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ABSTRACT

This thesis deals with the asymptotic and oscillatory behaviour of the solu-
tions of certain differential and difference equations. It mainly consists of three
parts. The first part is to study the asymptotic behaviour of certain differential
equations. The second part is to look for oscillatory criteria for certain nonlinear
neutral differential equations. And, the third part is to establish new criteria for
a class of nonlinear neutral difference equations of any order with continuous vari-
able and another type of higher even order nonlinear neutral difference equations

to be oscillatory.

At first, we are concerned with the first order differential system of the form
(E:(t) = b,‘(t).’B,'(t) <1 - Za,-j(t):vj(t)) , 1€ N(l,n),
j=1

where the functions a;;(¢) and b;(t) are continuous on R and bounded above and
below by strictly positive numbers. Sufficient conditions are established for the

solutions to be stable.

Secondly, we consider the oscillation of second order nonlinear neutral differ-

ential equations of the form

(a(®)(@(t) + p(t)2(t — 7)) + f(t,2(t — o)) — g(t, 2(t — p)) =0,

where § = £1,¢ > o, 7,0,p € [0,00) are constants, a(t) is a continuously dif-
ferentiable function and p(t) is a bounded continuous function with a(t) > 0 and

p(t) >0, and f(t,u) and g(¢,v) are continuous functions. We obtain some crite-

iii



iv

ria for bounded oscillation, bounded almost oscillation and almost oscillation for

these equations.

Thirdly, we consider the mth order nonlinear neutral difference equations of

the form

AT (x(t) — p(t — 1)) + f(t,2(9(¢))) = 0,
where p > 0,m > 2, 7 and r are posi‘tive constants, A,z(t) = z(t+71)—=z(¢), 0 <
g(t) < t, g€ C'(|to, o), R*) and ¢'(t) > 0, and f € C([to,0) X R, R). Oscil-
latory criteria are obtained for the second, third, fourth, higher even order, and

higher odd order equation.

In addition, we consider the even order nonlinear neutral difference equation
Amw](anA(xn +¢(n, T7,))) + gnf(@g,) =0,

where m is an even positive integer, n > ng, {7,} and {g,} are sequences of
nondecreasing nonnegative integers with 7, < n, g, < n, 7, — o and g, —
o0 as n — 00, {a,} and {g,} are sequences of real numbers with a, > 0, ¢, >
0 and g, # 0. By mainly using Riccati’s technique, we obtain some oscillation

criteria for the above equation.
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Chapter 1

INTRODUCTION



The aim of this chapter is to lay the fundamental basis for the thesis and
confine the terms to the objective of the thesis. In this respect, we define some
terminologies at the very beginning, which will appear later on throughout the
thesis. In section 1.2, we state some notations and basic theorems that will be
needed in later sections and chapters. These notations are commonly used and
can be found in some monographs. Then a brief survey of the development and
current state of stability and oscillation of solutions of differential and difference
equations is given in section 1.3. In section 1.4, we present the reasons why this
thesis has taken place. Finally, we close this chapter with the outline of the work

presented in the thesis.

1.1 TERMINOLOGY

We begin this section with some terms commonly used in the literature which

will appear throughout the thesis.

A functional differential equation is a differential equation involving the values
of the unknown functions at present, as well as at past or future time. The word
“ime” here stands for the independent variable. In the thesis, the concept of
a functional differential equation is confined to ordinary differential equations

although it suits partial ones as well.

Functional differential equations can be classified into four types according to

their deviations: retarded, advanced, neutral and mixed.



A neutral equation is one in which derivative of functionals of the past history

and the present state are involved but no future states occur in the equation.

The order of a differential equation is the order of the highest derivative of

the unknown function.

A difference equation is a specific type of recurrence relation, which is an
equation that defines a sequence recursively: each term of the sequence is defined
as a function of the preceding terms. On the other hand, difference equations can

be thought of as the discrete analogue of the corresponding differential equations.

By analogy with differential equations, difference equations also can be clas-

sified into four types: delay, advanced, neutral, and mixed.

The order of a difference equation is the difference between the largest and
the smallest values of the integer variable explicitly involved in the difference

equation.

1.2 PRELIMINARIES

We begin this section with the definition of notations, which will be used
throughout this thesis later. Let R = (—o0, +00), Ry = [0, +00), R* = (0, +-00)
and R~ = (—00,0) be the usual sets of real, nonnegative, positive, and neg-
ative numbers, respectively. Let R* denote the extended real line, i.e., R* =
RU {—o0, +oc}. Let R™ be an n-dimensional real linear vector space with

norm || - ||, and C({a,b], R*) be the Banach space of continuous functions from



[a,b] to R™. Let

L'[tg, 00) = {a:(t)

/t:o |z(s)|ds < oo}

be the Banach space of functions from [tg, 00) to R with topology of uniform
convergence. Put N = {1,2,3,---}and N = {0,1,2,---}. For integers a >
0 and b > a, we denote the discrete intervals by N(a,b) = {a,a +1,--- ,b} and
N(b)={bb+1,0+2,---}.

Let A be the forward difference operator: Az, = .41 — z,, A™z, =
A(A™ 1z,), A, z(t) = z(t +7) — 2(t), A”2(t) = A (AP '2(t)). In addition, let
7' and z” denote the first and second order derivatives of z and let (™ denote

the mth order derivative of . Then

o dz®™D  d /d dz
a dt  dt

n) -2 — if >
T I 7 ) if n>2.

In order to give the definition of the solution of differential equations, we at

first give the following general nth order functional differential equation
F(t,m,a:',:v",--- ’x(n)) :0’ (121)
where F(t,-) is a functional involving the value of the z® on an interval.

Definition 1.2.1 By asolution of (1.2.1) we mean a function z(t), ¢t € [t,,00) C
R which is n times continuously differentiable and satisfies (1.2.1) on the inter-
val [tz,00). A solution  of equation (1.2.1) is called oscillatory if z is neither
eventually positive nor negative, in other words, = has an unbounded set of zeros
in [tz,00). If all solutions x of (1.2.1) are oscillatory, then differential equation

(1.2.1) is called oscillatory. If every bounded solution of (1.2.1) is oscillatory,



then (1.2.1) is called bounded oscillatory. If every solution of (1.2.1) not in the
class of o(1) as t — oo is oscillatory, then (1.2.1) is called almost oscillatory. If
every bounded solution of (1.2.1) which is not in the class of o(1) as ¢t — 00 is

oscillatory, then (1.2.1) is called bounded almost oscillatory.

At the same time, to define the solution of difference equations we give the

following corresponding general difference equation
F(n,Zn,Tpi1, s Tntk) =0, k€ N, (1.2.2)

where F(n,-) is a given function of the independent variable n and the dependent

variable of z(n) at n € N.

Definition 1.2.2 By a solution of equation (1.2.2) we means a sequence {z,} of
points z, € R for n € N, which satisfies equation (1.2.2). A sequence {z,} of real
numbers is said to be oscillatory if the terms z,, are neither eventually positive
nor eventually negative. If all the solutions {z,} of (1.2.2) are oscillatory, then
equation (1.2.2) is said to be oscillatory. If every bounded solution {z,} of (1.2.2)
is oscillatory, then (1.2.2) is called bounded oscillatory. If for every solution {z,}
of (1.2.2), either {z,} or {A*~1z,} is oscillatory, then (1.2.2) is called almost
oscillatory. If for every bounded solution {z,} of (1.2.2), either {z,} or {A*1z,}

is oscillatory, then (1.2.2) is called bounded almost oscillatory.
For later use, we present the following well-known Gronwall’s inequality.

Lemma 1.2.1 Let I = [t,,T) C R and suppose that

t

u(t) < c+ / g(s)yu(s)ds for tel, (1.2.3)

0



where ¢ is a nonnegative constant and u,q € C(I, Rt). Then,
t
u(t) < cexp (/ q(s)ds) for tel. (1.2.4)
to

Lemma 1.2.2 (Taylor’s Formula) Suppose that f(z) satisfies the following two

conditions:
(i) f™(z) is continuous on [a, b],
(ii) f®+)(z) exists in the open interval (a,b).

