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ABSTRACT 

This thesis deals with the asymptotic and oscillatory behaviour of the solu

tions of certain differential and difference equations. It mainly consists of three 

parts. The first part is to study the asymptotic behaviour of certain differential 

equations. The second part is to look for oscillatory criteria for certain nonlinear 

neutral differential equations. And, the third part is to establish new criteria for 

a class of nonlinear neutral difference equations of any order with continuous vari

able and another type of higher even order nonlinear neutral difference equations 

to be oscillatory. 

At first, we are concerned with the first order differential system of the form 

,;(t) = b;(t)Xi(t) (l -t aij (t)Xj(t)) , i E N(l, n), 

where the functions aij(t) and bi(t) are continuous on R and bounded above and 

below by strictly positive numbers. Sufficient conditions are established for the 

solutions to be stable. 

Secondly, we consider the oscillation of second order nonlinear neutral differ

ential equations of the form 

(a(t)(x(t) + 8p(t)x(t - 7))')' + J(t,x(t - 0')) - g(t,x(t - p)) = 0, 

where 8 = ±1, t 2: to, 7,0',p E [0,00) are constants, a(t) is a continuously dif

ferentiable function and p(t) is a bounded continuous function with a(t) > ° and 

p(t) 2: 0, and J(t, u) and g(t, v) are continuous functions. We obtain some crite-
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ria for bounded oscillation, bounded almost oscillation and almost oscillation for 

these equations. 

iv 

Thirdly, we consider the mth order nonlinear neutral difference equations of 

the form 

~;t(x(t) - px(t - r)) + f(t,x(g(t))) = 0, 

where p ~ 0, m ~ 2, T and r are positive constants, ~TX(t) = x(t + T) - x(t), ° < 

g(t) < t, 9 E Cl([to,oo),R+) and g'(t) > 0, and f E C([to, oo) x R,R). Oscil-

latory criteria are obtained for the second, third, fourth, higher even order, and 

higher odd order equation. 

In addition, we consider the even order nonlinear neutral difference equation 

where m is an even positive integer, n ~ no, {Tn} and {gn} are sequences of 

nondecreasing nonnegative integers with Tn ~ n, gn ~ n, Tn ~ 00 and gn ~ 

00 as n ~ 00, {an} and {qn} are sequences of real numbers with an > 0, qn ~ 

o and qn ¢. O. By mainly using Riccati's technique, we obtain some oscillation 

criteria for the above equation. 
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Chapter 1 

INTRODUCTION 
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The aim of this chapter is to lay the fundamental basis for the thesis and 

confine the terms to the objective of the thesis. In this respect, we define some 

terminologies at the very beginning, which will appear later on throughout the 

thesis. In section 1.2, we state some notations and basic theorems that will be 

needed in later sections and chapters. These notations are commonly used and 

can be found in some monographs. Then a brief survey of the development and 

current state of stability and oscillation of solutions of differential and difference 

equations is given in section 1.3. In section 1.4, we present the reasons why this 

thesis has taken place. Finally, we close this chapter with the outline of the work 

presented in the thesis. 

1.1 TERMINOLOGY 

We begin this section with some terms commonly used in the literature which 

will appear throughout the thesis. 

A functional differential equation is a differential equation involving the values 

of the unknown functions at present, as well as at past or future time. The word 

"time" here stands for the independent variable. In the thesis, the concept of 

a functional differential equation is confined to ordinary differential equations 

although it suits partial ones as well. 

Functional differential equations can be classified into four types according to 

their deviations: retarded, advanced, neutral and mixed. 



A neutral equation is one in which derivative of functionals of the past history 

and the present state are involved but no future states occur in the equation. 
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The order of a differential equation is the order of the highest derivative of 

the unknown function. 

A difference equation is a specific type of recurrence relation, which is an 

equation that defines a sequence recursively: each term of the sequence is defined 

as a function of the preceding terms. On the other hand, difference equations can 

be thought of as the discrete analogue of the corresponding differential equations. 

By analogy with differential equations, difference equations also can be clas

sified into four types: delay, advanced, neutral, and mixed. 

The order of a difference equation is the difference between the largest and 

the smallest values of the integer variable explicitly involved in the difference 

equation. 

1.2 PRELIMINARIES 

We begin this section with the definition of notations, which will be used 

throughout this thesis later. Let R= (-00, +00), Ro = [0,+00), R+ = (0,+00) 

and R- = (-00,0) be the usual sets of real, nonnegative, positive, and neg

ative numbers, respectively. Let R* denote the extended real line, i.e., R* = 

R u { - 00, +oo}. Let Rn be an n-dimensional real linear vector space with 

norm II· II, and C(!a, b], Rn) be the Banach space of continuous functions from 
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[a, b] to Rn. Let 

be the Banach space of functions from [to, (0) to R with topology of uniform 

convergence. Put N = {I, 2, 3, ... } and N = {O, 1,2, ... }. For integers a ~ 

o and b > a, we denote the discrete intervals by N(a, b) = {a, a + 1" .. ,b} and 

N(b) = {b, b + 1, b + 2,,, . }. 

Let !:::. be the forward difference operator: !:::.xn = Xn+l - Xn , !:::. mXn = 

x' and x" denote the first and second order derivatives of x and let x(m) denote 

the mth order derivative of x. Then 

x(n) = dx(n-l) =.:!:.. (.:!:.. ... dX) if n ~ 2. 
dt dt dt dt 

In order to give the definition of the solution of differential equations, we at 

first give the following general nth order functional differential equation 

F(t '" (n») - 0 ,x, x, x ,'" ,x -, (1.2.1) 

where F(t,') is a functional involving the value of the x(k) on an interval. 

Definition 1.2.1 Byasolutionof(1.2.1)wemeanafunctionx(t), tE [tx, 00) C 

R which is n times continuously differentiable and satisfies (1.2.1) on the inter-

val [tx, (0). A solution x of equation (1.2.1) is called oscillatory if x is neither 

eventually positive nor negative, in other words, x has an unbounded set of zeros 

in [tx, 00). If all solutions x of (1.2.1) are oscillatory, then differential equation 

(1.2.1) is called oscillatory. If every bounded solution of (1.2.1) is oscillatory, 
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then (1.2.1) is called bounded oscillatory. If every solution of (1.2.1) not in the 

class of 0(1) as t ~ 00 is oscillatory, then (1.2.1) is called almost oscillatory. If 

every bounded solution of (1.2.1) which is not in the class of 0(1) as t ~ 00 is 

oscillatory, then (1.2.1) is called bounded almost oscillatory. 

At the same time, to define the solution of difference equations we give the 

following corresponding general difference equation 

(1.2.2) 

where F(n,·) is a given function of the independent variable n and the dependent 

variable of x{n) at n E N. 

Definition 1.2.2 By a solution of equation (1.2.2) we means a sequence {xn} of 

points Xn E R for n E N, which satisfies equation (1.2.2). A sequence {xn} of real 

numbers is said to be oscillatory if the terms Xn are neither eventually positive 

nor eventually negative. If all the solutions {xn} of (1.2.2) are oscillatory, then 

equation (1.2.2) is said to be oscillatory. If every bounded solution {xn} of (1.2.2) 

is oscillatory, then (1.2.2) is called bounded oscillatory. If for every solution {xn} 

of (1.2.2), either {xn} or {~k-lxn} is oscillatory, then (1.2.2) is called almost 

oscillatory. If for every bounded solution {xn} of (1.2.2), either {xn} or {~k-lxn} 

is oscillatory, then (1.2.2) is called bounded almost oscillatory. 

For later use, we present the following well-known Gronwall's inequality. 

Lemma 1.2.1 Let I = [to, T) C R and suppose that 

u(t) ~ c + it q(s)u(s)ds for tEl, 
to 

(1.2.3) 
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where c is a nonnegative constant and u, q E C(I, R+). Then, 

u(t) ~ cexp (1: q(S)dS) for tEl. (1.2.4) 

Lemma 1.2.2 (Taylor's Formula) Suppose that j(x) satisfies the following two 

conditions: 

(i) j(n)(x) is continuous on [a, b], 

(ii) j(n+l)(x) exists in the open interval (a, b). 

Then for all x E (a, b), there is at least one ~ E (a, x) such that 

j(x) = 
J'(a) j"(a) j(n) (a) 

j(a) + -(x - a) + --(x - a)2 + ... + (x - a)n + 
11 2! n! 

j (n+l) (C) 
.:.-_..:...."-;..;..(x - at+1• 
(n + I)! 

In particular, the above conclusion holds if j(n+l) E CIa, b]. 

1.3 BACKGROUND AND HISTORY REVIEW 

We would like to point out here that in this section only a general and basic 

background and history review will be given, more specific and recent background 

and review will be given in each chapter later. 

It is well known that differential and difference equations have played an im-

portant role in applicable analysis for recent few decades. Due to the importance 

of equations in application with an increasing number of interesting mathematical 

problems involved, see [46], [52], [42] and [20] for example, the subject has been 
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developed very fast and attracted a huge number of researchers and some basic 

theories of differential and difference equations have been established. We refer 

to [15], [28], [29], [2], [8] for a few examples of such theories. 

Since then there have appeared a good deal of results reflecting various in-

terests. For example, Gopalsamy's book [21] includes most of the recent results 

on stability and oscillation of delay differential equations of population dynamics 

while Gyori and Ladas' book [27] devotes to the recent results in the oscillation 

theory of functional differential equations. 

For differential equations, miscellaneous problems have been broadly investi-

gated for various classes of particular equations, such as the initial value problem, 

existence, uniqueness, stability, oscillation, and so on. Here are some examples 

mentioned. 

Johnson and Karlsson [31] studied the equation 

x"(t) + ::x'(t) + ~ sinx(t - r) = 0, 
r r 

which is often referred to as the sunflower equation because of its origin in the 

circummutation of plants. Oscillation of certain special differential equations 

were studied, for instance, 

n 

y'(t) = LPiy(t + Ti), Pi > ° and Ti > 0, i = 1,2," . ,n 
i=l 

by Ladas and Stavroulakis [35] and 

y(n)(t) = p(t)y(g(t)) + q(t)y(h(t)), g(t) < t and h(t) > t 

by Kusano [34]. 
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It is worth pointing out that with the importance in application, such as in 

Physics, Economics, and Control Systems, stability of differential equations with 

time delays has attracted a vast number of researchers. It has been investigated 

since 1960s by Razumikhin [48], Ezeilo [18] and many others. Since then some 

books and many papers have been published dealing with functional differential 

equations (for example, see [28], [38] and [70]). Generally, there are two of the 

main ideas to consider stability of time delay systems based on Lyapunov's direct 

method. The first one is to construct Lyapunov functionals to obtain the criteria 

for stability. The second one is the Lyapunov-Razumikhin approach, which is to 

construct Lyapunov functions rather than functionals and was first introduced by 

Razumikhin [48]. Since functions are much simpler to use, it is natural to explore 

the possibility of using functions to determine sufficient conditions for stability. 

By this method, Hale gave sufficient conditions of stability and boundedness of 

the first order and second order delay differential equations [28] and Razumikhin 

[48] dealt with third order equations. Ezeilo [18], Abou-El-Ela [1], Yu and Chen 

[60] and Okoronkwo [45] considered stability of a certain fourth order differential 

equations. There are few results on higher order functional differential equations 

up to date because it is very difficult to construct a Lyapunov functional or 

function. For example, Sadek [50] considered the following third order differential 

equations 

X(3)(t) + axl/(t) + bx'(t) + f(x(t - r)) = p(t) 

and 

X(3)(t) + ax"(t) + ¢(x'(t - r)) + f(x(t)) = p(t). 



Some sufficient conditions were given for the stability and boundedness of solu

tions. Further, Sadek [51] also investigated the fourth order equations 

and 

and obtained sufficient conditions for the zero solution to be asymptotically stable. 
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As a special class, neutral differential equations have been studied broadly 

and some basic problems, such as the initial value problems, stability, oscillation, 

have been solved for certain particular classes of equations. We refer to Ladde, 

Lakshmikantham and Zhang [36], Bainov and Misher [11], Grammatikopoulos 

[25] and the references therein for more details. 

At the same time, the theory of difference equation has grown at a faster pace 

in past decade and has occupied an important position in analysis. It is no doubt 

that difference equations will carryon to play an important role in Mathematics 

as a whole. The basic theories have been established, see [8], [2], [32], for a few 

examples of such theories. Since then there are many results about the qualitative 

properties of solutions of difference equations, such as [4], [3] and the references 

therein for more details. 

Although many researchers have engaged in the study of the qualitative be

haviour of differential and difference equations, there is no general theory available 

for certain particular classes of equations. It is worthy to investigate the qualita

tive properties of solutions of these equations. 
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1.4 MOTIVATION FOR THE THESIS 

In both theory and application, there is an increasing need to investigate the 

properties of the solutions of differential and difference equations. It is worth 

the effort to investigate a broader class of equations and to establish a theory 

for some fundamental problems such as asymptotical behaviour at infinity, oscil

latory properties and oscillatory criteria. The main reason is that the solutions 

of most differential and difference equations cannot be formulated explicitly, and 

in some cases are troublesome even numerically. Thus it is very important that 

one can obtain the criteria for the behaviour of the solutions even in the higher 

dimension without knowing the solutions themselves. Therefore, this thesis will 

only concentrate on theoretical investigations of the behaviour of the solutions of 

certain types of differential and difference equations. 

1.5 OUTLINE OF THE THESIS 

A brief description of the organization of the thesis is as follows. Chapter 1 

introduces the terminologies and notations appeared throughout the thesis and 

gives the background of the thesis. 

Chapter 2 studies the stability of one class of differential equations. N-
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dimensional non-autonomous first order differential systems are investigated of 

the form 

i E N. 

Sufficient conditions are established for the solutions to be stable. 

Chapter 3 deals with the oscillation of the second order nonlinear neutral 

differential equations of the form 

(a(t)(x(t) + op(t)x(t - 7))')' + J(t,x(t - 0")) - g(t,x(t - p)) = 0, 

where <5 = 1 or 0 = -1. In this chapter, we obtain criteria for bounded oscillation, 

bounded almost oscillation and almost oscillation of the solutions. Furthermore, 

examples are given to illustrate the criteria in each case, respectively. 

Chapters 4 and 5 are the main part of this thesis. In these two chapters, 

we investigate the oscillation of the nonlinear neutral difference equations with 

continuous variable 

~~(x(t) - px(t - r)) + J(t,x(g(t))) = 0, 

where m ~ 2. The second, fourth, higher even order, third, and higher odd order 

of the above equation have been discussed, respectively. Chapter 4 contains the 

even orders m ~ 2 and Chapter 5 is devoted to the odd orders m ~ 3. In 

Chapter 4, mainly using an integral transformation, the Riccati transformation 

and iteration, oscillation criteria are established for the second order, fourth order 

and higher even order, respectively. Furthermore, examples are given to illustrate 

the applications of the results in each case. In Chapter 5, the above difference 

equations are converted to the corresponding differential equations or inequalities 



by using an integral transformation. Based on the results of differential equations 

or inequalities, sufficient conditions are obtained for the bounded solutions to be 

oscillatory. Moreover, examples are given to illustrate the results. We should 

point out that the results on the second order have been published in a peer

viewed journal (see [56]). 

Chapter 6 deals with the following higher even order nonlinear neutral differ

ence equations of the form 

By using generalized Riccati technique and Riccati type difference inequalities, 

oscillation criteria are achieved for the solutions. In addition, examples are given 

to illustrate the results. The results have been published in a peer-viewed journal 

(see [40]). 

We draw conclusions in Chapter 7. 
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DIFFERENTIAL EQUATIONS 
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2.1 INTRODUCTION 

In this chapter, we are concerned with the nonautonomous Lotka-Volterra 

system with the form 

(2.1.1) 

where the functions aij(t) and bi(t) are continuous on R and bounded above and 

below by strictly positive numbers. Throughout this chapter the following con-

dition 

bi(t) ~ -b. N( ) ~ t as t~oo, iE 1,n 
b1 (t) 

(2.1.2) 

will be assumed. Since (2.1.1) is well known as a model of a community of n 

mutually competing species, Xi denoting the population size of the ith species at 

time t, we adopt the tradition of restricting attention to the closed positive cone 

denoted by R~ and the open positive cone is denoted by R~. 

We are interested in the existence of a global attractor X* E R+ with xi E R+, 

which means that all but one of the species will go extinct while the only one 

species will stabilise at xi. Oca and Zeeman [44] considered the following Lotka-

Volterra system 

(2.1.3) 

and established a criterion which guarantees that all but one of the species is 

driven to extinction. Ahmad and Lazer [10] considered the above system, where 

aij and bj are periodic or almost periodic, and found conditions under which there 

exists a unique solution that attracts all other solutions with positive components. 
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Oca and Zeeman [43J generalized results given in [44J and [lOJ to a situation when 

n-r components vanish, whilst the remaining r components approach a canonical 

solution of an r-dimensional subsystem. Zeeman [62J considered the autonomous 

system in the form 

and exhibited a criterion which guarantees that all but one of the species are 

driven to extinction, whilst the one remaining population stabilities at its own 

carrying capacity. Ahmad [9J considered the two-dimensional system 

u'(t) = u(t) (a(t) - b(t)u(t) - c(t)v(t)) 

v'(t) = v(t) (d(t) - e(t)u(t) - f(t)v(t)) 

and showed under certain conditions that one of its components vanishes while 

the other approaches a certain solution of a logistic equation. 

The purpose of this chapter is to find new conditions that are less restrictive 

for the existence of a global attract or x· E R~. We shall establish some new cri-

teria for a particular solution to be stable. The main result will be presented in 

section 2.2 and its proof will be given in section 2.3. At last we draw a conclusion 

in section 2.4. 

2.2 MAIN RESULT 

Together with (2.1.1), we also consider the nonautonomous logistic equation 

(2.2.4) 
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The following lemmas 2.2.1 and 2.2.2 are applied to (2.2.4). They have showed 

that in the nonautonomous logistics equation the role of the globally attracting 

capacity of the nonautonomous systems is played by a well defined canonical 

solution xi(t) to which all other solutions converge. Both lemmas can be found 

in [44]. 

Lemma 2.2.1 Equation (2.2.4) has a unique solution xi(t) which is bounded 

above and below by strictly positive numbers for all t E R. 

Lemma 2.2.2 If u(t), v(t) are any two solutions of (2.2.4), then 

u(t) - v(t) -4 ° as t -4 00. 

We call xj(t) the canonical solution of (2.2.4). Note that any solution Xi{t) of 

(2.2.4) is bounded above and below by strictly positive numbers and Xi(t) -

xi{t) -4 ° as t -4 00. 

Theorem 2.2.1 Assume that for all k > 1 there exists an i k < k such that 

for all j :::; k, (2.2.5) 

where Cj are any positive constants. Then every trajectory with initial condition 

in ~ is asymptotic to (xi,O,,,.,O). 

In other words, for strictly positive initial values, the species Xj (j E N{2, n)) 

are driven to extinction while species Xl stabilizes at the unique bounded solution 

xi of the logistic equation (2.2.4) for i = 1. 



2.3 THE PROOF 

First we prove the following lemmas then derive the proof of the theorem 

immediately. For a given function g( t) defined on R, let 

gL = inf g(t), 
R 

gM = sup g(t). 
R 

Lemma 2.3.1 If x(t) is a solution of (2.1.1) with initial condition in R~, then 

there exist some b > 0, Al > 0, and T E R such that 

n 

b S; L Xi(t) S;!v! and 0 < :ri(f) S; !v!, for all i E N(l, n) 
i=l 

for all t > T. 

(2.3.6) 

Proof It is obvious that the open and closed positive cones are invariant 

under (2.1.1). Now let 

and 

M = 2 max {_1_: 
aijL 

~ 1 . { 1 u = -mm --: 
2 a""M 1) 

i,j E N(l,n)}, 

i,j E N(l, n) } 

We will show that S is a globally attracting positively invariant compact set in 

m\{O}. Then if x(t) is a solution of (2.1.1) with initial condition in R~, there 

exists aTE R such that x(t) E S for all t 2: T. And the conclusion follows 
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immediately. From (2.1.1), we have 

X~(t) = bi(t):Z'i(t) (1 -t aij(t)Xj) 
1'=1 

< bi(t):fi(t) (1 -t aijLXj) 
)=1 

< bi(t):ri(t) (1 -Q' t :rj ) , 

)=1 

where Q' = mini,j{ Gijd. Then we have 

(t Xi(t)), ~ t b;(t)xi(t) (1 -" ~ Xj) . 

If E7=1 Xj > 1/Q', then (E~1 Xi)' < 0, i.e., 2:~=1 Xi is decreasing. So there 

must be a Tl E R such that E~=1 Xi < M = 2/Q' for t ~ T1. 

By the similar procedure, we obtain 

X:(t) = bi(t)Xi(t) (1 -~ aij(t)Xj) 

> bi(t)Xi(t) (1 -t aijMXj) 
1=1 

> bi(t)Xi(t) (1 -;3 ~ Xj) , 

where 13 = maXi,j{aijM}. So 

If E;=l Xj < 1/(3, then (E7=1 Xi)' > 0, i.e., E~=l Xi is increasing. So there 

must be a T ~ Tl such that E~l Xi > 8 = 1/(213) for t ~ T. Therefore, S is a 

positively invariant compact set in R+ \ {O}. And for each x(to} > 0, E~=l Xi(t} 

belongs to S as t ~ T. Thus, S is a compact attracting set for (2.1.1) on R+\{O}. 

18 
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Remark 2.3.1 Although there are results similar to Lemma 2.3.1 available in 

the literature for system (2.1.3)' we put this lemma here for convenience. 

Lemma 2.3.2 If (2.1.1) satisfies (2.2.5) and :r(t) is a solution of (2.1.1) with 

x(to) E R~ for some to, then for all i E N(2, n) 

t 2 to, 

where Ki > 0 and ai < O. 

Proof Let x(t) be a solution of (2.1.1) with x(to) E R~ for some to. By 

Lemma 2.3.1, x(t) E S for all t 2 to. We will prove the conclusion for xn(t) at 

first. Let in be given in (2.2.5) by i. From (2.2.5)' it follows that 

as t ~ 00. Then, from (2.2.5) again, we have 

[
In (xf (t))] I 

Xi(t) 

n 

bi(t) L(aij(t) - anj(t))Xj + 0(1) 
j=1 

n 

< bj(t) L( -CjXj) + 0(1) 
j=1 

< -biL m~n{cj}8 + 0(1) 
J 



as t - 00. Hence, there exists a tl > to such that for all t 2 tl, 

Integrating both sides, we obtain 

and 

ln 
(

xf,bn (t)) t 
~ Mn(t - td 

Xi (t) 
tl 

!l 
Crt> t where C = nl,x~n(tl)e-Mntl. Tl1us 
10 '_ b m Xi(ttl ' 

for some Kn > 0, an < 0, and all t 2 to. 

t 2 to. This method is essentially the same as that used above for Xn. Now let 

i(n-l) be given in (2.1.1) by i. From (2.2.5) and limt-+oo xn(t) = 0, it follows that 

20 
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By (2.2.5) again, there is a Tn > to such that 

Integrating the above inequality, we have 

and so 

(t) < Tf Un_It Xn-I _ fin-Ie 

for some K n - 1 > 0, O'n-l < 0 and all t 2: to. Repeating the above procedure 

n - 1 times, we have shown the conclusion holds for all i E N(2, n). 

Lemma 2.3.3 If (2.1.1) satisfies (2.2.5) and x(t) is a solution of (2.2.5) with 

x(to) E kt for some to, then XI(t) - xi(t) -- 0 as t -- 00. 

Proof By Lemma 2.3.1, we assume that x(to) E S n R+ then x(t) E 

S for all t 2: to. From Lemma 2.3.2, limt--+oo Xi(t) = 0 when i > 1, so XI(t) 

is bounded above and below by positive constants. 

Let Ul (t) be a solution of the nonautonomous logistic equation (2.2.4) such 

that Ul(tO) 2: Xl(tO). Then Ul(t) is bounded by Lemmas 2.2.1-2.2.2. We claim 

that Ul(t) > Xl(t) for all t > to. Indeed, if there exists a number tI > to such 



that ui (id - :ri (i1) ::; O. But this contracts the fact that 

11 

U'I(tI) - :r~(td = bi (td:Z:1 (td LaIj(tdxj(td > O. 
j=2 

So we have 

and 

:1'; (t) _ u; (t) 
l'l(t) UI(t) 

b, (t) (I -~ a,j{t)Xj(t)) - b1(t)(1 - all(t)ul(t)) 

11 

= bl(t)all(t)(ul(t) - XI(t)) - b1(t) Lalj(t)Xj(t) 
j=2 

Ul(t) - Xl(t) - Qll(t;b1(t) (! (In ::i:D + b1(t) t,alj(t)x;(t)) 

< all~blL (! (In ::i:D + b1(t) t,alj(t)x;(t)). 

Integrating this inequality we have 

1 (XI(t) t it n ) 
--:-b- In -(t) + bi (s) L alj(s)xj(s)ds 
allL llL UI' to . 2 

to J= 

22 

1 ((XI(t)UI(tO)) ~ it ) b In (t) , (t) + blM ~ aljM Xj(s)ds 
allL IlL UI Xl 0 j=2 to 

< 

< K < 00, 

where K is a constant independent of t. Suppose limsuPt->oo(udt) - XI(t)) = 

1 as n - 00, tn > t-o and UI(tn) - XI(tn) > ,/2 for n 2: 1. Since ui(t) - xi(t) 

is bounded, Ul(t) - Xl(t) is uniformly continuous on Ito, 00). Thus, for 1/4 > 0, 

there is an I > 0 such that 
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for each n 2: 1 and all t E [tn - l, tn + ll. Then 

Since we can always choose a subsequence of {tn} to replace {tn} if necessary, 

without loss of generality, we assume that 

to ~ tl - l ~ ... ~ tn + l ~ tn+l -l ~ .... 

Then 

as n --+ 00. This contradiction to the convergence of ft'; (UI (t) - Xl (t) )dt shows 

that limsuPt-+oo(UI(t) - XI(t)) = O. Note that UI(t) - XI(t) > O. Hence UI(t)-

XI(t) --+ 0 as t --+ 00. Moreover, by Lemma 2.2.2 

UI(t) - xi(t) --+ 0 as t --+ 00 

and hence 

Xl (t) --+ xi(t) as t --+ 00. 

Proof of Theorem 2.2.1 Suppose that x(t) is a solution of (2.1.1) with initial 

condition in iG-. By Lemma 2.3.1, we have 

n 

8 ~ L Xi(t) ~ At and 0 < Xi(t) ~ M, for all i E N(l, n) 
i=l 

for all t > T, where 8 > 0, M > 0, and T E R. Then from Lemma 2.3.2, we 

can see that Xi(t) --+ ° as t --+ 00 for 2 ~ i ~ n and Xl (t) is bounded above and 

below by positive constants. According to Lemma 2.3.3, Xl(t) --+ x*(t) as t --+ 



00. Therefore, every trajectory with initial condition in R+ is asymptotic to 

(xi,O, ... ,0). 

2.4 CONCLUSION 

The aim of this chapter is to study the stability of a particular class of solu

tions of the first order nonautonomous system (2.1.1). In the meantime, (2.1.1) 

is a well-known population model of n mutually competing species. In this chap

ter, we are interested in the existence of a global attractor x* = (xi, 0, ... ,0). 

From the previous studies, we know that logistic equation (2.2.4) has a canonical 

solution xi, which is bounded above and below by positive numbers. Based on 

this, we have obtained a weaker condition (2.2.5) and improved the result. Under 

condition (2.2.5), all species Xi(i ~ 2) but Xl with strict positive initial conditions 

are driven to extinction. 
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OSCILLATION OF 

NONLINEAR NEUTRAL 

DIFFERENTIAL EQUATIONS 
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3.1 INTRODUCTION 

In this chapter, we consider the oscillation of second order nonlinear neutral 

differential equations of the form 

(a(t)(:r(t) + c5p(t)x(t - T))')' + f(t, x(t - 0")) - g(t, x(t - p)) = 0, (3.1.1) 

where 0 = +1 or -1, t 2: to, a(t) is a continuously differentiable function, p(t) is 

a continuous bounded function with a(t) > 0, p(t) 2: 0, f(t, u) and g(t, v) are con

tinuous functions, the constants T, 0", P E [0, (0). Denote A = max{T, 0", p}, tl = 

to + A, £1 [to, (0) = {x(t) 1ft: l:r(s)lds < oo}. 

Some of the following conditions will be assumed later: 

(Hd Itoo 
als)ds = 00 for all t 2: to, 

(H2 ) f(~u) 2: q(t - 0") > ° for u i- 0 and 0 < g(;v) ~ r(t - p) for vi- 0, 

(H3) 0 < f(~u) ~ q(t - 0") for u i- 0 and g(;t,) 2: r(t - p) > ° for v i- 0, 

(H4) r(t)~q(t) is bounded, where q, r E C([to, (0), R+). 

