
6 lb *of 4000

LONDON
rnetropolitan *0.

university, o

Noisy Language Modeling Framework
Using Neural Network Techniques

By

Jun Li

April 2009

DECLARATION

I hereby declare that all the work presented in the thesis in partial fulfillment of the

requirements-'for the degree of Doctorate of Philosophy is original and my own

except where otherwise specified.

Jun Li

ABSTRACT

The text entry interaction between human and computer could be noisy. For

example, the typing stream is a reflection of user typing behaviours which include

user particular vocabulary, typing habits and typing performance. As computer users

inevitably make effors, a typing stream generated from using computer QWERTY

keyboard implies all users' self-rectification actions rather that a clean text.

Therefore this research develops a novel intermediate layer language modeling

framework called ALMIL (i. e. Adaptive Language Modelling Intermediate Layer)

which is seen as a communication language layer between human and computer to

analyze noisy language stream and provide users with two fundamental functions,

namely Text Prediction and Text Correction. A specific research case of ALMIL

called Intelligent Keyboard (IK) aiming to develop a user oriented hybrid

framework with self-adaptive function to help people using QWERTY keyboard

more effectively is also conducted.

In order to explore the methodologies, influential factors and demonstrate the

feasibility of the frameworks, a comprehensive neural networks and language

modeling process is carried out. Several neural network models which include a

Focused Time-Delay Neural Network model (FTDNN) to model non-noisy, noisy

and typing stream datasets, a Time Gap Neural Network model (TGNN) to simulate

and predict user typing time gap between two consecutive letters, a Prediction using

ii

Time Gap model (PTG) to predict right symbols based on user typing speed, a

Probabilistic Neural Network based model (PNN) to simulate 'Hitting Adjacent Key

Effors', and a Word List real-time ranking model (VvLR) on prioritizing prediction

results are developed. All the models have been demonstrated, and shown high

performance through a set of experiments using a range of dataset.

In essence, this research brings forth a creative concept - intermediate layer

language modeling framework for noisy language processing, pioneers a

comprehensive neural networks modelling process, and originally develops a hybrid

solution to combine multiple correction functions based on an evolutionary ranking

approach. It produces a significant contribution in the area of neural networks

application and shows a direction for Human-Computer noisy language interaction

research. Also a full report on disabled people typing behaviour, a development of

EIM application and a universal pre-processing tool for all neural networks

modelling and n-gram, calculation will benefit both research and commerce.

iii

A thesis submitted in partial fulfillment of the requirements of London

Metropolitan University for the degree of Doctor of Philosophy

iv

Faculty of Computing

London Metropolitan University, London

April 2009

To my family

vi

ACKNOWLEDGMENTS

This report is an outcome of the contributions of many people. I would like to

express the deep gratitude to my director of research Dr. Karim Ouazzane for his

dutiful supervision and invaluable guidance. And also I would like to thank my

supervisors Dr. Yanguo, Jing for his constructive suggestions and full support in

improving the quality of the research, and Prof. Hassan Kazemian for his help.

This thesis would not have been possible without the support of the staff of Charity

- Disability Essex. In particular, I would like to thank Richard Boyd, Marielle

Brouwer and Pete Collings. It is your inspiration, generosity and the love to life

encourage me not only to fulfill this research but also to do my best in all matters of

life. This research is funded by Technology Strategy Board Programme, Disability

Essex, and Faculty of Computing of London Metropolitan University. I am very

grateful to them for the full financial support.

Thanks also to my parents, Xiuying Song, Shugong Li who have been extremely

understanding and supportive in my research, and my brother Yong Li for all the

long walks with deep discussions on just everything that is interesting in this strange

but fantastic world.

vii

TABLE OF CONTENT

CHAPTER ONE INTRODUCTION ... 10

1.1 Computer text entry system .. 11

1.2 Noisy language modelling .. 12

1.3 Motivation, aim and objectives .. 13

1.3.1 An intermediate layer framework development and noisy language

modelling ... 15

1.3.2 Typing stream framework development and typing stream modelling ... 15

1.3.3 Framework with combination functions and word list ranking 16

1.4 Chapters overview .. 17

CHAPTER TWO LITERATURE REVIEW ... 19

2.1 Introduction ... 20

2.2 Neural networks ... 21

2.2.1 Focused time-delay neural network ... 25

2.2.2 Elman network .. 26

2.2.3 Probabilistic neural network .. 28

2.2.4 Structuring neural network 30

2.3 Statistical language modelling 31

2.3.1 Prediction by Partial Matching .. . 33

2.3.2 Information Entropy .. . 34

2.4 Data pre-processing .. . 35

2.5 String distance 40

2.6 Fitt's law .. . 43

2.7 Text prediction and correction applications 44

2.7.1 Text prediction applications .. . 44

2.7.2 Typing Correction Applications .. . 49

2.7.3 Dasher ... 52

2.7.4 ProtoType ... 54

2.8 Summary .. 55

CHAPTERTHREE A NOVEL FRAMEWORK FOR NOISY LANGUAGE ANALYSIS 57

I

3.1 Introduction ...
58

3.2 A novel intermediate layer language framework .. 58

3.3 Disabled keyboard users investigation .. . 66

3.4 Intelligent Keyboard framework 69

3.4 .1 Intelligent Keyboard framework and Rationale 70

3.4.2 Intelligent Keyboard framework demonstration 75

3.5 Summary .. 77

CHAPTE RFOUR NEURAL NETWORK AND LANGUAGE MODELS DEVELOPMENT 79

4.1 Introduction ... 80

4.2 Experimental datasets .. 81

4.3 System environment .. 85

4.4 Data processing tools ... 86

4.5 Input coding ... 90

4.6 Neural network models development outline ... 92

4.7 Focused time-delay neural network modelling 94

4.7 .1 FTDNN N-Gram Prediction 96

4.7 .2 N-Gram Prediction with noise .. 115

4.7 .3 N-Gram Prediction with Typing Data .. 121

4.7 .4 FTDNN Modelling Summary ... 127

4.8 Time gap modelling .. 128

4.9 Prediction using time gap ... 133

4.10 Probabilistic neural network modelling ... 136

4.11 Summary .. 147

CHAPTE R FIVE INTELLIGENT KEYBOARD FURTHER DEVELOPMENT 149

5.1 Introduction ... 150

5.2 Further framework development .. 151

5.3 Word list neural network ranking .. 153

5.3 A pilot application .. 166

5.4 Summary .. 170

CHAPTER 51X DISCUSSION, CONCLUSION AND RECOMMENDATION FOR FUTURE
WORK 17
2

6.1 Discussions and conclusions ... 173

2

6.1.1 Adaptive language modelling intermediate layer framework 173

6.1.2 Intelligent Keyboard and its pilot application .. 174

6.1.3 FTDNN language modelling .. 175

6.1.4 Specific typing behaviours analysis using neural networks 176

6.1.5 Conclusions ... 177

6.2 Contributions .. 179

6.3 Recommendations for future work .. 183

REFERENCES 188

APPENDICES 200

Appendix A MATLAB SOURCE CODE xxx

AppendixB MAIN ENSTATISTICS SOURCE CODE ... xxx

AppendixC MAIN INTELLIGENT KEYBOARD- ENGLISH INPUT METHOD
PROGRAMS xxx

Appendix D NEURAL NETWORKS MODELLING RESULTS DIAGRAMS xxx

Appendix E INTELLIGENT KEYBOARD - UNITS AND MODULES ILLUSTRATION xxx

Appendix F VIRTUAL KEY CODES .. . xxx

Appendix G USUAL NEUAL NETWORK ACTIVATION FUNCTION SIN MATLAB xxx
Appendix H PUBLICATIONS .. xxx

3

LIST OF FIGURES

Figure 1.1 Chapters structure of Noisy Language Modelling Framework Using

Neu ra I Network Techniques ... 17

Figure 2.1 A representation of nervous system ... 21

Figure 2.2 A neural network model with a neuron .. 22

Figure 2.3 A three layer Focused Time-Delay Neural Network 25

Figure 2.4 Elman neural networks architecture (1990) ... 27

Figure 2.5 A representation of Probabilistic Neural Network architecture 28

Figure 2.6 1-gram relative frequencies of letters in general English plain text 32

Figure 2.7 An example of preprocessing sampling methods 40

Figure 2.8 Fitt's law expression based on keyboard
.. 44

Figure 2.9 Jianhua & Graeme word prediction model ...
45

Figure 2.10 Repeat and Predict key composition rules .. 46

Figure 2.11 A Dasher interface example .. 53

Figure 2.12 ProtoType program flow diagram ... 54

Figure 3.1 Adaptive language modelling intermediate layer framework 61

Figure 3.2 The architecture of Intelligent Keyboard .. 72

Figure 4.1 A piece of KeyCapture log sample ... 82-

Figure 4.2 A statistic of alphabet occurrences in typing stream 84

Figure 4.3 Schematic representation of intelligent modelling 87

Figure 4.4 Interface representation of intelligent models data pre-processing 89

Figure 4.5 Neural network with unary coding ... 91

Figure 4.6 Neural network with ASCII coding .. 91

4

Figure 4.7 The experiments procedure with clatasets one, two & three 93

Figure 4.8 Architecture of Focused Time-Delay Neural Network 98

Figure 4.9 Presentation of n-gram FTDNN language modelling process 99

Figure 4.10 One & nine-gram Hitting Rate curves ... 102

Figure 4.11 N-gram First and First Three Hitting Rate curves 105

Figure 4.12 [1,2,3,5,7,9,15] hidden neurons Hitting Rate curves 107

Figure 4.13 Symbols distribution with 2&3-Gram and 25 hidden neurons 109

Figure 4.14 [1,2,3,5,7,91 gram s-entropy curves .. 113

Figure 4.15 N-gram prediction with Noise Rate = 0.001 .. 117

Figure 4.16 N-gram prediction with Noise Rate = 0.01 .. 119

Figure 4.17 N-gram prediction with Noise Rate = 0.1 .. 119

Figure 4.18 2& 3-gram Hitting Rate curves under noise rates 121

Figure 4.19 [1,3,7,9] - gram typing stream individual Hitting Rates 124

Figure 4.20 [1,3,5,7,9] - gram typing stream Hitting Rates 126

Figure 4.21 [1,3,5,7,9] - gram typing stream s-entropy curves 126

Figure 4.22 Modelling time gap using A4Z sequence .. . 130

Figure 4.23 Modelling time gap using QWERTY sequence 131

Figure 4.24 Absolute Frequency of PTG model Correction Rate 135

Figure 4.25 A QWERTY keyboard layout sample .. 139

Figure 4.26 Relationship - angle between keys and its surrounding keys

D, E, Aý ... 139

Figure 4.27 Key distances coordinate for PININ classification 141

Figure 4.28 Hitting adjacent key prediction rates based on PPN network 145

Figure 5.1 Presentation of word list neural network ranking model (WLR) 158

Figure 5.2 Sampling Points representation of WLR modeling 162

5

Figure 5.3 A sample of WLR model experimental dataset 162

Figure 5.4 The comparison of Neural network ranking First Hitting Rate and LM. T

Rates ... 165

Figure 5.5 Relationship of Windows, applications and EIM 167

Figure 5.6 EIM interface demonstration .. 169

Figure 5.7 Sampling - Evolution of Correction Rates ... 169

6

LIST OF TABLES

Table 4.1 Unary code and ASCII samples .. 90

Table 4.2 Experimental results of FTDNN model with clataset one 114

Table 4.3 Neural Networks modelling and the related performances 147

Abbreviations

Al Artificial Intelligence

ALMIL Adaptive Language Modelling Intermediate Layer

BNC British National Corpus

BP BackPropagation

BPC Bits Per Character

BPTT BackPropagation Through Time algorithm

DAT Distance, Angle and Time Gap NN model

DATP Distance, Angle and Time Gap PNN model

DPSD Discrete Prediction Symbols Distribution

EDPA Essex Disabled People Association

EIM English Input Method

EMD Error Margin Distance

FLM Factored Language Model

FTDNN Focused Time-Delay Neural Network

MHP the Model Human Processor

MLP Multilayer Perceptions

MRF Mistakes Recording function

NPM Nestor Prediction Measurement

HMM Hidden Markov Model

HR Hitting Rate

IMM Input Method Manager

8

FT First Three hitting rate

HCI Human Computer Interaction

IK Intelligent Keyboard

IME Input Method Editor

LM Language Modelling

ML Machine Learning

L. M. T Levenshtein word distance, Metaphone and Two-Gram word

NLP Natural Language Processing

NN Neural Network

PMI Pointwise Mutual Information

PNN Probabilistic Neural Networks

PPM Prediction by Partial Matching

PRI priority

PTG Prediction using Time Gap

Sm SiMulation

SP word-list Success Prediction

SRS Simple Random Sample

SRSWOR Simple Random Sample Without Replacement

SRSWR Simple Random Sample With Replacement

TGNN Time Gap Neural Network model

VKC Virtual Key Code

WLR. Word List neural network Ranking model

9

CHAPTER ONE

INTRODUCTION

1.1 Computer text entry system

Computer text entry may be full of noises. For example, computer keyboard

users inevitably make typing mistakes and their typing stream implies all users'

self-rectification actions. These may produce a great negative influence on the

accessibility and usability of applications that need text entry. Efforts have been

made based on different technologies such as spell checking and natural

language processing, but few tools can intelligently identify new genre of

mistakes. Moreover although distinct solutions such as Metaphone [Philips, 1990]

and n-grams have been implemented to correct user typing mistakes, an optimum

solution is hardly identified among them. It is desirable to develop a hybrid

solution based on these technologies to achieve an optimal result.

For input efficiency and accuracy considerations, text entry requires text

prediction as well as correction. Research on predictive text input technologies

have been undertaken in multiple directions such as language modelling and

natural language processing, and many products such as Dasher [Ward &

MacKay et al., 1997-20081 and Prototype [Sensory Software International Ltd,

2007] have been available on the market. However, those technologies have been

used exclusively and the whole issue hasn't been addressed well.

Neural Network is a non-linear statistical data modelling tool, which can be used

to model complex relationships between inputs and outputs or to find patterns in

datasets. Its related research has been flourishing in areas like human activity

recognition and category classification, although they are hardly traced to be

applied to noisy text entry such as user typing stream processing.

11

1.2 Noisy language modelling

The goal of Statistical Language Modelling (SLM) is to build a statistical

language model that can estimate the distribution of natural language as

accurately as possible. Language model assigns probabilities to sequences of

symbols or words, and is used in many natural language processing applications

such as speech recognition and data prediction. For example, given string S=

(student), some 2-gram prediction cases are,

, st , -->
'tu' --> Id'
'en 91 't 9

Compared with natural language modelling, noisy language modelling is used to

estimate the probabilities of a set of symbols or words based on noisy historical

data. For example given a noisy string S= (sutdent) whose corresponding right

string should be 'student', where there exists a Letters Reverse error (V 4 T),

some 2-gram. prediction with noise cases are,

, su, u,

, ut, Id'
'en' -: > lt,

As shown above, the prediction cases not only include one step forward symbol

forecast but also symbol correction (e. g. 'su' --) V rather that 'su' 4 T). In

language modelling area, quite a few of research have been carried out such as n-

gram Prediction and Prediction by Partial Matching, which have been applied to

clean text efficiently, but the usage on active text with noisy data is hardly found.

For example, the research on typing stream generated by computer QWERTY

keyboard user, which implies all users' self-rectification actions, has been

underestimated [Soukoreff & MacKenzie, 2003].

12

1.3 Motivation, aim and objectives

Through computer, an individual interacts with applications by producing events

which are triggered by appropriate input devices and transformed into values

expected by a target system. Typical input devices which can help users with text

entry include keyboard, mouse, and camera so on.

As indicated in the previous section, the text entry interaction between human

and computer could be noisy. For example, the typing stream is a reflection of a

user's typing behaviour that includes a user's particular vocabulary, typing habits

and typing performance. As computer users inevitably make errors, a typing

stream implies all users' self-rectification actions rather that a clean text. Here is

another example: one of the facial recognition functions is to allow computer to

interpret the speaker's speech and spot the text they intend to express along with

their facial expression changes, which is hardly completely accurate.

Currently all these happen during a communication process without recognizing

the mistakes that may be incurred by a user when using input devices. A

requirement to design an intelligent framework as a communication interface

between input devices and applications to tackle the noisy input in certain

language context is needed. It will also provide a platform for cooperation

between text entry applications and input devices, or between each two input

devices such as the audio and video capture in bimodal speech recognition.

Motivated by these requirements, this research is intended to propose a self-

adaptive intermediate layer language modelling framework which can be seen as

a mapping language layer as well as a filter platform between user and computer

to process the noisy language stream. All input noises can be identified and

13

filtered through this layer, and a clean data stream can be presented to upper

layers (e. g. applications). In turn, user feedback is used to further strengthen the

accuracy of this intermediate layer.

As the framework will be extremely useful for text entry such as typing stream

from a computer keyboard, a demonstration will be studied aiming to help

people in using a QWERTY keyboard more effectively. Simultaneously user

typing streams can be researched in particular and simulated systematically by

developing distinct neural network models both based on generally analyzing

plain text, noisy data and user typing stream, and specifically studying specific

user typing behaviours such as 'hitting adjacent key effors'. Some state of the art

neural networks such as Focused Time-Delay Neural Network, Elman Network,

and Probabilistic Neural Network can be investigated and further applied. The

neural networks structures can be extendable both at input layer and at hidden

layer, and able to handle real-time interaction issues. The neural networks

experimental results are expected to be helpful in practical use such as in

prediction and correction.

The major purpose of this research is to demonstrate the feasibility and the

rationale of the intelligent intermediate layer language framework through its

development and related neural networks modelling. Factors which may have an

influence on the functionality, accuracy and efficiency of the framework are

expected to be identified.

The objectives of research are intended to make the following contributions to

knowledge by studying areas shown below, which are also the main hypotheses

of this thesis.

14

1.3.1 An intermediate layer framework development and noisy language

modelling

To develop an intelligent framework to analyze noisy language stream data and

offset the communication gap between a user and computer applications. This

framework should provide two fundamental functions at least, namely, text

correction and prediction. Through it, the noises of text entry can be filtered

significantly; meanwhile the text entry efficiency can be improved. Along with

the framework, several neural network language models will be developed. This

will be a simulation to the designed intermediate layer framework on a global

basis and require a time-efficient neural network with high computation and

memory capacity. As prediction rates and correction rates can be varied with

different neural network structures, an extendable neural network design might

be needed. Moreover, the experimental datasets could be collected from

difference sources such as articles and disabled user typing stream, and a noise

incremental distribution scheme may be conducted along with the modelling

process.

1.3.2 Typing stream framework development and typing stream modelling

As user typing stream from computer QWERTY keyboard is full of noises, it can

be a good research case to demonstrate the intermediate layer framework.

Because user typing behaviours are varied, particularly with disabled people, a

user investigation needs to be conducted first. Subsequently a user oriented

framework as an intermediate layer language model to filter typing mistakes and

predict typing intention is required to be developed. Since it is difficult for a

15

single algorithm to deal with all the problems appeared in typing stream, distinct

prediction and correction algorithms such as Metaphone and word 2-grarn may

be integrated into this framework. As user typing streams imply user specific

typing behaviours, it may also be possible to analyze this language stream using

multiple neural network models. Distinct factors which may affect user typing

efficiency and accuracy are expected to be identified. These neural network

models are able to provide a comprehensive data analysis such as data prediction

and correction on a noisy language basis.

1.3.3 Framework with combination functions and word list ranking

Given a vast variety of user typing behaviours, it is difficult to use a single

algorithm to deal with the noisy text entry. In practice, a combination model

based on multiple correction functions to present multiple answers for user

selection may be a better solution, and it is also necessary to develop a ranking

model to prioritize the answers. However, the ranking may be affected by many

factors such as time, text content and user feedback, so an evolutionary ranking

model based on data updates and neural network learning to combine distinct

correction algorithms to produce an optimal prediction needs to be developed.

Intermediate layer framework concept typing data stream neural networks

modelling and word list online ranking are all unique and preliminary

contributions. This thesis will lead to a new research area on noisy language

modelling study.

16

1.4 Chapters overview

The thesis is structured in chapters as shown in Figure I. I. Chapter 2 reviews

related research work. The research work undertaken for this study is illustrated

in chapter 3&4. Chapter 5 describes further work based on the findings of

chapter 3&4. Following the figure, a more detailed description of each chapter

is presented.

1)

ALMIL framework

IK framework

Literature Review

(Chapter 2)

FTDNN n-gram noisy
language modelling
NN typing behaviours

4
Conclusion and
Recommendation

(Chapter 6)
I IK further development

Figure 1.1 Chapters structure of Noisy Language Modelling
Framework Using Neural Network Techniques

Chapter I gives an introduction to noisy language modelling, and presents the

motivation, aim, objectives and hypotheses of the research.

17

Chapter 2 reviews Neural Network models, Statistical Language Modelling

algorithms, Data preprocessing methods and other technologies such as String

distance algorithms and Fitt's law equation used in the research.

Chapter 3 develops an intermediate layer noisy language modelling framework

called ALMIL and presents a demonstration of the ALMIL framework called

Intelligent Keyboard.

Chapter 4 illustrates full neural network models development which includes

novel Focused Time-Delay Neural Network language modelling with noise-free,

noisy and typing stream datasets, Time gap modelling, Prediction with Time Gap

modelling and a Probabilistic Neural Network model to simulate hitting adjacent

key errors.

Chapter 5 illustrates a further Intelligent Keyboard framework development

based on the finding of chapter 3&4. A novel Word list online ranking using

neural network BackPropagation algorithm and a pilot application called English

Input Method are developed.

Chapter 6 presents the research discussion, conclusion and recommendation for

future work.

Appendices include program source code, experimental plots, and published

papers related to the research. Throughout the text, italic is used to emphasize

defined terms, and bold is used to highlight main ideas.

18

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Neural network language modelling is a method to apply particular neural

network models to model natural languages. In this chapter both neural network

models and statistical language modelling methods are reviewed. First, neural

network rationale, architectures, learning algorithms and some state of the art

networks which include Focused Time-Delay Neural Network, Elman Network,

and Probabilistic Neural Network are described. Then the language modelling

rationale, Prediction by Partial Matching (PPM) algorithm and entropy concept

are introduced respectively.

As well known, the raw data need to be preprocessed before it can be used by

neural networks. A six-step approach with distinct algorithms for each step of

neural networks data pre-processing to achieve best performance for the training

dataset is introduced.

One objective of the research is to develop a framework to deal with noisy data

stream. Therefore, several text prediction and correction applications such as

Dasher and ProtoType, and their related techniques are examined. However, the

disadvantages of these technologies such as failure of meeting peculiar needs and

the lack of self-learning ability are also mentioned.

Finally two other useful technologies are reviewed, namely, String Distance and

Fitt's law. String Distance is a method to compare the difference between two

character sequences, whereas Fitt's law uses human-computer interaction

technology to study user's typing movement. In this research both of them will

be applied to user's typing behaviour models and framework development.

20

2.2 Neural networks

The human nervous system may be viewed as a three-stage system, as depicted

in the block diagram of Figure 2.1 [Simon Haykin, 1999].

Stimulus

Figure 2.1 A representation of nervous system

Response

Signals received by receptors are processed in the neural network and the

responses are delivered to the outside world by effectors. Artificial neural

networks are motivated by neuro-biological theory involving the behaviour of

the brain as a network of units called neurons, which constitute a massively

parallel-distributed processor through connections, called synapses. It is

estimated that the human brain is likely to have around 10 billion neurons each

connected on average to 10,000 other neurons.

The basic attributes of a neural network may be divided into architecture and

functional properties. The architecture defines the network structure, that is, the

number of artificial neurons in the network and their interconnectivity with

familiar characteristics such as inputs, synaptic strengths, activation, outputs, and

bias. Functional properties define how the neural network leams, recalls,

associates and classifies. A basic model of a neuron i is illustrated in Figure 2.2

[Stamtios, 19961.

21

Bias wo

Xin

Figure 2.2 A neural network model with a neuron

The general neuron i has a set of n inputs fxi/... xy ... xi,), where the subscriptj

takes values from I to n and indicates the source of the input signal, accordingly

associated with weights wij. In addition, it has a bias term wo, a threshold value

that has to be reached or exceeded for the neuron to produce a signal, a

nonlinearity transfer function Fj that acts on the produced activation signal Rj,

and an output Oi after the nonlinearity function. The transfer function of the

basic model is described as follows,

n

Oi=Fi
Iw

ii x
as

jýl

n

Ri -=
I wijxj
j=l

(2.1)

In general three fundamentally different classes of network architectures can be

identified as,

Single-layerfeedforward neural networks

Multi-layerfeedforward neural networks

22

* Dynamic neural networkv.

The two major categories of learning are the unsupervised and the supervised.

As a feedforward topology network, Multi-Layer Perceptrons are composed of

many simple perceptrons in a hierarchical structure with one or more hidden

layers between input and output layers. The most commonly used leaming

algorithm is BackPropagation. Its sigmoidal nonlinearity is expressed as,

F, (R,) =1+
exp (-kR,) (2.2)

Where Ri is the weighted sum of all synaptic inputs plus the bias of neuron i; k is

the gain of sigmoid that varies monotonically from -oo to + oo, and Fj is the

output of neuron i.

BackPropagation is a supervised learning method, and is an implementation of

the Delta rule, whose architecture belongs to feedforward network. Its actual

algorithm can be illustrated as,

1. Initialize the weights in the network
2. Do

For each example e in the training set do
1.0 neural-net-outpui (network, e)
2. T teacher outputfor e
3. Calculate error (T - 0) at the output units
4. Compute and update new_wifor all weights to output layer
5. For each hidden layer

1. Calculate error at the hidden units
2. Compute and update new wifor all weights to hidden la er y

3. Until all examples classified correctly or stopping criterion salisfied
4. Return

23

There are no well-defined criteria for stopping its operation. One of sensible

convergence criteria reported by Kramer and Sangiovanni-Vincentelli [1989] is:

"The back-propagation algorithm is considered to have converged when the

Euclidean norm of the gradient vector reaches a sufficiently small gradient

threshold". By considering the cost function or error measure as stationary at the

local or global minimum, Simon Haykin [1999] suggested a different criterion of

convergence: "The back-propagation algorithm is considered to have converged

when the absolute rate of change in the average squared error per epoch is

sufficiently small". He concluded that the rate of change in the average squared

error should lie in the range of [0.1%, IVo] per epoch. Practical methods are also

used by verifying if the network performance is apparently adequate.
I Given the MultiLayer Perceptrons as the basic building block, three different

architectural layouts of dynamic networks based upon the additional signals at

the side of input can be further defined. The signals may come from historical

input, output layer or hidden layers. Then, dynamic networks can simply be

divided into two categories based on whether they are feedback-related, for

example, those that have only feedforward connections (e. g. Focused Time-

Delay Neural Network), and those that have feedback, or recuffent connections

(e. g. Elman Networks). Back-propagation through time algorithm (BPTr) is a

leading learning algorithm for training a recurrent network, which is an

extension of the standard back-propagation algorithm. Another typical learning

algorithm for recurrent networks is a real-time recurrent learning algorithm.

In the following sections, specific networks including Focused time-delay neural

network, Elman Networks, and Probabilistic neural networks are discussed.

24

2.2.1 Focused time-delay neural network

The Focused Time-Delay Neural Network (FTDNN) consists of a feedforward

network with a tapped delay line at the input. This is part of a general class of

dynamic networks called focused networks, in which the dynamics appear only

at the input layer of a static multilayer feedforward network.

This network is well suited to time-series prediction, which is stimulated through

a short-term memory. Given an input signal consisting of the present value x(n)

and the p past values, x(n-1), ... , x(n-p), stored in a delay line short-term

memory of order p, a three layers structure with three hidden neurons and two

outputs is shown in Figure 2.3.

Input

Output

Figure 2.3 A three layer Focused Time-Delay Neural Network

The tapped delay line memory captures temporal information contained in the

input signals, and neurons embed that information in their own synaptic weights.

The standard BackPropagation algorithm can be used as a learning method of

FTDNN network. It does not require dynamic BackPropagation to compute the

25

network gradient. This is because the tapped delay line appears only at the input

of the network, and contains no feedback loops or adjustable parameters. For this

reason this network trains faster than other dynamic networks.

The Focused Time-Delay Neural Network has been well applied to motion

recognition used by surveillance system, multimodal human computer interface

and traff ic control system. For example, Woo [2000] proposed a FTDNN based

scheme to extract information from dynamic gestures of dance performance and

learn dancer's emotional intention. The experimental results demonstrated that

consistent emotional analysis can be achieved using F'FDNN based scheme,

which maps between local features and symbolic representation of emotion in

real-time. A Further development of FTDNN model based on both space and

time domains was also proposed [Lin, 19991 for lip-reading. In the experiment,

the space based FTDNN model was able to recognize the lip motions in a high

performance based on the inputs of real image sequences.

2.2.2 Elman network

Compared to tapped delay method of Focused Time-Delay Neural Network in

terms of input Elman networks [Elman, 19901 are three-layer BackPropagation

networks, with the addition of a feedback connection from the output of the

hidden layer to its input. This feedback path allows Elman networks to learn to

recognize and generate temporal patterns, as well as spatial patterns. Elman

[1990] used neural network architecture shown in Figure 2.4 to explain the

network processing.

26

OUTPUT UNITS

Figure 2.4 Elman neural networks architecture [1990]

As can be seen from Figure 2.4, Elman network's input accept two categories of

data: one is from out sources to input units, and another is from hidden units of

itself to context units.

Let's consider a sequential input with order sensitivity at time t=1, the input

units receive the first input and the context units are initialized to a certain value.

Both input and context units activate hidden units. Then hidden units feed

forward to output units and simultaneously feed back to context units. If a

learning algorithm is applied, the output will be compared with target output and

the delta error will be backpropagated to adjust all the weights. At the next time

step W the above sequence is repeated. Then at the time Q+]), the context units

contain values, which are exactly the hidden unit values at time t. These context

units thus provide the network with memorial history.

Elman network can be used to recognize both spatial and temporal patterns.

Schellhammer et al. [1998] used Elman network to learn sequences of word

categories in a text. The grammar induced by the network was made explicit by

cluster analysis. The output of k-means; cluster analysis is converted to state-

27

INPUT UNITS CONTEXT UNITS

transition diagrams which represent the grammar learned by the network. Elman

network was also applied to human activity recognitions by head movement

from a set of color image sequences [Henry, 2003]. A considerable high

recognition rate of 92.5% was achieved, compared to 85.5% and 87% obtained

by the traditional k-NNR and HMM classifiers.

2.2.3 Probabilistic neural network

Probabilistic neural networks (PNN) are a type of radial basis network suitable

for classification problems. It is a feedforward network built with three layers.

They are derived from Bayes Decision Networks [Specht, 1988 & 1990]. The

architecture of a PNN is shown in Figure 2.5.

Irif. kit Ulihl 830 LIAY,. r Omp-mitin Lay; r
r--'N r -N e 'I

Ootpot

Figure 2.5 A representation of Probabilistic Neural Network architecture
[The MathWorks, 2009]

When an input is presented, the first layer computes distances from the input

vector to the training input vectors and produces a vector whose elements

indicate how close the input is to a training input. The second layer sums these

contributions for each class of inputs to produce a vector of probabilities. Finally,

28

a competing transfer function on the output of the second layer picks the

maximum of these probabilities, and produces a 'P for that class and a '0' for

the other classes.

The probabilistic neural networks offer the following advantages [Wasserman,

1993],

+ Rapid training speed and enables incremental training.

+ Robustness to noisy examples.

* Guaranteed convergence if enough training examples are

provided.

As the BackPropagation algorithm is used for training multilayer neural

networks, the probabilistic neural networks also possesses some other useful

characteristics as presented below.

Learning capacity. It captures the relationships between given
training examples and their given classification.
Generalization ability. It identifies the commonalities in the

training examples and allows performing classification of

unseen examplesfrom the predefined classes.

GanchevI et al. [2002] applied Probabilistic Neural Networks (PNNs) as core

classifiers to medium scale speaker recognition over fixed telephone networks.

Two PNN-based open-set text-independent systems for speaker identification

and speaker verification correspondingly were presented. The systems

demonstrated a good reliability and robustness under noisy telephone conditions.

29

A Probabilistic Neural Network joint with fuzzy logic for human face

identification [Anagnostopoulos 2003] was proposed to develop a computer-

based face detection system. The Probabilistic Neural Network was trained for

the identification of the facial areas, which were extracted using fuzzy logic rules.

Experimental results showed that the overall identification performance was

measured to be 83%. However, this performance level is achieved for frontal-

parallel faces, since the classification performance deteriorates when extended to

different views of a human face.

2.2.4 Structuring neural network

The number of layers and the number of processing elements per layer to a

feedforward, back-propagation topology are important decisions. There is no

universal answer to the layout of the network for any particular application.

Some general rules have been followed as shown below.

Rule one. - As the complexity in the relationship between the input data and
the desired output increases, the number of the processing elements in the
hidden layers should also increase.

Rule two: If the proces's being modeled is separable into multiple stages,
then additional hidden layer(s) may be required If the process is not
separable' into stages, then , additional Jayers may simply

.
enable

memorization of the training set, -. and not a true general solution effective
with other'data.

Rule three: The amount of training data available sets an upper boundfor
the number ofprocessing elements in the hidden layer(s). The equation is,

Nh = size(P) / (s - (N, + N,,))

"ere P is the number ofcases in the training dataset, Nj is the number of
input neurons, N, is the number ofoutput neurons, s is a scalingfactor
betweenfive and ten. Larger scalingjactors are usedfor relatively less noisy
data.

30

2.3 Statistical language modelling

The goal of Statistical Language Modelling (SLM) is to build a statistical

language model to estimate the distribution of natural language as accurately as

possible. A statistical language model is a probability distribution P(s) over

strings S that attempts to reflect how frequently a string S occurs. It has been

used in many natural language processing applications such as speech

recognition, handwriting recognition and data compression. Simply, a probability

to predict next symbol can be expressed as,

P(next symbol I document sofar) (2.3)

N-gram, Prediction by Partial Matching (PPM) and unbounded PPM are among

those widely used statistical language models. N-grarn models are a type of

probabilistic model for predicting the next item in a sequence. An n-grarn is a

sub-sequence of n items from a given sequence. The items can be phonemes,

syllables, letters, words or base pairs according to the application.

For example, a one-gram statistics about relative frequencies of letters in general

English plain text [Lewand, 2000] is shown in Figure 2.6. The Letter 'e' has

been used most commonly and then the letter Y, while the usage of the letter 'z'

is considerably rare in general English plain text.

31

0.14

0.12

0.1

0.08

0.06

0.04

n nn

MSeriesl

abcdefghijkImnopqrstuvwxyz

Figure 2.6]-gram relative frequencies of letters in general English plain text

2-gram (i. e., digrarn or bigram) are groups of two written letters, two syllables,

or two words, and are very commonly used as the basis for simple statistical

analysis of text. The consecutive letters in one word has a strong relationship

with each other. For example, a 2-gram Frequency in the English language

shows that the relationships between 'I' and W is much closer than 'v" and V.

Here is the table of 2-gram frequency of English letters,

th 50 tit 25 v 20

er 40 en 25 io 18

on 39 es 25 le 18

an 38 of 25 is 17

re 36 or 25 ou 17

he 33 nt 24 ar 16

in 31 ea 22 as 16

ed 30 ti 22 de 16

nd30 to 22 rt 16

ha 26 it 20 ve 16

32

The 2-gram frequency of English letters shown here represents the expected

number of occurrences per 200 letters. The 2-grams are not permitted to span

across consecutive words.

2.3.1 Prediction by Partial Matching

The basic idea of Prediction by Partial Matching (PPM) [Cleary & Witten, 1984]

is to use the last few characters in the input stream to predict the upcoming one.

An improved version called PPMC [Moffat, 1990] was developed and became a

benchmark version. If given a sequence S= Is,
... s. 1, and finite-context models

of order k (so-called k-gram), where k is the number of preceding symbols used

and 0: 9 k:! ý n, Prediction by Partial Matching employs a suite of fixcd-order

context models with different values of k, ranging from 0 up to maximum n, to

predict upcoming characters.

For each model k-gram, prediction probabilities are calculated from all

characters occurrences that have followed every length k sub-sequence. Thus a

predicted k-gram probability distribution is obtained. The PPM method can be

viewed as blending several fixed-order context models together rather than any

particular one to predict next symbol. An unbounded length algorithm (i. e.

PPM*) [Cleary, 1995] to allow the context length to vary depending on coding

situation was developed. The shortest detenninistic context which produces one

absolute prediction and context trie which is used as search structure are adopted

in the design. The unbounded PPM has reliably achieved superior results to

PPMC (one of the popular PPM applications). The testing results demonstrated

an improvement of about 6% over the old PPM method [Cleary, 1995].

33

One further development of language modelling is Factored Language Model

(FLM) [Bilmes & Kirchhoff, 2003]. In a factored language model, a word is

= lfl, f2
...

fk viewed as a vector of k factors, so that w, IfI)
factor can be word

classes (e. g. noun, verb) or semantic features as well as words themselves if one

considers English Language. An FLM provides the probabilistic model where

the prediction of a factor is based on n parents. For example in speech

recognition, if w represents a word token and t represents a word class for

English, the expression AW, I WJ-A-A-1) gives a model for predicting current

word token based on a traditional 2-gram model as well as the word class of the

previous word.

2.3.2 Information Entropy

Shannon entropy [1951] or information entropy is a minimum message length

necessary to communicate information. It is a measure of language modelling.

Suppose that e= [Ej; iE I] in some finite probability space S. The entropy of c,

denoted H(E), is

P (E,) log P (Ei) (2.4)
iel

Shannon estimated the entropy of written English to be 1.0 and 1.5 bits per

character (hpc) or as low as between 0.6 and 1.3 bits per character by having

human subjects guess successive characters in a string of text selected at random

34

from various sources. He proved that if the probability of taking r guesses until

the correct letter is guessed is p, then the entropy, H (in bpc) is

r (p, - p,,,) log, r<H<P, 1092 1 (2.5)
A

2.4 Data pre-processing

Although many factors affect the success of Machine Learning (ML) on a given

task, the representation and quality of the instance data is first and foremost

[Pyle, 1999]. Data preprocessing describes any type of processing performed on

raw data to prepare for another processing procedure. For example, in a neural

network, data preprocessing transforms the data into a fortnat that will be more

easily and effectively processed.

There are a number of different tools and methods used for Machine Leaming

preprocessing. Kotsiantis et al. [20061 have suggested well known algorithms for

each step of data pre-processing of Machine Leaming to achieve best

performance for the training dataset. It consists of six steps,

* Instance selection and outlier detection

4 Missingfeature values.

* Discretizatiom

* Data normalization.

* Feature selection.

* Feature constructiorL

35

Using instance selection (i. e. sampling) and outlier detection, irrelevant data as

well as noise and/or redundant one can usually be removed. In addition, when a

dataset is too huge, it may not be possible to run a Machine Leaming algorithm.

In this case, instance selection reduces data and enables a Machine Lcaming

algorithm to ftinction and work effectively with huge data.

Real word data tend to be incomplete. Missing data preprocessing function

attempts to fill in missing values so as to allow the whole dataset to be processed

smoothly. Discrctization techniques can be used to reduce the number of values

for a given continuous attribute, by dividing the range of the attribute into

intervals. Data normalization organizes data for more efficient access. For

example, within a feature there is often a large difference between the maximum

and minimum values, then normalization can be performed on the value

magnitudes to scale to appreciably low values.

Feature selection can pull out specified data that is significant in some particular

context. It reduces the dimensionality of the data and may allow learning

algorithms to operate faster and more effectively. On the other hand, by

constructing new features from the basic feature set, it could provide a better

discriminative ability than the best subset of given features and help improve the

training data quality.

As examples, several most popular methods used in data transformation and data

sampling are presented here in detail.

Data normalization [Han & Kamber, 20011 scale the attribute so as to fall within

a small specified range, such as [4.0,1.0] or [0.0,1.0]. Min-max normalization

performs a linear transfonnation on the original data. Suppose that V.,. and V.

36

are the minimum and maximum values of an attribute V. Min-max normalization

maps a value v of V to v' in the range [V. j., V..] by computing,

=(v-Vi.)*(V'.. -V'. i.)/(V. -V. i.)+ V'. i. (2.6)

Min-max normalization preserves the relationships among the original data

values.

Given attribute dataset V= ly, I 1:! ý i: 5 n) , define F and av as the mean and

standard deviation respectively of attribute V, then one has

n
(2.7)

av = (2.8)

The continuous probability density function of the normal distribution is a

Gaussian function. If one simply uses u and a to represent the mean and

standard deviation of the continuous probability density function, the nonnal

distribution can be expressed as,

(X -ýJ)2
1

2er 2=1

2x
(X)=

77=== e VP.
u Z

fp(X
"),

x (2.9)
2, uu

37

e-'
2/2

Where, V (x (x)= Tý-, xER is the density function of the
2 7r 2x

"standard" nonnal distribution (i. e., the normal distribution with p=0 and or = 1).

Then, in z-score normalization (or zcro-mean normalization) the values for an

attribute V are normalized based on the mean and standard deviation of VA

value v of V is normalized to v' by computing,

1; = (V -IF)/ cr,

Where V and a, are the mean and standard deviation respectively of attribute V.

After normalization, the mean of the transformed set of data points is reduced to

zcro. This mcthod of normalization is uscful whcn the actual minimum and

maximum of attribute V are unknown, or when there are outliers that dominate

the min-max normalization.

Normalization by decimal scaling normalizes by moving the decimal point of

values of attribute V. The number of decimal points moved depends on the

maximum absolute value of V. A value v of V is normal ized to v' by computing,

ý =V/Icv (2.11)

Where j is the smallest integer such that max(I ý 1):! ý I. For example, given a

dataset VE [1,100], then the maximum absolute value of V is 100 and j=2, so

that V is normalized to the range [0.01,11.

38

Sampling can be used as a data reduction technique since it allows a large dataset

to be represented by a much smaller random sample (or subset) of the data. The

possible sampling methods [Han & Kamber, 200 1] for D are listed as,

* Simple Random Sampling Without Replacement (SRSWOR)

* Simple Random Sampling With Replacement (SRSWR)

* Cluster sampling

* Stratified sampling

Suppose that a large datasd D contains M clusters, N records, and the size of

sample is represented by n. Then the illustration with examples about those four

sampling methods can be shown in Figure 2.7, where D= (TI, 12, ..., 720), N

= 20, M= 4.

SRSWOR samples are created by randomly picking data from source D without

repetitive records. From Figure 2.7, a subset n=4 records (T12, T20, T3, T9) are

created; SRSWR samples are created by allowing repeated samples, for example

in the dataset (T5, TI 7, T5,72) created in the figure, the record T5 is drawn

twice.

Cluster sampling randomly chooses samples. Figure 2.7 shows two cluster

samples - (T64TIO, T114T15) which are randomly picked up, where the

whole number of cluster m=4. If a certain number of records are selected from

each cluster, then this sampling process is called stratified sampling. In Figure

2.7, stratified sample set (72, T9, T13, TJ 7) is created by selecting one record

from each cluster.

39

Ti SRSWOR T12
T2 (n=4) T20
T3 T3
T4 T9
T5 SRSWR

(n-4)
T5

T191 T17
T20 T5

T2

TI
T2
T3
T4
T5

Cluster sampling T

T6

T16 T7

T11
T8

T6
T9
TIO

Stratified sampling
T2
T9
T13
1-17

Figure 2.7 An example of preprocessing sampling methods [Han & Kamber, 20011

When applied to data reduction, sampling is one of the most commonly used

methods. It is possible using the central limit theorem to deten-nine a sufficient

sample size for estimating a given function within a specified degree of error

[Han & Kamber, 2001].

2.5 String distance

String distance is a method to measure the amount of difference between two

sequences, which emerged from theoretical work on self-correcting binary codes

40

[Soukoreff & MacKenzie, 2001]. Different methods have been explored.

William et al. [2003] classify these methods into three categories: statistics,

databases and artiflcial intelligence. Furthermore, they investigated a number of

specific functions based on this classification in order to find the best method.

The functions include,

* Edit-distance likefunctions

+ Token-based distancefunctions

+ Hybrid distancefunctions

+ 'Blocking'orpruning methods

Two similar concepts have been used popularly in String distance: Distance

functions and Similarity function. Distance functions map a pair of strings s, and

s2 to a real number d, where a smaller value of d indicates a greater similarity,

while similarity functions is on the contrary, a larger value indicates the greater

similarity.

Levenshtein distance [Levenshtein, 1965] is a popular figure in Edit-distance like

functions. The Levenshtein distance between two strings is given by the

minimum number of operations needed to transform one string into another,

where an operation is an insertion, deletion, or substitution of a single character.

For example,

hellu -: ý hello

helloo 4 hello

hat -; ý hello

(d = 1) //a substitution of 'o'for V

(d = 1) 11delete 'o'
(d = 6) 11delete 'at'and insert 'ello'

41

Another similar method is Jaro metric [Jaro, 1995]. The Jaro distance metric

states that given two strings s, and S2,

1) Two characters aj, bj from s, and s2 respectively, are considered matching

only if,

min(I S, III S2 1)

:! ý j: 5 i+ min(I 3,11182
1)

(2.12)
22

then their distance d is calculated as,

S2
2) d--

lr's'
(2.13)

3ýfsj Is2 I ls; l

)

Where I s, 1,1 s2 I are the numbers of sl matching s2and s2matching sl characters

respectively, t is the number of transpositions.

A variant of Jaro metric [Winkler, 1999] uses a prefix scale p, which is the

longest common prefix of strings, and s2. Let's define Jaro distance as d, then

Jaro-Winkler distance can be defined as,

Jaro - Winkler(d +- max(p, 4)
*(I-d)) (2.14)

10

A piece of open source code has been published by US Census Bureau. The

result of the Jaro-Winkler distance metric is normalized into the range [0,1]. It is

designed and best suited for short strings.

42

2.6 Fitt's law

Fitts' law is a robust model of human psychornotor behaviour [Paul Fitts, 1954].

The model is based on time and distance. It enables the prediction of human

movement and human motion based on rapid, aimed movement, not drawing or

writing [Dov Te'eni et al., 20071.

It is discovered that movement time was a logarithmic function of distance when

target size was held constant and that movement time was also a logarithmic

function of target size when distance was held constant. Mathematically, Fit&

law can be stated as follows [MacKenzie & Buxton, 1992],

Aff =a+blog, (DIW+I) (2.15)

Where MT represents the movement time, a and b represent the regression

coefficients, D represents the distance of movement from start to target center, W

represents the width of the target. If one takes a computer keyboard as an

example, the equation was rewritten by Zhai et al. [2000] as,

MT=a+b'092(D. / Wj + 1) (2.16)

Where D. is the distance moving from key i to keyj, W, is the width of keyj.