Then for all z € (a,b), there is at least one § € (a, ) such that

! " (Tl) a
f@ = 1@+ 29—+ L@ ap o T8 gy
LRI
—m—l()!(a:—a) H

In particular, the above conclusion holds if f™*V € Cla, ).

1.3 BACKGROUND AND HISTORY REVIEW

We would like to point out here that in this section only a general and basic
background and history review will be given, more specific and recent background

and review will be given in each chapter later.

It is well known that differential and difference equations have played an im-
portant role in applicable analysis for recent few decades. Due to the importance
of equations in application with an increasing number of interesting mathematical

problems involved, see [46], [52], [42] and [20] for example, the subject has been



developed very fast and attracted a huge number of researchers and some basic
theories of differential and difference equations have been established. We refer

to [15], [28], [29], [2], [8] for a few examples of such theories.

Since then there have appeared a good deal of results reflecting various in-
terests. For example, Gopalsamy’s book [21] includes most of the recent results
on stability and oscillation of delay differential equations of population dynamics
while Gyodri and Ladas’ book [27] devotes to the recent results in the oscillation

theory of functional differential equations.

For differential equations, miscellaneous problems have been broadly investi-
gated for various classes of particular equations, such as the initial value problem,
existence, uniqueness, stability, oscillation, and so on. Here are some examples

mentioned.
Johnson and Karlsson [31] studied the equation

z'(t) + %m'(t) + gsinx(t -7) =0,

which is often referred to as the sunflower equation because of its origin in the
circummutation of plants. Oscillation of certain special differential equations

were studied, for instance,
y'(t)zzn:piy(t+n), pi>0and 7, >0,i=1,2-,n
i=1
by Ladas and Stavroulakis [35] and
y™(t) = p(t)y(g(t)) + q)y(h(t)),  g(t) <t and h(t) > ¢

by Kusano [34].



It is worth pointing out that with the importance in application, such as in
Physics, Economics, and Control Systems, stability of differential equations with
time delays has attracted a vast number of researchers. It has been investigated
since 1960s by Razumikhin [48], Ezeilo {18] and many others. Since then some
books and many papers have been published dealing with functional differential
equations (for example, see [28], [38] and [70]). Generally, there are two of the
main ideas to consider stability of time delay systems based on Lyapunov’s direct
method. The first one is to construct Lyapunov functionals to obtain the criteria
for stability. The second one is the Lyapunov-Razumikhin approach, which is to
construct Lyapunov functions rather than functionals and was first introduced by
Razumikhin [48]. Since functions are much simpler to use, it is natural to explore
the possibility of using functions to determine sufficient conditions for stability.
By this method, Hale gave sufficient conditions of stability and boundedness of
the first order and second order delay differential equations [28] and Razumikhin
[48] dealt with third order equations. Ezeilo [18], Abou-El-Ela (1], Yu and Chen
[60] and Okoronkwo [45] considered stability of a certain fourth order differential
equations. There are few results on higher order functional differential equations
up to date because it is very difficult to construct a Lyapunov functional or
function. For example, Sadek [50] considered the following third order differential
equations

2(t) + az”(t) + b2’ (t) + f(z(t — 7)) = p(t)

and

z@(t) + az"(t) + ¢(a'(t = 7)) + f(2(2)) = p().



Some sufficient conditions were given for the stability and boundedness of solu-

tions. Further, Sadek [51] also investigated the fourth order equations
2 0(t) + e (t) + agz” () + cge(t) + fla(t—7)) =0

and

2@ () + 00z (t) + 2 (t) + d(a(t — 7)) + f(a(t) = 0
and obtained sufficient conditions for the zero solution to be asymptotically stable.

As a special class, neutral differential equations have been studied broadly
and some basic problems, such as the initial value problems, stability, oscillation,
have been solved for certain particular classes of equations. We refer to Ladde,
Lakshmikantham and Zhang [36], Bainov and Misher {11}, Grammatikopoulos

[25] and the references therein for more details.

At the same time, the theory of difference equation has grown at a faster pace
in past decade and has occupied an important position in analysis. It is no doubt
that difference equations will carry on to play an important role in Mathematics
as a whole. The basic theories have been established, see 8], [2], [32], for a few
examples of such theories. Since then there are many results about the qualitative
properties of solutions of difference equations, such as [4], [3] and the references

therein for more details.

Although many researchers have engaged in the study of the qualitative be-
haviour of differential and difference equations, there is no general theory available
for certain particular classes of equations. It is worthy to investigate the qualita-

tive properties of solutions of these equations.
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1.4 MOTIVATION FOR THE THESIS

In both theory and application, there is an increasing need to investigate the
properties of the solutions of differential and difference equations. It is worth
the effort to investigate a broader class of equations and to establish a theory
for some fundamental problems such as asymptotical behaviour at infinity, oscil-
latory properties and oscillatory criteria. The main reason is that the solutions
of most differential and difference equations cannot be formulated explicitly, and
in some cases are troublesome even numerically. Thus it is very important that
one can obtain the criteria for the behaviour of the solutions even in the higher
dimension without knowing the solutions themselves. Therefore, this thesis will
only concentrate on theoretical investigations of the behaviour of the solutions of

certain types of differential and difference equations.

1.5 OUTLINE OF THE THESIS

A brief description of the organization of the thesis is as follows. Chapter 1
introduces the terminologies and notations appeared throughout the thesis and

gives the background of the thesis.

Chapter 2 studies the stability of one class of differential equations. N-
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dimensional non-autonomous first order differential systems are investigated of
the form
n
' (t) = by(t)z;(t) (1 - Za,-j(t)mj(t)) , 4€N.
=1
Sufficient conditions are established for the solutions to be stable.

Chapter 3 deals with the oscillation of the second order nonlinear neutral

differential equations of the form

(a(t)(=(t) + 8p(t)a(t = 7)) + f(t, 2(t = 0)) — g(t,z(t - p)) =0,

where § = 1 or § = —1. In this chapter, we obtain criteria for bounded oscillation,
bounded almost oscillation and almost oscillation of the solutions. Furthermore,

examples are given to illustrate the criteria in each case, respectively.

Chapters 4 and 5 are the main part of this thesis. In these two chapters,
we investigate the oscillation of the nonlinear neutral difference equations with

continuous variable
A (@(t) - pa(t — ) + £(t,2(g(1))) =0,

where m > 2. The second, fourth, higher even order, third, and higher odd order
of the above equation have been discussed, respectively. Chapter 4 contains the
even orders m > 2 and Chapter 5 is devoted to the odd orders m > 3. In
Chapter 4, mainly using an integral transformation, the Riccati transformation
and iteration, oscillation criteria are established for the second order, fourth order
and higher even order, respectively. Furthermore, examples are given to illustrate
the applications of the results in each case. In Chapter 5, the above difference

equations are converted to the corresponding differential equations or inequalities
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by using an integral transformation. Based on the results of differential equations
or inequalities, sufficient conditions are obtained for the bounded solutions to be
oscillatory. Moreover, examples are given to illustrate the results. We should
point out that the results on the second order have been published in a peer-

viewed journal (see [56}).

Chapter 6 deals with the following higher even order nonlinear neutral differ-

ence equations of the form

A" (an (20 + 9(n, 21,))) + ¢nf (2g,) = 0.

By using generalized Riccati technique and Riccati type difference inequalities,
oscillation criteria are achieved for the solutions. In addition, examples are given
to illustrate the results. The results have been published in a peer-viewed journal

(see [40]).

We draw conclusions in Chapter 7.
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STABILITY OF

DIFFERENTIAL EQUATIONS

13



2.1 INTRODUCTION

In this chapter, we are concerned with the nonautonomous Lotka-Volterra

system with the form

n

zi(t) = bi(t)zi(t) (1 - aij(t)xj(t)) , 1€ N(1,n), (2.1.1)

=1
where the functions a;;(t) and b;(t) are continuous on R and bounded above and
below by strictly positive numbers. Throughout this chapter the following con-
dition

as t— o0, 1€ N(l,n) (2.1.2)
will be assumed. Since (2.1.1) is well known as a model of a community of n
mutually competing species, z; denoting the population size of the ith species at

time t, we adopt the tradition of restricting attention to the closed positive cone

denoted by R} and the open positive cone is denoted by Ri

We are interested in the existence of a global attractor z* € R?} with =} € Ry,
which means that all but one of the species will go extinct while the only one
species will stabilise at z}. Oca and Zeeman [44] considered the following Lotka-

Volterra system

Z(t) = i(t) (bi(t>—iaij(t>wj(t>>, ieN(Ln),  (213)
j=1

and established a criterion which guarantees that all but one of the species is
driven to extinction. Ahmad and Lazer [10] considered the above system, where
a;; and b; are periodic or almost periodic, and found conditions under which there

exists a unique solution that attracts all other solutions with positive components.