In other words, this equation is a second order neutral differential equations 

with positive and negative terms. In this chapter, we shall first obtain some 

criteria for bounded oscillation, bounded almost oscillation and almost oscillation 

for equation (3.1.1) when 0 = + 1 in section 3.2 and then for equation (3.1.1) 

when 0 = -1 in section 3.4. Following the theorems, some examples will be given 

in section 3.5 to illustrate the criteria. Finally, we will finish this chapter with a 

conclusion in section 3.6. 
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In this chapter, we always assume that x(t) is a nontrivial solution of equa

tion (3.1.1). The investigation of oscillatory behaviour of solutions of various 

types of differential equations done by many researchers is motivated by many 

application problems in Physics [17], Biology [41], Ecology [55], and the study of 

infectious diseases [12]. For some contributions made to the oscillation theory, 

we refer to the articles [22], [57], [25], [26], [19], [30], [33], [47], [49], [14] and [13] 

and the books by Gyori and Ladas [27], Agarwal, Grace and O'Regan [5], Erbe, 

Kong and Zhang [15], Ladde, Lakshmikantham and Zhang [36], and the refer

ences therein. There are a great number of papers devoted to various particular 

cases of (3.1.1) such as the linear equation (without delays) 

x"(t) + q(t)x(t) = 0, 

the more general linear equation (without delays) 

(a(t)l/(t))' + q(t}x{t) = 0, 

the nonlinear equation (without delays) 

(a(t)x'(t))' + q(t)f(x(t)) = 0, 

and the more general nonlinear equation 

(a(t)x'(t))' + p(t)x'(t) + q(t)f(x(t)) = ° 
when T = 0" = P = o. See [22], [37], [57], and [14] for example. Grammatikopou

los, Ladas and Meimaridou [26] considered 

(x(t) + p(t)x(t - T))" + q(t)x(t - 0") = 0, 



where p(t) = p and q(t) = q > a and obtained some sufficient conditions for the 

above equation to be oscillatory. Gai, Shi and Zhang [19] considered 

(x(t) + p(t):r(a(t)))" + q(t)f(:r(T(t)))g(:r'(t)) = 0 

and 

(:r(t) + p(t.):r(a(t)))" + q(t)J(:r(t),:r(T(t)))g(x'(t)) = a 

and established the criteria for the solution to be oscillatory. These equations are 

more general when a ::; p(t) < 1 than (3.1.1). Ruan [49] considered 

(a(t)(x(t) + p(t):r(t - T))')' + q(t)J(x(t - a)) = a 

and obtained some oscillation criteria. Again it requires that a :::; p(t) ::; 1. The 

differential equations of the form 

where gi(t) :::; t, i E N(1, n), were considered in [30], [33], [14] and [13]. Note that 

the highest derivative does not involve delays. 

3.2 MAIN RESULTS WHEN 8 = + 1 

In this section, we consider equation (3.1.1) with 8 = + 1. We rewrite equa

tion (3.1.1) as 

(a(t)(x(t) + p(t)x(t - T))')' + J(t,x(t - a)) - g(t,x(t - p)) = O. (3.2.2) 

Four oscillatory criteria will be presented here for equation (3.2.2) to be bounded 

oscillatory, almost oscillatory and bounded almost oscillatory, respectively. 
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Theorem 3.2.1 Suppose conditions (HI), (H2 ) and (H4) hold, q(t) > r(t), r(t) 

is bounded and <7 2: p. Then (3.2.2) is bounded oscillatory. 

Proof Let :r(t) be a bounded non-oscillatory solution. Suppose x(t) is 

an eventually positive solution. Then there exists a t2 2: tI such that x(t) > 

o and x(t - ,\) > 0 for t 2: t 2 . Let 

z(t) = a(t)(x(t) + p(t)x(t - T))' -l~:P r(s)x(s)ds. (3.2.3) 

From (3.2.2) and (H2 ), it follows that 

z'(t) ~ (r(t - (7) - q(t - (7))x(t - (7) < 0, t 2: t2 . (3.2.4) 

So z(t) is decreasing, and 

-00 ~ lim z(t) = e < 00. 
1 ..... 00 

If c = -00, from (3.2.3) and the boundedness of x(t) and r(t), we have 

lim a(t)(x(t) + p(t)x(t - T))' = -00. 
t ..... oo 

Then there exist an II > 0 and a t3 2: t2 such that 

II 
(x(t) + p(t)x(t - T))' ~ - a(t)' t 2: t3. 

Integrating both sides of the above inequality, according to (Hd, we obtain 

lim (x(t) + p(t)x(t - T)) = -00, 
t ..... oo 

which contradicts the boundedness of x(t) and p(t). This contradiction shows 

that lei < 00, i.e., z(t) is bounded. 
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From (3.2.4) it follows that 

:r( t - 0") ~ ( ) 1 ( ) z' (t). 
l't-O" -qt-O" 

(3.2.5) 

(i) If c > 0, from (3.2.3) we have 

z(t) ~ a(t)(x(t) + p(t)x(t - 7))', t 2': t2 . 

Therefore, since z(t) -+ cast -+ 00, 

c 
(x(t) + p(t)x(t - 7))' 2': a(t)' t 2': t2. 

From (HI) we have limt_oo(x(t) + p(t)x(t - 7)) = 00, which contradicts the 

boundedness of x(t). 

(ii) If c < 0, in view of x E £l[to,oo), we have 

l.
t - p 

lim r(s)x(s)ds = O. 
t ..... oo t-a 

Then, since z(t) -+ cas t -+ 00, there exist an E E (0, -c) and a t4 2': t2 such 

that 

a(t)(x(t) + p(t)x(t - 7))' ~ C + c < 0, t 2': t4. 

Hence, by (Hd again, we obtain 

lim (x(t) + p(t)x(t - 7)) = -00, 
t ..... oo 

a contradiction to the boundedness of x(t) and p(t). 

(iii) If c = 0, in view of z'(t) < 0, we have z(t) > O. So 

a(t)(x(t} + p(t}x(t - r))' > l~:P r(s)x(s}ds > 0, t 2': t2. 
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Since x(t) + p(t)x(t - T) is positive and increasing, the integral 

l °°(:r(t) + p(t)x(t - T))dt 
to 

is divergent, a contradiction to x E £1 [to, 00). The contradictions obtained in the 

above three cases show that (3.2.2) has no bounded eventually positive solution. 

Now suppose x(t) is a bounded eventually negative solution. Then x(t - A) < 

o for some t2 > tl and all t 2: t2. From (3.2.2), (3.2.3) and (H2), we have 

Z'(t) 2: (r(t - 0-) - q(t - o-))x(t - 0-) > 0, t 2: t2. (3.2.4)' 

So z(t) is increasing and -00 < limt ..... oo z(t) = c ::; 00. Then an argument parallel 

to the above also leads to contradictions. Therefore, every bounded solution of 

(3.2.2) is oscillatory. 

Theorem 3.2.2 Suppose conditions (Hd, (H2 ) and (H4) hold, q(t) > r(t), q(t), 

1/a(t) are bounded and 0- < p. Then (3.2.2) is almost oscillatory. 

Proof Without loss of generality, suppose that x(t) is an eventually positive 

solution. Take t2 ~ tl such that x(t - A) > 0 for all t 2: t 2. Let 

z(t) = a(t)(x(t) + p(t)x(t - T))' + I t

-

u 

q(s)x(s)ds. 
t-p 

(3.2.6) 

From (3.2.2) it follows that 

z'(t) ~ (r(t - p) - q(t - p))x(t - p) < 0, t 2: t 2• (3.2.7) 

So z(t) is decreasing and 

-00 ~ lim z(t) = c < 00. 
t ..... oo 
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If c = -00, then 

lim a(t)(:r(t) + p(t)x(t - T))' = -00. 
t ...... oo 

By (Hd, we obtain Iimt ...... oo(l:(t) + p(t)l:(t - T)) = -00, which contradicts x(t) + 

p(t)x(t - T) > o. Therefore iel < 00 so z(t) is bounded. 

From (3.2.7), we have 

x(t-p):::; ( ) 1 ( )z'(t), t?t2 rt-p -qt-p 
(3.2.8) 

so, by (H4 ), x E £I [to, (0) and limt-.oo Jtt~: q(s)x(s)ds = O. Since l/a(t) 

is bounded, by (3.2.6), (:r(t) + p(t)x(t - T))' is bounded. This implies that 

x(t) + p(t)x(t - T) is uniformly continuous on It}, (0). Note that the property 

x E Ll[to,oo) and the boundedness of p(t) imply that x(t) + p(t)x(t - T) E 

Ll[to, (0). Hence Iimt-.oo(x(t) + p(t)x(t - T)) = 0 so limt-.oo x(t) = o. Therefore, 

every solution x of (3.2.2) which is not in the class of o( 1) as t - 00 is oscillatory. 

Theorem 3.2.3 Suppose conditions (H l ), (H3) and (H4) hold, q(t) < r(t), r(t), 

l/a(t) are bounded and u ? p. Then (3.2.2) is bounded almost oscillatory. 

Proof Without loss of generality, assume that x(t) is a bounded eventually 

positive solution and z(t) is defined by (3.2.3). Take t2 ? tl such that x(t - A) > 

o for t ? t2. From (3.2.2) and condition (H3 ), we have 

Z'(t) ? (r(t - u) - q(t - u))x(t - 0") > 0, t? t2. (3.2.9) 

So z( t) is increasing. Then 

-00 < lim z(t) = d :::; 00. t-.oo 
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If limt ..... oo z(t) = 00, then from (3.2.3) and the boundedness of x(t) and r(t), 

we obtain 

lim a(t)(x(t) + p(t);r(t - T))' = 00. 
t ..... oo 

Then there exist an l2 > 0 and a t3 ~ t2 such that 

a(t)(x(t) + p(t)x(t - r))' ~ l2' t ~ t3' 

From (HI) it follows that 

lim (x(t) + p(t)x(t - r)) = 00, 
t ..... oo 

a contradiction to the boundedness of x(t) and p(t). So Idl < 00 and z(t) is 

bounded. From (3.2.9) we have 

x (t - 0')::; ( ) 1 ( ) z' (t), t ~ t 2• rt-O' -qt-O' 

Therefore, by (H4 ), :r E £1 [to, 00). By the same reasoning as that used in 

the proof of Theorem 3.2.2, we have limt->oo x(t) = O. Therefore, every bounded 

solution x of (3.2.2) which is not in the class of 0(1) as t ~ 00 must be oscillatory. 

Theorem 3.2.4 Suppose conditions (HI)' (H3) and (H4) hold, q(t) < r(t), q(t) 

is bounded and 0' < p. Then (3.2.2) is bounded almost oscillatory. 

Proof Without loss of generality, suppose that x(t) is a bounded eventually 

positive solution. Let z(t) be defined by (3.2.6). Take t2 ~ tl such that X(t-A) > 

o for t ~ t2' From (3.2.2) and (H3), we have 

z'(t) ~ (r(t - p) - q(t - p))x(t - p) > 0, t ~ t2 • (3.2.10) 
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Hence z(t) is increasing and 

-00 < lim z(t) = d :S 00. 
1-+00 

By using the method similar to that used in the proof of Theorem 3.2.3, we 

have -00 < d < 00. Therefore z(t) is bounded. From (3.2.10) it follows that 

1 
:1'(t - p):S ( ) ( )z'(t), t 2 t 2• 

r t-p -q t-p 

Thus, by (H4 ), :Z: E L1[to, (0) and lim/-+oo Jt~; q(s):1:(s)ds = o. Then it follows 

from (3.2.6) that 

lim a(t)(:r(t) + p(t)x(t - r))' = d. 
1--00 

(i) If d > 0, then there exists a t5 2 t2 sllch that 

) 
, d 

a(t)(:1:(t) + p(t :1'(t - r)) 2 2' 

From (Hd we have 

lim (:z:(t) + p(t):r(t - r)) = 00, 
t ..... oo 

which contradicts the boundedness of x( t) and p( t). 

(ii) If d < 0, similar to the case (i), we have 

lim (x(t) + p(t)x(t - r)) = -00, 
t-+oo 

a contradiction to the boundedness of x(t) and p(t) again. Hence d = 0, i.e., 

limt ..... oo z(t) = o. On the other hand, from (3.2.10) and limt ..... oo z(t) = 0, we 

have z(t) < O. In view of (3.2.6), (x(t) + p(t)x(t - r))' < 0 which implies that 

x(t) + p(t)x(t - r) is decreasing. From x(t) + p(t)x(t - r) E Ll[to, (0), we have 

limt ..... oo(x(t)+p(t)x(t-r)) = o. Thus limt ..... oo x(t) = O. Therefore, every bounded 



solution x of (3.2.2) which is not in the class of 0(1) as t ~ 00 must be oscillatory. 

3.3 EXAMPLES FOR (3.2.2) 

We will give three examples here to illustrate the results obtained in the last 

section. 

Example 3.3.1 Consider the differential equation 

( (1 + ~) (x(t) + 2x(t - 27r))1)' + 

+3 (1 + l) x
5 (t - 27r) -

Viewing (3.3.11) as (3.2.2), we have a(t) = 1 + (lIt), p(t) = 2 > 0, and 

q(t) = 3 (1 + \) > r(t) = 3 2' 
t+ 7r (t+~) 

(3.3.11) 

Moreover, T = 27r, (J = 27r > P = 7r /2, and r(t) is bounded for t ~ 27r. Note 

that conditions (Hd, (H2 ) and (H4) are satisfied and by Theorem 3.2.1, equation 

(3.3.11) is bounded oscillatory. 

Example 3.3.2 Consider the differential equation 

I I t7r 7r ( 7) (t(x(t) + x(t - 7l'))) + 2 x(t - 27r) - 7 X t - -7l' = 0. 
t - 7r t - -7r 2 

2 

(3.3.12) 

Viewing (3.3.12) as (3.2.2), we have a(t) = t, p(t) = 1 > 0, and 

q(t) = (t + 27r)7r > r(t) = ~. 
t t 

35 



Moreover, T = 7r, (J = 27r < p = 77r/2, q(t) is bounded for t 2:: 47r. Note that 

conditions (HI)' (H2) and (H4) are satisfied. By Theorem 3.2.2, then equation 

(3.3.12) is almost oscillatory. Indeed, x(t) = t sin t is a unbounded oscillatory 

solution of equation (3.3.12). 

Example 3.3.3 Consider the differential equation 

(
t + 1 - 37r ( t - 7r ) ')' x(t) + ( )x(t - 7r) + 

t - 37r t t + 1 - 7r 

2t + 2 - 37r ( 37r) 
(t-37r)(2t-37r)x t- 2 -x(t-37r) O. 

Viewing (3.3.13) as (3.2.2), we have 

Also, 

a(t) 

p(t) 

q(t) 

t + 1 - 37r 
t - 37r ' 

t - 7r 

( ) > 0, 
tt+l-7r 

2t + 2 

( 3) 
< r( t) = 1. 

t 2t - 7r 

T = 7r, (J = 3; < P = 37r and q(t) is bounded for t 2:: 37r. 

(3.3.13) 

We note that conditions (HI)' (H3) and (H4) are satisfied and by Theorem 3.2.4, 

equation (3.3.13) is bounded almost oscillatory. In fact, x(t) = (1 + (lit)) sin t is 

a bounded oscillatory solution of equation (3.3.13). 
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3.4 MAIN RESULTS WHEN 8 =-1 

In this section, we consider equation (3.1.1) when 5 = -1. We rewrite equa-

tion (3.1.1) as 

(a(t)(x(t) - p(t)x(t - 7))')' + f(t,:l~(t - a)) - g(t,x(t - p)) = 0. (3.4.14) 

Four theorems will be given for equation (3.4.14) to be bounded oscillatory and 

bounded almost oscillatory. 

Theorem 3.4.1 Suppose conditions (HI)' (H3) and (H4) hold, p(t) ~ 1, q(t) < 

r(t), a ~ p and r(t) is bounded. Then (3.4.14) is bounded oscillatory. 

Proof Suppose x(t) is a bounded non-oscillatory solution. Without loss of 

generality, we assume that x(t) is an eventually positive solution. Let 

z(t) = a(t)(x(t) - p(t)x(t - 7))' + it-a q(s)x(s)ds. 
t-p 

(3.4.15) 

From a proof similar to that of Theorem 3.2.3, we obtain 

z'(t) > 0, lim z(t) = c, lei < 00, and x E Ll[to,OO). 
t-oo 

(i) If c > 0, from (3.4.15) it follows that 

lim a(t)(x(t) - p(t)x(t - 7))' = c> !:. 
t-+oo 2 

So, for large enough t, 

c 
(x(t) - p(t)x(t - 7))' ~ 2a(t)' 

Hence limt--+oo(x(t) - p(t)x(t - 7)) = 00 by (H]), which contradicts the bound-

edness of x(t) and p(t). 
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(ii) If c < 0, in view of limt ..... ooz(t) = c and x E LI[to, 00), there exists a 

c 
a(t)(x(t) - p(t)x(t - T))':S 2 < 0, t ~ t6· 

Hence limt ..... oo(x(t) - p(t}x(t - T)) = -00 by (HI), a contradiction to the bound-

edness of x(t} and p(t) again. 

(iii) If c = 0, in view of z'(t) > 0, we have z(t) < o. Further, 

(x(t) - p(t)x(t - T))' < o. 

We show that x(t) - p(t)x(t - T) > o. In fact, if there exists a t7 ~ tl such that 

x(t) - p(t)x(t - T) :s X(t7) - P(t7 )X(t7 - T) < o. 

This contradicts x(t) - p(t)x(t - T) E £I[to, 00). Hence x(t) - p(t)x(t - T) > 0 

for all large t ~ ti. From this and the assumption on p, we have x(t) ~ 

p(t)x(t - T) ~ x(t - T), which contradicts x E LI[to, 00). 

Therefore (3.4.14) is bounded oscillatory. 

Theorem 3.4.2 Suppose conditions (HI), (H3) and (H4) hold, q(t) < r(t}, (7' ~ 

p,O S p(t) S PI < 1 or 1 < P2 S p(t), r(t} and l/a(t) are bounded. Then 

(3.4.14) is bounded almost oscillatory. 

Proof Without loss of generality, assume that x(t} is a bounded eventu-

ally positive solution. By a proof similar to that of Theorem 3.2.3, we obtain 
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limt->oo(x(t) - p(t)x(t - T)) = O. Suppose 

lim sup:r(t) = I > O. 
t->oo 

So there exists a sequence {tk} such that tk ~ 00 as k ~ 00 and limk->oo X(tk) = 

I> O. 

(i) If a :S p(t) :S PI < 1, then we have (1 - PI)l :S a which contradicts 

l > a and 1 - PI > O. 

(ii) If 1 < P2 :S p(t), then we have a :S (1 - P2)1 which contradicts l > a 

and P2 - 1 > O. 

Therefore, we must have 

limsupx(t) = O. 
t->oo 

Then limt->oo x(t) = a as x(t) is eventually positive. This show that (3.4.14) is 

bounded almost oscillatory. 

Theorem 3.4.3 Suppose conditions (Hd, (H2) and (H4) hold, q(t) > r(t), 

(J' < p, a :S p(t) :S PI < 1 or 1 < P2 :S p(t), q(t) and 1/a(t) are bounded. 

Then (3.4.14) is bounded almost oscillatory. 

Proof Without loss of generality, suppose that x(t) is a bounded eventu-

ally positive solution. As in the proof of Theorem 3.2.2, we obtain 

lim (x(t) - p(t)x(t - T)) = O. 
t->oo 

Then the rest follows from the proof of Theorem 3.4.2. 
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Theorem 3.4.4 Suppose conditions (HI), (H2 ) and (H4) hold, q(t) > r(t), 

u ~ p, q(t) is bounded, 0 ::; p(t) ::; p < 1, or l/a(t) is bounded and 1 < P2 ::; 

p(t). Then (3.4.14) is bounded almost oscillatory. 

Proof Without loss of generality, suppose x(t) is a bounded eventually 

positive solution. Let 

I
t - p 

z(t) = a(t)(x(t) - p(t)x(t - r))' - t-u r(s)x(s)ds. (3.4.16) 

By the reasoning similar to that used in the proof of Theorem 3.2.1, we have 

x E LI[to, 00), limt-+oo z(t) = c = 0 and z'(t) < O. So z(t) > 0, (x(t) - p(t)x(t-

r))' > 0 and x(t)-p(t)x(t-r) is increasing. We claim that x(t)-p(t)x(t-r) < 

o for t ~ t l . In fact, if there exists ats 2: tl such that x(ts)-p(ts)x(ts-r) 2: 0, 

then x(t) - p(t)x(t - r) 2: x(ts + 1) - p(ts + l)x(ts + 1 - r) > 0 for t ~ ts + 1 

which contradicts x(t) - p(t)x(t - r) E £1[tI' 00). Hence x(t) - p(t)x(t - r) < 0 

for all t ~ t l . If 0 ::; p(t) ::; p < 1 is satisfied, then x(t) < px(t - r) for all 

t ~ tl' This implies that limt->oo x(t) = o. 

If l/a(t) is bounded and 1 < P2 ::; p(t), from the proof of Theorem 3.4.2, we 

have limt->oo(x(t) - p(t)x(t - r)) = 0 and thus limhoo x(t) = o. 

Therefore, (3.4.14) is bounded almost oscillatory. 



3.5 EXAMPLES FOR (3.4.14) 

Here, we will give three examples to illustrate the results obtained in last 

section. 

Example 3.5.1 Consider the differential equation 

( (1 - +) (:r(t) - 2x(t - 71"))')' + t~X (t - ~) - 3x(t - 71") = O. (3.5.17) 

Viewing (3.5.17) as (3.4.14), we have T = 71", (J' = ~ < P = 71", 

a(t) 
1 

= 1- -
t' 

p(t) = 2> 0, 

q(t) 
3 

= 2 < r(t) = 3 
(t + ~) 

for t 2: 71". We note that conditions (HI)' (H3) and (H4) are satisfied and by 

Theorem 3.4.1, equation (3.5.17) is bounded oscillatory. 

Example 3.5.2 Consider the differential equation 

(
_t_ (X(t) _ 2(t - 271") x(t _ 271")) ')' (t

3 + t2 
- 2t - 1)(t - 71") ( _ ) 

t+1 t + 2t2(t+1)2 xt 71" 

(2t + 1) (t - ~) x (t _ 371") = 0. 
2t(t + 1)2 2 (3.5.18) 

Viewing (3.5.18) as (3.4.14), we have T = 271", (J' = 71" < p = 37r/2, 

a(t) 

p(t) 

q(t) 

r(t) 

t 

t + l' 
2(t ~ 271") 2: 1.2 for t 2: 571", 

t((t + 71")3 + (t + 71")2 - 2t - 27r - 1) 

2(t + 71")2(t + 71" + 1)2 
t(2t + 371" + 1) 

41 
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Clearly, q(t) > 1'(t) for large t and l/a(t) and q(t) are bounded. We note that 

conditions (HI)' (H2) and (H4) are satisfied and by Theorem 3.4.3, equation 

(3.5.18) is bounded almost oscillatory. 

Example 3.5.3 Consider the differential equation 

( 
t (() t - 27r ( 2)) ')' (t

3 + t2 
- 2t - 1) (t - 27r) ( ) -- x t - x t - 7r + x t - 271' 

t + 1 2t 2t2 (t + 1)2 

_(2t+1)(t-7I'/2) (_ /2)=0 
2t (t + 1)2 X t 71' . (3.5.19) 

Regarding (3.5.19) as (3.4.14), we have T = 27r, (J = 27r > p = ~, 

a(t) -
t 

t + l' 

o < p(t) 
t - 27r 1 

2t ~ 2 < 1, t 2: 371', 

q(t) 
t((t + 271')3 + (t + 271')2 - 2t - 471' - 1) 

= 2(t + 27r)2(t + 27r + 1)2 

r(t) -
t(2t + 7r + 1) 

Clearly, q(t) > r(t) for large enough t and q(t) is bounded. Notice that (HI)' (H2) 

and (H4) are satisfied therefore by Theorem 3.4.4, equation (3.5.19) is bounded 

almost oscillatory. 

3.6 CONCLUSION 

The objective of this chapter is to study the oscillation of second order non-

linear neutral differential equations (3.1.1). We are interested in the nontrivial 
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solutions in this chapter. Since (3.1.1) can be either (3.2.2) or (3.4.14), we in

vestigate (3.2.2) and (3.4.14), separately, rather than (3.1.1) itself. In former 

case, a function z(t) has been defined as (3.2.3) or (3.2.6). We have managed to 

establish four sufficient conditions for (3.2.2) to be bounded oscillatory, almost 

oscillatory, and bounded almost oscillatory. The results have been presented in 

Theorems 3.2.1-3.2.4. Examples are given to demonstrate the applications of the 

results in every case. For (3.4.14), we define z(t) as (3.4.15) or (3.4.16). Theo

rem 3.4.1 is a sufficient condition for (3.4.14) to be bounded oscillatory. Theo

rems 3.4.2, 3.4.3 and 3.4.4 give sufficient conditions for (3.4.14) to be bounded 

almost oscillatory. Three examples are presented to illustrate the results. 

It is not hard to see that the results in this chapter are more general than 

the results for linear and nonlinear ordinary differential equations given in the 

reference papers. For example, the equation 

(x(t) - px(t - T))" + qx(t - 0") = 0 

with p(t) = p and q(t) - q > 0 is a special case of (3.1.1) and was studied in [26]. 

When a(t) = 1 and 0 ~ p(t) < 1, the results in [19] may cover some of the results 

in this chapter. However, it does not affect the generality of the results here. 

Equation (3.1.1) was investigated in [49] when 0 = 1 and g(t, v) = O. Since we 

have assumed g( t, v) =I- 0 if v =I- 0, the results obtained here are not comparable 

with those given in [49J. Further improvement are expected in future for the 

oscillatory conditions and for higher order equations. 



Chapter 4 

EVEN ORDER DIFFERENCE 

EQUATIONS 
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4.1 INTRODUCTION 

In this chapter and chapter 5, we are concerned with the nonlinear neutral 

difference equation 

~~(x(t) - p:r(t - r)) + f(t, x(g(t))) = 0, (4.1.1) 

where m ~ 2 is a natural number, p ~ 0, T and r are positive constants, ~TX(t) = 

X(t+T)-X(t), 0 < g(t) < t, 9 E Cl([to,oo),R+), g'(t) > 0, and f E C([to, 00) x 

R, R). Throughout this chapter and the next we assume that 

g(t + T) ~ g(t) + T for t ~ to (4.1.2) 

and 

f(t, u)/u ~ q(t) > 0 for u # 0 and some q E C(R, R+). (4.1.3) 
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Let t~ = min{g(to), to-r} and 10 = [t~, to]. A function x is called the solution 

of (4.1.1) with x(t) = c.p(t) for t E 10 and c.p E C(Io, R) if it satisfies (4.1.1) for 

t ~ to. 

The properties of the solutions of (4.1.1) are very different between even or

der and odd order equations. Therefore, in this chapter we will just investi

gate equation (4.1.1) with even order. Three cases will be considered here, i.e., 

m = 2, m = 4, and m is any even number with m > 4. Equation (4.1.1) with 

the odd order will be discussed in chapter 5. 

There has been an increasing interest in study of the oscillation behaviour 

of solutions of difference equations. See [53] - [39] for examples. Particularly, 
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Stavroulakis [53] considered the delayed difference equation 

nEN 

and established oscillation criteria for this equation. Zhang and Yan [64] studied 

difference equations with continuous argument 

t:,.ry(t) + p(t)y(t - 0") = 0 

and obtained oscillation criteria. Zhang, Yan and Zhao [68] also considered the 

above equation and established some new results for the oscillation. Zhang, Yan 

and Choi [63] investigated the equation 

~y(t) + p(t)H(y(t - 0")) = f(t), t 2: 0, 

and obtained oscillation criteria for this equation. The system of delayed differ-

ence equations 

l n 

~rXi(t) + L LPijkXj(t - O"k) = 0, 
k=l j=l 

i,j E N(1, n) and k E N(l, l) 

was studied by Yan and Zhang [59]. Sufficient conditions were obtained for all 

solutions of this system to be oscillatory. Zhang, Chen and Zhang [66] considered 

the second order nonlinear difference equation with nonlinear neutral term 

and obtained oscillation criteria for the above equation. Similarly, Zhang and 

Zhang [69] discussed 

~(a(n)~x(n)) + p(n)x(g(n)) = 0 



and established some sufficient conditions for the above equation to be oscilla

tory. Zhang, Bi and Chen [65] were concerned with the second order nonlinear 

difference equation with continuous variable of the form 

~;:l:(t) + f(t,x(t - r)) = 0 

and some oscillatory criteria for the above equation were given. 

Equation (4.1.1) is a neutral generalization of some of the above equations. 

Comments made in later sections will confirm this. The qualitative study of solu

tions of neutral difference equation is developing very fast recently. According to 

our best knowledge, however, we believe that there is no result about the fourth 

order, higher even order, third order, and higher odd order neutral difference 

equation with continuous variable so far. 

4.2 PRELIMINARIES 

Throughout this chapter, chapter 5 and chapter 6, we use the symbol r a 1 to 

denote the smallest integer not less than a. The lemmas in this section will be 

needed in both section 4.4 and section 4.5. The following lemma can be found in 

[2] (page 31) and will be needed in the proof of Lemma 4.2.2. 