The equation is illustrated by the keyboard logical expression as shown in Figure

2.8.

43

eýj
Du

D
--

Figure 2.8 Fitt's law expression based on keyboard [Zhai ct al. 2000]

Fitts' law has been used popularly to predict the performance of humans when

using various input or output devices.

2.7 Text prediction and correction applications

Predictive text/word input technologies are some of the techniques that are often

found useful by text entry users. There are many products available on the

market to offer this support. Compared to pure prediction products, some efforts

have also been made to reduce typing mistakes, although far few tools can

intelligently identify new genre of mistakes. Here a full review based on both

categories is given.

2.7.1 Text prediction applications

Using data compression methods such as PPM as language model to predict next

letter, word or text are very popular technologies in prediction field. But it has

been argued that the information available in the local context of each word

based on statistics should be augmented by global sentence information. Jianhua

Li & Graeme Hirst [2005] proposed a combination model by integrating

44

semantic knowledge with n-gram probabilities to predict semantically more

appropriate words.

First; a semantic knowledge base was generated for English words, especially for

nouns, by exploring the semantic relatives. Then, the semantic knowledge is

used to measure the semantic association of completion candidates with the

context. Those that are semantically appropriate to the context are promoted to

the top positions in prediction lists due to their high association with context.

Figure 2.9 shows the combination model [Jianhua & Graeme, 2005].

Nn] sixiti

Shut T"

Model H m, -dt, i
Ninmd Ent'ry r-<pai priediciioll 7

Figure 2.9 Jianhua & Gracme word prediction model [2005]

This model is a combination between n-garn model and semantic model.

Semantically related words and their pointwise mutual information (PMI) are

extracted from the British National Corpus World Edition (BNC). An algorithm

that automatically determines the salient terms of a text during the prediction

process was proposed to measure semantic association for a candidate whenever

the candidates find no related words in the context.

45

By comparing the combination model with Fazly and Hirst's syntax-and-n-grarn

model [2003], where part-of-speech n-gram. information was added to traditional

n-gram model, the keystroke saving rate of the combination model increases to

6%.

Masaui & Nakayama [1994] proposed a simple and powerful predictive interface

technique by making use of dynamic macro. When a user types a special

"repeat" key after perfonning repetitive operations in a text editor, an editing

sequence corresponding to one iteration is detected, defined as a macro, and

executed at the same time. Although being simple, a wide range of repetitive

tasks can be performed just by typing the repeat key. When another special

"predict" key for conventional prediction techniques is used in addition to the

repeat key, wider range of prediction schemes can be performed depending on

the order of using these two keys. The complex rules for combination of two

keys are given in Figure 2.10.

Aktits; fp. hnn t-Y P. Pi ýý, -, YI
Key 14n nuic of AfNýr

's ,; -
P11 0

M0
immiep -00, I t-r-I

. executo,

POIýO
M0

iMeMif, vi

st pa'a-ditm 6cheme C. cuatiti copf"T RA: Pa4itfintfillink-lis
p. r. o'lix4lic-sy, -f tvtoilmy, m4ittint vsieý

Figure 2.10 Repeat and Predict key composition rules [Masaui & Nakayama, 1994]

46

It combines editor and prediction function together by using two additional keys:

Repeat and Prediction key. The emphasis of design focuses mainly on the

interface design rather than prediction function itself Although Repeat key

provides words based on a simple typing history, the memory would vanish after

the editor is closed.

An early work for text prediction is presented by Toshiyuki Masui [1999], called

POBox, which consists of two steps for entering a word or a phrase. First a user

enters a small part of the word or some other attributes, and POBox dynamically

searches a dictionary for candidate words and shows them to the user for

selection. The user then selects the desired word from the candidate list, and

POBox enters the word into the user's document.

POBox gives a simple and small-sized solution and has been developed for

different languages. It can use the context of the user's document to help identify

likely candidates. POBox and two-key technology are different in principle. The

former gives a word of list for user's choice based on spelling, pronunciation or

shape of characters. It is a useful tool for handheld or ubiquitous computers such

as PDA or mobile phones.

Another application worth mentioning is T9, which stands for Text on 9 keys, a

patented predictive text technology for mobile phones, developed by Alex

Robinson [1998]. It combines the groups of letters on each phone key with a

fast-access dictionary of words. It looks up all words in the dictionary which

correspond to the sequence of key presses.

As it gains familiarity with the words and phrases the user commonly uses, it

speeds up the process by offering the most frequently used words first and then

47

lets the user access other choices with one or more presses of a predefined Next

Key. The dictionary can be expanded by adding missing words, enabling them to

be recognized in the future. Its interface workflow is illustrated below.

* Enter a word by tapping one key per letter.

* Disp* the word withfirst priority.

* Use Next key to choose or type further letter if the

word is not the right one

* Add it to dictionary if no right word in the list

A series of research based on words vocabulary which apply both neural network

and language modelling methods are also worth being mentioned here. One of

the major representatives is Bengio and Ducharme [2001] with their neural

probabilistic language modeling. They suggest a model to learn a distributed

representation for words that allows each training sentence to inform the model

about an exponential number of semantically neighboring sentences. Schwenk

and Gauvain [2002] further address a related problem that the n-grarn space is

highly sparse, by carrying out a probability estimation in a continuous space and

enabling a smooth interpolation of the probabilities. However, due to the curse of

dimensionality in the discrete space representation, they still have to narrow the

vocabulary by using a shortlist which damages the prediction accuracy and fail

to learn a long-span LM with n >> 3 gram, not to mention a broader word space

with noises which may increase in a geometric degree.

The research illustrated above describes different input modelling techniques in

an effort to develop efficient and high perforinance text input techniques. They

48

are largely developed based on statistical language models, natural language

process, interface-oriented or combinations of these. Some of them are not

specially targeted for QWERTY keyboard user. However the software can be

tailored or refined to suit the audience.

2.7.2 Typing Correction Applications

There are many types of errors caused by users, roughly such as spelling errors,

hitting adjacent key and cognitive difficulties. Prediction technology can foresee

users' typing intention, but can't directly correct typing mistakes. Some efforts

have been made to reduce these mistakes, although far few tools can intelligently

identify new type of mistakes.

One way to improve accuracy is to install filters which modify the control

signals generated by the device. Such filters can have a significant effect on the

speed and accuracy with which a device can be used. For example, motor

disabilities may have difficulties with a number of aspects of keyboard use,

resulting in high error rates, fatigue and slow typing [Shari, 2003].

Most operating systems provide a suite of accessibility settings which can be

used to configure the keyboard. Popular examples are NIS Windows and the

Apple's accessibility features. Some of these features directly address the

problems with the keyboard usage. For example, the keyboard accessibility

features available under Windows are,

* Key Repeat Delay

* Key Repeat Rate

* Stick Keys

49

De-bounce Time

Key Acceptance Delay

* Key Guard (it can be either physical or apiece of software)

These features address the problem to some extent, and it is generally seen that

people tend to use them. However, the problem lies with their complexity since

not all users are good enough to set them at a desired level. Their precise setting

is a time-consuming and error-prone task, and generally takes some time before

they are configured properly.

Attempts have also been made for example by IBM to devise intelligent

mechanisms that could adjust the settings of the keyboard accessibility features

by detecting the usage problems [Shari, 1998 & 2003]. They present a user

model to examine the behaviour of a real computer user. The model

encompasses four aspects of keyboard use which can present difficulties for

people with motor disabilities, and bases its recommendations to configure the

Accessibility Option of Windows on observation of users typing free English

text.

Initial feedback from 978 active users indicates that the key repeat delay

adjustment is acceptable to users, but the key repeat rate adjustment algorithm

needs more work, and the debounce feature may not be appropriate for dynamic

adjustment.

However, all they can control is only the accessibility features available under

the belt of operating systems. Thus, they can only be viewed as a slightly

intelligent layer over the set of accessibility features.

50

Another way is to use a spell checker to suggest corrections for wrongly spelled

words. Customarily a spell checker consists of two parts: a set of routines for

scanning text and extracting words, and a wordlist. Research aimed at correcting

words in a text has focused on three problems [Karen, 19921 as follows,

* Non word error detection

* Isolated-word error correction

* Context-dependent word correction.

In response to non word error detection, it was suggested that in large samples of

common English publication text 42% of all digrarn combinations are unlikely

to occur.

An alternative method called Dictionary Lookup, is a straightforward method to

detect non-word, but response time and memory etc. become problems as

vocabulary increases. So tailoring the vocabulary to set up a user-oriented

dictionary is a good solution.

Computer-user interaction is also being considered, for example by capturing

and analysing user's typing actions. That is one of the motivation of KeyCapture

[Soukoreff & MacKenzie, 2003] development. But unfortunately, William

Soukoreff & MacKenzie put more attention on language models creation, and

then ignored the importance of feedback from users' word correction.

Other research such as Natural Language Processing modelling are also

recommended. NLP tries to simulate specific language and generate a text by

analysing specific language's words, syntax and semantics through symbolic,

51

statistical, connectionist approaches. For example, it can detect a misspelled

word based on the context of the surrounding words.

Spell checker applications are either stand-alone applications capable of

operating on a block of text or as a feature of a larger application, such as a

word processor, email client or search engine. It also provides another function

offering to users the right to add abbreviation or habitual mistyping along with

its corresponding right pair into a database. Then the repetitive typing mistakes

can be identified.

2.7.3 Dasher

Dasher [Ward & MacKay et al, 1997-2008] is an inflarmation-efficient text-entry

interface, driven by natural continuous pointing gestures, designed by Inference

Group of Cambridge University. Dasher has a zooming interface. It is based on

language model prediction, through which the space of interface is determined to

each piece of text. Compared to improbable pieces of text probable pieces of

text are given more space, so they are quick and easy to select. The language

model of Dasher could learn all the time along with user's typing.

Figure 2.11 is quoted from Dasher's demonstration web page. It shows the state

of the Dasher interface while the user is writing the word 'objection'; alternative

words that could easily be written at this point include 'objective', 'objects-', and

- obJ ect-oriented'.

52

0

a

h
u

fo
s-

a re

- orient

Figure 2.11 A Dasher interface example [Ward & MacKay et al, 1997-20081

The users only need to move their cursors toward the right choice. Then the

interface zooms in, the place under the cursor passes through the central cross

and then the choice is made.

Dasher's screen layout is determined by probabilistic model and driven by

continuously two-dimensional gestures: horizontal and vertical. Its division of

right-hand is analogous to arithmetic coding. The real line [0,1] is divided into I

intervals of lengths equal to P(x, = a,), where a, stands for an alphabet [David

et al., 2000].

Dasher uses an algorithm called PPM5D+ to predict words, which can compress

most English text to around 2 bits per character. By renormalizing the probability,

the same algorithm is used to determine the intervals.

53

Dasher's design lies on its novel interface and the use of language modelling. It

suggests that a typing rate of up to 39 words per minute can be reached during a

dictation task, compared with typical ten-finger keyboard typing rate of 40-60

words per minute. However, it is useful to the users who operate a computer one-

handed, by joystick, touch screen, trackball or mouse, which might be an

inspiration for QWERTY keyboard tools development.

2.7.4 ProtoType

ProtoType is a product of Sensory Software International Ltd [2007]. It is a piece

of software used to type text into other programs such as a word processor. It

uses lists of words to help a user to type, which includes word prediction,

spelling correction and word banks.

As a user is typing, some of the automated features can highlight spelling errors,

capitalise words, replace common spelling mistakes or expand abbreviations. Its

architecture is shown in Fig 2.12.

Figurer 2.12 ProtoType program flow diagram [Anon, 20061

User's each touch would firstly trigger word predication list, and then Word

Bank and Spelling Check function will be called in sequence. ProtoType is

designed to improve spelling for people with dyslexia or spelling difficulties, but

54

it is unfunctional to correct the keystrokes mistakes made by most motor

disabled people.

Apart from those technologies, alternatives such as hardware are also developed.

For instance, Keyguard is a plate that fits over a keyboard, which users can rest

their hand on and make key press. It is useful for motor disabled people to avoid

typing mistakes. Other hardware such as BigKeys, Intellikeys Keyboard and

VisiKey Multimedia keyboard are also on the market.

2.8 Summary

First, Neural Network models which include Focused Time-Delay Neural

Network, Elman Network, and Probabilistic Neural Network, and Statistical

Language Modelling which includes language Modelling rationale, Prediction by

Partial Matching algorithm and Entropy concept are described. Then, a unique

data preprocessing process mainly based on Kotsiantis' suggestion - the six steps

of data preprocessing to achieve best perfon-nance for neural networks' training

dataset is introduced. Finally, String Distance functions which are used to count

the amount of difference between two sequences, Fitt's law equation which is a

measurement to estimate human's performance on using input device, and

several word prediction and correction applications such as Dasher and

Prototype are reviewed.

The Focused Time-Delay Neural Network was well applied to motion

recognition used by surveillance system, multimodal human computer interface

and traffic control system etc. Elman network was used to recognize both spatial

55

and temporal patterns such as word category classification and human activity

recognition. Probabilistic Neural Network was used by a computer-based face

detection system as a core classifier. However, they are hardly seen to apply to

noisy text entry processing such as user typing stream and its extracted sub-

dataset, which implies all users' self-rectification actions, usees vocabulary,

typing habits and typing performance. And also, although efforts have been

made in multiple directions such as language modelling, natural language

processing and user interface design, those technologies, if used alone, will fail

to meet the user's particular needs. It is also worth arguing that those designs

reviewed in the chapter (e. g. Figure 2.9) emphasize excessively on providing a

global method, and lack 'user-oriented' feature. Furthermore they are short of

self-adaptive ability (i. e. learning ability), and fail to fully recognize the right

patterns from user's distinct performance. Finally the most impotence of current

research is that it has neglected the significance of negative influence incurred by

the text entry noises, which have badly affected the accessibility and usability in

human computer interaction, and a systematic solution as a bridge between user

and computer to filter noises and make text entry more effectively has never

been on the agenda.

This research is motivated by these arguments and user requirements to find an

answer to those existing weaknesses and fundamental gaps. A comprehensive

solution to develop a user oriented hybrid framework with self-adaptive ability is

required. It would provide a combination of models with multiple features such

as prediction and correction functions based on a neural network language

modelling research. These will be fully discussed in following chapters.

56

CHAPTER THREE

A NOVEL FRAMEWORK FOR
NOISY LANGUAGE ANALYSIS

3.1 Introduction

Computer text entry is full of noises. For example, computer keyboard users

inevitably make typing mistakes and their typing stream implies all users' self-

rectification actions. These have produced a dramatically negative influence on

the accessibility and usability of applications that need text entry from input

devices. But the issue hasn't been addressed well. Therefore, a fundamental

concept to develop an intermediate layer language modelling framework to

analyze the language stream data with noises is required. The intermediate layer

lies between computer input devices layer and applications layer. It requires the

framework to be capable of reducing input errors significantly as well as

increasing the input efficiency highly. This framework can be seen not only as a

noisy language filter between input and output, but also as a bridge between a

user and a computer, or among input devices. To illustrate the framework, in this

chapter a specific case is also studied aiming to develop a user oriented hybrid

system with self-adaptive function to help disabled people to use QWERTY

keyboard more effectively.

3.2 A novel intermediate layer language framework

Via computer, an individual interacts with applications by producing events,

which are triggered by appropriate input devices and then transformed into

values that are expected by the target system. Typical input devices include

keyboard, mouse, camera and so on.

58

Text input is one of the purposes of some typical input devices. For example, one

of the facial recognition functions is to allow computer to interpret the speaker's

speech and spot the text they intend to express along with their facial expression

changes. As another example indicates, although for computer keyboard it is

much easier to generate a text from symbols to phrases and then sentences, the

typing stream shows a complicated and user related input process, where it is full

of rectification, repetitive keystroke mistakes and almost hardly identified. These

problems are reflected due to the flaw of input devices as well as human

inevitable mistakes when interacting with a computer.

These prove language based text input is a fundamental function in human and

user interaction, which imply the requirement to design a user friendly

framework which is a communication interface acting as a mapping layer

between input devices and applications. As a result of the design under a specific

input device, it will become easier (or if necessary) to carry out further

personalization with respect to adjusting the mapping between the input device

and applications. It may also provide a platform for the cooperation between two

input devices such as bimodal speech recognition's recorder and a camera.

In this research an intermediate layer framework called Adaptive Language

Modelling Intermediate Layer (ALMIL) with two fundamental language

modelling functions, namely, text prediction and text correction functions is

presented. As a text input processing platform, ALMIL is transparent for both

lower layer such as input devices (including related system drivers) and higher

layer such as applications.

59

In the framework, the values produced by the input devices as a result of user

interaction with computer, are represented by vectors. Each vector is composed

of attributes, which include time, predecessors and IDs. For example, the word

identified by speech recognition can be represented by its predecessors, genre

(speech recognition) and probability of the word, which are then converted into a

quantified vector.

ALMIL is mostly designed as a language model dealing with noisy input stream

triggered from different sources. It makes recommendation both for wrong and

uncompleted input. It combines with several technologies which include n-grarn

statistics, neural networks and human computer interaction technology, and then

designed in units as shown in Figure 3.1.

The intermediate layer framework includes eight working units, namely, Vector

Generation unit, Pre-processing unit, Prediction unit, Correction unit, Short-term

Memory, Long-term Memory, Inference Engine unit and Interaction Port. Vector

Generation unit, Pre-processing unit and Interaction Port deal with the

interaction between input and outputý while the rest of units compose the data

processing centre and information storage centre.

The input of ALMIL can be a single symbol such as an alphabet, a logical set

such as a word, or a context set such as a phrase or a sentence. The input stream

also represents an input process evolving from a symbol to a complete word,

then a sentence.

As shown in the dash circle of Figure 3.1, the logical set is composed of

consecutive symbols while the context set is made up of consecutive logical sets.

Let's take computer QWERTY keyboard as an input device and English

60

language as a user's typing language. Then the symbol set is a subset of ASCII

set. The English words are referred to as logical sets and the context is

represented by English phrases and sentences.

Vector Generation

Figure 3.1 Adaptive Language Modelling Intermediate Layer Framework (ALMIL)

The different compositions trigger distinct logical process. For example, let's

imagine a speech recognition process: an English user speaks word by word,

61

which can be considered as a logical set while phonemes are considered as

symbols. Then each identified word triggers a process to verify correctness of the

word. As soon as a sentence is composed, a distinct function (e. g. grammar

checker) or several functions referred to a sentence is triggered and the whole

sentence is verified. In Figure 3.1, each distinct function refers to a logic unit.

The unit may integrate multiple functions to deal with a particular requirement,

for example, a spell checking function and a grammar checking function could

both correspond to Correction Unit to correct a typing mistake.

While the input is a one-way flight whose data always flow from input device to

Vector Generation unit of ALMIL, the output represented by Interaction Port

always collects data from both sides, namely, Inference Engine unit and user's

feedback. The user interface functioned by Interaction Port participates in an

apprentice-like dialogue to enable the users' response directly or indirectly

influence the framework.

As an interface with input device, the Vector Generation unit inspects the whole

input process. It identifies and selects the attributes or dimensions to be included

in a further process and converts the input into successive vector sets. The

Vector Generation unit is also a portal to multiple input data streams. An

identifier (ID) is included in the vector to distinguish between different input

devices, and it is also used to indicate the relationship between them.

The Pre-processing Unit handles the noisy, missing and inconsistent data based

on the generated vector sets. The handling methods are derived from data mining

preprocessing which includes data cleaning, data integration, data normalization

and data reduction. This unit is set to be configurable both based on manual and

62

automatic work. Some user's distinct typing characters can be configured by

setting up a related user profile.

The memory is designed based on the MHP architecture - Model Human

Processor architecture, which was suggested as one of the human computer

interaction theory to human cognition. As a simulation to human mind, the

memory of ALMIL is divided into short-term memory and long-term memory.

The long-term memory includes a knowledge base which is represented as a set

of rules and facts which are used to match the rules. Each rule specifies a relation,

strategy or heuristic with a certain structure such as IF ... THEN structure.

The problem-specific information such as current input and recently used but not

frequently used words which don't exist in long-term memory, are stored into the

short-term memory. The frequently used terms such as words, phrases and

production rules are stored into long-term memory. All other units are able to

communicate with long-term memory and short-term memory directly.

The ALMIL is designed to provide users with two major functions, namely,

prediction function and correction function. For example, let's consider that

ALMIL is processing a user's typing stream generated from a computer

keyboard. The user's typing stream includes all self-corrections of the user, the

useesvocabulary, typing habits and typing performance. Based on the analysis

of Inference Engine to the user's typing history and online feedback, the

prediction unit is able to predict user's typing intention, while the correction unit

is able to correct user's real-time typing mistakes.

The central unit of this framework is the Inference Engine. Its learning comes

mostly from users' real-time feedback. Each feedback is converted into rewards

63

assigned to specific facts, weights, rules saved in the database. The rewards are

partly generated based on specific intelligent learning algorithms. Their values

are adjusted as soon as the Inference Engine receives feedback from the

Interaction Port. The Inference Engine is also designed to learn from the offline

analysis of historical data stream derived from input devices, and deduce the

association rules. Then the rules are kept in the database and used to improve the

furictionalities of the prediction and correction units.

More specifically, an appropriate leaming oriented technology such as neural

network learning algorithm, generic algorithm or a hybrid algorithm can be

applied to the inference engine. The design of hybrid inference engine can be

based on specific requirements. It is also required to refer to the features of that

particular technology. For example probabilistic reasoning mainly deals with

uncertainty, while fuzzy logic and evolutionary computation mainly deal with

imprecision and optimization respectively.

ALMIL has some substantial differences from the other models such as Jianhua

model. First, it is designed as a generalized intermediate layer language

modelling framework that lies between computer input devices and applications

layer to analyze the noisy language stream such as typing or bimodal input

stream, whereas Jianhua model is developed as a word prediction application

based on a combination of n-gram. model and semantic model with a simple

ranking strategy. ALMIL as an input behaviour analyzer deals with the original

data stream that are directly taken from input devices with full of noises rather

than that Jianhua model does a half-processed structured data. ALMIL is a

hybrid system that introduces a variety of state-of-the-art technologies such as

64

neural network, natural language processing and data mining, with high self-

learning requirement while Jianhua model is a two models combination only

with a limited learning which is based on the pointwise mutual information.

Moreover ALMIL consider HCI as its part of architecture which emphasizes

user-oricntcd, short-mcmory and long memory, and user interface design, while

Jianhua model focuses on the word prediction functionality only.

In order to illustrate the process of ALMIL, Bimodal Speech Recognition data

stream is given as an example here. As human mouth cavity is part of vocal tract

lips and tongue, teeth mouth jaw and chin play a very important role on speech

generation. Then bimodal Speech Recognition (visual and audio) was suggested

to defy the noisy environment where the performance of audio speech

recognition degrades drastically. It identifies a user's speech by analysing both

their facial and voice phonemes. Given the ALMIL framework, the data stream

marked with time stamps and IDs is transformed to distinct vectors within

Vector Generation module, where the IDs are distinguished based on visual and

audio phonemes. Then the preprocessing unit synchronizes the vectors based on

time stamps and IDs, and tackles noise problems such as filling the missing

values and removing the outliers.

The Correction Unit makes a quick decision on where correction is required.

Correction solutions are generated when needed, and a cross-correction function

is applied for the bimodal recognition if one considers this specific case. The

Prediction Unit can process data stream simultaneously. Then both results are

presented to the Inference Engine unit. Based on neural network or other

inference algorithms, a comparison between Facial Expression Recognition

65

results and Speech Recognition results is carried out. Eventually, the results

marked with ranking probabilities or a direct highest ranking presentation is

presented to the user. In turn, the user's feedback is used to improve the

inference algorithms performance.

The next two sections are a further demonstration of ALMIL. Firstly a

comprehensive disabled user investigation is carried outý and then an Intelligent

Keyboard directed towards analyzing disabled users' typing stream is presented.

3.3 Disabled keyboard users investigation

Computer users with motor disabilities or cognitive problems may have

difficulties in accurately manipulating the QWERTY keyboard. The aim of this

investigation is to offer researchers an opportunity to closely observe this group

of users' typing behaviour. During the investigation, about twenty seven people

have been interviewed. Both old and disabled people are involved. Their

performance can be classified as below.

+ 'Unfamiliar with computer' performance

Difficult to find keys: Especiallyfunction andpunctuation keys (e. g. T12'.

'Enter' key puzzle: Some computers are with no "enter" or "shift" printed
on the key surface, so it is difficuitfor oldpeople to find where they are.

Compound
'keys

puzzle: Due to, different definitions in distinct software,
compound keys cause confusion to many people.,

66

* 'Motor disability' performance [Trewin & Pain, 1998]

Long key press: 7lieSe occur when an alphanumeric key is unintentionally
pressedfor longer than the default key repeat delay.

Modifier keys: For example, 'Shift'-ý VI One-hand typists in particular
mayfind it difficult topýess two keys at once.

Additional keys: Some users oftenpress keys adjacent to the target keys.

, Bounce errors: These occur when the, user unintentionally presses a key
more than once.

Easily tired: It is a hard task for some -disabled people to type more than
certain number of words in succession

Prefer big keys: Some users can't Cope with laptop well because of the
smaller keys. They prefer big keys, like "space bar"

* 'Dyslexia people' performance

Miss letters or add letters: For instance, "student" ->ý "studw

Reverse letters: For instance, "student "studnet"

Spelling e rrors: For instance, leave vowel out ofword, "magic"-> "mjc

Mix up similar words: For instance, "does

Phonetic form: For instance, "shud"-> 7should"

* Other typing performance

Miss words: Leave out Words in the typed sentences.

Reverse words: Reverse words in a sentence.

Mix lines: If there are some similarities (for example, include some same
words) between two or among more lines, users could mix the lines. ', ',

Non-sense sentences: From the context ofparagraph, the sentences which
user typed are not what they intend to type.

67

Additional words: User could add additional words to a structured and
fully meaningful sentence.

One-hand users: There are unclear different difficulties for left hand and
right hand user in using the same kind ofkeyboard

* User special characters

The font and size influence: The font and size of a document could affect
user's cognitive ability.

Environment influence: Noise, music could lead a positive or negative
influence while disabledpeople are typing.

Background color, influence: Some users Prefer for example, ' to' have a
yellow color background on both ofscreen and keyboard.

Image influence: Dyslexics'are, usually more comfortable with computer,
images than words.,

Capital 'errors: Typing capital letters is a difficulty for some d, isahled
people. The occurrence of errors is high.;

Habit mistakes: For exa, MPle, one may type SPACEBAR after each ivord,,
but sometime the required maybe a punctuation mark,

* Reflected questions

More efficient typing: Generally their typing speed is far' slower than
average. If the document isn'tfinished on time, the frustration couldfurther'
badly affect their typing performance.

Higher typing error tolerance: The MS word does have, certain tolerance
to spelling errors, but typing mistakes made by disabledpeople may vary.

+ Required solution from user

Learning and evolving: These require a system lying between input device
and applications, which is able to analyze users'typing behaviour, and then
predict user's typing intention and correct mistakes accordingly. The' system
should have the knowledge of user's characters and be able to learn and
recognize the new patterns over time.,

68

3.4 Intelligent Keyboard framework

As illustrated in the last section, computer users with motor disabilities or

cognitive problems may have difficulties in accurately manipulating the

QWERTY keyboard. As for motor disability this may be seen in a form of

tremor owing to a certain disease such as Parkinson's or any other factor, for

instance reduced range of hand motions due to Arthritis. Cognitive problems

usually are caused by loss of the ability to process, learn and remember

information. For example, Dyslexia can cause significant problems in

remembering even short sequences of numbers in the correct order.

This section is a further demonstration of the designed ALMIL framework by

analyzing and developing a particular case. Based on the disabled user

investigation on computer QWERTY keyboard in section 3.3, an innovative

framework - Intelligent Keyboard (IK) hybrid framework is designed to analyze

disabled users' typing stream, and accordingly correct typing mistakes and

predict users' typing intention.

Also, this section intends to give a user-oriented solution to help disabled people

to use keyboard more efficiently. Based on the design, user's input typing stream

can be checked in sequence by each module along with user's typing process.

Assumption: The hybridftaniework has a. hierarchy structure. 'Thefunctions

'in the hybrid architecture are categorized into two levels: the first level is

named as 'unit '(e. g. Error correction unit); under the first level (sa y,

sublevel, 'e. g., Motor Checker function) functions' or, unified functions (e. g.
Noise processfunction) are named as 'module'.

69

3.4.1 Intelligent Keyboard framework and Rationale

For an implementation of cognitive tasks, it is shown that rather than seek

solutions based on symbolic Artificial Intelligence e. g. neural networks alone, a

more potentially useful approach would be to build structured connectionist

models or hybrid system. Then it is able to combine more functions for some

specific purposes based on machine leaming model, which includes four

fundamental elements, namely, Environment Analysis, Learning Elements,

Knowledge Base and Performance element [Simon Haykin, 1999]. All of these

units could be divided into more subdivisions, to form a highly efficient hybrid

framework, while the whole framework would be taken as a noisy language

modelling layer (named as Intelligent Keyboard) between keyboard and

applications to analyze users' typing stream and filter possible noises.

Intelligent Keyboard hybrid framework which combines neural network,

statistics and natural language model together is designed and intends to provide

users with two fundamental functions, namely, text prediction and typing

correction. User's typing data stream can be checked, rectified, and predicted in

sequence by going through each unit following user's typing process. Through

this way, the noises in typing stream are filtered significantly and the language

interaction between user and computer becomes smoother.

Multiple units and a database (long-term memory and short-term memory) have

been presented according to distinct technologies. The designed Intelligent

Keyboard architecture is shown in Figure 3.2, which is thoroughly explained

through an example in the next section. The architecture includes four processing

units: Text prediction unit, Inference unit, Natural Language Processing unit

70

(marked in dash line, which is currently not considered given the scope of this

project), and Error correction unit; and two additional modules, namely, User

interface module and Noise process module to enable the interaction of the user

with outside environment such as computer keyboard.

The two additional modules function as data pre-processing, post-processing and

interaction interface. They correspond to machine learning model's Environment

Element and part of Performance Element respectively. The Knowledge Base

element is represented by Long-term Memory and Short-term Memory. The

rules inferred from Inference Engine and some other facts such as user profile

and frequently used texts, are saved in the Long-term Memory. Other facts such

as recently used new words are stored in the Short-term Memory which will be

transferred to the long-term memory if a certain threshold is reached.

71

-- --------- -. - -------------

1 -'- -- ---------- *

Ob

.....

.........................

ýC=

-a

Qi

a3

-2 - <= = ý4

.0ý: -

U, tu

a

6ý

u

I
(4_i L

S

- ='

E

Z. 0
tü

ý- Z. ýý
1

-0

03
(1)

L7.

Intelligent keyboard is invoked by user's key strokes. As much of the typing data

stream could be un-preprocessed, incomplete and noisy, for example, a long key

press generates more than one Window's message, so the data stream needs to

undergo Noises Processing module first. Tbrough this module the input vectors are

further exploited, which would include the key-up signals, key-down signals, the

time difference between two consecutive strokes and so on. The definition of noises

can be given according to the user profile.

Subsequently, a representation vector which includes a time stamp and Virtual Key

Code (VKC) message is chosen to be sent to the processing units, namely, Text

Prediction unit and Error Correction unit. Both units process the vectors based on

the association rules, dictionaries and some other facts retrieved from the memory.

Text prediction unit is composed of different algorithms developed based on

different scientific methods such as statistics and phonemics (see more details in

chapter 5) while Error Correction unit is designed based on users' performance.

Firstly, a spell checker function is used to detect if a mistake occurs. In the case of

no mistakes being traced, the unit processing is stopped and the result is passed on

to Inference Engine. Otherwise, the function such as motor checker to process motor

disability errors would be evoked if spell checker fails to present a result. These two

units (Text Prediction unit and Error Correction unit) can process data stream

simultaneously. The typing mistakes which are still under doubt are further checked

by word n-gram function, which is used as an alternative to Natural Language

Processing unit in this project. In the future the Natural Language Processing unit

73

could be implemented and used to check syntax and semantics errors. Finally, the

results are refurbished and shown to the user by User Interface unit.

The results (e. g. a list of words) generated from Text Prediction unit and Error

Correction unit, which are usually more than one, are presented to Inference Engine

unit. 'Me Inference Engine unit ranks the results based on their probabilities to

generate a word-list or directly presents a highest ranking presentation to the user.

The user's feedback such as selections and correction actions is recorded by the

inference algorithms (here is a neural network algorithm), and transferred to rules or

rewards to be stored into the memory.

From Figure 3.2, blue boxes and their connections represent the system's input and

output process. An input of a sentence is a process passing through different

structure status from letter, word to sentence, during which distinct units are evoked

up according to the structure status changes.

The processing units from left to right, which has been marked as light yellow, are

named as Text prediction unit (No. 6), Inference engine unit (No. 7), Error

correction unit (No. 8), and Natural Language Processing (NLP) unit (No. 9). Data

storage (No. 12) is divided into short-term memory and long-term memory, where

the temporary and permanent information are stored. There are two additional

modules: Noise process module (No. 10) and User interface module (No. 11), which

are responsible for the interaction with the outer environment such as keyboard.

(Further details ofall units and modules can befound in Appendix E).

74

3.4.2 Intelligent Keyboard framework demonstration

Let's assume a one-hand user is typing the sentence: Tomorrow shall we go to the

park? Capital letter is a big obstacle to one-hand users, as they have to type twice

when inputting a capital 'T' ('Shift'->release-> 't' ->release).

After receiving these two Windows Messages, the Noise Process module analyses

and assembles them to one letter - 'T', then send it to Text Prediction unit to provide

the user with a list with ranked words, as shown in Example 3.1,

T_

1) Talk 2) That 3) The 4) Them 5) They 6) This

Example 3.1 Words List Interface -1

Since the target word did not appear in this list, the user continues to type the next

letter "o", and the following list of words starting with "t-o" appears, as shown in

Example 3.2,

To-

1) Today 2) Tomorrow 3) Tonigbt

Example 3.2 Words List Interface -2

Then the user can choose the word "Tomorrow" at once. Dyslexia users often

reverse letters, e. g. 'shall' to 'sahll', as shown in Example 3.3. As a complete word

(i. e. a string between two non-alphabets), it is sent to Error correction unit for

75

verification. Some errors are filtered out after spell checking. For the remaining

errors, one of these modules, namely, 'motor checker' or 'dyslexia checker' is

chosen as a further solution. Eventually 'sahll' reaches Dyslexia checker module

and is corrected to 'shall'.

Tomorrow sahll

1) shall 2) sheR 3) should

Example 3.3 Words List Interface -3

The typing moves on, as shown in Example 3.4,

Tomorrow shall we go park?

Tomorrow shall we go to park?

Example 3.4 Words List Interface -4

No other units could cope with such error (e. g. not 'go park', but 'go to park')

(attention: the Inference Engine unit could learn and recognize after rounds of

training.), until the sentence is sent to word n-gram module to conduct a syntax

analysis.

During the whole process, each unit frequently communicates with memory

database to fetch user profiles, association rules and system configuration.

Meanwhile the results of units' analysis, user's keystrokes (e. g. correction action

&wrong letter'-> user press 'Del'->right letter'), and user's responses are sent back

76

to Inference Engine unit. According to user's feedbacks, Inference Engine unit again

optimizes its model and related vectors. In the mean time, it also re-ranks the display

list before sending it to User interface module.

In some way Text Prediction unit and Noise Process module are responsible for the

mimmum input unit (i. e. letter) errors' correction; Error correction unit is in charge

of word checking; word n-gram helps to wipe off the rest of errors based on the

analysis of sentences' syntax and semantics. User's input context is checked in

sequence by each unit with user's typing process, corresponding to the blue boxes

which circles the architecture, and are marked as 'Incomplete word', 'Word' and

'Incomplete sentence'.

3.5 Summary

This chapter develops a novel intermediate layer noisy language modelling

framework - ALMIL, which lies between computer input devices layer and software

applications layer, to analyze language data stream with noises and provide a user

with data prediction and correction functions. This framework highly emphasizes on

its adaptability, learning ability and compatibility, which can be used by text entry

applications such as computer keyboard and bimodal related applications as a

standard intennediate layer noisy language processor.

Following a disabled user investigation, a demonstration of ALMIL through

Intelligent Keyboard framework aiming to design a user oriented hybrid framework

77

with self-adaptive function to help disabled people in using QWERTY keyboard

more effectively is developed.

The Intelligent Keyboard framework provides disabled people with a comprehensive

solution to use QWERTY keyboard more effectively. It can learn from user's typing

history and feedback based on neural network algorithm. The user's typing intention

is predicted based on user's input history, and the typing errors in data streams are

gradually corrected as the data stream goes through each module. Through this way,

the noises in typing stream can be filtered significantly and the language interaction

between a user and a computer becomes smoother.

The modules of Intelligent Keyboard architecture are extendable according to

distinct user profiles. It is developed as a practical demonstration of ALMIL

framework. Multiple technologies such as statistics and neural network are applied

to the framework and multiple modules such as motor checker and dyslexia checker

are integrated into this framework. It fills the gap between input device (i. e.

keyboard) and user applications as a noisy language filter. Hence, the ALMIL

framework builds a foundation for this research. In the next chapter an intensive

neural network modelling based on the analysis of both plain text and user typing

stream is fully presented.

78

CHAPTER FOUR

NEURAL NETWORK AND
LANGUAGE MODELS

DEVELOPMENT

4.1 Introduction

The previous chapter proposes an intermediate layer noisy language modelling

framework called ALMIL to analyze language data stream with noises. In order to

demonstrate and simulate the noisy language modelling process, a comprehensive

neural network models development based on the analysis of both plain text and

user typing stream is carried out. Firstly, an amount of datasets including a part of a

book and two user typing stream logs are determined and collected. Furthermore, a

preprocessing tool is developed, and data extraction and coding method are

proposed. Then, a Focused Time-Delay Neural Network Model with extendable

input and hidden units is designed and performed with noise-free, noisy and typing

stream datasets respectively. Distinct numbers of grams with distinct numbers of

hidden neurons are cross-experimented. Based on different noise rates, the noisy

language text is modeled with a 27 symbol set, while the typing stream model is

designed and implemented based on a larger symbol set.

Following a general language modelling on noise-free, noisy and typing stream

datasets, several distinct neural network models are developed based on a specific

dataset extracted from user typing stream, for example, the influence of Time Gap

on user's typing performance is studied through Time Gap modelling and Prediction

with Time Gap modelling. Finally, a novel Probabilistic Neural Network model is

developed to simulate the 'Hitting Adjacent Key errors' based on Key Distances,

Time Gap and Error Margin Distance elements.

80

4.2 Experimental clatasets

One of the objectives in this research is to design neural network models and test

these models by applying experimental noisy datasets, to estimate their prediction

and correction accuracy rates. The approach adopted here is to construct distinct and

extendable intelligent models according to the varied data samples and related

features. Various neural network models are trained by the minimization of an

appropriate error function defined with respect to the training dataset. Several pieces

of data samples are collected from different sources. The main experimental datasets

used by this research are described below,

* DATASET ONE: a novel -Tar from the Madding Crowd' was written by

Thomas Hardy [1874], which is his fourth novel and first major literary

success. It has been used as a testing sample by some compression

algorithms such as PPM*. The version used here is extracted from Calgary

Corpus [2009] with a size of 751kb. An example is shown below.

V don't think it isfor you, sir, 'said the man, when
he saw Boldwood's action. "Though there is no name
I think it isfor your shepherd. '

Due to system performance restriction, a continuous 100k segment is

extracted from dataset one as a testing sample, and is subsequently divided

into training dataset, validation dataset and testing dataset in a proportion of

81

70%, 20% and 10% respectively. The training subset is used to estimate

weights and thresholds of neural network models; the validation subset is

used to determine when to stop training. Error estimates using training and

validation data will be biased as both are applied to design the neural

network, so the testing subset is involved to obtain an unbiased estimate of

the generalization error.

* DATASET TWO: it is extracted from Disability Essex helpline keystroke

log. Ile associated computer is used as a question recording, database query

and email writing tool by a disabled volunteer. From the reflected keystroke

log, the typing mistakes are predominantly about adjacent key press and

prolong key press effors. The keystroke recording tool used in this research

is KeyCapture software [Soukoreff & MacKenzie, 2008], which has been

modified and adjusted for the purpose of this research. It runs in background

under Windows enviromnent to collect keystrokes without interfering with

user's work. A typical structure of generated log is demonstrated in Figure

4.1.

01929 KeyPress 20080605-132ld9-593 IT, Status-(down) Key(81) Extra(Dxl4) KeyDistance(3.500000) Timegap(307)
01930 KeyPress 20080605-132119-615 IT, Status=(up) ley(84) Extra(OxcOH) KeyDistance(O. 000000) Ti=Gap(62)
01931 KeyPress 20080605-132119-658 'HI Status=(down) Key(72) Extra(Ox23) KeyDistance(2.500000) TinGap(3)
01932 KeyPress 20080605-132119-691 IHI Status--(up) Key(72) Eidra(OxcO23) KeyDistance(O. 000000) TiNwGap(36)
01933 KeyPress 20080605-132119-804 'A, Status-(down) Key(65) Extra(Oxle) KeyDistance(5.000000) limeGAP(Ilo)
01934 KeyPress 20080605-132149-992 W Status--(up) Key(65) Extra(OxcOle) KeyDistance(D. 000000) ThReGap(188)

Figure 4.1 A piece of KeyCapture log sample

82

KeyCapture can answer the following questions: What editing keys are really

used when entering text? How much time does a typical user spend using the

mouse, as opposed to entering text? Or, what applications does a user use,

and for how long? [Soukoreff et al., 2003]. In Figure 4.1 each line contains

nine columns as illustrated below.

Column 1: sequence number
Column 2: key press - used to distinguishfrom mouse action
Column 3: action date and time (ms)
Column 4: key pressed
Column 5: key status (up or down)
Column 6. - the value of Virtual Key Code
Column Z key press informationfrom Waram
Column 8: distance between two keys ofa standard keyboard
Column 9: time gap between two consecutive keypresses.

According to Windows system, each key stroke evokes two messages,

narnely, key-pressed (either WM-KEYDOWN or WM_SYSKEYDOWN)

and key-released (either WM-KEYUP or WM-SYSKEYUP), which are

associated with two 32 byte parameters, wParam and Waram. In Figure 4.1,

every couple of lines marked with status equal to 'up' or 'down' represents a

complete key press. The time gap is the margin value of each two rows in

Column 3. The key distance is the sum of horizontal and vertical distance

from one key to another. A half key (0.5) distance is counted if two keys'

distance is not an integer multiple of one-key distance.

83

The Helpline dataset is collected within a period of twenty three days with a

capacity of 6.5 mega bytes. As an example generated in a real-time, the

occurrences of alphabet (recorded in virtual key codes) counted in keys up

and keys down are shown in Figure 4.2.

Figure 4.2 A statistic of alphabet occurrences in typing stream

* DATASET THREE: typing samples from people with Parkinson disease

and motor disability are also gathered. The segment chosen and used by

intelligent models is as follows,

ORIGIN -- 'the quick brown. fi)xjumped over Ihe lazy, dog'
TYPED - 'hthe quick brrooownn figow jummppefd

iobverelhe lwqazy doogg/g'

The 'ORIGIN' refers to a typing reference, and the 'TYPED' refers to a

user's typing sample shown in a Notepad editor. These are recorded in a

plain text format. Its associated keystrokes are also tracked and saved by the

software KeyCapture.

94

Some other testing datasets are also used in this project. They will be

explained along with the description of associated intelligent models.

All the datasets collected here lie in two categories: non-noisy or noisy dataset,

which are closely related to the research hypotheses made previously. Dataset one as

a clean dataset (i. e. non-noisy) having a considerably large size will be used by the

general noisy language modeling process. The noises can be added gradually into

the clean dataset to model noise-prediction rates. Dataset two will be taken as a

-specific research case and applied to type stream models. However, user typing

behaviours in dataset two are ambiguous that may be difficult to be classified clearly

into a sp ecific category, therefore, a separate typing stream research case aiming at

processing the 'hitting adjacent errors' (i. e. dataset three) is collected. Certain

factors such as Time Gap and Key Distance will be addressed in the related model

development.

4.3 System environment

System environment including computational capability and memory capacity may

have a great influence on the intelligent models' testing process. Therefore, it is

necessary to fully present the related system environment of all testing. In this

research, all experiments are carried out based on Lenovo T60 (IBM) platform,

85

Windows XP operating system, and MATLAB and its Neural Network Toolbox. A

detailed system environment description is given as follows,

4 Operating System:

Microsoft Windows XP Professional Version 2002
Service Pack 3

* Hardware Configuration:

Intel@ Corel"2 CPU T5600 @1.83GHz, 3. OOGB of RAM
Hard disk 120GB

* Toolbox and Configuration:

MATLAB Version 7.4.0 (R2007a) Neural Network toolbox
Physical Memory (RAM): Total - 3070 MB
Page File (Swap space): Total - 4445 MB
Virtual Memory (Address Space): Total - 2047 MB

4.4 Data processing tools

Data collection procedure has been followed in two ways: hand sampling from

sources such as compression websites and wikipedia, and automatic collection using

KeyCapture software (see Figure 4.3). As manual extraction and pre-processing of

data fed to intelligent models from different sources is tedious and the chance of

human error is high, all gathered raw data need to be further processed prior to being

used by intelligent models as input vectors. However, no particular software or

86

functions have been found to perform the extraction and pre-processing. To

overcome this problem, a piece of software called Enstatistics is developed that is

capable of providing a platform to pre-process dataset by reading the raw data from

different sources and transforming them into text files to meet the requirements of

intelligent models. The overall process is shown in Figure 4.3.

I Hand Sampling I

Dataset 1&3
EnStatistics (MFC)

Dataset 2

I KeyCapture I
Intelligent Models

(MATLAB)

Figure 4.3 Schematic representation of intelligent modelling

Enstatistics is developed based on Microsoft Foundation Class (MFC) Library to

convert the datasets to an appropriate input format for neural network models. The

software interface within a data pre-processing description diagram is shown in

87

Figure 4.4. Each function will be illustrated following the latest introduction of

specific intelligent models.

Figure 4.4 gives a clear demonstration of data preprocessing related to this research.

