zero vector included in metrics, obviously the sum of all 

hý = 100% 
. Then the First Hitting Rate and First Three Hitting Rate are hr, Hitting Rates is HR 

3 

and hý respectively. Based on the previous example and above definition, then we have testing metrics 

P= t'the'j, testing result metrics R= t'hey), n=3 and m= 27. Assume the target dataset T= t'hem), 
then the first hitting rate is hr, = zeros(T - Jý )In = zeros('hey-'hem')13 = 2/3 = 66.67%, whereas 
the 2 nd and 3 rd Rank Conversion Values are, 

--2"d rank conversion values 
%abcdefgh ij klmnopqr stuvwxyz 

010000000000000000000000000 %'b' 
010000000000000000000000000 %'b' 
100000000000000000000000100 %'a' 

rank conversion values 
%abcdefgh ij klmnopqr stuvwxyz " 

100000000000000000000000000 %'a' 
100000000000000000000000000 %'a' 
000000000000100000000000000 %'m' 

So, the First Three Hitting Rate is 2/3 + 0/3 + 1/3 = 100%, which is an ideal case. The average rate is 

just below 50%. 
During the training and testing of the FTDNN model related to dataset one, the numbers of grams - [1, 

2,3,5,7,9,11,13] which are represented by time delays, and the numbers of hidden neurons - [/, 2,3,5, 
7,9,15,25,50,100] are cross-designed and implemented. Thereinto as the gram reaches 11 and the 
number of hidden neurons reaches 100, the gram reaches 13 and the number of hidden neurons reaches 15 
onwards, the memory of current system is beyond its limit. So the experimental results are abandoned from 
G-11 & H-100 onwards. As illustrated, the model uses a 27-n-27 three-layer structure. The experimental 
results related to dataset one plotted with First Hitting Rate and First Three Hitting Rate are shown below, 
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Figure 2.3.1. First Hitting Rate with N-gram Figure 2.3.2. First Three Hitting Rate with N-gram 

Fig 2.3.1 and Fig 2.3.2 show 1,2 & 3-gram give the three best Hitting Rate (by winning in a small 
margin, 3-gram gives the best First hitting rate and 2-gram gives the best FT hitting rates), all of which 
show a better convergence toward the maximum Hitting Rate (about 56% of FT Hitting Rate and 33% of 
First Hitting Rate). Both pictures illustrate the smaller Hitting Rates from 4-gram onward. The results 



suggest that under the training sample, there would have been a best gram with certain number of hidden 
unit to suit the prediction best. After a certain increase, further increase of gram or hidden unit doesn't help 
finding a good prediction. The figures also show that the number of neuron in hidden layer affects the 
model's learning ability and Hitting Rate. As suggested, the hitting rate in a hierarchy levels also can be 
used in prediction ranking. 

Due to the limited leaming ability of less number of hidden neurons as shown in the experimental 
results, the testing relating to dataset two with one and two hidden neuron are ignored. And due to the 
memory limitation, the testing of //-grarn and /3-gram are abandoned. So, for typing stream dataset two, 
the chosen grams set is [ /, 2,3,5,7,9] and the hidden neurons set is [3,5,7,9,15,25,50,1001. The model 
uses a 53-n-53 three-layer structure. The experimental results related to dataset two plotted in First Hitting 
Rate and First Three Hitting Rate are outlined below, 
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Figure 2.3.4. First Three Hitting Rate with N-gram 

As shown in Fig 2.3.3 and Fig 2.3.4,1-gram has gained the maximum FT Hitting Rate - 53% and 3- 

gram with fifty hidden neurons produces the maximum First Hitting Rate - 38.1%. Similar results have 
been obtained when testing with dataset one: the lower grams (/, 2&3-gram) show a better solution with 
the FTDNN model prediction under current circumstance. Both datasets demonstrated a highly accurate 
prediction rate (FT Hitting Rate around 50%) with FTDNN model. 

The experimental results can be used to predict users' typing intention. In practice a higher prediction 
rate could be obtained by combining the FT Hitting Rate with an English word dictionary. As the typing 
stream includes all the users' correction actions and the predicted next symbol could be 'delete' or 
'backspace', the experimental results can also be used to correct users' current typing. Both tests (dataset 

one & two) show a minimum number of hidden neurons are required in order to get a good hitting rate. But 
the testing also show the gram uncertainty in getting a best hitting rate, for example, in Fig2.3.2.2-grarn 

gives the best FT hitting rate while 3-grarn has the best FT hitting rate in Fig 2.3.4. Therefore, a 
combination of /, 2 and 3-grarn is a optimum solution to keep a considerably high and stable hitting rate. 

6. CONCLUSION 

This research suggests a Focused Time-Delay Neural Network model with extendible numbers of hidden 
layer neurons and extendible numbers of time delays to analyze plain text and user's historical typing data. 
Approximately 50% FT Hitting Rate has been obtained from experimental results. In practice, the results 
can be applied to symbol prediction and correction. 