Lemma 4.2.1 (Discrete Keneser's Theorem) Let u(k) be defined on N(a), 

where a E N, and u(k) > 0 with ~mu(k) of constant sign on N(a) for any 

positive integer m and not identically zero. Then, there exists an integer h, 0 ~ 

47 



h ~ m, with m + h odd for ~mu(k) ~ 0 or m + h even for ~mu(k) ~ 0 such 

that 

(i) h ~ m-1 implies (_l)h+i ~iu(k) > 0 for all k E N(a), h ~ i ~ m-1, 

(ii) h ~ 1 implies ~iu(k) > 0 for all k E N(a), 1 ~ i ~ h - 1. 

To obtain the oscillatory behaviour of solutions for all large enough t, we need to 

know the features of the difference when t is sufficiently large. By applying the 

above lemma into the difference with continuous variables, we extend the above 

result for discrete difference to the following lemma for difference with continuous 

arguments. 

Lemma 4.2.2 Let y(t) be defined on [to, +00) where to E R, and y(t) > 

o with ~r;:y( t) of constant sign on [to, +00) for any positive integer m and not 

identically zero. Then, there exists an integer h, 0 ~ h ~ m, with m + h odd 

for ~r;:y(t) ~ 0 or m + h even for ~r;:y(t) ~ 0 such that 

(i) h ~ m - 1 implies (_l)h+i~~y(t) > 0 for all t E [to,oo), h ~ i ~ 

m-1, 

(ii) h ~ 1 implies ~~y(t) > 0 for all t E [to, +00), 1 ~ i ~ h - 1. 

Proof Let t' be any constant real number in [to, +00). For this fixed 

t', by the assumption, we have y(t' + kT) defined for any k E {O, 1", .}, and 

y(t' + kT) > 0 with ~r;:y(t' + kT) of constant sign for any k E {O, 1, ... } and for 

any positive integer m and not identically zero. Thus, by Lemma 4.2.1, the con

clusion holds with the replacement of t by t' + kT for all kEN. Since t' E [to, 00) 
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is arbitrary, we can see that the conclusion holds for t E [to, +(0). 

Lemma 4.2.3 Let y(t) be an m times differentiable function on R+ of constant 

sign satisfying y(m)(t) "¥= 0 and y(m)(t)y(t) ::; 0 on [tl, (0). Then the following 

statements hold. 

(i) There exists a t2 2:: tl such that the functions yU)(t), j = 1,2, ... ,m -1, 

are of constant sign on [t 2 ,(0). 

(ii) There exists an integer k < m which is odd (even) when m is even (odd), 

such that 

y(t)yU)(t) > 0 for j = 0,1, ... , k, t 2: t 2, 

(_1)m+i+ly(t)y(j)(t) > 0 for j = k + 1, ... ,m, t 2:: t2 • 

Lemma 4.2.3 can be found in [2] (page 289). 

Lemma 4.2.4 Assume that y(t), y'(t), ... , y(m-l)(t) are absolutely continuous 

and of constant sign on the interval (to, (0), and assume y(m)(t)y(t) 2:: O. Then 

either y(k)(t)y(t) 2:: 0, k = 0,1, ... , m or there exists an integer I, 0 ::; I ::; m - 2, 

which is even (odd) when m is even (odd), such that 

y(k)(t)y(t) 2:: 0, for k = 0,1, ... ,I, 

(_1)m+ky(k)(t)y(t) 2:: 0, for k = l + 1, ... ,m. 

The above lemma can be found in [15] (page 289). 
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4.3 SECOND ORDER EQUATION (4.1.1) 

In this section, we are mainly concerned with equation (4.1.1) when m = 2, 

i.e., 

.6.;(x(t) - px(t - r)) + f(t,x(g(t))) = O. ( 4.3.4) 

We shall give some criteria and remarks in subsection 4.3.1. In subsection 4.3.2, 

we will present the illustrating examples. To prove the criteria, in subsection 4.3.3 

we shall state some lemmas. Following this subsection, the proofs of the theorems 

will be given in subsection 4.3.4. 

Note that this section is a modified version of the published paper [56] under 

the joint aut.horship of S. Wu and Z. Hou. This reflects the contribution of the 

second author in the process of refining the many previous drafts and extending 

and sharping the original rough results. 

4.3.1 OSCILLATION CRITERIA 

The assumptions given in section 4.1 guarantee the existence and differentia-

bility of the inverse g-l of g. Let 

ih(t) = a min {q(s)} ( min {(g_1(S)),})2, 
t::;89+27" g(t)::;8::;g(t)+27" 

(4.3.5) 

where 0 < a < 1. We shall see below that oscillatory behaviour of the solutions 

of (4.3.4) can be determined by conditions involving the function tho Let 

1t+7" j8+7" 
z(t) = t ds 8 x(B)dB, 
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where x denotes any solution of (1.3.4). Then Zll(t) = .6.;x(t). 

Theorem 4.3.1 Assume that 

00 

I: Q2(t' + iT) = 00 (4.3.6) 
i=O 

for some tf 2: to. Then every solution of (4.3.4) is either oscillatory or eventually 

satisfies Iz(t)1 < plz(t - r)1 . 

Remark 4.3.1 A special non-neutral case included in (4.3.4) is when p = O. In 

this case, condition (4.3.6) implies that every solution is oscillatory. In [65], the 

authors obtained oscillation criteria for a class of equations of the form 

.6.;x(t) + f(t, x(t - 0')) = O. 

We can see that even the special case of our Theorem 4.3.1 can be applied to a 

larger class of equations than the above. 

Theorem 4.3.2 In addition to (4.3.6), we assume that 0 < p < 1 and that there 

is a positive integer ko and a tl 2: to satisfyingmn = r(g(tl+nT)-tl+kor)/Tl ::::; n 

and 

(4.3.7) 

for large enough n. Then every solution x of (4.3.4) is oscillatory. 

Theorem 4.3.3 In addition to (4.3.6), we assume that p = 1 and that there is 

a positive integer ko and a tl 2: to satisfying mn = r(g(tl +nT) -tl +kor}/Tl ::::; n 



and 

n 1 L (s + 1 - m n )q2(t l + ST) 2: ko 
s=mn 

(4.3.8) 

for large enough n. Then every solution x of (4.3.4) is oscillatory. 

Theorem 4.3.4 Under the conditions of Theorem 4.3.2 with the replacement 

of 0 < p < 1 by p > 1, every bounded solution x of (4.3.4) is oscillatory. 

4.3.2 EXAMPLES 

In this subsection, two illustrating examples are given to demonstrate the 

results obtained in last subsection. 

Example 4.3.1 Consider the linear difference equation 

~;(x(t) - px(t - r)) + ~x (t - 0' j3 ) = 0 
t 1 + t 

(4.3.9) 

for t 2: 0, where p 2: 0 and j3 2: 0, r,7 and 0' are positive constants. Viewing 

(4.3.9) as (4.3.4), we have q(t) = l/t and g(t) = t - 0'/(1 + j3t). Then, by (4.3.5), 

q2(t) = a/(t + 27) for j3 = 0 and 

for j3 > O. Since q2(t) 2: a'/(t + 2T) for some a' > 0 and all t 2: 0, q2 satisfies 

(4.3.6) with t' = O. By Theorem 4.3.1, every solution of (4.3.9) is either oscilla-

tory or eventually satisfies Iz(t)1 < plz(t - r)l. In particular, when p = 0, every 

solution of (4.3.9) is oscillatory. It was shown in [65] that every solution of the 
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equation ~;x( t) + t- I x( t - 0") = 0 is oscillatory. Clearly, this equation is a special 

case of (4.3.9) when p = !3 = O. 

Example 4.3.2 Consider the difference equation 

80" 
~;(x(t) - px(t - 7r)) + 8:r(t - 7r) + --2X3(t - 7r) = 0, 

l+t 
(4.3.10) 

where 0" ~ 0 is a constant. Regarding (4.3.10) as (4.3.4), we have r = 7r, r = 

7r, g(t) = t - 7r and q(t) = 8. Then, for any a E (0,1), i12 = 8a by (4.3.5) so 

(4.3.6) is satisfied. For p = 1, ko = 1 and tl = t, we have mn = nand 

n 1 L (8 + 1 - mn)fh(tl + sr) = 8a > 1 = ko 
s=mn 

if a > 1/8. Moreover, we also have 

n (1 _ ) ko 

'" (s + 1 - m n )i12(t1 + sr) = 8a > p = p 't 
~ I-po 

s=mn 

if p E (0,1) U (1,8) and a > p/8. By Theorems 4.3.1-4.3.4 every solution of 

(4.3.10) is oscillatory if 0 ~ p ~ 1 and every bounded solution of (4.3.10) is 

oscillatory if 1 < P < 8. If p > 8, then (4.3.10) with 0" = 0 has a bounded positive 

solution x(t) = ;..t, where y = X'I" is a root of (y - p)(y - 1)2 + 8 in (0,1). Also, for 

p ~ 1 + 3?'2 and (J = 0, (4.3.10) has an unbounded positive solution x(t) = N 

for some A > 1. 

4.3.3 SOME LEMMAS 

To prove the results given in subsection 4.3.1, we need the following lemmas. 
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Lemma 4.3.1 Assume that x is an eventually positive (negative) solution of 

(4.3.4) not satisfying z(t) - pz(t - r) -> -00 (00) as t -> 00. Then, with u(t) = 

z(t) - pz(t - r), u"(t) < 0 (> 0), u'(t) > 0 « 0), u is increasing (decreasing) and 

satisfies 

u"(t) + q(t):r(g(t)) ::; 0 (2:: 0) (4.3.11) 

for t large enough. 

Proof Suppose x is an eventually positive solution. From the assumption 

and (4.3.4) we have x(g(t)) > 0 and (4.3.11) for large enough t. So there is a 

T 2:: to such that u"(t) < 0 for t ~ T. We claim that u'(t) > 0 for t ~ T. Indeed, if 

not so, there is a tl ~ T such that u'(td ::; O. Since u"(t) < 0 for t 2:: T, we have 

u'(t) ::; u'(t1 + 1) < u'(t1) ::; 0 for t 2:: tl + 1. This implies u(t) -> -00 as t -> 00, 

which contradicts the assumption. Therefore, u' (t) > 0 for t 2:: T so that u is 

increasing. When x is an eventually negative solution, the parallel conclusions 

within brackets follow obviously. 

Lemma 4.3.2 Suppose x is an eventually positive (negative) solution of (4.3.4) 

not satisfying z(t) - pz(t - r) -> -00 (00) as t -> 00. Then bo;u(t) < 0 (> 

0), boru(t) > 0 « 0), u is increasing (decreasing) and, for every integer k 2:: 0, 

satisfies 
k 

bo;u(t) + ih(t) I:piu(g(t) - kr) ::; 0 (2:: 0) (4.3.12) 
i=O 

for sufficiently large t. 
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Proof Suppose x is an eventually positive solution. From Lemma 4.3.1 

and the assumption, we have 6.;u(t) < 0, 6.T u(t) > 0, x(g(t)) > ° and (4.3.11) 

for some T 2:: to and all t 2:: T. Then, for t 2:: T, the assumptions on 9 and q give 

1t+T ds 1S
+T x(g( B) )q( B)dB 

> min {q(l)} 1t+T ds1s+T x(g(B))d8 
t9~t+2T t S 

1
9(t+T) 19(9-1(S)+T) 

> min {q(l)} (g-l(s))'ds x(8)(g-1(B))'dB 
199+2T 9(t) 8 

1
9(t)+T 1S+T 

> min {q(l)} (g-l(s))'ds X(B)(g-1(B))'d8 
t99+2T 9(t) S 

> ih(t)z(g(t)). 

Hence, integrating (4.3.11), we have 

6.;u(t) + lh(t)z(g(t)) ~ 0, (4.3.13) 

so 
k-l 

6.;u(t) + ih(t) Lpiu(g(t) - ir) + iJ2(t)pk Z (g(t) - kr) ~ 0 
i=O 

for t 2:: T and every integer k > O. Then (4.3.12) follows from this for large 

enough t as if2(t)pkZ (g(t) - kr) > 0 and u is increasing. When x is an eventually 

negative solution, the conclusions within brackets follow in the same way. 

4.3.4 PROOF OF THEOREMS 

Here, the proofs of Theorems 4.3.1-4.3.4 will be given. 

Proof of Theorem 4.3.1 Suppose the conclusion does not hold. Let x be 

an eventually positive solution of (4.3.4) not eventually satisfying z(t) < pz(t-r). 



By Lemmas 4.3.1 and 4.3.2, there is a T ~ to such that u" (t) < 0, u' (t) > 0 and, 

for any positive integer k, (4.3.12) holds for t ~ T. As u(t) < 0 is not eventually 

satisfied and u is increasing, we may assume u(t) > 0 for t ~ T. Take Tl > T 

such that g(t) - kr ~ T for t ~ T1• Note that (b.Tu(t))' = b.Tu'(t) < 0 so b.Tu(t) 

is decreasing. Hence, by (4.1.2), 

u(g(t + 7) - kr) - u(g(t) - kr) ~ b.Tu(g(t) - kr) > b.Tu(t) > 0 

for t ~ T 1• Then, by the Riccati transformation 

we have v(t) > 0 and 

b.
T 

1),( t) 
v(t) = u(g(t) - kr)' 

b.;u( t) 
b.Tv(t) < u(g(t) _ kr) - v(t)v(t + 7) < O. 

Thus, v(t) > v(t + 7). Further, from (4.3.12), 

k 

b.Tv(t) < -ih(t) Lpi - v2(t + 7) 
i=O 

so 
k 

b.Tv(t) + fh(t) Lpi + v2(t + 7) < 0 
i=O 

(4.3.14) 

(4.3.15) 

for t ~ T1• There is an integer K > 0 such that t' + K 7 ~ T1• Now replacing t by 

t' + j7 and summing up both sides of (4.3.15) for j from K to n, we have 

n k n 

v(t' + (n + 1)7) - v(t' + K7) + L fh(t' + j7) Lpi + L v2(t' + (j + 1)7) < O. 
j=K i=O j=K 

Therefore, for all n ~ K, 

n k 

L ih(t' + j7) Lpi < v(t' + K7) < 00. 

j=K i=O 
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This contradicts (4.3.6). Thus, every eventually positive solution x must satisfy 

z(t) < pz(t - r) eventually. Now let x be an eventually negative solution of 

(4.3.4) not eventually satisfying z(t) > pz(t - r). Then, from Lemmas 4.3.1 and 

4.3.2, the above argument is still valid with necessary changes of "decreasing" to 

"increasing" and of inequalities to opposite directions before (4.3.14). Then the 

contradiction proves the conclusion of the theorem. 

Proof of Theorem 4.3.2 Suppose the conclusion does not hold. Without 

loss of generality, let x be an eventually positive solution of (4.3.4). If limt~oo u(t) = 

-00, then u(t) = z(t) - pz(t - r) ::; 0 for large enough t. Using this repeatedly 

and by the condition 0 < p < 1, we obtain limt~oo z(t) = 0 and limt~oo u(t) = O. 

This contradiction shows that u(t) -f -00 as t - 00. Thus, the conclusions of 

Lemmas 4.3.1 and 4.3.2 hold. From (4.3.13)' we have 

~;u(t) - iJ2(t) u(g(t) + r) + ih(t) z(g(t) + r) ::; O. 
P P 

Using the same technique as that used in the proof of Lemma 4.3.2, we obtain 

k 1 
~;u(t) - ih(t) L iu(g(t) + iT) ::; O. 

i=l P 
(4.3.16) 

As u is increasing and L:~=l 1/pi = (1- pk)/[pk(l - p)], (4.3.16) leads to 

1- k 

~;u(t) ::; ih(t) pic (1 ! p) u(g(t) + kr). (4.3.17) 

Replacing k by ko and t by tl + iT in (4.3.17) and summing up both sides for i 

from 8 to n, we have 

1 ko n 

~TU(tl + (n + 1)T) - ~TU(tl + 8T) ::; picoU ~ p) L ih(tl + iT)U(g(tl + iT) + kor). 
'=8 
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Then, summing up the above inequality for s from mn to n, we obtain 

1 ko n n 

~ pk00 ~ p) L L (h(tl + iT)U(g(tl + iT) + kor). 
s=mn t=s 

Combining this with V·(g(tl + iT) + kor) ~ U(tl + mnT) gives 

This inequality holds for large enough n as (4.3.17) holds for large enough t. By 

Theorem 4.3.1 and Lemma 4.3.2, u(t) < 0 and 6. r u(t) > 0 for large enough t. 

Hence, from the above inequality, we have 

for sufficiently large n. This contradiction to (4.3.7) shows that every sol ution of 

(4.3.4) is oscillatory. 

Proof of Theorem 4.3.3 The proof of Theorem 4.3.2 up to (4.3.17) is still 

valid when z(t) - 0 and u(t) - 0 as t - 00 is replaced by the boundedness of z 

and u due to p = 1. With p = 1, (4.3.16) and (4.3.17) now become 

ko 

D.;u(t) - i/2(t) L u(g(t) + ir) ~ 0 (4.3.18) 
i=l 

and 

(4.3.19) 
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Replacing t by t1 + iT in (4.3.19) and using the same technique as that in the 

proof of Theorem 4.3.2, we obtain 

.6.r U(tl + (n + l)T)(n + 1 - Inn) - U(t1 + (n + l)T) 

::; U(t1 + InnT) { ko sEn (s - Inn + 1)£12(t1 + ST) - I} . 
As u(t) < 0 and .6.r u(t) > 0 for large enough t, we must have 

n 1 L (s - Inn + 1)£12(t1 + ST) < ko 
s=mn 

for large enough n, which contradicts (4.3.8). Therefore, every solution of (4.3.4) 

is oscillatory. 

Proof of Theorem 4.3.4 Without loss of generality, suppose (4.3.4) has a 

bounded eventually positive solution :r so z is bounded. Then lim u(t) =I- -00. 
t-+oo 

The rest is the same as the proof of Theorem 4.3.2. 

4.4 FOURTH ORDER EQUATION (4.1.1) 

In this section, we will discuss equation (4.1.1) with In = 4, i.e., 

.6.~(x(t) - px(t - r)) + f(t,x(g(t))) = O. (4.4.20) 

The assumptions given in section 4.1 guarantee the existence and differentia-

bility of the inverse g-1 of g. Let 

iJ4(t) = Q min {q(s)} ( min {(g_1(S)),})4, 
t::;s::;tHr g(t)::;s::;g(t)+4r 

(4.4.21 ) 
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where 0 < a < 1. We will see in subsection (4.4.2) that oscillatory behaviour of 

the solutions of (4.4.20) can be determined by conditions involving the function 

i14-

To prove the main results, lemmas will be presented in subsection 4.4.1. Fol

lowing this subsection, we will state the oscillatory criteria in subsection 4.4.2. 

Examples will be given in subsection 4.4.3 to illustrate the obtained results. 

4.4.1 RELATED LEMMAS 

The lemmas in this subsection will be needed to establish the oscillatory be

haviour of solutions for (4.4.20). 

Lemma 4.4.1 Assume that x(t) is an eventually positive (negative) solution of 

(4.4.20) such that y(t) = x(t) - px(t - r) > 0 « 0) eventually. Then L:l.ry(t) > 

0« 0), L:l.~y(t) > 0 « 0) and L:l.~y(t) < 0 (> 0) hold eventually. 

Proof Suppose x(t) is eventually positive. Note that x(t) > 0 and y(t) > 0 

eventually. By g(t) < t, g'(t) > 0 and (4.1.2)' there exists a tl > to such that 

x(g(t)) > 0 for all t > t l . Further, from (4.4.20), we have 

L:l.~y(t) + f(t,x(g(t))) = O. 

By (4.1.3), we obtain f(t,x(g(t))) :2:: q(t)x(g(t)) > 0 for t > t l . Therefore 

L:l.~y(t) ::; -q(t)x(g(t)) < 0 (4.4.22) 



for all large enough t, namely, ~;y(t) < 0 eventually and ~~y(t) is not iden-

tically zero. Then, by Lemma 4.2.2, we obtain ~Ty(t) > 0 and ~~y(t) > O. 

Suppose x(t) is eventually negative with y(t) < 0 eventually. Then (4.4.22) be-

comes ~~y(t) 2: -q(t);r(g(t)) > O. Replacing y(t) by - y(t) in Lemma 4.2.2, we 

have ~Ty(t) < 0 and ~;y(t) < O. 

Lemma 4.4.2 Let the hypothesis of Lemma 4.4.1 be satisfied and let i}4(t) be 

defined by (4.4.21). Set 

Then u satisfies U(4)(t) = ~~y(t) < 0 (> 0), u(t) > 0 « 0), u'(t) > 0 « 

0), U(3)(t) > 0 « 0), and 

k 

~~u(t) + i}4(t)U(g(t) - kr) 2: pi ~ 0 (2: 0) 
i=O 

for each fixed natural number k and for all large enough t. 

Proof Suppose x(t) is an eventually positive solution. From Lemma 4.4.1, 

we know y(t) > 0 eventually. Then by the definition of u(t), we can see that 

u(t) > 0 and u(4)(t) = ~~y(t) < 0 eventually. 

From (4.4.22), we have 

~~y(t) + q(t)x(g(t)) ::; O. (4.4.23) 

From the definition of y(t) and (4.4.23), we obtain 

D.~y(t) + q(t) (y(g(t)) + px(g(t) - r)) ~ O. 
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Repeating the above process, we have 

k 

~;y(t) + q(t) Lpi y(g(t) - ir) + q(t) pk+l1.:(g(t) - (k + l)r) ~ O. 
i=O 

Therefore, since q(t)pk+l:r(g(t) - (k + l)r) 2: 0, the above inequality implies 

k 

~;y(t) + q(t) L piy(g(t) - ir) ~ O. 
;=0 

Hence, 
k 

U(4)(t) + q(t) Lpi y(g(t) - ir) ~ O. (4.4.24) 
i=O 

Then, for large enough t, the assumptions on 9 and q give 

2: ii4(t)U(g(t) - ir). 

Hence, integrating (4.4.24), we obtain 

k 

~;u(t) + ii4(t) Lpi u(g(t) - ir) ~ O. 
i=O 

By Lemma 4.2.3, we know that u'(t) > 0 and U(3)(t) > O. Thus 

k 

~;u(t) + ii4(t)U(g(t) - kr) Lpi ~ 0 
i=O 
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holds for each fixed natural number k: and for all large enough t. Now suppose 

x(t) is an eventually negative solution. Then from Lemma 4.4.1 and the definition 

of u we have y(t) < 0, u(t) < 0 and u(4)(t) = ~~y(t) > 0 eventually. From the 

inequalities parallel to (4.4.22) we obtain 

~;y(t) + q(t)x(g(t)) ~ 0 

so we have the inequalities 

k 

U(4) (t) + q(t) L piy(g(t) - ir) ~ 0 
i=O 

and 
k 

~;u(t) + iJ4(t) L piu(g(t) - ir) ~ O. 
i=O 

Applying Lemma 4.2.3 to -u(t), we have u'(t) < 0, U(3)(t) < 0 and 

k 

~;u(t) + iJ4(t)U(g(t) - kr) Lpi ~ O. 
i=O 

4.4.2 MAIN RESULTS 

By the above lemmas, we are now able to obtain the following theorems. 

Theorem 4.4.1 Assume that, for some t' ~ to, 

n 

L 114(t' + iT) ~ 00 (4.4.25) 
i=O 

as n ~ 00. Then every solution x(t) of (4.4.20) is either oscillatory or, for any 

T ~ to there exists at" > T such that Ix(t")1 ~ plx(t" - r)l. 



Proof Suppose the conclusion does not hold and let x(t) be an eventually 

positive solution of (4.4.20). Then x(t) > 0 with x(t) -px(t - r) > 0 for all large 

enough t. Let y(t) be as in Lemma 4.4.1 and u(t) be as in Lemma 4.4.2. By 

Lemma 4.4.2, u(t) satisfies U(4)(t) = f1;y(t) < 0, U(3)(t) > 0, u(t) > 0, u'(t) > 0, 

and, for any positive integer k, there is a T ~ to such that 

k 

f1!u(t) + <i4(t)U(g(t) - kr) Lpi :::; 0 
i=O 

and u(g(t) - kr) > 0 hold for t ~ T. Note that f1!u(t) < O. By Lemma 4.2.2, we 

know that f1;u(t) > 0 and f1Tu(t) > O. Let v(t) = f1;u(t)ju(g(t) - kr). Hence, 

v(t) > O. Thus, by u'(t) > 0 and U(3)(t) > 0, we have 

~TV(t) - v(t + T) - v(t) 

f1;u(t + T) f1;u(t) 
u(g(t + T) - kr) u(g(t) - kr) 
u(g(t) - kr)f1;u(t + T) - u(g(t + T) - kr)f1;u(t) 

u(g(t + T) - kr)u(g(t) - kr) 
u(g(t) - kr)f1;u(t + T) + u(g(t + T) - kr)(f1;u(t) - f1;u(t + T)) 

u(g(t + T) - kr)u(g(t) - kr) 
f1;u(t) f1;u(t + T)f1TU(g(t) - kr) 

u(g(t) - kr) u(g(t) - kr)u(g(t + T) - kr) 

_ ~ i ~TU(g(t) - kr) 
< -q4(t) '8 P - v(t + T) u(g(t) - kr) 

k 

< -t]4(t) Lpi. 
i=O 

Therefore, for large enough t' > to satisfying (4.4.25) and j EN, we have 

k 

f1Tv(t' + jT) + t]4(t' + jT) Lpi :::; O. 
i=O 

Summing both sides of (4.4.26) for j from 0 to n - 1, we have 

k n-l 

v(t' + nT) - v(t') + Lpi L t]4(t' + jT) :::; O. 
i=O j=O 

(4.4.26) 
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Thus 
k n-I 

Lpi L i'f4(t' + jT) < v(t') < 00, 

i=O j=O 

which contradicts (4.4.25). Now suppose x(t) is an eventually negative solution 

of (4.4.20). Then x(t) < 0 and y(t) = x(t) - px(t - r) < 0 for large enough t. 

By Lemma 4.4.2, u(t) satisfies u(t) < 0, u'(t) < 0, u(3)(t) < 0,u(4)(t) = Ll~y(t) > 

0, u(g(t) - kr) < 0 and 

k 

Ll~u(t) + ii4(t)U(g(t) - kr) Lpi ~ 0 
i=O 

for t ~ T ~ to. Applying Lemma 4.2.2 to -u(t), we have Llru(t) < 0 and Ll~u(t) < 

O. These also lead to (4.4.26) and then a contradiction. Therefore, the conclusion 

of the theorem holds. 

The following Theorem 4.4.2 and Corollaries 4.4.1-4.4.3 are for equation (4.4.20) 

with 0 < p < 1. 

Theorem 4.4.2 In addition to (4.4.25), we assume that 0 < p < 1 and 

that there is a positive integer ko and a tl ~ to satisfying ml (n) = r (g( tl + 

nr) - tl + kor)/rl ~ n for all large enough n. Moreover, there is a sequence 

{nd with nk ~ 00 as k ~ 00 such that 

n ko (1 ) 
~ q- (t + iT) > P - P 
L- 4 1 - 1- ko 
i=ml p 

(4.4.27) 

holds for all large k with n = nk, ml = ml(nk). Then, for every solution x(t) of 

(4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 
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Proof By Theorem 4.4.1, if (4.4.25) holds, we have that every solution 

x(t) of (4.4.20) is either oscillatory or for any T 2:: to, there exists one til > 

T such that l:r(t")1 :::.: pl:r(t" - r)l. 

Assume that (4.4.20) has an eventually positive solution x(t) such that y(t) = 

x(t) - p:r(t -1') is not oscillatory. Then, by Theorem 4.4.1 we must have y(t) ~ 0 

for large enough t. 

Since y(t) is not oscillatory, we must have y(t) < 0 for all sufficiently large t. 

Set z(t) = -y(t). Then z(t) > 0 and by ~~y(t) = -~~(-y(t)), we find 

~;z(t) - f(t,x(g(t))) = O. 

Further, by the assumption, we have 

~;z(t) - q(t)x(g(t)) 2:: 0, (4.4.28) 

i.e., 

~;z(t) 2:: q(t)x(g(t)) > O. 

Therefore by Lemma 4.2.2, we have S;z(t) > 0, ID.TZ(t)1 > 0 and 1~~z(t)1 > o. 

We claim that ~rz(t) < 0 and ~~z(t) < o. Indeed, if ~TZ(t) > 0, then, 

since ~;z(t) > 0, we may assume D.rZ(tl + kT) > l > 0 for a large enough tl 

and all kEN. Then 

n 

L ~rZ(tl + iT) = Z(tl + (n + 1)T) - z(tl ) 2:: nl. 
i=O 

Let n - 00, then Z(tl + (n + l)T) - +00. We have limt~oo x(t) = 0 by re-

peating x(t) < px(t - r) for 0 < p < 1. Thus, by the definition of z(t), we 
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have limt-+oo z(t) = 0 which contradicts Z(tl + nr) ~ +00 as n ~ 00. Thus, 

~TZ(t) < O. Then, by Lemma 4.2.2, h = 0 so ~~z(t) < O. 