'Me datasets are interpreted by distinct functions of Enstatistics based on specific

requirements. Each function may correspond to a particular neural network model or

a particular requirement. For instance, function TextAnalysis is used to analyze the

English plain text and calculate the occurrences of letter 1,2 & 3-gram and word 1,

2& 3-gram; function StrokeAnalysis is used to analyze dataset two and generate

data for N-Grarn Prediction with Typing Data Model. In this research,

MATLABBP2, MATLABLVQ and StrokeStat functions are not used by intelligent

models. TestFunc is used as a program interface to test some internal functions used

by Enstatistics.

For most of the designed neural network models, the research has used unary coding

as their input coding method, illustrated in detail in section 4.5. Enstatistics can be

used independently as a statistics tools to calculate the target ASCII and word 1,2 &

3-gram. Also it can be used for any neural network model for data conversion with a

minimal alteration of the existing code. The performance and the accuracy of the

software have been verified within this research.

88

DATASET2
DATASET3

Z

TextAnalysis StrokeAnalysis

MatlabBP Ma labBP2
BE 6ý. Mao

.-.
-. --' -I

MatlabLVý
7

5ýrokeStat
0- ff --Mmý .ý W-ýý

TimeGap LRonRHP

LRonRHT TestFunc 1

Cancel

J: ý
.. I... 1.0.

... I,,, -2.0. ,I,.,
3.0.

... I,,. -4.0. ... I. 5.0.
, L-L

ilioooo(: Iciclclclclclocloooc101-11-1clocloon

2000000000000100000000000000
3000000000000000000000000001

4000000000000000000000000001
5000000000000000000000000001
6000000000000000000000000001

7000000000000000000000000001
8000000000000000000000000001
9000000000000000000000000001

Figure 4.4 Interface representation of intelligent models data pre-processing

89

4.5 Input coding

Let's model a typing data sequence D= td, I"
, on an alphabet basis of size

space A=ýa,..., zj , where d, EA. A neural network model can be designed to

compute the probability of each symbol in A in the next occurrence. The method

how to code their inputs before feeding the datasets to the models is important. Here,

two input coding methods based on unary code and ASCII code are illustrated. For

example, some samples coded by unary code and ASCII code are shown in Table

4.1.

Alphabet Unary code ASCII[Code

a 1 97 -'01100001'

b Ol 98 ='01100010'

c 001 99 ='01100011,

d 0001 100=101100100,

e 00001 101=101100101,

Table 4.1 Unary code and ASCII samples

Unary coding is an entropy encoding that represents a natural number, which is a

symbol here, using n-I zeros followed by a one, for instance, 'a' is represented by

a'F while V is represented by two zeros followed by a one. The ASCII code uses a

fixed length (e. g. 8 bits) with its value to represent a symbol as shown in table 4.1,

where 'a' is represented by '01100001' which consists of three ones and five zeros.

90

The unary codes can be adapted to a fixed length to fit the requirements of neural

networks without changing the number of input neurons. For example, let's consider

a dataset within a three symbols la, b, c) space, these three symbols can be coded as

fixed unary codes f100,010,0011 or a ASCII style code ý01,10,11). Let's suppose

there is a training iteration of neural network where the input is a symbol 'c' and the

target output is W, then the designed neural network architecture with unary coding

and ASCII coding with two and three hidden layer neurons respectively is illustrated

in Figure 4.5 and Figure 4.6.

OutDut Laver

Hidden Laver

InDut Laver

Figure 4.5 Neural Network with unary coding Figure 4.6 Neural Network with ASCII coding

At the input layer of Figure 4.5, only one neuron is activated once at a time while

the rest of the inputs are set to zeros. Figure 4.6 shows neural network architecture

with ASCII style coding, which is able to use only two neurons at the input layer to

represent a dataset. For a neural network with ASCII coding, less neurons are

91

required than unary coding at input layer, but more neurons are required at hidden

layer, and the time cost of training based on ASCII coding is higher. This research

has applied the unary coding both to the input neurons and output neurons of neural

network models where it is necessary. The determination of number of hidden layer

neurons is based on adjustable, experimental and heuristics methods.

4.6 Neural network models development outline

The text entry prediction and correction using neural network models can be

achieved based on historical data through designing two types of models; or can be

developed using a single neural network architecture if the correction can be

considered as one specific case of prediction - the model produces the right symbol

based on the inaccurate historical data. At this point several models based on

Historical network, Focused Time-Delay neural network modelling, traditional

BackPropagation neural network and Probabilistic neural network associated with

different datasets are designed and implemented in the following sections. Both

general languages based modelling using Focused Time-Delay neural network and

specific data extraction based modelling using traditional BackPropagation Neural

network and Probabilistic neural network are tested. Figure 4.7 demonstrates the

experimental procedure with datasets one, two & three.

92

r ------ --------------

1 cj 0i
1 -Z; > r- 1

3)

"ri

r- Z.

-0 -

m Cl

Altogether seven models (marked as No. 1 - 7) are designed. They are trained

separately by using three different datasets colored in blue, turquoise and yellow.

The algorithms or commands used in MATLAB neural network toolbox are elm,

newfRd and newff [Demuth et al., 1992-2008]. BackPropagation learning algorithm

is used by models No. 1 -6.

Probabilistic Neural Network (PNN) model is designed and shown in box No. 7. The

training of the PNN model is much simpler than the models based on

BackPropagation learning algorithm. There is a maximum of one pattern unit for

each training example in PNN model. However the pattern layer can become quite

huge if the distinction between datasets categories varies significantly.

4.7 Focused time-delay neural network modelling

A traditional Elman Network is a BackPropagation historical neural network with an

addition of a feedback connection from the output of the hidden layer to its input, so

it can be explored to support one gram prediction exactly through tracing back one

symbol. As a result, an experiment has been carried out with dataset one.

In comparison with other neural networks models developed in this research,

although a less number of hidden layer neurons, and thus less memory in practice,

are required in the designed Elman network, the experimental results based on a 27-

3-27 three layer structure show Elman network is time and memory consuming

network. Under the current system environment, the experiment demonstrates that

94

training using dataset one with >=1500 symbols (contrast to aI OOK dataset used by

FTDNN) has failed to reach a final result with an 'Out of memory' error. A further

test with a training data of 1000 symbols and a testing data of 500 symbols is

performed. The test shows the time cost is significant. It takes about 42 minutes

(2557 seconds) for the designed Elman network to complete a training process. The

result shows that a prediction rate lies at 45.09% of First Tbree (FT) Hitting Rate

and at 28.26% of First Hitting Rate.

Focused Time-Delay Neural Network belongs to dynamic network, which consists

of a feedforward network with a tapped delay line at the input. In this research

Focused Time-Delay Neural Network is selected because it can represent and

explain the unclear and complex relationship between current typed sequence and its

preceding one, and this is reflected by the associated probabilities.

Focused Time-Delay Neural Network is suitable for time-series prediction. Studying

user"s typing behaviour would require the network to study user's history and trace

back length of context to some extent (so called n-gram) to predict the next probable

occurrence of symbols. Adding one more grain requires one more time delay. Simon

Haykin [1999] has demonstrated that the FTDNN is more reliable in response to

time and memory requirement, while the design using Elman network to support n-

gram prediction is complicated. However, a comprehensive research on Focused

Time-Delay Neural Network language modelling has never occurred. In the

following sections an extendable FTDNN n-gram prediction is developed to predict

noise-free, noisy and typing stream datasets.

95

4.7.1 FTDNN N-Gram Prediction

* FTDNN N-gram prediction definition: let's assume existing string

S= lslsi. sj. sk. s. I i.: 5 j: 5 k: ý m} and (j-i) = n, (k-j) =1 where

s, sj, sk, s. are symbols and i, j, k, 1, m, n are natural numbers, if one builds a

relation R,, = {x, yIx= (s,... s,),, -> y= (s,., -> sk)j) , then the relation is

defined as n-gam's I- prediction; if one considers the special case i=i, then

the relation is called n-gram's one-prediction, or n-gram prediction for short.

For example, given string S= (student), some 2-gram. prediction cases are,

«st' -: > u,
'tu' V
'en' it 9

+ Symbol-Distribution Definition: Given a certain ranking level m and a

symbol set A= (a,..., z, space) , one defines the n-garn Symbol-Distribution

in ranking level m is D. ' = (x, yIx, -> yj 1, where X, E symbol set A, and y, is

the level m Hitting Rate corresponding to each symbol.

Due to the system environment limitations in this research, rather than adopting the

whole dataset, a chunk of data ranging from zero to 100k is selected from dataset

one in order to train and test the designed neural network models. The dataset is

subsequently divided into training data, validation data and testing data. A symbol

96

set with twenty-seven elements, A= (a ... z, space), is applied to simplify the dataset

one. The corresponding function in EnStatistics is MATLABBP2 whose processing

logic followed by a sample of results is illustrated below,

for each symbol s, E context C, where C= {s, S,,)

I
if 'a'< s, < 'z'then write unary code tofile

else if 'A' < s, < 'Z' then convert to (a,..., z) and write unary code

tofile

else convert to blank and write unary code tofile

}

? Ioabcdefgh ij klmnopqr stuvwxyz "
000000000000000000010000000 %It,
000000010000000000000000000 Wh'
000010000000000000000000000 We'

First, all of the capital letters are converted to their corresponding lower case. The

other symbols which do not belong to symbol set A are converted to space. Then

each symbol is converted to a twenty seven length unary code. As shown in the

example above, the word 'the' is successfully converted.

97

For this n-grarn prediction model, a three layer FTDNN network shown in Figure

4.8 with twenty-seven input neurons, twenty-seven output neurons, extendible

numbers of hidden layer neurons and extendible numbers of time delays is designed.

TDL

I

I
N
p
u
T

Figure 4.8 Architecture of Focused Time-Delay Neural Network

Figure 4.9 further demonstrates FTDNN n-grarn language modelling process and the

relation between n-gram, FTDNN and level m Hitting Rate. Studying user's typing

behaviour requires the network to study user's history and trace back certain length

of context (i. e. n-gram) to predict the next probable occurrence. Here, n time delays

(i. e. n-TD) correspond to n-gram. Adding one more gram requires one more time

delay. Variable m represents the number of the language symbol set as well as the

0
u
T
p
u
T

98

Input Output
Layer- I Layer-3

number of output neurons, then a level m Hitting Rate set related to the symbol set is

generated in a testing iteration.

text sequence

input

FTDNN

m

output

Figure 4.9 Presentation of n-grarn FTDNN language modelling process

Both input and output are encoded in unary code. The 'purelin' and 'logsig'

activation functions are applied to the input and output respectively. A post

processing function which ranks the twenty-seven output of 'logsig' in a descending

order has been used to produce the unary code results: the maximum value is

converted into one and the rest of the values are converted into zeros. For instance

let's consider those three letters sample ('the') shown above, which produces the

following outputs,

0.02 0.03 0.01 0,01 0.01 0.01 0.01 0.88 0.01 0.01 0.01 0.01 0.01 0.01 0.0
0.010.010.010.01 0.010.010.010.010.010.01 0.010.01

99

0.02 0.04 0.01 0.01 0.9 7 0.01 0.010.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.010.010.010.010.010.010.010.010.010.010.010.01

0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.010.01
0.010.010.010.010.010.010.010.010.010.79 0.010.01

The maximum value of each line (i. e. 0.88,0.97,0.79) is converted into one and the

rest of the values are converted into zeros. This is nained as First Rank Conversion

Values and the related sample result is shown below. The unary code, which is

converted based on the use of the second biggest value amongst output, is named as

Second Rank Conversion Values. Ile unary code based on the use of the third

biggest value among output, is named as Tbird Rank Conversion Values and so on.

%a bcdefgh ij klmnopqr stuvwxyz "
000000010000000000000000000 %h'
000010000000000000000000000 We'
000000000000000000000000100 %y

Then as a 2-grarn prediction model, the generated relationship between input and

output is as follows,

it 1
V

In order to weight the experimental results, two concepts are introduced here,

namely, Hitting Rate and First Three (FT) Hitting Rate. If given a testing metrics

P, a target metrics T and a testing result metrics R with their nwnbers of lines and

100

columns equal and expressed as gm respectively, then the Hitting Rate is

HR = (hr, I hr, =
zeros(T -R'.)

,i r= m} , where R, is a vector of the P* Rank
n

Conversion Value of R, and zeroso is the function to compute the numbers of zero

vectors included in the metrics. For instance, the second Hitting Rate is the second

best option for the symbol prediction in all output neurons of FTDNN, while the

third Hitting Rate is the third best option etc. Obviously the sum of all Hitting Rates

k
is HR HRI = 100%.

Let's define the FT Hitting Rate as the sum of hr,, hr.., hr3, where k=3. Based on

the previous example, the testing metrics P= (the 7, R= (hey 7, n=3 and m=27.

Let's assume the target dataset T= (hem 7, while dataset R is the so called I" Rank

Conversion Value. Then the first Hitting Rate

zeros(T-R,) zerosehem! -'hey) 2
hr ==-= 66.67%, where two letters (i. e. 'h' In33

and 'e) are predicted correctly by the result R, that is, zeros('hem'-'hey)=2. In a

similar way, the 2 nd and 3"d Rank Conversion Values based on the previous sample

are,

--2 nd rank conversion values

Yoabcdefgh ij klmnopqr stuvwxyz "
010000000000000000000000000 %b'
010000000000000000000000000 %'b'
100000000000000000000000100 %a'

101

--3 rd rank conversion values

%abcdefgh ij klmnopqr stuvwxyz
100000000000000000000000000 %a'
100000000000000000000000000 %a'
000000000000100000000000000 WMI

zeros('hem'-'bba) 0 zerosehemý-'aam) I
Where hr2=

33 and hr3=
33

Then the

FT Hitting Rate is
2+0+I

=100%, which is an ideal case. In this research its
333

average rate based on FTDNN model is just below 50%.

During the FTDNN model training and testing using dataset one, the numbers of

grams - [1,2,3,5,7,9,11,131 which are represented by time delays, and the

numbers of hidden neurons - [1,2,3,5,7,9,15,25,50,100] are cross-designed and

implemented. Thereinto, as the gram reaches 11 and the number of hidden neurons

reaches 100, or as the gram reaches 13 and the number of hidden neurons reaches 15

or onwards, the memory of current system is beyond its limit. Therefore, the

experimental results are abandoned from G-I I& H-I 00 onwards.

Based on the various grams and hidden neurons, several types of plots have been

designed. Figure 4.10 shows one type of design with two examples, namely,]-gram

Hitting Rate and 11-gram Hitting Rate plots. Both plots illustrate four different

ranking level Hitting Rate curve, these are, First Hitting Rate - hr, (in blue), second

Hitting Rate - hr2 (in cyan), third hitting Rate - hr3 (in black) and their aggregation

- FT Hitting Rate - hr, + hr2 + hr3 (in red).

102

In Figure 4.10, the X-axis represents the increase of hidden neurons numbers with a

maximum value of 100, and Y-axis represents Hitting Rate, whose maximum value

is 100%. The first plot of Figure 4.10 shows that the Hitting Rate reaches a stable

point from twenty-five hidden neurons onwards. On the contrary it is more difficult

to reach a stable point for a neural network prediction model with more grams as

shown in 9-gram plot. The figures with [1,2,3,5,7,9,11] grain shown in

Appendix D, clearly demonstrate that from seven-grain onwards the n-gram.

prediction results become more diverse, and the uncertainty also becomes higher

under the current training dataset.

As shown in the first plot,]-gram Hitting Rate quickly convergences towards a best

Hitting Rate from one hidden neuron to twenty five hidden neurons where it reaches

first level HR = 31.5%, second level HR = 14.0%, third level HR = 10.8% and FT

Hitting Rate = 56.2%. The second plot - 9-gram Hitting Rate Curve shows unstable

Hitting Rate with an increase of hidden neurons. It reaches a maximum at fifty

hidden neurons, where first level HR = 33.5%, second level HR = 9.4%, third level

HR = 5.8% and FT Hitting Rate = 48.7%.

In order to demonstrate the effect of different grams on the hitting rate, a new type

of plots are produced based on the same experimental results, as shown in Figure

4.11. It has [1,2,3,5,7,9,11] grams associated with various number of hidden

neurons. It is evident that 2,3 & 5-gram give the best three First Hitting Rates while

1,2 & 3-gram give the best three FT Hitting Rates (in a smaJI margin 2-gram, gives

the best FT hitting rates and 3-gram gives the best First hitting rate).

103

1-gram Hitting Rate
0.7

lst-leýel
2nd-leý. el

0.6 3rd-leýwel

aggregation

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

9-gram Hitting Rate
0.5

0.45

0.4

0.35

0.3

Of
m 0.25
C

0.2

0.15

0.1

0.05

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

Figure 4.10 One & nine-gram Hitting Rate curves

104

First Hitting Rate with N-Gram
0.4

0.35

0.3

2 0.25
cc of
CY)

0.2

0) 0.15 I-GRAM
2-GRAM

0.1 3-GRAM
5-GRAM

0.05 7-GRAM
9-GRAM
11-GRAM

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

First Three Hitting Rate with N-Gram
0.7

0.6

0.5

0.4

a:

0.3

0.2

0.1

0
0

1-GRAM
2-GRAM
3-GRAM
5-GRAM
7-GRAM
9-GRAM
11 -GRAM

10 20 30 40 50 60 70 80 90 100
Hidden Neurons

Figure 4.11 N-gram First and First Three Hitting Rate curves

105

From both plots of Figure 4.11, the lower grams (1,2 & 3) show a better

convergence toward the maximum Hitting Rate (i. e. FT HR is around 56%, First HR

is around 33%). Both figures illustrate that smaller Hitting Rates occur from 4-gram,

onward. This proves that the more historical dataset input the more learning neural

network space is needed, and the more training is needed toward convergence.

Under the current training sample the results suggest that there is a best gram with

certain number of hidden units to suit the prediction best. Beyond a critical point of

prediction rate, further increase of gram or hidden unit doesn't help to achieve a

better performance. Figure 4.11 also shows that the number of neurons in hidden

layer affects the model's learning ability and Hitting Rate. For example, the number

of neurons in hidden layer should not be too small to a structured symbol set (q, ... ,

z, space} distribution; otherwise, it would be difficult for neural network to reach a

good hitting rate.

Looking at the black curve generated in Figure 4.11, the 11-gram testing stops at

fifty neurons; a 27-100-27 three layer FTDNN model has failed to complete the

training process under the current system environment as it runs out of memory

error. The hierarchy hitting rates generated by this model can be used by the

prediction ranking functions.

Another type of plots are produced in order to illustrate the variation with increasing

grams and fixed number of hidden neurons. The plots are shown in Figure 4.12. The

testing results of full Hidden neurons vector [1,2,3,5,7,9,15] with larger figures

is displayed in Appendix D.

106

1 hbndden ýmm ffling Rate
018

016

0 14

0 12

01

0.08

0.06

0.04

0.02

01
345789 10

Grwm

3 Hffmkien neurons Kftrg Rate

0,45,

OA

0.35

0.3ý

0.25

0.2

0.15

0.1

0.05ý

01
123456789 10

Grarns

7 Hindden neurons Ffitting Rate
0.7

0,6

0ý6

04

0.3

0.2

0
123456789 10

Grams

2 Hindclen neurons Hitting Rate
0.4

0.35

0.3

015

0.2

DA5.

OA.

005

01
1245678 l'O

Grams

5 4ndclan neurons Ming Rate
07

06.

05ý

04

.?, I
0.3!

02

01.

123456789 10 0

Grarms

15 Hindden neurons Htting Rate
0.7

0,6

0.41

0.3!

0.21

01

0
123456789 10

Grarns

Figure 4.12 [1,2,3,5,7,9,15] hidden neurons Hitting Rate curves

107

In Figure 4.12, there are various hidden neurons corresponding to each specific gram.

In general, Figure 4.12 shows the difficulty for the designed FTDNN model with

one or two hidden neurons to obtain a constant Hitting Rate under current training

dataset and language space, {a-z, space). It also demonstrates the FT Hitting Rate

and First Hitting Rate are getting lower as the number of grams increases. The more

the number of grams increases the more diverse the symbols composition become.

Then it becomes more difficult for a neural network language model to learn fully

without more neurons being added in hidden layers.

The size of training dataset, the occurrence of each symbol in training dataset and

the relationships among symbols of the training dataset all play an important role in

the determination of a neural network language modelling prediction accuracy.

These also lead to an introduction of another measurement - sampling entropy,

which will be presented later in this section.

The output of neural network language models are converted to unary code (so-

called normalization), and its values range is limited wiffiin a certain symbol set, for

example, {a-z, space). Let the symbol set and its occuffences be associated with

x-axis and y-axis respectively, then the symbols' distribution histogram is created

within the coordinate called Discrete Prediction Symbols Distribution (DPSD). 2&

3-gram FTDNN models have demonstrated better Hitting Rates (both First HR and

FT HR) with twenty-five hidden neurons onwards, hence they are chosen to

generate the Discrete Prediction Symbols Distribution under First Hitting Rate.

Figure 4.13 shows the Discrete Prediction Symbols Distribution, which displays a

comparison between prediction symbols occurrences and target symbols occurrences.

108

.4
(A

(D

m
r_
0

CL

4)

0
An
m a
E
0
0

zz
(U
Q

m M: C
Lo W)
04 cli

L)
04 m0
13 0 13

1

'S..

0

4

*

�

0

0

III --- ---, L---=
C) C) 000 C) Cl C> 0000 C)
C) C3 C) C) C) C) (D LO IT (Y) N

all (Z

e3ue. unooo

In total, 10k symbols have been tested and predicted. From Figure 4.13, symbol

'space' has shown the highest occurrence under all circumstances, which is mainly

due to its high frequency in the testing dataset and the pre-processing symbol

conversion strategy. The histogram colored in yellow shows the true occurrence of

target dataset; those colored in lavender and red demonstrate 2&3 gram prediction

results respectively. As a comparison, they show that the prediction based on unary

coding has generated more centralized results. It is mainly biased towards the

symbols such as 'a, 'e, V and 'space'. On the contrary, for example for V, V,

V. their occurrences of prediction have been sacrificed to complement other

symbols although they've truly occurred in the target dataset, e. g. o(q)=72,

o(v)=196, o(w)=14.

The Discrete Prediction Symbols Distribution generated by FTDNN models can be

finther quantified through the calculation of their related entropy values.

Information entropy is a measure of the uncertainty in language modelling [Shannon,

1948]. According to FTDNN model, the entropy equation can be written in the

following way,

* Let's define C as a symbol string of the testing dataset, ICI represents the

number of symbols in C, and (a,..., z, space) is the distinct symbol set, then

the testing sample entropy H,, (x)=-jP(XMog2P(Xd 9 where
W

iE (a,..., z, space), n= 27 which is the number of the distinct symbols, x, is

110

the occurrence of symbol i in C and p(x,) is the probability occurred of x,

compared with IC1.

* Given a constant 'GRAM' which represents the number of grams used by

FTDNN model, let's calculate its Neural Network-entropy (n-entropy) H,,.

n

of the testing sample, H (y) P(YI) 1092 Ayd , where the probability

of the sum of the output neuron i is y, a,) / Y, m =1 CI -GRAM, a,, is

the J th prediction conversion value of output neuron a, , and the sum

R
Y=F

Here sample entropy (s-entropy) is defined as the entropy of testing clataset. Given a

testing sample, the sample entropies are calculated according to the number of

grams. If one considers a small gram range (e. g. < 11), then those sample entropies

only have a very small difference in comparison with the capacity of the testing

sample which is valued as less than 0.001 and can be ignored.

A comparison between s-entropy (in blue) and n-entropy values (in red) based on

various grams and hidden neurons is shown in Figure 4.14. It indicates that 1-grarn

n-entropy has gradually reached the same value as s-entropy with an increase of

hidden neurons, and that 2& 3-gram are well below s-entropy. However, it becomes

more difficult for 7& 9-gram. to reach a stable value despite the dramatic increase of

III

hidden neurons. On the other hand, these also demonstrate that 1,2 & 3-grarn

generate better results than other grams.

It would be interesting to use a larger size training dataset with a heuristic content

selection strategy to estimate the natural entropy of English language. But this will

require much more computational ability and memory capacity of a computer. The

learning algorithm could also be required to adapt to a parallel computation

algorithm for efficiency consideration.

1-gmm N-M Eilropy
42,

s-Owlyy
41 n-erdmpy

4

3.9-

38

33

36

3.5, j

3A

3.3

12
0 10 20 30 40 so 60 70 so 90 100

HkIden Nftms

3. gmm N-1 Erdmpy
4

35

3

2 5 ý

I I
2ý

I
0.5

0 10 20 30 40 50 so 70 80 90 100
Hidden Neu-

2-g- W"I Etmpy

3,

2,5!

21

0.5
10 2ý 30 40 50 W 70 80 90 100

HKKIen Neumns

5-gý Neýl EntroM
4

3.5

3

25

21

1.5

5

0
0 10 20 30 40 50 60 70 so 90 100

HWm Nemm

112

4

3.5

3

2,5

2

15

1

0.5

7-gram Neuml ErAmpy 9-gram Neuml Entropy
4

3,5

3

2.5,

i

2

0 10 20 30 40 50 so 70 80 90 100
Hidden Neurons

0 0 10 20 30 40 50 so 70 so 90 100
Hkiden Neuýs

Figure 4.14 [1,2,3,5,7,91 gram s-entropy curves

A full result metrics of this FTDNN model testing is given in Table 4.2. The column

and the row represents the numbers of hidden neurons and GRAMs respectively.

Each row has five sub-rows which list three levels Hitting Rates, s-entropy and n-

entropy. Due to the computer capacity, the tests that are not fully implemented are

marked as OOM (out of memory).

113

00ý01D r- ýýo ýr- N-ý -(ýj ýODN moo Mr- ý ý-; x Lnor u-)m
-1 ý ID m ýj r- If) ý c3 r- r, mý cý 'IT oc) C) a) r- (D (n r- a) Lr) C, o 04 (1) (n r- - ý, (D ý ý Lf) C) C3 M CD (D ýý" - (31 r- 0) M ýý r- Ln - Oý - ýý r- mm

Lr) (D (n 0 C14 IT C, ID LO OD fl) C) C) ýo C) (3) 0 ýD 0 r- r- CD CN rn (14 Lo ý ýo
C:) (n Lr) Ln Ln r- m f-- ID 04 cc) m (,) ,T c) U-) m c3 c) r- -m ý - r- r (n Lf)
-ý - 1ý ý 1ý -ý 1ý ýý 1ý -ý cý (11 kl) 1ý -ý cý Gý -ý 1ý cý cý 'v (ý cý cý ol cý X

ý , * * O
c c) ff) m o cD o o C) (D (1) M c3 C) cD m (1) o cD cD (1) c, 4 Q0o (n (N 0 0

ýo C)
- I-- OD CO -

(1) - al
ý ID Lr)

W
o

m" -zr
ID ID r-

ýo
o) (D

co -T oD
'm r- (Y)

(1) cN
r- r-

U-) M -m
-, m oo m

ýT cc)
u)

m r- r-
oc) o ul

Ln ýT
mý

ko -4 Ln
(\I c) (')

(14 U')
m tr) 10 V) - lo Wým ý r- r- Lo -m ao ý Ln -m r- ý r) oý ýý ýD r- a) --

ý
fn oý

'T Q c) m r- o CD LI) co o Q c) C> kD r- c) (-) U) Ln Ln c. M Ln 'r r- " -I o) (z) - ýo 0 T v) OD m r- ýo -4 co (Y) r- ýo 0 'D m 0) C'j op al (-) 'D (-) 0) Lo mm c, tD al m I cý 1ý 1ý 1ý 1ý cý cý oý 1ý 1ý cý (ý m 1ý ffý 1ý Cý cý

c) c.) C) c) C) C, mm C) C) C) m (y) cD C cD (') m c3 cD C> (y), " 0 CD cD m (Ij C) 00 (n

c) oD -1
Ln -T co
r- oD

-
cD

'D 01 'D
-T (N Ln

co
o)

ýo Lr) r-
mm

m"
r- w

Lr) m to
-T cN oc)

T Ln
Lr) (1)

(-4 -1 -1 co C) -Ir
Lr) o
(1) "

oD 0m
oD C) f)

(\4
m (n r- m m-- m- -" Lo ýo cn f" (n - a) oD (') Ln c) r) 64

L
cD ýo ýo (n 'D

(D rý c) (3) m r- c) (7) c) -T r- c) c) Lo Lo c) c) Ln 'T c: > c) r- cc. -w r- r- cD 'D - o m (-j Ln m r- m r- r- c, 4 r- m or)
-

c 'D m- (3) co 'D rn (n -4 oD Ln rn r- o ko (,) m r- (ý oý 1ý (ý 1ý 1ý cý a) " I 1ý (ý 1ý cý cý cý oý 1ý cý (ý (ý (ý 1ý cý cý (ý -
C) (D (1) m ooo mm o C) C) (Y) m cD oo (1) (1) C) o C) M 04 C) 00 (Y) clj o C) o (1) 1ý

(N Ln c) r- - (Y) cc) 'tT (3) CD oo (V) Lr) (-) Ln ýr c, 4 Ln -, r m ý) m c) U.) C-4 cq o) ("I oD cc) oD -T C4 -w C) c) -T mw w"w r- 1=1 o r- (1) Lr) ID m ý) 04 ('4 r- mm - a) (3) r) c) m c> (, j v r- r- r- Ln ko Lr) c) a) (3) -4 c, 4 m4 Ln f) I r) r- c: > zr c) r- c) r- cD ýo r- m CD w 'n oo -T c: > m r- Ln w c) c) o Ln Lo - -T (n ma - (z) 1, o (-) oD r- m (D r r- (-) c-4 ý) c: > z) (') c) c-4 w (n rn o 'T -w Ln m L,) () Ln -zr mm
ý 1ý -! (ý Cý 1ý ý9 Cý (ý 1ý -i Cý 1ý 7 1ý 1ý (ý (ý 1ý 1ý Cý (ý llý ý Cý Cý Cý (11 1ý Cý (ý C:) Oý Cý Cý (D C3 mM 0 Cý C3 m (1) (D Cý 0 (n (1) C) CD C3 (n m 00C:) (n (N 0 C) 0 (1) " C) (D Cý m

r- CD 0 -1 Lo m C'j 0 - Ln C-) - r- (::) Lf) r- m (D -4 'T -M r- (Y) N -W Ln r- oN (n N
cp 0ý Ln Go (n C'j Lr) ýr 0 r- U-) OD (3) ý) ýw m -4 r- r) Ln c) ') m CD m C"i r- r') Cj

-m ýw CD M (n C) OD r- CN - r- LO 0 W 1-1 -T mm IT aý OD (1) mm 1- (1) Ln
ýo mm CD -) v. 0m CD Lf) 0 01 C:) r- r- -T c: > (Y) r- o ('i CD M C) M r- - (3) tn U) -*, r- m 0) m0 64 r- m ýo -M (-4 Lr) m N CC) a) (Y) 'n w r- -T mm (n -, o -M en (n r- Lo -V m ol llý - Cý Oý Cý 1ý -ý Cý ý 1ý 1ý -ý Cý 1ý Lý 1ý (ý cý cý - (ý cý cý (ý (ý ('ý (ý cý (ý Lý c, ý Cý Cý 13) 1ý

o (n ýT 000 (n fl) o0 CD (1) (1) C) C) 0 m (1) CD C3 0 r-) - C) C) C) m- CD C) C, m-

oo m "r - co -4 m0 ý (n Lo m r- m Lo a) mm ON a) ko ýo NN oD Lr) (3) r- -T -ýý Ný ý r- OD OD 0) r- w C) - ý rl) w CY) ý ýýw r- ýo 00 (1) " ým (14 r- - ý <D q. ýý ff) ý
'o r- m - (n co r- CD CD r- r- (, 4 U') ý oz> ko (Y) M Lo 0 Lr) M OD Oý M r- cj -Q, mý r- ýo 0 m C)

0 (N CD IV r, r- 0 CD Lr) Ul (1) 00 C) -T C) 0 C) C\J N -T C) r- (1) ID - OD r- M - I-
m co (-) 'D m Lr) N CD ko (-) (-) (YN 'D (n c) 0 r- -; r (') r- r- 'D -W Ln m C3% ýo m 'o Cý 1ý rý ::, (1) rý 1ý Cý C31 ýl Cý Cý 11) 1ý Cý Cý aý Ln Cý 9 (ý r- (ý Cý Cý 1ý

C) 0 C3 (Y) (1) 00 C) (n (1) 0 C) C) Cl) (n C) 0 CD mm C> C> C:) m C14, Cý 0 C) m 1ý CD C) C m

r- 0 0m -T - (3) 'D (;) -- -W r- m (-) (-) Lr) (-) c) (V) 'T m U-) r- w 'D (n N ýo 10 MN Ln (D ýo ko Ln C. M Oý r- OD r- r- r) CO C) CC) r- C) M OD ýo N M Lf) r- -0 w a) Lr) 04 0 'D Ln CD 0 - 0) OD NN Ln -A (3) r- C:) m (') mn 'D r- r- m (D
'T (1) (D OD 0ý0 C) 0) N OD -17 C) ýo ýT N r- CD r- LO ýr 7 CD N 04 00 CN -M OD -7 T -ý (n OD (-) r- w (-) Lc) c) 43) Lr) N 0 r- -w cc) mm m Lr) 'D ko m m (-4 w

cý oý (ý 1ý cý 1ý rý 1ý cý cý 1ý (ý Cý cý w 1ý (ý llý oý cý 9 (ý oý rý cý ((ý o' 'D

c) cD 0 mm 0 C. c) m cD cD c> m c) c3 C> m 1ý c) C> C) m- cD cD C) r" - cm) C> C) (ý

- c) (-) o) m ko Ln aD c) (-) oc) m NrN (-) -; r co N -w c) Lr) -, r m Ln - ('4 aN 0 cq m o) cA r- co t- -4 oD a c) ýp Ln -m c) m cn ýo N c, 4 r- r- Ln m Lf) ý) (3) r- -tr m r- r- m- m cD - c3 m Lo w oý m r- -- r- r- r- ý) r- -I 'D (n r) Ln -T m Lr) w r- q) r-
r- Lr) (D ýj r- Lr) Ln c) o% m -T Ln c: > (Y) c) o% c, (n ýr r- Lr) c3 r- r- Ln r) c. CD w (n cc) 'n (: ý " ý' 'D Lr) C', 0, C:, 2:, 3, "" ") ýC, r- L,) ý m r, - C', L,) m m ") ") ý ") r- r- - cý oý 1ý 1ý cý cý cý cý 1ý Cý cý 1ý `7 Cý 1ý 9 cý Cý cý

CD o Cm) rl) m Q C) C) mm (D C) C) (1) (N 0 C) 0 ff) " 00 C) 1) (1) C) CD cm) (n (1) c3 C) C) 1) -

0) ý CD ý r- -, - m -4 - (3) C) m -I ý C:) (') C'j 0 (-) 1- r- -, r ý q. m OD -1 CO Ln - ý ýQ ao ('4 m (D W OD m rý r- r- 0 C) 0) co 0:) m 0ý 'A r- -4 r- Lr) CO (N ý Lo M m C%j ýo mý co -IT r- m CD C, j ý U) - 0) Lo ý OD CD ,m r r) S ýT Ln c, 4 -T Ln tr) o r) w m ýn m -T co w N 'D Ln (-) -
Lr) ýo c) N mmN cD ID oD oD o (D ýD -T om (1) 1ý C> Q -w 1-4 (ý) 04 c3 r, m 04 - CD
m (N m ko Ln ý m- mmm (n a) Ln M r- Ln Mw r- V) U-) m c, 4 m o:)
(ý Cý 1ý -! cý cý 1ý 1ý -! cý cý (ý oý cý cý oý cý 1ý cý (ý 1ý cý cý 1ý cý 1ý I) 1ý cý (ý cý (ý

(D C, 0 MM 000 MM 0 C) 0 (') N 000 (') CD Cl 0 C) (n ('J C) C3 CD M Cý C) C) CD M CD

(D m r- ýw "M Ln - r- (1) r- 1-1 r- Ln (n N H ýo oo -T kv 0m oo J) u) 43) m oo c, ý c) oD - w c) ýo (D (') c) c'] (N mm co Ln ý r- c) "mý ýý 'n 'D ('4 mm ý cc) u) m (n
, CD ý co - r- r- N -M C) 'r 0) ID ýT ý ID C3 r- ko Ln -IT ýo (14 N 0) (3ý m (n LO M Lr) -4 fl) -IT mý CD CD 0) c) CC) Lr) Ln 'D (D C'4 f) Lo OD c> 0:) r- r- c. r- m C) 0ý r- -I ýr - co C\l m -m

E 'D ý cq r- " (') (-) q. - CN rn 'D r- C'4 r) ko (D " (-) ý) Ln C') ('4 Pi r Ln N C'4 (n OD
ZD (ý Cý "1 1: 1 C:) 1ý Cý 11) Oý 9 (1) 1ý Cý Cý 'v Cý Cý Cý Cý 1ý Cý

C-) C) C:)
I

(Y) -V CD Cý C:) (n
I

o C:, C3 (n CD
I

c. C:) c, M (D c: > C: 3 C)
II

m C:)* C) C) C:) m C) Cl Cý C) m C)

ýj 1) Z] rA ý4 014 1) - 14 r14 In (4 C14 m 7 '4
LL LLJ LýJ J. -

:: :]

QI; . eq m W) tl- ON - 1ý

r1

4:

e)

0

0
cI

V

1
V

ei

0

Z

Q -, -ci mb

tu Co (0 ýE
2, ci u 4.

0U CD- c2,. -
.E002 0=bt: C

LLi L2

C)
LLJ C

4.7.2 N-Gram Prediction with noise

To test FTDNN neural network models' prediction ability, a noisy randomization

method within the data pre-processing fimction is designed and applied to the

training dataset and testing dataset. Generally speaking, some noises are randomly

distributed into the dataset one after data unary code conversion.

In practice, an Rand (n, m) function is developed, where n is the range of random

values, m is the required number of noisy symbols. Then, the noise rate or mistakes

rate can be expressed as mRate = ml ICI where ICI is the number of symbols in C.

During the training and testing, first, iRand(I C 1, m) is applied to locate the symbols

that need to be randomized, then, after resetting the status of random generator,

function iRand(27, m) is used to assign each symbol located by iRandfl C 1, m) to a

new value. The process is illustrated below.

NoiseSymbolArraySequenceNumber[mI = iRando C 1, m)

Set the state ofrandom generator

NoiseSymbolArray[ml= iRand(27, m)

For zero to m

Do

x= NoiseSymbolArraySequenceNumber[mI

y= NoiseSymbolArray[m]

set datasetl[xj to zeros

datasetl[xl[y] =I

115

Endfiv

For example, given m=I and unary code dataset below,

%abcdefgh ij klmnopqr sluvwxyz ''
000000010000000000000000000
000010000000000000000000000
000000000000000000000000100

then the number of dataset's symbols IcI

%'h'
%'e'
Wy I

If

NoiseSymbolArray, ýequenceNumber[l], that is, iRand(3,1) =2 and

NoiseSymbolArray[l], that is, iRand(27,1) = 26, then, the dataset is randomized

into,

%a bcdc. I'g h ij k/mnopqrs1 11 v ii, xj,.,: -
000000010000000000000000000 %'h'
000000000000000000000000010
000000000000000000000000100 %y

According to this randomization strategy, several FTDNN models with 2,3,5 & 7-

gram and extendable hidden units to study the noise prediction based on dataset one

are developed. All the training, validation and testing data are preprocessed and

mixed with randomized noisy data. Considering correction as a special case of

prediction, the FTDNN modelling process is a symbol prediction as well as noise

correction process tracing back n-gram history.

116

Let's define the noise rate range as [a,, 8], and the lower boundary and upper

boundary used in this test as a=0.00 1 and 8=0.1 respectively. Three concrete

values mr, (i = 1,2,3), namely, 0.001,0.01 and 0.1 are used in this test, and the

numbers of randomized symbols can be computed based on the equation,

m, = mr, *ICI. Based on the same FTDNN structure, the First Hitting Rate and FT

Hitting Rate with various grams and hidden neurons are shown in Figure 4.15.

2-Grarn with Noise Rate [00011

I-Hihing Rage

0.6 i
Total Hitting Rate

0.55

ji 0.5
ly

0,45

0.4

Oý35

ýO ýO ýO tto 9,0 100
Hklden Neums

5-Gmm with Noise Rate 10.001)
085

08

0,55

0.5
cr

0.45

OA:

0.35

0 10 20 30 40 50 60 70 so 90 100
Hidden Nýrons

3-Gmm dh Nome Rate [0.0011
065

0.81

0,551

0.5
Ir

045

OA,

0.35

0 10 20 30 40 50 60 70 80 90 100
HKklen Neumm

7-Gram dh Noise Rate [0.0011
0,5,

0.45

0.4

0 35ý

Ol

D. 25 ýo ýo
0 10 20 30 80 70 so go

Hidclm Neumm

Figure 4.15 N-gram prediction with Noise Rate = 0.001

117

The blue curve represents the First Hitting Rate and the red one represents the FT

Hitting Rate. The 2& 3-gram show the best FT Hitting Rate with fifty neurons

under Noise Rate of 0.001. Their Hitting Rates tend to change less as the number of

hidden neurons grows. On the contrary, it becomes difficult for 5& 7-gram to reach

a steady value. All four figures show that the significant increase of hidden neurons

(from fifty neurons onward) does not improve the prediction rates significantly.

The plots of the n-gram predictions under noise rate of 0.01 and 0.1 are also

displayed in Figure 4.16 and Figure 4.17. Similarly to 0.001 noise rate, 2-grarn

reaches the maximum hitting rate (ýý 0.57) followed by 3-grarn (; tý 0.55). It becomes

more difficult to reach a high Hitting Rate as more history data is studied by

FTDNN models. The reasons are two folds. One is that more noise is included as

more historical data are traced back. The other is that under the current dataset the

symbol determination becomes more diverse.

2-Gmm vMh Noise Rate 10 Oll
0.85

0.6

0.55

0,5

045

0,4

0.35

0 10
ýO

3'0 4,0 50 6,0 7'0 80 90 100
Hk$den Neumns

3-Gram with Nmse Rate (0.01)
0,85,

0ý6

0.55.

0.51

1ý 0.45

0.4

0.35

0 10 20 30 40 50 so 70 so 90 100
Hidden Neumns

118

5-Gram voth Noise Rate 10.011
0.85

0.6

0,55

0.5

0,45

0.4

0,35

0.3

025
0 1ý0

ýO 3ý 40 50 60
ýO

S'0 90 ion
Hidden Neurons

7-Gmm wth Noise Rate JO Oll
06

0ý55

Oý5

0.45

0.4

0.35

0.3

0,25ý
10 20 3-0 40 50 80 70 80 9.0 100

Hidden Neumm

Figure 4.16 N-grarn prediction with Noise Rate = 0.01

2-Gram vAth Nome Rate 10 11
06

0,55

0.5;

OA5

0.35

0,3,

0.251 ýo ýo ýD ýo 7'0 lt 0 10 40 so
HkIden Neums

3-Gmm wth Noise Rate [0 1
0ý55

0.5

0,45-

0.4

0.35

0 10 20 30 40 50 so 70 80 90 100

HKklm Neým

54Gnirn with Nme Rate 10,11
0ý6

0 ssý

0,451

0.4

0,35

0,3 ýi

0251
0 10 20 30 46 50 8'0 7'0 8'0 9'0 100

Hidden Ni%ims

7-Gmm wdh Noise Rate 10.11
0.5

I

0.45,

0.4

0.35
i2

02ý

0.25:

1

0.2
0 l'O 20 3.0

ýO
5,0 6,0 70 so 9,0 -100

Hidden Neurons

Figure 4.17 N-grarn prediction with Noise Rate = 0.1

119

Based on the same experimental results an alternative type of plots shown in Figure

4.18 is produced, aiming to show the variation of First Hitting Rate (in blue) and FT

Hitting Rate (in red). In the previous experiment, 2& 3-grarn obtain the best two

hitting rates with fifty hidden neurons, so 2& 3-grarn FTDNN model are selected

here. Figure 4.18 illustrates the prediction curves as the noise rate increases from 0

to 0.3. Both figures show a decreased Hitting Rate as the noise rate increases. For

example, when the noise rate reaches the value of approximately 30%, its

corresponding First Hitting Rate is only 27% compared to the correction rate of 37%

without noise. Figure 4.18 indicates that the maximum FT hitting rate (58%, in 2-

gram) occurs when noise rate is zero whereas the minimum hitting FT rate (45%, in

3-gram) occurs at the rate of 0.3, which is the lower boundary of noise rate.

0.65:

0.6

0.55

0.5

p 0.45

0.4

0.35'

0.3

0.25
0

2-Gram with fifty neurons prediction

1-Hitting Rate
Total Hitting Rate

0.05 0.1 0.15 0.2
Noise Rate

0.25 0.3 0.35

120

3-Gram with fifty neurons prediction
0.65

1-Hitting Rate

0.6
L Total Hitting Rate

0.55

0.5

0.45
.C Z
m

0.4

0.35

0.3

0.25
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Noise Rate

Figure 4.18 2& 3-gram Hitting Rate curves under noise rates

4.7.3 N-Gram Prediction with Typing Data

From the above analysis, the designed n-gram Focused Time-Delay Neural Network

models have shown that it can be applied to noisy data prediction with a high

capability. Here, a user's typing data stream (dataset two) is used to further test the

extendible FTDNN model. The users typing history is analyzed by FTDNN model

to predict user's next typing intention. As the typing data stream is a typical noisy

dataset which includes user's typing mistakes as well as self correction strokes such

as symbols 'backspace' and 'delete', the FTDNN model not only would learn the

habits of user using language but also would learn the self-correction actions which

121

occurs in typing stream. For example, a self-correction action from a wrong typing

word 'desj' to the right word 'desk' can be broken down in a typing data stream as,

=> e => s =>j => backspace => k

This is a typical adjacent-key-press error usually made by some people with motor

disability or Parkinson disease. Through training, the FTDNN model is able to learn

2-gram prediction rules between the predecessor and successor, for instance,

d4e
e 4s

From the typing stream shown above, the model will learn not only the existing

noises such as 's' 4 J', but also the correction actions such as 'j' 4 'backspace'. In

practice, users just continue their typing without stopping in spite of the possible

mistakes. The model should be able to correct the mistakes automatically or specify

recommendations later on.

The collected data stream in dataset two is expressed in Virtual Key Codes. In this

research only editing virtual keys are adopted, other keys such as arrows are

discarded. Then, the size of symbol set originally used by FTDNN model is

extended into fifty three individual symbols, which apart from alphabet also include

some other symbols such as,

122

VK BACK => BA CKSPA CE key
VK RETURN => ENTER key
VK SHIFT => SHIFTkey
VK DELETE => DEL key

(A full list with fifty three editing virtual key codes is illustrated in the Appendix f).