Further research will include using a distributed representation method [131 to preprocess the typing 
symbols, where each symbol will be represented by several features such as key distance, time stamp and 
symbol itself. Then the prediction will not only be based on the symbols themselves but also the related n- 
gram features. Another near future work is to apply FTDNN model to predict Mength string based on n- 
gram's /-prediction. Therefore with the same n-grarn input as presented in this research, more symbols can 
be predicted. 
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ABSTRACT 

In this paper a hybrid framework was presented based on machine learning model to offer an efficient solution for 
people with disability using QWERTY keyboard. It integrates neural network, language model and natural language 
processing etc technologies and provides user with two fundamental functions: word prediction and typing correction. 
A development of a pilot application as an English input method has been introduced. 

KEYWORDS 

Language model, machine learning, neural nctworlL 

1. INTRODUCTION 

Computer users with motor disabilities or cognitive problems may have difficulties in accurately 
manipulating the QWERTY keyboard. As for motor disability this may be seen in a form of tremor owing 
to a certain disease such as Parkinson's or any other factor, for instance reduced range of hand motions due 
to Arthritis. Cognitive problems usually are caused by loss of the ability to process, learn and remember 
information [1]. For example, Dyslexia can cause significant problems in remembering even short 
sequences of numbers in the correct order. 

Those types of disability frequently cause typing mistakes, which haven't been well solved by current 
solution [21 [3], not to mention problems people may have with several symptoms, which cannot be 
categorized as cornmon types of symptoms. Although alternative input devices or software such as 
keyguard, Dasher [2] are available for use, none of them prove more efficient or comfortable than the 
current QWERTY keyboard. Some work associated with standard keyboard has been developed such as 
Windows' Accessibility Options, ProtoType [3], however the solution towards typing difficulties by 
disabled people hasn't been achieved yet. 

This paper intends to give a comprehensive solution to help disabled people to use keyboard more 
efficiently. A novel architecture has been suggested based on machine leaming model and neural network. 
Neural network and language model have been studied and used as central modules. User's input context 
can be checked in sequence by each module along with user's typing process. 

2. HYBRID FRAMEWORK 



2.1 User investigation 

About 27 people have been interviewed. Both, old and disabled people were involved. Their performance 
can be classified as four categories as illustrated below. 

Motor disability [1] 
1. Long key press. This occurs when an alphanumeric key is unintentionally 

pressed for longer than the default key repeat delay. 
2. Modifier keys. For example, "Shift"+ "a7. One-hand typists in particular may 

find it difficult to press two keys at once. 
3. Additional keys. Some users often press keys adjacent to the intended keys. 
4. Bounce errors. These occur when the user unintentionally presses a key more 

than once. 
5. Prefer big keys. They don't like laptop because of the smaller key. They 

prefer big keys, for example, "space bae' 
6. Easily tired. It's a very hard task for them to input more than hundred words. 

Dyslexia 
I. Miss letters or add letters. For instance, "studenf'-> "studnf' 
2. Letters reverse. For instance, "studenf'->"studnet" 
3. Spelling errors. For instance, leave vowel out of word, "magie'->"mJc" 
4. Similar word errors. For instance, "dose"->! 'does" 
5. ]Phonetic form. For instance, "shud"->"should" 

Unfamiliar with computer 
1. Difficult to find keys. Especially function and punctuation keys (e. g. F12). 
2. 'Enter' key puzzle. Some computers are with no "enter" or "shift" printed on 

the key surface, so it's difficult for old people to find where those keys are. 
3. Compound keys problem. Due to different definitions in distinct software, 

compound keys' meanings are causing trouble to many people. 
Others performance 

1. Miss words. Leave out words in the typed sentences. 
2. M Ix words. Reverse words in a sentence. 
3. Mix lines. If there are some similarities (for example, same words) between 

two or more lines, the user could mix lines. 
4. Additional words. User could add additional words to a structured and fully 

meaningful sentence. 
5. Non-sense sentence. From the context of paragraph, the sentence which user 

is typing is not what they want to type. 
6. One-hand users' difficulties. There are unclear different difficulties for left 

hand and right hand user in using the same kind of keyboard. 

In order to provide a solution for practical use, this paper has aimed at "Motor Disability" and "Dyslexia7. 
As a hybrid system, solutions for other performance can be integrated in the future. 

2.2 The new solution 

Current the research concentrates on how to correct the typing mistakes and foresee users' typing intention. 
Single tcchnology such as Neural Network alone is difficult to produce a ftill solution, so we adopt a hybrid 
intelligent system architecture based on a machine learning model and neural network. It consists of three 
subsystems, namely, neural network, language model and natural language processing. 

Recurrent Neural Network and Boltzmann Machine have been studied and used in this paper as a tool to 
learn users typing behaviors from the bytes stream of keyboard. Lossless data compression methods such as 
PPM and PAQ [4] were investigated as language models for the purpose of word prediction. Then, three 
combinations based on neural network and language model were proposed and researched respectively. 
Figure I is a logical picture of the proposed hybrid system. 
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Figure 1. The architecture of the hybrid system 

The developed hybrid system was inspired by this machine learning model. It includes pre-processing, 
central processing and user interface etc units. 