14



Oca and Zeeman [43] generalized results given in [44] and [10] to a situation when
n—r components vanish, whilst the remaining r components approach a canonical
solution of an r-dimensional subsystem. Zeeman [62] considered the autonomous

system in the form

T;(t) = IE,(t) (b, s Za,-,-@(t)) s 1€ N(l,n)
j=1
and exhibited a criterion which guarantees that all but one of the species are

driven to extinction, whilst the one remaining population stabilities at its own

carrying capacity. Ahmad [9] considered the two-dimensional system
w(t) = u(t) (a(t) — b(t)u(t) — c(t)u(t))

v(t) = o(t) (d(t) —e(t)u(t) — f(H)v(D)

and showed under certain conditions that one of its components vanishes while

the other approaches a certain solution of a logistic equation.

The purpose of this chapter is to find new conditions that are less restrictive
for the existence of a global attractor z* € R}. We shall establish some new cri-
teria for a particular solution to be stable. The main result will be presented in
section 2.2 and its proof will be given in section 2.3. At last we draw a conclusion

in section 2.4.

2.2 MAIN RESULT

Together with (2.1.1), we also consider the nonautonomous logistic equation

II?:(t) = bi(t)il?,’(t)(l - a,-i(t):v,-(t)), 1€ N(l,n) (224)

15
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The following lemmas 2.2.1 and 2.2.2 are applied to (2.2.4). They have showed
that in the nonautonomous logistics equation the role of the globally attracting
capacity of the nonautonomous systems is played by a well defined canonical

solution 2% (t) to which all other solutions converge. Both lemmas can be found

in [44].

Lemma 2.2.1 Equation (2.2.4) has a unique solution z7}(¢) which is bounded

above and below by strictly positive numbers for all ¢t € R.

Lemma 2.2.2 If u(t), v(t) are any two solutions of (2.2.4), then
u(t) —v(t) -0 as t— oo.
We call z¥(t) the canonical solution of (2.2.4). Note that any solution z;(t) of

(2.2.4) is bounded above and below by strictly positive numbers and z;(t) —

z(t) — 0 ast — oo.

Theorem 2.2.1 Assume that for all £ > 1 there exists an i, < k such that
ak;(t) > a;j(t) + €5, for all j < k, (2.2.5)
where ¢; are any positive constants. Then every trajectory with initial condition

in R’}r is asymptotic to (3,0, ...,0).

In other words, for strictly positive initial values, the species z; (j € N(2,n))
are driven to extinction while species z; stabilizes at the unique bounded solution

3 of the logistic equation (2.2.4) for i = 1.



2.3 THE PROOF

First we prove the following lemmas then derive the proof of the theorem

immediately. For a given function g(¢) defined on R, let
gr =infg(t), g =supg(t).
R

Lemma 2.3.1 If z(t) is a solution of (2.1.1) with initial condition in R?, then

there exist some 6 > 0, M >0, and T € R such that

§<Y () <M and O<ay(t) <M, forall i€ N(1,n) (2.3.6)

i=1

forallt > T.

Proof It is obvious that the open and closed positive cones are invariant

under (2.1.1). Now let

M:Qmax{-l—: i,j € N(l,n)},

a5,
1
d = 3 min {

1,j € N(l,n)}

ai;M

and

sz{meRzz (5_<_Zaci§M}.

i=1

We will show that S is a globally attracting positively invariant compact set in
R2\{0}. Then if 2(t) is a solution of (2.1.1) with initial condition in R", there

exists a T € R such that z(¢t) € Sforallt > T. And the conclusion follows

17



immediately. From (2.1.1), we have
’Li(t) = b,(t).’ll(f) (1 - Zaij(t)l‘j)
j=1
bi(t)a(t) (1 - Za,-joj>
j=1
bi(t)zi(t) (1 - azxj) ,
j=1
where @ = min; j{a;;r}. Then we have

(i’l‘z(”) S ibi(t)l'i(t) <1 — aixj> .

i=1

(N

(A

If 7,2, > 1l/a, then (3°° 2;) < 0, e, Y@ . a; is decreasing. So there
=17 i=1 i=1 &

must be a Ty € R such that ) | ,2; <M =2/a fort > T1.

By the similar procedure, we obtain
Zi(t) = bi(t)ai(t) <1 - zn:aij(t)fvj)
=1
> bi(t)xi(t) (1 — i aijij)
i=1
> bi(t)xi(t) (1 — ﬁi%) ;

where 8 = max; j{aijm}. So
n ! n n
(Zx,) > ) bi(t)zi(t) (1 —ﬁZ%) .
i=1
If Z;.’zl z; < 1/B, then (357, ;) > 0, ie., >, x; is increasing. So there
must be a T > T; such that > " ,z; > 6 = 1/(28) for ¢ > T. Therefore, S is a
positively invariant compact set in R%\{0}. And for each z(to) >0, [, zi(t)

belongs to S ast > T. Thus, S is a compact attracting set for (2.1.1) on R} \{0}.

18
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Remark 2.3.1 Although there are results similar to Lemma 2.3.1 available in

the literature for system (2.1.3), we put this lemma here for convenience.

Lemma 2.3.2 If (2.1.1) satisfies (2.2.5) and x(t) is a solution of (2.1.1) with

z(to) € R’; for some tq, then for all i € N(2,n)
-Ti(t) S ]{ieoita t Z th

where K; > 0 and o; < 0.

Proof Let x(t) be a solution of (2.1.1) with z(to) € Ri for some t9. By
Lemma 2.3.1, z(t) € S for all t > t,. We will prove the conclusion for z,(t) at

first. Let i, be given in (2.2.5) by i. From (2.2.5), it follows that

A0 I U
nl) b<>(1 > antt )

I
o~§"
H—Q
/—'\
—

LY
IIM:
—_
Q
C
e!
L
+
P
.
~
H-
M=
2
3
“
N———

as t — 0o. Then, from (2.2.5) again, we have

In xf? ()

IA
e
—
=
7
|
™M
<
8
<
A
—+
o)
—_
—
~

IA
|
o
o~
=
=
——
(U
.
——
o
+
[o)
o~
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as t — o0. Hence, there exists a t; > tg such that for all ¢ > ¢4,

—In (mf;‘i(t)wi‘l(t)> < —b;y,min{e;}0/2 = M,.
J

Integrating both sides, we obtain

and

t

Tt (t
ty
_ 5
b; Jbn
SL'E:(t) < :c,-(t)——————ln (tl)e_M"tleM"t
0 xi(h)
b
bn
< A/[:Un (tl)e—MntleMnt
xi(tl
= CeMnt

b
bn
for t > t;, where C' = ]\/II;‘—‘_(t%-le"M"“. Thus,

Za(t) < Kpeo™

for some K, >0, 0, <0, and all t > ¢,.
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We now prove that z,_,(t) < K,_1e°~* using the result z, < K,e’! for

t > tg. This method is essentially the same as that used above for z,. Now let

i(n—1) be given in (2.1.1) by ¢. From (2.2.5) and lim,_cc z,(¢) = 0, it follows that

o
o~
o~
g
N
—
|
NG
Q
&
—_—
o~
N
8
LY
+
a8

n

> a(n—l)j(t)xj)

Jj=1
n

=1 i=1 j=1

i=1

a;i(t)T; — Y agony;(t)z;

)

1= a,-,-(t)xj) + b%—l bi(t) Y (ai(t) — a@-1;(t))x; + 0(1)
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By (2.2.5) again, there is a T,, > t; such that

Tpa(t) _ bar@i(t)  bao, 1
< o1 @) by, 1o
Tooa(t) = b xi(t) b; b’LQ mjm{ej}(s

for t > T,, i.e.,
d ({5 -
= n{x, 7 (Hz7(t) < —b,-L§ mjm{sj}é = M,_;.