Based on the original design of FTDNN model, an extension to fifty-three units both

at the input and output layer has been made. The dataset two has recorded both the

key press 'down' status and 'up' status. Considering some disabled people specific

typing behaviour such as prolonged key press which would generate more 'down'

keys corresponding to one 'up' keys, the keystrokes with 'down' status are chosen

by the pre-processing function for neural network training and testing. For example,

a converted dataset sample from typing stream: 'j'->'backspace'->'k' after

preprocessing can be presented as,

000000000000000000000000010000000000
00000000000000000 Yoj

100000000000000000000000000000000000
00000000000000000 %backsapce

000000000000000000000000001000000000
00000000000000000 %k

Owing to the previous experimental results, the test with n-gram array used by

training and testing is GRAMarray = [1,3,5,7,9]; the hidden neurons array used is

HiddenA'euronsArray = [3,5,7,9,15,25,50,1001. Part of testing results is shown

in Figure 4.19. (Full detail can befound in Appendix D).

123

1 -Gram Hitting Rate
06

1-Hitting Rate

0.55,
Total Hitting Rint.

0,5

045

0.4

035

0.3

0`5
0 10 20 30 40 50 so 70 so 90 too

Hkiden Neums

T-Gmm Hitting Rate
0,5

045

0.4

0,35

0.3,

0251

0,2

0 10 20 30 40 50 60 70 80 90 100
Hkiftn Nftý

3-Gmm Hgling Rate

045

041

035

0.3,

i
0.25

0.2

0 10 20 30 40 50 so 70 80 90 100
Hiddm Neumns

D, Gý Hitting Rate
0,45

0.4

0.35

Ir

0.3j

0,25-

0.2
0 10 20 30 40 50 60 70 so 90 100

Hkklen lsleý

Figure 4.19 [1,3,7,9] gram typing stream individual Hitting Rates

The figure illustrates the variation of First Hitting Rates and FT Hitting Rates with

the increase of hidden neurons. In general, it shows that I& 3-gram generate a

better Hitting Rate than 7& 9-grams. The experiment indicates that from twenty

five hidden neurons onwards, the First Hitting Rates and First Three Hitting Rate of

7& 9-grarn are changing more sharply than the case with I& 3-gram. It further

124

confirms the previous experimental results which show that a lower gram (e. g. gram

< 5) is a better solution to symbol typing prediction using current training dataset.

A comparison among the gram set [1,3,5,7,9] based on various numbers of hidden

neurons - [3,5,7,9,15,25,50,1001 is shown in Figure 4.20. The first plot

demonstrates a comparison of several grams' First Hitting Rates with an increase of

hidden neurons. The second plot is a comparison of FT Hitting Rate between

difference grams. A sample entropy calculation is also carried out based on the fifty-

three distinct symbol set, where the s-entry curve of the testing dataset is represented

in blue and named as true values.

0.4

0.35

2 0.3
(0 w

0.25

0.2

First Hitting Rate

0 10 20 30 40 50 60
Hidden Neurons

125

1-GRAM
3-GRAM
5-GRAM
7-GRAM
9-GRAM

70 80 90 1 00

55

0.5

0.45

First Three Hitting Rate Aggregation

0.4
M

0.35

0.3 1 1-GRAM
3-GRAM
5-GRAM

0.25 7-GRAM
9-GRAM

0.2
010 20 3.0 40 506.070 80 90 100

Hidden Neurons

Figure 4.20 [1,3,5,7,91 gram typing stream Hitting Rates

Entropy Value Comparison
4.5

4

3.5

31

2.5
0.
E
m

2- True malue
1-GRAM
3-GRAM

1.5 5-GRAM
7-GRAM
9-GRAM

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

Figure 4.21 [1,3,5,7,91 gram typing stream s-entropy curves

126

Figure 4.20 shows that I-gram produces the maximum FT Hitting Rate of 53%

whereas 3-gram with fifty hidden neurons produces the maximum First Hitting Rate

of 38.1%. Similar results have been obtained using dataset one: the lower grams (1,

2& 3-gram) show a better solution using FTDNN model prediction under current

circurnstances. Both datasets demonstrate a highly accurate prediction rate (FT

Hitting Rate, approximately 50Yo) with FTDNN model.

Figure 4.21 shows that the higher grams (e. g. 7& 9-gram) have the lower n-entropy

than the lower grams (e. g. I& 3-grarn). This implies that the training and testing

process using 7& 9-grarn of FTDNN model produce more convergent result

datasets, and hence its prediction often focus on fewer symbols compared to what 1

& 3-gram produce.

4.7.4 FTDNN Modelling Summary

The experimental results can be used to predict users' typing intention. In practice a

higher prediction rate could be achieved by combining the FT Hitting Rate with an

English word dictionary. As the typing stream includes all the users' correction

actions and the predicted next symbol could be 'delete' or 'backspace', the

experimental results can also be used to correct users' current typing mistakes. Both

tests with dataset one & two show minimum number of hidden neurons is required

in order to get a good hitting rate, but the testing also demonstrates the gram

uncertainty in producing a best FT hitting rate (e. g. 2-gram shown in Figure 4.11

and I-gram shown in Figure 4.20). Therefore, a combination of 1,2 & 3-gram is an

optimum solution to keep a considerably high and stable hitting rate.

127

This research develops a Focused Time-Delay Neural Network model with

extendible numbers of hidden layer neurons and extendible numbers of time delays

to analyze noise-free, noisy and user's historical typing data. Approximately 50%

FT Hitting Rate has been obtained from experimental results. In practice, the results

can be applied to symbol prediction and correction.

Further research which includes a distributed representation method to preprocess

the typing symbols and applying FTDNN model to predict I-length string based on

n-grarn's I-prediction is worthwhile, as more accurate prediction hitting rate can be

achieved and more symbols can be predicted once at a time.

4.8 Time gap modelling

From Fitts'law [Paul Fitts, 1954], users input performance IP in bits per second is

proportional to the variable movement time ID, which has a direct relation with the

moving distance from one point to another. Let's consider a standard keyboard

layout, the time gap between two consecutive strokes directly depends upon the

distance between those two keys. As observed, the last key's position represented by

the distance and angle with the target typing key could affect some of the disabled

users'judgment on their typing accuracy and speed, which would be reflected by the

time gap recorded on the computer log. Given the user's typing history, a I-grarn

neural network model named as Time Gap Neural Network (TGNN) is designed

here to simulate and predict the two consecutive typing letters' time gap, which uses

128

dataset two as its experimental dataset. A ftmction - OnBnClickedsuggesttimegap is

programmed to pre-process dataset two. A fifty-four virtual key codes set is

considered, which includes all fifty-three symbols used in 'N-Gram Prediction with

Typing Data' section such as alphabets and space. The other symbols which appear

in dataset two but do not belong to the fifty-three symbols set are classified as a

designed symbol -'Other'.

OnBnClickedsuggestfimegap function only extracts the keystrokes whose time gaps

is in a range of [0,3000] ms. The rest which have been considered as either out of

range or computer system related problems are ignored. 2-grarn dataset is created

with their corresponding time gaps. This requires 108 (NumberOfSymbols * Gram)

neurons in the input layer. All the time gap values are normalized into a range of [-I,

11 according to Min-Max Normalization before they are used by Time Gap Neural

Network model. The normalization equation is shown below,

V.
i.

)*(V'.. - P.
i.

Xv.. - V.
i.

) +VI
min

Where V'max 1--- 11 V'min=
-1 and variable v is the time gap value extracted from

dataset two. The results of TGNN model will be reversed to their natural values

based on the same equation.

A traditional BackPropagation neural network is designed with a 108-7-1 three layer

structure. The input includes two consecutive symbols represented by unary codes,

and the output is the expected time gap between these two consecutive symbols. The

129

'fansig' and 'purelin' functions are considered as the hidden and output layer's

activation function (see Appendix G).

A reconstructed dataset extracted frorn dataset two is used as neural network's

training dataset; another two datasets, 'abcdefghijklmnopqrstuvwxyz' (in an

alphabetical order) and 'qwertyuiopasdfghjklzxcvbnm' (in a QWERTY keyboard

layout order) are used as two testing cases. The experimental results generated by

TGNN model based on these two datasets are show in Figure 4.22 and 4.23.

The time gap of typing A-Z

700

600

500

400.
CL
Co
0)

CL) 300
E

200

100

0

Figure 4.22 Modelling time gap using A-->Z sequence

Seriesl

130

abcdefghijkImnopqrstuvwxyz

Alphabet

The time gap of QwaV sequenoe

600

500

400
U)
E
CL

300

E
F- 200

100

0

Figure 4.23 Modelling time gap using QWERTY sequence

-+-- Sedesl

Firstly, the TGNN model is trained based on dataset two. Then the Alphabet and

QWERTY sequences are applied to the TGNN model. Figure 4.22 shows a

simulation of the user's typing behaviour (e. g. speed and time gap) by typing an

Alphabet sequence; Figure 4.23 shows a simulation of the user's typing behaviours

(e. g. speed and time gap) by typing a QWERTY sequence. Due to no predecessors,

both corresponding time gaps of the first keystrokes in sequence (in Figure 4.22 is

V; and in Figure 4.23 is 'q') are counted as zero.

131

wertyuiopasdfghjkIzxcvbnm
Owedy laýpl

In Figure 4.22 and 4.23, x-axis represents user's typing sequence; y-axis represents

the time gap in milliseconds. Between each two consecutive alphabets, a blue line is

drawn to illustrate the elapsed time. The maximum time gap (637.4ms) occurs in

Figure 4.22 when the finger moves from key Y to 'y'; while the minimum time gap

(89.9ms) appears in both figures, when the finger moves from 7' to 'P.

These two figures show that the current keystroke's predecessor has affected the

user's typing behaviour (e. g. time gap) if one ignores the user's keystroke action

itself and behaviour randomicity that human may have. Due to the distance

difference between each two keys in computer QWERTY keyboard, the time gap of

each two consecutive keys during user strokes varies.

The red lines in Figure 4.22 and 4.23 represent the average time cost of all twenty-

five movements, which show that the cost of typing an alphabet order sequence is

384.44ms (see Figure 4.22), whereas the cost of typing a QWERTY order sequence

is 342.50ms (see Figure 4.23). The test shows typing an Alphabet sequence is more

time consuming based on a standard keyboard. This can be explained by movement

cost, meaning that an alphabet order sequence would require more time for user to

locate the keys from one to another.

This research gives a glance at the idea that the Time Gap between two consecutive

keystrokes is influenced by current symbol's predecessor. A further research tracing

back more than one gram history accompanied with a larger dataset is necessary.

The physical mobility control and energy cost can be involved in order to find the

right patterns among movement direction, typing symbols composition and

132

keyboard layout. Subsequently researchers may be able to find a convenient, energy

saving, fixed or adaptive keyboard layout for those users with special needs.

4.9 Prediction using time gap

People with motor disability or Parkinson disease using keyboard may press

adjacent keys or stick keys. These can be shown from the time gap between each

two consecutive key strokes. For example, a time gap between the windows

keyboard messages caused by sticking keys can be much smaller than the user's

normal typing speed; the opposite case may also happen when more time can be

spent by disabled people aiming at the target before making up their mind. From

observation, interestingly enough it is rare for those people to completely miss

typing a symbol. According to these distinct behaviours, a neural network model

using BackPropagation (newffi is designed by adding an extra Time Gap variable in

the input layer, called Prediction using Time Gap (PTG). Here, a small sample typed

by a Parkinson person is used to demonstrate the idea. The target typing sample is,

the quick brownfogjumped over the lazy dog

The user's true typing sample is,

h1he quick brrooownn fgow jummppefd lobverethe lwqazy dooggfg

133

The typed sample is reconstructed for preprocessing,

@the quick br@o@@wn@ @@J@ox@ jum@p@e@d @@o@ver the
1@@azy do@g@@@

Where the symbol '@' represents an error or a NULL, compared to the right sample

which should be recognized by PTG model. During preprocessing, the time gap

value which is one of the input parameters is categorized into three levels and

converted into three bits unary codes. In this case,

'<= 10 milliseconds'
'10< && <=1000 milliseconds'
'>1000 milliseconds'

over-fast => 001
user-Speed => 010
over-slow => 100

The user's typing has been recorded both by Notepad and KeyCapture software.

Prediction using Time Gap model is designed with three layers 30-7-28 structure,

where the input requirement of PTG model is twenty seven length unary coding

symbol {a'... 'z, space) and three length unary coding time gap, and the output

requirement is twenty eight length unary coding limited in symbol set (T... IZI,

space, '@'), where the symbol '@' is added to represent an additional or missed

symbol.

The correction rate distribution within one hundred times training is shown in Figure

4.23, which has a mean value of 0.8480 and a deviation of 0.0501. The x-axis

represents the correction rate based on the comparison between the target dataset

and PTG generating dataset; the y-axis represents the absolute frequency of the one

134

hundred times training results, which illustrates the number of times a particular

outcome occurs.

Figure 4.24 demonstrates the range that PTG model's correction rate lies on. It

shows that the results lie predominantly between 65% and 90%. Under this test

sample there is about twenty-seven times where the correction rate has reached near

90% and only once the correction rate happens to be less than 65%.

35

30

25

20

U-

15 7ö
cn

-0

10

Error correction training results of a sample

5

0.65 0.95

Figure 4.24 Absolute Frequency of PTG model Correction Rate

135

0.7 0.75 0.8 0.85 0.9
Correction Rate

This test indicates that the time gap can be considered as an input element used by

neural network model to correct wrong typed symbols. Due to no gram

consideration and the size limitation of training dataset, the relationship built

between input and output is a pure right-wrong relationship. This will lead to a

further research on the n-gram. language modelling with larger training and testing

dataset.

4.10 Probabilistic neural network modelling

* Assumption: the research carried out in this section is based on one finger

typing user case. User's each key press and move rely entirely on a single

finger. Skillful users' typing behaviour in controlling fingers may vary, and

the distance of fingers move between two consecutive keystrokes could be

more complex.

* Key Distance Definition: According to the layout of a computer QWERTY

keyboard, there exists a physical distance between each two keys. Let d,,,

be the distance between key i and keyj, and define the measure unit as key-

distance. Then, d,,,, =I shows that the distance between key 'A' and key 'S'

is one key-distance; d., f =3 means there are three key-distances between

key 'A' and key W. Users move their fingers toward the next key as soon as

136

they finish current key press. The distance between two keys affects a user's

typing perfonnance.

* Error Margin Distance (EMD) Definition: Based on Key Distance, a

variable Ad,, f is further defined as a distance between a user's typed key -

key, and target key - keyf and called Error Margin Distance. The Error

Margin Distance is mainly caused by the user's 'hitting adjacent key error'.

Key Distance Class Definition: Let's define a class, (ke I keyj chy, J yy

by giving key, keylv E {key,,..., key., }, Where!, j: 5 n, n is the number of keys

0---%

related to a computer QWERTY keyboard, key, represents a key set around

key, within j key-distances. For instance, a one key-distance set

coffesponding to key T is, C,,, = Is, I s) ; ze {'D', 'E', 'W', 'A, 'Z', 'X')

Noisy data prediction models such as FTDNN not only can be generally used to

analyze a language text, but also can be explored to analyze some specific problems.

For example, let's take the Helpline data as a real scenario. As observed, a typist is

frequently making 'hitting adjacent key errors" mistakes. Therefore, all the typing

IA Toy Problem - Three letters to determine a word: in a QWERTY layout, a typing word with hitting adjacent key errors can
be separated into groups based on time gap similarity, where the consecutive letters associated with a certain shorter time gaps
are assigned to the same group. Assume the number of letters in each group is more than one, then the toy question is: by
picking up a letter from each group randomly to form a letters composition, how many maximum letters, that is groupsý are
required to determine one and only one English word? (My estimation is 3)

137

mistakes are extracted from dataset two and used to identify the possible rules. A

sample of 'hitting adjacent key errors' is shown below.

'IQ" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGap(*)
'IS" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGapM
"BACK" Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(*)
"D" Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(*)

This is a typical 'hitting adjacent key errors' typing mistake that occurred within a

user's typing stream. The user's intention is to type a letter W following letter 'q',

but the letter T is mistakenly pressed. So the user has to go back and make a

correction by pressing 'backspace' key shortly after the mistake is made (in virtual

key code, the 'backspace' is represented by 'BACK'). Both Key Distance and Time

Gap are calculated and recorded in the log.

The user investigation shows users' hitting adjacent key behaviour is related to the

positions of both the last key and the current key if one ignores the stroke

randomicity that users' symptoms may cause. It also shows that a user's typing

speed moving from one key to another also plays an important role in making such

errors. For example, although a faster typing speed than a user's normal speed

increases the occurrence of 'hitting adjacent key effors', the users' hesitation which

leads to much slower typing speed does not always help to an increase of right

typing rate, as observed.

Here, the idea is to use these essential parameters, namely, Key Distance, Time Gap

and Error Margin Distance to discover the fundamental rules behind uses' typing

138

mistakes. Let's start with the introduction of the most popular keyboard layout -

QWERTY keyboard, and consider Figure 4.25 and 4.26,

FQý E[IEI
Caps Lock

EI 11111
Figure 4.25 A QWERTY keyboard layout sample

)

Figure 4.26 Relationship - angle between keys and its surrounding keys D, EA

In Figure 4.25, key 'S' is surrounded by one key-distance dataset (I W'p E, 'A 'R 'D,

'Z'j X') and two key-distance dataset ('Q, V, 'caps lock', T', 'I', 'C'). Given

139

certain inputs, if one requires the neural network model to be able to produce the

right symbol that a user intends to type, the designed model not only need to deduce

the dataset which the right symbol belongs to, but also the right angle the user

intends to move towards. This is illustrated in Figure 4.26. All keys surrounding T

are positioned with different angles. Let's assume the circle starts from right-hand

side of T and turns in an anticlockwise direction. Then the key 'D' can be

expressed by a three dimensions vector, keyd = (key=s, distance=], angle=O),

where key=s' illustrates the dataset surrounding key 's', distance=] & angle =0

represent the key which is one key-distance away from key 's' with an angle of zero

degree. The key 'A' can be expressed as key. =(key=s', distance=], angle=; r),

distance=], angle=r means the key is one key-distance away from key 's' with an

angle of a degree.

Tbe key distance and time gap between last two grams could determine the error

margin between the wrong key and the right key. In order to prove this hypothesis, a

Neural Network Topology (DAT model) with Distance, Angle and Time Gap

vectors in the input layer, and the Error Margin Distance vector between the typed

key and target key in the output layer is designed. These require a precise

measurement on both input and output parameters. However, given the difficulty of

QWERTY keyboard and its associated operating system to respond to an accurate

simulation of users' movement and the difficulty of a neural network to provide a

precise output, this solution, as it stands, is not practical. For example, the

difference in angle between key 'S' 4 key 'E' and key 'S' 4 key 'R' is not

140

significant. This high precision requirement raises the design difficulty of a neural

network model.

In order to overcome these obstacles, a more robust neural network model with re-

designed vectors on both input and output layers is developed in this research. The

input of neural network model uses (x, y) coordinate expression instead of distance

and angle, where x represents x-axis key-distance (i. e. horizontal distance), and y

represents y-axis key-distance (i. e. vertical distance). X-axis key-distance refers to a

user's horizontal move toward the typed key; y-axis key-distance refers to a user's

vertical move toward the typed key (see Figure 4.27). The time gap parameter is

kept unchanged, which represents the time difference (ms) between two consecutive

key strokes. When the error margin is calculated, the coordinate centre lies at the

current typed key. When the distance of last typed key and current typed key is

calculated, the coordinate centre lies at the last typed key. The sign of key distance

will be determined as soon as the coordinate centre is fixed.

Horizontal key distance

Figure 4.27 Key distances coordinate for PNN classification

141

Vertical key distance

In QWERTY keyboard there are maximum of six one key-distance keys around

each key. The user investigation records suggest that most of 'hitting adjacent key

errors' occur in an area where the keys are equal or less than one key-distance away

from the target keys. Therefore, instead of computing a precise error margin Ad,. f ,

the output of neural network model can be designed as a six-classes classifier. If one

counts the class in a wise-clock direction according to traditional coordinate, then,

from Figure 4.26, V belongs to class one, 'e' belongs to class two and so on. Thus

the question can be interpreted as finding an appropriate neural network model to

solve a classification issue associated with input vectors: Distance, Angle and Time

Gap.

It is well known that radial basis networks can require more neurons than standard

feedforward. BackPropagation networks, but quite often they can be designed in a

fmction of the time it takes to train standard feedforward networks. One of Radial

basis networks is Probabilistic Neural Networks (PNN) which can be used for

classification problems. As PNN is a time-efficient and classification-solving

solution, in this research a 3-N-1 structure model (DATP model) is designed based

on PNN to predict where the target key could possibly lie against the wrong key

press.

The DATP model consists of three layers, input layer, hidden layer and output layer.

The hidden layer - radbas layer compute the distance between the input vector and

the hidden weights vector, and then produces a distance vector which indicates how

142

close the input is against the correct letter. The third layer would classify the results

of radbas layer and produces the right class.

In this experiment, thirty three 'hitting adjacent key errors' are identified from the

file 'Helpline2008O6O5-lO3l26-843. txt' of dataset two, and are converted into the

fonnat training dataset manually. At the same time another ten samples are extracted

from the file 'Helpline2008O627-160526-312. txt' as test samples. Here an example

is given to show the pre-processing procedure,

"C" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGap(78)
"J" Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(108)
"BACK" Status=(*) Key(*) Extra(*) KeyDistance(*) TimeGap(78)
"HII Status-(*) Key(*) Extra(*) KeyDistance(*) TimeGap(923)

4 3.5 1 108 4

The first four lines are extracted from 'Helpline2008O6O5-103126-843. txt'. The line

following an arrow is the data transformed manually from the lines above, which has

four parameters, namely, horizontal distance, vertical distance, time gap between

two consecutive keystroke, and class.

The first line shows that the horizontal distance from 'C' to V is 3.5 key-distances,

however, if the move are from V to 'C, the key-distance would be -3.5, the

rationale has been shown in Figure 4.27; the vertical distance is one key-distance;

the time gap from 'C' to V is 108ms (shown in red) and the class is '4' as the key

'H' is at the left hand side of key V. In the case of overlapping keys, a half key-

distance can be counted. For example,

143

"D" Status=(*)
"G" Status=(k)
"H" Status=(*)

-jal 2.5

Key(68) Extra(*) KeyDistance(*) TimeGap(93)
Key(71) Extra(*) KeyDistance(*) TimeGap(218)
Key(72) Extra(*) KeyDistance(*) TimeGap(3)

0 218

This is a typical key press with overlapped key 'G' and key 'IF. The time gap

between 'G' press and 'I-F press is 3ms, which is much less than the user's usual

typing speed. This has been proved by the user's correction which happened

afterwards, as shown in dataset two. The horizontal key-distance between key 'D'

and key 'G' is two key-distances, however, another 0.5 key-distance is added in pre-

processing by taking into consideration the overlapping. The vertical distance

between these two keys is zero, while the time gap is 218ms and the output class is 4.

The experimental results show a correction rate of 50% which is five out of the ten

testing samples. However, due to the highness of user's typing disorder and the

small size of training dataset, a random training and testing dataset selection strategy

is ftu-ther adopted. The thirty three samples from file 'Helpline20080605-103126-

843. txt' and ten samples from file 'Helpline2008O627-160526-312. txt' are mixed up

and the random function Rand is applied to randomly pick up the training dataset

and testing dataset in a proportion of 213 and 113 respectively. Two groups of trials

are carried out, and each group of them includes ten training and testing samples.

The corresponding plots are shown in Figure 4.28.

144

PNN prediction of hitting ajacent key
0.4

Basic Rate

0.35 Pnn Rate

0.3

0.25

Ix
0.2

0.15

0.1

0.05

0
123456789 10

Training and Testing with Random Sample

PNN prediction of hitting ajacent key
0.4 1

0.35

0.3

0.25

0.2

0.15

0.1
Basic Rate
Pnn Rate

0.051
1 23456789 10

Training and Testing with Random Sample

Figure 4.28 Hitting adjacent key prediction rates based on PPN network

145

The x-axis refers to training and testing samples that are picked up randomly; the y-

axis refers to the prediction rate of the DATP model. The dashed line in red shows

the prediction rate of each testing dataset according to its training dataset; the line in

blue is the random prediction rate which has been named as Basic Rate.

The first plot of Figure 4.28 demonstrates that there are six rounds out of eight

whose prediction rates are above Basic Rate, while the rest are below Basic Rate.

The highest score (40%) occurs at the third round, while the lowest score occurs at

eighth round (0%). The second plot indicates that there are seven rounds whose

prediction rates are above Basis Rate, while the three remaining rounds are below

Basic Rate. The highest score (36%) occurs at the tenth round while the lowest score

(M) occurs at the third round.

Both plots show that there are 70% of all tests scoring above Basic Rate. They also

demonstrate a very unstable trend of user's 'hitting adjacent key errors' behaviour. It

recommends that the training dataset with a small size of data may not be able to

give a high prediction rate as the dataset has a bad convergence. In that case, several

rounds of training with a random dataset selection strategy may be required.

Further work to be carried out should focus on two areas: the DATP model

development with larger scaled data to obtain a more accurate prediction rate, and a

touch keyboard combining the sensitivity of touch screen and functionality of

QWERTY layout to detect the users' finger movement more precisely to calculate

the accurate Ad,, f .

146

4.11 Summary

In this chapter an intensive Neural Network language modelling process is applied.

Following testing datasets collection and data processing tools development, several

novel neural network models are developed, whose functional ities, performances

and related testing datasets are concluded in Table 4.3.

Model Dataset Noisy Performance

I Elm prediction with feedback Dataset I No First FIR = FT HR = 4iý',, '

2 FTDNN n-gram prediction Dataset I No 2 F irst HRý 33 ",,, FT HR= 56

3 FTDNN n-gram prediction with noise Dataset I Yes Noise Rate/O. 0.3/ --) /37%, 27"Of

4 FTDNN prediction with typed data Dataset 2 Yes First HR = 38"0, FT HR = 53 ,o4

5 TGNN time gap modelling Dataset 2 No A= 384.44ins, Q= 342.5()MS5

6 Prediction using time gap (PTG) Dataset 2 Yes correction rates c= 165(, ('), 90',, l

7 Probabilistic neural network modelling (PNN) Dataset 3 Yes 701"(') >= Basic Rate 6

Table 4.3 Neural Networks modelling and the related performances

First, an innovative FTDNN language model is designed and performed with noise-

free, noisy and typing stream clatasets (i. e. model 2,3 & 4). It is developed with

extendible numbers of hidden layer neurons and extendible numbers of time delays.

Based on user's typing history, a 38% First Hitting Rate and a 53% FT Hitting Rate

are obtained (see model 4). The results suggest that this can be practically applied to

'Time & memory consurning
' The best performance
3 First Hitting Rate (2-gram with fifty neurons)
4 The best performance: 38% under 3-gram; 53% under I-grarn
5 The cost of typing an alphabet order sequence is 384.44ms, while 342.50ms in a QWERTY order
6 70% of all tests score above Basic Rate

147

symbol prediction and correction. In contrast, the Elm network (i. e. model 1) shows

an un-extendible grarn prediction character and a time & memory consuming

performance, thus, is not adopted in the research.

Second, the influence of time gap on user's typing performance is studied, and a

unique Time Gap model (i. e. TGNN-model 5) is developed. Experimental results

show that the current keystroke's predecessor affected the user's typing behaviour,

and the Time Gap between two consecutive keystrokes is influenced by current

symbol's predecessor. Inspired by this conclusion, a fundamental PTG model (i. e.

model 6) is developed. Its experimental results indicate that the correction rates

predominantly lie in between 65% and 90% with the current testing sample.

Furthermore, an innovative model based on Probabilistic Neural Network (i. e. PNN-

model 7) is developed to simulate a specific user typing behaviour - 'hitting

adjacent key errors' based on key distances. Results demonstrate that about 70% of

all tests score above Basic Correction Rate. Results also show a very unstable trend

of user's 'hitting adjacent key errors' behaviour, which suggest that several training

trials with a random dataset selection strategy could be applied.

On the whole, the seven models developments build a foundation for ftuther

demonstrating the designed ALMIL framework and developing its related research

case, i. e., Intelligent Keyboard.

148

CHAPTER FIVE

INTELLIGENT KEYBOARD
FURTHER DEVELOPMENT

5.1 Introduction

Chapter 3 introduced a fundamental concept which is an intermediate layer noisy

language modelling framework called ALMIL, and its demonstration called

Intelligent Keyboard QK), to tackle the noisy text entry originating from difference

sources. Chapter 4 carried out a comprehensive neural networks modelling process

to explore the methodologies and demonstrate the feasibility of the IK framework by

generally analyzing both plain text and user typing strearn, and specifically studying

particular user typing behaviour. This chapter carries out a ftu-ther development of

Intelligent Keyboard framework. Different users may have distinct typing

behaviours and requirements. Tberefore, specific and multiple correction and

prediction fimctions can be integrated into the framework based on distinct language

features and user characters. However each function may rarely generate a single

answer, let alone multiple functions which may produce a larger list of suggestions.

This requires developing an evolutionary and adjustable approach to prioritize the

suggestions in this list. A word list online ranking approach (WLR) based on neural

network BackPropagation learning algorithm can be an optimum solution to meet

this requirement. Initial research adopts three distinct algorithms, namely,

Levenshtein word distance algorithm, Metaphone algorithm, and Two-Gram word

algorithm, with their word distance and evolving frequency difference parameters as

input factors for the WLR model. Both time element and words similarity rate

should be covered in the design. Furthermore, a pilot application - English Input

150

Method under Windows XP environment is developed for the purpose of the

framework demonstration. It mainly consists of two fundamental fianctions, typing

prediction and correction. Both are capable of real-time learning from user's

feedback and evolving along with user's typing toward a more accurate prediction

and correction rate.

5.2 Further framework development

As illustrated in chapters 3&4, Error correction unit of IK framework is designed

intending to combine different algorithms based on distinct scientific methods to

predict typing intention and correct typing errors. Several methods based on

statistics and phonemics are integrated in this application. Metaphone [Philips, 1990]

is a phonetic algorithm indexing words by their sound, which can be adjusted to

coffect typing effors. Two examples are given below.

able -> APL

hello-> HL

The right side of the arrow is words' phonetic keys. Let's assume that a user intends

to type a word 'hello' but mistakenly typed 'hallo' instead, whose phonetic keys

(HL) are identical. Subsequently, the system is able to index and retrieve possible

words from the database based on the phonetic key, and present them to user for

selection.

151

Levenshtein. distance [Levenshtein, 1965] is another function that needs to be

explored. It is designed based on the calculation of minimum number of operations

required to transform one string into another, for instance,

hello <-> hallo // the string distance is one
hello <-> all //the string distance is three

After a comparison with each string stored in the memory, the pair with the least

distance can be considered as having the highest similarity, and then the one or the

group with the least distance can be presented through the user interface module.

Mistakes Recording Function (MRF) is an alternative solution. User's typing

mistakes and correction are recorded in a real-time. It builds relationships between

the mistake and the correctness. The related occurrences of these relationships are

also counted. This method is extremely useful to handle habitual typing errors.

The same design can be applied to Text Prediction unit. N-gram. symbol counting

and n-gram. word counting algorithm combined with the existing statistical results

can be integrated together. A ranking function would assign a weight to each

specific function used in the word prediction or correction. The weights would be

adaptable by applying a BackPropagation, Neural Network learning algorithm.

152

5.3 Word list neural network ranking

Multiple solutions can be integrated into Intelligent Keyboard (IK) framework to

correct user's typing mistakes and foresee user's typing intention as illustrated in

section 5.2. But these solutions rarely produce a single answer or share common

results. Therefore, this requires a word-list with word priority (PRI) rather than a

single word to be generated. For instance, a user intends to type a word 'hello' but

mistakenly typed 'hallo' instead. Let's assume that two functions, namely,

Metaphone method and Levenshtein distance, have been integated into the IK

framework as correction ftmctions. Suppose that the results are produced as follows,

Metaphone method generates words: 'hello'and 'hall'.

Levenshtein distance generates words: 'hello'. 'all'. and 'allow'.

Then a words list with 'hello', 'hall', 'all' and 'allow' is made available to the user.

It is evident that a ranking algorithm computing each individual's priority is

demanded before it is presented to the user interface module.

As IK framework is a real-time model, it requires that the word-list priority

computation is able to adapt itself timely based on the user behaviour and some

other factors. In this research, this can be simplified by considering the word-list

priority computation as a function of three variables, which are Time Change,

Context Change and User Feedback. Therefore, a ranking algorithm, which is able

to learn from user's selection and adjust the weights assigned to related objects such

153

as algorithms, words or specific attributes in a real-time, can be developed and

deployed.

In this research, the three variables can be further quantified and represented by

frequency increase, word 2-gram statistic and a supervised learning algorithm

respectively. Subsequently, a novel Word List Ranking neural network model

associated with the variables is proposed and developed. First, let's give the

definition of Word-list, N-formula prediction, Word-List Success Prediction Rate

and Simulation Rate.

* Word-list and N-formula prediction definition: Let's assume that one

has distinct algorithms set A= {a,... a,... a,, } , where 1: 5 i: 5 n and i, n are

positive integers. To process a sequences, if there exists a one-to-many

mapping Is -> 0,1 associated with algorithm aj between input and output,

where 0, = joJ II<j: 5 mj, oJ is a generated sequence from the algorithm,

n

m, are positive integers, then one has m, sequence generated, and the

sequence set is defined as Word-list. The process based on the use of n

algorithms to generate a word-list is called n-formula prediction.

* Word-List Success Prediction Rate Definition: Given a word list

generated by several algorithms to correct a wrong typing, if the intended

word is in the word list, then it is a Success Prediction. If there is a set of

154

wrong typing, the proportion between the number of Success Prediction and

wrong typing is called Word-List Success Prediction Rate (SP Rate).

Let's define the number of Success Prediction as oI and the number of wrong

t"ing as 02, then one has 0 1:! ý 02 and SP Rate "": 0 1/02-

* Simulation Rate Definition: Given natural numbers i, m, P4 where i:! ý n and

m:: ý n, let's simulate a testing dataset p,... P,... p,, with a trained neural

network, and its target dataset tj ... tj ... t. , if output r, ... r, ... r,, has m elements

which are r, = t,, then the Simulation Rate (SM Rate) is nVn. Given Word-

List Success Prediction Rate SP and Simulation Rate SM, then the First

Hitting Rate = SP * SM.

As illustrated above, the word prediction function involves multiple algorithms. All

algorithms would produce their self-interpreted results independently, which is the

so-called Word-list n-formula prediction. These results could be rarely similar while

user may require only one of them if Success Prediction is fulfilled. Then, a

functional ranking model will play a major role to present an efficient word list with

priority (PRI). If one considers the learning factor required by a word list and

variability of its related dataset, a neural network model is a good choice with the

dataset updated constantly.

To test and implement this approach, Typing Correction function is adopted as a

practical case in this research (Typing Prediction function can adopt the same

155

approach). Three Typing Correction algorithms, namely, Levenshtein word distance

algorithm, Metaphone algorithm, and Two-Gram word algorithm (referred to as

L. M. T) are chosen to predict right words based on the wrong typing. Levenshtein

word distance algorithm is used to calculate the similarity between two words.

Metaphone algorithm is used to retrieve the possible words from database against

the current typed word. Two-Gram word algorithm is used to retrieve the context-

related words from database against the last typed word. Based on the definition of

Word-list n-fortnula prediction illustrated above, the correction can be defined as

Word-list 3-formula prediction. Let's use the example introduced in section 3.4.2,

where the word 'shall' is wrongly typed as 'sahll'.

Tomorrow sahll we go to the park?

and assume the database, which includes a]-gram & 2-gram. table, has been

initialized by a sentence,

Out ofyour shell! Tomorrow all of us shall start a new training.

Then, the correction result of word 'sahll' based on Two-Gram word algorithm is

'all'; the two correction results based on Metaphone algorithm is 'shall' and 'shell';

and the two correction results based on Levenshtein word distance algorithm is 'all'

and 'shall' respectively.

156

Let's suppose that corresponding to every wrong typing each algorithm generates a

maximiun of two words in a descending order of frequency. Each word is

represented by its two features: frequency and word similarity values. In a real-time

database, the word frequency will be updated along with the user typing. Both,

frequency and word similarity datasets are normalized before the neural network

training and testing start.

Based on the above analysis, a neural network model with 12-3-6 three layer

structure is developed and shown in Figure 5.1, where the number of neurons in

input layer is determined by the expression: Number of Algorithms (=3) * Number

of Words predicted (=2) * Number of Features of each word (=2). The model

having a competitive output layer is named as word list neural network ranking

(WLR) model. BackPropagation algorithm is adopted as its leaming algorithm. Its

inputs are wrongly typed words. Each algorithm generates two predictions based on

the input. Each prediction is presented by two features, namely, Jaro-Winkler

distance and word frequency. In Figure 5.1, the circles in blue are neurons of WLR

model; the circles in grey are predicted words; the three rectangles represent the

three algorithms; the shapes in yellow show the input and output of WLR model.

Generally speaking, the WLR model is designed to predict a highest ranked word

amongst every six recommendations. Then a ranking matter is converted to a neural

network classification question solving issue. At the output layer of WLR model,

there is only one neuron fired once at a time. To normalize the difference between

the typed word and the predicted word, Jaro-Winkler metric method [Jaro, 1995;

Winkler, 1999] is applied. It normalizes the words difference, also called words

157

similarity value, into a range of [0,1]. The dataset of another parameter called word

frequency is normalized by Normal Probability Density function based on their

mean value and standard deviation.

I
N
p
u
T

Input layer -12

Figure 5.1 Presentation of word list neural network ranking model (WLR)

A pilot application introduced in section 5.3 - 'edpa. ime' and its related Access

database - 'WordsDiamA'are used as a software tool to generate an experimental

dataset for WLR model. The related database has been initialized by the words' I&

2-grarn frequency statistics of dataset one [Tar from the Madding Crowd (1874)]

0
u
T
p
u
T

158

before the experimental dataset is generated. The database initialization has

followed these rules,

*A word is defined as a sequence of alphabets between two

separators.

* Any symbols are considered as a separator except alphabets.

* ALL uppercase would be converted into lowercase, e. g. 'If -; ý

'if, then 'If is counted as 'if

Other special cases are not considered For example, 'read' and
'reading'are considered as two independent words.

Based on the listed rules, the word dictionary table and 2-gram dictionary table

including their words frequencies are initialized in the database (WordsDIct. mdb).

Moreover, for the purpose of database efficiency, all the records of 2-gram whose

occurrences are less than two are eliminated. About 79.10% of all 2-grarn records

[(74084 -15485) / 74084 szý 79.10%] are eliminated, which only has a very limited

influence on the performance of WLR model with thousands of repetitive trials. The

occurrences of the words' I& 2-gram are kept updated along with user's typing

progress (The new 2-gram words and their occurrences - 'initially, =1' are inserted

into the database if they happen to be typed). Therefore, these updated frequencies

can well represent a user's temporal typing state captured and stored in a database.

As a good simulation to dyslexic's typing, an extra testing sample [Davis, 2003] is

used as an experimental dataset for the designed WLR model. It is shown below.

159

If yoll hvae raed AS far you
414 /501 079 38 042 75 / 502
1-85-1 1-61--l 1---O-l 1-1 --- I 1----O--l 1-0--i

Oil be albe to ffisith the w1ohe
-7(234 811 j05 9 43

1-24-11-25-11 --- 9---j 1-29--l 1-2-1 1-2-1 1-33-1

lihs sehel wohlitit any dcuitIffiv
043 5 /-? / 226

1--]--l 1--46--l 1--O--l 1-0-1 1-41--j 1-0-1

irsehoweir. Oerlilsiwe J-011 tilil h vae
0 1503 235 680

1---O--l 1---O---l 1-0-1 1-25-1 1-8-1

gevin UP now.
I 33 325 73 451

1-7-1 1-2-1 1-5-1 1-1-1

Some words within sentences are wrongly typed, such as 'hvae' (should be 'have')

and 'raed' (should be 'read). The numbers which are right under each word (in red)

indicate the frequency of the word after the database initialization. For example, the

frequency of the word 'If is 414 and the frequency of the word 'you' is 1501 in the

database. The numbers in black indicate the two-gram frequency between two

consecutive words. For example, the frequency between the first two words 'If and

'you' is eighty-five, shown as 'I --- 85 1'.

Let's assume the frequencies of the words shown above gradually increases in the

database while other words are rarely typed. Consequently, the change of other

words' frequencies will not have a big effect on the algorithms. Therefore, a

simulation can be performed by using the testing dataset which has ignored the

influence brought by other words' frequency changes. In this research, 5505 trials of

160

test samples are inserted into the database gradually without considering other

words' frequency changes.

Let's define a sampling point as a starting point of sampling in these 5505 trials, and

define a sampling step as a gap between two consecutive sampling actions. Twenty

five sampling points are set up to collect the three algorithms' prediction results in

this research. Only those wrongly typed and completed words are considered at

every sampling point. For example, the prediction results for words such as 'hvae'

and 'raed' are collected; while the prediction results for right words such as 'if,

4you' and uncompleted words such as 'hva' of 'hvae' are ignored. At each sampling

point, the whole dataset are gathered and called a sample. Then, twenty five samples

are gathered. The determination of sampling points and sampling step is based on a

heuristics method, which shows that the influence of initial frequency updating is

essential ývhile further updating influence is waning.

Figure 5.2 illustrates the sampling procedure. The x-axis refers to the frequency of

the whole sample; the y-axis refers to the numbers of sampling. The sampling points

are classified in four categories [045,10450,554505,150545505]. As

illustrated above, the influence of frequency updating is waning from one category

to another although the sampling steps are actually increasing. In Figure 5.2, the red

line shows these four categories. For example, five samples have been collected with

the frequency being changed from zero to five (i. e. the sampling step is one), and ten

samples are collected when the frequency changed from 55 to 505 (i. e. the sampling

step is 50).

161

ID
91
E
cc

Frequency of updating

Figure 5.2 Sampling Points representation of WLR modeling

The first two subsets of sample one generated by program - edpa. ime are shown in

Figure 5.3.

Figure 5.3 A sample of WLR model experimental dataset

Figure 5.3 lists the predicted results of two mistakenly typed words, 'hvae' and

'raed'. The first line marks the three algorithms name and 'output'. Each of the three

algorithms has generated two words shown in columns as two predictions of the

162

05 10 50 55 505 1505 5505

target word. For instance, Levenshtein word distance algorithm gives two

suggestions to the word - 'hvae', which are 'have' and 'hae'.

Next to each word, the word's frequency and the similarity values to the target word

are displayed. For example, the frequency of the word 'have' is 679 and its

similarity to 'hvae' is 0.925.

The last six columns of Figure 5.3 clearly show the required output for the WLR

neural network model. Each of those columns corresponds to one of the words that

the three algorithms could generate. If the prediction is true, the corresponding

column is set to one, otherwise it is set to zero.

For example, the first line of Figure 5.3 is a prediction for mistakenly typed word

'hvae'. Among the six predictions generated by the three algorithms, only the first

result of Levenshtein word distance algorithm is predicted correctly. Therefore, the

first column of the output is set to one while others are set to zeros. By default, the

processing would stop at the first 'I', and subsequently, the others will be set to

zeros. So the output would have a maximum of one 'I'. Hence, a competitive layer

can be appropriately applied to WLR model.

The data shown in Figure 5.3 still can not be used by WLR model directly, as

ftirther data processing is required. Thus, the following procedures are applied,

* Delete the redundancy such as the words ofeach line.

* Normalize all ftequencies by applying Normal probability
densityfunction

163

Apply missing data processing rules where it is needed - Ifsome

algorithms' prediction results are less than two items, then the
ftequency and similarity values ofthe missing items will be set to

zeros instead; if none of the algorithms are able to generate

results, then this line will be deleted

The sampling points are set up according to a heuristic method which analyzes the

frequency distribution of the database. For example, the first five frequency

updating procedures are considered to be more influential than the case when the

frequency changes significantly (e. g. >1000). So, the sampling step of the first five

is set to one while the rest are sparser.

In this experiment, a vector [5,5,10,5] of samples are collected from the four

categories and their sampling steps are set to [1,10,50,1000]. For example, the first

five samples are collected in a step distance of one, the third ten samples are

collected in a step distance of fifty.

Tlle dataset is further separated into training dataset [4,4,7,3], and testing dataset

[1,1,3,2]. The post-processing of WLR model follows a 'winner takes all' rule -

the neuron which has the biggest value among the six outputs are set to one while

others are set to zeros.

After the training process, the Hitting Rates of the testing dataset associated witli

each category are shown in Figure 5.4 (A full ALI TLAB program can be found in

Appendix A).

164

Neural Network Ranking First Hitting Rate and L. M. T Hitting Rates

IM
90%
80%
70%

Co 60%

40%
30%
20%
lo%
0%

Levenshtein algorithm
MMetaphone method
NTwo-Gram method
0 Neural network ranking

Figure 5.4 The comparison of Neural network ranking First Hitting Rate and
L. M. T Rates

From Figure 5.4, the x-axis refers to the increase of words frequency difference, and

it is also evident that the samples are separated into four categories based on the step

distance, [1,10,50,1000]; the y-axis refers to the hitting rate of the algorithms. The

bars in dark blue from left to right represent the evolution of neural network ranking

first hitting rate. For example, the first histogram shows a 57.50% Ranking First

Hitting Rate with the samples of category one; the fourth histogram shows a best

achievement of 74.69% Ranking First Hitting Rate with more samples collected

between frequency 1505 and 5505 in five separated sampling points. The other bars

colored in pale blue, sky blue and light blue represent Levenshtein, Metaphone and

Two-Gram prediction methods respectively.

Figure 5.4 shows an increase of ranking hitting rates as words frequency difference

and the amount of testing samples increase, and that the WLR model achieves the

best results in all stages, which is partly influenced by the three algorithms (i. e

165

' 10-50' ' 55-505' '1505-5505'

L. M. T) that have learning factors. All the algorithms are adjusting gradually toward

a better prediction rate as trials increase. From the figure, Levenshtein and Two-

Gram methods improve dramatically as the words frequency increase while

Metaphone method improves less.

The experimental results shows neural network as a learning tool can provide a good

solution to learn from different algorithms and adjust to reach a high ranking Hitting

Rate. In practice, the online neural network learning can be implemented to

propagate rewards to each algorithm and word.

Currently WLR model adjusts its ranking based on the change of frequency and

word similarity. More parameters can be explored such as time element (e. g. 'the

most recently used'), and more algorithms can be integrated such as Abnormal

Table function, which records the relationship between the wrong and the right word.