Byz(t) =px(t-r)-:r(t),wehave:r(t) = (:r(t+r)+z(t+r))/p. Substituting 

this into (4.4.28) we obtain 

~;z(t) - q(t) z(g(t) + r) - q(t) x(g(t) + r) 2: O. 
p p 

By repeating the above process, we have 

and hence, 

k 1 (t) 
~;z(t) - q(t) L i z(g(t) + ir) - ~x(g(t) + kr) 2: 0, 

i=l P P 

k 

~;z(t) - q(t) L Ii z(g(t) + ir) > 0 
i=l P 

since x(g(t) + kr) > O. With 

we have U(4)(t) = ~~z(t) 2: 0 and u(t) > O. Moreover, 

Then ~TZ(t) < 0 implies u'(t) < O. 

(4.4.29) 

By the same technique used in the above proof of u'(t) < 0, we have u(3)(t) < 

o and U(2) (t) > O. Integrating (4.4.29) and using the proof of Lemma 4.4.2 with 

the replacement of y by z , we have 

k 1 
~;'u(t) - ii4(t) L -"7 u(g(t) + ir) > O. 

i=1 pl 

As u(t) is decreasing, the above inequality leads to 

k 1 
~;'u(t) - i14(t) u(g(t) + kr) L -"7 > O. 

i=1 pl 



Since L:7=ll/pi = (1 - pk)/(pk(1 - p)), it follows that 

1 k 

6.;u.(t) ~ k( - P ) iJ4(t) u.(g(t) + kr) > O. 
p 1- P 

Replacing k by ko and t by tl + iT in the above inequality, we obtain 

Summing up both sides of the above inequality for i from S to n and by u.'(t) < 0, 

we have 

1 ko n 

6.;U(tl + (n + 1 )T) - 6.;U(tl + ST) > pko0 ~ p) U(g(tl + nT) + kor) ?= l}4(t1 + iT), 
f=S 

which implies that 

(4.4.30) 

since 6.~u.(t) < O. Further, from the above inequality it follows that 

1 ko n 

-b.;U(tl + (s+ l)T) +b.;U.(tl +ST) > pk00 ~ p) u(g(t1 +nT) +kor) ?= l}4(t1 +iT), 
f=S 

and so, 

1 ~ n 

b.;U(tl + ST) > pk00 ~ p) U(g(tl + nT) + kor) I: l}4(t1 + iT). 
i=s 

The above inequality implies 

1 ko n 

b.rU(tl + (s + l)T) - 6.ru(t1 + ST) > pk
0
0 ~ p) U(g(tl + nT) + kor) ?= l}4(t1 + iT). 

f=S 

Further, we obtain 

1 _ ko n 

-6.ru(t l + ST) > pko(1 ~ p) U(g(tl + nT) + kor) ?= l}4(iJ + iT), 
f=S 
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1 ~ n 

-u(t} + (s + 1)T) + u.(t} + ST) > k (p ) U(g(tl + nT) + kor) "" i]4(t} + iT). 
po I-p ~ 

t=8 

Since u(t) > 0, from the above inequality it follows that 

1 ~ n 

U(tl + ST) > k (p ) u(g(t} + nT) + kor) "" i]4(t1 + iT). po I-p ~ 
l=8 

Note that g(t} + nT) + kor ~ t} + mIT and u is decreasing. By taking S = mIl 

we obtain 

i.e., 

This inequality contradicts (4.4.27) and, therefore, if x( t) is an eventually positive 

solution then x( t) - px( t - r) is oscillatory. 

Assume that (4.4.20) has an eventually negative solution x(t) such that y(t) = 

x(t) - px(t - r) is not oscillatory. Then, by Theorem 4.4.1, x(t) < 0 and y(t) > 0 

hold eventually. From (4.4.20) and (4.1.3), ll.;'y(t) ~ -q(t)x(g(t)) > 0 for t ~ 

T ~ to. Using the same argument as above for z(t), we know that ll.ry(t) < 

0, .6.;y(t) > 0 and ll.;y(t) < O. From the definition of y(t) we have x(t) = 

l(x(t + r) - y(t + r)) so 
p 

.6.!y(t) - q(t) y(g(t) + r) + q(t) x(g(t) + r) ~ 0 
p p 

and 
k 1 

ll.!y(t) - q(t) L iy(g(t) + ir) > O. 
i=l P 

69 



70 

Replacing z(t) by y(t) in the definition of u(t) and using the same proof as above, 

we derive a contradiction to (4.4.27). Therefore, for any nonoscillatory solution 

x(t), x(t) - p::c(t - r) must be oscillatory. 

Corollary 4.4.1 In addition to (4.4.25), we assume that 0 < p < 1 and 

that there is a positive integer ko and a tl ~ to satisfying mI(n) = r(9(tl + 

nr) - tl + kor)/r 1 :S n for all large enough n. Moreover, there is a sequence 

{nd with nk ----jo 00 as k ----jo 00 such that 

(4.4.31 ) 

holds for all large enough k with n = nk, ml = ml(nk). Then, for every solution 

x(t) of (4.4.20), either x(t) or x(t) - p;r(t - r) is oscillatory. 

Proof The proof is the same as that of Theorem 4.4.2 until (4.4.30). 

Summing up (4.4.30) for s from mi to n, we have 

1 ko n n 

-~;U(tl +(n+ 1)r)+~;u(ti +mlr) > pk
0
0 ~ p) u(g(t1 +nr)+kor) 2: ?= q4(t1+iT). 

8=ml 1=8 

Since ~;u( t) > 0, the above inequality implies 

1 ko n n 

~;U(tl + mIT) > pk00 ~ p) U(9(tl + nT) + kor) 8~1 ~ q4(tl + iT). (4.4.32) 

Further, by the same technique used for the proof of Theorem 4.4.2, we obtain 

1 ko n n 

U(ti + mIT) > pk00 ~ p) U(g(ti + nT) + kor) 8~1 ~ q4(t1 + iT). 

Note g(tl + nT) + kor :S tl + mIT and u is decreasing. So, from the above 

inequality it follows that 

1 ko n 

U(ti + mIT) > pk
0
0 ~ p) U(ti + mIT) ,2: (i - mi + 1)q4(t1 + iT), 

l=ml 
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i.e., 

n . _. pkO (1 _ p) L (z - Tn} + l)q4(t} + otT) < k' 
1 - po 

i=ml 

This inequality contradicts (4.4.31). Thus, this contradiction shows that the 

conclusion holds. 

Remark 4.4.1 Compared with (4.4.27)' the requirement (4.4.31) for ii4(t) is 

weaker than (4.4.27) since i - m} + 1 ~ 1 holds in (4.4.31). 

Corollary 4.4.2 In addition to (4.4.25), we assume that 0 < p < 1 and 

that there is a positive integer ko and a tl ~ to satisfying ml(n) = r(g(tl + 

nT) - tl + kor)/T 1 ~ n for all large enough n. Moreover, there is a sequence 

{nk} with nk ---+ 00 as k ---+ 00 such that 

(4.4.33) 

holds for all large enough k with n = nk, ml = ml (nk). Then, for every solution 

x(t) of (4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 

Proof The proof is the same as that of Corollary 4.4.1 until inequality 

(4.4.32) with ml replaced by m2 (ml ~ m2 ~ n). Summing up (4.4.32) for m2 

from ml to n, we have 

1 - pko 

k (1 ) U(g(tl + nT) + kar) x po _ p 
n n n 

L L L ii4(t1 + iT}, 
m2=ml s=m2 i=s 

and so 

1 ko n n n 

-~'TU(tl + mIT) > pk
0
0 ~ p) U(g(tl + nT) + kar) L L ~ ii4(t1 + iT). 

m2=ml s=m2 '=8 
(4.4.34) 
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Next, by the same technique used for the proof of Theorem 4.4.2, we obtain 

Further, since g(tl + nr) + kor :::; tl + ml rand u is decreasing, we obtain 

i.e., 

1 l:n (. 1)(' 2) - (t .) p
k
o(1 - p) - z - ml + z - ml + q4 1 + zr < k' 

2. 1-po 
l=ml 

This inequality contradicts (4.4.33) and, hence, this contradiction shows that the 

conclusion holds. 

Remark 4.4.2 Note that (i - ml + 1)(i - ml + 2)/22: i - m} + 1 2: 1. Hence, 

(4.4.33) is weaker than (4.4.27) and (4.4.31) in general. 

Corollary 4.4.3 In addition to (4.4.25), we assume that 0 < p < 1 and that 

there are a positive integer ko and a t} 2: to satisfying ml(n) = r(g(tl + 

nr) - tt + kor)/rl :::; n for all large enough n. Moreover, there is a sequence 

{nk} with nk -+ 00 as k -+ 00 such that 
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holds for all large enough k with n = 1Lk, 1111 = 1111(nk). Then, for every solution 

x(t) of (4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 

Proof The proof is the same as that of Corollary 4.4.2 until (4.4.34) with 

1111 S 1112 replaced by 1112 S 1113. Summing up (4.4.34) for 1112 from 1111 to n, we 

have 

1 - pko 
-U(tl + (n + 1)7) + U(tl + 11117) > k ( ) U(g(tl + n7) + kor) x po 1- p 

n n n n 

which, si~ce u( t) > 0, implies 

Note g(tl + n7) + kor S tl + 11117 and u is decreasing. Then, we obtain 

So 

1 L:n 
(. 1)(' 2)(' 3) - (t .) p

k
o(1- p) - Z - 1111 + Z - 1111 + Z - 1111 + q4 1 + Z7 < k' 

3! . 1 - po 
J=ml 

This inequality contradicts (4.4.35) and, thus, this contradiction shows that the 

conclusion holds. 
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Remark 4.4.3 Notice that 

(i-m1+1)(i-m1+2)(i-m1+3) > (i- m 1+ 2)(i- m 1+ 1) 
3! 2 

> i - m1 + 1 

> 1 

in general. Therefore, (4.4.35) is weaker than (4.4.33), (4.4.31) and (4.4.27). 

The following Theorem 4.4.3 and Corollaries 4.4.4-4.4.6 are for equation (4.4.20) 

with p = 1. 

Theorem 4.4.3 In addition to (4.4.25), we assume that p = 1 and that there 

exists a positive integer ko and a t1 2:: to satisfying m1(n) = f(g(t 1 + nT) - t1 + 

/cor) /T 1 :::; n for all large enough n. Moreover, there is a sequence {nk} with nk--

00 as k -- 00 such that 

( 4.4.36) 

for all large enough k with n = nk, ml = mJ(nk)' Then, for every solution x(t) 

of (4.4.20), either x(t) or x(t) - x(t - r) is oscillatory. 

Proof We refer to the proof of Theorem 4.4.2 line by line with the replace-

ment of p by 1 and 

by k. Since limt-+oo x(t) = 0 and limt-+oo z(t) = 0 follow from x(t) < px(t -

T) for 0 < p < 1, the boundedness of x(t) and z(t) follows from x(t) < x(t - T). 

Then the proof of Theorem 4.4.2 is still valid here after a minor modification. 
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Corollary 4.4.4 In addition to (4.4.25), we assume that p = 1 and that 

there is a positive integer ko and a t 1 ~ to satisfying ml (n) = r (g( tl + 

nT) - t 1 + kOf) IT 1 ::; n for all large enough n. Moreover, there is a sequence 

{nd with nk - 00 as k - 00 such that 

(4.4.37) 

holds for all large enough k with n = nk, ml = ml (k). Then, for every solution 

x(t) of (4.4.20), either x(t) or x(t) - x(t - r) is oscillatory. 

Proof The proof of the Corollary 4.4.1 can be used here almost verbatim 

after the replacement of (1 - pkO)/[Pko(1 - p)] by ko. 

Corollary 4.4.5 In addition to (4.4.25), we assume that p = 1 and that 

there is a positive integer ko and a tl ~ to satisfying ml (n) = r(g(tl + 

nT) - tl + kof) IT 1 ::; n for all large enough n. Moreover, there is a sequence 

ink} with nk - 00 as k - 00 such that 

~ t (i - ml + l)(i - ml + 2)t]4(tl + iT) ~ : 
~ml 0 

(4.4.38) 

holds for all large enough k with n = nk, ml = ml (nk). Then, for every solution 

x{t} of (4.4.20), either x(t) or x(t) - x(t - r) is oscillatory. 

Proof Refer to the proof of the Corollary 4.4.2 with the necessary replace-

ment of (1 - ~O)/[Pko(1 - p)] by ko. 
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Corollary 4.4.6 In addition to (4.4.25), we assume that p = 1 and that 

there is a positive integer ko and a t) ;::: to satisfying m) (n) = r(g(tl + 

nT) - t) + kor) / T 1 :S n for all large enough n. Moreover, there is a sequence 

{nd with nk -----+ 00 as k -----+ 00 such that 

(4.4.39) 

holds for all large enough k with n = nk, m) = m) (nk). Then, for every solution 

x(t) of (4.4.20), either x(t) or x(t) - x(t - r) is oscillatory. 

Proof Refer to the proof of Corollary 4.4.3 with the necessary replacement 

Note that remarks for Corollaries 4.4.4-4.4.6 similar to these for Corollar-

ies 4.4.1-4.4.3 are also true. 

The following Theorem 4.4.4 and Corollaries 4.4.7-4.4.9 are for equation 4.4.20 

with p > 1. 

Theorem 4.4.4 In addition to (4.4.25), we assume that p > 1 and that 

there is a positive integer k{J and a t) ;::: to satisfying ml (n) = r(g(tl + 

nT) - tl + kor)/Tl :S n for all large enough n. Moreover, there is a sequence 

{nd with nk -----+ 00 as k -----+ 00 such that 

( 4.4.40) 

holds for all large enough k with n = nk, ml = ml(nk). Then, for every bounded 

solution of (4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 
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Proof Suppose that x(t) is a bounded eventually positive solution of 

(4.4.20). The proof of Theorem 4.4.2 is then still valid for Theorem 4.4.4 subject 

to a few obvious minor changes. 

Corollary 4.4.7 In addition to (4.4.25), we assume that p > 1 and that 

there is a positive integer ko and a tl ~ to satisfying ml(n) = r(g(tl + 

nr) - tl + kor)/r 1 ~ n for all large enough n. Moreover, there is a sequence 

{nd with nk - 00 as k - 00 such that 

(4.4.41 ) 

holds for all large enough k with 11 = 11k, ml = ml (11k)' Then, for every bounded 

solution x(t) of (4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 

Corollary 4.4.8 In addition to (4.4.25), we assume that p > 1 and that 

there is a positive integer ko and a tl ~ to satisfying ml (11) = r(g(tl + 

nr) - tl + kor)/r 1 ~ n for all large enough n. Moreover, there is a sequence 

{nk} with nk - 00 as k - 00 such that 

(4.4.42) 

holds for all large enough k with n = nk, ml = ml(nk)' Then, for every bounded 

solution x(t) of (4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 

Corollary 4.4.9 In addition to (4.4.25), we assume that p > 1 and that 

there is a positive integer ko and a tl ~ to satisfying ml (n) = r(g(tl + 
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nT) - tl + kor)/T 1 ::; n for all large enough n. Moreover, there is a sequence 

{nd with nk --+ 00 as k --+ 00 such that 

1 I:n 

(' 1)(' 2)(' 3)- ( . ) > pko(1- p) -, 7 - ml + 'Z - ml + 'Z - ml + q4 tl + 'ZT - k 
3. , 1 - po 

( 4.4.43) 
l=ml 

holds for all large enough k with n = nk, ml = ml (nk). Then, for every bounded 

solution x(t) of (4.4.20), either x(t) or x(t) - px(t - r) is oscillatory. 

Note that remarks for Corollaries 4.4.7-4.4.9 similar to those for Corollar-

ies 4.4.1-4.4.3 are also true. 

4.4.3 EXAMPLES 

Two examples will be given in this subsection to demonstrate the results in 

last subsection. 

Example 4.4.1 Consider the linear difference equation 

1 (J 

~~(x(t) - px(t - r)) + -x(t - 1 f3) = 0 
t + t 

(4.4.44) 

for t > 0, where p, r, T and (J are positive constants. Viewing (4.4.44) as (4.4.20), 

we have q(t) = lit and g(t) = t - (J /(1 + f3t). Then, according to (4.1.3), iJ4(t) = 

a/(t + 4T) for f3 = 0 and 

for f3 > O. Since iJ4(t) ~ a' /(t + 4T) for some a' > 0 and all t ~ 0, iJ4 satisfies 

(4.4.25) with t' = O. By Theorem 4.4.1, for every solution x(t) of (4.4.44), either 



x(t) is oscillatory or for any T ~ to there exists a til > T such that Ix(t")1 < 

plx(t" - r)l. In particular, when p = 0, every solution of (4.4.44) is oscillatory. 

Example 4.4.2 Consider the difference equation 

80' 
~!(x(t) - px(t - 7l')) + 8:r(t - 7l') + --2X3(t - 7l') = 0, 

1+ t 
(4.4.45) 

where 0' ~ ° is a constant. Regarding (4.4.45) as (4.4.20), we have T = 7l', r = 

7l', g(t) = t - 7l' and q(t) = 8. Then, for some a E (0, I), if4 = 8a by (4.1.3) so 

(4.4.1) is satisfied. For p = 1, ko = 1 and t1 = t, we have mn = nand 

n 1 L (s + 1 - m n )if4(tl + ST) = 8a > 1 = ko 
s=mn 

if a > 1/8. Moreover, we also have 

n _ (1 _ p)pkO L (s + 1 - mn )q4(t1 + ST) = 8a > p = pk 
1 - 0 

s=mn 

if p E (0,1) U (1,8) and a > p/8. According to Corollaries 4.4.1 and 4.4.4, 

for every solution x(t) of (4.4.45), either x(t) or x(t) - px(t - r) is oscillatory if 

o < p ~ 1. Furthermore, by Corollary 4.4.7, for every bounded solution x(t) of 

(4.4.45), either x(t) or x(t) - px(t - r) is oscillatory if 1 < P < 8. 
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4.5 HIGHER EVEN ORDER EQUATION (4.1.1) 

In this section, we will deal with equation (4.1.1) of the general form 

~~(x(t) - px(t - r)) + f(t,x(g(t))) = 0, (4.5.46) 
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where m > 4 is an even integer. 

The assumpt ions given section 4.1 guarantee the existence and differentiability 

of the inverse g-1 of g. Let 

i]m(t) = a min {q(s)} ( min {(g_l(S))/})m, 
t$s$t+mr g(t)$s$g(t)+mr 

(4.5.47) 

where 0 < a < 1. We shall see that the function qm will play an important role 

in the oscillatory criteria for the solutions of (4.5.46). 

This section is composed of three subsections. In subsection 4.5.1, lemmas will 

be stated for the proofs of the criteria and the main oscillatory criteria will be 

given in subsection 4.5.2. Finally, examples will be discussed in subsection 4.5.3. 

4.5.1 RELATED LEMMAS 

In next subsection, we shall present the following lemmas which will be needed 

in the proofs in next subsection. 

Lemma 4.5.1 Assume that x(t) is an eventually positive (negative) solution of 

(4.5.46) such that y(t) = x(t) - px(t - r) > 0 « 0) eventually. Then !::J.ry(t) > 

0« 0) and !::J.~-ly(t) > 0« 0) hold eventually. 

Proof Suppose x(t) > 0 and y(t) > 0 hold eventually. Due to g(t) < 

t, g'(t) > 0 and (4.1.2), there exists a tl > to such that x(g(t)) > 0 for all t ~ t l . 

Further, (4.5.46) becomes 

!::J.~y(t) + f(t,x(g(t))) = O. 
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According to (4.1.3), J(t,:r(g(t))) 2:: q(t):r(g(t)) > 0 for t 2:: t1 hold. Therefore, 

( 4.5.48) 

for all large enough t, namely, tl~ly(t) < 0 eventually. By Lemma 4.2.2, h 

could be odd with 1 ~ h ~ In - 1. For all cases, we could obtain tlry(t) > 

o and tlr;:-ly(t) > 0 eventually. If :r(t) < 0 and y(t) < 0 hold eventually, then 

(4.5.48) becomes tlr;:y(t) 2:: -q(t):r(g(t)) > O. Applying Lemma 4.2.2 to -y(t), 

we obtain tlry(t) < 0 and tl~l-ly(t) < O. 

Lemma 4.5.2 Let the hypothesis of Lemma 4.5.1 be satisfied. Moreover, let 

iim{t) be defined by (4.5.47). Set 

Then u satisfies u(m)(t) = tlr;:y(t) < 0(> 0), u(t) > 0« 0), u'(t) > 0« 

0), u(m-1)(t) > 0« 0), tlr;:- lu(t) > 0« 0), and 

k 

tl;'u(t) + (jm(t)u(g(t) - kr) Lpi ~ 0(2:: 0) 
i=O 

for each fixed number k and for all large enough t. 

Proof Suppose x(t) > 0 and y(t) > 0 hold eventually. According to the 

definition of u( t) and (4.5.48), we can see that u( t) > 0, u(m) (t) = tl':y( t) < 0 

and 

tl;'y(t) + q(t)x(g(t)) ~ 0 (4.5.49) 

for sufficiently large t. Taking into account the definition of y(t), we have 

tl;'y(t) + q(t)(y(g(t)) + px(g(t) - r)) ~ O. 
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By repeating t he above process k times, we deduce 

k 

~r;y(t) + q(t) Lpiy(g(t) - i,.) + q(t)pk+l:r(g(t) - (k + l)r) :::; O. 
i=O 

Therefore, since q(t)pk+l:r(g(t) - (k \- 1),.) ~ 0, it follows that 

k 

~~ly(t) -+- q(t) Lpi y(g(t) - ir) :::; O. 
i=O 

Furthermore, 
k 

u(m)(t) + q(t) Lpiy(g(t) - ir):::; O. (4.5.50) 
i=O 

Then, for large enough t, the assumptions on 9 and q give 

( )

m 19(t)+T 181 +T 

~ min {q(l)} min (g-I(S))' dS 1 ds2 .. • 
t~19+mT g(t)~8~g(t)+mT g(t) 81 

r8m-2+T rSm-1 +T 

}8m-2 dSm - 1 }sm-l y(() - i7')d() 

> min {q(l)} ( min (g_I(S))/)m u(g(t) - ir) 
- t99+mT g(t)~8~g(t)+mT 

~ iim(t)u(g(t) - ir). 

Thus, integration on both sides of (4.5.50) gives 

k 

~r;u(t) + iim(t) L pi u(g(t) - ir) :::; O. (4.5.51) 
i=O 

According to the definition of u(t), the equality 
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holds. Then it follows from Lemma 4.5.1 that u'(t) > O. Similarly, we have 

1
1+r 

u(m-l)(i) = t t:,.~'-ly(e)de 

so u(m-l)(t) > 0 from Lemma 4.5.1. Hence, 

Further, (4.5.51) implies 

k 

t:,.';u(t) +iim(t)u(g(t) - kr) Lpi S; 0 
i=O 

for each fixed natural number k and for all large enough t. If x(t) < 0 and y(t) < 

o hold eventually, then u(t) < 0, u(m)(t) = t:,.r;y(t) > 0 and t:,.r;y(t)+q(t)x(g(t)) ~ 

o for large enough t. Moreover. (4.5.50) becomes 

k 

u(m)(t) + q(t) Lpiy(g(t) - ir') ~ 0 
i=O 

and (4.5.51) becomes 

k 

t:,.';u(t) + iim(t) Lpiu(g(t) - ir) ~ O. 
i=O 

That u'(t) < 0 and u(m-l)(t) < 0 follow from t:,.ry(t) < 0 and t:,.r;:-ly(t) < O. 

Then t:,.~-lU(t) < 0 follows from the integration of u(m-l)(t). Since u(t) is de-

creasing, each u(g( t) - 'ir) can be replaced by u(g( t) - kr) in the above inequality. 

4.5.2 MAIN RESULTS 

Using the above lemmas, we can obtain the following theorems for any even 

order difference equation in the form (4.5.46). Essentially, the spirit of the the-

orems is the same as the fourth order. However, it is impossible that a general 



case could be completely t he same as a specific case. We, therefore, shall stress 

the difference between t he general case and the specific case, the fourth order. In 

addition, we shall not give the proof in details if it is similar to that of the fourth 

order. 

Theorem 4.5.1 Assume that. for some t' 2: to, 

11 

L qm(t' + iT) -400 

i=O 

(4.5.52) 

as n -4 00. Then for every solut.ion :r(t) of (4.5.46), either x(t) is oscillatory or 

for any T 2: to there exists a til> T such that Ix(t")I::S pIX(t" - r)l. 

Proof In essence, the proof is the same as that of Theorem 4.4.1 for the 

fourth order equations. Thus we shall not give the proof in details but an outline. 

Let x(t) be a solution of (4.5.46) satisfying x(t) > 0 and x(t) - px(t - r) > 

o for all large t. Let y(t) be as in Lemma 4.5.1 and u(t.) be as in Lemma 4.5.2. 

Furthermore, for any positive integer k, we have 

k 

~~u(t) + iim(t)u(g(t) - AT) Lpi ::s 0, 
i=O 

where u(g(t) - kr) > O. Define the Riccati transformation by 

~r;:-lU(t) 
v(t) = (() k)' u 9 t - r 

Notice that v( t) > O. Moreover we deduce 
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/)..,.v(t) v(t + T) - V(t) 

/).~1-111(f + T) /).~I-IU(t) 

U(g(t + T) - AT) U(g(t) - AT) 
U(g(t) - kr)/).r;-Iu(t + T) - u(g(1 + T) - kr)/).r;-IU(t) 

U(g(t + T) - h)u(g(t) - kr) 
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u(g(t) - h)/).~I-IU(t + T) + U(g(( + T) - b>)(/).r;u(t) - /).r;-IU(t + T)) 
U(g(t + T) - kr)U(g(t) - kr) 

/).r;u(t) /).~I-Iu(t + T)/)..,.U,(g(t) - kr) 

u,(g(t) - kr) u(g(t) - kr)u(g(t + T) - kr) 
< 

k 
_ ()"" i '( ).6..,.u(g(t)-kr) 

< -qm t ~p -Vt+T u(g(t)-kr) 

k 

< -I]m(t) Lpi. 
i=O 

Therefore, there exists a i ' > to such that 

k 

.6..,.V(t' + jT) + I]m(t' + jT) Lpi :::; O. (4.5.53) 
i=O 

Summing up both sides of (4.5.53) from 0 to n, we have 

k n 

v(t' + (n + l)T) - V(t') + Lpi L I]m(t' + jT) :::; O. 
i=O j=O 

Thus 
k n 

L pi L I]m(t' + jT) < V(t') < 00, 

i=O j=O 

which leads to a contradiction to (4.5.52). If x(t) is a solution of (4.5.46) satis-

fying x(t) < 0 and y(t) < 0 eventually, from Lemmas 4.5.1 and 4.5.2, the above 

argument about v(t) is still valid and also leads to a contradiction. Therefore, 

the conclusion of the theorem holds. 

The following Theorem 4.5.2 and Corollaries 4.5.1-4.5.2 are for equation (4.5.46) 

with 0 < p < 1. 
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Theorem 4.5.2 In addition to (1.5.52). we further assume that a < p < 1 

and there is a positive integer ko and a tl 2': to satisfying Tnl(n) = f(g(t 1 + 

nr) - tl + h'o1')/r 1 S 11 for all large enollgh n. Moreover, there is a sequence 

{nk} with Ilk ---+ ex:: as k ---+ x sllch that 

(4.5.54) 

holds for all large enough h· with n = T1k. Tn 1 = Tnl (nk)' Then, for every solution 

x{t) of (4.5.46). either :r(t) or :r(t) - P:l'(t - r) is oscillatory. 

Proof According to Theorem 4.5.1, if (4.5.52) holds, we have that every 

solution x(t) of (4.5.46) is either oscillatory or for any T 2': to, there exists one 

f' > T such that 1:1'(t")1 S pl:1'(I" - 1')1· 

Assume that (4.5.46) has an eventually posit.ive solution :r(t) such that y(t) = 

x{t) - px(t - r) is not oscillatory. Then from Theorem 4.5.1, we deduce that 

y{t) < a for all large enough t. Let z(t) = -y(t). Therefore, z(t) > a and 

~~IZ(t) - f(t,:1'(g(t))) = O. 

Moreover, 

~~nz(t) 2': q(t):r(g(t)) > a 

so 

~~I z(t) - q(t):r(g(t)) 2': O. (4.5.55) 

For z(t), according to Lemma 4.2.2, h is even. So ~~z(t) > a for all even 

number i with 2 SiS Tn - 2, and 1~~z(t)1 > a for all odd number j with 1 S 

j~m-l. 



We show that ~TZ(t) < O. Indeed. if ~TZ(t) > 0, then, since ~;z(t) > 0, we 

may assume ~TZ(tI + kT) > I > 0 for a large enough tl and all kEN. Then 

d 

L ~TZ(tI + iT) = Z(tl + (d + 1 )T) - Z(tI) 2: (d + l)l. 
;=0 

Let d ~ 00, then Z(tl + (d + l)T) ~ +00. We have limt--+oox(t) = 0 by re-

peating x(t) < p:1'(t - r) for 0 < p < 1. Thus, by the definition of z(t), we 

have liml--+oo z(t) = 0 which contradicts Z(tl + dT) ~ +00 as d ~ 00. Thus, 

~TZ(t) < O. 