Integrating the above inequality, we have
B
b
In (r (t)a:f(t))

fvn—l(t) S R’n—-lea"—lt

t

S A’[n—l(t - Tn)

Tn

and so

for some K,_; > 0, o,-1 < 0 and all ¢ > #,. Repeating the above procedure

n — 1 times, we have shown the conclusion holds for all ¢ € N(2,n).

Lemma 2.3.3 If (2.1.1) satisfies (2.2.5) and z(t) is a solution of (2.2.5) with

z(to) € R? for some to, then z;(t) — x}(t) — 0 as ¢ — oo.

Proof By Lemma 2.3.1, we assume that x({p) € SN R'; then z(t) €
S for all t > to. From Lemma 2.3.2, limyo2;(t) = 0 when ¢ > 1, so z;(¢)

is bounded above and below by positive constants.

Let u;(t) be a solution of the nonautonomous logistic equation (2.2.4) such
that u;(to) > 1(to). Then u,(t) is bounded by Lemmas 2.2.1-2.2.2. We claim
that uy(¢t) > z:1(t) for all £ > ty. Indeed, if there exists a number ¢; > ¢, such

that u3(t1) — z1(t1) = 0 and uy(t) > z1(t) for t € (fo,t1), then this would imply



22

that u/(t;) — 21(¢1) < 0. But this contracts the fact that
w(t) = @ (t) = bi(t)aa(t) Y anj(tn)a;(t) > 0.
So we have
d ( ml(t)) ()t
— [ In = -
dt uy(t) () u(

n

= bi(tan(t)(us(t) — 21(t)) — ba(t) Y ar;(t)z;(2)

j=2

and

1 d x “
ur(t) —a(t) = PRI (a (ln uig;) +b1(?) ‘ alj(t):z:,-(t))
|

=2
1 d (. z(t) >
allLblL (df n U1(t)> + by (t) o al]'(t)l'j(t)) .
Integrating this inequality we have
¢ 1 ll(t) ¢ t n
u (s) — x1(s))ds < In +/ b .
/t;( 1( ) l( )) al]LbllL ul(t) " to I(S)JZZQal](S)x](S)dS)
1 xl(t)ul(t0)> i t
< In +b _
allLbllL ( (U](t)l'l(to) le;alJM\/O-T](S)dS
< K < oo,

where K is a constant independent of t. Suppose limsup,_ . (u;(t) — z,(t)) =
~ > 0. Then there is a sequence {t,} such that ¢, — oo and u;(¢,) — ,(¢,) —
yasn — 00, t, > to and u)(t,) — x1(ts) > v/2 for n > 1. Since /() — z|(¢)
is bounded, u;(t) — z1(t) is uniformly continuous on [tg, 00). Thus, for v/4 > 0,

there is an | > 0 such that

[(ua(t) — z1(t)) — (ua(ts) — z1(ta))] < v/4
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foreachn > 1and all t € [t, —[,t, +]. Then

/tn+’(u1(t) — x1(t))dt > /1n+[ (U](tn) —a1(tn) — %) dt > %fyl > 0.

tn—l

-
Since we can always choose a subsequence of {t,} to replace {t,} if necessary,

without loss of generality, we assume that
to<ti—I< - <t +l<tpy1 =1 <0
Then

tn+l n ti+l
/t (n(t) = (e 2 Y / () - (0 > gomd — o0

as n — 00. This contradiction to the convergence of f:(ul(t) — 21(t))dt shows
that limsup,_,.(u1(t) — z1(t)) = 0. Note that wu;(t) —1(t) > 0. Hence uy(t) —

z1(t) —» 0 as t — oo. Moreover, by Lemma 2.2.2
uy(t) —zj(t) = 0ast — oo

and hence

zy(t) —» zi(t) as t — oo.

Proof of Theorem 2.2.1  Suppose that z(t) is a solution of (2.1.1) with initial

condition in R*. By Lemma 2.3.1, we have
§ < in(t) <M and O<uzi(t) <M, forall ie N(1,n)
i=1

for all t > T, where § > 0, M > 0, and T € R. Then from Lemma 2.3.2, we
can see that z;(t) —» 0 ast — oo for 2 < i < n and z,(t) is bounded above and

below by positive constants. According to Lemma 2.3.3, z,(t) — z*(t) ast —
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00. Therefore, every trajectory with initial condition in R’+‘ is asymptotic to

2.4 CONCLUSION

The aim of this chapter is to study the stability of a particular class of solu-
tions of the first order nonautonomous system (2.1.1). In the meantime, (2.1.1)
is a well-known population model of n mutually competing species. In this chap-
ter, we are interested in the existence of a global attractor z* = (z},0,---,0).
From the previous studies, we know that logistic equation (2.2.4) has a canonical

solution z¥, which is bounded above and below by positive numbers. Based on

1)
this, we have obtained a weaker condition (2.2.5) and improved the result. Under

condition (2.2.5), all species a;(# > 2) but ; with strict positive initial conditions

are driven to extinction.
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3.1 INTRODUCTION

In this chapter, we consider the oscillation of sccond order nonlinear neutral

differential equations of the form

(a(t)(2(t) + op(t)a(t = 7)) + f(t,a(t — o)) = g(t,2(t = p)) =0,  (3.1.1)

where § = +1 or —1, t > {y, a(t) is a continuously differentiable function, p(t) is
a continuous bounded function with a(t) > 0, p(t) > 0, f(t,u) and g(t, v) are con-
tinuous functions, the constants 7, o, p € [0,00). Denote A = max{r, o, p}, t1 =

to+ A, L'ltg,00) = {w(t) }ft‘:’ lz(s)|ds < 00} -

Some of the following conditions will be assumed later:

(H) [~ ;éds:oofor all t > to,
(Hz) -&%'QZq(t—o)>0 for u #0 and O<-g-gv—’9§r(t—p) for v #0,
(H3) 0<££Z'—“)§q(t-—o) for u # 0 and %ﬂZr(t—p)>O for v # 0,

(Hy) r—(m is bounded, where q,7 € C([to, 00), RY).

In other words, this equation is a second order neutral differential equations
with positive and negative terms. In this chapter, we shall first obtain some
criteria for bounded oscillation, bounded almost oscillation and almost oscillation
for equation (3.1.1) when § = +1 in section 3.2 and then for equation (3.1.1)
when § = —1 in section 3.4. Following the theorems, some examples will be given
in section 3.5 to illustrate the criteria. Finally, we will finish this chapter with a

conclusion in section 3.6.
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In this chapter, we always assume that x(¢) is a nontrivial solution of equa-
tion (3.1.1). The investigation of oscillatory behaviour of solutions of various
types of differential equations done by many researchers is motivated by many
application problems in Physics [17], Biology {41], Ecology [55], and the study of
infectious diseases [12]. For some contributions made to the oscillation theory,
we refer to the articles [22], [57], [25], [26], [19], [30], [33], [47], [49], [14] and [13]
and the books by Gydri and Ladas [27], Agarwal, Grace and O’Regan [5], Erbe,
Kong and Zhang [15], Ladde, Lakshmikantham and Zhang [36], and the refer-
ences therein. There are a great number of papers devoted to various particular

cases of (3.1.1) such as the linear equation (without delays)

2"(t) + g(t)(t) = 0,

the more general linear equation (without delays)

(a(t)2’' () + q(t)z(t) = 0,

the nonlinear equation (without delays)

(a(t)2'(t))" + q(t)f(z(t)) = O,

and the more general nonlinear equation

(a(t)2'(t))’ + p(t)2'(t) + q(t)f((t)) = O

when 7 = 0 = p = 0. See [22], [37], [57], and [14] for example. Grammatikopou-

los, Ladas and Meimaridou (26] considered

(z(t) + p(t)a(t — 7))" + q(t)z(t — o) =0,
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where p(t) = p and ¢(t) = ¢ > 0 and obtained some sufficient conditions for the

above equation to be oscillatory. Gai, Shi and Zhang [19] considered
(@(t) + pt)x(a (1)) + q(t) f(x(7(t)))g(2'(t)) = O
and
(2(t) + PO + () F(a(t), 2(r(D))g(@ (1)) = 0

and established the criteria for the solution to be oscillatory. These equations are

more general when 0 < p(t) < 1 than (3.1.1). Ruan [49] considered

(a(t)(x(t) + p(®)x(t — 7)) +q(t) f(2(t — 7)) =0
and obtained some oscillation criteria. Again it requires that 0 < p(t) < 1. The

differential equations of the form

() + f(t,2(t), 2 (91(1)), -, 27D (ga(t))) = O,

where g;(t) < t, i € N(1,n), were considered in [30], [33], [14] and [13]. Note that

the highest derivative does not involve delays.