Then, an improved WLR model with larger scale dataset collection can be

developed.

5.3 A pilot application

For the purpose of further Intelligent Keyboard framework demonstration, a pilot

application has been developed in this section. The pilot application is named Essex

Disabled People Association (EDPA) English Input Method (EIM), which provides

a user with two main functions, namely, Text Prediction and Typing Correction. It is

designed specially for people with special needs. Ilie user's typing intention (i. e.

166

shown on computer screen as a list of words) is predicted based on user's input

history. The user's typing errors in data streams are gradually checked and corrected

when the typing stream goes through each module.

The EIM is developed based on the design of IK framework. Input Method Editor

(IME) API and VC are used as developing tools within Windows XP environment.

It provides EIM with a way to communicate with most of the Windows applications.

The database is designed based on Windows sharing memory and MS Access

software and separated into long-term and short-term memory. The relationship

between Windows, applications and EIM is illustrated in Figure 5.5.

Keyboard Event Applications

10 0

USER32. EXE - Windows

Input Method Manager

10

.I

Figure 5.5 Relationship of Windows, applications and EIM

167

The keyboard events are re-represented by user32. exe and then sent to Input Method

Manager (IMM). English Input Method is the intermediate language layer which is

responsible for receiving and analyzing Windows messages and its related context.

Its result is a word-list with ranked prediction or correction words. Via Windows,

applications can send commands to English Input Method on their own initiative as

indicated in process No. 7.

The interface examples of EDPA EIM are shown in Figure 5.6, which has used

Notepad editor as an application. The two figures demonstrate two major functions

of the IK application: Text Prediction and Typing Correction. The first figure shows

a word list which is a response to the user typing, 'he'. The second figure shows a

word list which is a prediction to the wrongly typed word, 'sutdy'.

OEM=
Fie Edt Format Vlow H* Fie EcIt Format View

h%
j1

hello
2 he
3 hell
4 he
5 head
6 headache
7 heading

h dline e:
u he dq arters

0 heal th
EOPAldfilbl

- fý, I

-IMIXI

EDPAjd6jlbj

Figure 5.6 EIM interface demonstration

A correction measurement has been used to evaluate the correction rate of EIM.

Let's assume the maximum number of prediction words of a word list is fixed. Then

168

given n words mistakenly typed, if m words are correctly predicted (no matter which

position these words lie in the list), then the correction rate c is expressed as,

c=mln (5.1)

An experiment is carried out with the designed EIM application to correct user's

typing mistakes with L. M. T algorithms adopted in this application. The same data

and the same number of trials as in section 5.2 are used. Figure 5.7 shows the

evolution of EIM correction rate.

100%

75%

c

50%

25%

Trials of words typing

Figure 5.7 Swnpling - Evolution of Correction Rates

169

015 55 105

It shows that the correction rate has improved as the typing trials increase. The first

several trials have generated a sharp influence on the improvement. Under current

testing dataset, 69% correction rate is achieved in the first trial. The 100% correction

rate can be reached under ideal condition, that is, without having new mistakes

generated. From Figure 5.7, the 100% correction rate is met after 105 trials.

The reason behind typing mistakes is complex. It depends on numerous factors such

as, user mobility, computer environment and typing context, which require specific

strategies to deal with. Further development of this application can focus on

individual typing behaviour study and more featured algorithms integration. As the

correction rate c is not a constant in the IK framework, its learning ability I need to

be studied further.

5.4 Summary

This chapter is a further development of Intelligent Keyboard framework both based

on the ALMIL framework and the neural network models development. Multiple

correction and prediction functions including Levenshtein word distance algorithm,

Metaphone algorithm, and Two-Gram word algorithm are tailored and integrated

into the fi-amewoprk based on distinct language features and user characters.

A word list online ranking method - WLR to prioritize words in the word list based

on neural network BackPropagation algorithm is developed. A preprocessing

method using Jaro-Winkler metric and Normal Probability Density function is

170

applied to the model's input vectors. All three elements, namely, Time Change,

Context Change and User Feedback are principal vectors in WLR model

development. In this research, they are quantified and represented by frequency

increase, word 2-gram statistic and a supervised learning algorithm respectively.

Experimental results show that 5750% Ranking First Hitting Rate with the samples

of category one and a best Ranking First Hitting Rate of 74.69% within category

four are achieved. It shows that as a learning tool, neural network can provide a

good solution to learn from different algorithms and adjust to reach a high ranking

Hitting Rate. In practice, the implementation capable of real-time learning based on

propagating rewards to each algorithm and word is a potential research.

For IK framework demonstration purpose, a pilot application - English Input

Method is also developed under Windows XP environment. The experiment shows

that the correction rate is improved as typing trials increase. The first several trials

generate a sharp influence on the improvement. The correction rate of 69% is

achieved in the first trial with the current testing dataset.

171

CHAPTER SIX

DISCUSSION, CONCLUSION AND
RECOMMENDATION FOR FUTURE

WORK

6.1 Discussions and conclusions

The goal of Statistical Language Modelling (SLM) is to build a statistical language

model that can estimate the distribution of natural language as accurately as possible,

which has been widely used to predict the next item in a sequence. The associated

algorithms include n-gram prediction and prediction by partial matching [Cleary &

Witten, 1984] etc. However, language text entry such as typing stream are full of

noises, and this issue hasn't been addressed well both in its related research and

application area. In this study, an ALMIL framework, a related practical research

case called Intelligent Keyboard and a comprehensive neural network noisy

language modelling process to analyze noisy text entry including typing stream are

developed. Other useful software tools are also implemented.

6.1.1 Adaptive language modelling intermediate layer framework

It is known that the text entry interaction between human and computer could be

noisy. However present research such as Dasher [Ward & MacKay et al., 1997-2008]

and Windows Control Panel mainly focused on either general or specific user

requirements, and failed to meet both cases. Moreover, these research and related

applications are rarely compatible with each other. In contrast, this research

develops a novel intermediate layer language modelling framework called ALMIL,

which is a communication language layer between user and computer applications to

analyze the noisy language stream. The advantage of this development is its

173

immense functionalities and transparency. Through ALMIL the noises of a language

stream are filtered significantly and the text entry interaction between user and

computer becomes smoother without considering input devices in detail. This

fi-amework simplifies and speeds up the process of Human-Computer text entry

Interaction, which may lead to a simplistic HCI language development.

6.1.2 Intelligent Keyboard and its pilot application

Predictive text input technologies are some of the techniques that are often found

useful by text entry users. Compared to pure prediction products, some efforts such

as Prototype [Sensory Software International Ltd, 2007] have been made to reduce

typing mistakes, although far few tools can intelligently identify new genre of

mistakes. Furthermore, they are short of self-adaptive ability and fail to fully

recognize the right patterns from user distinct performance. In contrast this research

develops an Intelligent Keyboard framework derived from ALMIL to offer a user-

oriented hybrid system with self-adaptive function to help people, disabled people in

particular, using QWERTY keyboard more effectively.

Currently, researchers mostly intend to find a unique solution to correct typing

mistakes. Although some distinct functions such as n-gram and Metaphone [Philips,

1990] have been developed, an optimum solution is hardly identified and a

combination of those multiple solutions is never on the agenda. Moreover, these

solutions such as T9 [Tegic 1993] rarely produce a single answer or share common

results; the answers may change within different context; and the solutions are also

required to evolve based on user's feedbacks. All these require a development of

174

hybrid solution which put all merits of those distinct functions together, and then to

produce an optimal prediction with learning and evolutionary factors. Therefore in

comparison with traditional single solution, in this research a hybrid solution is

designed and integrated into Intelligent Keyboard framework to correct user's typing

mistakes as well as foresee user typing intention. Simultaneously a novel word list

online ranking method based on neural network BackPropagation algorithm is

developed. This novel approach takes advantage of three distinct factors, namely,

Time Change, Context Change and User Feedback to learn from different algorithms

in order to find an optimum ranking solution. The advantage of this method is that it

fully considers the factors that influence the ranking mechanism in a nonlinear

leaming modal instead of the traditional linear method. The experimental results

show that 57.50% Ranking First Hitting Rate using category one samples and a best

Ranking First Hitting Rate (74.69%) within category four are achieved.

The research also results in the production of a dictionary database and a piece of

software - EnStatistics that is capable of providing a platform to pre-process dataset

to meet intelligent models requirements. The software can be independently used as

a statistics tools to calculate the target's ASCII and words' 1,2 &3 grams. It can be

expanded further into n-gram. letters, n-gram. words and natural entropy computation

assisted with internet crawling.

6.1.3 FTDNN language modelling

Current language modelling research to estimate the probabilities of a set of symbols

or words are mainly based on the clean text with statistics techniques such as PPM

175

[Cleary & Witten, 1984] and PPM* [Cleary, 1995], while noisy language modelling

such as user typing stream modelling using neural network are hardly traced. In this

research, a novel Focused Time-Delay Neural Network model with extendable

hidden neurons and input vectors is developed to analyze a plain text extracted from

a novel. Subsequently, noises are added to the plain text with uprising NoiseRates of

0.001,0.01 and 0.1 before a user typing stream is applied to FTDNN model.

Approximately 50% FT Hitting Rate has been obtained from the typing stream

testing. The key production is that the research pioneers a comprehensive neural

network language modelling process based on the cross-experiments between the

extendible inputs, hidden neurons and noise rates, while statistics based traditional

methods have failed to consider the possible noises of a language stream. This

approach also produces a significant contribution in the area of neural networks

application.

6.1.4 Specific typing behaviours analysis using neural networks

Current research [Karen, 1992] on user typing mistakes correction mostly originates

from spell checking techniques. No typing stream research coupled with neural

network technology has been seen. Most applications simply consider a typing

string as an input without recognizing the influence from other factors such as

keyboard layout, Time Gap between two consecutive keys and a user finger moving

route. Instead of developing a global application alone, in this research, user's

particular behaviours are extracted from dataset and studied through developing

several distinct neural network models. An innovative Time Gap model is designed

176

to study the influence of time gap on user's typing performance. Its experimental

results demonstrate that the time gap between two consecutive keystrokes is

influenced by the current symbol's predecessor. This has led to a development of an

advanced Prediction using Time Gap neural network model. The related

experimental results show that the model's correction rates lie predominantly

between 65% and 90% using current test sample.

'Hitting adjacent key errors' occurs frequently in motor disabled people's typing

stream. Traditionally [Abbott, 2004], they are tackled based on the keyboard layout

coupled with an English dictionary. All possible compound character sequences

have to be checked by conforming to the dictionary even it is considerably

computation and memory consuming. In comparison with such an exhaustion

method, this research develops a time-efficient and classification-solving solution

based on Probabilistic Neural Network model using Key Distance, Angle and Time

Gap factors. A distinct approach which suggests adding more training trials using a

random dataset selection strategy is adopted during the neural network testing. The

experimental results show that about 70% of all tests have scored above Basic

Correction Rate.

6.1.5 Conclusions

Overall this research has fulfilled the listed hypotheses made prior to the main

investigation. It originally brings forth a novel concept, intermediate layer language

modelling framework called ALMIL for noisy language processing, which fills the

gap between input device (i. e. keyboard) and user applications as a noisy language

177

filter, and develops numerous innovative neural network models which include

Focused Time-Delay Neural Network models, Time Gap model, Prediction with

Time Gap model, Probabilistic Neural Network Model and Word-List Neural

Network Ranking model. The experimental results produced by neural network

models have shown some very high language stream prediction and correction

performances. Through neural networks modelling, several vital factors which may

have an influence on user input behaviours and subsequently affect ALMIL and

Intelligent Keyboard framework's functionality, accuracy and efficiency are

identiftcd.

This research pioneers a comprehensive FTDNN language modelling process using

noise free, noisy data with distinct NoiseRates, and user typing stream both on a

general and specific analysis basis. It develops a hybrid solution to combine

multiple correction functions based on an evolutionary ranking approach. All these

produce a significant contribution in the area of neural networks application, and

show a direction for Human-Computer noisy language interaction research. Also

this work generates a full report on the disabled people typing behaviour using

computer QWERTY keyboard, develops an Intelligent Keyboard framework and its

related pilot application named as EDPA EIM for typist, and a universal pre-

processing tool with statistical function for all neural networks modelling and n-

gram estimation. The research and its generated software package build a foundation

for ftu-ther computer noisy text entry research.

178

6.2 Contributions

*A novel intermediate layer language modelling framework called

ALMIL is developed. As a communication language layer between user and

computer applications, ALMIL is designed to analyze noisy language stream

data. It learns from historical data and makes recommendation both for

wrong typed and incomplete input. It combines several technologies which

include n-grarn statistics, neural networks and human computer interaction

technologies. ALMIL provides a language modelling platform lying between

computer users or input devices layer and software applications layer, which

lead to a clean text entry. It also provides a platform for the cooperative text

entry justification among input devices.

* An innovative noisy language model using Time-Delay Neural Networks

(FTDNN) is developed. A comprehensive language modelling process

using FTDNN model is carried out. Plain text dataset, automatically

generated noisy dataset and user typing stream are tested in sequence based

on extendable input, hidden neurons and uprising NoiseRates. Ile results

indicate that Time-Delay Neural Network is a capable tool to model

language plain text and noisy data. It suggests that a combination of 1,2 &

3-gram is an optimum solution to keep a considerably high and stable

Hitting Rate. In practice, the results can be applied to symbol prediction and

correction.

179

+ An Intelligent Keyboard framework is developed. Intelligent Keyboard is

derived from ALMIL. It is developed toward a user oriented hybrid

framework with self-adaptive function to help disabled people to use

QWERTY keyboard more effectively. Through Intelligent Keyboard, user's

typing data stream can be checked, rectified, and predicted in sequence by

going through each of its units and modules along with user's typing process.

Multiple algorithms are integrated into the framework both based on users'

specific characters and related language features.

* Several neural network models to analyze user typing streams are

developcd. Inspired by Fitt's law, a Time Gap Neural Network model

(TGNN) is developed to simulate and predict a user's two consecutive

typing letters' time gap. The experimental results suggest that the time gap

between two consecutive keystrokes is influenced by current symbol's

predecessor. This has led to a development of Prediction using Time Gap

model (PTG). Time Gap between two consecutive keystrokes has influenced

user typing behaviour. TPTG model is developed to predict right symbols

based on an extra Time Gap variable at the input layer. Its experiments have

proved that the Time Gap can be considered as an input element by neural

network model to correct typing mistakes. This would also lead to a better

understanding on the mobility control ability and energy cost of those

people who have difficulties in using computer keyboards.

180

User investigation shows that user 'hitting adjacent key errors' behaviour is

heavily related to the positions of both the last stroked key and the current

key. So a Probabilistic Neural Network (PNN) based model is developed,

which adopts Key Distance, Time Gap and Error Margin distance

parameters to identify the possible rules behind uses' typing mistakes.

About 70% of all test datasets have scored above the Basic Rate. It also

demonstrates a relatively high randomicity of the user's 'hitting adjacent

key errors' behaviour.

+ An innovative approach on Word List real-time Ranking (WLR) using

Neural Network BackPropagation algorithm is developed. As a

combination typing correction function may generate multiple predictions,

WLR model is developed to prioritize these predictions. Three distinct

algorithms with word distance and evolving frequency difference

parameters are used as WLR model's input vectors. The results indicate that

neural network is a suitable learning tool to provide a good combination

solution and reach a high ranking Hitting Rate.

* Several useful 'by-products' are developed along with the project. An

investigation report on disabled user using computer QWERTY keyboard is

generated. About twenty-seven people who are elderly or disabled have

been interviewed. Their performances are classified into five major

categories. As least as three distinct typing behaviours has been concluded

in each category. Reflected questions and required solution from users are

181

also recorded. This report builds a foundation for research on people with

distinct typing behaviours so as to seek an alternative solution for improving

computer's usability and accessibility.

A pilot application called English Input Method is developed for disabled

people community. This software is a demonstration of Intelligent

Keyboard framework, and specially designed to meet disabled people's

needs. It provides users a way to communicate with most of Windows

applications by filtering typing errors. It presents two distinct functions for

users, namely, typing prediction and typing correction. The experiment

shows the correction rate is improved as the number of typing trials

increases. The 100% correction rate can be reached without new type of

mistakes generated.

A universal statistics and preprocessing tool called Enstatistics is developed,

which aims to provide a platform to pre-process dataset by reading raw data

from different sources and transforming the raw data into text files to meet

the requirements of all intelligent models. This software can be

independently used as a statistics tool to calculate ASCII and word one, two

and three grains. It can also be used for any neural network models for data

conversion with a minimal modification on the existing code.

182

6.3 Recommendations for future work

In this final section, an outline of research opportunities for future work is presented

below.

* Increase the scale of disabled user investigation, data collection and

computer capacity to enhance Intelligent Keyboard processing.

One limitation of this research is down to the external environments. The

research has predominantly focused on motor disability, but typing

behaviours are various, even motor disability typing behaviours may include

wider range of features than the current cases addressed in this research.

Hence, a more comprehensive disabled user investigation with typing stream

log is required. Furthermore, an intensive research on users' hands motor

control can be conducted.

A statistics of QWERTY keyboard user key strokes and related analysis also

need to be explored further. Nestor Prediction Measurement (NPM) [Nestor

1997], which used keystrokes to calculate the typing occurrence saving, can

be used to combine with Fitts law or other energy computing methods to

calculate and evaluate user's typing effort saving rate.

As presented in chapter 4, neural network language modelling demands not

only large training dataset but also large capacity of memory and computing.

An improved FTDNN model along with an implementation of parallel

183

processing on large-scale computing machine can be investigated and

conducted.

With the larger computer capacity, one may integrate more complex

algorithms based on NLP such as grammar checking into Intelligent

Keyboard framework. This will be able to deal with the errors which are not

well solved by the Coffection unit using the incompetent word n-grarn

function illustrated in chapter 3. Then the performance of Intelligent

Keyboard can be further improved.

* Focused Time-Delay Neural Network modelling expansion

A distributed representation method to preprocess the typing symbols, where

each symbol is represented by several features such as key distance, time

stamp and symbols can be applied to the FTDNN models. In such a case, the

prediction will not be solely based on the symbols themselves but also on the

related n-gram features. Another potential research is to apply FTDNN

model to predict I-length string based on n-gram's I-prediction. Therefore

with the same n-gram input as presented in chapter 4, more symbols can be

predicted.

* Prediction based on an online Markov chain method - an

alternative to neural network models.

In a Hidden Markov model, the state is not directly visible, but variables

influenced by the state are visible. Each state has a probability distribution

184

over the possible output tokens. Therefore the sequence of tokens generated

by an HMM gives some information about the sequence of states.

Let's consider a user typing sequence as output tokens or a so-called

emission and the intended typing sequence as series of states, then HMM can

be used to calculate the maximum likelihood estimate of the transition and

emission. Based on the computed probability of transition and emission

matrix, the Viterbi algorithm can be applied to compute the most likely

sequence of states given a sequence of emission, and then the most likely

next symbol is predicted.

Given a symbol set fl = {x,,..., x,, I and a temporal sequence s, ... Si S. ,

where 1: 5 i: ý m, s, E Q, to build a symbol prediction model based on HMM,

the following work can be carried out,

Collect and categorize massive t yping stream, according,
_to,

each
individual user.

Pre-process typing stream (for example, a particular symbol can be'
added to represent some conditions happened during ing, e. g. an, typ *
extra symbol which exists in emission sequence but stats sequence).

Collect and calculate several general probabilities of stats between
Symbols xi and xj based on particular daiaset, user's typing history

andprevious research [Jones &, Mewhort, 20041.,
Design step ; 'junction, ' to

, generate weight, parameters
Wj'= (wil ... wjM) based 'on users' typing temporal and, -pervious -
weight'set Wj', '. Then fuzzy lo& Method can be, used to blur, the'
boundary between each two steps.

Use Viterbi algorithm [Andrew Viterbl, 196ý], to deal with the new
generated iyýingsequence.

Estimate resultsand go back to 3.

185

(Forfuture work, a relevant pseudo code written in Matlab code is given in

Appendix A).

* Word-List Ranking neural network model (WLR) improvement

Current WLR model adjusts its ranking based on the change of word

frequency and similarity. Further research can focus on more parameters

such as time element and more algorithms integration such as Abnormal

Table function, which records the relationship between the wrong and the

right words. An extendable hidden units experiment could be applied, and

the First and FT hitting rates can be calculated along with the frequency-

difference evolution. Furthermore, WLR model related application can be

developed to propagate the rewards based on user feedbacks to all algorithms

and words stored in the database.

* An innovative design of touch keyboard towards a more precise user

hand movement detection.

Based on Fitts' law, a study [Card et al., 1978] that compared use of a touch

screen (i. e. finger pointing), mouse, joystick and keystrokes, and used

position time as a performance measure, shows that finger pointing with a

touch screen is optimal, with text keys being the second slowest, while

function keys is the slowest of all. Further research on a development of an

efficient touch keyboard combined with the EIM application to precisely

detect user hand movement is strongly recommended. This will lead to an

186

achievement of a more accurate prediction and correction rates. A radial

basis network model with a linear layer at the output can be designed to

compute the accurate Ad,, f .

* English Context Dictionary via Internet

The EIM application needs a proper dictionary with a statistics of ASCII and

word n-gram. Based on the statistics, entropy can be calculated and

evaluated through a comparison with other statistics methods. Specifically, a

further research aiming to build a word dictionary with words occurrences

and semantic-related n-grarn through searching vast amount of web pages is

recommended. The relationship such as semantic similarity and grammatical

relationship among the words should be highlighted. The dictionary will be

integrated into EIM application. This function is an extension of the

Enstatistics software package.

187

REFERENCES

Andrew Golding and Dan Roth (1999) 'A winnow-based spelling correction
algorithm', Machine Learning, 34, pp. 107-13 0

Andrew McCallum, SRILM - The SRI Language Modelling Toolkit, SRI
International, Sep 08,2008, available: http: //www. speech. sri. com/projects/srilm/
[accessed 05 February 2009]

Bengio Y, Ducharme R et al (2003) 'A neural probabilistic language model'. The
Journal ofMachine Learning Research, volume 3, pages: 1137 - 1155

Bengio Y., Simard p., and Frasconi P. (1994). 'Learning Long-Term Dependencies
with Gradient Descent is Difficult'. IEEE Transactions on Neural Networks 5: 157-
166

Bill Winkler, George McLaughlin and Matt Jaro [online], sircmp95. c - Version 2,
available: http: //www. census. gov/geo/Msb/stand/strcmp. c [accessed 23 January
2009]

Charles Bloom, PPMZ-High Compression Markov Predictive Coder [online],
http: //www. cbloom. com/src/Ppmz. html and ftp: //ftp. cpsc. ucalgary. ca/pub/Projects
/text. compression. corpus/text. compression. corpus. tar. Z [accessed 18 January 2009]

Charles Petzold, (1998) Programming Windows, 51h Edition, Microsoft Press

Chin-Teng Lin, Hsi-Wen Nein and Wen-Chieh Lin (1999) 'A Space-Time Delay
Neural Network for Motion Recognition and Its Application to Lipreading'
International Journal offeural Systems, Vol. 9, No. 4, Aug 1999, pp. 311-334.

Cleary. J. G. and Witten. I. H. (1984) 'liata compression using adaptive coding and
partial string matching', IEEE Transactions on Communications, 32(4), 396402

Cohen, William W., Ravikumar, Pradeep and Fienberg, Steve. (2003). 'A
Comparison of String Distance Metrics for Name-Matching Tasks', IIWeb 2003:
73-78

C. E. Shannon (1951). 'Prediction and entropy of printed English'. Bell Systems
Technical Journal, 30: 50-64, January, 1951

Dan Roth. (1998) 'Learning to Resolve Natural Language Ambiguities: A Unified
Approach', Proceedings of the National Conference on Artificial Intelligence,
pp. 806-813

Daniel Fallman. (2002) The penguin: using web as a database for descriptive and
dynamic grammar and spell checking [online], available: http: //citeseer. ist. psu.
eduffillman02penguin. html [accessed 03 March 2008]

9

189

Darragh, J. J., Witten, 1. H. at el. (1990). 'The reactive keyboard: A predictive
typing aid. Computer, vol. 23, no. 11, pp. 41-49
Darragh, J. J. and Witten, L H. (1991) 'Adaptive predictive text generation and the
reactive keyboard', Interacting with Computers, Vol. 3, no. 1, pp. 27-50

Darrel Hankerson, et al. (2003), Introduction to Information Theory and Data
Compression 2"d ed. CRC Press LLC, US

David J. Ward, Alan F. Blackwell at el. (2000) Dasher-a Data Entry Interface Using
Continuous Gestures and Language Models, [online], available:
http: //www. inference. phy. cam. ac. uk/djw3O/Papers/uist2OOO. html [accessed 03
March 2008]

David J. Ward. (2001) Thesis - Adaptive Computer Interfaces [online], available:
http: //www. inference. phy. cam. ac. uk/djw3O/Papers/thesis. html [accessed 03 March
2008]

Disability Essex, available: http: //www. disabilityessex. org [accessed 18 January
2009]

Dov Te'eni et al. (2007) Human Computer Interaction: Developing Effective
Organizational Information Systems, John Wilen & Sons, Inc

Fazly, A. and Hirst, G. (2003) 'Testing the efficiency of part-of-speech information
in word completion', Proceedings of the Worksho on Language Modellingfor Text p
Entry Methods, 1 Ith Conference of the European Chapter of the Association for
Computational Linguistics, 9-16

Felipe S. Santos, Maria Graga Pimentel and Cesar A. C. Teixeira (2006) 'An
architecture to improve the generalization of interacting device developments for
accessibility', Proceedings of the l2th Brazilian symposium on Multimedia and the
web, Pages: 53 - 60

Golding, A. R. (1995) 'A Bayesian hybrid method for context-sensitive spelling
correction', Proceedings ofthe Third Workshop on Very Large Corpora, pp. 39-53

Henry C. C. Tan and Liyanage C. De Silva (2003) 'Human Activity Recognition by
Head Movement using Elman Network and Neuro-Markovian Hybrids' Image and
Vision Computing New Zealand 2003

Hojat Adeli and Shih-Lin Hung (1995) Machine Learning - Neural Networks,
Genetic. 4 1gorithms, and Fuzzy Systems, John Wiley & Sons, Inc

190

Houman Pournasseh, Writing Win32 Multilingual User Interface Applications
[online], Microsoft, available: http: //www. microsoft. com/globaldev/handson/dev
/muiapp. mspx [accessed 25 January 2009]

Howard Demuth, Mark Beale and Martin Hagan (1992-2008) Neural Network
ToolboXTm 6 User's Guide, The MathWorks, Inc

Ingo Schellhammcr, Joachim Diederich, Michael Towsey (1998) 'Knowledge
extraction and recurrent neural networks: An analysis of an Elman network trained
on a natural language learning tasle, Proceedings of the Joint Conference on New
Methods in Language Processing and Computational Natural Language Learning.
NeMLaP3/CbNLL98', Associationfor Computational Linguistics

1. Anagnostopoulos et al. (2003) 'A Probabilistic Neural Network for Human Face
Identification based on Fuzzy Logic Chromatic Rules' 11th Mediterranean
Conference in Control and Automation MED, Rhodes, Greece (in CD-proceedings)
2003, June 18-20,2003.

I. Scott MacKenzie and William A. S. Buxton (1992). 'Extending Fitte law to two-
dimensional tasks', Proceedings ofACM CHI 1992 Conference on Human Factors
in Computing Systems, pp. 219-226

J Bilmes and K. Kirchhoff (2003). "Factored Language Models and Generalized
Parallel Backoff', Human Language Technology Conference

Jaro-Winkler distance [online], 11 January 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Jaro-Winkler [accessed 23 January 2009]

Jeffrey L. Elman (1990), 'Finding structure in time' Cognitive Science, Vol. 14,
1990, pp. 179-211

Jianhua Li & Graeme Hirst. (2005) 'Semantic Knowledge in Word Completion',
Proceedings of the 7th international ACM SIGACCESS conference on Computers
and accessibility, pp. 121 - 12 8

Jiawei Han & Micheline Kamber (2001) Data Mining - Concepts and Techniques
Academic Press

Johan A. Du Preez, E. Barnard, D. M. Weber (1998). 'Efficient High-order hidden
Markov modelling', Proceedings of the International Conference on Spoken
Language Processing

John G. Cleary, W. J. Teahan, et al. (1995) 'Unbounded length contexts for PPM',
IEEE Computer Society Press

191

[5] John McCarthy. (2007) What is Artificial Intelligence? [Online], 2007-11-12,
available: http: //www-formal. stanford. edurjmc/whatisai/nodel. html [accessed 19
January 2008]

Juan Antonio P6rez-Ortiz, Jorge Calera-Rubio and Mikel L. Forcada (200 1) 'Online
Symbolic-Sequence Prediction with Discrete-Timc Recurrent Neural Networks',
Proceedings of the International Conference on Artificial Neural Networks, p719 -
724

Juan Antonio Perez-ortiz et al (2002) 'Improving Long-Terni Online Prediction with
Decoupled Extended Kalman Filters' Artificial Neural Networks - ICANN 2002,
Volume 2415/2002, Page 134

Jun Li, Karim Ouazzane and Marielle Brouwer (2008). 'A hybrid framework
towards the solution for people with disability effectively using computer keyboard',
IADIS International Conference Intelligent Systems and Agents 2008, pp. 209-212

Justin Boyan, Dayne Freitag and Thorsten Joachims; (1996) 'A machine learning
architecture for optimizing web search engines', AAAI Workshop on Internet-based
Information Systems

J. G. Carbonell (1989) Machine Learning - Paradigms and Methods, Elsevieff
Science Publishers B. V., Amsterdam, The Netherlands

J. Ross Quinlan (1993) C4.5 Programs for Machine Learning, Morgan Kaufmann
Publishers

Kane, S. K. and Wobbrock, J. O. (2007) 'Automatically correcting typing errors for
people with motor impairments'. Adjunct Proceedings of the ACM Symposium on
User Interface Software and Technology (TJ7ST '07). Newport, Rhode Island
(October 7-10,2007). New York: ACM Press, pp. 59-60

Kane, S. K., Wobbrock, J. O., Hamiss, M. and Johnson, K. L. (2008) 'TrueKeys:
Identifying and correcting typing errors for people with motor impainnents',
Proceedings of the ACM Conference on Intelligent User Interfaces (IUI '08).
Maspalomas, Gran Canaria, Spain (January 13-16,2008). New York: ACM Press,
pp. 349-352

Karen Kukich. (1992) 'Technique for automatically correcting words in text', ACM
Computing Surveys (CSUR), Vol. 24, no. 4, pp. 377-439

Kevin Gurney (1997) An introduction to neural networks, UCL press

192

Laura R. Novick and Steven J. Sherman(2004) 'Type-based bigam frequencies for
five-letter words', Behaviour Research Methods, Instruments, & Computers 2004,
36(3), 397-401

Luz Abril Torres Mdndez, Viterbi Algorithm in Text Recognition [online], available:
http: //www. cim. mcgill. ca/-IatorresNiterbi/va - main. html [accessed 26 January 2009]
L. Allison, 24 January 2009 , Tries [online], Faculty of Inforination Technology
(Clayton), Monash University, Australia, available: http: //www. csse. monash. edu. au/
-Iloyd/tildeAlgDS/Tree/Tzie/ [accessed 23 January 2009]

Mark Nelson. Arithmetic Coding + Statistical Modelling = Data Compression
[online], September 2007, Mark Nelson's HomePage, available: http: //www.
dogma. net/markn/articles/arith/partl. htm [access 24 January 2008]

Masami Nakamura et al. (1990), 'Neural network approach to word category
prediction for English texts', Helsinki University 213-218

Matthew H. Austern (2002) Generic Programming and the STL - Using and
Extending the C++ Standard Template Library, Addison-Wesley, Addison Wesley
Longman, Inc

Matt Davis, reading jumbled texts [online], 30 October 03, available:
http: //www. mrc-cbu. cam. ac. uk/-mattd/Cmabrigde/ [accessed 26 January 2009]

Michael John Collins (1996). 'A New Statistical Parser Based on Bigram Lexical
Dependencies'. Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics

Michael J. A. Berry and Gordon S. Linoff (2004) Data Mining Techniques - For
Marketing, Sales and Customer Relationship Management 2d edition, Wiley
Publishing, Inc

Michael Negnevitsky (2005) Artificial Intelligence -A Guide to Intelligent Systems
2'd edition Addison-Wesley, Pearson Education

Michael N. Jones and D. J. K. Mewhort (2004) 'Case-sensitive letter and bigram
frequency counts from large-scale English corpora', Behaviour Research Methods,
Instruments, & Computers 2004,3 6(3), 3 88-3 96

Michael Towsey et al (1998), 'Natural language learning by recurrent neural
networks: a comparison with probabilistic approaches', Proc. Joint Conf on New
Methods in Language Processing and Computational Natural Language Learning

Moffat. A. (1990) 'Implementing the, PPM data compression scheme', IEEE
Transactions on Communications, 38(il), 1917-1921

193

Moses Liskov, Finite Automata and Theory of Computation [online], available:
http: //www. cs. wm. edu/-mliskov/f'07_cs423/index. html [accessed 26 January 2009]

M61ler S, Kriventseva EV, Apweiler R. (2000) 'A collection of well characterised
integral membrane proteins', Bioinformatics, 2000 Dec, 16(12): 1159-60, and dataset
website - www. ebi. ac. uk

Nestor Garay-Vitoria and Julio GonzAlez-Abascal (1997) 'Intelligent word-
prediction to enhance text input rate (a syntactic analysis-based word-prediction aid
for people with severe motor and speech disability)', Proceedings of the 2nd
international conference on intelligent user interfaces, Pages: 241 - 244

Nikolay Y. Nikolaev ,I October 2008, Probabilistic Neural Networks [online],
Goldsmiths, University of London. Available: http: //homepages. gold. ac. uk/
nikolaev/31 I pnn. htm [accessed 23 January 2009]

Paul M. Fitts (1954). 'The information capacity of the human motor system in
controlling the amplitude of movement', Journal of Experimental Psychology,
volume 47, number 6, June 1954, pp. 381-391

Premit Patel (2007) 'An Automated Visual Speech Reading System', PhD Thesis -
London Metropolitan University

Robert Edward Lewand, Relative Frequencies of Letters in General English Plain
text [online], Available: http: //pages. central. edu/emp/LintonT/Classes/spring0l
/cryptography/letterfreq. html [accessed 23 January 2009]

Schneier, B (1996). Applied Cryptography, Second edition, page 234. John Wiley
and Sons

Schwenk H and Gauvain J, 'Connectionist Language Modeling for Large
Vocabulary Continuous Speech Recognition% Proceedings of ICASSP, pages 765-
768, Orlando, May 2002

Serengul Smith-Atakan (2006) Human-Computer Interaction, Thomson Learning

Shannon, Claude E. (1950). Prediction and entropy of printed English. The Bell
System Technical Journal, 30: 50-64,1950

Shari Trewin. (2002) 'An invisible keyguard', ACM SIGACCESS Conference on
Assistive Technologies, pp. 143 - 149

194

Shari Trewin. (2003) 'Automating Accessibility: The Dynamic Keyboard', ACM
SIGACCESS Accessibility and Computing, SESSION., Accessibility inftastructure
and supporting tools, no. 77-78, pp. 71-78

Shari Trewin and Helen Pain (1998) 'A Model of Keyboard Configuration
Requirements', International (ACM) Conference on Assistive Technologies, pp.
173-181

Simon Haykin, (1999) Neural Networks -A comprehensive Foundation 2 nd ed Tom
Robbins
Soukoreff, R. W., & MacKenzie, 1. S. (2001). 'Measuring errors in text entry tasks:
An application of the Levenshtein string distance statistic', Extended Abstracts of
the ACM Conference on Human Factors in Computing Systems - CHI 2001, p. 319-
320. New York: ACM

Soukoreff, R. W., & MacKenzie, I. S. (2003). 'Input-based language modelling in
the design of high perfon-nance text input techniques'. Proceedings of Graphics
Interface 2003, pp. 89-96

Stamatios V. Kartalopoulos (1996) Understanding Neural Networks and Fuzzy
Logic. The Institute of Electrical and Electronics Engineers, Inc

Steve Abbott 'EDBASE 2- Intelligent Keyboard System, Inclusive Access to
Database Applications' [online] available: http: //www. disability. bcs. org. uk
/docs/icat03/EDBASE2. pdf [accessed 17 April 2009]

S. Kotsiantis, D. Kanellopoulos, P. Pintelas (2006), 'Data Preprocessing for
Supervised Leaning', International Journal of Computer Science, 2006, Vol I N. 2,
pp 111-117

S. K. Card, W. K. English, & B. J. Burr (1978), 'Evaluation of mouse, rate-controlled
isometric joystick, step keys, and text keys for text selection on a CRT', Ergonomics,
21,601-613

Tejpal Singh Chhabra, 28 Mar 2006, Back-propagation Neural Net [online), The
Code Project, available: http: //www. codeproject. com/KB/ýecipes/BP. aspx [accessed
23 January 2008]

Todor Ganchev1 et al. (2002) 'probabilistic neural networks combined with gmms
for speaker recognition over telephone channels' 14th international conference on
digital signal processing (DSP2002), Volume II, pp. 1081-1084 July 1-3,2002,
Santorini, Greece 1081

Tom M. Mitchell (1997). Machine Learning, McGraw-Hill, Singapore

195

Toshiyuki Masui. (1999) TOBox: An efficient text input method for handheld and
ubiquitous computers', Lecture Notes in Computer Science (1707), Handheld and
Ubiquitous Computing, pp. 289-300

Toshiyuki Masaui and Ken Nakayarna (1994) 'Repeat and Predict: Two keys to
Efficient Text Edition', Proceedings of the Conference on Human Factors in
Computing Systems, pp. 118-123

Victoria J. Hodge and Jim Austin (2003) 'A Comparison of Standard Spell
Checking, Algorithms and a Novel Binary Neural Approach', IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 5, pp. 1073-1081

William Soukoreff and Scott MacKenzie, n. d. KeyCapture [online], available:
http: //dynamicnetservices. com/-will/academic/textinput/keyeapture/ [accessed 18
January 2009]

William J. Palm 111 (2001) Introduction to AMTLAB 6 for Engineers, McGraw-
Hill/Irwin

W. Woo, J. Park and Y. Iwadate (2000) 'Emotion Analysis from Dance Performance
Using Time-Delay Neural Networks' Proc. JCIS-CVPRIP'00, vol. 2, pp. 374-377,
Feb. 2000.

Zhai, S., Hunter, M., Smith, B. A. (2000), 'The Metropolis Keyboard: An
Exploration of Quantitative Techniques for Virtual Keyboard Design'. Proceedings
of 4 CM Symposium on User Interface Software and Technology (U7ST 2000), pp.
119-128

Computer Access Resources 2007 Catalogue, pp. 4-15. www. keytools. co. uk

Artificial neural network [online], 8 April 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Artificial-neural-network [accessed II April 2009]

Artificial Neural Networks Technology [online], n. d. ITT Corporation, available:
https: //www. daes. dtic. mil/techs/ýeural/neural7. php [accessed 23 January 2009]

BackPropagation [online], 10 January 2008, Wikipedia, available: http: //en. wiki-
pedia. org/wiki/Back_propagation [accessed 20 January 2008]

Basic Concepts for Neural Networks [online], last revised October 2003, Cheshire
Engineering Corporation, available: http: //www. cheshireeng. com/
Neuralyst/nnbg. htm [accessed 23 January 2008]

Bigram [online], 19 September 2008, Wikipedia, available:
http: //en. wikipedia. orgtMki/Bigram [accessed 12 March 2008]

196

Bow: A Toolkit for Statistical Language Modelling, Text Retrieval, Classification
and Clustering [online], 12 September 1998, available:
http: //www. cs. cmu. edu/-mccallunVbow/ [accessed 05 February 2009]

Cheat Sheet: Unicode-enabling Microsoft CVC++ Source Code [online] 13
November 2003 available: http: //www. il8nguy. com/unicode/c-unicode. html
[accessed 26 January 2009]
C- ODBC from C Tutorial Part I and Part 2 [online] n. d. available:
http: //www. easysoft. com/developer/languages/c/ [accessed 25 January 2009]

Data compression theory and algorithms [online], 18-December-2007, Maximum
Compression, Available: http: //www. maximumcompression. com /algoritms. php
[accessed 24 January 2008]

Data preprocessing [online], 01 April 2005, SearchSQLServer. com, available:
http: //searchsqlserver. techtarget. com/sDefinition/O,, sid87_gci8lOO56,00. html
[accessed 23 January 2009]

Data Pre-processing [online], 16 January 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Data_Pre-processing [accessed 23 January 2009]

Documentation - Neural Network Toolbox [online], The MathWorks, available:
http: //www. mathworks. com/access/helpdesk/help/toolbox/nnet/ [accessed 23
January 2009]

English Text compression test [onlinc], 18 December 2007, Maximum
Compression-Lossless data compression software benchmarks / comparisons,
Available: http: //www. maximumcompression. com/data/text. php [accessed 25
January 2008]

Entropy encoding [online], 7 September 2008, Wikipedia, available:
http: //en. wikipedia. org/wiki/Entropy_ýncoding [accessed 18 January 2009]

Error [online], 18 January 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Error [accessed 18 January 2009]

Factored language model [online], 2 August 2008, Wikipedia, available:
http: //en. wikipedia. org/wiki/Factored_languageý_model [accessed 23 January 2009]

Focused Time-Delay Neural Network (newffitd) [online], The MathWorks, available:
http: //www. mathworks. com/access/helpdesk/help/toolbox/nnet /dynamic3. html
[accessed 23 January 2009]

197

Hidden Markov model [online], 25 January 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Hidden_Markov-mOdel [accessed 26 January 2009]

Knowledge Transfer Partnership, available: http: //www. ktponline. org. uk/ [accessed
18 January 2009]

Language modelling [online], The Inference Group, available:
http: //v; ww. inference. phy. cam. ac. uk/is/papers/ [accessed 25 January 2009]

Levenshtein algorithm [online], available: http: //www. levenshtein. net/ [accessed 23
January 2009]

Machine learning [online], 15 January 2008, Wikipedia, available: http:
//en. wikipedia. org/wiki/Machine_leaming [accessed 19 January 2008]

Markov chain [online], 20 January 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Markov-chain [accessed 23 January 2009]

Metaphone [online], 18 October 2008, Wikipedia, available:
http: //en. wikipedia. org/wiki/Metaphone [accessed 23 January 2009]

Neural net language models [online], 19 April 2008, Wikipedia, available:
http: //www. scholarpedia. org/article/Neural-net-languageý_models [accessed 23
January 2009]

Neural Networks Classification [online], available: http: //www. resainple. com/
xlminer/help/NNC/NNClass-intro. htm [accessed 07 January 2008]

N-gram [online], 26 November 2008, Wikipedia, available:
http: //en. wikipedia. org/wiki/N-gram [accessed 23 January 2009]

PAQ, [online], 3 January 2008, Wikipedia, Available: http: //en. wikipedia. org
/wiki/PAQ [accessed 25 January 2008]

ý
Prototype, [online], n. d., available: http: //www. sensorysoftware. com/ prototype. html
[accessed 03 March 2008]

Spell checker [online], 03 March 2008, Wikipedia, Available:
http: //en. wikipedia. org/wiki/Spell-checker [accessed 03 March 2008]

The Dasher Project, [online], 14 Nov. 2007, Inference Group of Cambridge,
available: http: //www. inference. phy. cam. ac. uk/dasher/ [accessed 03 March 2008]

Thomas Hardy [online], 21 January 2009, Wikipedia, available:
http: //en. wikipedia. org/wiki/Thomas-Hardy [accessed 22 January 2009]

198

T9 (predictive text) [online], 03 March 2008, Wikipedia, Available:
http: //en. wikipedia. org/wiki/T9-ý/ý28predictive_textý/ý29 [accessed 03 March 2008]

"at is cross-entropy, and why use it? [online], School of Science and Engineering,
UNSW, available: http: //www. cse. unsw. edu. au/-billw/cs9444/ crossentropy. html
[accessed 23 January 2009]

What is Statistical Language Modelling (SLM) [online], School of Infon-natics, The
University of Edinburgh, available: http: //homepages. inf. ed. ac. uk
/s0450736/slm. html [accessed 23 January 2009]

Win32 Multilingual IME Overview for IME Development [online], II April 2003,
available: http: //www. osronline. com/ddkx/appendix/imeimes-Oh2s. htm [accessed
25 January 2009]

Virtual key codes [online], available: http: //api. farmanager. com/en
/winapi/virtualkeycodes. html [accessed 05 February 2009]

199

APPENDICES

200

Appendix A

MATLAB SOURCE CODE

MATLAB - Backpropagation2. m

% -- %
% Function: NN with n-gram delay for key press prediction %
% Author: Jun Li %
% Create: 02/08/2008 %
% Comment: Programming is referred to LongKeyPress. m %
% -- %

function Backpropagation2(GRAM, HiddenNeurons)
% Turn on echoing of commands inside the script-file.
%echo off
% Clear command window.
%clc

%clear all
%close all

% Define GRAM
%GRAM = 2-1;
InputNeurons 27;
OutputNeurons 27;
%HiddenNeurons = 5;

%Initialization
load . /data/BPdataP. txt;
Z BPdataP';
si size(Z, 2);

clear BPdataP;

load . /data/BPdataPValidation. txt;
V= BPdataPValidation';
Vsi size(V, 2);
VV. P con2seq(V(:, GRAM: (Vsi-1)));
VV. T con2seq(V(:, (GRAM+1): Vsi));
clear BPdataPValidation;
load . /data/BPdataPTest. txt;
Test - BPdataPTest';
Tsi = size(Test, 2);
TV. P = con2seq(Test(:, GRAM: (Tsi-l)));
TV. T = con2seq(Test(:, (GRAM+1): Tsi));
clear BPdataPTest;

PR = zeros(InputNeurons, 2);
for i=1: InputNeurons

PRU, :)= [0,11 ;
end

ID = zeros(l, GRAM);
for i=1: GRAM

IDW
end

%Pi the initial inputs for which the network will not have a target
%P the inputs for which the network will have a target
%T the targets

%Pi con2seq(Z(:, l: (GRAM-1)));
%P con2seq(Z(:, GRAM: (si-1)));
%T con2seq(Z(:, (GRAM+1): si));

net = newfftd(PR, ID, [HiddenNeurons OutputNeurons], {Ipurelin'
Ilogsig1l, ...