So, according to Lemma 4.2.2 again, h = O. Thus, ~~z(t) > 0 for all even 

number £ with 2 ~ i ~ m - 2, and ~~z(t) < 0 for all odd number j wit.h 1 ~ 

j~m-1. 

Notice :r(t) = (:z:(t + r) + z(t + r))/p. Hence, from (4.5.55), it follows that 

and further 

So, 

~~z(t) - q(t) z(g(t) + 1') - q(t) x(g(t) + 1') 2: 0, 
p p 

k 

~~z(t) - q(t) L ~ z(g(t) + £1') - q(2 x(g(t) + k1') 2: O. 
i=I P P 

k 1 
~~ z(t) - q(t) L i z(g(t) + i1') > 0 

i=1 P 

since x(g( t) + k1') > O. Let 

i T lSI +T l sm
- 2

+
T 11

+
sm

- 1 
+T 

u(t) = dS 1 ds2 • • • dSm - 1 z((J)d(J. 
o SI Sm-2 t+8",_1 

Then we have u(m)(t) > 0 and u(t) > O. Since 

(4.5.56) 
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then borz(t) < 0 implies u'(i) < O. Moreover, u(i)(t) > 0 for all even number 

i with 2 :S i :S In - 2. and uU) (t) < 0 for all odd number j with 1 :S j :S m - 1. 

Integrating (4.5.56) and from the proof of Lemma 4.5.2 with the replacement 

of y(t) by z(t). we have 

which leads to 

/" 

bor;u(t) - qm(t) '" ~ u(g(t) + ir) > 0, 
L.., p' 
;=1 

k 1 
bo~'U(t) - qm(t) u(g(t) + kr) L i > O. 

i=1 P 

Due to E7=1 llpi = (1 - li)/(pk(l - p)), we deduce that 

Replacements of k by ko and t by tl + iT in the above inequalities yield 

Summing up both sides of the above inequality for i from 8 to n and since u'(t) < 

0, we have 
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1-p~ n 

bo~-lU(tl +(n+ 1 )T)-bor;-l u(tl +8T) ~ pko( 1 _ p) u(g(t1 +nT)+!cor) ?= qm(t1 +iT), 
t=s 

which implies 

1 ~ n 

-bo~-1U(tl + 8T) > V
0
0 ~ p) U(g(tl + nT) + kor) L qm(tl + iT) (4.5.57) 

t=s 

due to bo~-1U(t) < O. For the above inequality, we will reduce the order of 

batU(tl + 8T) by rewriting it as bo~-IU(t + (8 + l)T) - ba!-lU(t + 8T) for any j = 

1,2, ... , n - 1. Taking into account the fact that all even terms are positive and 
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all odd terms are negative, we will write off all the negative terms from the left 

hand side of this inequality. It yields then 

Since g(t1 + nT) + kor ~ t1 + Tn1 T and 'II is decreasing, by taking s = m}, we 

obtain 

i.e., 

This inequality contradicts (4.5.54). If :r(t) is an eventually negative solution such 

that y(t) is not oscillatory, then y(t) > 0 holds eventually. The above reasoning 

with an obvious minor modification also leads to a contradiction. Therefore, for 

every solution x(t), either :r(t) or y(t) is oscillatory. 

Corollary 4.5.1 In addition to (4.5.52), we assume that 0 < p < 1 and there is 

a positive integer leo and a t1 2 to satisfying m1(n) = f(g(t1+nT)-t1+kor)/Tl ~ 

n for all sufficiently largen. Moreover, there is a sequence {nd with nk -

00 as k - 00 such that 

(4.5.58) 

holds for all large enough k with n = nk, m1 = mJ{nk). Then, for every solution 

x(t) of (4.5.46), either x(t) or x(t) - p;r(t - r) is oscillatory. 

Proof Without loss of generality, we suppose (4.5.46) has an eventually 

positive solution x(t) such that y(t) = x(t) - px(t - r) is not oscillatory. The 
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proof is the same as that of Theorem 4.5.2 until (4.5.57). By the same technique 

we reduce the order of t he difference on t he left hand side of this inequality down 

to the second order and it yields 

Summing up the above inequality for s from Tn} to n, we have 

Due to LlTu.(t) < O. it follows from the above inequality that 

so 

According to g(t} + nT) + ko; ::; t} + mIT and u is decreasing, it follows that 

i.e., 

n . _. pko (1 _ p) 
""' (1 - TnI + 1)qm(tI + 1.T) < pk' ~ 1- 0 
i=ml 

This inequality contradicts (4.5.58). Thus, this contradiction shows that the 

conclusion holds. 

Remark 4.5.1 Compared with (4.5.54), the requirement (4.5.58) for Qm(t) is 

weaker than (4.5.54) since (i - Tn} + 1) ~ 1 holds in (4.5.58). 

In the next corollary, we consider more general case for any I, 1 ~ 1 < Tn. 
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Corollary 4.5.2 In addition to (4.5.52). we assume that 0 < p < 1 and that 

there is a positive integer ko and a tl ~ to satisfying mIen) = r(g(tl + nT) -

tl + kor) / T 1 ::::; n for all sufficiently large n. Moreover, there is a sequence 

{nk} with nk --> 00 as k --> 00 and an integer I (1 ::::; l < m) such that 

holds for all large enough k with n = nk, mI = mI (nk)' Then, for every solution 

x(t) of (4.5.46), either :r(t) or :r(t) - p:r(t - r) is oscillatory. 

Proof The proof is the same as that of Theorem 4.5.2 until (4.5.57). We 

reduce the order of the difference at the left hand of this inequality down to the 

lth order as we did in t he proof of Theorem 4.5.2. Since 1 ::::; l < m, if l is odd, 

we obtain 

1 ~ n 

-~~U(tl + ST) > pk
0
0 ~ p) u(g(t l + nT) + kaT') ?= i]m(tl + iT), 

t=8 

and if l is even, 

1 _ pko n 
~~U(tl + ST) > k ( ) U(g(tl + nT) + kar) ""' qm{tl + iT). po 1-p L 

t=8 

We can reach the same conclusion for the above two cases. Thus, we only give 

the details of the proof when l is odd. Summing up the above inequality for S 

from ml to n, we have 

_~~-lU(tl + (n + l)T) +~~-IU(tl + miT) 

1 ~ n n 

> pko0 ~ p) U(g(tl + nT) + kar) L L i]m(tl + iT). 
8=m,1=8 

Since ~~-lU(t) > 0, the above inequality implies 

1 ko n n 

~~-lU(tl + miT) > p~0 ~ p) U(g(tl + nT) + kar) L L i]m(t1 + iT). 
8=m, 1=8 



Further, by repeating the above procedure. we obtain 

1 ko n n n n 

U(ti + mIT) > pkO(~ ~ p) u(g(tl + IlT) + ko]') L L' .. L L iim(t i + iT). 
m2=m111l3=1112 s=ml i=s 

Due to g(ti + IlT) +- ko]' ::; 11 + miT and 11, is decreasing, it yields 

1 > 

n 1 ) L ,Ci - ml-I + 1)(i - ml-I + 2)ii11l(ti + iT) 
2. 

i=ml_1 

1- ko (n i 1 
pkO(l ~ p) j~l iim(ti + iT) m~l (l- I)! (i - In2 + l)(i - In2 + 2) x 

.. -(i - m2 + (l - 1))) 
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1- ko (n 1 ) 
pko(1 ~ p) ,~n(i - Ini + 1)(i - Inl + 2) x ... (i - mi + l)iim(t i + iT) , 

l-ml 

i.e., 

1 L7I (. 1) (' l)- (t .) pko(1- p) 
-, 'l - mi + . . ./ - m} + qml + 'tT < ...Jc' 
l. , 1 - yO 

I=ml 

This inequality contradicts (4.5.59), Thus, this contradiction shows that the 

conclusion holds. 

Remark 4.5.2 Note that (4.5.59) coincides with (4.5.58) for l = 1. For l > 1, 

(i - mi + 1)(i - m} + 2) ... (i - m} + l) . 
l! ~ z - ml + 1 ~ 1 

hold. Thus, (4.5.59) is weaker than (4.5.58) and (4.5.54) in general. 

The following Theorem 4.5.3 and Corollaries 4.5.3-4.5.4 are for equation (4.5.46) 

with p = 1. 
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Theorem 4.5.3 In addition to (4.5.52), we assume that p = 1 and that there is a 

positive integer ko and a tl ~ to satisfying mI (n) = f(g(tl +nr) -tl + kor)/r 1 :::; 

n for all sufficient Iy large n. ~'1oreover, there is a sequence {nk} with nk ---+ 

00 as k ---+ 00 such that 

(4.5.60) 

for large enough k with n = nk, Inj = mIen). Then, for every solution x(t) of 

(4.5.46), either :r(t) or :r(t) - :r(t - r) is oscillatory. 

Proof The proof is similar to that of Theorem 4.5.2. However, the proof 

of the feature of z( t) is different from that of Theorem 4.5.2 due to p = 1. We, 

hence, just outline the proof about the feature of z(t). For z(t), by Lemma 4.2.2, 

we notice h could be even with 2 :::; h :::; m - 2. So ~~z(t) > 0 for all even number 

i with 2 ~ i:::; m-2, and l~tz(t)1 > 0 for all odd number j with 1:::; j ~ m-1. 

If ~,..z(t) > 0, from the proof of Theorem 4.5.2 we have Z(tl + dr) ---+ 

+00 as d ---+ 00 for some tl ~ to. Since p = 1, from 0 < x(t) < x(t - r), 

we know that :r(t) is bounded on [to, 00). Thus, z(t) is bounded on [to,oo). 

This contradicts Z(tl + dr) ---+ +00 as d ---+ 00. Thus, ~,..z(t) < O. So, ac-

cording to Lemma 4.2.2 again, h = O. Thus, ~~z(t) > 0 for all even number 

i with 2:::; i ~ m-2, and ~tz(t) < 0 for all odd number j with 1 :::; j ~ m-1. 

The rest is the same as the proof of Theorem 4.5.2 with the necessary replace-
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The proofs of the following corollaries are very similar to those of Corollar-

ies 4.5.1-4.5.2 except minor changes. Thus. we will omit the proofs. 

Corollary 4.5.3 In addition to (4.5.52), we assume that p = 1 and that there 

is a positive integer ko and a t1 2 to satisfying Inl(nk) = f(g(t l + nT) -

tl + kor) IT 1 ~ n for all sufficiently large n. Moreover, there is a sequence 

{nd with 11k ---+ X as k ---+ JO such that 

(4.5.61) 

for large enough Ii .. with n = nk- ml = Inl(nk). Then, for every solution x(t) of 

(4.5.46), either 1:(t) or :r(t) - :r(t - r) is oscillatory. 

Corollary 4.5.4 In addition to (4.5.52), we assume that p = 1 and that there 

is a positive integer ko and a t1 2 to satisfying Inl(nk) = f(g(tl + nT) -

tl + kor)ITl ~ n for all sufficiently large n. Moreover, there is a sequence 

{nk} with nk ---+ 00 as k ---+ 00 and an integer l (1 ~ l ~ In - 1) such that 

~ .t (i - Inl + l)(i - Inl + 2) ... (i - Inl + l)qm(t l + iT) 2 :0 ( 4.5.62) 
t=m! 

for large enough k with n = nk. Inl = Inl(nk)' Then, for every solution x(t) of 

(4.5.46), either x(t) or x(t} - x(t - r} is oscillatory. 

Suppose that x(t) is a bounded eventually positive solution of (4.5.52). The 

proof of Theorem 4.5.2 is then still valid for Theorem 4.5.4 subject to a few 

obvious minor changes. Therefore, we will omit the proof of the following results 

for equation (4.5.46) with p > 1. 
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Theorem 4.5.4 In addition to (4.5.52), we a.',sume that p > 1 and that there is a 

positive integer ko and a 112: to satisfying Inl(nk) = f(g(t 1 +nr)-tl +kor)/rl ~ 

n for all large enough llo ),loreover, there is a sequence {nd with nk ----+ 00 as k ----+ 

00 such that 

(4.5.63) 

holds for all large enough k with 11. = Hb In 1 = InI (ILk)' Then, for every bounded 

solution :r(t) of (4.5.46), either ;r(t) or :r(t) - p:r(t - r) is oscillatory. 

Corollary 4.5.5 In adrlition to (4.5.52), we assume that p > 1 and that 

there is a positive integer ko and a tl 2: to satisfying ml (n) = f(g(t l + 

nr) - t1 + kor)/rl ~ 12 for all large enough n. Moreover, there is a sequence 

{nk} with nk ----+ 00 as k ----+ 00 sllch that 

(4.5.64) 

holds for all large enollgh k with 11 = 12k, In1 = m1 (nk). Then, for every bounded 

solution x(t) of (4.5.46), either :r(t) or x(t) - px(t - r) is oscillatory. 

Corollary 4.5.6 In addition to (4.5.52), we assume that p > 1 and that there is 

a positive integer ko and a t1 2: to satisfying ml(n) = r(g(tl+nr)-tl+kor)/rl ~ 

n for all sufficiently large n. Moreover, there is a sequence {nd with nk ----+ 

00 as k ----+ 00 and an integer I (1 ~ I < m) such that 

1 L:n 
(. 1)(' 2) (. I) - (t .) > p

k
o(1 - p) (4565) - 1, - ml + 1 - ml + . .. 'l - ml + qm 1 + 1r .,.,k' • 

i! . - 1 - pO 
,=ml 

holds for all large enough k with n = nk, ml = m1(nk). Then, for every bounded 

solution x(t) of equation (4.5.46), either x(t) or x(t) - px(t - r) is oscillatory. 
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Remark 4.5.3 Note that 

(i - In} + l)(i - In} + 2) ... (i - 1n1 + I - 1) . 
(I _ I)! ;:::: 'l - InI + 1 ;:::: 1 

holds. Thus, (4.5.65) is weaker that (4.5.64) and (4.5.63) in general. 

Corollary 4.5.7 III addition to (4.5.52), we assume that p> 1 and that there is 

a positive integer ko and a tI ;:::: to satisfying In} (n) = r (g( i} +nT) -t} +kor) /T 1 :s; 

n for all sufficiently large n. Moreover, there is a sequence {nd with nk -

00 as k - 00 such that 

1 2:11 

(i - In 1 + n - I)! _ . ( .) > pko (1 - p) 
~----~ qm t} +IT 

(n - 1)! i=ml (i - Inl)! - 1 - pko 
(4.5.66) 

holds for all large enough k with n = nk, InI = InI (nk). Then, for every bounded 

solution x(t) of (4.5.46), either :r(t) or 1:(t) - px(t - r) is oscillatory. 

4.5.3 EXAMPLES 

Three ill ustrating examples will be given in this subsection to demonstrate 

the applications of the results given in last subsection. 

Example 4.5.1 Consider the linear difference equation 

D.;l1(x(t) - px(t - r)) + ~x(t - (j (3 ) = 0 
t 1 + t 

(4.5.67) 

for t > 0, where n is a positive integer, p ;:::: 0, (3 ;:::: 0, r, T and (j are positive 

constants. Viewing (4.5.67) as (4.5.46), we have q(t) = l/t and g(t) = t - 0"/(1 + 

j3t). Then, according to (4.5.47), ihl1(t) = cx/(t + 2nT) for (3 = 0 and 

Ii,.(t) = t+~nr (1- (1 +;~+U(3r 



for j3 > 0. Since ihn(t):2: o.'/(t + 21lT) for some c/ > 0 and all t:2: 0, ii2n satisfies 

(4.5.52) with t' = O. By Theorem 4.5.1, for every solution :r(t) of (4.5.67), either 

x(t) is oscillatory or for any T :2: to there exists a til > T such that Ix(t")1 < 

plx(t" - r)l· In particular, when p :c= O. every solution of (4.5.67) is oscillatory. 

Example 4.5.2 Consider the difference equation 

~;71(:r(t) - p:r(t - Ti)) + 8:1'(t - Ti) + 1 ~t2:r3(t - 7r) = 0, (4.5.68) 

where (j :2: 0 is a constant. Regarding (4.5.68) as (4.5.46), we have T = 7r, r = 

Ti, g(t) = t - Ti and q(t) = 8. Then, for some a E (0,1), ii2n = 8a by (4.5.47) so 

(4.5.52) is satisfied. For p = 1, k~o = 1 and t1 = t, we have ml = land 

/ 1 
2: (s + 1 - m/)ii2n(t1 + ST) = 8a > 1 = -k 

o 
s=m, 

if a > 1/8. Moreover, we also have 

I (1 _ p)pkO 
~ (s + 1 - mdii2n(tl + ST) = 8a > p = pk L- 1- 0 
s=m, 

if P E (0,1) U (1,8) and a > p/8. According to Theorems 4.5.2-4.5.3, for every 

solution x(t) of (4.5.68), either x(t) or x(t) - px(t - r) is oscillatory if 0 < p:S; 1. 

Furthermore, by Theorem 4.5.4, for every bounded solution x(t) of (4.5.68), ei-

ther x(t) or x(t) - px(t - r) is oscillatory if 1 < p < 8. 

Example 4.5.3 Consider the difference equation 

~;n(x(t) - x(t - r)) + 22n+1x(t - 3) = 0, (4.5.69) 
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where T and r are positive odd integers. Viewing (4.5.69) as (4.5.46), we have 

g(t) = t-3 and q(t) = 22n+l. Then. for some a E (0.1), ihn = O'22n+1 by (4.5.47) 

so (4.5.52) is satisfied. For p = 1. ko = 1 and t] = t, we have m[ = land 

I 

L (s + 1 - mdih1l(t1 + ST) = 0'2
211 +1 > 1 = :0 

s=m/ 

if 0' > 2-(211+1). According to Theorems 4.5.3, for every solut.ion x(t) of (4.5.69), 

either x(t) or :r(t) - :r(t - r) is oscillatory. 

4.6 CONCLUSION 

In this chapter we concentrate on neut.ral difference equation (4.1.1) of even 

order. Here we just. give a brief summary and a detailed summary will be pre-

sented at. the end of chapter 5 in order to compare the difference of the results 

between the even order and the odd order of (4.1.1). 

From the known results about the difference of discrete argument we have 

obtained the similar results on the difference of continuous variable. By defining 

the new functions, we have transformed (4.1.1) to difference equations/inequalites 

without neutral term. Furthermore, applying Riccati transformation to (4.1.1), 

we have obtained sufficient conditions for x to be oscillatory or x(t) - px(t - r) to 

have constant sign. The results are given in three separate cases according to the 

value of p, i.e., 0 < p < 1, P = 1, and p > 1. We managed to establish weaker 

oscillatory criteria in each case. 
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5.1 INTRODUCTION 

Our main interest in this chapter is to investigate the bounded solutions of 

equations (4.1.1) with m 2: 3 being an odd integer. In chapter 4, we discussed 

(4.1.1) with m 2: 2 an even integer. \Ve shall adopt an approach here different 

from that for even order equations due to the difference between the format of 

odd order and even order equations. 

A well-known result on differential inequalities will be stated in section 5.2 

since it will be needed in later sections. Section 5.3 will consist of three subsec-

tions for the third order equations with subsection 5.3.1 covering some lemmas, 

subsection 5.3.2 the main results and subsection 5.3.3 some illustrating examples. 

Section 5.4 will be presented for higher order equations in a way similar to sec-

tion 5.3. Finally, we will close this chapter with a conclusion section. 

5.2 PRELIMINARIES 

The following lemma is about the inequality of the form 

x'(t) + q(t)X(T(t)) ::; 0, (5.2.1) 

where q, T E C([to, (0), R+), T(t) :S t and limt-+oo T(t) = 00. Let 

1] = lim inf it q( s )ds. 
t-+oo ret) 

Lemma 5.2.1 Assume that T is nondecreasing, a :S 1] :S e-1 , and x(t} is an 
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eventually positive function satisfying (5.2.1). Set 

.. :r( t) 
r = hm mf ( ( )). 

t-+oo X T t 

Then r satisfies 

1 - 77 - J 1 - 217 - 77 2 

-~-...!.....--~-.:....- < r < l. 2 - -

The above lemma can be found in [15] (page 18). 

5.3 THIRD ORDER EQUATION (4.1.1) 

In this section, we deal with equation (4.1.1) with m = 3, i.e., 

~;(x(t) - px(t - r)) + f(t, x(g(t))) = o. (5.3.2) 

For the convenience of later use, let 

ih(t)=a min {q(s)}( min {(g_1(S))/})3, 
t:::;s::;t+3r g(t):::;s:::;g(t)+3r 

(5.3.3) 

where 0 < a < 1. We shall see from the following subsections that q3 will play 

an important role in the oscillatory criteria for (5.3.2). 

The oscillation of (5.3.2) will be considered in this section when 0 ~ p < 

1 or p > 1 and sufficient conditions will be obtained for the bounded solutions of 

(5.3.2) to be oscillatory. 
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5.3.1 RELATED LEMMAS 

The properties of the bounded solutions of (5.3.2) are in some way determined 

by the values of p. Thus we investigate the solutions when 0 :::; p < 1 and p > 1 

respecti vely. 

Lemma 5.3.1 Let 0 :::; p < 1. A8surne that x(t) is a bounded and eventually 

positive (negative) solution of (5.3.2) with z(t) = x(t)-px(t-r) and lim inft-+oo z(t) 

2: 0 (limsuPt-+ooz(t):::; 0). Let 

Then y(t) > 0 « 0), y(3)(t) < 0 (> 0), y"(t) > 0 « 0), and y'(t) < 0 (> 0) 

eventually. Moreover, 

n 

b.;y(t) + i13(t) 2:,piy(g(t) - ir) < 0 (> 0) (5.3.4) 
i=O 

holds for each fixed natural number n 2: 0 and for all large enough t. 

Proof Suppose x(t) is a bounded and eventually positive solution. Note 

that g(t) < t, g'(t) > 0 and (4.1.2) hold, so there exists a tl > to such that 

x(g(t)) > 0 for all t 2: t l . From (5.3.2) it follows that 

b.;z(t) + f(t,x(g(t))) = o. 

By (4.1.3), we obtain f(t, x(g(t))) 2: q(t)x(g(t)) > 0 for t 2: t l . Therefore, 

y(3)(t) + q(t)x(g(t)) :s; 0 (5.3.5) 

for t 2: h. According to q(t)x(g(t)) > 0 and (5.3.5), y(3)(t) < 0 for all t 2: t l . 

Thus, y" (t) is decreasing so either y" (t) > 0 for t 2: tl or there is a t2 > tl such 
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that y"(t) < 0 for t 2: t2· Suppose y"(t) < 0 for t 2: h Then y'(t) is decreasing 

and 

y'(t) = y'(t2) + it y"(s)ds ::; y'(t2) + y"(t2)(t - t2) ---t -00 
t2 

as t ---t 00. Thus, there is a t3 > t2 such that y'(t) ::; y'(t3) < 0 for t 2: t3. This 

implies that 

as t ---t 00, a contradiction to the boundedness of y since both x and z are 

bounded. Therefore we have y" (t) > 0 for t 2: t l . From this we know that y' (t) is 

increasing so either y'(t) < 0 for all t 2: tl or there is a t4 > tl such that y'(t) 2: 

y' (t4) > 0 for t 2: t4. If the latter holds then 

y(t) = y(t4) + it y'(s)ds 2: y(t4) + y'(t4)(t - t4) ---t 00 
t4 

as t ---t 00, a contradiction again to the boundedness of y. Therefore we must 

have y' (t) < 0 for all t 2: tl. This shows that y( t) is decreasing so either y( t) > 

o for t 2: tl or there is a t5 > tl such that y(t) ::; y(t5) < 0 for t 2: t5' In the 

latter case, then 

< 

< 



104 

for t 2:: t5 + hr, where M = SUPt:;::to {x(t)} and h is any integer with h 2:: 1. Let 

t --+ 00 so h --+ 00 as well, ph lvlT 3 then is arbitrarily small since 0 ~ p < 1. Thus, 

which contradicts the assumption that x(t) is eventually positive. Therefore, we 

must have y(t) > 0 for t 2:: tl' 

From (5.3.5), it follows that 

D.;z(t) + q(t)z(g(t)) + pq(t)x(g(t) - 1') ~ O. 

By the definition of z(t), the above inequality gives 

D.;z(t) + q(t)z(g(t)) + pq(t)z(g(t) - 1') + p2 q(t)x(g(t) - 21') ~ O. 

Proceeding in the same way as the above, we obtain 

n 

D.;z(t) + q(t) LpiZ(g(t) - ir) + pn+l q(t)x(g(t) - (n + 1)1') ~ O. 
i=O 

Since q(t)pn+lx(g(t) - (n + 1)1') > 0 when t is large enough, the above inequality 

implies 
n 

D.;z(t) + q(t) Lpiz(g(t) - iT) < O. 
i=O 

In order to integrate the above inequality, we show that z(t) is eventually 

positive. This is true if p = 0 since z(t) = x{t) in this case. Now suppose 

o < p < 1. Since y(3)(t) = D.;z(t) < 0 for t 2:: tl, 

so D.;'z(t + hT) is decreasing as h increases. By the boundedness of x{t) we know 

that limh ..... oo D.;'z{t + hT) exists. If limh ..... oo D.;'z{t + hT) = S(t) -I- 0, then 

h 

D."z(t + (h + l)T) = D."z(t) + L D.;z(t + kT) --+ -00 or 00 

k=O 
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as h - 00, a contradiction to the boundedness of .6.r z(t). Thus, for each t ~ tl, 

tl';z(t + hr) is decreasing and tends to 0 as h - 00. Similarly, .6.r z(t + hr) is 

increasing as h increases and .6.r z(t + hr) - 0 as h - 00; z(t + hr) is decreasing 

as h increases so limh-+oo z(t + hr) exists for each t ~ tl. Then z(t + hr) is 

decreasing and, by assumption, limh-+oo z(t + hr) ~ 0 so z(t + hr) > 0 for all 

Integrating q(t)z(g(t) - ir), by the assumptions on 9 and q, we obtain 

~ Q3(t)y(g(t) - ir). 

Therefore, it follows that 

n 

.6.;y(t) + Q3(t) Lpiy(g(t) - ir) < 0 
i=O 

holds for each fixed natural number n and for all large enough t. If x(t) is a 

bounded and eventually negative solution, then the corresponding inequalities in 

the above proof reverse to the opposite so the conclusion within brackets follows. 



Lemma 5.3.2 Let 0 ~ p < 1 and r = kT for a positive integer k. Assume that 

x(t) is a bounded and eventually positive (negative) solution of (5.3.2). Let 

Then the conclusion of Lemma 5.3.1 holds. 

Proof The proof is the same as that of Lemma 5.3.1 until limh--+oo z( t + hT) 

exists for each t 2: tl. Suppose there is a t' > tl such that limh--+oo z(t' + hT) = 

6 < O. Then z(t' + hT) ~ 6/2 < 0 for h 2: hI > O. So 

z(t' + k(h + hI)T) + px(t' + k(h + hI)T - kT) 

1 
< 26 + px(t' + k(h - 1 + hI)r) 

1 < 26(1 + p + ... + ph-I) + phx(t' + khIT) < 0 

for large h, a contradiction to the assumption that x is eventually positive. There-

fore limh--+oo z(t + hT) 2: 0 for any t 2: tl. Since z(t + hT) is decreasing as h 

increases, z(t) > 0 for all t 2: t l . The rest of the proof is the same as that of 

Lemma 5.3.1. 

Lemma 5.3.3 Under the assumptions of Lemma 5.3.1 or Lemma 5.3.2, let 

Then v(t) > 0 « 0), v(3)(t) < 0 (> 0), v"(t) > 0 « 0), and v'(t) < 0 (> 0) 

eventually. Moreover, 

1 n. 
V(3)(t) + T3ib(t) Lptv(g(t) - ir) < 0 (> 0) (5.3.6) 

i=O 

106 



107 

holds for each fixed natural number n and for all large enough t. 

Proof Suppose x(t) is a bounded and eventually positive solution. By the 

definition of v(t), due to y(t) > 0, we have v(t) > 0 for all t 2: t}. Further, we 

have 

Since y'(t) < 0, then v'(t) < O. Similarly, we have vl/(t) > 0 and v(3)(t) < o. 

Note that v(3)(t) = b.~y(t). Since y'(t) < 0, 

v(g(t) - ir) = 

< T
3y(g(t) - ir). 

Hence, from (5.3.4), we obtain 

1 n. 
V(3)(t) + "3iJ3(t) LP'v(g(t) - ir) < 0 

T i=O 

for each fixed natural number n and for all large enough t. If x(t) is a bounded 

and eventually negative solution, then the conclusion within the brackets follows 

from the same argument with an obvious modification. 

Lemma 5.3.4 Under the assumptions of Lemma 5.3.3, for each t 2: t}, there is 

a () E (g(t), t) such that 

(5.3.7) 
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Proof Under t.he assumptions of Lemma 5.3.3, we know that v'(t), -vl/(t) and 

V(3)(t) have the same sign. By Taylor's formula, we have 

1 
v'(g(t)) = v'(t) + vl/(t)(g(t) - t) + '2V(3) (B)(g(t) - t)2 

for some () E (g(t), t) and (5.3.7) follows immediately. 