3.2 MAIN RESULTS WHEN § = +1

In this section, we consider equation (3.1.1) with d = +1. We rewrite equa-

tion (3.1.1) as
(a(t)(@(t) + p(t)z(t = 7)) + f(t,2(t = 0)) — g(t,2(t— p)) =0.  (3.2.2)

Four oscillatory criteria will be presented here for equation (3.2.2) to be bounded

oscillatory, almost oscillatory and bounded almost oscillatory, respectively.
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Theorem 3.2.1 Suppose conditions (H;), (H2) and (Hy) hold, ¢(t) > r(t), r(t)

is bounded and o > p. Then (3.2.2) is bounded oscillatory.

Proof  Let x(t) be a bounded non-oscillatory solution. Suppose z(t) is
an eventually positive solution. Then there exists a to > ¢; such that z(t) >

Oand z(t — A) >0 for t >t,. Let

2(t) = a(t)(z(t) + p(t)z(t — 7)) — /t_—p r(s)z(s)ds. (3.2.3)
From (3.2.2) and (H;), it follows that
)< (rt—0o)—qt—o))x(t—0) <0, t>t,. (3.2.4)

So z(t) is decreasing, and
-0 < tlim 2(t) = ¢ < o0.
If ¢ = —o0, from (3.2.3) and the boundedness of z(t) and r(t), we have

lim a(t)(z(t) + p(t)z(t — 7)) = —o0.

t—oo

Then there exist an l; > 0 and a t3 > to such that

(z(t) + p(t)z(t — 7)) < o 3

Integrating both sides of the above inequality, according to (H;), we obtain

Jim (2(t) + p(t)z(t ~ 7)) = —oo,

which contradicts the boundedness of z(t) and p(¢). This contradiction shows

that |c| < oo, i.e., z(t) is bounded.
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From (3.2.4) it follows that

z(t — o) < 2'(¢). (3.2.5)

r(t—o)—q(t—o)
So z € L}|to,00) by (Hy).

(i) If ¢ >0, from (3.2.3) we have
z(t) < a(t)(z(t) + pt)x(t — 7)), t>t,.
Therefore, since z(t) — ¢ as t — oo,
(2(t) + pO)a(t = 7)) > —=, >t
a(t)
From (H,) we have limi.c(@(t) + p(t)z(t — 7)) = o0, which contradicts the

boundedness of z(t).

(i) If ¢ <0, in view of @ € L![tg,00), we have

t—-p

lim r(s)z(s)ds = 0.

t= Ji o
Then, since z(t) — c ast — 00, there exist an ¢ € (0,—c) and a t4 > t; such
that
a(t(z(t) + p(t)z(t — 7)) <c+e <0, t>t,.
Hence, by (H:) again, we obtain

lim (2(t) + p(B)z(t — 7)) = —o0,

a contradiction to the boundedness of z(t) and p(t).

(iii) If ¢=0, inview of z'(t) <0, we have 2(t) >0. So

t—p

a(t)(z(t) + p(t)z(t — 7)) > / r(s)zr(s)ds >0, t>t,.

t-o
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Since z(t) + p(t)x(t — ) is positive and increasing, the integral

/too(rr(t) + p(t)x(t — 7))dt

0

is divergent, a contradiction to x € L![ty, 00). The contradictions obtained in the
above three cases show that (3.2.2) has no bounded eventually positive solution.
Now suppose x(t) is a bounded eventually negative solution. Then z(t — A) <

0 for some ty > t; and all t > to. From (3.2.2), (3.2.3) and (H>), we have
Z(@t) > (r(t—0)—g(t—o))a(t—0) >0, t2>t,. (3.2.4)

So z(t) is increasing and —o0 < limy_,« 2(t) = ¢ < 0o. Then an argument parallel
to the above also leads to contradictions. Therefore, every bounded solution of

(3.2.2) is oscillatory.

Theorem 3.2.2 Suppose conditions (H;), (H2) and (Hy) hold, q(t) > r(t), ¢(t),

1/a(t) are bounded and o < p. Then (3.2.2) is almost oscillatory.

Proof Without loss of generality, suppose that 2(t) is an eventually positive

solution. Take t2 > t; such that x(t — A) >0 for all ¢ > ¢,. Let

z(t) = a(t)(z(t) + p(t)z(t — 1)) + l:a q(8)z(s)ds. (3.2.6)
From (3.2.2) it follows that
Z(t) S (r(t—p)—qlt —p)x(t—p) <0, t>t, (3.2.7)

So z(t) is decreasing and

—o0 < lim z(t) = ¢ < o0.

t—oo
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If c = —o0, then

lim a(t)(x(t) + p(t)z(t — 7)) = —o0.

t—00
By (H,;), we obtain lim,_(2(t) + p(t)x(t — 7)) = —o0, which contradicts z(t) +

p(t)z(t — 7) > 0. Therefore |c| < 0o so z(t) is bounded.

From (3.2.7), we have

z(t —p) < !

S 2 (3.28)

so, by (Hy), © € L'tp,00) and lim;_ tt__paq(s)a:(s)ds = 0. Since 1/a(t)
is bounded, by (3.2.6), (x(t) + p(t)z(t — 7)) is bounded. This implies that
z(t) + p(t)z(t — 7) is uniformly continuous on [t;,00). Note that the property
z € L'tp,00) and the boundedness of p(t) imply that z(¢) + p(t)z(t — 7) €
L{to, 00). Hence lim_,oo(x(t) + p(t)z(t — 7)) = 0 s0 limy_o x(t) = 0. Therefore,

every solution z of (3.2.2) which is not in the class of o(1) as t — oo is oscillatory.

Theorem 3.2.3 Suppose conditions (H), (Hz) and (H,) hold, ¢(t) < r(t), r(¢),

1/a(t) are bounded and o > p. Then (3.2.2) is bounded almost oscillatory.

Proof  Without loss of generality, assume that z(t) is a bounded eventually
positive solution and 2(t) is defined by (3.2.3). Take ¢, > ¢, such that z(t—A) >

0 for t > to. From (3.2.2) and condition (H3), we have
) > (r(t—0)—q(t—0o))z(t—0) >0, t>t,. (3.2.9)
So z(t) is increasing. Then

—00 < lim 2(t) =d < 0.

t—00
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If limsoo 2(t) = 00, then from (3.2.3) and the boundedness of z(t) and r(t),
we obtain

lim a(t)(z(t) + p(t)z(t — 7)) = oo.

t->00

Then there exist anlo > 0 and a t3 > t, such that
a(t)(2(t) + pO)z(t = 7)) 2L, t2ts
From (H,;) it follows that
lim (2() + p(t)(t — 7)) = oo,

a contradiction to the boundedness of z(¢) and p(t). So |d| < oo and z(t) is
bounded. From (3.2.9) we have

! pA
rt—o)—ql-0)

z(t—o) < t), t>to.

Therefore, by (Hy), © € L'[tg,00). By the same reasoning as that used in
the proof of Theorem 3.2.2, we have lim; o ¥(t) = 0. Therefore, every bounded

solution z of (3.2.2) which is not in the class of o(1) as ¢ — 0o must be oscillatory.

Theorem 3.2.4 Suppose conditions (H;), (Hs) and (Hy) hold, ¢(t) < r(t), q(t)

is bounded and o < p. Then (3.2.2) is bounded almost oscillatory.