Itrainrp');

net. trainparam. epochs=50;
%net train(net, P, T, Pi);
net train(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, (GRAM+1): si)),...
con2seq(Z(:, l: (GRAM-1))), [1, VV, [1);

%Y=sim(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, I: (GRAM-1))));
%T =Z(:, (GRAM+l) : si) ;

%if use Test sample
Y=sim(net, TV-P);
Si Tsi;
T Test(:, (GRAM+1): Tsi);

% Strike any key to continue...
%pause;

%Post-processing...
SymbolFreq = zeros(l, OutputNeurons);
for i=1: OutputNeurons

SymbolFreq(i) = 0.00;
end

Ybackup = Y;
% --------- Hit-Rate-1 ----------
for i 1: (si - GRAM)

Ma max(Y[il);
Idx = find(Yli)==Ma);
for j=1: OutputNeurons

SymbolFreq(j) = SymbolFreq(j) + Y(il(j);
YM (j) = 0;

end
Y(i)(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= [Y{:)];
%Comparison between Y and T
Result =Y-T;
Mumber of right Prediction
Numl = 0;

%alphabetYl, 2,3 will receive discrete results.
alphabetYl = zeros(l, 27);

alphabetY2 = zeros(l, 27);

alphabetY3 = zeros(l, 27);

alphabetT = zeros(l, 27);
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Numl = Numl + 1;

end

Idx = find(Y(:, i)==l);
alphabetYl(Idx) = alphabetYl(Idx) + 1;
Idx = find(T(:, i)==l);
alphabetT(Idx) = alphabetT(Idx) + 1;

end

% --------- Hit-Rate-2 ----------
Y= Ybackup;
for i 1: (si-GRAM)

Ma max(Y{i));
Idx find(Y(i)==Ma);
Y{i)(Idx) = 0;
%find second maximum
Ma max(Y(i));
Idx find(Yfi)==Ma);
for j-1: OutputNeurons

Y(i) M=0;
end
Y(i)(Idx) - 1;

end
%Convert Cell to Numeric Array
Y= MOD
%Comparison between Y and T
Result =Y-T;
%Number of right Prediction
Num2 = 0;
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Num2 = Num2 + 1;

end
Idx = find(Y(:, i)==l);
alphabetY2(Idx) - alphabetY2(Idx) + 1;

end

% --------- Hit-Rate-3 ----------
Y= Ybackup;
for i 1: (si-GRAM)

Ma max(Yfil);
Idx = find(Y{i)==Ma);
Y[i)(Idx) = 0;
%find second maximum
Ma = max(Y{i));
Idx = find(Y{i)==Ma);
Y[i)(Idx) = 0;
%find third maximum
Ma max(Y{i));
Idx find(Y{i)==Ma);
for j=I: OutputNeurons

Y{iI U) = 0;

end
Y{i)(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= [Y(:)];
%Comparison between Y and T
Result =Y-T;
%Number of right Prediction

Num3 = 0;
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Num3 = Num3 + 1;

end
Idx = find(Y(:, i)==l);
alphabetY3(Idx) = alphabetY3(Idx) + 1;

end

%Write file...
fid = fopen('Backpropagation2. txt', 'at');
fprintf(fid, I\n ------ %d-GRAM ------ %d-HiddenNeurons ------- \nI,

GRAM, HiddenNeurons);
Mit Rate level-1,2,3
fprintf(fid, 'Numl=[%d]\nNum2=[%dl\nNum3=[%d]\n', Numl, Num2, Num3);
fprintf(fid, 'Num =[%d]\n', (si-GRAM));
fprintf(fid, 'Numl/Num=[%fl\nNum2/Num--[%f]\nNum3/Num=[%f]\nI

Numl/(si-GRAM), Num2/(si-GRAM), Num3/(si-GRAM));
%Alphabet Hit Rate level-1,2,3
for i=1: 27

fprintf(fid, lalphabetYl-[%d]= %d\nl, i, alphabetYl(i));
end
for i=1: 27

fprintf(fid, 'alphabetY2-[%d]= %d\n', i, alphabetY2(i));
end
for i=1: 27

fprintf(fid, lalphabetY3-[%d]= %d\n', i, alphabetY3(i));
end
Entropyl = 0;
for i=1: 27

Entropyl = Entropyl + (alphabetT(i)/(si-GRAM))
log2(a1phabetT(i)/(si-GRAM));

fprintf(fid, 'alphabetT-[%d]= %d\nl, i, alphabetT(i));
end
SFaddup = 0;
for i=1: OutputNeurons

SFaddup = SFaddup + SymbolFreq(i);
fprintf(fid, 'SymbolFreq(%d)= %f\n', i, SymbolFreq(i));

end
fprintf(fid, ISFaddup=[%f]\nl, SFaddup);
Entropy2 = 0;

for i=1: OutputNeurons
Entropy2 = Entropy2 + (SymbolFreq(i)/SFaddup)

log2(SymbolFreq(i)/SFaddup);
fprintf(fid, 'SymbolFreq(%d)/SFaddup= %f\n', i,

SymbolFreq(i)/SFaddup);
fprintf(fid, IalphabetT(%d)/(si-GRAM)= %f\n', i,

alphabetT(i)/(si-GRAM));
end
Entropyl = abs(Entropyl);
Entropy2 = abs(Entropy2);
fprintf(fid, 'Entropyl=[%f]\nEntropy2=[%f]\n', Entropyl, Entropy2);
fclose(fid);

% Create a menu, so the user can select a test set.
%K= MENU('Choose a file resolutionl, 'Test A', 'Test 01, 'Test 51, 'Test
L', 'Test VI, 'Test WI, 'Test H', 'Test 1', 'Test GB');

MATLAB - CallBackpropagation2. m

% -------------------------------------- ---------------------- -- %
% Function: Call Backpropagation2 %
% Author: Jun Li %
% Create: 24/11/2008 %
% Comment: %
% -------------------------------------- ---------------------- -- %

% Turn on echoing of commands inside the script-file.
echo off;
% Clear command window.
%clc
clear all;
close all;

%MaxNumberGRAM = 10;
%GRAMarray = [1,2,3,5,7,9,13,17, 25,351;

%MaxNumberHiddenNeurons - 10;
%HiddenNeuronsArray = [1,2,3,5,7,9, 15,25,50,100];

%start GRAM-3, HN-15
MaxNumberGRAM = 1;
GRAMarray = [11,131;

MaxNumberHiddenNeurons = 10;
HiddenNeuronsArray = [1,2,3,5,7,9, 15,25,50,100);

% Define GRAM and HiddenNeurons
for i=1: MaxNumberGRAM

GRAM GRAMarray(i);
for j 1: MaxNumberHiddenNeurons

HiddenNeurons = HiddenNeuronsArray(j);
disp(sprintf('Backpropagation2 ... GRAM-[%d] ... HiddenNeurons-

[%dl It ...
GRAM, HiddenNeurons));

Backpropagation2(GRAM, HiddenNeurons);
end

end

%Backpropagation2(2,5);

MATLAB - GenerateNoise. m

% --
% Funciton: Generate Noisy Data in { BPdataP. txt,
% BPdataPValidation. txt
% BPdataPTest. txt
% Author: Jun Li
% Create: 28/11/2008
% --
clear all
close all

rand(Itwister', sum(100*clock));
load . /data/BPdataP. txt;
sil = size(BPdataP, 1);
load .

/data/BPdataPValidation. txt;
si2 = size(BPdataPValidation, 1);
load .

/data/BPdataPTest. txt;
si3 = size(BPdataPTest, 1);

%Noise Rate
NR = 0.3;

n= (sil+si2+si3);
m= round(NR*(sil+si2+si3));
rl = iRand(n, m);

rand(Itwisterl, sum(100*clock));
%27 the number of symbols = input neurons
r2 = iRand(27, m);
for i=1: M

if rl(i) <= sil
Idx = find(BPdataP(rl(i), 1);
BPdataP(rl(i), Idx) = 0;
BPdataP(rl(i), r2(i)) = 1;

elseif rl(i) <= (sil+si2)
Idx = find(BPdataPValidation((rl(i)-sil),
BPdataPValidation((rl(i)-sil), Idx) = 0;
BPdataPVa1idation((rl(i)-si1), r2(i)) = 1;

else
Idx = find(BPdataPTest((rl(i)-sil-si2), :) == 1);
BPdataPTest((rl(i)-sil-si2), Idx) = 0;
BPdataPTest((rl(i)-sil-si2), r2(i)) = 1;

end
end

%Write file...
dlmwrite(IB2NoiseP. txt', BPdataP,
dlmwrite(IB2NoiseV. txt', BPdataPValidation,
dlmwrite(IB2NoiseT. txt', BPdataPTest, ' 1);

%

MATLAB - B2Noise. m

% -- %
% Function: NN with n-gram delay for key press prediction %
% Author: Jun Li %
% Create: 02/08/2008 %
% Comment: Programming is referred to LongKeyPress. m %
% -- %

function B2Noise(GRAM, HiddenNeurons)
% Turn on echoing of commands inside the script-file.
%echo off
% Clear command window.
%clc

%clear all
%close all

% Define GRAM
%GRAM = 2-1;
InputNeurons 27;
OutputNeurons 27;
%HiddenNeurons = 5;

%Initialization
load . /data/BPdataP. txt;
load . /B2NoiseP. txt;
B2NoiseP = B2NoiseP';
Z BPdataP';
si size(Z, 2);
clear BPdataP;

load .
/data/BPdataPValidation. txt;

load B2NoiseV. txt;
B2NoiseV = B2NoiseV';
V= BPdataPValidation';
Vsi size(V, 2);
VV. P con2seq(B2NoiseV(:, GRAM: (Vsi-1)));
VV. T con2seq(V(:, (GRAM+1): Vsi));
clear BPdataPValidation;

load . /data/BPdataPTest. txt;
load . /B2NoiseT. txt;
B2NoiseT = B2NoiseT';
Test = BPdataPTest';
Tsi = size(Test, 2);
TV. P = con2seq(B2NoiseT(:, GRAM: (Tsi-1)));
TV. T = con2seq(Test(:, (GRAM+1): Tsi));
clear BPdataPTest;

PR = zeros(InputNeurons, 2);
for i=1: InputNeurons

PR(i, :)= [0,1] ;
end

ID = zeros(l, GRAM);

for i=1: GRAM
ID(i) = i-1;

end

%Pi the initial inputs for which the network will not have a target
%P the inputs for which the network will have a target
%T the targets
%Pi con2seq(Z(:, l: (GRAM-1)));
%P con2seq(Z(:, GRAM: (si-1)));
%T con2seq(Z(:, (GRAM+1): si));

net = newfftd(PR, ID, [HiddenNeurons OutputNeurons], Jlpurelin'
Ilogsig'), ...

Itrainrpl);

net. trainparam. epochs=100;
%net train(net, P, T, Pi);
net train(net, con2seq(B2NoiseP(:, GRAM: (si-
1))), con2seq(Z(:, (GRAM+1): si))
con2seq(B2NoiseP(:, l: (GRAM-1))), [], VV,

%Y=sim(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, l: (GRAM-1))));
%T =Z(:, (GRAM+l) : si) ;

%if use Test sample
Y-sim(net, TV. P);
si Tsi;
T Test(:, (GRAM+1) : Tsi)

% Strike any key to continue
%pause;

%Post-processing...
SymbolFreq = zeros(l, OutputNeurons);
for i=1: OutputNeurons

SymbolFreq(i) = 0.00;
end

Ybackup = Y;
% --------- Hit-Rate-1 ----------
for i 1: (si - GRAM)

Ma max(YUM
Idx = find(Yjij==Ma);
for j=1: OutputNeurons

SymbolFreq(j) = SymbolFreq(j) + Yji)(j);
Y{i} (j) = 0;

end
Y{i)(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= [Y(: H;
%Comparison between Y and T
Result =Y-T;
%Number of right Prediction
Numl = 0;

%alphabetYl, 2,3 will receive discrete results.

alphabetYl = zeros(l, 27);
alphabetY2 = zeros(l, 27);
alphabetY3 = zeros(l, 27);
alphabetT = zeros(l, 27);
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Numl = Numl + 1;

end
Idx = find(Y(:, i)==l);
alphabetYl(Idx) = alphabetYl(Idx) + 1;
Idx = find(T(:, i)==l);
alphabetT(Idx) = alphabetT(Idx) + 1;

end

% --------- Hit-Rate-2 ----------
Y= Ybackup;
for i 1: (si-GRAM)

Ma max(Y{il);
Idx = find(Y{il==Ma);
Y{il(Idx) = 0;
%find second maximum
Ma max(Yiil);
Idx find(Yjij==Ma);
for j=1: OutputNeurons

Y{iI (j) = 0;
end
Y(il(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= [Y(:)];
%Comparison between Y and T
Result =Y-T;
Mumber of right Prediction
Num2 = 0;
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Num2 = Num2 + 1;

end
Idx = find(Y(:, i)==l);
alphabetY2(Idx) = alphabetY2(Idx) + 1;

end

% --------- Hit-Rate-3 ----------
Y= Ybackup;
for i 1: (si-GRAM)

Ma max(Y(il);
Idx = find(Y{il==Ma);
Y[il(Idx) = 0;
%find second maximum
Ma = max(YUH;
Idx = find(Yjij==Ma);
Y(i)(Idx) = 0;
%find third maximum
Ma max(Ylij);
Idx find(Y{i)==Ma);
for j=1: OutputNeurons

Yfi) U) = 0;

end
Y[i)(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= MOD
%Comparison between Y and T
Result =Y-T;
Mumber of right Prediction
Num3 = 0;
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Num3 = Num3 + 1;

end
Idx = find(Y(:, i)==l);
alphabetY3(Idx) = alphabetY3(Idx) + 1;

end

%Write file...
fid = fopen(IB2Noise. txt', 'at');
fprintf(fid, '\n ------ %d-GRAM ------ %d-HiddenNeurons ------- \nI,

GRAM, HiddenNeurons);
Mit Rate level-1,2,3
fprintf(fid, 'Numl=[%d]\nNum2=[%d]\nNum3=[%d]\n', Numl, Num2, Num3);
fprintf(fid, 'Num =[%d]\nl, (si-GRAM));
fprintf(fid, 'Numl/Num=[%f]\nNum2/Num=[%f]\nNum3/Num=[%f]\nl,...

Numl/(si-GRAM), Num2/(si-GRAM), Num3/(si-GRAM));
%Alphabet Hit Rate level-1,2,3
for i=1: 27

fprintf(fid, 'alphabetYl-[%d]= %d\nl, i, alphabetYl(i));
end
for i=1: 27

fprintf(fid, lalphabetY2-[%dl= %d\nl, i, alphabetY2(i));
end
for i=1: 27

fprintf(fid, 'alphabetY3-[%d]= %d\n', i, alphabetY3(i));
end
Entropyl = 0;
for i=1: 27

Entropyl = Entropyl + (alphabetT(i)/(si-GRAM))
log2(alphabetT(i)/(si-GRAM));

fprintf(fid, lalphabetT-[%d]= %d\nl, i, alphabetT(i));
end
SFaddup = 0;
for i=1: OutputNeurons

SFaddup = SFaddup + SymbolFreq(i);
fprintf(fid, 'SymbolFreq(%d)= %f\nl, i, SymbolFreq(i));

end
fprintf(fid, 'SFaddup=[%f]\nl, SFaddup);
Entropy2 = 0;
for i=1: OutputNeurons

Entropy2 = Entropy2 + (SymbolFreq(i)/SFaddup)
log2(SymbolFreq(i)/SFaddup);

fprintf(fid, 'SymbolFreq(%d)/SFaddup= %f\nl, i,
SymbolFreq(i)/SFaddup);

fprintf(fid, lalphabetT(%d)/(si-GRAM)= %f\nl, i,

alphabetT(i)/(si-GRAM));
end

Entropyl = abs(Entropyl);
Entropy2 = abs(Entropy2);
fprintf(fid, 'Entropyl=[%f]\nEntropy2=[%f]\nl, Entropyl, Entropy2);

fclose(fid);

% Create a menu, so the user can select a test set.
%K= MENU(IChoose a file resolution', 'Test A', 'Test 01, 'Test 51, 'Test
L', 'Test VI, ITest WI, ITest HI, 'Test 11, 'Test GBI);

MATLAB - CalIB2Noise. m

% ---------- ------------------------------------- --------------- %
% Function: Call Backpropagation2 %
% Author: Jun Li %
% Create: 24/11/2008 %
% Comment: %
% --------- -------------------------------------- --------------- %

% Turn on echoing of commands inside the script-file.
echo off;
% Clear command window.
%clc
clear all;
close all;

MaxNumberGRAM - 4;
GRAMarray = [2,3,5,7]

MaxNumberHiddenNeurons = 2;
HiddenNeuronsArray = [50,100];

NR 0.05;
fid fopen(IB2Noise. txt', 'at');
fprintf(fid, I\n\n<< << << << << << NOISE RATE [%f] >> >> >> >> >> >>W,
NR);
fclose(fid);
% Define GRAM and HiddenNeurons
for i-1: MaxNumberGRAM

GRAM GRAMarray(i);
for j 1: MaxNumberHiddenNeurons

HiddenNeurons = HiddenNeuronsArray(j);
disp(sprintf('Backpropagation2... GRAM-[%d] ... HiddenNeurons-

[%d]
GRAM, HiddenNeurons));

B2Noise(GRAM, HiddenNeurons);
end

end

%Backpropagation2(2,5);

I

MATLAB - B2Helpline. m

% -- %
% Function: NN with n-gram. delay for Helpline Data prediction %
% Author: Jun Li %
% Create: 03/12/2008 %
% -- %

function B2Helpline(GRAM, HiddenNeurons)
% Turn on echoing of commands inside the script-file.
%echo off
% Clear command window.
%clc

%clear all
%close all

InputNeurons 53;
OutputNeurons 53;

%Initialization
load .

/Stroke. txt;
Z Stroke';
si size(Z, 2);
clear Stroke;

load .
/StrokeTest. txt;

Test = StrokeTest';
Tsi = size(Test, 2);
TV. P = con2seq(Test(:, GRAM: (Tsi-l)));
TV. T = con2seq(Test(:, (GRAM+1): Tsi));
clear StrokeTest;

PR = zeros(InputNeurons, 2);
for i=1: InputNeurons

PR(i, :)= [0,11;

end

ID zeros(l, GRAM);
for i=1: GRAM

ID(i) = i-1;
end

%Pi the initial inputs for which the network will not have a target
%P the inputs for which the network will have a target
%T the targets
%Pi con2seq(Z(:, l: (GRAM-1)));
%P con2seq(Z(:, GRAM: (si-1)));
%T con2seq(Z(:, (GRAM+1): si));

net newfftd(PR, ID, [HiddenNeurons OutputNeurons], I'purelin'
Ilogsig'), ...

Itrainrpl);

net. trainparam. epochs=100;
net = train(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, (GRAM+1): si)),...

con2seq(Z(:, l: (GRAM-1))), [], [], []);

%Y=sim(net, con2seq(Z(:, GRAM: (si-1))), con2seq(Z(:, l: (GRAM-1))));
%T = Z(:, (GRAM+1): si);

%if use Test sample
Y=sim(net, TV. P);
si Tsi;
T Test(:, (GRAM+1): Tsi);

% Strike any key to continue...
%pause;

%Post-processing...
SymbolFreq = zeros(l, OutputNeurons);
for i=1: OutputNeurons

SymbolFreq(i) = 0.00;
end

Ybackup = Y;
% --------- Hit-Rate-1 ----------
for i 1: (si - GRAM)

Ma max(Y(i));
Idx find(Y{il==Ma);
for j=I: OutputNeurons

SymbolFreq(j) = SymbolFreq(j) + Yfil(j);
Y(il (j) = 0;

end
Y(i)(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= [YI: H;
%Comparison between Y and T
Result =Y-T;
%Number of right Prediction
Numl = 0;

%alphabetYl, 2,3 will receive discrete results.
alphabetYl = zeros(l, 53);
alphabetY2 = zeros(l, 53);
alphabetY3 = zeros(l, 53);
alphabetT = zeros(l, 53);
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Numl = Numl + 1;

end
Idx = find(Y(:, i)==l);
alphabetYl(Idx) = alphabetYl(Idx) + 1;
Idx = find(T(:, i)==l);
alphabetT(Idx) = alphabetT(Idx) + 1;

end

% --------- Hit-Rate-2 ----------
Y= Ybackup;
for i 1: (si-GRAM)

Ma max(Yfi));
Idx find(Y(i)==Ma);

Y(il(Idx) = 0;
%find second maximum
Ma = max(Y{ij);
Idx = find(Y{il==Ma);
for j=1: OutputNeurons

Y{iI (j) = 0;
end
Y(il(Idx) = 1;

end
%Convert Cell to Numeric Array
Y= [Y{: H;
%Comparison between Y and T
Result =Y-T;
%Number of right Prediction
Num2 = 0;
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Num2 = Num2 + 1;

end
Idx = find(Y(:, i)==l);
alphabetY2(Idx) = alphabetY2(Idx) + 1;

end

% --------- Hit-Rate-3 ----------
Y= Ybackup;
for i 1: (si-GRAM)

Ma max(Yfil);
Idx find(Yji}==Ma);
Y(i)(Idx) = 0;
%find second maximum
Ma max(Y{il);
Idx find(Y{ij==Ma);
Y{il(Idx) = 0;
%find third maximum
Ma = max(Y(il);
Idx = find(Yfi}==Ma);
for j=I: OutputNeurons

Yfil M=0;

end
Y{il(Idx) = 1;

end
%Convert Cell to Numeric Array
Y-= [Y{: }];
%Comparison between Y and T
Result =Y-T;
%Number of right Prediction
Num3 = 0;
for i=1: (si-GRAM)

if(any(Result(:, i)) == 0)
Num3 = Num3 + 1;

end
Idx = find(Y(:, i)==l);
alphabetY3(Idx) = alphabetY3(Idx) + 1;

end

%Write file. **
fid = fopen(IB2Helpline. txt', 'at');

fprintf(fid, I\n ------ %d-GRAM ------ %d-HiddenNeurons ------- \nv,
GRAM, HiddenNeurons);

%Hit Rate level-1,2,3
fprintf(fid, 'Numl=[%dl\nNum2=[%d]\nNum3=[%d)\nl, Numl, Num2, NuM3);
fprintf(fid, 'Num =(%d]\nl, (si-GRAM));
fprintf(fid, 'Numl/Num=(%f]\nNum2/Num=[%f]\nNum3/Num=[%f]\nv,...

Numl/(si-GRAM), Num2/(si-GRAM), Num3/(si-GRAM));
%Alphabet Hit Rate level-1,2,3
for i=1: 53

fprintf(fid, lalphabetYl-[%d]= %d\n', i, alphabetYl(i));
end
for i=1: 53

fprintf(fid, 'alphabetY2-[%d]= %d\n', i, alphabetY2(i));
end
for i=1: 53

fprintf(fid, lalphabetY3-[%d]= %d\n', i, alphabetY3(i));
end
Entropyl = 0;
for i=1: 53

if alphabetT(i)/(si-GRAM) -0
Entropyl = Entropyl + (alphabetT(i)/(si-GRAM))

log2(alphabetT(i)/(si-GRAM));
end
fprintf(fid, lalphabetT-[%d]= %d\n', i, alphabetT(i));

end
SFaddup = 0;
for i=1: OutputNeurons

SFaddup = SFaddup + SymbolFreq(i);

,
fprintf(fid, 'SymbolFreq(%d)= %f\n, i, SymbolFreq(i));

end
fprintf(fid, 'SFaddup=[%f]\nl, SFaddup);
Entropy2 - 0;
for i=1: OutputNeurons

if SymbolFreq(i)/SFaddup -0
Entropy2 = Entropy2 + (SymbolFreq(i)/SFaddup)

log2(SymbolFreq(i)/SFaddup);
end
fprintf(fid, 'SymbolFreq(%d)/SFaddup= %f\n', i,

symbolFreq(i)/SFaddup);
- fprintf(fid, lalphabetT(%d)/(si-GRAM)= %f\n', i,
alphabetT(i)/(si-GRAM));
end
Entropyl = abs(Entropyl);
Entropy2 = abs(Entropy2);
fprintf(fid, 'Entropyl=[%f]\nEntropy2=[%f]\nl, Entropyl, Entropy2);

fclose(fid);

MATLAB - CalIB2Helpline. m

% --- -%
% Function: Call B2Helpline %
% Author: Jun Li %
% Create: 03/12/2008 %
% Comment: %
% --- -%

% Turn on echoing of commands inside the script-file.
echo off;
% Clear command window.
%clc
clear all;
close all;

%MaxNumberGRAM = 10;
%GRAMarray = (1,2,3,5,7,9,13,17,25,35];

%MaxNumberHiddenNeurons = 10;
%HiddenNeuronsArray = [1,2,3,5,7,9,15,25,50,100];

%start GRAM-3, HN-15
%MaxNumberGRAM = 5;
%GRAMarray = [1,3,5,7,91;

%for GRAM-2
MaxNumberGRAM = 1;
GRAMarray = [21;

MaxNumberHiddenNeurons = 8;
HiddenNeuronsArray = [3,5,7,9,15,25,50,100];

% Define GRAM and HiddenNeurons
for i=1: MaxNumberGRAM

GRAM GRAMarray(i);
for j 1: MaxNumberHiddenNeurons

HiddenNeurons = RiddenNeuronsArray(j);
disp(sprintf(IB2Helpline ... GRAM-[%d]... HiddenNeurons-

[%dl II...
GRAM, HiddenNeurons));

B2Helpline(GRAM, HiddenNeurons);
end

end

%Backpropagation2(2,5);

MATLAB-IK Lm

% ------------------------ -------------------------------------- %
% Function: Miss-stroke right letter prediction neural network %
% by Historical Networks. %
% Author: Jun Li %
% Create: 16/07/2008 %
% ------------------------ -------------------------------------- %

clear all
close all

%Load PR, TR
load . /dataElmPR. txt
PR = dataElmPR;

clear dataElmPR;
% Create a Elman Network. PR=input range; TR=output range.
% trainlm is the default, fast but memory consuming.
% Out of memory solution:
% 1. setting net. trainParam. mem-reduc =2 or more;
% 2. trainrp
net = newelm(PR, (3,27], (Itansig', Ilogsig1j);

%load P, T
load . /dataElmP. txt

Ptmp, = con2seq(dataElmP') ;
si size(dataElmP, 1);
P Ptmp(:, 1: (si-1));
T Ptmp(:, 2: si);
clear dataElmP;
clear Ptmp;
% Train the network
%net. trainParam. mem-reduc = 5;
net. trainFcn = Itrainrp';

% There are other timers: etime, cputime, clock;
tic; % starts a stopwatch timer
net = train(net, P, T);
toc; % reads a stopwatch timer

% Simulation of Neural Ne twork
%Y = sim(net, P);

MATLAB - LPonRH. m

% -- %
% Name: Letter Prediction on Right History %
% Function: Predict current letter based on the right history, %
% which means correcting the current input. %
% Also we add an additional Signal-'NULL', for letter %
% absence and addition etc. %
% Author: Jun Li %
% Create: 06/08/2008 %
% -- %

% Data Conversion: NULL <=> @ e. g. %
% hthe quick brrooownn fgow jummppefd iobverethe lwqazy %

% fthe quick br@o@@wn@ @@f@ox@ jum@p@e@d @@o@ver the 1@@azy %

function Numl = LPonRHO

clear all
close all

% InputNeurons = Ngram * OutputNeurons
%OutputNeurons = 52; % 53-[Backspace, Deletel+(NULL)

% Temporarily, actually we can design an very small Symbol, e. g. %
% Jq, w, a, s; 9.0, o, p}, each four are near each other. %
% here, we consider 27 + addtional Signal '@I + time %
% We distinguish time into three levels, %
% over-fast => 001 %
% user-Speed => 010 %
% over-slow => 100 %
% Could further give an degree, e. g. 001 => 000.75 %

SymbolNeurons = 27; %26 + SPACE
OutputNeurons - SymbolNeurons+l; %+ NULL
TimeNeurons = 3;
Ngram =2-1;
InputNeurons = SymbolNeurons*Ngram + TimeNeurons;

%Input Elements Range
IER zeros(InputNeurons, 2);
for = 1: InputNeurons

IER(i, :)= (0,1];

end
% Create a BPNN
% For the speed reason, choose trainrp rather than trainlm.
% About trainlm, can use mem_reduc to a little improvement.

net = newff(IER, [7, OutputNeurons], ('purelin', Ilogsig'), Itrainrp');

net. trainParam. show = 5;

net. trainParam. epochs = 100;

net. trainParam. goal - le-3;

%load data for key stroke analysis

load . /LPonRHP. txt
pl = LPonRHPI;
clear LPonRHP;
load . /LPonRHT. txt
tl = LPonRHT';
clear LPonRHT;
si = size(pl, 2);

tic; % starts a stopwatch timer
%Ngram predict current letter, which is the last letter of current
column
%net = train(net, pl(:, 1: si), pl((OutputNeurons*(Ngram-l)+l) ...
% : (OutputNeurons*Ngram), 1: si));

net = train(net, pl, t1);
toc; % reads a stopwatch timer

%simulation
%Y sim(net, pl(:, 1: si));

Y sim(net, pl);
%ti -y

% --------- Hit-Rate ----------
for i=1: si

Ma = max(Y(:, i));
Idx = find(Y(:, i)==Ma);
for j=1: OutputNeurons

y (j, i) = 0;
end
Y(Idx, i) = 1;

end

%Comparison between Y and T
Result =Y- tl;
Numl = 0;
for i=1: si

if(any(Result(:, i)) == 0)
Numl = Numl + 1;

end
end

%echo on;
%Numl
%echo off;

MATLAB - CaIlLPonRU. m

% -- %
% Name: Call LPonRH. m %
% Function: LPonRH. m - Letter Predicton on Right History %
% CallLPonRH. m to get distribution of LPonRH's results %
% Author: Jun Li %
% Create: 08/12/2008 %
% -- %
clear all;
close all;

Results = (];
ResultsNum = 100;

for i=1: ResultsNum

result LPonRH;
Results [Results, result];

end

%%Get by hand from matlab workspace where variable 'Results' is, 100
%%elements
%Results = [58 57 55 53 57 57 41 58 55 58
55 55 45 51 58 54 50 52 57 56 56 56
57 52 57 54 56 58 55 56 57 55 58 58
51 57 51 57 51 51 58 53 57 57 50 49
51 57 58 53 58 57 57 53 57 54 54 54
54 58 56 47 56 51 58 57 58 55 58 58
58 53 53 57 51 58 58 56 58 57 56 58
51 51 56 58 52 56 58 56 57 58 58 57
51 57 55 58 49 581;

MATLAB - pnn. m

%% -- %
% Function: Miss-stroke right letter prediction neural network %
% Based on Radial Basis Network (--newpnn) %
% Origin: IK3 - but newbr couldnt give precise result %
% Author: Jun Li %
% Create: 23/12/2008 %
% Comment: Only consider the motor movement without predecessor. %
% Only consider those mistaken letters. %

% Input => horizontal distance(between pre and cur)%
% vertical distance %
% time gap %
% Output => horizontal distance %
% vertical distance %
% This is led to the possability of discovering the %
% the relationship with mobility of hand. %
% --------- -- ----- %

%clear all
%close all
function Results = pnno
load . /dataPNNTrain. txt;

n= size(dataPNNTrain, 1);
m= round(n/3);
r= iRand(n, m);
for i=1: m

if(dataPNNTrain(r(i), 4) > 0)
dataPNNTrain(r(i), 4) = -dataPNNTrain(r(i), 4);

end
end
inputPl
dataPNNTest
for i=1: n

if(dataPNNTrain(i, 4) > 0)
inputP1 = [inputPl; dataPNNTrain(i,

else
dataPNNTrain(i, 4) = -dataPNNTrain(i, 4);
dataPNNTest = (dataPNNTest; dataPNNTrain(i,

end
end
dataPNNTrain = inputPl;
clear inputPl;

inputP dataPNNTrain(:, 1: 3)1;
targetT dataPNNTrain(:, 4)1;

%load . /dataPNNTest. txt
inputPTest dataPNNTest(:, 1: 3)1;
targetTTest dataPNNTest(:, 4)1;

%Normalization
%Horizontal

%inputP(l, :)= inputP(l, :)/ 10; %Assumely
%inputPTest(l, inputPTest(l, 10;
Wertical
%inputP(2, inputP(2,5;
%inputPTest(2, :)= inputPTest(2,5;

%Time gap: gauss->netlab
ft = mean(inputP(3,
%c = cov(inputP(3,
%inputP(3, :)= (inputP(3, m)/c;
%inputPTest(3, :)= (inputPTest(3, :)- m)/c;
%[inputP(l, psl] = mapminmax(inputP(l,
%[inputP(2, ps2l = mapminmax(inputP(2,
%[inputP(3, ps3] = mapminmax(inputP(3,
%[inputPTest(3, psTest] = mapminmax(inputPTest(3,
%inputPTest(l, mapminmax(lapplyl, inputPTest(l, :), psl);
%inputPTest(2, mapminmax(lapplyl, inputPTest(2, :), ps2);
%inputKest(3, mapminmax(lapply', inputPTest(3, :), ps3);

spread = 0.1;
T= ind2vec(targetT);
net = newpnn(inputP, T, spread);

% Show results -1
%plot(inputP, targetT, I+I);
%title('Miss-stroke Distribution');
%xlabel('Keystroke Motor Distance');
%Ylabel('Stroke Away Distincel);

% Simulation
Y= sim(net, inputP);
YTest = sim(net, inputPTest);

y= vec2ind(Y);
YTest = vec2ind(YTest);
%compare YTest with targetTTest, Y with targetT
Z=Y targetT;
Ztest YTest - targetTTest;

Numl = 0;
for i=1: size(Z, 2)

if(Z(l, i) == 0)
Numl = Numl + 1;

end
end

Num2 = 0;
for i=1: size(Ztest, 2)

if (Ztest W == 0)
Num2 = Num2 + 1;

end
end

Results = Num2/size(Ztest, 2);

fid = fopen(lppn. txt', 'at');
fprintf(fid, Ir=[
for i=1: m

fprintf(fid, '%d r(l, i));

end
fprintf(fid, ']\n');
fprintf(fid, 'Results %d/%d - [%. 2f]\n\nl, Num2, size(Ztest, 2),
Num2/size(Ztest, 2));

%RandomResults = 1/6
%fprintf(fid, 'RandomResults - [%. 2f]', 1/6);
f close (f id) ;

MATLAB - suggestTimeGap. m
% -- %
% Function: Suggested time gap between two consecutive letters by%
% using backpropagation neural network %
% Author: Jun Li %
% Create: 12/08/2008 %
% -- %
clear all
close all

Knitialization
IutputNeurons = 54; % letter coding
OutputNeurons = 1; % timeGap parameter
Ngram = 2;

%Load
load . /suggestTimeGap. txt;
lines = size(suggestTimeGap, 1);
Z= suggestTimeGap(l: (lines-3),
P= Z(1: IutputNeurons*Ngram, :);
T= Z((IutputNeurons*Ngram+l): (IutputNeurons*Ngram +1),
[T, ps] = mapminmax(T);

%MaxTG = suggestTimeGap((lines-2), 1); % maximum time gap
Mean = suggestTimeGap((lines-1), (IutputNeurons*Ngram+l));
Deviation = suggestTimeGap(lines, (IutputNeurons*Ngram+l));
%MinTG = 5; % minimun time gap
clear suggestTimeGap;
clear Z;

IER zeros(IutputNeurons*Ngram, 2);
for = 1: IutputNeurons*Ngram

IER(i, :)= (0,1];
end

% Create a BP-NN
net = newff(IER, (7, OutputNeurons], i'tansig', 'purelin1j, 'trainlm');
net. trainParam. show = 10;
net. trainParam. epochs = 100;
net. trainParam. goal = 0; % can we make it better?

%train without validation set
net = train(net, P, T);

%simulation
y= sim(net, P);
%Convert Y to time gap
Y= mapminmax(Ireversel, Y, ps);

% if the program - Enstatistics has used mean=O and deviation=1
%TG =Y* Deviation + Mean;
% clear Y;

%when testing, use below to pre-processing first.
%y2 = mapminmax(lapplyl, x2, ps)

MATLAB - RankAlgorithms. m
% -- %
% Name: BackPropagation three word correct algorithms %
% Funciton: Ranking => output the most probable word %
% Auther: Jun Li %
% Create: 30/09/2008 %
% -- %
function Numl = RankAlgorithms(RankAlgorithmsPl, RankAlgorithmsTestl)
%clear all
%close all

%Initialization
NumOfAlgorithms = 3;
%number of words of each algorithm
NumoOfWords = 2;
%output of each word: distance and frequency
NumOfFeature = 2;

IutputNeurons = NumOfAlgorithms*NumoOfWords*NumOfFeature;
HiddenNeurons = 3;
OutputNeurons = NumOfAlgorithms*NumoofWords;

%Load
%load . /data/RankAlgorithmsPl. txt;
%RankAlgorithmsPl = RankAlgorithmsPll;

%load . /data/RankAlgorithmsTestl. txt;
%RankAlgorithmsTestl = RankAlgorithmsTestll;

Mormalization
x=H;
for i=1: 2: IutputNeurons

x= Cx RankAlgorithmsPl(i, :)];
end
xmean = mean(x);
xstd = std(x);
for i=1: 2: IutputNeurons

RankAlgorithmsPl(i,
xstd);

RankAlgorithmsTesti(i,
xstd);
end

= normpdf(RankAlgorithmsPl(i, :), xmean,

:)= normpdf(RankAlgorithmsTestl(i, :), xmean,

P- RankAlgorithmsPl(I: IutputNeurons, :);
T= RankAlgorithmsPl((IutputNeurons+l): (IutputNeurons+OutputNeurons),

testP = RankAlgorithmsTestl(l: IutputNeurons,
testT =
RankAlgorithmsTestl((IutputNeurons+l): (IutputNeurons+OutputNeurons),
%clear RankAlgorithmsPl;

%value scope of each input
IER zeros(IutputNeurons, 2);
for = 1: IutputNeurons

IER(i, :)= [0,11;

end

% Create a BP-NN
%net. trainParam. epochs =1000;
%net. trainParam. goal =0.01;
101
%net. trainParam. lr =0.001;
[0.01]
%net. trainParam. show =1;
[25]
%net. trainParam. time =1000;

(Max no. of epochs to train) [100]
(stop training if the error goal hit)

(learning rate, not default trainlm)

(no. epochs between showing error)

(Max time to train in sec) [inf]

net = newff(IER, (HiddenNeurons, OutputNeurons], {Ipurelin', Ilogsig1j,
Itrainlml);
net. trainParam. show = 10;
net. trainParam. epochs = 100;
net. trainParam. goal = 0;
net. trainParam. lr =0.001;

%train without validation set
net = train(net, P, T);

%simulation
Y= sim(net, testP);

%compet,
for i

Ma
Idx
for

to generate result
1: size(testT, 2)
max(Y(:, i));

find(Y(:, i)==Ma);
j=1: OutputNeurons
y (j, i) = 0;

end
Y(Idx, i)

end

Result =Y- testT;

%Number of right Prediction
Numl = 0;
for i=1: size(testT, 2)

, if(any(Result(:, i)) - 0)
Numl = Numl + 1;

end
end

MATLAB - Hmm. m

% -- %
% Funciton: Using hmmestimate & hmmviterbi to have a learnable %
% program for language modelling %
% Auther: Jun Li %
% Create: 28/06/2008 %
% -- %

% First load a heuristic Transition and Emission Matrices based on bi-
gram
% P(ajlai)=P(ai, aj)/P(ai)

% <successor>
% a(A) ... Z(Z) NULL
% <predecessor> --------------------------------
% a(A)IP(ala) ... P(zIa) P(Null1a)
%I
%I
% ZMI
% NULLI

% Calculated based on MICHAEL's bigram and book <<Penguin 1978>>
% Format: uu -> ul -> 11 -> lu
load BigramMatrix. txt;

% Estimating Transition and Emission Matrices, where Transition Matrix
% is acquired from the statistics to particular text reference, where
% Emission Matrix from the action to particular user's typing record.

% the probability of transition from ai to aj of user's typing record
% as emission sequence.
load seq. txt;

% the probability of transition from ai to aj of right text
% as states sequence.
load states. txt;

% The following takes the emission and state sequences and returns
% estimates of the transition and emission matrices.
[TRANS-EST, EMIS-ESTI = hmmestimate(seq, states);

% Generate Ti, Tj Based on Multi-Parameters <=> STEP FUNCTION
% (discontinuous). Using Fuzzy Logic method to blur the boundary of step
% function.
%Ti = t(Xi);
%Tj = t(Xi);

% Generate TRANS based on adjusted weights Ti, Tj.
% Ti for BigramMatrix. txt; Tj for TRANS EST.
TRANS = Ti * BigramMatrix + Tj * TRANS-EST;

% Generate EMIS based on adjusted weights Ei, Ej.
% Ei for seq; Ej for EMIS EST;
EMIS = Ei * seq + Ej * EMIS-EST;

% Given the transition and emission matrices TRANS and EMIS, the
function
% hmmviterbi uses the Viterbi algorithm to compute the most likely
sequence
% of states the model would go through to generate a given sequence seq
of
% emissions.
% likelystates is a sequence the same length as seq.
likelystates = hmmviterbi(seq, TRANS, EMIS);

MATLAB - iRand. m

% -- %
% Funciton: iRand => integer random for 1-n %
% Author: Jun Li %
% Create: 28/11/2008 %
% Parameter: n => the range of number %
%m => the number of rand-number %
% -- %

function r= iRand(n, m)
Unitialize RAND to a different state each time.
%suggest only do this when start a session.
rand(Itwisterl, sum(100*clock));

%Generate integers uniform on the set 1: n.
r= ceil(n. *rand(l, m));

%Generate uniform values from the interval [a, b].
%r =a+ (b-a). *rand(100,1);

MATLAB - NgramFrequency. m

% --- ----- %
% Funciton: To Get the N-gram frequency of English %
% Author: Jun Li %
% Create: 12/08/2008 %
% Comment: %
% --- ----- %

% Turn on echoing of commands inside the script-file.
%echo on
% Clear command window.
%clc

clear all
close all

load . /data/u. txt;
load . /data/l. txt;

load . /data/uu. txt;
load .

/data/ul. txt;
load .

/data/lI. txt;
load . /data/lu. txt;

[lines, columns] = size(uu);
UUf = zeros(lines, columns); uut = 0;
Ulf = zeros(lines, columns); ult = 0;
llf = zeros(lines, columns); llt = 0;
luf = zeros(lines, columns); lut = 0;
for i=1: lines

for j=1: columns
if uu(i, j)== 0.00

Uuf(i, j) = 1;
elseif uu(i, j) == -1

uuf(i, j) - 0;
else

uuf(i, j) = round(exp(uu(i, j)));
end
uut = uut + uuf(i, j);
% -----------------------------
if ul(i, j)== 0.00

ulf(i, j) = 1;
elseif ul(i, j) == -1

Ulf(i, j) = 0;
else

ulf(i, j) = round(exp(ul(i,
end
ult = ult + ulf(i, j);
% ----------------------------
if 11(i, j)== 0.00

llf(i, j) = 1;
elseif 11(i, j) == -1

llf(i, j) = 0;
else

llf(i, j) = round(exp(ll(i,

end
lit = lit + lif(i, j);
% ----------------------------
if lu(i, j)== 0.00

luf(i, j) = 1;
elseif lu(i, j) == -1

luf(i, j) = 0;
else

luf(i, j) = round(exp(lu(i,
end
lut = lut + luf(i, j);

end
end

%uuf = uuf/uut*100;
%Ulf = Ulf/ult*100;
%lif = llf/llt*100;
%luf = luf/lut*100;

% Caculate, the 1-gram probability
Ut = 0;
lt = 0;
for i 1: 26

Ut ut + U(i);
lt lt + l(i);

end
Uf = u/(ut+lt)*100;
lf = 1/(ut+lt)*100;

% Caculate the 2-gram probability
Uuf = uuf/(uut+ult+llt+lut)*100;
Ulf = Ulf/(uut+ult+llt+lut)*100;
llf = llf/(uut+ult+llt+lut)*100;
luf = luf/(uut+ult+llt+lut)*100;

% Calculate p(ajlai)=p(ai, aj)/p(ai)
for i=1: 26

uuf(i, uuf(i, :)/Uf(i);
Ulf(i, Ulf(i, :)/uf(i);
llf(i, llf(i, :)/lf(i);
luf(i, luf(i, :)/lf(i);

end

% Write file-BigramMatrix. txt for Hmm. m
% But have added the Frequency between NULL and other letters
Fbm. = fopen('BigramMatrix. txtl, lwl);
if Fbm <0

error(['Could not open file: 1, 'BigramMatrix. txtl]);
end
fprintf(Fbm, '%% ATTENTION: need double check with the equation and
number before publish\n\n');
for i=1: 26

for j=1: 26
fprintf(Fbm, 1%6.4f 1, uuf(i, j));

end
fprintf(Fbm, I\nl);

end

fprintf(Fbm, I\nl);
for i=1: 26

for j=1: 26
fprintf(Fbm, 1%6.4f 1, ulf(i,

end
fprintf(Fbm, I\nl);

end
fprintf(Fbm, I\nl);
for i=1: 26

for j=1: 26
fprintf(Fbm, 1%6.4f llf(i,

end
fprintf(Fbm, I\nl);

end
fprintf(Fbm, '\n');
for i=1: 26

for j=1: 26
fprintf(Fbm, 1%6.4f luf(i,

end
fprintf(Fbm, I\nl);

end
fprintf(Fbm, I\nl);
fclose(Fbm);

%using weighting to further calculation.