The following three lemmas are for the solutions of (5.3.2) with p > 1. 

Lemma 5.3.5 Let r = kT, kEN. Assume that x(t) is a bounded and eventu-

ally positive (negative) solution of (5.3.2) with p > 1. Let 

z(t) x(t) - px(t - r), 

1
t +7" lt1 +7" 1t2 +7" 

y(t) dt1 dt2 z(())d(). 
t t1 t2 

Then y(t) < 0 (> 0), y(3)(t) < 0 (> 0), yl/(t) > 0 « 0), and y'(t) < 0 (> 0) 

eventually. Moreover, 

n 1 
b.;y(t) - i'J3(t) L --:y(g(t) + oil') < 0 (> 0) 

i=l pl 
(5.3.8) 

for each fixed integer n :::: 1 and all large enough t. 

Proof Suppose x(t) is a bounded and eventually positive solution. By 

g(t) < t, g'(t) > 0 and (4.1.2), from the assumptions, there exists a t1 > to such 

that x(g(t)) > 0 for all t :::: tl. Note that 

b.;z(t) + J(t, x(g(t))) = O. 

According to (4.1.3), we may assume J(t,x(g(t))) :::: q(t)x(g(t)) > 0 for all t :::: t l . 

Therefore 

b.;z(t) + q(t)x(g(t)) :s; 0 (5.3.9) 



for i 2:: il' By the definition of y(t), we notice y(3)(i) = ll~z(i). Thus, from 

(5.3.9) it follows that 

y(3)(t) + q(i)x(g(i)) ~ 0 (5.3.10) 

for i 2:: il' By q(i)x(g(t)) > 0, y(3)(i) < 0 holds for i 2:: tl. Thus, y"(i) is 

decreasing so either yl/(t) > 0 for i 2:: tl or there is a t2 > tl such that y"(t) ~ 

y'(i2) < 0 for t 2:: t2' By the same procedure as that used in the proof of 

Lemma 5.3.1, we have y"(t) > 0 and y'(t) < 0 for t 2:: tl. So y(t) is decreasing 

and either y(t) > 0 for t 2:: tl or there is a t3 > t} such that y(t) ~ y(t3) < 

o for i 2:: t3. Now we claim that y(t) ~ y(i3) < 0 for all t 2:: t3. To prove this, 

we consider the feature of z(t) at first. Since y(3)(t) = ll;z(t) < 0 for t 2:: tl , 

by the same reasoning as that used in the proof of Lemma 5.3.1, we know that 

z(t + hi) is decreasing for each fixed t 2:: tl as h increases. Suppose there is a 

t' > tl such that z(t' + hi) > 0 for all h 2:: 1. Under r = ki, we then have 

z(t' + hr) > 0 for all h 2:: 1 so 

x(t' + hr) > px(t' + (h - l)r) > p2x(t' + (h - 2)r) > ... > phx(t') 

for all h 2:: 1. So x( t' + hr) - 00 as h - 00, a contradiction to the boundedness of 

x. Therefore, for each t E [tl, tl +i], Z(t+hi) is decreasing as h increases and there 

is an integer H(t) > 0 such that z(t + hi) < z(t + H(t)i) < 0 for all h > H(t). 

Since z(t) is continuous for each t' E [tl, tl + iI, there is an open interval I(t') 

such that z(t + hi) < z(t + H(t')i) < 0 hold for all t E I(t') and h > H(t'). Since 

[iI, tl + i] is compact and {I(t') : t' E ttl, t} + i]} is an open cover of [tl, tl + iJ, 

there is a finite subset of {I(t') : t' E ttl, tl + i]} covering ttl, tl + i]. Therefore, 
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there is a K > 0 such that 

Z(t+hT):::; Z(t+KT) < 0 

for all t E [tl' tl + TJ and all h 2: K. Hence, there is a t3 > tl such that z(t) < 0 

so that y(t) < 0 for all t 2: t3. 

From (5.3.9), we have 

b.;z(t) - q(t) z(g(t) + r) + q(t) x(g(t) + r) :::; O. 
P P 

According to the definition of z(t), it follows from the above inequality that 

q(t) q(t) 1 1 
b.;z(t) - -z(g(t) + r) + -( --z(g(t) + 2r) + -x(g(t) + 2r)) ::; O. 

P P P P 

Proceeding in the same procedure as the above, we obtain 

nIl 
b.;z(t) - q(t) """ -"7z(g(t) + ir) + q(t)-X(g(t) + nr) :::; O. 

~pt pn 
t=1 

Since q(t)x(g(t) + nr) > 0 for all large enough t, the above inequality yields 

n 1 
b.;z(t) - q(t) L --;z(g(t) + ir) < O. 

i=l P 

Integrating q(t)z(g(t) + 'ir), by the assumptions on p and g, we obtain 

::; lh(t)y(g(t) + ir). 
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Therefore, we have 

n 1 
/).;y(t) - (13(t) L -:y(g(t) + ir) < 0 

i=l pl 

for each fixed integer n ~ 1 and for all large enough t. If x(t) is a bounded and 

eventually negative solution, then the conclusion within brackets follows from the 

above proof with minor modifications. 

Lemma 5.3.6 Under t.he assumptions of Lemma 5.3.5, let 

Then v(t) < 0 (> 0), V(3)(t) < 0 (> 0), v"(t) > 0 « 0), and v'(t) < 0 (> 0) 

eventually. Moreover, 

1 n 1 
v(3)(t) - T 3iJ3 (t) L -;v(g(t) - 3T + ir) < 0 (> 0) 

i=l P 
(5.3.11) 

for each fixed integer n ~ 1 and all large enough t. 

Proof By the definition of v{t) we know that y(t) and v(t) have the same 

sign for all large enough t. Further, we have 

Thus, y'(t) and v'(t) have the same sign. Similarly, v"(t) and y"(t) have the same 

sign and v(3)(t) and y(3)(t) have the same sign. Note that v(3)(t) = /).~y(t). If 

y'(t) < 0, then 
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> T3y (g(t) + 3T + ir). 

Hence, from (5.3.8), we have 

1 n 1 
V(3)(t) - -3fh(t) "'" ~v(g(t) - 3T + ir) < 0 

T Lpl 
i=I 

for each fixed integer n ~ 1 and for all large enough t. If y'(t) > 0, then "~" and 

"<" are replaced by ":s;" and ">" respectively in the above inequalities. 

Lemma 5.3.7 Assume that x(t) is an eventually positive (negative) and bounded 

solution of (5.3.2). Let z(t) and v(t) be defined as in Lemmas 5.3.5 and 5.3.6. 

Then, under the assumptions of Lemma 5.3.5 for any t ~ t I , there is a () E (g(t), t) 

such that 

(5.3.12) 

Proof Under the assumptions, from Lemma 5.3.6, we know that v'(t), -v"(t) 

and V(3)(t) have the same sign. By Taylor's formula, we have 

v'(g(t)) = v'(t) + v"(t)(g(t) - t) + ~v(3)(B)(g(t) - t)2, 

where g(t) :s; B :s; t. Then (5.3.12) follows. 



5.3.2 MAIN RESULTS 

Using the above lemmas, we shall obtain the following sufficient conditions 

for the bounded solutions of (5.3.2) to be oscillatory. Let 

(5.3.13) 

and 

(5.3.14) 

where T3 2 to is sufficiently large. Note that both (331 and (332 are nondecreasing 

as T3 increases. 

Theorem 5.3.1 Assume that (5.3.2) with 0 < P < 1 satisfies 

and 

n 

r(331 L ipi 2 1 
i=l 

(5.3.15) 

(5.3.16) 

for some integer n ~ 1. Also assume that ij3(t) given by (5.3.3) is nonincreasing. 

Then, for every bounded solution x(t) of (5.3.2), either x(t) is oscillatory or 

liminft->oo(lx(t)l- plx(t - r)l) < O. 

Proof Suppose the conclusion does not hold. Let x(t) be an eventually 

positive and bounded solution of (5.3.2) with lim inft->oo(x(t)-px(t-r)) ~ O. Let 

y(t) be defined as in Lemma 5.3.1 and v(t) be defined as in Lemma 5.3.3. From 
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Lemma 5.3.3, we know that v(t) > 0, v(3)(t) = ~~y(t) < 0, v"(t) > 0, v'(t) < 0 

and 

1 n. 
v(3)(t) + T 3i]3(t) Lp1V(g(t) - ir) < 0 

i=O 

holds for any natural number n 2: 0 and for all large enough t. From Lemma 5.3.4 

we know that 

v'(g(t)) (t _ ~(t))2 < v(3)(B) 

for some B E (g(t), t). Since i]3(B) 2: i]3(t) by assumption and 

v(g(B) - 'iT) 2: v(g(t) - ir), 

from (5.3,6) with t replaced by B, it follows that 

v'(g(t)) ( _ 2 ( ))2 + ~ i]3(t) tpiV(g(t) - ir) < 0, 
t 9 t T i=O 

i.e., 

v'(g(t)) + (t -2~~t))2 i}3(t) tpiV(g(t) - ir) < O. 
1=0 

(5.3.17) 

With the replacement of t by g-l(t), (5.3.17) becomes 

(5.3.18) 

We assume that (5.3.18) holds for t 2: tl 2: to. Since /331 defined by (5.3.13) 

is nondecreasing as T3 increasing, if /331 for a fixed T3 satisfies (5.3.15) then /331 

for any larger Ta also satisfies (5.3.15). Thus, without loss of generality, we may 

assume that Ta ~ tl + nr. Let 

-v'(t) 
w(t) = v(t) . 
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Note that w(t) > 0 and v(t) 

(5.3.18) we have 

(5.3.19) 

i.e., 

Q31 (t) ~. 1t 
w(t) > 2r3 ~plexp t-ir w(s)ds (5.3.20) 

for all t ~ T3, where Q31(t) = (g-l(t) - t)2if3(g-l(t)) > O. 

Let wo(t) - 0 for t ~ T3 - nr. And for each kEN and t ~ T3 + nkr, let 

Let 

kEN. 

Then 

Since eiTa3lk ~ 1 + ira31k > ira31, by (5.3.15), {a31k} is an increasing sequence. 

Suppose 

Then F~l(X) 

lim a31k = P31 < 00. 
k--oo 

n 

F31 (X) = /331 Lpie
irx 

- x. 
i=O 

/331 E~o irpi - 1 ~ 0 by (5.3.15), then F~1 (x) > 0 for x > 

o. Hence F31 (X) is increasing. Thus, from F31 (O) = /331E7=opi > 0 we have 
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F31 (x) > 0 for all :r 2 O. This shows that no positive number P31 satisfies P31 2 

/331 :L:~=o pieirp31 . Therefore, we must have Q'31k ---+ 00 as k ---+ 00. Note that 

w(t) 2 Wk+l (t) 2 Q'31k+l for t 2 T3 + nb'. Thus w(t) ---+ 00 as t ---+ 00. From this 

it follows that 

I
t+r 

lim w(s)ds = 00. 
t->oo t 

By the definition of w(t) we have 

v(t) I t
+

r 

-~' - = exp w(s)ds ---+ 00 
v(t+r) t 

as t ---+ 00, 

i.e., 

lim v(t) = 00. 
t->oov(t+r) 

(5.3.21) 

On the other hand, since v'(t) < a and v(t) > 0, it follows from (5.3.18)(by 

dropping the i = 0 term) that 

v' (t) 

(5.3.22) 

By (5.3.16) and Lemma 5.2.1, 

.. v(t) 
limmf ( ) E (0,1]. t->oo v t - r 

Thus, v(t + r)/v(t) has a positive lower bound so v(t)/v(t + r) has a positive 

upper bound, a contradiction to (5.3.21). If x(t) is a bounded and eventually 

negative solution with limsupt-too(x(t) - px(t - r)) ~ 0, the above proof with 

obvious minor changes also leads to a contradiction. Therefore, the conclusion of 

the theorem holds. 
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Corollary 5.3.1 The conclusion of Theorem 5.3.1 still holds if (5.3.16) is re-

placed by 

(5.3.23) 

Proof The proof is the same as that of Theorem 5.3.1 except (5.3.22). The 

conclusion still holds if (5.3.22) is replaced by 

( -l(t) _ t)2 
v'(t) < - 9 3' ii3(g-l(t))pV(t - r). 

2T 

Corollary 5.3.2 Assume that (5.3.2) with 0 < p < 1 satisfies 

n 

r(332 L ipi 2 1 (5.3.24) 
i=l 

and 

(5.3.25) 

for some integer n 2 1. Also assume that ii3(t) given by (5.3.3) is nondecreasing. 

Then the conclusion of Theorem 5.3.1 holds. 

Proof The proof of Theorem 5.3.1 is still valid after the replacement of 

Corollary 5.3.3 The conclusion of Corollary 5.3.2 still holds if (5.3.25) is re-

placed by 

(5.3.26) 

The proof of Corollary 5.3.3 is similar to that of Corollary 5.3.1. 
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Corollary 5.3.4 Assume ° < p < 1 and r = kr, kEN. Under the assumptions 

of either Theorem 5.3.1 or Corollary 5.3.1 or Corollary 5.3.2 or Corollary 5.3.3, 

every bounded solution x(t) of (5.3.2) is oscillatory. 

Proof The proof of Theorem 5.3.1 is still valid after the replacement of 

Lemma 5.3.1 by Lemma 5.3.2. 

The next results are for the bounded solutions of (5.3.2) with p > 1. 

Theorem 5.3.2 Assume that p> 1, r = kr, kEN, r ~ t + 3r - g(t) and 

4 ~ (i - 1) > 1 
rV32 ~ i -

i=l P 
(5.3.27) 

for some integer n 2: 2. Also assume that i/3(t) given by (5.3.3) is nondecreasing. 

Then every bounded solution x(t) of (5.3.2) is oscillatory. 

Proof Suppose the conclusion does not hold. Let x(t) be an eventually 

positive and bounded solution of (5.3.2). Let y(t) be defined as in Lemma 5.3.5 

and v(t) be defined as in Lemma 5.3.6. By Lemma 5.3.6, we know that v(t) < 

0, v(3)(t) = l1~y(t) < 0, v"(t) > 0, v'(t) < 0, and 

1 n 1 
v(3)(t) - -3q3 (t) ~ ---:v(g(t) - 37 + ir) < ° 

r ~p~ 
i=l 

holds for any fixed integer n 2: 1 and for all large enough t. By Lemma 5.3.7, we 

know that 

v'(g(t)) (t _ ~(t))2 < v(3)(O) 



for some B E (g(t), t). Since i'/3(B) ~ ih(g(t)) and v(g(B) - 37 + ir) :::; v(g(g(t)) -

37 + ir), from (5.3.11) with t replaced by B it follows that 

2 1 n 1 
v'(g(t)) (t _ g(t))2 - 73(h(9(t)) L pi v(g(g(t)) - 37 + ir) < 0, 

'1=1 

i.e. , 

(t-g(t))2 ~ 1 
v'(g(t)) - 273 i13(g(t)) ~ piv(g(g(t)) - 37 + ir) < O. 

i=l 
(5.3.28) 

With the replacement of t by g-l(t), (5.3.28) yields 

( -l(t) _ t)2 n 1 
v'(t) - 9 3 ih(t) '""' ~v(g(t) - 37 + ir) < O. 

27 ~pt 
i=l 

(5.3.29) 

We assume that (5.3.29) holds for t ~ t1 ~ to and T3 in /332 defined by (5.3.14) 

satisfied T3 ~ t1 + nr. Let 

v' (t) 
w(t) = v(t)' 

Note that w(t) > 0 and v(t) = V(t') exp Jt~ w(B)dB for all t, t' ~ T3. From (5.3.29) 

we have 

(g-l(t) _ t) 2il3(t) n 1 j9(tl-3T+ir 
w(t) > 2 3 L i exp w(s)ds, 

7 i=l P t 

Le., 
Q32 (t) n 1 19<t l-3T+ir 

w(t) > 273 ~ pi exp t w(s)ds 

for all t ~ T3) where Q32(t) = (g-l(t) - t)2q3(t) > O. 

Let wo(t) = 0 for t ~ T3. And for each kEN and t ~ T3) let 

Q32(t) n 1 19(t)-3T+ir 
Wk+1(t) = 273 L i exp wk(s)ds 

i=l p t 

and 

kE N. 

(5.3.30) 

(5.3.31) 
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Then w(t) ~ Wk+l(t) > wdt) > 0'32k for all kEN and t > T3 . Then, by 

assumption, 

0'32k+l > inf Q32 (t) . - '""" --:-e(g(t)-t-3r+ir)O:32k 
{

In 1 } 
t~T3 2T 3 f=t pt 

n 1 
/3 

'""" _e(i-l)ro:32k 
32~ . . 

i=l pl 

Since {0'32d is a bounded increasing sequence, we suppose 

lim 0'32k = P32 < 00. 
k--+oo 

creasing. Since F~2(0) = /332 L:~=1 (i - 1)r/pi - 1 ~ 0 by (5.3.27), then F~2(X) > 

o for x > o. Hence F32 {X) is increasing. Thus, from H2{O) = /332 L::l 1/pi > 0 

we have F32 {X) > 0 for all x ~ o. This shows that no positive number P32 satisfies 

P32 ~ /332 L:~=1 (e(i-l)rp32 /pi). This contradiction shows that if x{t) is a bounded 

solution of (5.3.2) then x{t) cannot be eventually positive. If x{t) is assumed to 

be a bounded and eventually negative solution, then the above reasoning with 

obvious changes also leads to a contradiction. Therefore, every bounded solution 

of (5.3.2) must be oscillatory. 

Corollary 5.3.5 Assume that p > 1, r = kT, kEN, r ~ t + 3T - g(t) and 

n (i-I) 
r/331 L i ~ 1 

i=l P 
(5.3.32) 
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for some integer n 2:: 2. Also assume that q3(t) given by (5.3.3) is nonincreasing. 

Then every bounded solution :r(t) of (5.3.2) is oscillatory. 

Proof The proof of the Theorem 5.3.2 is still valid after the replacement 

of q3(O) 2:: q3(g(t)) by Q3(O) 2:: Q3(t). 

5.3.3 EXAMPLES 

Two examples will be given in this section to illustrate the results in the 

above section. The first one illustrates Corollary 5.3.1 for a difference equation 

with 0 < p < 1. The second example demonstrates Theorem 5.3.2. 

Example 5.3.1 Consider the difference equation 

(5.3.33) 

for t > O. Viewing (5.3.33) as (5.3.2), we have T = 2, 0 < P = 2/3 < 1, r = 

1, q(t) = 1+t andg(t) = t-4. Then, according to (5.3.3), Q3(t) = a·(1+1/(t+6)) 

and is nonincreasing. And /331 = a. So when n = 3, by (5.3.15) we have 

3 ( 2 ) i ( 2 8 8) 22 a 2::> - = a x - + - + - = -a > 1 
i=l 3 3 9 9 9-

for some a E [9/22,1). Also (5.3.23) is satisfied since 

0< liminflt 42 x a (1 + 1 ) ds 
- t-+oo t-1 S + 10 

= 1° lim 42 x (li (1 + 1 ) ds = 16a 
-1 t-+oo t + s + 10 
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and 

24 
e 

holds for any a E [9/22,3/(2e)]. By Corollary 5.3.1, for every bounded solution 

x(t) of (5.3.33), either :1'(t) is oscillatory or 

Iiminf (lx(t)l- ~Ix(t - 1)1) < 0. 
t-+oo 3 

Example 5.3.2 Consider the difference equation 

~; x(t) - -xU - 471") + Sx(t - 71") + --2x3(t - 71") = 0, ( 4) Sa 
3 l+t 

(5.3.34) 

for t ~ 0, where 0' is a positive constant. Regarding (5.3.34) as (5.3.2), we 

have 7 = 71", P = 4/3 > 1, r = 471", g(t) = t - 71" and q(t) = S. Note that 

r = 47, r = t + 37 - g(t). Then, for some a E (0,1), 113 = Sa by (5.3.3). Then 

and 

3 (i-1)r 4a ((3)2 (3)3) 45 /332 ~ pi = -;- X 471" X 4 + 2 x 4 = 2'a ~ 1 

holds if a E [2/45,1). Thus (5.3.27) is satisfied for n = 3. Therefore, by Theo-

rem 5.3.2, every bounded solution x(t) of (5.3.34) is oscillatory. 
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5.4 HIGHER ODD ORDER EQUATION (4.1.1) 

In this section, we consider equation (4.1.1) with m > 3 being an odd integer, 

i.e., 

~~(:r(t) - px(t - ,)) + f(t,x(g(t))) = O. (5.4.35) 

For the convenience of later use, let 

qm(t) = ex min {q(s)} ( min {(g_l(s))/})m, 
t:::;ss.t+mr g(t):::;s:::;g(t)+mr 

(5.4.36) 

where 0 < ex < 1. We shall see from the following parts that the function qm will 

play an important role in the oscillatory criteria for (5.4.35). 

The oscillation of (5.4.35) will be considered in two separate cases when 

o ~ p < 1 and p > 1. Some lemmas will be given to make the proof of the 

main results ready at first. Secondly, based on some results of differential equa-

tion or inequality, sufficient conditions will be obtained for the bounded solutions 

of (5.4.35) to be oscillatory. To illustrate the main results, some examples will be 

given in the last subsection. 

5.4.1 RELATED LEMMAS 

To obtain the main results, we need to prove the following lemmas first. 

Lemma 5.4.1 Let 0 ~ p < 1. Assume that x(t) is a bounded and eventu-

ally positive (negative) solution of (5.4.35) with z(t) = x(t) - px(t - r) and 



lim inft->oo z(t) 2: 0 (lim SUPt->oo z(t) :s; 0). Let 

Then y(t) > 0« 0), (_l)ky(kl(t) > 0« 0) for 1 :s; k:S; m eventually. More-

over, 
n 

!:1;'y(t) + iim(t) Lpiy(g(t) - ir) < 0 (> 0) (5.4.37) 
i=O 

holds for any fixed natural number n and for all large enough t. 

Proof Suppose x(t) is a bounded and eventually positive solution. Notice 

that g(t) < t and g'(t) > 0 for all t 2: to. So there exists a tl > to such that 

x(g(t)) > 0 for all t 2: tl' From (5.4.35) it follows that 

~~z(t) + f(t,x(g(t))) = O. 

By (4.1.3), we have f(i,:r(g(t))) 2: q(t)x(g(t)) > 0 for t 2: tl. Therefore 

y(m)(t) + q(t)x(g(t)) :s; 0 (5.4.38) 

for t 2: i l . According to q(t)x(g(t)) > 0, y(m)(t) < 0 for all t 2: il. Thus, y(m-l)(t) 

is decreasing so either y(m-l)(t) > 0 for all t 2: tl or y(m-l)(t) :s; y(m-I)(t2) < 

o for some i2 > tl and for all i 2: i2. If the latter holds then 

y(m-k)(t) -t -00, k = 2,3"" ,m, 

as t -+ 00, a contradiction to the boundedness of x and z. Therefore we have 

y(m-l)(i) > 0 for all i 2: il. Thus, y(m-2)(t) is increasing so either y(m-2)(t) < 

o for all t 2: tl or y(m-2)(t) 2: y(m-2)(t3) > 0 for some t3 2: tl and all t 2: t3' If 

the latter holds then 

k = 3 4 '" m 
" " 
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as t ---; 00, a contradiction again to the boundedness of x and z. Hence, we 

must have y(m-2l(t) < 0 for all t ;:::: tl' Repeating the above process, we obtain 

( _1)kyCkl (t) > 0 for 1 ~ k ~ m and all t ;:::: tl' Therefore, y( t) is decreasing 

so either y(t) > 0 for all t ;:::: tl or there is a t4 ;:::: tl such that y(t) ~ y(t4) < 

o for t ;:::: t 4 . Suppose the latter case holds. Then 

for t ;:::: t4 + sr, where M = SUPt2: to x(t) and s is any positive integer. Let s ---; 

00 so t ---; 00 as well, pS M rm then is arbitrarily small due to 0 ~ p < 1. Thus, 

I t+'T 1tl +7" l tm-1 +7" 
dt l dt2 •• . x(O)dO < 0, 

t tl tm -l 

which contradicts the assumption that x(t) is eventually positive. Therefore, we 

must have y(t) > 0 for all t ;:::: tl . 

From (5.4.38) it follows that 

~~z(t) + q(t)z(g(t)) + pq(t)x(g(t) - r) ~ O. 

According to the definition of z(t), the above inequality becomes 

~~z(t) + q(t)z(g(t)) + pq(t)z(g(t) - r) + p2 q(t)x(g(t) - 2r) ~ O. 
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Proceeding in the same way as the above, we have 

n 

~r;z(t) + q(t) LpiZ(g(t) - ir) + pn+1 q(t)X(g(t) - (n + 1)r) ::; O. 
i=O 

Since q(t)pn+1x(g(t) - (n + l)r) > 0 when t is large enough, the above inequality 

implies that 
n 

~r;z(t) + q(t) LpiZ(g(t) - ir) < O. 
i=O 

In order to integrate the above inequality, we need to show that z(t) is positive. 

If p = 0 then z(t) = x(t) > 0 holds eventually. Now suppose 0 < p < 1. By the 

same reasoning as that used in the proof of Lemma 5.3.1, we have z( t + hT) > 

o for all t 2: t1 and h 2: 1. 

Integrating q(t)z(g(t) - ir), by the assumptions on 9 and q, we obtain 

2: iim(t)y(g(t) - ir). 

Therefore, it follows that 

n 

~r;y(t) + iJm(t) Lpiy(g(t) - ir) < 0 
i=O 
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holds for any fixed natural number n and for all large enough t. If x( t) is a 

bounded and eventually negative solution, then the above proof with obvious 

changes shows the conclusion within brackets. 

Lemma 5.4.2 Let 0 :S p < 1 and r = kT. Assume that x(t) is a bounded and 

eventually positive (negative) solution of (5.4.35). Let 

z(t) x(t) - p:r(t - r), 

I t+T itl +T Itm- l +T 
y(t) dt 1 dt2 · • . z((})d(}. 

t tl tm-l 

Then the conclusion of Lemma 5.4.1 holds. 

Proof The proof of Lemma 5.3.2 for the third order is still valid after the 

replacement of the third order by any higher odd order m ;::: 3. 

Lemma 5.4.3 Under the assumptions of Lemma 5.4.1 or Lemma 5.4.2, let 

I t+T itl +T Itm- l +T 
v(t) = dtl dt2'" y((})d(}. 

t tl tm-l 

Then v(t) > 0 « 0), (_1)kv(k)(t) > 0 « 0) for 1 ~ k ~ m eventually. More-

over, 
1 n. 

v(m)(t) + -qm(t) ""' p~v(g(t) - ir) < 0 (> 0) 
T m ~ 

i=O 

(5.4.39) 

holds for any fixed natural number n and for all large enough t. 

Proof By the definition of v(t), v(t) has the same sign as y(t) for all t;::: tl' 

Furthermore, we have 

I t+T Itl+T Itm-l+T 
v'{t) = dtl dt2··· y'((})d(}. 

t tl tm-l 



Then v'{t) has the same sign as y'(t). Similarly, vCi)(t) has the same sign as 

y(j)(t) for all j = 1,2,··· ,m. Notice also that v(m)(t) = tlr;!y(t). If y'(t) < 0, 

then 

v(g(t) - ir) 

< 

< 

1
9Ct l+T 

< rm- 1 y(t1 - ir)dt1 
get) 

< rmy(g(t) - 'ir). 

Hence, from (5.4.37) it follows that 

holds for any fixed natural number n and for all large enough t. If y'(t) > 0 then 

v(g(t) - ir) ~ rmy(g(t) - ir) so 

1 n. 
v(m)(t) + -qm(t) '" p'v(g(t) - ir) > O. rm ~ 

i=O 

Lemma 5.4.4 Under the assumptions of Lemma 5.4.3, for each t ~ t1 there is 

a () E (g(t), t) such that 

Iv'(g(t))I> (t - g(t))m-1 Iv(ml(())I. 
(m - I)! 

(5.4.40) 
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Proof Under the assumptions of Lemma 5.4.3, we know that (-l)iv(j)(t) 

for j = 1,2" .. ,m have the same sign. According to Taylor's Formula, we have 

1 
v'(g(t)) = v'(t) + v"(t)(g(t) - t) + 2V(3)(t)(g(t) - t)2 + ... 

1 + vCm) (fJ)(g(t) _ t)m-1 
(m - I)! 

for some fJ E (g(t), t) and (5.4.40) follows immediately. 

The next lemmas are for the bounded solutions of (5.4.35) with p > 1. 

Lemma 5.4.5 Let p > 1 and r = kT, kEN. Assume that x(t) is a bounded 

and eventually positive (negative) solution of (5.4.35). Let 

z(t) x(t) - px(t - r), 

1
t+7 Itl +7 l.tm

- 1 +7 
y(t) dt 1 dt2' .. z(fJ)dfJ. 

t iI tm-l 

Then y(t) < 0(> 0), (_l)k yCk)(t) > 0« 0) for 1 ~ k ~ m eventually. More-

over, 
n 1 

b:;y(t) - iim(t) L iy(g(t) + -ir) < 0 (> 0) 
i=l P 

(5.4.41) 

holds for any fixed integer n 2: 1 and for all large enough t. 