Proof Without loss of generality, suppose that z(t) is a bounded eventually
positive solution. Let z(t) be defined by (3.2.6). Take t; > ¢; such that z(t—\) >

0 for t > to. From (3.2.2) and (Hj), we have

(@) 2 (r(t—p) —q(t—p))z(t—p) >0, t=t (3.2.10)
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Hence z(t) is increasing and

—00 < lim z(t) = d < .

t—o00

By using the method similar to that used in the proof of Theorem 3.2.3, we

have —o0 < d < 00. Therefore z(t) is bounded. From (3.2.10) it follows that

1
x(t —p) <

= r(t—p)—q(t— ﬂ)zl(t)’ 2t

Thus, by (H;), * € L[tg,00) and limy_,e ft‘_—: q(s)z(s)ds = 0. Then it follows
from (3.2.6) that

lim a(t)(z(t) + p(t)x(t — 7)) =d.

(i) If d >0, then there exists a {5 > t; such that

Nl a

a(t)(x(t) + p)x(t = 7)) > =, t>ts.

From (H,;) we have
tlim (x(t) + p(t)x(t — 7)) = o0,
which contradicts the boundedness of z(t) and p(t).

(ii) If d <0, similar to the case (i), we have
lim (2(t) + plt)a(t - 7)) = —o0,

a contradiction to the boundedness of z(t) and p(t) again. Hence d = 0, i.e.,
lim—oo 2(t) = 0. On the other hand, from (3.2.10) and lim;_. 2(t) = 0, we
have z(t) < 0. In view of (3.2.6), (z(t) + p(t)z(t — 7))’ < 0 which implies that
z(t) + p(t)z(t — 7) is decreasing. From =z(t) + p(t)z(t —7) € L[to, 00), we have

limy—oo(z(t)+p(t)z(t—7)) = 0. Thus lim; . z(t) = 0. Therefore, every bounded
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solution z of (3.2.2) which is not in the class of o(1) as ¢ — oo must be oscillatory.

3.3 EXAMPLES FOR (3.2.2)

We will give three examples here to illustrate the results obtained in the last

section.

Example 3.3.1 Consider the differential equation

((1 + %) (z(t) + 22(t - 27r))')l + 3 <1 + %) z(t — 2r)

13 (1+%>5L‘5(t——27r) - %x(t—g):o. (3.3.11)

Viewing (3.3.11) as (3.2.2), we have a(t) = 1+ (1/t), p(t) =2 > 0, and

3
t+27r> > r(t) = (t+§)2.

q(t) :3(1+

Moreover, 7 = 2w, o = 2 > p = 7/2, and r(t) is bounded for t > 2x. Note
that conditions (H;), (H2) and (H,) are satisfied and by Theorem 3.2.1, equation

(3.3.11) is bounded oscillatory.

Example 3.3.2 Consider the differential equation

tmr

(t(z(t) + z(t — 7)) + o= 27r:zs(t - 27) — - _Wzﬂx (t - g-w) =0. (3.3.12)
2

Viewing (3.3.12) as (3.2.2), we have a(t) = ¢, p(t) = 1 >0, and

(t+2m)m

q(t) = "

> r(t) =

s
t
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Moreover, 7 = 7, ¢ = 27 < p = Tn/2, q(t) is bounded for t > 47. Note that
conditions (Hi), (H2) and (H,) are satisfied. By Theorem 3.2.2, then equation
(3.3.12) is almost oscillatory. Indeed, x(t) = ¢sint is a unbounded oscillatory

solution of equation (3.3.12).

Example 3.3.3 Consider the differential equation

(557 (0 4 aripee =) )+

2t +2—-3m ( 3m

(t—3m)(2t —3n) 7) —a(t-3r) = 0. (33.13)

Viewing (3.3.13) as (3.2.2), we have

t+1-3m
t) = —————
a(t) t—3r
t—-m
p(t) = m>0,
2t 4+ 2
)y = —m — t)=1.
i) = ey <=1
Also,
3r .
=, a:-2—<p:37r and g(t) is bounded for ¢ > 3.

We note that conditions (H;), (H;) and (H,) are satisfied and by Theorem 3.2.4,
equation (3.3.13) is bounded almost oscillatory. In fact, z(t) = (14 (1/t))sint is

a bounded oscillatory solution of equation (3.3.13).
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3.4 MAIN RESULTS WHEN § = —1

In this section, we consider equation (3.1.1) when ¢ = —1. We rewrite equa-

tion (3.1.1) as

(a(t)(x(t) — p(t)a(t — 7)) + J(t,2(t — o)) — gt 2(t— p)) = 0. (3.4.14)

Four theorems will be given for equation (3.4.14) to be bounded oscillatory and

bounded almost oscillatory.

Theorem 3.4.1 Suppose conditions (H;), (Hs) and (Hy) hold, p(t) > 1, ¢q(t) <

r(t), o < p and r(t) is bounded. Then (3.4.14) is bounded oscillatory.

Proof Suppose z(t) is a bounded non-oscillatory solution. Without loss of

generality, we assume that z(t) is an eventually positive solution. Let

2(t) = a(t)(@(t) - p(B)z(t — 7)) + / 2(s)x(s)ds. (3.4.15)

From a proof similar to that of Theorem 3.2.3, we obtain

2'(t) > 0, Jim 2(t) = ¢, lc] < 00, and x € L'[ty, 00).

(i) If ¢>0, from (3.4.15) it follows that

Jim a(®)e(®) = p(B)a(t = 7)) = >

NI o

So, for large enough ¢,

(@(0) = p(02(t 7)) 2 5

Hence limy_oo(z(t) — p(t)x(t — 7)) = 0o by (H;), which contradicts the bound-

edness of z(t) and p(t).
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(i) If ¢ <0, in view of limy,e 2(t) = c and & € Ll[tg, 00), there exists a

te > t; such that
<0, t2>t

Hence lim;_,oo(z(t) — p(t)x(t — 7)) = —oc by (H;), a contradiction to the bound-

edness of z(t) and p(t) again.

(iii) If ¢=0, in view of 2/(t) >0, we have z(¢) < 0. Further,

(2(t) - p(B)a(t — 7)) < 0.

We show that z(t) — p(t)z(t — 7) > 0. In fact, if there exists a t; > t; such that

z(t7) — p(t7)x(tr — 7) <0, then, for all t > i,
z(t) — p(t)z(t — 7) < x(t7) — p(tr)z(tr — 7) < 0.

This contradicts z(t) — p(t)z(t — 1) € L'[to,00). Hence z(t) —p(t)z(t—7) >0
for all large ¢ > ¢;. From this and the assumption on p, we have z(t) >

p(t)z(t — 7) = z(t — 7), which contradicts = € Lty, o0).

Therefore (3.4.14) is bounded oscillatory.

Theorem 3.4.2 Suppose conditions (H), (H3) and (Hy) hold, ¢(¢) < r(t), o >
p,0 < p(t) <p1 <lorl <py <p(t), r(t) and 1/a(t) are bounded. Then

(3.4.14) is bounded almost oscillatory.

Proof  Without loss of generality, assume that z(¢) is a bounded eventu-

ally positive solution. By a proof similar to that of Theorem 3.2.3, we obtain
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limy_oo(x(t) — p(t)x(t — 7)) = 0. Suppose

limsupa(t) =1> 0.

t—o0

So there exists a sequence {t;} such that ¢, — 00 as k — oo and limy—e x(tx) =
[>0.
(i) If 0 <p(t) £p; <1, then we have (1 — p;)l < 0 which contradicts

[>0and 1 —p;, >0.

(i) If 1 < ps <p(t), then we have 0 < (I — pp)l which contradicts [ > 0

and p2 —1>0.
Therefore, we must have

limsup z(t) = 0.

t—oo

Then lim;_,o 2(t) = 0 as z(t) is eventually positive. This show that (3.4.14) is

bounded almost oscillatory.

Theorem 3.4.3 Suppose conditions (H;), (H;) and (H,) hold, ¢(t) > r(t),
o<p 0<pt)<pp <1l or 1<p<p(t), q(t) and 1/a(t) are bounded.

Then (3.4.14) is bounded almost oscillatory.