%echo off;

Appendix B

MAIN ENSTATISTICS SOURCE CODE

CEnStatisticsDig:: OnBnClickedTextanalysis

this->UpdateDataO // initialize data in a dialog box

LPCTSTR strFilter _T('Txt
Files (*. txt)l*. txtIAll Files

CFile f, fDict;

CFileD! alog FileDlg(TRUE,
-T(.

txt"), NULL, 0, strFilter);

if (Fi leDlg. DoModal 0= IDOK
I

if(f. Open(FileDlg. GetFileNameo, CFile:: modeRead) = FALSE
return;

CArchive ar(&f, CArchive:: load);

TCHAR lpBuf[801, wCurr[201, cLast2, cLastl, cCurr;
int wCurrSeq, wLastlSeq, wLast2Seq;
struct wordChain *lastUnit, *currUnit;

struct EnDictionary *dictCurrPtr, *dictLastPtr;

cLast2 = cLastl = cCurr = 0;
wCurrSeq = wLastlSeq = wLast2Seq = -1;

headerUnit = (struct wordChainHeader *)malloc(sizeof(struct wordChainHeader));
headerUnit->numUnit = 0; Hnot sure if will use.
memset(headerUnit->idxChain, NULL, 256); //not sure how to use.
headerUnit->next = NULL;

memset(lpBuf, 0,80);
memset(wCurr, 0,20);

flallocate memory 100*1000 elements for dictionary
dictBasePtr = (struct EnDictionary *)calloc(120*1000, sizeof(struct

EnDietionary»;

/*dictCurrPtr = dictBasePtr;
for(int i=O; i<120*1000; i++)

memset(dictCurrPtr->word, 0,20);
//dietCurrPtr->seq = 0;
dictCurrPtr->frq = 0;
dietCurrPtr++;

I */
dictCurrPtr = dictBasePtr;
dictLastPtr = dictCurrPtr;

dictOffset LT('a')] = 0;
//load dictionary
TCHAR tmpStr[MAX_PATH+1001;

memset(tmpStr, 0, MAX
-

PATH+100);

_tcscat_s(tmpStr,
currDirectory);

-tescat-s(tmpStr, -T('\\es.
txt));

if(fDict. Open(tmpStr, CFile:: mOdeRead) = FALSE)

MessageBox(_T('Couldnt find the dictionary es. txt));
MessageBox(currDirectory);
return;

CArchive arDict(&fDict, CArchive:: load);
CString dictLine = -T("); int i=0;

// a simulation of ReadSring to ASCII code text
/*char aux [21;
CString m_sLine;
while (m-bMoreChars = m-rArchive. Read (aux, M
I

if ((aux [01 == ' \n')II (aux [01 ý- '\r'))
break;
m-sLine += aux [01;

while(arDict. ReadString(dictLine))
I

must be exact size

CString word, freq;
Hword
AfxExtractSubString(word, dictLine, 0, ,,).
//frequency
AfxExtractSubString(freq, dictLine, 1,

memset(dictCurrPtr->word, 0,20);

-tescpy-s(dictCurrPtr->word,
(word. GetLengthO+I), word); Hcaution:

dictCurrPtr->frq =
-ttoi(freq); dictCurrPtr->seq = i++;

if(dictCurrPtr->word[Ol != dictLastPtr->word[Ol)

dictOffset[dictCurrPtr->word[OlI = dictCurrPtr - dictBasePtr;
dictLastPtr = dictCurrPtr;

I
dictCurrPtr++;
if(i >= 100000) break;

//if(i = 100000) or < 100000 are all same, give an endpoint
dictCurrPtr->frq=O;
dictCurrPtr->seq = i;
memset(dictCurrPtr->word, 0 20);

arDict. Close 0;
Mict. Close 0;

while(ar. Read(lpBuf, M Htext must be saved as ASCII?

cCurr = 1PBuf[O];
alphabetFrequency[cCurrl++;
bigramFrequency[cLastll[cCurrl++;
trigramFrequency[cLast2l[cLastll[cCurrl++;

if(! ((cCurr>='a') && (cCurr<='z')) U ! ((cCurr>='A') && (cCurr<='Z')) &&
(cCurr != '-'))

Uthen we think a word has been met
// using an ordered chain
wCurrSeq = checkDict(wCurr, 1); Hif word is new, add to space

which starts from 100*1000+1
if(wCurrSeq = -1) continue;

/*TCHAR strl[1001;

memset(strl, 0,100);

_stprintf - s(strl, -T('wCurr = [%sl wCurrSeq = [%dl'), wCurr, wCurrSeq);
AfxMessageBox(stri); */

//check chain to get the right place for wCurrSeq
//if((wCurrSeq != -1) U (wLastISeq != -1) && (wLast2Seq != -1))
//because I we calculate word bi-gram as well, so the first two

words give problem. Have to ignore U (wLast2Seq != -1)
if((wCurrSeq != -1) && (wLastlSeq != -1))

/*TCHAR str[1001;

-stprintf-s(str, -T('start checkChain [%dl[%dl[%dl'),

wCurrSeq, wLastlSeq, wLast2Seq);
AfxMessageBox(str); */

currUnit = checkChain(headerUnit, wCurrSeq, wLastlSeq,

wLast2Seq);

memset(wCurr, 0,20);

wLast2Seq = wLastlSeq;
wLastlSeq = wCurrSeq;

I
else
I

__:
tcscat_s(wCurr, lpBuf);

cLast2 = cLastl;
cLastl = cCurr;

end of while
ar. Close 0
f. CloseO;

//AfxMessageBox(-T('start print));
Uprint statistics;
CFile fResult;
CArchive arResult(&fResult, CArchive:: store);

memset(tmpStr, 0, MAX
-

PATH+100);

-tcscat_s(tmpStr, currDirectory);

_tcscat_s(tmpStr, _T(\\statistics_result.
txt')):

if(fResult. Open(tmpStr, CFile:: modeCreatelCFile:: modeWrite) = FALSE)
I

MessageBox(_T("Couldnt create the statistics-result. txt file'));
MessageBox(tmpStr);
return;

//printf I-gram

arResult. WriteString(-T('ý- =ý==LETTER GRAM-1 ----==\r\n'))
CString str;
int letterTotal = 0;
for(int i=O; i<16. i++)

for(int j=O; j<16; j++)

str. Format(-T("%8d'), i*16+j);
arResult. WriteString(str);

arResult. WriteString(-T('\r\n'))-.
for(int j=O; j<16; j++)

arResult. WriteString(-T('-

arResult. WriteString(-T('\r\n'));
for(int j=O, j<16; j++)

letterTotal +-- alphabetFrequency[i*16+jl;
str. Format(-T('%8d'), alphabetFrequency[i*16+jl);
arResult. WriteString(str);

arResult. WriteString(-T('\r\n\r\n")):

str. Format(_T('IetterTotal = [%dl\r\n\r\n'), letterTotal);
arResult. WriteString(str)-.

Hbelow is added temporally for Matlab hmmm
arResult. WriteString('%below is added temporally for Matlab hmmm\r\n');
arResult. WriteString('32 45 97 98 99 100 101 102

103 104 105 106 107 108 109 110 ill 112 113 114
115 116 117 118 119 120 121 122\r\n");

arResult. WriteString(' -

\r\n);
str. Format(-T('%-8.4f'), (double)alphabetFrequency[321/(double)letterTotal);

arResult. WriteString(str);
str. Format(-T('%-8.4f'), (double)alphabetFrequency[451/(double)letterTotal):

arResult. WriteString(str);
for(i='a' ; i<='z' ; i++)
I

str. Format(-T('%-8.4f'),
(double)alphabetFrequency[il/(double)letterTotal); arResult. WriteString(str);

I
arResult. WriteString('\r\n\r\n');

arResult. WriteString(_T('\r\n\r\n =ý-LETTER GRAM-2==
//printf 2-gram
arResult. WriteString(_T('
for(int i=O; i<256; i++)

str. Format(-T('%-8d'), i);
arResult. WriteString(str);

arResult. WriteString(-T('\r\n\r\n'));

for(int i=O; i<256; i++)

str. Format(_T('%-8d'), i);
arResult. WriteString(str):
for(int j=O; j<256; j++)
I

str. Format(-T("%-8d'), bigramFrequency[i][il);
arResult. WriteString(str);

arResult. WriteString(_T('\r\n'));

//below is added temporally for Matlab hmm. m
arResult. WriteString('\r\n%below is added temporally for Matlab hmm. m\r\n);
arResult. WriteString(-T('
for(int i='a'; i<='z'-, i++)
I

str. Format(-T('%-8d'), i);
arResult. WriteString(str);

str. Format(_T('%-8d'), 32);

arResult. WriteString(str);

str. Format(-T('%-8d'), 45);

arResult. WriteString(str);

arResult. WriteString(_T('\r\n'));
for (int i='a' ; i<='z' ; i++)

str. Format(_T("%-8d'), i);

arResult. WriteString(str);
for(int j='a' ; j<='z' ; j++)
I

str. Format(-T('%-8d'), bigramFrequency(i][il);

arResult. WriteString(str);

str. Format(-T('%-Bd'), bigramFrequency[i][321).

arResult. WriteString(str);
str. Format(-T('%-8d'), bigramFrequency[i)[451);
arResult. WriteString(str);
arResult. WriteString(_T('\r\n'));

//print 32 and 45
i= 32;
str. Format(_T('%-8d'), i);

arResult. WriteString(str);
for(int j='a' , j<='z' ; j++)

str. Format(_T('%-8d'), bigramFrequency[i][il);

arResult. WriteString(str);

str. Format(-T('%-8d'), bigramFrequency[i][321);
arResult. WriteString(str);
str. Format(_T('%-8d'), bigramFrequency[i][451);
arResult. WriteString(str);
arResult. WriteString(-T(*\r\n'));

i= 45:
str. Format(-T('%-8d'), i);
arResult. WriteString(str);
for(int j='a' -. j<='z' ; j++)

str. Format(-T('%-8d'), bigramFrequency(i][il);
arResult. WriteString(str);

str. Format(-T('%-8d'). bigramFrequency[i][321);
arResult. WriteString(str);
str. Format(-T('%-8d"), bigramFrequency[i][451)-.
arResult. WriteString(str);
arResult. WriteString(-T('\r\n'));

arResult. WriteString(_T('\r\n\r\n=ý-=ý=ýý-LETTER GRAM-3
//printf 3-gram
for(int 1=0; i<256; i++)

for(int j=O; j<256; j++)
I

for(int k=O, k<256; k++)
1

if(trigramFrequency[il[jl[kl != 0)
1

str. Format(-T('[%d %d %dl=[%dl\r\n'), i, j, k,
trigramFrequency[i][j][kl);

arResult. WriteString(str);

arResult. WriteString(-T('\r\n\r\n--=ýý-WORD GRAM-1ý-
//printf word frequency 1
dictCurrPtr = dictBasePtr;
while(dictCurrPtr->word[Ol != 0)
I

if(dictCurrPtr->frq != 0)
1

str. Format(-T('[%sl = [%dl\r\n), dictCurrPtr->word,
dictCurrPtr->frq);

arResult. WriteString(str). -
1
dictCurrPtr++;

dietCurrPtr = dietBasePtr + 100*1000 + 1;
while(dictCurrPtr->word[03 != 0)

if(dietCurrPtr->frq != 0)
1

str. Format(_T(»[%sl = [%dl\r\n'), dietCurrPtr->word,
dietCurrPtr->frq);

arResult. WriteString(str);

dictCurrPtr++-,

arResult. WriteString (-T ('\r\n\r\n===ýýýý-==WORD GRAM-20
//Printf word frequency 20

currUnit = headerUnit->next;
lastUnit = currUnit;
BOOL isBiBegin 1;

while(currUnit NULL)
I

struct EnDictionary *dictPtrl, *dictPtr2, *dictPtr3, tmpdict;

memset(tmpdict. word, 0,20);
if(currUnit->wordSeq[Ol >= 0)

dictPtrl = dictBasePtr + currUnit->wordSeq[01;
else

dictPtrl = &tmpdict;
if(currUnit->wordSeq[ll >= 0)

dictPtr2 = dictBasePtr + currUnit->wordSeq[ll;
else

dictPtr2 = &tmpdict;
if(currUnit->wordSeq[21 >= 0)

dictPtr3 = dictBasePtr + currUnit->wordSeq[21;
else

dictPtr3 = &tmpdict;
if(isBiBegin)
I

//if(iriMyArray(dictPtr2->word))

str. Format(_T('%sl%s = %d\r\n'), dictPtr2->word, dictPtrl->word,
currUnit->bifrq);

arResult. WriteString(str);

//AfxMessageBox(-j(*after isBiBegin"));
/*if(currUnit->frq != 0) // never
I

str. Format(-T('%sl%sl%s = %d\r\n'), dictPtr3->word, dictPtr2-
>word, dictPtrl->word, currUnit->frq);

arResult. WriteString(str)-,
I*/
lastUnit = currUnit;
currUnit = currUnit->next;
if(currUnit = NULL) break;
if((lastUnit->wordSeq[Ol == currUnit->wordSeq(01) && (lastUnit-

>wordSeq[ll = currUnit->wordSeq[l1)) isBiBegin = 0;
else isBiBegin = 1;

I

arResult. Close 0
f Result. Close 0:

I
else

return;

//Flag that indicates whether dialog box is being initialized (FALSE) or data is being
retrieved (TRUE).

this->UpdateData(FALSE);

CEnStatisticsDIg:: OnBnClickedStrokestat

this->UpdateDatao; // initialize data in a dialog box

LPCTSTR strFilter = -T('Txt
Files (*. txt)l*. txtIAll Files

CFile f;

CFileDialog FileD1g(TRUE,
-T('.

txt»), NULL, 0, strFilter);

int vkc-nn[I OxO8, OxOD, OxlO, Oxl4, WO,
WE, 000, Ox3l, Ox32, Ox33, Ox34,005, Ox36, Ox37,

008, Ox39,
Ox4l, OA2, OA3, Ox44, OA5, Ox46, Ox47, Ox48, Ox49,

Ox4A, Ox4B, OAC, Ox4D, Ox4E, OxV, Ox5O, Ox5l, Ox52, Ox53, Ox54, Ox55, Ox56, Ox57, Ox58, Ox59,
Ox5A,

OxBA, OxBB, OxBC, OxBD, OxBE, OxBF, OxCO,
OxDB, OxDC, OxDD, OxDE

int lvq[] 0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,

0,
01 01 01

0,0,0,0,0,0,0,
0,0,0,0

int a[21 [2561 = (0) ;
while(l) (

if (Fi leDlg. DoModal 0= IDOK

W f. Open(FileDlg. GetFileName 0, CFile:: modeRead) = FALSE
return;

CArchive ar(&f, CArchive:: Ioad);

Cstring ptr =
-j(");

int upORdown = 0, stepup = 0, stepdown = 0;

while(ar. ReadString(ptr))
I

if(ptr. GetLengthO = 0) continue;

CString word, strnum-.

if(! AfxExtractSubString(word, ptr, 0, ' '))

continue;

//AfxMessageBox(word);
if(word ý 'UP') upORdown = 0;
else if(word == 'DOWN) upORdown
else continue;

int i=0, ta 0, getNum = 0;

while(Ptr[il 0)

if((ptr[il >=
_T('O'))

&& (ptr[il<=_T('9')))

strnum = strnum + ptr[i]:
getNum = 1;

else

if(getNum)

if (upORdown)

a[l][stepdown++] += atoi(strnum);

else

//AfxMessageBox(strnum);

a[01[stepup++] += atoi(strnum);

strnum -T(");
ta = 0;
getNum = 0;

if (strnum !=
-T("))

if(upORdown)

a[l][stepdown++] += atoi(strnum);

else

a[ol[stepup++] += atoi(strnum);

ar. Close 0
f. Close 0

else

break;

CFile fResult;
CArchive arResult(&fResult, CArchive:: store);

TCHAR tmpStr[MAX
-
PATH+1001;

memset(tmpStr, 0, MAX-PATH+100).

jcscat_s(tmpStr, currDirectory);

_tcscat-s(tmpStr,
J("\\Strokestat. txt"));

if(fResult. Open(tinpStr, CFile:: modeCreatelCFile:: modeWrite) = FALSE)

MessageBox(-T('Couldnt create the Strokestat. txt file"));
MessageBox(tmpStr),
return;

//AfxMessageBox(-T('step... 1'));
CString strResult;
double totup=O, totdown--O, totUPothers=O;
for(int i=O; M6; i++

arResult. WriteString('
for(int j=O-. j<16; j++)

strResult. Format('%8x', i*16+j);
arResult. WriteString(strResult);

arResult. WriteString('\r\n
for(int j=O; j<16; j++)

strResult. Format
arResult. WriteString(strResult):

arResult. WriteString('\r\nUP
for(int j=O; j<16; j++)

totup += a[01[i*16+jl,
strResult. Format(*%8d', a[O]Ei*16+jl);
arResult. WriteString(strResult);
int rtn keINvkc-nn(i*16+j, vkc_nn, sizeof(lvq)/sizeof(int)):
if(rtn -1)

lvq[rtnl = a[01[i*16+jl;

else

totUPothers +-- a[03[i*16+jl;

arResult. WriteString('\r\nDOWN
for(int j=O; j<16; j++)

totdown += a[l][i*16+jl;
strResult. Format('%8d', a[l1[i*16+jD;
arResult. WriteString(strResult);

arResult. WriteString('\r\n\r\n\r\n');

double all = 0;
for(int i=O; i<(sizeof(lvq)/sizeof(int)); i++)

//strResult. Format('freq[%xl=[%dI [%0.4f percentagel\r\n\r\n,
vkc-nn[i], lvq[i], double(lvq[il)/totup).

strResult. Format('%0.4f double(lvq[il)/totup)*,
arResult. WriteString(strResult);
all += atof(strResult);

double ddd = totUPothers/totup;
//strResult. Format('freq[othersl=[%dI E%0.4f percentagel\r\n\r\n', int(totUPothers),

ddd) ;
/Aere we use I-all rather than ddd
//strResult. Format('\r\n%0.4f = %f\r\n\r\n', ddd, (1.00 - all));
strResult. Format('%0.4f\r\n\r\n', (1.00 - all));
arResult. WriteString(strResult):

strResult. Format('TOTAL-UP = [%4. Ofl\r\nTOTAL-DOWN = [%4. Ofl\r\nTOTAL-OTHERS
[%4. Ofl\r\n', totup, totdown, tottJPothers);

arResult. WriteString(strResult);

arResult. Close 0
fResult. Close 0;

this->UpdateData(FALSE);

Appendix C

MAIN INTELLIGENT KEYBOARD -
ENGLISH INPUT METHOD

PROGRAMS

NAME , FUNCTION
backpropagationx

-
Neural Network BackPoropagation algorithm implementation which has

backpropagatioý. h been used to rank the word-list based on words frequency and distance which
is between the typed word and the table words

backspacex Record the relationship between wrong string and right string into table
backspacel 4arules' as soon as backspace is typed. That is a many-to-many relationship

(lefts -> right) and will trigger when a typing complete
clipboard. c Get string from Clipboard to analyze (count the gram of letters and words
clipboardl etc)
DateTimex Date and time processing (e. g.
DateTime. h

edpax Main All file (converted to dme after compilation) used as an English IME

edpa. h Main header file shared by all files

edpalib. c Two main libraries of edpadll
handlex

edpa. def Defines the functions of input method editor api and shared memory -
'edpasm'

global-c Define and initialize all global variables shared by files

globall
grunx One & two letter gram, two words gram operation
gmm. h
imm-C IME Entry fitnctions which are corresponding to edpa. def
imm. h
jarox Calculate distance between two words based on Jaro algorithm
jaro-h
KeysAround. c Adjacent key press processing (only consider three consecutive letters)
KeysAround. h

metaphonex Calculate the similarity of two words based on metaphone algoridim.
metaphonel
parameterx Configuration parameters of edpadme

parameterl
preprocess. e Pre-process before the typed string is delivered to prediction and correction
preprocessl

functions (prolong key press is processed at this stage)
Correspond to the architecture's pre-processing unit.

rank. c Uses neural network and heuristic method to rank the word-list
rank. h

scheck-e A simple spell checking based on Diego C. Barrientos's function using
scheck. h Levenshtein Word Distance.

shortm. c Using short memory to record the particular words (e. g. used recently) and
shortm. h calculate the ranks

tcheck. c Tables Operations (used by edpaime)
tcheck. h

Appendix D

NEURAL NETWORKS MODELLING
RESULTS DIAGRAMS

N-Gram Prediction - with varying hidden neurons
1-gram Hitting Rate

0.7
1 st-level

0.6
2nd-le\oel
3rd-le\el
aggregation

0.5

0.4

Cm
0.3

0.2

0.1 ----------- --------------------------

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

2-gram Hitting Rate
0.7

0.6

0.5

'0 z6 0.4

u.; i

0.2

0.1
, o- -0 ---- ------- (D --------------------------- ()

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

3-gram Hitting Rate
0.7

0.6

0.5

0.4
co
CD C

0.3

0.2

0.1

00
10 20 30 40 506070 80 90 100

Hidden Neurons

5-gram Hitting Rate
0.7

0.6

0.5

'" 0.4
cc w

U. 3

0.2

0.1

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

7-gram Hitting Rate
0.5

0.45,

0.4

0.35

0.3
16
Ix 0.25

0.2

0.15

0.1

---------- 0.05, 4

0
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

9-gram Hitting Rate
0.5

0.45

0.4

0.35

0.3

0.25

T- 0.2

0.15

0.1

0.05

0010 20 30 40 5060708090 100
Hidden Neurons

11 -gram Hitting Rate
0.45

0.4

0.35:

0.3

16 0.251

c 0.2

0.15

0.1

0.05
(D

0
05 10 15 20 25 30 35 40 45 50

Hidden Neumns

N-Gram Prediction with varying Grams

0.18
1 Hindden neurons Hitting Rate

0.16

0.14

0.12

15 0.1
w
C»

0.08
1:

0.06

0.04

0.02

0
2345678

Grams

2 Hindden neurons Hitting Rate
0.41

0.351

0.3,

0.25

0.21

0.15 1ý

0.1

0.05:
--- -C> ---------- 0 ----------

0,
345678 -9

Grams

10

3 Hindden neurons Hitting Rate
0.5

0.45

0.4

0.35

0.3
co of
cm 0.25
. C:

0.21

0.15

0.1

0.05 o

0
1234567

Grams

5 Hindden neurons Hitting Rate
0.7

0.6

0.5

0.4!

0.3:
m

0.2

0.1

0
123456789 10

Grams

10

0.7

0.6

0.5,

7 Hindden neurons Hitting Rate

0.4

0.3

0.2

0.1 i! -

0

123456789 10
Grams

9 Hindden neurons Hitting Rate
0.71 ii- ---- -

0.6

0.5

0.4
(0

0.3

0.2! ý

1
0.11ý -- --- C)- -- c) -----------

---------0 -----------
1

0 34689 iýO
Grams

15 Hindden neurons Hitting Rate
0.7 iI

0.6

0.5

4) 0.4,

0.2

0.1

0

23456789 10
Grams

Local Entropy of N-Gram Prediction
1 -gram Neural Entropy

4.2
s-entropy

4.1 n-entropy

4

3.9

3.8
2
c W 3.7
0) CL

E
cc 3.6
co

3.5

3.4

3.31

3.2
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

2-gram Neural Entropy
4,

3.5

3

CL 2 2.5

w
0)
CL E 2
cu I

1.5

1

0.5 1 - 1 1 . . 0 05 06 07 0 0 20 30 4 1 809 0 100
Hidden Neurons

4

3.5

3

CL
2 2.5
c w
(1) CL

E 2
m CD

1.5

1

3-gram Neural Entropy

0.5
010 20 30 40 5.0610710810910 100

Hidden Neurons

5-gram Neural Entropy
4

3.5

3

2.5
CL 2
C: LU 2
0)
E
U) 1.5

0.5

00
10 20 30 4050607080 90 100

Hidden Neurons

4

3.5

3

2.5
CL 2

2

E
m 1.5

1

0.5

0
0

7-gram Neural Entropy

10 20 30 40 50 60 70 80 90 100
Hidden Neurons

4

3.5

3

2.5
2

2
(D
c2.
E
m 1.5

1

0.5

0

9-gram Neural Entropy

10 20 30 40 50 60 70 80 90 100
Hidden Neurons

N-Gram Prediction with noisy
2-Gram with Noise Rate [0.001]

0.65
1 -Hitting Rate

0.6
Total Hitting Rate

0.55:

0.5

':: ý
i 0.45 f

0.4

0.35

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

3-Gram with Noise Rate [0.001]
0.65

0.6

0.55

0.5

0.45

0.4

0.35

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

0.65

0.6

0.55

0.5

0)

0.45

0.4:!

0.35

0.5

0.45'

0 0.4

2: 0.35

0.3

5-Gram with Noise Rate [0.001]

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

7-Gram with Noise Rate [0.001]

0.25' i
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

2-Gram with Noise Rate [0.01
0.65

0.6

0.55

0.5
cr-

0.45

0.4

0.35

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

3-Gram with Noise Rate [0.01]
0.65

0.6

0.55

0.5
m

0.45

0.4

0.35

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

5-Gram with Noise Rate [0.01]
0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

7-Gram with Noise Rate [0.01]
0.61

0.55

0.5

0.45

0.4

0.35

0.3

0.25
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

2-Gram with Noise Rate [0.1
0.6

0.55

0.5

2 0.45

cm

0.4

0.351

0.3

0.25
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

3-Gram with Noise Rate [0.1
0.55 .T--

0.5

0 0.45
0 CY-

0.4

0.35

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

0.6

0.55

0.5

0.45

0.4

5-Gram with Noise Rate [0.1

0.35

0.3

0.25
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

7-Gram with Noise Rate [0.1
0.5

0.451

0.4

co w
0) 0.35
C

0.3

0.25

0.2,
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

0.65

0.6

0.55' '

0.5

Co w
cm 0.45

Z:
0.4

0.35'

0.3

0.25
0

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.31

0.25
0

2-Gram with fifty neurons prediction

0.05 0.1 0.15 0.2
Noise Rate

0.25 0.3 0.35

3-Gram with fifty neurons prediction

1 -Hitting Rate
Total Hitting Rate

0.05 0.1 0.15 0.2 0.25 0.3
Noise Rate

0.35

0.65

0.61

0.55

0.5

0.45

0.4'

0.35'

0.3

0.25
0

0.65

0.6

0.55

0.51

cm 0.45

0.4

0.35

0.3

0.25
0

2-Gram with fifty neurons prediction

1 -Hitting Rate
Total Hitting Rate

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Noise Rate

3-Gram with fifty neurons prediction

1-Hitting Rate
Total Hitting Rate

0.05 0.1 0.15 U 0.25 0.3 0.35
Noise Rate

1-Gram Hitting Rate
0.6

1-Hitting Rate
Total Hitting Rate

0.55

0.5

0.45

0.4

0.35

0.3,

0.25
0 10 20 30 40 50 60 70 80 910 100

Hidden Neurons

3-Gram Hitting Rate
0.5

0.45

0.4

0.35

U. j

0.25

0.2

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

war,

0.45

0.4

5-Gram Hitting Rate

4) 0.35
16

0.3

0.25

0.2
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

7-Gram Hitting Rate
0.5

0.45

0.4

0.35
W

0.3

0.25

0.2

0 10 20 30 40 50 60 70 80 90 100
Hidden Neurons

0.45

0.4

9-Gram Hitting Rate

0 0.35
16
w

0.3

0.25

0.2
0 10 20 30 40 5.0 60 7i080910

Hidden Neurons

First Hitting Rate
0.4,1 1iIi

0.35

0 0.3
(0

0.25

0.2

0

1-GRAM
3-GRAM
5-GRAM
7-GRAM
9-GRAM

10 20 30 40 50 60 70 80 90 100
Hidden Neurons

First Three Hitting Rate Aggregation
0.55

0.5

0.45

0.4

0.35

0.3 1-GRAM
3-GRAM
5-GRAM

0.25 7-GRAM
9-GRAM

0.2
0 10 20 30 40 50 60 70 80 90 100

Hidden Neurons

Entropy Value Comparison
4.5

4

3.5

3

w
2.5

E

2

1.5

1
0

True value
1-GRAM
3-GRAM
5-GRAM
7-GRAM
9-GRAM

10 20 30 40 50 60 70 80 90 100
Hidden Neurons

Appendix E

INTELLIGENT KEYBOARD - UNITS
AND MODULES ILLUSTRATION

No. 1-5, Blue boxes and their connections: represent the system's input and output
process. A sentence's input should be a process passing through different structure status
from letter, word to sentence, during which distinct UNITS will be evoked up
corresponding to the structure status' change.

The processing units from left to right, which has been marked as light yellow, are named
as Text prediction unit (No. 6), Inference engine unit (No. 7), Error correction unit (No.
8), and Natural Language Processing (NLP) unit (No. 9). There are two additional
modules: Noise process module (No. 10) and User interface module (No. 11), which are
responsible for the interaction with out environment, here are keyboard and users.

No. 6, Text Prediction unit: help user reduce the number of keystrokes necessary for a
typing words. It monitors the input letter-by-letter, and produces a list of words beginning
with the letter sequence recorded. Each time a letter is added, the list is updated. When
the target word appears in the list, it can be chosen and inserted into the ongoing text with
a single keystroke.

No. 7, Inference Engine unit: as a central unit of the system, it is responsible for
analyzing user behavior of input, summing up related association rules and maintaining
user profile. These will run in real-time by applying Neural Network model and statistics;
database can be further analyzed in background by using other technologies such as data
mining, which is both time and resource consuming. Inference Engine unit also
communicate with other units to give user information, system configuration information
etc.

No. 8, Error correction unit: deal with the known behaviors of users, such as spell error,
miss-stroke error, phoneme mistakes with dyslexic. The more behavior is generalized, the
more modules could be added to this unit.

No. 9, NLP (Natural Language Processing) unit: This is a reinforce processing unit to
those errors that can't be analyzed by other units, but could be studied in term of input
context based on the syntax and semantics analysis. At this stage the unit will not be
considered so it has been marked in dash line.

No. 10, Noise process module: provides pre-process for just input data stream, which
includes analyzing and wiping off illegal letters, composing keys and sending data to
Text prediction unit and Error correction unit for fin-ther process. It also works with user
interface unit waiting for typing signal.

No. 11, User interface module: In order to provide a user-friendly interface, this unit
would require frequent communication with learning unit. This unit's theoretical basis is
HCI-

No. 12, Data storage: the memory of IK is divided into short-term memory and long-term
memory. The long-term memory has included knowledge base which is represented as a
set of rules, and facts which are used to match the rules. The rules inferred from Inference
Engine and some other facts such as user profile and frequently used text dictionary are
saved in long-term memory database. Other facts such as recently used new words are
stored in short-term memory which will be turned to long-term memory if a certain
threshold is reached. All other units are able to communicate with long-term and short-
term memory directly.

Appendix F

VIRTUAL KEY CODES

Symbolic constant
name Value (hex) Mouse or keyboard equivalents
VKLBUTTON 01 Left mouse button

VK_RBUTTON 02 Right mouse button

VK_CANCEL 03 Control-break processing
VK-MBUTTON 04 Middle mouse button (three-button mouse)
VK_XBUTTON1 05 Windows 2000/ XP/ 2003/ Vista/ 2008: X1 mouse button
VK_XBUTTON2 06 Windows 2000/XP/2003/Vista/2008: X2 mouse button

07 Undefined

VKý_BACK 08 BACKSPACE key

VK_TAB 09 TAB key

OA-OB Reserved

VK-CLEAR 0C CLEAR key

VK_RETURN OD ENTER key

OE-OF Undefined

VKSHIFT 10 SHIFT key

VK_CONTROL 11 CTRL key

VK_MENU 12 ALT key

VKPAUSE 13 PAUSE key

VK_CAPITAL 14 CAPS LOCK key

VK_KANA 15 Input Method Editor (IME) Kana mode
VKHANGUEL 15 IME Hanguel mode (maintained for compatibility; use VK_HANGUL)
VK_HANGUL 15 IME Hangul mode

16 Undefined

VKJUNJA 17 IME Junja mode

VK_FINAL 18 IME final mode

VKHANJA 19 IME Hanja mode

VK_KANJI 19 IME Kanji mode
1A Undefined

VK_ESCAPE IB ESC key

VK-CONVERT 1C IME convert (Reserved for Kanji systems)
VK_NONCONVERT ID IME nonconvert (Reserved for Kanji systems)
VK-ACCEPT 1E IME accept (Reserved for Kanji systems)
VK_MODECHANGE IF IME mode change request (Reserved for Kanji systems)
VK_SPACE 20 SPACEBAR

VK-PRIOR 21 PAGE UP key

VK_NEXT 22 PAGE DOWN key

VK_END 23 END key

VK_HOME 24 HOME key

VK_LEFT 25 LEFT ARROW key

VK-UP 26 UP ARROW key

WRIGHT 27 RIGHT ARROW key

VKDOWN 28 DOWN ARROW key

VKSELECT 29 SELECT key

VK_PRINT 2A PRINT key

VK_EXECUTE 2B EXECUTE key

VK-SNAPSHOT 2C PRINT SCREEN key for Windows 3.0 and later

VK-INSERT 2D INS key

VK_DELETE 2E DEL key

VKHELP 2F HELP key

VK_O 30 0 key

VK-1 31 1 key

VK-2 32 2 key

VK_3 33 3 key

VK-4 34 4 key

VK-5 35 5 key

VK-6 36 6 key

VK_7 37 7 key

VK_8 38 8 key

VK-9 39 9 key

3A-40 Undefined

VK_A 41 A key

VK-B 42 B key

VK-C 43 C key

VK_D 44 D key

VK_E 45 E key

VK-F 46 F key

VK_G 47 G key

VK-H 48 H key

VK-I 49 1 key

VK-J 4A 3 key

VK_K 4B K key

VK_L 4C L key

VK-M 4D M key

VK_N 4E N key

VK-O 4F 0 key

VK-P 50 P key

VK-Q 51 Q key

VK-R 52 R key

VK-S 53 S key

VK_T 54 T key

VK-L1 55 U key

VK-V 56 V key

VK-W 57 W key

VK-X 58 X key

VK-Y 59 Y key

VK-Z 5A Z key

VK-LWIN 5B Left Wlndows key (Microsoft Natural Keyboard)

VK-RWIN 5C Right Windows key (Microsoft Natural Keyboard)

VK_APPS 5D Applications key (Microsoft Natural Keyboard)

5E Reserved

VK_SLEEP 5F Computer Sleep key

VK_NUMPADO 60 Numeric keypad 0 key

VK-NUMPADI 61 Numeric keypad 1 key

VK-NUMPAD2 62 Numeric keypad 2 key

VK-NUMPAD3 63 Numeric keypad 3 key

VKNUMPAD4 64 Numeric keypad 4 key

VK-NUMPAD5 65 Numeric keypad 5 key

VKNUMPAD6 66 Numeric keypad 6 key

VK-NUMPAD7 67 Numeric keypad 7 key

VKNUMPAD8 68 Numeric keypad 8 key

VKNUMPAD9 69 Numeric keypad 9 key

VK-MULTIPLY 6A Multiply key

VK-ADD 68 Add key

VK-SEPARATOR 6C Separator key

VK-SUBTRACT 6D Subtract key

VK-DECIMAL 6E Decimal key

VK_DIVIDE 61F Divide key

VK-F1 70 F1 key

VK_F2 71 F2 key

VK-F3 72 F3 key

VK-F4 73 F4 key

VK-F5 74 F5 key

VK-F6 75 F6 key

VK-F7 76 F7 key

VK-F8 77 F8 key

VK-F9 78 F9 key

VK-FIO 79 F10 key

VK_FI1 7A F11 key

VKJ12 7B F12 key

VKJ13 7C F13 key

VK_F14 7D F14 key

VK_F15 7E F15 key

VK_F16 7F F16 key

VK1717 80H F17 key

VK_FI8 81H F18 key

VK-F19 82H F19 key

VK-F20 83H F20 key

VKF21 84H F21 key

VK-F22 85H F22 key

VKJ23 86H F23 key

VK-F24 87H F24 key

88-8F Unassigned

VK_NUMLOCK 90 NUM LOCK key

VK-SCROLL 91 SCROLL LOCK key

VK_OEM_NEC_EQUAL 92 NEC PC-9800 kbd definitions: key on numpad

VK_OEM_FJJISHO 92 Fujitsu/OASYS kbd definitions: 'Dictionary' key

VK_OEM_FJ_MASSHOU 93 Fujitsu/OASYS kbd definitions: 'Unregister word' key

VK_OEM_F1_TOUROKU 94 Fujitsu/OASYS kbd definitions: 'Register word' key

VK OEM-FJ-LOYA 95 Fujitsu/OASYS kbd definitions: 'Left OYAYUBF key

VK_OEM_FJ_ROYA 96 Fujitsu/OASYS kbd definitions: 'Right OYAYUBI' key

97-9F Unassigned

VK_LSHIFT AO Left SHIFT key

VK_RSHIFT Al Right SHIFT key

VKLCONTROL A2 Left CONTROL key

VK_RCONTROL A3 Right CONTROL key

VKLMENU A4 Left MENU key

VK_RMENU A5 Right MENU key

VKBROWSER BACK A6 Windows 2000/XP/2003/Vista/2008: Browser Back key

VK_BROWSERFORWARD A7 Windows 2000/XP/2003/Vista/2008: Browser Forward key

VK-BROWSER-REFRESH AB Windows 2000/XP/2003/Vista/2008: Browser Refresh key

VK_BROWSER_STOP A9 Windows 2000/XP/2003/Vista/2008: Browser Stop key

VKBROWSER SEARCH AA Windows 2000/XP/2003/Vista/2008: Browser Search key

VK_BROWSER_FAVORITES AB Windows 2000/XP/2003/Vista/2008: Browser Favorites key

VK-BROWSER-HOME AC Windows 2000/ XP/ 2003/ Vista/ 2008: Browser Start and Home key

VK_VOLUMEMUTE AD Windows 2000/XP/2003/Vista/2008: Volume Mute key

VK_VOLUME-DOWN AE Windows 2000/XP/2003/Vista/2008: Volume Down key

VKVOLUMEUP AF Windows 2000/XP/2003/Vista/2008: Volume Up key

VKMEDIANEXT TRACK BO Windows 2000/ XP/ 2003/Vista/ 2008: Next Track key

VKMEDIAPREV TRACK B1 Windows 2000/ XlP/ 2003/ Vista/ 2008: Previous Track key

VK_MEDIA-STOP B2 Windows 2000/XP/2003/Vista/2008: Stop Media key

VK-MEDIA_PLAY-PAUSE B3 Windows 2000/XP/2003/Vista/2008: Play/Pause Media key

VKLAUNCH MAIL B4 Windows 2000/ XIP/ 2003/ Vista/ 2008; Start Mail key

VK_LAUNCH_MEDIA SELECT B5 Windows 2000/XP/2003/VWa/2008: Select Media key

VK_LAUNCH-APPI B6 Windows 2000/XP/2003/Vista/2008: Start Application 1 key

VK_LAUNCH-APP2 87 Windows 2000/XP/2003/Vista/2008: Start Application 2 key

B8-B9 Reserved

VK_OEM_1 BA Windows 2000/XP/2003/Vista/2008: For the US standard keyboard,
the ';: ' key

VK_OEM-PLUS BB Windows 2000/XP/2003/Vista/2008: For any country/region, the'+'
key

VK_OEM_COMMA BC Windows 2000/XP/2003/Vista/2008: For any country/region, the', '
key

VK_OEM-MINUS BD Windows 2000/XP/2003/Vista/2008: For any country/region, the'-'
key

VK_OEM_PERIOD BE Windows 2000/XP/2003/Vista/2008: For any country/region, the
key

VK_OEM_2 BF Windows 2000/XP/2003/Vista/2008: For the US standard keyboard,
the '/? ' key

V1K_OEM_3 Co Windows 2000/ XP/ 2003 /Vista/ 2008: For the US standard keyboard,
the " -' key

CI-D7 Reserved

D8-DA. Unassigned

VK_OEM_4 DB Windows 2000/XP/2003/Vista/2008: For the US standard keyboard,
the '[ý' key

VK_OEM_5 DC Windows 2000/XP/2003/Vista/2008: For the US standard keyboard,
the'\I' key

VK_OEM_6 DD Windows 2000/XP/2003/Vista/2008: For the US standard keyboard,
the '11' key

VK_OEM_7 DE Windows 2000/XP/2003/Vista/2008: For the US standard keyboard,
the 'single -q uote/dou ble-q u ote' key

VK_OEM_8 DF Used for miscellaneous characters; it can vary by keyboard.

EO Reserved

El OEM specific

VK-OEM-102 E2 Windows 2000/XP/2003/Vista/2008: Either the angle bracket key or
the backslash key on the RT 102-key keyboard

E3-E4 OEM specific

VK_PRCICESSKEY E5 Windows 9S/98/Me, Windows INT/ 2000/ XP/ 2003/ Vista/ 2008: IME
PROCESS key

E6 OEM specific

VK_PACKET E7 Windows 2000/XP/2003/Vista/2008: Used to pass Unicode characters
as if they were keystrokes. The VK

-
PACKET key is the low word of a 32-bit

Virtual Key value used for non-keyboard input methods. For more
information, see Remark in KEYBDINPUT, SendInput

, WM-KEYDOWN
, and WM-KEYUP

E8 Unassigned

VK_OEM_RESET E9 Only used by Nokia.

VK_OEM-JUMP EA Only used by Nokia.

VK_OEM_PAI EB Only used by Nokia.

VK_OEM_PA2 EC Only used by Nokia.

VK_OEM_PA3 ED Only used by Nokia.

VK_OEM_WSCTRL EE Only used by Nokia.

VK OEM-CUSEL EF Only used by Nokia.

VK_OEM_ATTN FO Only used by Nokia.

VK_OEM-FINNISH F1 Only used by Nokia.

VK OEM-COPY F2 Only used by Nokia.

VK_OEM-AUTO F3 Only used by Nokia.

VKOEM ENILW F4 Only used by Nokia.

VK_OEM_BACKTAB F5 Only used by Nokia.

VK_ATTN F6 Attn key

VK_CRSEL F7 CrSelkey

VK-EXSEL F8 ExSelkey

VK_EREOF F9 Erase EOF key

VK-PLAY FA Play key

VK_ZOCIM FB Zoom key

VK_NONAME FC Reserved for future use.

VKPAI FD PA1 key

VK_OEM_CLEAR FE Clear key

FF Multimedia keys. See ScanCode keys.

* Colored in orange (in all 53 VKCs) are specially considered by some neural network models in the research.

Appendix G

USUAL NEUAL NETWORK
ACTIVATION FUNCTION SIN

MATLAB

hardlim

------------ ------- -1

logsig

a
A+1

...........

EM 0
......................... -1 a= lqpivio

Hard-Limil Transfer Function

pureline

a
A+j

/

11 >
-1

F/ /. o
---L a= purcliii(m

Linear Transfer Funclion

tansig

............ I

Log-Sigmoid Transfer Function

radbas

a

0.5
FAI

1.0
A

,; w ------------
00

L -z = radbas(n)

Radial Basis Funclion

Tan-Signioid Transfer Function

Appendix H

PUBLICATIONS

Evolutionary Ranking on Multiple Word Correction
Algorithms Using Neural Network Approach

Jun Li, Karim Ouazzane, Yanguo Jing,
Ilassan Kazemian, Richard Boyd

Faculty of Computing, London Metropolitan University,
166-220 Holloway Road, London. N7 8DB, UY-

(Ju1029, k. ouazzane, y. jing, h. kazemianjCaIondonm".
-pk richard bMýdCdAisabi I i1yessex. org

Abstract. Multiple algorithms have been developed to correct user's typing
mistakes. However, an optimum solution is hardly identified among them.
Moreover, these solutions rarely produce a single answer or share common
results, and the answers may change with time and context. These have led this
research to combine some distinct word correction algorithms to produce an
optimal prediction based on database updates and neural network learning. In
this paper, three distinct typing correction algorithms are integrated as a pilot
research. Key factors including Time Change, Context Change and User
Feedback am considered. Experimental results show that 5730% Ranking First
Hitting Rate (1111) with the samples of category one and a best Ranking First
I litting Rate of 74.691/o within category four are achieved.

Keywords: Neural Network, Metaphone, Levenshtein distance, word 2-grarn,
Jaro distance, Jaro-Winkler distance, ranking First Hitting Rate.

Introduction

Computer users inevitably make typing mistakes. These may be seen as spelling
errors, prolong key press and adjacent key press errors etc [1]. Multiple solutions such
as Metaphone [2] and n-grams [31 have been developed to correct user's typing
mistakes, and each of them may have its unique features. However, an optimum
solution is hardly identified among them. Therefore, it is desired to develop a hybrid
solution based on combining these technologies, which can put all merits of those
distinct solutions together.

Moreover, each function may rarely generate a single answer, let alone multiple
functions which may produce a larger list of suggestions. This requires developing an
evolutionary and adjustable approach to prioritize the suggestions in this list. Also,
the answers may change within different context; and the solutions are also required
to evolve based on user's feedbacks. Therefore, this research is motivated by the
requirement of combining distinct word correction algorithms and subsequently
producing an optimal prediction based on dataset updates and neural network learning
process.

2 Typing Correction Functions

There are many types of errors caused by users, for example, spelling errors, hitting
adjacent key and cognitive difficulties. Some efforts have been made based on
different technologies such as spell checking, natural language processing and control
signals filter. In this paper, a pilot research is carried out and three distinct algorithms
(referred to as L. M. T), namely, Levenshtein word distance algorithm [41, Metaphone
algorithm, and 2-gram word algorithm are used.

Metaphone is a phonetic algorithm indexing words by their sound, which can be
adjusted to correct typing errors. These are two examples,

able -> APL
hello-> HL

The right side of the arrow is words' phonetic keys. Lets assume that a user
intends to type a word 'hcllo' but mistakenly typed 'hallo' instead, whose phonetic
keys are identical. Subsequently, the system is able to index and retrieve possible
words from the database based on the phonetic key and present them to a user for
selection.

Lcvenshtein distance is another function that needs to be explored. It is designed
based on the calculation of minimum number of operations required to transform one
string into another, where an operation is an insertion, deletion, or substitution of a
single character, for instance,

hello <-> hallo //the string distance is one
hello <-> all //the string distance is three

After a comparison with each string stored in the memory, the pair with the least
distance can be considered as having the highest similarity, and then the one or the
group with the least distance can be presented through the user interface module.

Word 2-gram (i. e. word digrarn or word bigram) is groups of two consecutive
words, and is very commonly used as the basis for simple statistical analysis of text.
For instance, given a sentence, 'I am a student' , some word 2-grarn samples are,

I am
am a

For example, under an ideal condition, 'am' can be predicted if its predecessor 'I'
is typed. Then the predicted word 'am' can be used to make sure that user types it
correctly.

Another similar method to Levenshtein distance is Jaro metric [5]. The Jaro
distance metric states that, given two strings s, and s2, two characters a. bj from s, and
s2 respectively are considered matching only if,

min (Is, 1, Is, 1) min (I s, 1,1 s, 1)
1-

2 :5+2

then their distance d is calculated as,

'
-1)

.

(Lsý
S'

-1 (2)
'+L

Is, I Is, I Is; I

Where I s; sý I are the numbers of sl matching s2 and s2 matching s, characters

respectively, and I is the number of transpositions.
A variant of Jaro metric uses a prefix scale p, which is the longest common prefix

of string s, and s2. Let's define Jaro distance as d, then Jaro-Winkler [6] distance can
be def i ned as,

max(p, 4)
Jaro - Winkler(d +-* (I - d)) (3)

10

The result of the Jaro-Winkler distance metric is normalized into the range of [0,1].
It is designed and best suited for short strings.