Proof Suppose x(t) is a bounded and eventually positive solution. Since 

g( t) < t and g' (t) > 0, from the assumptions, there exists a t1 > to such that 

x(g(t)) > 0 for all t 2: tl' Notice also that 

~~z(t) + f(t,x(g(t))) = o. 

According to (4.1.3), we have f(t,x(g(t))) 2: q(t)x(g(t)) > 0 for t ~ t l . Therefore 

~~ z(t) + q(t)x(g(t)) ~ 0 (5.4.42) 



for t 2: tl. By the definition of y(t), y(m)(t) = ~r;:z(t). Thus, from (5.4.42) it 

follows that 

y(m)(t) + q(t)x(g(t)) ~ 0 (5.4.43) 

for t 2: tl. Due to q(t)x(g(t)) > 0, y(m)(t) < 0 for all t 2: tl. From the proof of 

Lemma 5.4.1 we know that (-1 )kyCk) (t) > 0 holds for 1 ~ k ~ m and all t 2: tl' 

Thus, y(t) is decreasing. We now prove that y(t) < 0 for all t 2: tl' Since 

y(m)(t) = ~r;:z(t) for all t 2: t l , from the proof of Lemma 5.3.1 we know that 

z(t + hT) is decreasing for each fixed t 2: tl as h increases. From the proof of 

Lemma 5.3.5, we know that z(t) < 0 so that y(t) < 0 for some t2 2: tl and all t 2: 

From (5.4.42), we have 

~;:z(t) - q(t) z(g(t) + r) + q(t) x(g(t) + r) ~ O. 
P P 

According to the definition of z(t), it follows from the above inequality that 

b.mz(t) - q(t) z(g(t) + r) + q(t) (-~Z(g(t) + 2r) + ~x(g(t) + 2r)) ~ O. 
7" P P P P 

Repeating the above procedure, we obtain 

nIl 
b.;:z(t) - q(t) '" -:z(g(t) + ir) + q(t)-X(g(t) + nr) ~ O. ~pl pn 

l=l 

Since q(t)x(g(t) + nr) > 0 for sufficiently large t, we have 

n 1 
~;:z(t) - q(t) L iz(g(t) + ir) < O. 

i=l P 
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Integrating q(t)z(g(t) + -iT), by the assumptions on p and g, we obtain 

Therefore, 

holds for any fixed integer n 2: 1 and for all large enough t. If x(t) is a bounded 

and eventually negative solution, then the conclusion within brackets follows from 

the above proof with minor modification. 

Lemma 5.4.6 Under the assumptions of Lemma 5.4.5, let 

I t+T ltl+T I tm - 1+T 

v(t) = dt1 dt2· . . y(fJ)dfJ. 
t tl tm-l 

Then v(t) < 0 (> 0), (-l)kv(k)(t) > 0 « 0) for 1 ~ k ~ m eventually. Moreover, 

1 n 1 
v(m)(t) - -ijm(t) " ~v(g(t) - mT + iT) < 0 (> 0) 

T m ~P' 
i=l 

(5.4.44) 

holds for any fixed integer n 2: 1 and for all large enough t. 
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Proof By the definition of v(t), v(t) has the same sign as y(t). Further, we 

have 

1

(+7" 1tl+7" l tm - 1 +7" 
v'(t) = dt 1 dt2 • •• y'(fJ)dfJ. 

( tl tm-I 

Then v'(t) has the same sign as y'(t). Similarly, (_1)kv(k)(t) for 1 ::; k ::; m 

and (-l)jy(j)(t) for 1 ::; j ::; m all have the same sign. Note also that v(m)(t) = 

D.r;:y(t). If y'(t) < 0, then 

1
9 ((l+7" ltl+7" l tm - I +7" 

dt l dt2 . . . y( fJ + ir )dfJ 
get) It tm-I 

v(g(t) + ir) 

> 1
9 (t)+7" ltl +7" l. tm - 1 +7" 

dt l dt2· . . y(tm- 1 + T + ir)dfJ 
get) tl tm-I 

1
9(t)+7" 1tl+7" Itm- 2+7" 

T dt l dt2' . . y(tm- 1 + T + ir)dtm_l 
get) tl t m -2 

> 

1
9 (t)+7" 

> Tm- l y(tl + (m - l)T + ir)dtl 
get) 

> Tmy(g(t) + mT + ir). 

Hence, from (5.4.41) we have 

1 n 1 
v(m)(t) - -qm(t) '"' -:v(g(t) - mT + ir) < ° Tm ~pt 

i=l 

for any fixed integer n 2:: 1 and for all large enough t. If y' (t) > ° then 0 < 

v(g(t) + ir) ::; Tmy(g(t) + mT + ir) so 

1 n 1 
v(m)(t) - -qm(t) '"' -:v(g(t) - mT + ir) > O. Tm ~pt 

i=l 

Lemma 5.4.7 Assume that x(t) is an eventually positive (negative) and bounded 

solution of (5.4.35). Let z(t) and v(t) be defined as in Lemma 5.4.5 and Lemma 5.4.6. 



Then, under the assumptions of Lemma 5.4.5, for any given t 2': tl, there is a 

() E (g(t), t) such that 

Iv'(g(t))I> (t - g(t))m-l1v(m)((})I. 
(m - I)! 

Proof The proof of Lemma 5.4.4 is still valid for Lemma 5.4.7. 

5.4.2 MAIN RESULTS 

(5.4.45) 

Using the related lemmas above, we shall obtain the following sufficient con-

ditions for the bounded solutions of (5.4.35) to be oscillatory. Let 

(5.4.46) 

and 

(5.4.47) 

where T m 2': to is sufficiently large. 

Theorem 5.4.1 Assume that (5.4.35) with 0 < p < 1 satisfies 

n 

rf3ml L ipi 2': 1 (5.4.48) 
i=l 

and 

for some integer n 2': 1. Also assume that ijm(t) given by (5.4.36) is nonincreasing. 

Then, for every bounded solution x{t) of (5.4.35), either x(t) is oscillatory or 

lim inft ..... oo (lx(t)1 - plx(t - r)1) < O. 
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Proof Suppose the conclusion is not true. Let x(t) be an eventually positive 

and bounded solution of (5.4.35) with lim inft-+oo(x(t) - px(t - r)) ~ O. Let 

y(t) be defined as in Lemma 5.4.1 and v(t) be defined as in Lemma 5.4.3. By 

Lemma 5.4.3, we know that v(t) > 0, (-l)kv(k)(t) > 0 for 1 :::; k :::; m and 

(5.4.39), i.e., 

holds for any fixed natural number n and for all large enough t. By Lemma 5.4.4, 

we know that 

v'(g(t)) (m - I)! < v(m)(o) 
(t - g(t))m-l 

for some 0 E (g(t), t). Since iim(O) ~ iim(t) by assumption and 

v(g(O) - il') ~ v(g(t) - ir), 

from (5.4.39) with t replaced by 0, it follows that 

(m - I)! 1 Ln. 
v'(g(t)) ( ()) 1 + -iim(t) ptV(g(t) - ir) < 0 

t - 9 t m- T m 
i=O 

i.e., 

(t _ g(t))m-l n. 

V'(g(t)) + (m _ 1)!Tm iim(t) ~ptv(g(t) - ir) < O. 

With the replacement of t by g-l(t), (5.4.50) yields 

(5.4.50) 

(5.4.51) 

Assume that (_1)kv(k)(t) > 0 and (5.4.51) hold for 0 :::; k :::; m and t ~ tl ~ to. 

Without loss of generality, we may assume Tm ~ tl + nr. Let 

-v'(t) 
w(t) = v(t) . 
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Note that w(t) > 0 and v(t) = v(Tm) exp J:
m 

-w(O)dO for all t ~ Tm ~ tl + nr. 

From (5.4.51) it follows that 

(t) > 
(g-I(1) - t)m-lqm(g-l(t)) ~ i it ()d 

w (' _ 1)' m ~ p exp . w s s, 
Tn. . T i=O t-lr 

(5.4.52) 

i.e., 

Qml(t) ~, it 
w(t) > (m -l)!Tm ~plexp t_irw(s)ds (5.4.53) 

for all t ~ Tm. where Qml(t) = (g-I(t) - t)m-Iqm(g-I(t)) > O. 

Let wo(t) == 0 for t ~ Tm - nr and let 

for each kEN and t ~ Tm + nkr. Let 

a m lk = inf {Wk(t)} , kEN. 
t2:T m +(k-l)nr 

Then 

a . > inf { Qml (t) ~pieiramlk} = (.I ~pieiramlk. 
mlk+l - t>'" ( _ 1)' m ~ fJmI ~ _'m m, .T 

i=O i=O 

Since (5.4.53), (5.4.48) and the definition of {amId imply that {amlk} is an 

increasing sequence, by the same procedure as that used in the proof of Theo-

rem 5.3.1 we have amIk --+ 00 as k --+ 00. Notice also that 

Thus w(t) --+ 00 as t --+ 00, which implies 

v(t) jt+r 
( ) 

= exp w(s)ds --+ 00 as t --+ 00. 
v t + r t 

(5.4.54) 
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On the other hand, since v'(t) < 0 and v(t) > 0, (5.4.51) yields (by dropping the 

i = 0 term) that 

v'(t) 
(g-1(t) - t)71l-1 _ -1 n i . 

< - ( )' q71l(g (t))~pv(t-'lr) m-l .Tn! ~ 
i=l 

(g -1(t) f)71l-1 P pn+1 
< - - . - . ij71l(g-l(t))V(t - r). 

(m - l)!Tn! 1 - p 
(5.4.55) 

By (5.4.49) and Lemma 5.2.1. 

v(t) 
lim inf (. ) E (0, 1]. 

/--->00 V t - r 

Thus v(t+r)/v(t) has a positive lower bound so v(t)/v(t+r) has a positive upper 

bound. This contradicts (5.4.54). Assume that x(t) is an eventually negative and 

bounded solution of (5.4.35) with limsupt->oo(x(t) - px(t - 1')) ~ O. Then the 

above proof with a minor modification also leads to a contradiction. Therefore, 

the conclusion of the theorem holds. 

Corollary 5.4.1 The conclusion of Theorem 5.4.1 still holds if (5.4.49) is re-

placed by 

(5.4.56) 

Proof The proof is the same as that of Theorem 5.4.1 except (5.4.55). The 

conclusion still holds if (5.4.55) is replaced by 

, (g-I(t) - t)m-l _ -I 

v (t) < - Tm(m _ 1)! qm(g (t))pv(t - r). 



Corollary 5.4.2 Assume that (5.4.35) with a < p < 1 satisfies 

and 

11 

,./31112 L ipi ::::: 1 
i=l 

(5.4.57) 

(5.4.58) 

for some integer 11 ::::: 1. Also assume that iJm(t) given by (5.4.36) is nondecreasing. 

Then the conclusion of Theorem 5.4.1 holds. 

Proof The proof of Theorem 5.4.1 is still valid after the replacement of 

Corollary 5.4.3 The conclusion of Corollary 5.4.2 still holds if (5.4.58) is re-

placed by 

(5.4.59) 

The proof of Corollary 5.4.3 is similar to that of Corollary 5.4.1. 

Corollary 5.4.4 Assume 0 < p < 1 and r = kT. Under the assumptions of 

either Theorem 5.4.1 or Corollary 5.4.1 or Corollary 5.4.2 or Corollary 5.4.3, 

every bounded solution x(t) of (5.4.35) is oscillatory. 

Proof The proof of Theorem 5.4.1 is still valid after the replacement of 

Lemma 5.4.1 by Lemma 5.4.2. 
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The following results are for the bounded solutions of (5.4.35) with p > 1. 

Theorem 5.4.2 Assume that p > 1, r = kT, kEN, r 2: t + mT - g(t) and 

n C 1) 
r(3m2 L 'l ~ 2: 1 

i=l P 
(5.4.60) 

for some integer n 2: 2. Also assume that ijm(t) given by (5.4.36) is nondecreasing. 

Then every bounded solution :r(t) of (5.4.35) is oscillatory. 

Proof Suppose the conclusion is not true. Without loss of generality, 

assume that (5.4.35) has an eventually positive and bounded solution x(t). And 

let y(t) be defined as in Lemma 5.4.5 and v(t) be defined as in Lemma 5.4.6. 

By Lemma 5.4.6, we know that v(t) < 0, (-I)kv Ck )(t) > 0 for 1 ~ k ~ m, and 

(5.4.44), i.e., 

1 n 1 
vCm)(t) - -ijm(t) '" -:v(g(t) - mT + ir) < 0 Tm ~pl 

i=l 

holds for any fixed integer n 2: 1 and for all large enough t. By Lemma 5.4.7, we 

know that 

(m - 1)' C v'(g(t» . < v m)(o) 
(t - g(t»m-l 

for some 0 E (g(t), t). Since iim(O) 2: iim(g(t» and v(g(O) - ir) ~ v(g(g(t» - ir), 

with the replacement of t by 0, (5.4.44) yields 

(m - 1)! 1 n 1 
v'(g(t» (t _ g(t))m-l - Tm iim(g(t» ~ pi v(g(g(t) - mT + ir) ~ 0 

i.e., 

(t - g(t»m-l n 1 
v'(g(t» - (m _ l)!Tm iim(g(t» ~ piV(g(g(t» - mT + ir) ~ O. (5.4.61) 



With the replacement of t by g-l (t), (5.4.61) becomes 

(5.4.62) 

Assume that v(t), (-1 )kv(k) (t) > 0 (1 ::; k: ::; m) and (5.4.62) hold for t 2:: tl 2:: 

to and, wit.hout. loss of generality, that. Tm 2:: tl + nr. Let 

v' (t) 
w(t) =-. 

v(t} 

Note that w(i) > 0 and v(t) = V(t') exp J; w(O)dO for all t, t' > Tm. From 

(5.4.62), we have 

i.e., 

(g-l(t) - t)m-1ijm(t) n 1 19(t>-mT+ir 
w(t) 2:: (_ 1)1 m L i exp w(s)ds, 

m .T . P t ,=1 

Qm2(t) n 1 19 (1l-mT+ir 
w( t) 2:: ( ) 1 '" -"7 exp w(s)ds m-1 .Tm ~p' 

,=1 I 

Let wo(t) = 0 for t 2:: Tm. And for each k E IV and t 2:: Tm, let 

Qm2(t) n 1 19(t)-mT+ir 
Wk+1(t) = ( _ 1)1 m L i exp wk(s)ds 

m .T i=l P t 

and 

kE IV. 

(5.4.63) 

(5.4.64) 

So wet) 2: Wk+l(t) 2: Wk(t) 2:: Q'm2k for all kEN and t 2:: Tm. By assumption, we 

therefore have 

C¥m2k+l { 
1 n 1 } > inf Qm2(t}. '" -:-e!g(t)-t-mT+ir]Qm2k 

t~Tm (m - l)!Tm ~ p' 
1=1 

n 1 
> 13m2 L -"7e(i-l)raem 2k • 

i=l pf 
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Note that {D: m 2k} is a bounded nondecreasing sequence and suppose that 

lim D:m 2k = Pm2 < 00. 
k-+oo 

(5.4.65) 

So Pm2 2': 13m2 L::~l (e(i-l)rpm 2 /pi). By (5.4.60) and the same reasoning as that 

used in the proof of Theorem 5.3.2, we reach that no positive number Pm2 satisfies 

pm2 2: !3m2L:7=1(e(i-l)rpm2
/ pi). This contradiction shows that the conclusion 

holds. 

Corollary 5.4.5 Assume that p > 1, T = kT, kEN, T 2': t + mT - g(t) and 

T(~ ~(i-.1»1 
,urn! ~ l -

i=l P 
(5.4.66) 

for some integer n 2': 2. Also assume that qrn (t) given by (5.4.36) is nonincreasing. 

Then every bounded solution x(t) of (5.4.35) is oscillatory. 

Proof The proof of Theorem 5.4.2 is still valid after the replacement of 

5.4.3 EXAMPLES 

Three examples will be given in this section to demonstrate the applica-

tions of the results obtained. From (5.4.46) and (5.4.47) it is clear that both 

13ml and 13m2 are nondecreasing functions of T m' The following examples show 

that 13ml and 13m2 may be independent of Tm or increasing functions of Tm. 
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Example 5.4.1 Consider the difference equation 

6.~ (r(t) - ~:r(t - 1)) + ((m - I)! + ~) x(t - 1) = 0 (5.4.67) 

for t > 0, where m is an odd positive integer m 2: 3. Viewing (5.4.67) as (5.4.35), 

we have T = 1, 0 < p = 1/2 < 1, r = 1, q(t) = (m - I)! + l/t and g(t) = t - 1. 

Then, according to (5.4.36), 

So 

qm(t) = 0: ((m - I)! + _1_) . 
t+m 

. {(t + 1 - t)m-l . 0: ((m - I)! + t+~+l)} 
13ml = mf = 0: 

t?Tm (m - I)!, 1m 

with T m 2: 3. Since 

. ill 1 110: 
3 ( ) 13mI ~ zrp = 0:' 2 + 2 x 4 + 3 x '8 = 8 2: 1 

holds for 0: E [8/11,1) and 

0< liminflt (S+1-S)m-I.0:((m-1)!+ 1 )ds=o:.(m-l)! 
t~oo t-I S + m + 1 

< 2·(m-1)! 
e 

holds for any 0: E (0,2/e]' (5.4.48) and (5.4.56) are satisfied for n = 3 and 0: E 

[8/11,2/eJ. Since r = 1 = T, by Corollaries 5.4.1 and 5.4.4, every bounded 

solution x(t) of (5.4.67) is oscillatory. 

Example 5.4.2 Consider the difference equation 

(5.4.68) 
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for t > 0, where m is an odd positive integer with m 2:: 3 and 0' is a positive 

real number. Regarding (5.4.68) as (5.1.35), we have T = 7r 1m, p = 2, r = 

47r, g(t) = t - 7r and q(t) =- 8. Then, for some a E (0,1), qm = 8a by (5.4.36). 

Moreover, r 2:: t + mT - g(t) and r = kT are satisfied. In addition, 

where Tm 2:: 127r. So (5.4.60) is satisfied since 

3 47r(i - 1) 8mm a ( 1 2) 16mm 

,Bm2~ pi = 7r(m -I)! x 47r x 22 + 23 = a(m_1)! 2:: 1 

holds for a E [(m - 1)!/(16mm
), 1). By Theorem 5.4.2, every bounded solution 

x(t) of (5.4.68) is oscillatory. 

Example 5.4.3 Consider the difference equation 

~~ (x(t) - 2x(t - 271')) + e-fx(t - 71') = 0, 
m 

(5.4.69) 

for t > 0, where m is an odd positive integer with m 2:: 3 and 0' is a positive con-

stant. Regarding (5.4.69) as (5.4.35), we have T = 71' 1m, p = 2, r = 271', g(t) = 

t - 7r and q(t) = e-f. Then, for some a E (0,1), qm = ae-f by (5.4.36). More-

over, r 2:: t + mT - g(t) and r = kT are satisfied. In addition, 

as Tm ~ 00. So (5.4.60) is satisfied when Tm is large enough since 

~27r(i-1) am
m 

(1 2) mm 
,Bm2t;: pi ~7r(m_1)!x27rx 22 +23 =a(m_1)!>1 

as Tm ~ 00 for a E ((m - l)!/(mm), 1). By Theorem 5.4.2, every bounded 

solution x(t) of (5.4.69) is oscillatory. 
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5.5 CONCLUSION AND SUMMARY 

Our objective of this chapter and chapter 4 is to study a particular class of 

neutral difference equation of the form 

~;(x(t) - p:r(t - r)) + J(t,x(g(t))) = 0, 

where m 2: 2 is a natural number, p 2: 0, T and T' are positive constants, ~'7"x(t) = 

x(t+r)-x(t), 0< g(t) < t, 9 E C1([to,00),R+), g'(t) > 0, and J E C([to,oo)x 

R, R). Under the assumptions, the existence and uniqueness of solutions are 

guaranteed. We have concentrated on the oscillatory behaviour of the nontrivial 

solutions as t tends to 00. 

According to our best knowledge, some known results are available only for 

the first order of this type of neutral difference equations and special cases of 

second order equat.ions. Even t.hough the results we have obtained incorporate 

those known results as special instances, our study has been inspired by them 

and some of our results could be regarded as the generalization of some previous 

results. Due to that techniques used in dealing with the oscillatory behaviour of 

solutions of the even order equations are very much different from those for the 

odd order equations, we have dealt with them separately. 

In chapter 4, we have focused on the even order equations which are composed 

of the second, fourth and higher even order equations. Section 4.3 devotes to the 

second order equation (4.3.4). To establish oscillatory criteria, ih(t) has been 

defined as in (4.3.5) and z(t) has been defined by 

I
t+'7" Is+'7" 

z(t) = t ds s x(B)dB. 



By constructing a Ricat t i transformation, wc have obtained a sufficient condition 

(4.3.6) in Theorem 4.3.1 for every solution :r(t) of (4.3.4), either x(t) to be oscil

latory or eventually satisfy Iz(t)1 < plz(t - r)l· Furthermore, in Theorem 4.3.2, 

we have gained a sufficient condition (4.3.7) for (4.3.4) with 0 < p < 1 to be os

cillatory. Condit ion (4.3.7) still holds when p > 1. Similarly, condition (4.3.8) in 

Theorem 4.3.3 has been obtained for (4.3.4) to be oscillatory when p = 1. At the 

end of this section. two examples have been given to demonstrate the applications 

of the obtained results and to show the generality of the obtained results. 

In section 4.4 we have concentrated on equation (4.4.20). The organization 

of this section is the same as that of section 4.3 but the arguments are rather 

more complicated. Let iJ4(t) be as in (4.4.21). We have defined y(t) and u(t) as 

in Lemmas 4.4.1 and 4.4.2, respectively, and obtained their qualitative features 

as t tends to 00. Through a Ricatti transformation, equation (4.4.20) has been 

converted to a first order inequality and then condition (4.4.25) has been estab

lished in Theorem 4.4.1 for every solution x(t), either x{t) to be oscillatory or for 

any T ~ to, there exists a til > T such that Ix(t)1 ::; plx(t" - r)l. Moreover, we 

have obtained four more conditions in each case of 0 < p < 1, P = 1 and p > 1. 

When 0 < p < 1, condition (4.4.27) has been established in Theorem 4.4.2 for 

every solution x(t), eit.her x(t) or x(t) - px(t - r) is oscillatory. Based on Theo

rem 4.4.2, three more weaker condit.ions (4.4.31), (4.4.33), and (4.4.35) have been 

gained in Corollaries 4.4.1, 4.4.2, and 4.4.3, respectively. By the same procedure 

as before, we have condition (4.4.36) in Theorem 4.4.3 when p = 1, which has 

been extended to conditions (4.4.37), (4.4.38), (4.4.39) in Corollaries 4.4.4, 4.4.5, 
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4.4.6, respectively, and condition (4.4.40) in Theorem 4.4.4 when p > 1, which 

has been extended to conditions (4.4.41), (4.4.42), (4.4.43) in Corollaries 4.4.7, 

4.4.8, 4.4.9. Two illustrating examples have been given at the end of this section. 

In section 4.5, we have focused on equation (4.5.46). The idea in this section 

was inspired by the previous two sections and could be viewed as a generalization 

of them. However, as a general case, the reasonings in this section are much more 

complicated. Let iJm(t) be defined as in (4.5.47). In addition, let y(t) be as in 

Lemma 4.5.1 and u(t) be as in Lemma 4.5.2. Based on the known results, the 

properties of y(t) and u(t) have been gained. By a Riccati transform, we have 

converted equation (4.5.46) to the first order inequality (4.5.53) then obtained suf

ficient condition (4.5.52) in Theorem 4.5.1 for every solution x(t), either x(t) to be 

oscillatory or for any T ~ to, there exists at" > T such that Ix(t)1 :S plx(t" -r)l. 

When 0 < p < 1, condition (4.5.54) has been obtained in Theorem 4.5.2 for 

x(t) or x(t} - px(t - r) to be oscillatory. Basis on Theorem 4.5.2, we have man

aged to have two weaker conditions (4.5.58) and (4.5.59) in Corollaries 4.5.1 and 

4.5.2, respectively. In a same way, when p = 1 we have condition (4.5.60) in 

Theorem 4.5.3, condition (4.5.61) in Corollary 4.5.3, and condition (4.5.62) in 

Corollary 4.5.4 for x(t) or x(t) - px(t - r) be oscillatory, and when p > 1, we 

have condition (4.5.63) in Theorem 4.5.4, condition (4.5.64) in Corollary 4.5.5, 

and condition (4.5.65) in Corollary 4.5.6 for x(t) or x(t) - px(t - r) to be oscil

latory. Three illustrating examples have been given at the end of this section to 

demonstrate the applications of the obtained results. 

In chapter 5, we have focused on equation (4.1.1) with odd m > 3. We 
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investigated the third order equations at first then the higher odd order equations. 

The obtained results for the odd order equations are weaker than those of the 

even order equations. In this chapter, oscillatory criteria are just for the bounded 

solutions except p = 1. 

In section 5.3, we have concentrated on the third order equation (5.3.2). Let 

ii3(t} be as in (5.3.3). When 0 < p < 1, we have defined z(t} and y(t} as in 

Lemma 5.3.1 and obtained their qualitative properties as t tends to 00. By 

defining v(t} as in Lemma 5.3.3 and Taylor's formula, we have converted equa

tion (5.3.2) to the first order differential inequality (5.3.18). Using the known 

results about differential equations/inequalites, we have obtained sufficient con

ditions (5.3.15) and (5.3.16) in Theorem 5.3.1 for every bounded solution x(t}, 

either x(t} to be oscillatory or lim inft->oo(lx(t}1 - plx(t - r)l) < O. From The

orem 5.3.1, four corollaries have been gained. The conclusion of this theorem 

are still valid if (5.3.16) is replaced by (5.3.23) in Corollary 5.3.1. Furthermore, 

if conditions (5.3.24) and (5.3.25) in Corollary 5.3.2 or conditions (5.3.24) and 

(5.3.26) in Corollary 5.3.3 hold, then the conclusion of Theorem 5.3.1 holds as 

well. Corollary 5.3.4 is about the special case r = kT. When p > 1, by the 

same procedure, we have defined z(t} and y(t} as in Lemma 5.3.5 and v(t} as 

in Lemma 5.3.6 and obtained their qualitative features as t tends to 00. By 

(5.3.12) in Corollary 5.3.7, equation (5.3.2) has been transformed to the first or

der differential inequality (5.3.29). Basis on the known results about differential 

equations/inequalites and constructing the sequence {Q32d, we have obtained 

(5.3.27) in Theorem 5.3.2 for every bounded solution x to be oscillatory. From 
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Theorem 5.3.2, we have Corollary 5.3.5. Two illustrating examples have been 

given at the end of this section. 

Section 5.4 devotes to the higher odd order equation (5.4.35). The structure of 

this section is the same as that of the last section. The ideas were inspired by the 

third order equations so the results could be regarded as a generalization. But, 

the arguments are rather more complicated. Let ijm(t) be as in (5.4.36). When 

p > 1, let z(t) and y(t) be as in Lemma 5.4.1 and v(t) be as in Lemma 5.4.3. 

From the features of v(t), we have gained (5.4.40) in Lemma 5.4.4, by which equa

tion (5.4.35) has been converted to the differential inequality (5.4.51). From the 

known results on differential equations/inequalites, we have conditions (5.4.48) 

and (5.4.49) in Theorem 5.4.1 for every bounded solution x(t), either x(t) be 

oscillatory or limt->oo(lx(t)l- plx(t - r)l) < O. Basis on Theorem 5.4.1, Corollar

ies 5.4.1-5.4.4 have been gained. When p > 1, we have defined z(t) and y(t) as 

in Lemma 5.4.5 and v(t) as in Lemma 5.4.6. From these two lemmas, we have 

obtained (5.4.45) in Lemma 5.4.7, by which equation (5.4.35) has been converted 

to differential inequality (5.4.62). By the known results, we have obtained suf

ficient condition (5.4.60) in Theorem 5.4.2 for every bounded solution x to be 

oscillatory. Basis on Theorem 5.4.2, Corollary 5.4.5 has been obtained. Three 

illustrating examples have been given at the end of this section. 
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Chapter 6 

HIGHER ORDER NONLINEAR 

DIFFERENCE EQUATIONS 
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6.1 INTRODUCTION 

In this chapter, even order nonlinear neutral difference equations of the form 

(6.1.1) 

are considered, where m is an even positive integer, n 2:: no, {Tn} and {gn} are 

nondecreasing sequences of nonnegative integers with Tn ~ n, gn ~ n, limn -+oo Tn = 

00, limn-+oo gn = 00, {an} and {qn} are sequences of real numbers with an > 

0, qn 2:: ° and qn ¢ 0, and f : R --+ Rand 'P : R2 --+ R are functions. Assume 

that the following conditions always hold throughout this chapter: 

00 
1 L -=00, (6.1.2) 

an n=no 

° < 'P( n, u) ~ Pn < 1 for u# 0, (6.1.3) 
u 

f(u) 2:: co > ° for 
u 

u# 0. (6.1.4) 

There has been an increasing interest in the study of oscillation for the so-

lutions of higher order difference equations recently. For instance, Zaffer and 

Dahiya [611 studied the equation 

where c5 = ± 1, Thandapani, Sundaram, and Lalli [541 investigated 

~mx(n) + q(n)f(x(O'(n)))h(~m-lx(c5(n))) = 0, n E N, m is even, 

as well as the forced difference equation 

~mx(n) + q(n)f(x(O'(n)))h(~m-lx(c5(n))) = e(n), n EN, m is even, 



and Graef, etc. [24] discussed the higher order neutral delay difference equation 

where b = ±l. In addition, Yan and Liu [58] studied the fourth order difference 

equations of the form 

Note that the highest order difference term in each of the above equations is 

linear whereas r.p in (6.1.1) may be nonlinear. Oscillation criteria will be estab

lished, which completely cover the results of Zhang and Li [67] and Zhang and 

Zhang [69] as special cases. Notice also that this chapter is a modified version 

of the published paper [40] under the joint authorship of Z. Liu, S. Wu and Z. 