Proof  Without loss of generality, suppose that x(t) is a bounded eventu-

ally positive solution. As in the proof of Theorem 3.2.2, we obtain

lim (z(t) — p(t)z(t — 7)) = 0.

t—o0

Then the rest follows from the proof of Theorem 3.4.2.
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Theorem 3.4.4 Suppose conditions (Hy), (Ha) and (Hy) hold, ¢(t) > r(t),
o > p, q(t)is bounded, 0 < p(t) < p <1, or 1/a(t) is bounded and 1 < pp <

p(t). Then (3.4.14) is bounded almost oscillatory.

Proof = Without loss of generality, suppose z(t) is a bounded eventually

positive solution. Let

2(t) = a()(z(t) — p)z(t — 7)) — / r()2(s)ds. (3.4.16)

By the reasoning similar to that used in the proof of Theorem 3.2.1, we have
x € L[to, ), limieo 2(t) = ¢ =0 and 2'(t) < 0. So 2(t) >0, (z(t) — p(t)z(t —
7))’ > 0 and x(t)— p(t)z(t—7) is increasing. We claim that z(t)—p(t)z(t—7) <
0 for t > t;. In fact, if there exists a tg > ¢; such that z(ts) —p(ts)z(ts —7) > 0,
then z(t) —p(t)z(t—7) > x(ts+1) —p(ts + 1)z(ts +1—7) >0 fort > tg+ 1
which contradicts z(¢) — p(t)z(t — 7) € L[t;,00). Hence z(t) — p(t)z(t — 7) <0
for all ¢t > t;. If 0 < p(t) < p <1 is satisfied, then x(t) < pz(¢t — 7) for all

t > t;. This implies that lim;—,. z(t) = 0.

If 1/a(t) is bounded and 1 < p, < p(t), from the proof of Theorem 3.4.2, we
have lim;_,o0 (2(t) — p(t)z(t — 7)) = 0 and thus lim;_o 2(t) = 0.

Therefore, (3.4.14) is bounded almost oscillatory.



3.5 EXAMPLES FOR (3.4.14)

Here, we will give three examples to illustrate the results obtained in last

section.

Example 3.5.1 Consider the differential equation

((1 - 3) (x(t) = 22(t — w))’>l n t%:z: (t - -725) ~3z(t—7)=0. (3.5.17)

t

Viewing (3.5.17) as (3.4.14), we have =7, 0 = Z <p =,

1
a(t) = 1- Z,
p(t) = 2>0,
3
q(t) = s <r(t) =3
(t+5)

for ¢ > m. We note that conditions (), (H3) and (H,) are satisfied and by

Theorem 3.4.1, equation (3.5.17) is bounded oscillatory.

Example 3.5.2 Consider the differential equation

( d (x(t) _2=2m) 27r))l), G2 D)

t+1 t 2t2(t + 1)2

@+1)(t-%

Viewing (3.5.18) as (3.4.14), we have 7= 2w, 0 =7 < p = 31/2,

a) =

p(t) = w > 1.2 for t > bm,
(w4t ) -2t — 27— 1)

) = 20 + 1) + 7+ 1) )

r(t) = t(2t+ 37+ 1)

20t +37/2)(t + 37/2 + 1)2

41
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Clearly, g(t) > r(t) for large t and 1/a(t) and ¢(t) are bounded. We note that
conditions (H,),(H,) and (H,) are satisfied and by Theorem 3.4.3, equation

(3.5.18) is bounded almost oscillatory.

Example 3.5.3 Consider the differential equation

¢ t— o N2~ 2t — 1)t —2n
(m <:L‘(t)— 57 x(t—27r)>) +( 2t2(t—|—1))2( ):v(t—-27r)

2 -7

Regarding (3.5.19) as (3.4.14), we have 7 =27, 0 = 21 > p = I,

t
at) = =7
t—2r 1
0<p(t)y = 2t7r§§<1, t > 3m,
0 = t((t+2r)* + (t+2m)2 -2t — 4w — 1)
n= 2(t 4+ 27)2(t + 27 + 1)2 ’
t2t+7+1)

2(t+7/2)(t+ 7/2 +1)%
Clearly, g¢(t) > r(t) for large enough ¢ and ¢g(t) is bounded. Notice that (H;), (Hz)
and (H,) are satisfied therefore by Theorem 3.4.4, equation (3.5.19) is bounded

almost oscillatory.

3.6 CONCLUSION

The objective of this chapter is to study the oscillation of second order non-

linear neutral differential equations (3.1.1). We are interested in the nontrivial
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solutions in this chapter. Since (3.1.1) can be either (3.2.2) or (3.4.14), we in-
vestigate (3.2.2) and (3.4.14), separately, rather than (3.1.1) itself. In former
case, a function z(t) has been defined as (3.2.3) or (3.2.6). We have managed to
establish four sufficient conditions for (3.2.2) to be bounded oscillatory, almost
oscillatory, and bounded almost oscillatory. The results have been presented in
Theorems 3.2.1-3.2.4. Examples are given to demonstrate the applications of the
results in every case. For (3.4.14), we define 2(t) as (3.4.15) or (3.4.16). Theo-
rem 3.4.1 is a sufficient condition for (3.4.14) to be bounded oscillatory. Theo-
rems 3.4.2, 3.4.3 and 3.4.4 give sufficient conditions for (3.4.14) to be bounded

almost oscillatory. Three examples are presented to illustrate the results.

It is not hard to see that the results in this chapter are more general than
the results for linear and nonlinear ordinary differential equations given in the

reference papers. For example, the equation
(2(t) - pa(t = 7)) + ga(t — ) = 0

with p(t) = p and g(t) = ¢ > 0 is a special case of (3.1.1) and was studied in [26].
When a(t) = 1 and 0 < p(t) < 1, the results in [19] may cover some of the results
in this chapter. However, it does not affect the generality of the results here.
Equation (3.1.1) was investigated in [49] when J = 1 and g(t,v) = 0. Since we
have assumed g(t,v) # 0 if v # 0, the results obtained here are not comparable
with those given in [49]. Further improvement are expected in future for the

oscillatory conditions and for higher order equations.
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4.1 INTRODUCTION

In this chapter and chapter 5, we are concerned with the nonlinear neutral

difference equation

AT (a(t) - pr(t — ) + f(t,2(9(t))) = 0, (4.1.1)

where m > 2 is a natural number, p > 0, 7 and r are positive constants, A,z(t) =
2(t+7)—2(t), 0< g(t) < t, g € C([to,00), B), ¢(t) > 0, and f € C(lto, 0) x

R, R). Throughout this chapter and the next we assume that
glt+7)>g(t)+7 for t>t (4.1.2)

and

f(t, u)/u > q(t) >0 for u#0 and some g € C(R,R"). (4.1.3)

Let tj = min{g(to), to—r} and Iy = [tg, to]. A function x is called the solution
of (4.1.1) with z(t) = (t) for t € Ip and p € C(lo, R) if it satisfies (4.1.1) for
t > to.

The properties of the solutions of (4.1.1) are very different between even or-
der and odd order equations. Therefore, in this chapter we will just investi-
gate equation (4.1.1) with even order. Three cases will be considered here, i.e.,
m =2, m = 4, and m is any even number with m > 4. Equation (4.1.1) with

the odd order will be discussed in chapter 5.

There has been an increasing interest in study of the oscillation behaviour

of solutions of difference equations. See [53] - [39] for examples. Particularly,
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Stavroulakis [53] considered the delayed difference equation

Az, + ppp_r = 0, neN

and established oscillation criteria for this equation. Zhang and Yan [64] studied

difference equations with continuous argument

Ary(t) + p(ty(t — o) = 0

and obtained oscillation criteria. Zhang, Yan and Zhao [68] also considered the
above equation and established some new results for the oscillation. Zhang, Yan

and Choi [63] investigated the equation
Ay(t) +p)H(y(t — o)) = f(£), 20,

and obtained oscillation criteria for this equation. The system of delayed differ-

ence equations

) n
Arxi(t) + ZZp,-jkxj(t —o0k)=0, 4,j€N(l,n)and ke N(1,1)

k=1 j=1
was studied by Yan and Zhang [59]. Sufficient conditions were obtained for all
solutions of this system to be oscillatory. Zhang, Chen and Zhang [66] considered

the second order nonlinear difference equation with nonlinear neutral term
A(an Az, + d(n,7r,))) + guf(Tg,) =0

and obtained oscillation criteria for the above equation. Similarly, Zhang and

Zhang [69] discussed

A(a(n)Az(n)) + p(n)z(g(n)) = 0
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and established some sufficient conditions for the above equation to be oscilla-
tory. Zhang, Bi and Chen [65] were concerned with the second order nonlinear

difference equation with continuous variable of the form
Alx(t) + f(t,z(t—7)) =0

and some oscillatory criteria for the above equation were given.