3 Word List Neural Network Ranking and Definitions

As the above solutions rarely produce a single answer or share common results, this
implies that a combination will definitely be a more accurate solution. However, it
requires a word-list with words priority rather than a single word to be generated. For
instance, a user intends to type a word 'hello' but mistakenly typed 'hallo' instead.
Let's assume that two functions, namely, Metaphone method and Levenshtein
distance are integrated together and the correction results are produced as follows,

Metaphone: 'hello', 'hall'
Levenshtein distance: 'hello', 'all', 'allow'

Then a words list with 'hcllo', 'hall', 'all' and 'allow' is made available to the user.
It is evident that a ranking algorithm computing each individual's priority is necessary
before a word list is presented to a user.

In a real-time interaction, it requires that the word-list priority computation is able
to adapt itself timely based on the user behavior and some other factors. In practice,
this can be simplified by considering the word-list priority computation as a function
of three variables: Time Change, Context Change and User Feedback. Therefore, a
ranking algorithm, which is able to learn from user's selection and context changing
over time, and subsequently adjust its weights, can be developed. In this research,
these three variables are further quantified and represented by frequency increase,
word 2-gram statistic and a supervised learning algorithm respectively, and
subsequently a novel Word List Ranking neural network model associated with the
variables is developed. The definitions introduced below are useful as they are part of
the rules which dictate the whole process.

First Rank Conversion Values and First Hitting Rate definition: In a
neural network post processing, if its output follows a 'winner takes all'
strategy, that is, the maximum value in output is converted into one and the
rest values are converted into zeros, then the converted elements are named
as First Rank Conversion Values. Given testing metrics P, target metrics T
and testing result metrics R where their numbers of lines and columns are
equal and expressed as n, m respectively, then the Hitting Rate
is 11R = (hý I hý = zeros(T - R,)In, i r= m) , where R, is the i6 Rank
Conversion Values of R, zeroso is the function to compute the number of
zero vector included in metrics, and the First Hitting Rate is hý .

Word-List n-formula Prediction definition: Let's assume that one has
distinct algorithms set A=, where 1: 5 i: 5 n and i, n are
positive integers. To process a sequence s, if there exists a one-to-many
mapping (s

-+ Q) associated with algorithm a, between input and output,

where 0, =
(oj II :ýj :5m,

I,
oj is a generated sequence from the

algorithm, and J^ are positive integers, then one has : Lm,
sequence

generated and the sequence set is defined as Word-List. The process based
on the use of n algorithms to generate a word-list is called n-formula
Prediction.

Word-List Success Prediction Rate Definition: Given a word list
generated by several algorithms to correct a wrong typing, if the intended
word is in the word list, then it is a Success Prediction. If there is a set of
wrong typing, the proportion between the number of Success Prediction and
wrong typing is called Word-List Success Prediction Rate (SP Rate). Let's
define the number of Success Prediction as ol and the number of wrong
typing as o2, then one has oi:! ýo2 and SP Rate = oj/67.

Simulation Rate Derinition: Given natural numbers i, m, a where i: 5 n
and m: 5 n, let's simulate a testing dataset p,... P,... p. with a trained neural

network, and its target dataset, 1, ... if output has m elements

which are r, = t,, then the Simulation Rate (SM Rate) is m1n. Given Word-
List Success Prediction Rate SP and Simulation Rate SK then the First
Ifilling Rate - SP * SM.

As illustrated above, a word correction function can combine multiple algorithms
and all of them produce their self-interpreted results independently, which is the so-
called Word-List n-formula Prediction. The results could be rarely similar while a

user may require only one of them if Success Prediction is fulfilled. So a functional
ranking model will play a major role to present an efficient word list with priority. if
one considers the leaming factor required by a word list and variability of its related
datasct, a neural network model is a good choice with the dataset being constantly
updated.

In L. M. T combination, Levenshtein word distance algorithm calculates the
similarity between each two words, where all the most similar ones are presented,
Metaphoric algorithm retrieves words based on phonetic index while word 2-gram
algorithm retrieves them based on last typed word index. From the definition of
Word-list n-formula prediction, L. M. T correction can be referred to as Word-List 3-
formula Prediction. Let's use the example shown below, where the word 'shall' is
wrongly typed as 'sahlP.

Tomorrow sahll we go to the park?

and assume that a database, which includes a]-grarn & 2-gram. table, has been
initialized by a sentence,

Out of your shell! Tomorrow all of us shall
start a new training.

Then, L. M. T correction result of word 'sahIr based on 2-grarn word algorithm is
'al, r, the correction results based on Metaphone algorithm are 'shaIr and 'sheIr and
the correction results based on Levenshtein word distance algorithm are 'all' and
6shaff.

4 Word List Neural Network Ranking Modelling

Let's suppose that, corresponding to every wrong typing, each algorithm generates a
maximum of two words in a descending frequency order. Each word is represented by
its two features: word frequency and word similarity values. In a real-time database,
the word frequency is updated along with user typing. Both, word frequency and word
similarity datasets are normalized before the neural network training and testing.

In this paper, a neural network model with 12-3-6 three layer structure is developed
as shown in Figure 1, where the number of the input layer neurons is determined by
the expression: Number of Algorithms (=3) * Number of Words predicted (=2) *
Number of Features of each word (-2). The model is named as word list neural
network ranking (WLR) model and BackPropagation algorithm is adopted as its
learning algorithm. Each algorithm generates two predictions based on the input,
which is a wrongly typed word. Each prediction is represented by its two features,
namely, Jaro-Winkler distance and word frequency.

Generally speaking, WLR model is designed to predict a highest ranked word
amongst every six recommendations. Then, a ranking issue is converted to a neural
network classification question solving issue. At the output layer of WLR model,
there is only one neuron fired once at a time. To normalize the difference between the

typed word and a predicted word, Jaro-Winkler metric is applied. It normalizes words
difference also called words similarity value, into a range ofJO, 1]. Another parameter:
word frequency, is normalized by Normal Probability Density function based on
frequencies' mean value and standard deviation.

I
N

Input layer -12

0
U
T
P
T

Fig. 1. 'Me circles in blue are neurons of WLR model; the circles in grey are predicted words;
the three rectangles represent the three algorithms. namely, Levenshtein distance, Metaphone
and 2-gram, the shapes in yellow show the input and the output of WLR model.

An application and its related Access database are developed to generate an
experimental dataset for WLR model. The related database has been initialized by,
words' /& 2-grarn frequency statistics of a novel - 'Far from the Madding Crowd'
171181 before the experimental dataset is generated. The database initialization has
fiollowed these rules,

*A word is defined as a sequence ofalphabets between two separators.
* Any symbols are considered as a separator except alphabets.
* ALL uppercase are converted info lowercase, e. g. 'ff' 4 'if, then '11"is

counted as 'if'
* Other special cases are not considered For example, 'read' and

I reading'are considered as two independent words.

Based on these rules, the word dictionary table and 2-gram dictionary table
including their words occurrences are initialized in the Access database. Moreover.
for database elliciency purpose, all the 2-gram records whose occurrences are less
than two are eliminated. Overall, about 79.10% ol'all 2-grarn records are eliminated.
This will only produce a very limited influence on the performance of WLR model if

one considers thousands of repetitive trials in a neural network training and testing.
The occurrences ofthe words* /& 2-gram are kept updated along with user's typing
progress (it' there is a new 2-gram generated, the 2-grarn and its occurrence will be
inserted into the database). Theretbre, these updated frequencies can well represent a
user's temporal typing state captured and stored in a database.

As a simulation to dyslexic's typing, a testing sample [91 is used as the
experimental dataset for WLR model as shown below,

-24-- -25- -9--", -29- -2---

ýýf üý s, -� ýýe

0 -ZS
-0- -2S- -8-1

Fig. 2. The numbers in red and black indicate words / and 2-grarn frequencies respectively

As shown in Figure 2, some words within sentences are wrongly typed, such as
'hvac' (should be 'have') and 'raed' (should be 'read'). The numbers which are right
under each word (in red) indicate the frequency of the word after the database
initial ization. For example, the frequency ofthe word 'If' is 414 and the frequency of
the word 'you' is 1501 in the database. The numbers in black indicate the 2-gram
frequency between two consecutive words. For example, the frequency between the
first two words'lt' and 'you' is eighty-five, shown as 'I --- 85---

Let's assume the frequencies of the words shown above gradually increases in the
database while other words are rarely typed. Consequently, the change of other
words' frequencies will not have a big effect on the algorithms. Therefore. a
simulation can be performed by using the testing dataset which has ignored the
influence brought by other words' frequency changes. In this research, 5505 trials of
test samples are inserted into the database gradually without considering other words'
frequency changes.

Let's define a sampling point as a starting point of sampling in these 5505 trials,
and define a sampling step as a gap between two consecutive sampling actions.

Twenty live sampling points are set up to collect the three algorithms' prediction
results. Only those wrongly typed and completed words are considered at every
sampling point. For example. the prediction results for words such as 'hvae* and
-raed' are collected, while the prediction results I-or right words such as *ir, 'you" and
uncompleted words such as 'hva' of"hvae" are ignored. At each sampling point, the
wholc dataset are gathered and called a sample. Then, twenty five samples are
gathered. The determination of sampling points and sampling step is based on a
heuristics method. which shows that the influence of initial frequency updating is
essential while further updating influence is waning.

Figure 3 illustrates the sampling procedure, which are classified in four categories
10-; ý5.10450.554505.1505-; ý55051. As illustrated, the influence of frequency
updating is waning from one category to another although the sampling steps are
actually increasing. The four categories are shown in red lines of Figure 3. For
instance, five samples have been collected with the frequency being changed from
zcro to five (i. e. the sampling step is one), and ten samples are collected when the
frequency changed from 55 to 505 (i. e. the sampling step is 50).

Frequency of updating

Fig. 3. X-axis refers to the frequency of the whole sample; y-axis refers to the numbers of
sampling.

The first two subsets of'sampie one are shown in Figure 4, which lists the predicted
results ol'two mistakenly typed words, which are 'hvac' and 'raed'.

Fig. 4. First line is a comment which marks the three algorithms names and 'output'. The rest
are two prediction results based on the three algorithms.

.5
10 50 55 505 1505 . 550-5

As shown in the columns of Figure 4, each of the three algorithms has generated
two predicted words. For instance, Levenshtein word distance algorithm gives two
suggestions to the word - 'hvae', which are 'have' and 'hae'. Next to each word, the
word's frequency and the similarity values to the target word are displayed. For
example, the frequency of the word 'have' is 679 and its similarity to 'hvae' is 0.925.

The last six columns of Figure 4 clearly show the required output for WLR neural
network model. Each of those columns corresponds to one of the words that those
three algorithms could generate. If the prediction is true, the corresponding column is
set to one, otherwise it is set to zero. For example, the first line of Figure 4 is a
prediction for mistakenly typed word 'hvae' while among the six predictions only the
first result of Levenshtein word distance algorithm is a correct prediction, therefore
the first column of the output is set to one while others are set to zeros. By default, the
processing stops at the first '1', and the others will be set to zeros. So the output will
have a maximum of one']'.

The data shown in Figure 4 still can not be used by WLR model directly, as further
pre-processing is required. Therefore the following procedures are applied.

+ Delete the redundancy such as the words ofeach line.
* Normalize all frequencies by applying Normal probability density

function
* Apply missing data processing rules where it is needed - If some

algorithms'prediction results are less than two items, then 1hefrequency
and similarity values of the missing items will be set to zeros instead, if
none of the algorithms are able to generate results, then this line will be
deleted

The sampling points are set up according to a heuristic method which analyzes the
frequency distribution of the database. For example, the first five frequency updating
procedures are considered to be more influential than the case when the frequency
changes significantly (e. g. >1000). So, the sampling step of the first five is set to one
while the rest are sparser.

In this experiment a vector [5,5.10,5] of samples are collected from the four
categories and their sampling steps are set to [1,10,50,1000]. For example, the first
f ive samples are collected in a step distance of one, the third ten samples are collected
in a step distance of fifty.

The dataset is further separated into training dataset [4,4,7.3], and testing dataset
[1,1.3.2]. The post-processing of WLR model follows awinner takes all' rule - the
neuron which has the biggest value among the six outputs are set to one while others
are set to zeros.

After the training process, the Hitting Rates of the testing dataset associated with
each category are shown in Figure 5.

Neural Network Ranking First Hitting Rate

IOW O(h
90. OM
8(). ()()%

10 70. OM zc
60. OM
50. ()(), X,
40.00%
30. OM
20.00'N)
10. OM
0. ()(), X,

Training with Sampling Set

Fig. 5. X-axis refers to the increase of words frequency difference, y-axis refers to the Hitting
Rate ot'WI. R model ranking.

Figure 5 shows that the samples are separated into four categories based on the step
distance of 11,10,50,10001. For example, the first histogram shows a 57.50%
Ranking First Hitting Rate with the samples of category one; the fourth histogram
shows a best achievement of 74.69% Ranking First Hitting Rate with more samples
collected between frequency 1505 and 5505 in five separated sampling points. Figure
5 shows an increase of ranking I litting Rate as words frequency difference and the
amount of testing samples increase. This is also partly influenced by the three
algorithms previously introduced with learning factors. All the algorithms are
adjusting gradually toward a better prediction rate as trials increase.

Conclusion

In this paper a hybrid solution based on multiple typing correction algorithms and a
Word List Neural Network Ranking model to produce an optimal prediction are
presented. Three distinct algorithms, namely, Metaphoric, Levenshtein distance and
word 2-gram are used in a pilot study. Several key factors including Time Change,
Context Change and User Feedback are considered. Experimental results show that
57.50% ranking First Hitting Rate with initial samples is achieved. Further testing
with updated samples indicates a best ranking First Hitting Rate of 74.69%. The
findings demonstrate that neural network as a learning tool, can provide an optimum
solution through combining distinct algorithms to learn and subsequently to adapt to
reach a high ranking Hitting Rate performance. This may inspire more researchers to
use a similar approach in some other applications.

A

, 1ý1; 1ý I,
-, z I Iýs I,

Iýp

In practice, an application using WLR theory can be implemented based on
propagating rewards to each algorithm and/or word. Currently WLR model adjusts its
ranking based on the change of word frequency and similarity. In the future, more
parameters such as time element and more typing correction algorithms can be added
to achieve a better performance.

Acknowledgments. The research is funded by Disability Essex [10] and Technology
Strategy Board [111. Thanks to Pete Collings and Ray Mckee for helpful advice and
discussions.

References

1. Karim Ouazzane, Jun Li et al.: A hybrid framework towards the solution for people with
disability effectively using computer keyboard. In:]ADIS International Conference
Intelligent Systems and Agents 2008, pp. 209-212 (2008)

2. Metaphone, http: //en. wikipedia. org(wiki/Metaphone [accessed 23 January 2009]
3. N-gram, http: //en. %%ikipedia. orghAiki/N-gram [accessed 18 January 2009]
4. Levenshtein algorithm, http: //www. levenshtein. nett [accessed 23 January 2009]
5. Cohen, William W., Ravikumar, Pradeep and Fienberg, Steve.: A Comparison of String

Distance Metrics for Name-Matching Tasks, IIWeb 2003: 73-78 (2003)
6. Jaro-Winkler distance, http: //en. wildpedia. orgtwiki/Jaro-Winkler [accessed 23 January 2009]
7. Far from the Madding Crowd, http: //en. wikipedia. org/wiki/Far from-the_Madding_Crowd

[accessed 15 April 2009]
8. Calgary Corpus, ftp: //ftp. cpsc. ucalgary. ca/pub/Projects/text. compression. corpus/text. comp

ression. corpus. tarZ [accessed 18 January 2009]
9. Matt Davis, reading jumbled texts, http: //wwwmm-cbu. carn. ac. ukt-mattd/Cmabrigde/

[accessed 26 January 20091
1 O. Disability Essex, http: //www. disabilityessex. org [accessed 18 January 2009]
1 I. Knowledge Transfer Partnership, http: //www. ktponline. org. uk/ [accessed 18 January 2009]

FOCUSED TIME-DELAY NEURAL NETWORK
MODELING TOWARDS TYPING STREAM PREDICTION

Jun Li, Karim Ouazzane, Hassan Kazemian, Yanguo Jing
London Metropolitan University

Department ofComputing and Communication Technology
[JuIO29, kouazzane, h. kazemian, y-jing)@Iondonmet. ac. uk

ABSTRACT

User's typing stream contains all the information of user's interaction with computer by using QWERTY keyboard,
which may include usefs vocabulary, typing habit and typing performance. This paper suggests a Focused Time-Delay
Neural Network model to analyze plain text and user's historical typing data. The experimental results demonstrate
about 50% First Three (FT) I litting Rate, which can be explored to both typing prediction and correction.

KEYWORDS

Focused Time-Delay Neural Network, Unary Coding, First Rank Conversion Values, Hitting Rate, FT Hitting Rate.

4. INTRODUCTION

User's typing stream generated from using computer QWERTY keyboard is a reflection of user's typing
behavior that includes user's particular vocabulary, typing habit and typing performance. For example,
research shows disabled keyboard users have more various performance and make more various mistakes
(e. g. prolong key press and adjacent key press [1]) than others. Computer users inevitably make errors [2]
and their typing stream implies all users' self-rectification actions.

N-gram prediction model is a type of probabilistic model for predicting the next item in a sequence [3].
It is widely adopted in natural language processing. But most current language modeling research have
been using samples collected from some large corpus. Soukoreff and MacKenzie [4] argued that the corpus
text is not a representative of user language, and it ignores the editing process and does not capture input
modalities.

This research explores a Focused Time-Delay Neural Network (FTDNN) model to predict user's typing
intention within a Virtual Key Code character set based on the historical typing data from Windows users.
N-gram prediction can be achieved by using adjusted time delay neural network model and correction can
be achieved in the same way by considering the correction as a type of predictions, which produces the
right symbol based on the inaccurate historical data.

5. FOUCUSED TIME-DELAY NUERAL NETWORK MODELLING

2.1 N-gram prediction and FTDNN

N-gram prediction definition: let's assume existing string S= {s.. s,. sjs,. s. I i:! ý i :5k :5 m) and

(j - 1) = n, (k - j) = I, where s,, sj, sk are symbols and 4 j, k 1, m, n are natural numbers, if one build a

relation R. = Ix, yIx= (s
... S). -4 y= (s.., -> sk), } , then we call the relation as n-gram's

I- prediction; if one consider I=I the special case, then it's called n-gram's one-prediction, in brief, n-
gram prediction. For example, given string S= (student), some 2-grain prediction cases are,

6 st, 6u9
&tU9 V
&en' 6t9

The Focused Time-Delay Neural Network [5] [6] consists of a feed-forward network with a tapped
delay line at the input. It is part of a class of dynamic networks called focused networks, in which the
dynamics appear only at the input layer. This network is well suited to time-series prediction.

Studying user's typing behavior would require the network to study user's history and trace back to
certain length of context (n-gram) to predict the next probable occurrence. Adding one more gram requires
one more time delay. Experiment has shown the FTDNN is more reliable than some other networks in
response to time and memory requirement [5].

2.2 Network design and data processing
Two datasets have been used in this research: dataset one - novel 'Far from the Madding Crowd (1874)'
and dataset two - Disability Essex [7] helpline keystroke log. The novel was written by Thomas Hardy [8].
It has been used as a testing sample by some compression algorithm researchers. The version used here is
from Calgary Corpus [9] with a size of 75 1 kb. The computer of Disability Essex helpline has been used as
a question recording, database querying and email tool by a disabled volunteer. As discovered in the log,
the typing mistakes are predominately about adjacent key press and prolong key press errors. KeyCapture
software [10] is modified to record user's typing log. It runs under Windows background and records
keystrokes without interfering with user's work. A typical sample of the log is demonstrated below.

01929 Keypress 20080605-132149-593 IT, Status-(down) Key(84) Extr&(Oxld) KeyDIstance(3.500000) TlmG&V(307)
01930 KerPress 20080603-132149-635 IT* Status-(Up) Rer(ed) Extra(OXV014) RoyDistance(O. 000000) TimwGap(62)
01931 Rwress 20080603-132149-630 In' Status-(down) Key(72) Extra(Ox23) KeyDintarkce(2.500000) TlmG&V(3)
01932 Keypreffis 20080605-132149-694 Im" Status-(up) Key(72) Extra(0=023) KOYDIstance(O. 000000) Tln*Gap(36)
01933 Rerpress 20080605-132149-804 W Status-(dmm) Key(65) Extr&(OKle) KeyDistance(S. 000000) ylmmGap(110ý

01934 KeyPress 20080603-132149-992 *A" St&tUs-(UP) Ker(63) Extr&(UxcUle) KeyDlstance(O. 000000) TlmGap(IBB)

As raw data, the gathered dataset need to be preprocessed before it can be used by FTDNN model to
simulate the probability of each predicted symbol. Let's suppose to model a data sequence
C= (S

.... S,... s,,) on an alphabet basis of size A=Ia,..., z) , where s, EA. Two input coding methods
based on unary code and ASCII code can be considered. A sample is shown in Table 2.2.1,

Table 2.2.1. Unary coding and ASCII coding sample
Alphabet Unary Eoding ASCII Coding
a 1 97 =01100001
b 01 98 =01100010
C 001 99 =01100011
d 0001 100=01100100
e 00001 101=01100101

Unary coding is an entropy encoding [11] that represents a symbol by using n- I zeros followed by a
one. From Table 2.2.1, 'a' is represented by a one while V is represented by two zeros followed by a one.
The ASCII code uses a fixed length (here 8 bits) to stand for a symbol. As shown in the table, 'a' is
represented by 01100001 which consist of three ones and five zeros. The unary codes can be adapted to a
fixed length to fit the requirement of neural network unchanging number of input neurons. Let's consider a
data set with three symbols (a, b, c), and then one can code it as fixed unary codes, (100,010,001).

A twenty-seven symbols set (a ... z, space) is applied to dataset one. A preprocessing logic followed by
an example is illustrated below,

for each symbol S, e context C, where C= Is,
... SO

Y'a' < si < 'z'then write unary code lofile

else if 'A'< s, < Wfhen convert to (a,..., z} and write unary code toftle
else convert to blank and write unary code toftle

%abcdefgh ij klmnopqr stuvwxyz "
000000000000000000010000000 %It,
000000010000000000000000000 Wh'
000010000000000000000000000 We'

At the output a post-processing function is used to generate unary code by ranking the twenty-seven
outputs in a descending order. The output of the sample above is presented below:

0.02 0.03 0.010.010.010.010.010.88 0.010.010.010.010.010.01
- 0.01 0.01 0.01 0.01 0.010.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01

0.02 0.04 0.010.010.97 0.010.010.010.010.010.010.010.010.01
- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01

0.03 0.010.010.010.010.010.010.010.010.010.010.010.02 0.01
- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.79 0.01
0.01

Firstly the maximum value of each line is converted into one and the rest values are converted into
zeros. This is named as First Rank Conversion Values as shown below. The unary code, which is converted
based on second biggest value among output, is named as Second Rank Conversion Values and so on.

%abcdefgh ij klmnopqr stuvwxyz "
000000010000000000000000000 %h'
000010000000000000000000000 We'
000000000000000000000000100 %y

Then, according to the 2-gram prediction model the relationship between input and output is shown as,

it f
Ih I
'e

A piece of data (100k) is extracted from dataset one. It is subsequently divided into training data,
validation data and testing data. For this n-grain prediction model, a three-layer Focused Time-Delay
Neural Network with twenty-seven input neurons, twenty-seven output neurons, extendible numbers of
hidden layer neurons and extendible numbers of time delays is designed. Both input and output are encoded
in unary code. A piece of software is designed to extract Virtual Key Codes [12] values according to the
keystroke status from dataset two. In this research only the most commonly used fifty-three Virtual Key
Codes are adopted, others such as arrows and functional keys are deleted from the log. Then the three-layer
Focused Time-Delay Neural Network model is adjusted to have fifty-three input neurons and fifty-three
output neurons.

2.3 Experimental results

In order to evaluate the experimental results, two concepts are introduced here namely, Hitting Rate (HR)
and First Three (FT) Hitting Rate. Given testing metrics P, target metrics T and testing result metrics R
where their numbers of lines and columns are equal and expressed as n, m respectively, then the Hitting

Rate is HR = {hr, I hr, = zeros(T - A)/n, iE m} , where A is the th Rank Conversion Values of R,

zeroso is the function to compute the number of zero vector included in metrics, obviously the sum of all

Hitting Rates is HR hr, = 100%. Then the First Hitting Rate and First Three Hitting Rate are hr,

3
and hr, respectively. Based on the previous example and above definition, then we have testing metrics

P= ('the 7, testing result metrics R= (hey), n=3 and m= 27. Assume the target dataset T= (hem),
then the first hitting rate is hr, = zeros(T - P,,)In = zerose hey'-'hem)/3 = 2/3 = 66.67%, whereas
the 2nd and P Rank Conversion Values are,

--2'd rank conversion values
%abcdefgh ij klmnopqr stuvwxyz

010000000000000000000000000 %b'
010000000000000000000000000 %b'
100000000000000000000000100 %a'

Yd rank conversion values
%abcdefgh ij klmnopqr stuvwxyz "

100000000000000000000000000 %a'
100000000000000000000000000 %a'
000000000000100000000000000

So, the First Tbree Hitting Rate is 2/3 + 0/3 +1/3 = 100%, which is an ideal case. The average rate is
just below 50%.

During the training and testing of the FTDNN model related to dataset one, the numbers of grams - [1,
2,3,5,7,9,11,13] which are represented by time delays, and the numbers of hidden neurons - [1,2,3,5,
7,9,15,25,50,100] are cross-designed and implemented. Thereinto as the gram reaches 11 and the
number of hidden neurons reaches 100, the gram reaches 13 and the number of hidden neurons reaches 15
onwards, the memory of current system is beyond its limit. So the experimental results are abandoned from
G-11 & H-100 onwards. As illustrated, the model uses a 27-n-27 three-layer structure. The experimental
results related to dataset one plotted with First Hitting Rate and First Three Hitting Rate are shown below,

SM H" Paft vdh N4(m Fwat Thm tft" Rd* wdh N43nim

I'

135

0.3

14RAM
2-GRAM
3ýGRAM 'i

-- - 54RAM
T-GRAM
O-GRAM
11-GRAM

0
0 10 20 30 50 eo 70 so 90 TI

0.4[
1"

- I-GRAM

02 - 2-GRAM

- $43RAM
SGRAM

01 7-GRAM
9-GRAM
11-GRAM

0 10 40 50 60 70 80 90 IC

Figure 2.3.1. First Hitting Rate with N-gram Figure 2-3.2. First Ilree Hitting Rate with N-gmm

Fig 2.3.1 and Fig 2.3.2 show 1,2 & 3-grarn give the three best Hitting Rate (by winning in a small
margin, 3-gram. gives the best First hitting rate and 2-grarn gives the best FT hitting rates), all of which
show a better convergence toward the maximum Hitting Rate (about 56% of FT Hitting Rate and 33% of
First Hitting Rate). Both pictures illustrate the smaller Hitting Rates from 4-grarn onward. The results

Rate is HR = (hý I hý = zeros(T -)ý)In, iE M) , where Jý is the jh Rank Conversion Values of R,

zeroso is the function to compute the number of zero vector included in metrics, obviously the sum of all

hý = 100%
. Then the First Hitting Rate and First Three Hitting Rate are hr, Hitting Rates is HR

3

and hý respectively. Based on the previous example and above definition, then we have testing metrics

P= t'the'j, testing result metrics R= t'hey), n=3 and m= 27. Assume the target dataset T= t'hem),
then the first hitting rate is hr, = zeros(T - Jý)In = zeros('hey-'hem')13 = 2/3 = 66.67%, whereas
the 2 nd and 3 rd Rank Conversion Values are,

--2"d rank conversion values
%abcdefgh ij klmnopqr stuvwxyz

010000000000000000000000000 %'b'
010000000000000000000000000 %'b'
100000000000000000000000100 %'a'

rank conversion values
%abcdefgh ij klmnopqr stuvwxyz "

100000000000000000000000000 %'a'
100000000000000000000000000 %'a'
000000000000100000000000000 %'m'

So, the First Three Hitting Rate is 2/3 + 0/3 + 1/3 = 100%, which is an ideal case. The average rate is

just below 50%.
During the training and testing of the FTDNN model related to dataset one, the numbers of grams - [1,

2,3,5,7,9,11,13] which are represented by time delays, and the numbers of hidden neurons - [/, 2,3,5,
7,9,15,25,50,100] are cross-designed and implemented. Thereinto as the gram reaches 11 and the
number of hidden neurons reaches 100, the gram reaches 13 and the number of hidden neurons reaches 15
onwards, the memory of current system is beyond its limit. So the experimental results are abandoned from
G-11 & H-100 onwards. As illustrated, the model uses a 27-n-27 three-layer structure. The experimental
results related to dataset one plotted with First Hitting Rate and First Three Hitting Rate are shown below,

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 le

F-t PWg Rt. vAh N-Gý Fomt Thm ttdft Raft %Ift WCý

1 -GRAM
2-GRAM
3-GRAM
S-GRA
7-GRAMM
9-GRAM
II -GRAM ýD ýo 5'0 60 70 so 90 1

Hkkl. n N--

7
0.4

0.3

1--GR-A-M 12
1

0.2
2-GRAM ý

7-GRAM
9-GRAM

OL - __"RAý 00 0 10 20 30 40 50 60 70 so 90 101)
Hdd- N-

Figure 2.3.1. First Hitting Rate with N-gram Figure 2.3.2. First Three Hitting Rate with N-gram

Fig 2.3.1 and Fig 2.3.2 show 1,2 & 3-gram give the three best Hitting Rate (by winning in a small
margin, 3-gram gives the best First hitting rate and 2-gram gives the best FT hitting rates), all of which
show a better convergence toward the maximum Hitting Rate (about 56% of FT Hitting Rate and 33% of
First Hitting Rate). Both pictures illustrate the smaller Hitting Rates from 4-gram onward. The results

suggest that under the training sample, there would have been a best gram with certain number of hidden
unit to suit the prediction best. After a certain increase, further increase of gram or hidden unit doesn't help
finding a good prediction. The figures also show that the number of neuron in hidden layer affects the
model's learning ability and Hitting Rate. As suggested, the hitting rate in a hierarchy levels also can be
used in prediction ranking.

Due to the limited leaming ability of less number of hidden neurons as shown in the experimental
results, the testing relating to dataset two with one and two hidden neuron are ignored. And due to the
memory limitation, the testing of //-grarn and /3-gram are abandoned. So, for typing stream dataset two,
the chosen grams set is [/, 2,3,5,7,9] and the hidden neurons set is [3,5,7,9,15,25,50,1001. The model
uses a 53-n-53 three-layer structure. The experimental results related to dataset two plotted in First Hitting
Rate and First Three Hitting Rate are outlined below,

04

0.35 ý

Fiml Flthng Rmle Mh WCý Fmt Tl- KMwV Rt. , ft WGm
0.55,

Oý5

03

025

1ýGRAM
2-GRAM

02ý 3-GRAM
5-GRAM
71GRAM
9, GRAM

0 10 20 30 40 50 00 70 80 W 100
Fbdden N

Figure 2.3.3. First Hitting Rate with N-gram

0.45

OA:

0,35'

01ý 1 ýGRAM
2ýGRAM
I GRAM

0,25 S-GRAM
7-GRAM
9-GRAM

02
0 10 20 30 40 50 60 70 80 90 100

F6dd- Ný

Figure 2.3.4. First Three Hitting Rate with N-gram

As shown in Fig 2.3.3 and Fig 2.3.4,1-gram has gained the maximum FT Hitting Rate - 53% and 3-

gram with fifty hidden neurons produces the maximum First Hitting Rate - 38.1%. Similar results have
been obtained when testing with dataset one: the lower grams (/, 2&3-gram) show a better solution with
the FTDNN model prediction under current circumstance. Both datasets demonstrated a highly accurate
prediction rate (FT Hitting Rate around 50%) with FTDNN model.

The experimental results can be used to predict users' typing intention. In practice a higher prediction
rate could be obtained by combining the FT Hitting Rate with an English word dictionary. As the typing
stream includes all the users' correction actions and the predicted next symbol could be 'delete' or
'backspace', the experimental results can also be used to correct users' current typing. Both tests (dataset

one & two) show a minimum number of hidden neurons are required in order to get a good hitting rate. But
the testing also show the gram uncertainty in getting a best hitting rate, for example, in Fig2.3.2.2-grarn

gives the best FT hitting rate while 3-grarn has the best FT hitting rate in Fig 2.3.4. Therefore, a
combination of /, 2 and 3-grarn is a optimum solution to keep a considerably high and stable hitting rate.

6. CONCLUSION

This research suggests a Focused Time-Delay Neural Network model with extendible numbers of hidden
layer neurons and extendible numbers of time delays to analyze plain text and user's historical typing data.
Approximately 50% FT Hitting Rate has been obtained from experimental results. In practice, the results
can be applied to symbol prediction and correction.

Further research will include using a distributed representation method [131 to preprocess the typing
symbols, where each symbol will be represented by several features such as key distance, time stamp and
symbol itself. Then the prediction will not only be based on the symbols themselves but also the related n-
gram features. Another near future work is to apply FTDNN model to predict Mength string based on n-
gram's /-prediction. Therefore with the same n-grarn input as presented in this research, more symbols can
be predicted.

ACKNOWLEDGEMENT

The research is funded by Disability Essex and Technology Strategy Board [14]. Thanks to Richard Boyd
and Pete Collings for helpftil advice and discussions.

REFERENCES

[1] Karim Ouazzane, Jun Li and Marielle Brouwer (2008). 'A hybrid framework towards the solution for people with
disability effectively using computer keyboard'. L4DIS International Conference Intelligent Systems and Agents
2008, pp. 209-212

[21 Error [online], 18 January 2009, Wikipedia, available: http: //en. wikipedia. org/wiki/Error [accessed 18 January 2009]
[3] N-gram [online], 26 November 2008, Wikipedia, available: http: //en. wikipedia. org/wiki/N-gram [accessed 18

January 2009]
[4] Soukoreff, R. W., & MacKenzie, 1. S. (2003). 'Input-based language modelling in the design of high performance

text input techniques'. Proceedings ofGraphi1cs Interface 2003, pp. 89-96
[5] Simon Ilaykin, (1999). Neural Networks -A comprehensive Foundation 2nd ed. Tom Robbins
[6] Focused Time-Delay Neural Network (newMd) [online], The MathWorks, available: http: //www. mathworks. conV

accessthelpdesk/help/toolbox/nnet/dynamic3. htmI [accessed 18 January 20091
[7] Disability Essex, available: http: //www. disabilityessex. org [accessed IS January 2009]
[8] Thomas Hardy [online], 21 January 2009, Wikipedia, available: http: //en. wikipedia. org/wikitnomas-Ilardy

[accessed 22 January 2009]
[91 Charles Bloom, PPAE-High Compression Markov Predictive Coder [online],

http: //www. cbloom. com/src/ppmz-htrnl and
ftp: //ftp. cpsc. ucalgary. ca/pub/projects/textcompression. corpus/text. compression. corpus. tar. Z [accessed 18 January
2009]

[101 William Soukoreff and Scott MacKenzie, n. d. KeyCapture [online], available:
http: //dynainicnetservices. com/-will/academic/textinput/keycapture/ [accessed 18 January 2009]

[11] Entropy encoding [online], 7 September 2008, Wikipedia, available:
http: //en. wikipedia. org/wiki/Entropy_ýncoding [accessed 18 January 2009]

12] Charles Petzold, (1998). Programming Windows, 5' Edition. Microsoft Press
[131 Neural net language models [online], 19 April 2008, Wikipedia, available: http: //www. scholarpedia. org/articiet

Neural-net-janguageý_modcls [accessed 18 January 2009]
141 Knowledge Transfer Partnership, available: http: //www. ktponline. org. uk/ [accessed 18 January 20091

A HYBRID FRAMEWORK TOWARD THE SOLUTION
FOR PEOPLE WITH DISABILITY EFFECTIVELY USING

COMPUTER KEYBOARD

Karim Ouazzane
Jun Li

London Metropolitan University
Department of Computing and Communication Technology

(kouazzane, JuIO29)@Iondonmet. ac. uk

Marielle Brouwer
Disability Essex, Rocheway, Rochfon4 Essex SS4 IDQ

marielle. brouwer@disabilityessex. org

ABSTRACT

In this paper a hybrid framework was presented based on machine learning model to offer an efficient solution for
people with disability using QWERTY keyboard. It integrates neural network, language model and natural language
processing etc technologies and provides user with two fundamental functions: word prediction and typing correction.
A development of a pilot application as an English input method has been introduced.

KEYWORDS

Language model, machine learning, neural nctworlL

1. INTRODUCTION

Computer users with motor disabilities or cognitive problems may have difficulties in accurately
manipulating the QWERTY keyboard. As for motor disability this may be seen in a form of tremor owing
to a certain disease such as Parkinson's or any other factor, for instance reduced range of hand motions due
to Arthritis. Cognitive problems usually are caused by loss of the ability to process, learn and remember
information [1]. For example, Dyslexia can cause significant problems in remembering even short
sequences of numbers in the correct order.

Those types of disability frequently cause typing mistakes, which haven't been well solved by current
solution [21 [3], not to mention problems people may have with several symptoms, which cannot be
categorized as cornmon types of symptoms. Although alternative input devices or software such as
keyguard, Dasher [2] are available for use, none of them prove more efficient or comfortable than the
current QWERTY keyboard. Some work associated with standard keyboard has been developed such as
Windows' Accessibility Options, ProtoType [3], however the solution towards typing difficulties by
disabled people hasn't been achieved yet.

This paper intends to give a comprehensive solution to help disabled people to use keyboard more
efficiently. A novel architecture has been suggested based on machine leaming model and neural network.
Neural network and language model have been studied and used as central modules. User's input context
can be checked in sequence by each module along with user's typing process.

2. HYBRID FRAMEWORK

2.1 User investigation

About 27 people have been interviewed. Both, old and disabled people were involved. Their performance
can be classified as four categories as illustrated below.

Motor disability [1]
1. Long key press. This occurs when an alphanumeric key is unintentionally

pressed for longer than the default key repeat delay.
2. Modifier keys. For example, "Shift"+ "a7. One-hand typists in particular may

find it difficult to press two keys at once.
3. Additional keys. Some users often press keys adjacent to the intended keys.
4. Bounce errors. These occur when the user unintentionally presses a key more

than once.
5. Prefer big keys. They don't like laptop because of the smaller key. They

prefer big keys, for example, "space bae'
6. Easily tired. It's a very hard task for them to input more than hundred words.

Dyslexia
I. Miss letters or add letters. For instance, "studenf'-> "studnf'
2. Letters reverse. For instance, "studenf'->"studnet"
3. Spelling errors. For instance, leave vowel out of word, "magie'->"mJc"
4. Similar word errors. For instance, "dose"->! 'does"
5.]Phonetic form. For instance, "shud"->"should"

Unfamiliar with computer
1. Difficult to find keys. Especially function and punctuation keys (e. g. F12).
2. 'Enter' key puzzle. Some computers are with no "enter" or "shift" printed on

the key surface, so it's difficult for old people to find where those keys are.
3. Compound keys problem. Due to different definitions in distinct software,

compound keys' meanings are causing trouble to many people.
Others performance

1. Miss words. Leave out words in the typed sentences.
2. M Ix words. Reverse words in a sentence.
3. Mix lines. If there are some similarities (for example, same words) between

two or more lines, the user could mix lines.
4. Additional words. User could add additional words to a structured and fully

meaningful sentence.
5. Non-sense sentence. From the context of paragraph, the sentence which user

is typing is not what they want to type.
6. One-hand users' difficulties. There are unclear different difficulties for left

hand and right hand user in using the same kind of keyboard.

In order to provide a solution for practical use, this paper has aimed at "Motor Disability" and "Dyslexia7.
As a hybrid system, solutions for other performance can be integrated in the future.

2.2 The new solution

Current the research concentrates on how to correct the typing mistakes and foresee users' typing intention.
Single tcchnology such as Neural Network alone is difficult to produce a ftill solution, so we adopt a hybrid
intelligent system architecture based on a machine learning model and neural network. It consists of three
subsystems, namely, neural network, language model and natural language processing.

Recurrent Neural Network and Boltzmann Machine have been studied and used in this paper as a tool to
learn users typing behaviors from the bytes stream of keyboard. Lossless data compression methods such as
PPM and PAQ [4] were investigated as language models for the purpose of word prediction. Then, three
combinations based on neural network and language model were proposed and researched respectively.
Figure I is a logical picture of the proposed hybrid system.

Knowledge
base database

lot.

Keyboard
Signal Noises Process]

C==>
Representation

output

User Interface Module-j

Pre-Checker Language Model

Neural Network Natural Languag'

L.
Processing

Figure 1. The architecture of the hybrid system

The developed hybrid system was inspired by this machine learning model. It includes pre-processing,
central processing and user interface etc units.

Much of the typing data stream could be un-preprocessed, incomplete and noisy. For example, a long
key press generates more than one Window's message. For further analysis, the data stream needs to
undergo Noises Processing module. Subsequently, a representation forinat would be chosen to feed the
central processing.

Pre-Checker is a customized module. It checks user configuration to decide whether to perform a
unique processing or to further send a signal to other modules. Language Model and Neural Network
module provided users with two fundamental functions: Word Prediction and Typing Correction. For the
purpose of enhancing the efficiency, three novel combinations models based on neural network and
language model were developed, namely, sequential model, parallel model and the-one model. The system
will adopt the right model in terms of the user profile. The typing mistakes, which are being speculative,
are further sent to Natural Language Processing module to be analyzed. The results then are refurbished
and shown to the user through User Interface module.

Here, a topology sample of Neural Network is given. Suppose, one has to model the following typing
data sequence D within an alphabet range of A eý I aý r: [a, z]; i 27) , then recurrent neural
network to model the probability of the right symbol is used; two input coding method may be considered
as the network input, namely, unary code and ASCII. For instance, if unary code shown in Figure 2 is used,
the architecture of neural network with three letters (a, b, c) and two hidden layer is illustrated in Figure 3,

where ý is Error probability summarized based on the output.

Alphabet Coding
a I
b 01
c 001
d Gool
e 00001

Output Layer

Hidden Layer

Input Layer

Figure 2. Unary code sample Figure 3. Topology sample of Neural Network

ASCII coding requires less neurons (between 8 and 20 at input layer), but need to summarize all the
possible output (>8bits).

VC6 is used as a development tool within Windows XP based environment. IME (input Method Editor)
API is used to provide the hybrid system with a way to communicate with most of the editors. For
efticiency reasons a unique database and its interface has been developed instead of using ODBC. An
interface of pilot application using Notepad as an editor is shown in Figure 4.

Figure 4. The user interface of the hybrid system

3. CONCLUSION

The research provides disabled people with a comprehensive solution using QWERTY keyboard. The
hybrid system integrates multiple technologies and presents two major functions: Typing Correction and
Word Prediction. The user typing intention is predicted based on the input history; and the typing errors in
data streams are gradually corrected as the process goes through each module. A pilot application based on
Windows XP and IME API has been developed to demonstrate the hybrid system architecture. Further
work would explore the efficiency comparison among these three combined models. Bayesian Learning can
be used as an alternative method to evaluate the research result.

ACKNOWLEDGEMENT

The research was funded by Disability Essex. Thanks to Richard Boyd, Pete Collings, Stuart Kirk and
YanGuo Jing for helpful advice and discussions.

REFERENCES

III Shari Trewin & Helen Pain, 1998. A Model of Keyboard Configuration Requirements. Proceedings of the third
international ACM conference on Assistive technologies, Marina del Rey, CA: pp. 173-181.

121 Inference Group of Cambridge, Dasher, available at <URL: http: //www. infercnce. phy. cam. ac. uk/dasher/ > [access
25 January 20081

[31 Sensory Sollware International Ltd, ProtoType, available at <URL:
http: //www. sensorysoftware. com/prototype. html > [access 15 February 20081

141 Wikipedia, Data compression, available at <URL: http: //en. wikipedia. org/wiki/Data compression > [access 15
February 20081

I Fb Edt

Poster Antelligent Keyboard

Summery

Jun Li

Computer users with motor disabilities or cognitive problems have difficulties in

accurately manipulating the QWERTY keyboard. This research intends to apply an

intelligent model to help them typing more efficiently. Firstly, a hybrid framework was

presented based on machine learning, along with which, three novel models were

proposed to achieve two functions, namely, text prediction function and typing correction

function. Finally, a pilot application was developed as an English input method. Further

work would mainly focus on the three models' modeling and their efficiency evaluation.

Introduction

Computer users with motor disabilities or cognitive problems may have difficulties in

accurately manipulating the QWERTY keyboard. Through user investigation, four

categories of disability were concluded, which includes motor disability, dyslexia,

unfamiliar with computer and other performance. In order to provide a solution for

practical use, this research has aimed at "Motor Disability". As a hybrid system, solutions
for other performance can be integrated in the future.

Hybrid Architecture and Three Models

=Knowledge

base
abase database

Keyboard
Signal

Noises Process

Representation

output

User Interface Module

IL

Pre-Checker Language Modell

sin2
Neural Network 4Hatural Lsanguag IL

Processim

Figurel. The architecture of the hybrid system

Keyboard signals need to undergo Noises Processing module first. Subsequently, a

representation format would be chosen to feed the central processing. Pre-Checker

module checks user configuration to decide whether to perform a unique processing or
further send a signal to other modules. Language Model and Neural Network module

provided users with two fundamental functions: Word Prediction and Typing Correction.

For the purpose of enhancing the efficiency, three novel combinations models based on

neural network and language model were developed, namely, sequential model, parallel

model and the-one model shown below,

Typing Signal Typing Correction Text Prediction 10 Output
tt

RNN & Boltzman PPM & PAQ

Figure2. Sequential model

Typing Correction
Feedback

Text Pre
A)

Figure3. Parallel model

RNN

Input Signal Text Prediction

-n z Storage

z _n

Output

Figure4. The one model

At last a pilot application was developed for purpose of demonstration. VC is used as a

development tool within Windows XP based environment. An interface by using Notepad

as an editor is shown in Figure below,

f-d- tdit t-ormost

abo. a board
2 about
3a bu%pe

q

[EDFAj! MqAVj

Figure5. The user interface of the hybrid system

Conclusion and Future work

The research provides disabled people with a comprehensive solution using QWERTY

keyboard. The hybrid system integrates multiple technologies and presents two major

functions: Typing Correction and Word Prediction. The user typing intention is predicted

based on the input history; and the typing errors in data streams are gradually corrected as

the process goes through each module. A pilot application based on Windows has been

developed to demonstrate the hybrid system architecture. Further work would explore the

efficiency comparison among these three combined models. Bayesian Learning can be

used as an alternative method to evaluate the research result.