Zhang, in an alphabet order. This reflects the contribution from the first and 

third authors in the process of refining the previous drafts and developing and 

sharping the original results, but the main idea and results belong to the second 

author. 

In this chapter, the wording is slightly different from the published paper in 

order to be consistent with the previous chapters. At first, we will present some 

related lemmas in section 6.2. In section 6.3 we shall state the main results and 

give their proofs as well. In section 6.4 examples will be given to illustrate the 

obtained oscillatory criteria. At last, we will finish this chapter with a conclusion. 
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6.2 RELATED LEMMAS 

To prove the main results given in section 6.3, we need the following lemmas. 

Lemma 6.2.1 Assume that the positive sequence {Yn} satisfies D,.mYn :::; 0 but 

D,.mYn is not identically zero, where In is an even positive integer with In ~ 2. Then 

there exist an integer k and an '1'/'1 ~ no such that 1 :::; k :::; In - 1, In + k is odd, 

and 

j=I,2, ... ,k, 

j = k + 1, ... , In - 1, 

Lemma 6.2.2 Under the assumptions of Lemma 6.2.1, there exists an n2 ~ nl 

such that 

(n - n )(m-l) 
> 2 Am-l 

Yn - (In _ I)! U Y2 m
-

k
-

1n 

holds for n ~ n2. 

The above two lemmas can be found in [2] (P31 and P33). 

Lemma 6.2.3 Assume that {Xn} is an eventually positive solution of (6.1.1). 

Let Zn = Xn + 'P(n, x-rn)' Then there exists an n3 ~ n2 such that 

(6.2.5) 

for Tn ~ n3, where Tn = r 2!!::2 1 . 
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Proof From (6.1.1) and the assumptions, we have ~m-l(an~zn) ::; O. So 

creasing. If there is an fl such that ~zn < a for all n 2:: fl then an~zn ::; ai~~Zft < 

O. According to the definition of z(n), we have .Tn +l + <p(n + 1,xTn+1) - (xn + 

n 

Xn + 'P(fl, xTn ) + L ~zs 

By (6.1.2), Xn+l < Xn + 'P(fl, xTn ) + an~zn L:;=n ;. ----+ -00 as n ----+ 00, a contra-

diction to the positiveness of Xn · Therefore, ~zn > 0 for n 2:: no. We now show 

that an~zn is eventually positive for even m > 2. Since ~m-2(an~zn) is non-

~m-2(anl~ZnJ < a for some n1 2:: no and all n 2:: n1. In the latter case, we see 

that 
n-1 

~m-3(an~zn) = ~m-3(anl~Znl) + L ~m-2(as~zs) ----+ -00 

s=nl 

and ~i(an~zn) ----+ -00 (0 ::; i ::; m - 3) as n ----+ 00. This again will lead to a 

contradiction to the positiveness of Xn. Therefore, ~m-2(an~zn) is positive and 

nonincreasing. Thus, ~m-3(an~Zn) is increasing with either ~m-3(anL\zn) < 

00 so anL\zn > 0 holds eventually. In the former case, viewing m - 2 as m, we 

obtain the required conclusion from the same reasoning as above. 
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From Lemma 6.2.2, there is an n3 2: n2 such that for Tn 2: n3 

Therefore, we have 

Lemma 6.2.4 Assume that {xn} is an eventually positive solution of (6.1.1). 

Let {An} be an arbitrary positive sequence. Then there exists an n4 2: n3 such 

that Riccati difference inequality 

(6.2.6) 

has a solution {un}, where 

Proof From (6.1.1), (6.1.3) and (6.1.4), it follows that 
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and 

(6.2.7) 

Let 

Note that {zr.} is increasing and {.0.m- 2(an.0.zn)} is decreasing. In addition, by 

the definition of r n we can always choose a subsequence of r n to replace r n if 

necessary, thus we assume that 

rn = rn+l - 1 = ... = rn+h - h = .... 

Therefore, by (6.2.7) and Lemma 6.2.3, there is an n4 2:: n3 such that for rn 2:: n4 

we have 
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Therefore, 

So the conclusion of the Lemma holds. 

Lemma 6.2.5 Under the assumptions of Lemma 6.2.4, further assume that 

(6.2.8) 

and p~O) = f Q s is a constant number or tends to 00. Then there exists an 
s=n 

n5 2 n4 such that for Tn 2 n5, 

(6.2.9) 

00 

p(O) = "'Q < 00 n ~ s , (6.2.10) 
s=n 

and 

(6.2.11) 

Proof Note that from Lemma 6.2.4 (6.2.6) is valid for Tn 2 n4' We will 

show that (6.2.11) holds at first. In fact, if 

(6.2.12) 

then in view of the definition of p~O) and (6.2.12), there exists an Nl > n for any 

fixed n such that for ~ 2 N1 , 

e 
< -1- L 

S=Nl 



Therefore we have 

Let 

According to discrete Cauchy-Schmartz inequality, we have 

So 

Note that H~ < 0, H~ -+ -00 as ~ -+ 00 by (6.2.8), and 

~ 

L ~~Bs S IH~I s Iv~l. 
S=Nl 8+1 

Clearly, 

Thus {H~} is decreasing and 

A~+lB~+lVl+1 
A~+2 

Summation of (6.2.13) for ~ from N - 1 to~, we obtain 

1 1 

In view of (6.2.8), G~ -+ -1 and (1/ HHl) -+ 0 as ~ -+ 00. Hence 

1 
--<-1 
HN-1 -
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(6.2.13) 
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for large enough N, which contradicts Hn - -00 as n - 00. Hence (6.2.11) 

holds. Therefore, we have 

We will prove that lim sUP€-+oo u€ 2 o. Indeed, if lim sUP€-+oo u€ < 0, then there 

must be an l> 0 and an N2 2 Nl such that u€ ~ -I for ~ 2 N2, so 

a contradiction to (6.2.11). Hence we have lim sUP€-+oo u€ 2 o. Furthermore, 

there is an n5 2 n4 such that for rn 2 n5, (6.2.9) holds and (6.2.10) follows from 

(6.2.9). Therefore we have showed that the conclusion of the Lemma holds. 

Lemma 6.2.6 Under the assumptions of Lemma 6.2.5, further assume p~O) ~ 0 

eventually. Then there exist an n6 2 n5 and a sequence {hn } such that for every 

positive integer k, 

(6.2.14) 

where 

pCk) 
n 

00 A B (pCk-l») 2 
~ 8 8 8+1 Ck) 
~ A2 R8 ,n, 

8+1 8=n 

RCk) 
8,n 

8-1 ( 2AB.P(k-1») 
II 1 + t t t+1 

A2 ' 
i=n t+1 

n-1 

II = 1. 
n 

Proof By Lemma 6.2.5, there exists a sequence {un} such that (6.2.9) and 

(6.2.11) hold. Let 
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s-1 ( A B p(O) ) 
R(I) = II 2 i i HI 

s,n 1 + A? 
i=n 1+1 

and 

(6.2.15) 

Summation (6.2.15) for s from n to N - 1, we have 

i.e., 
N-l 2A B p(O) N-l A B 2 

h R(I) _ h _ """ h s s s+1 R(I) = _ """ s sUs+! R(I) 
N N,n n ~ s+1 A2 s,n ~ A2 s,n' 

s=n s+1 s=n s+1 

So 
N-l A 

h """ sBs R(I) ( 2 h (0) ) 
n 2 ~ ~ s,n U s+ l - 2 s+I P s+l . 

s=n s+1 

By Lemma 6.2.5, we have Us+l 2 P;~1 +hs+! 2 O. Hence U;+l 2 (P;~l) 2 +h;+l + 

2P;~1 hs+1' Then we obtain 

Therefore 

Next we will prove that (6.2.14) holds for k = 2. Replacing R~~~ by R~~~ in 

(6.2.15) and following the same reasoning as the above, we have 
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Note that hn ~ p~l). According to (6.2.9) and (6.2.11), there is an n6 ~ n5 such 

that Un ~ 2hn for 7'n ~ n6. So Un ~ h n + p~l). Furthermore, 

By the same argument as the above, we have 

(6.2.16) 

for all positive integer k and 7'n ~ n6. 

Lemma 6.2.7 Under the assumptions of Lemma 6.2.6, for every positive inte-

ger k, the following inequality holds 

n-1 ( 4A B P(k-1») 
1· p(k) II 1 + 8 8 8+1 1msup n A2 < 00. 

n-->oo s=n6 8+ 1 

(6.2.17) 

Proof Notice that from Lemma 6.2.6, (6.2.14) holds for kEN. Let 

From (6.2.14) it follows that 

h P(k) 
n ~ n + W n · 

So 

i.e., 
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The above inequality implies that 

From the proof of Lemma 6.2.6 and the definition of W n , we have 

00 A B h2 00 A ((k))2 
W = '" 8 8 8+1 R(k) > '" sBs Pn R(k) > p(k+1) 

n ~ A2 s,n - ~ A2 8,n - n . 
s=n s+l s=n 8+1 

Thus 

i.e., 

Therefore, 

6.3 MAIN RESULTS 

Using the above lammas, we will be able to obtain the following sufficient 

conditions for all the solutions of (6.1.1) to be oscillatory. 

Theorem 6.3.1 Assume that there exists a positive sequence {An} such that 

(6.3.18) 

and 

(6.3.19) 
s=n 
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where Bs and Qs are defined in Lemma 6.2.4. Then (6.1.1) is oscillatory. 

Proof Without loss of generality, suppose that {xn} is an eventually pos-

itive solution of (6.1.1). Then all conditions of Lemma 6.2.5 are satisfied. From 

Lemma 6.2.5 we have 
00 

s=n 

a contradiction to (6.3.19). Thus, this contradiction shows that (6.1.1) is oscilla-

tory. 

Theorem 6.3.2 Assume that there exists a positive sequence {An} such that 

(6.3.18) holds, for Qs defined in Lemma 6.2.4, {L:~=1 Qi} is convergent to a 

positive number, and 

00 A B (P(O)1)2 8-1 ( 2A.B.P(O) ) 
'""" 8 8 s+ II ~ ~ i+ 1 _ 
~ A2 1 + A~ - 00. 
8=n 8+1 i=n ~+1 

(6.3.20) 

Then (6.1.1) is oscillatory. 

Proof Suppose that the conclusion does not hold and (6.1.1) is nonoscil-

latory. Without loss of generality, suppose that {xn} is an eventually positive 

solution of (6.1.1). The conditions of Lemma 6.2.6 are met. So (6.2.14) holds for 

Tn ? n6, a contradiction to (6.3.20). Therefore, the contradiction proves that the 

conclusion of the theorem holds. 
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Theorem 6.3.3 Assume that there exists a positive sequence {An} such that 

p~o) 2: 0 eventually, (6.3.18) holds, and for some positive integer ko 

p~k) < 00, k = 0, 1,2,," ,ko - 1, (6.3.21) 

and p'~ko) does not exists. Then (6.1.1) is oscillatory. 

Proof The proof of Theorem 6.3.2 is still valid after the replacement of a con-

traction to (6.3.20) by a contradiction to (6.3.21). 

Theorem 6.3.4 Assume that there exists a positive sequence {An} such that 

p~o) 2: 0 eventually and (6.3.18) holds. In addition, there exists a positive integer 

ko such that 

n-1 ( 4A B P(kO-1») 
lim sup p~ko) IT 1 + s s2 s+1 = 00. 
n~oo As+1 s=no 

(6.3.22) 

Then (6.1.1) is oscillatory. 

Proof The proof is the same as that of Theorem 6.3.2. The conclusion 

holds if the contradiction to (6.3.20) is replaced by a contradiction to (6.3.22). 

Theorem 6.3.5 Assume that there exists a positive sequence {An} such that 

p~o) 2: 0 eventually and (6.3.18) holds. In addition, there is a positive integer ko 

such that 

(6.3.23) 

and 

(6.3.24) 
s=no 



Then (6.1.1) is oscillatory. 

Proof Without loss of generality, suppose that {xn} is an eventually posi-

tive solution of (6.1.1). Then all conditions of Lemma 6.2.7 are satisfied. By the 

proof of Lemma 6.2.7, we have 

p(ko) < 
n -

n-l ( 4A B P(kO-l»)-1 
II 8 8 s+1 

Wno 1 + A2 ' 
no s+1 

n 8-1 ( 4AB.p(kO-I»)-1 
~ II 1 + 1 1 i+l 

Wno ~ A2 
s=no i=no 1+1 

which contradict (6.3.23) and (6.3.24). The contradiction shows that the conclu-

sion holds. 

To further study the oscillation of (6.1.1), we construct the following sequence 

{a~)} for any sequence {p~k)}. Set 

a(O) p(k) 
n n , 

00 A B ( (0»)2 
~ 8 8 a s+1 R(k) 
~ A2 s,n' 
s=n s+1 

a(l+I) = 
n 

00 A B ((0) (I) )2 
~ s 8 0:8 +1 + 0:8 +1 R(k) 
~ A2 8,n-
8=n 8+1 

(6.3.25) 

If every term in (6.3.25) is defined, then we have o:~+l) ~ o:~) and 

lim a~) = O. 
n--+oo 

Theorem 6.3.6 Assume that the assumptions of Lemma 6.2.6 are satisfied. If 

(6.1.1) has a non-oscillatory solution and all a~) in (6.3.25) are defined, then 

lim a(/) = '" 
nUn' 

1 ..... 00 
(6.3.26) 
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Proof Without loss of generality, suppose {xn} is an eventually positive 

solution of (6.1.1). By Lemma 6.2.6, there are an n2 ~ nl and a sequence {wn } 

such that 

and 
00 A B (p(k-l))2 

P (k) = """"' 8 S 8+1 R(k) 
n ~ A2 s,n < 00. 

s=n s+l 

Hence we have 

W > p(k) n _ n 

> ( (0) )2 
Cl:n +1 , 

Hence Wn ~ CI:~o) + Q'~1). By mathematical induction, we have 

Therefore, all CI:~) in (6.3.25) are defined and (6.3.26) holds. From theorem 6.3.6, 

we can easily obtain the following theorems. 

Theorem 6.3.7 Assume that there exists a positive sequence {An} such that 

p~o) ~ 0 eventually and (6.3.18) holds. In addition, there exists a nonnegative 

integer ko such that one of the following conditions is satisfied. 

(i) There exists a nonnegative integer lo such that CI:~), 1 = 0, 1,2, ... ,lo - 1 

are defined but Q'~o) does not exist. 
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(ii) All a~) in (6.3.25) are defined. In addition, for every sufficiently large n 

there exists n* ~ n such that liml->oo a~l = 00. 

Then (6.1.1) is oscillatory. 

Proof Suppose (6.1.1) is nonoscillatory and, without loss of generality, Xn is 

an eventually positive solution of (6.1.1). So all condition of Theorem 6.3.7 are 

satisfied then (6.3.26) holds, which contradicts (i) or (ii). The contradictions 

show that t.he conclusion hold. 

Theorem 6.3.8 Under the assumptions of Theorem 6.3.7, and one of the fol-

lowing conditions is satisfied. For some ko, there exists a nonnegative integer Lo 

such that 

limsupa~o) II 1 + 8; 8+1 = 00 
n-l ( 4A B P(kO») 

n-HX) 8=no A 8+ 1 
(6.3.27) 

or 

n-1 ( 4A B P(kO») . 8 8 8+1 
hm sup an I1 1 + A2 = 00. 

n-+oo 8=no 8+ 1 

(6.3.28) 

Then (6.1.1) is oscillatory. 

Proof Similar to Lemma 6.2.7, we obtain 

and 

n-1 ( 4A B P(kO») 
8 8 s+l 

an I1 1 + A2 ~ Wno < 00, 
8=no 8+1 

which contradict (6.3.27) and (6.3.28). Therefore (6.1.1) is oscillatory. 



Theorem 6.3.9 Assume that the assumptions of Theorem 6.3.7 are met. In 

addition, 

n 8-1 ( 4A B P(kO»)-1 
1· ~ II i i HI n':'I1Jo ~ 1 + A 2 < 00. 

8=na i=na t+l 

And there exists a 10 such that 

Then (6.1.1) is oscillatory. 

n 

lim ~ a~lo) = 00. 
n->oo ~ 

8=no 

(6.3.29) 

(6.3.30) 

Proof Suppose that {xn} is an eventually positive solution of equation 

(6.1.1). Then all conditions of Lemma 6.2.7 are satisfied. Similar to the proof of 

Lemma 6.2.7, we have 

n-l ( 4A B P(kO»)-1 
(/0) II i i HI an ~ wno 1 + A2 

i=na 1+1 

(6.3.31) 

Summation both sides of (6.3.30) for s from no to n, we have 

n n 8-1 ( A B P(ka») -1 ~ a(lo) < ~ w II 1 + 4 i i HI 
~ 8 - ~ nO A~ , 
8=nO 8=na i=na 1+ 1 

which contradicts (6.3.29) and (6.3.30). Therefore, (6.1.1) is oscillatory. 

Remark 6.3.1 Our conclusions also hold for the mixed difference equations 

with Tn ~ nand n ~ 9n ~ 2m
-

2n, all results in [67] and [69] are included and 

extended. 

Remark 6.3.2 By equivalence behavior of between in convergence of the series 

00 00 

L: f(s - nl), L: f(s) and Bn = (Tn - nl)(m-2) j(arn (m - 2)!) in our theorems, 
8=n 8=n 

166 



167 

they can be replaced by 

6.4 EXAMPLES 

Here, two examples will be given in this section to demonstrate the results 

obtained in last section. 

Example 6.4.1 Consider the fourth order difference equation 

(6.4.32) 

Regarding (6.4.32) as (6.1.1), we have m-1 = 4, an - 1, qn = A/(2(n-1)3), Tn = 

gn = n - 1 and A > O. Choose An = 1, Qn = A/(2(n - 1)3), Bn = (n - 1)2/24. 

Then we have 

peO) 
n 

A 00 1 A 
2~(S-1)3 = 4(n-2)2' 

p(1) 
n 

A 00 (8 _ 1) 2 
8-1 ( A (i _ 1) 2 ) 

4' ~ 24((8 - 1)2)2 IT 1 + 48(i - 1)2 

A 00 1 ( A) 8-n 

4' ~ 24(8 - 1)2 1 + 48 

So pJ1) -+ 00 as n -+ 00. By Theorem 6.3.4, (6.4.32) is oscillatory. 



168 

Example 6.4.2 Consider the fourth order difference equation 

(6.4.33) 

Regarding (6.4.33) as (6.1.1), we have m-l = 4, an = 1, qn = A/(2(n-l)4), Tn = 

9n = n - 1. Choose An = 1, Qn = >../(2(11, - 1)4), En = (11, - 1)2/24. Then we 

have 

(0) _ A ~ 1 _ A 
Pn -"2 ~ (8 - 1)4 - 6(n - 2)3' 

s=n 

pel) _ ~ ~ (8 - 1)2 sIT-
l 

(1 >..) 
n - 36 ~ 24(8 - 1)3(S - 3) i=n + 72(i - 3) 

aflOl 
~ A , (s - 1)(3- 72 ) 

pel) IT (1 + A ) > b 
n s=nl 36(s-3) - (n_l)3- 1

A
s ' 

where a and b are positive constants. When A > 54, 

n-l ( A) 
p(1) IT 1 + - 00 as n - 00. 

n 36(8 - 3) 
s=nl 

By Theorem 6.3.3, when>.. > 54 (6.4.33) is oscillatory. 

6.5 CONCLUSION 

The objective of this chapter is to investigate (6.1.1) with a nonlinear neutral 

term. To establish the oscillatory criteria, we have managed to construct a Riccati 

type inequality {6.2.6} in Lemma 6.2.4 based on the results about the features 

of solutions of (6.1.1). Even better, we have obtained two more Riccati type 

difference inequalities (6.2.9) and {6.2.14} in Lemma 6.2.5 and Lemma 6.2.6, 



respectively. Based on these inequalities, we have managed to develop five criteria 

for (6.1.1) to be oscillatory. The criteria have been presented in Theorem 6.3.1 

-6.3.5. In addition, to deep the study of (6.1.1) we have constructed another 

sequence O'~). From this sequence, we have managed to establish three more 

oscillatory criteria, referring to Theorem 6.3.8 and 6.3.9. Examples are given to 

demonstrate the results obtained in section 6.4. 

The results in this chapter have completely covered the results in [67] and [69] 

as special cases. Since an is a sequence, (6.1.1) is more general than the equations 

in [61] and [54] except the forced equation in [54]. On the other hand, the results 

in this chapter are not ideal. There are new effort should be made in future to 

improve the results obtained here. 
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CONCLUSION 
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The objective of this thesis was to investigate the oscillatory and asymptotic 

behaviour of the solutions of certain particular classes of equations when t tends 

to infinity. In this chapter, we briefly summarise what we have achieved so far 

and then point out directions for further investigation. 

The nonautonomous first order differential system of the form 

X:(t) = bi(l)xi(t) (1 -t a,j(t)Xj(t)), i E N(l, n) 

has been studied in chapter 2. Here the functions aij(t) and bi(t) are continuous 

on R and bounded above and below by strictly positive numbers. By adapting 

the previous results about the canonical equations to the above system, a less 

restrictive improved condition just involving coefficients has been obtained for a 

particular type of solutions to be globally stable when t is sufficiently large. 

Second order nonlinear neutral differential equations having the form 

(a(t)(x(t) + <5p(t)x(t - T))')' + J(t,x(t - 0')) - g(t,x(t - p)) = 0 

were investigated in chapter 3. Here <5 = + 1 or -1, t 2: to, a (t) is a con

tinuously differentiable function, p(t) is a continuous bounded function with 

a(t) > 0, p(t) 2: a, J(t, u) and g(t, v) are continuous functions, the constants 

T, 0', P E [a,oo). We are interested in nontrivial solutions on [to, 00). Under the 

assumption of existence and uniqueness, we have concentrated on the oscillation 

of solutions. Sufficient conditions in terms of a(t), q(t), r(t), p(t), 0' and p have 

been achieved for the solutions to be bounded oscillatory, almost oscillatory, and 

bounded almost oscillatory. Our results are more general than and coincident 

with some of the previous studies though we did not find out the ideal conditions 

171 



for the equations to be oscillatory. 

Nonlinear neutral difference equations of the form 

.6.~(x(t) - px(t - r)) + f(t,x(g(t))) = ° 

were studied in chapter 4 and chapter 5. Here m 2:: 2 is a natural number, 

p 2:: 0, T and r are positive constants, 9 E C1([to, 00), R+), g'(t) > 0, and f E 

C([to, 00) x R, R). Under the assumption of existence and uniqueness, we have 

focused on the oscillatory behaviour of solutions when t tends to infinity. Chap

ter 4 focuses on the even order equations while chapter 5 devotes to the odd 

order equations. Different techniques are needed to obtain oscillatory criteria for 

the two kinds of equations. In chapter 4, by applying the available theory for 

discrete differences to the differences with continuous argument, oscillatory crite

ria involving the function iii (i = 2,4, 2n) defined by (4.3.5)' (4.4.21) or (4.5.47) 

for the second order, fourth order, and higher even order equations have been 

obtained, respectively. For the odd order equations in chapter 5, sufficient con

ditions for the third order and higher odd order equations have been established 

for the bounded solutions to be oscillatory. 

Even order difference equations with a nonlinear neutral term having the form 

were discussed in chapter 6. Here m is an even positive integer, n 2:: no, {Tn} 

and {gn} are nondecreasing sequences of nonnegative integers with Tn :S n, gn :S 

n, limn -+oo Tn = 00, limn -+oo gn = 00, {an} and {qn} are sequences of real num-

bers with an > 0, qn 2:: ° and qn ¢ 0, and f : R - Rand 'P : R2 - Rare 
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functions. We are interested in the oscillatory behaviour when n tends to infin

ity under the assumption of existence and uniqueness. By applying the previous 

results, Riccati transformation, and Riccati inequalities to the above equations, 

various criteria have been obtained for the solutions to be oscillatory. 

Our work has been inspired by the previous studies as we mentioned in each 

part so that our results can be regarded as the generalizations of the available 

results. 

There are some outstanding problems for the differential equations we have 

discussed in chapter 3 and new effort should be made to improve the existing 

theory. We list some of them below, which may require completely different 

techniques. 

(i) Higher order equations. For the higher order equation 

(a(t)(x(t) + op(t)x(t - T)),)<n) + J(t,x(t - a)) - g(t,x(t - p)) = 0, 

where n is a positive integer, whether oscillatory criteria analogous to those 

given in chapter 3 could be obtained by the same method needs further 

investigation. 

(ii) Corresponding difference equations. For the corresponding second 

order difference equations 

~e(a(t)~8(X(t) + op(t)x(t - T))) + J(t,x(t - a)) - g(t, x(t - p)) = 0, 

under the same assumptions as in chapter 3, oscillatory criteria similar to 

those given in chapter 3 might be achieved by the same method after the 
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replacement of the derivatives by the differences. However, to carry out this 

work, new techniques might be needed. 

(iii) Weaker conditions for the oscillatory solutions. The boundedness of 

the solution x plays an important role in the proofs of oscillation criteria 

and the proofs would fail without this condition. Sufficient conditions for 

all solutions to be oscillatory demand new methods. 

In chapter 4 and 5, nonlinear neutral difference equation (4.1.1) was studied: 

There are some outstanding problems for further investigation. For instance, it 

is natural to explore the corresponding nonautonomous equations in the future. 

For the corresponding nonautonomous difference equation 

~~(x(t) - p(t)x(t - r)) + f(t,x(g(t))) = 0, 

oscillatory criteria for the even order equations will be expected by the same 

methods in chapter 4 under the assumptions 0 < p(t) < PI < 1 or p(t) > P2 > 1. 

Without such assumptions on p(t), oscillatory criteria might be gained by using 

different methods. For the odd order nonautonomous equations, new techniques 

might be demanded to establish oscillatory criteria even under the assumptions 

o < p( t) < PI < 1 or p( t) > P2 > 1. 

Some conditions in chapter 4 are not very general and new efforts are needed 

to make to generalize the obtained results. Some examples are given as follows. 

(i) In Theorem 4.5.1 (P84), we did not have the ideal sufficient conditions for 

(4.1.1) to be oscillatory. In its proof, we suppose that x(t) - px(t - r) > 0 
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when t is sufficiently large and the proof fails without it. New techniques 

are needed to generalize the criteria for (4.1.1). 

(ii) Oscillatory theorems except Theorem 4.5.1 have been gained in three sep

arate cases according to p > 1, P = 1 and 0 < p < 1. The value of p 

plays an important part in the proofs. Therefore, new methods and further 

investigation are needed to establish the more general criteria only with 

p> O. 

(iii) In theorems except Theorem 4.5.1, the sufficient conditions are involving a 

number ko for solutions to be oscillatory. In practice, it is not easy to find 

such a number ko. New methods are needed to improve the gained criteria. 

For the odd order equations in chapter 5, our results are not as good as those 

in chapter 4. Further investigation is needed to improve the existing results by 

new methods. First of all, various criteria in chapter 5 are for the bounded 

solutions to be oscillatory. New methods are demanded to establish oscillatory 

criteria for all solutions. Secondly, in the definitions of 13ml and 13m2 (P133), a 

Tm 2 to being large enough is required. In application, it is not easy to find such 

a T m to fulfill the requirements. Thirdly, in theorem 5.4.1 (P133), conditions 

(5.4.48) and (5.4.49) are demanded to hold at the same time. If we rewrite 

condition (5.4.49), then we can see it involving 13ml as well. The requirements for 

13ml in both inequalities are in the opposite directions. Thus the applications of 

this oscillatory criteria are very limited. Finally, when p > 1, we have obtained 

the oscillatory criteria just for certain particular classes of equations with T = 
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k7 and r ~ t + 37 - g( t). Less restrictive conditions are required for improvement. 

For the oscillatory criteria given in chapter 6, in practice, it is difficult to use 

them since a sequence {An} needs to be built at the first place. By adopting the 

methods in chapter 4 and 5, weaker conditions might be obtained. 
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