Much of the typing data stream could be un-preprocessed, incomplete and noisy. For example, a long 
key press generates more than one Window's message. For further analysis, the data stream needs to 
undergo Noises Processing module. Subsequently, a representation forinat would be chosen to feed the 
central processing. 

Pre-Checker is a customized module. It checks user configuration to decide whether to perform a 
unique processing or to further send a signal to other modules. Language Model and Neural Network 
module provided users with two fundamental functions: Word Prediction and Typing Correction. For the 
purpose of enhancing the efficiency, three novel combinations models based on neural network and 
language model were developed, namely, sequential model, parallel model and the-one model. The system 
will adopt the right model in terms of the user profile. The typing mistakes, which are being speculative, 
are further sent to Natural Language Processing module to be analyzed. The results then are refurbished 
and shown to the user through User Interface module. 

Here, a topology sample of Neural Network is given. Suppose, one has to model the following typing 
data sequence D within an alphabet range of A eý I aý r: [a, z]; i 27) , then recurrent neural 
network to model the probability of the right symbol is used; two input coding method may be considered 
as the network input, namely, unary code and ASCII. For instance, if unary code shown in Figure 2 is used, 
the architecture of neural network with three letters (a, b, c) and two hidden layer is illustrated in Figure 3, 

where ý is Error probability summarized based on the output. 

Alphabet Coding 
a I 
b 01 
c 001 
d Gool 
e 00001 

Output Layer 

Hidden Layer 

Input Layer 

Figure 2. Unary code sample Figure 3. Topology sample of Neural Network 

ASCII coding requires less neurons (between 8 and 20 at input layer), but need to summarize all the 
possible output (>8bits). 



VC6 is used as a development tool within Windows XP based environment. IME (input Method Editor) 
API is used to provide the hybrid system with a way to communicate with most of the editors. For 
efticiency reasons a unique database and its interface has been developed instead of using ODBC. An 
interface of pilot application using Notepad as an editor is shown in Figure 4. 

Figure 4. The user interface of the hybrid system 

3. CONCLUSION 

The research provides disabled people with a comprehensive solution using QWERTY keyboard. The 
hybrid system integrates multiple technologies and presents two major functions: Typing Correction and 
Word Prediction. The user typing intention is predicted based on the input history; and the typing errors in 
data streams are gradually corrected as the process goes through each module. A pilot application based on 
Windows XP and IME API has been developed to demonstrate the hybrid system architecture. Further 
work would explore the efficiency comparison among these three combined models. Bayesian Learning can 
be used as an alternative method to evaluate the research result. 
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Poster Antelligent Keyboard 

Summery 

Jun Li 

Computer users with motor disabilities or cognitive problems have difficulties in 

accurately manipulating the QWERTY keyboard. This research intends to apply an 

intelligent model to help them typing more efficiently. Firstly, a hybrid framework was 

presented based on machine learning, along with which, three novel models were 

proposed to achieve two functions, namely, text prediction function and typing correction 

function. Finally, a pilot application was developed as an English input method. Further 

work would mainly focus on the three models' modeling and their efficiency evaluation. 

Introduction 

Computer users with motor disabilities or cognitive problems may have difficulties in 

accurately manipulating the QWERTY keyboard. Through user investigation, four 

categories of disability were concluded, which includes motor disability, dyslexia, 

unfamiliar with computer and other performance. In order to provide a solution for 

practical use, this research has aimed at "Motor Disability". As a hybrid system, solutions 
for other performance can be integrated in the future. 
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Keyboard signals need to undergo Noises Processing module first. Subsequently, a 

representation format would be chosen to feed the central processing. Pre-Checker 

module checks user configuration to decide whether to perform a unique processing or 
further send a signal to other modules. Language Model and Neural Network module 

provided users with two fundamental functions: Word Prediction and Typing Correction. 

For the purpose of enhancing the efficiency, three novel combinations models based on 

neural network and language model were developed, namely, sequential model, parallel 

model and the-one model shown below, 
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At last a pilot application was developed for purpose of demonstration. VC is used as a 

development tool within Windows XP based environment. An interface by using Notepad 

as an editor is shown in Figure below, 
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Figure5. The user interface of the hybrid system 

Conclusion and Future work 

The research provides disabled people with a comprehensive solution using QWERTY 

keyboard. The hybrid system integrates multiple technologies and presents two major 

functions: Typing Correction and Word Prediction. The user typing intention is predicted 

based on the input history; and the typing errors in data streams are gradually corrected as 

the process goes through each module. A pilot application based on Windows has been 

developed to demonstrate the hybrid system architecture. Further work would explore the 

efficiency comparison among these three combined models. Bayesian Learning can be 

used as an alternative method to evaluate the research result. 