Equation (4.1.1) is a neutral generalization of some of the above equations.
Comments made in later sections will confirm this. The qualitative study of solu-
tions of neutral difference equation is developing very fast recently. According to
our best knowledge, however, we believe that there is no result about the fourth
order, higher even order, third order, and higher odd order neutral difference

equation with continuous variable so far.

4.2 PRELIMINARIES

Throughout this chapter, chapter 5 and chapter 6, we use the symbol [a] to
denote the smallest integer not less than a. The lemmas in this section will be
needed in both section 4.4 and section 4.5. The following lemma can be found in

[2] (page 31) and will be needed in the proof of Lemma 4.2.2.

Lemma 4.2.1 (Discrete Keneser’s Theorem) Let u(k) be defined on N(a),
where a € N, and u(k) > 0 with A™u(k) of constant sign on N(a) for any

positive integer m and not identically zero. Then, there exists an integer A, 0 <
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h <m, with m+ h odd for A™u(k) <0 or m+ h even for A™u(k) > 0 such

that
(i) h<m-—1 implies (=1)"*Aiu(k) >0 forall k€ N(a), h<i<m-1,
(ii) h>1 implies A'u(k) >0 forall ke N(a), 1<i<h-1.

To obtain the oscillatory behaviour of solutions for all large enough ¢, we need to
know the features of the difference when ¢ is sufficiently large. By applying the
above lemma into the difference with continuous variables, we extend the above
result for discrete difference to the following lemma for difference with continuous

arguments.

Lemma 4.2.2 Let y(t) be defined on [tg,+00) where t, € R, and y(t) >
0 with A™y(t) of constant sign on [tg, +00) for any positive integer m and not
identically zero. Then, there exists an integer b, 0 < h < m, with m + h odd

for A™y(t) <0 or m+ h even for AT'y(t) > 0 such that

(i) h <m—1 implies (=1)"*"Aly(t) >0 forall ¢t € [tg,00), h<i<

m-—1,
(i) h>1 implies Aly(t) >0 forall t€ [tg,+00), 1<i<h-1

Proof  Let t' be any constant real number in [tg, +00). For this fixed
t', by the assumption, we have y(t' + kt) defined for any k € {0,1,---}, and
y(t' + kt) > 0 with ATy(t' + k7) of constant sign for any k € {0,1,:--} and for
any positive integer m and not identically zero. Thus, by Lemma 4.2.1, the con-

clusion holds with the replacement of ¢ by t'+kr for all k € N. Since t' € [ty, 00)
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is arbitrary, we can see that the conclusion holds for t € [to, +00).

Lemma 4.2.3 Let y(t) be an m times differentiable function on R, of constant
sign satisfying y™(t) # 0 and y™ (t)y(t) < 0on [t1,00). Then the following

statements hold.

(i) There exists a ¢; > ¢; such that the functions y9(¢), j = 1,2,...,m — 1,

are of constant sign on [t2,00).

(ii) There exists an integer k¥ < m which is odd (even) when m is even (odd),

such that
y@)y () >0 for j=01,...,k, t>t,

(=)™ @)y (t) >0 for j=k+1,...,m, t>ts

Lemma 4.2.3 can be found in [2] (page 289).

Lemma 4.2.4 Assume that y(t), /(t), ..., (™ D(t) are absolutely continuous
and of constant sign on the interval (¢p,00), and assume y™)(t)y(t) > 0. Then
either y® (t)y(t) > 0, k =0,1,...,m or there exists an integer {, 0 <1 < m — 2,
which is even (odd) when m is even (odd), such that

y(k)(t)y(t) >0, for k=0,1,...,1,

()™ *y®E)y) >0, for k=1+1,...,m.

The above lemma can be found in [15] (page 289).



4.3 SECOND ORDER EQUATION (4.1.1)

In this section, we are mainly concerned with equation (4.1.1) when m = 2,
i.e.,

A (2(t) = pr(t = ) + f(t,2(g(t) = 0. (4.3.4)

We shall give some criteria and remarks in subsection 4.3.1. In subsection 4.3.2,
we will present the illustrating examples. To prove the criteria, in subsection 4.3.3
we shall state some lemmas. Following this subsection, the proofs of the theorems

will be given in subsection 4.3.4.

Note that this section is a modified version of the published paper [56] under
the joint authorship of S. Wu and Z. Hou. This reflects the contribution of the
second author in the process of refining the many previous drafts and extending

and sharping the original rough results.

4.3.1 OSCILLATION CRITERIA

The assumptions given in section 4.1 guarantee the existence and differentia-

bility of the inverse g~! of g. Let
t<s<t+2r g(t)<s<g(t)+27

D) = _min {q(s)}( - {(g-l(s»'}) . (435)

where 0 < a < 1. We shall see below that oscillatory behaviour of the solutions

of (4.3.4) can be determined by conditions involving the function g,. Let

2(t) = /t " ds / " 0)do,

50
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where = denotes any solution of (4.3.4). Then 2"(t) = A2z(¢).

Theorem 4.3.1 Assume that

Z (' +i1) (4.3.6)

for some t' > tg. Then every solution of (4.3.4) is either oscillatory or eventually

satisfies |z(t)] < plz(t — 7).

Remark 4.3.1 A special non-neutral case included in (4.3.4) is when p = 0. In
this case, condition (4.3.6) implies that every solution is oscillatory. In [65], the

authors obtained oscillation criteria for a class of equations of the form
A2z(t) + f(t,z(t — o)) = 0.

We can see that even the special case of our Theorem 4.3.1 can be applied to a

larger class of equations than the above.

Theorem 4.3.2 In addition to (4.3.6), we assume that 0 < p < 1 and that there
is a positive integer ko and a t; > to satisfying m, = [(g(t;+n7)—t1+kor)/7] < n

and

(1 —p)p*

o (4.3.7)

Y (s + 1= ma)aa(ts +57) 2

for large enough n. Then every solution x of (4.3.4) is oscillatory.

Theorem 4.3.3 In addition to (4.3.6), we assume that p = 1 and that there is

a positive integer ko and a t; > to satisfying m,, = [(g(t1 +n7) —t, +kor)/7] <1
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and

n

S (s 4 L= m)@a(ts +s7) 2 -,;10— (43.8)

S=MmMp

for large enough n. Then every solution x of (4.3.4) is oscillatory.

Theorem 4.3.4 Under the conditions of Theorem 4.3.2 with the replacement

of 0 < p < 1byp>1, every bounded solution z of (4.3.4) is oscillatory.

4.3.2 EXAMPLES

In this subsection, two illustrating examples are given to demonstrate the

results obtained in last subsection.

Example 4.3.1 Consider the linear difference equation

A (z(t) — pz(t — 1)) + %IL‘ (t — T:—ﬂt> =0 (4.3.9)

for t > 0, where p > 0 and 8 > 0, r,7 and ¢ are positive constants. Viewing
(4.3.9) as (4.3.4), we have g(t) = 1/t and 9(t) =t—o/(1+ pt). Then, by (4.3.5),

Go(t) = o/(t +27) for 3=0 and

N ol 2
B0 = e <1 IRCENCOEE aﬁ)

for 3 > 0. Since @2(t) > o'/(t + 27) for some o' > 0 and all t > 0, g; satisfies
(4.3.6) with t' = 0. By Theorem 4.3.1, every solution of (4.3.9) is either oscilla-
tory or eventually satisfies |2(t)| < p|z(t — r)|. In particular, when p = 0, every

solution of (4.3.9) is oscillatory. It was shown in [65] that every solution of the
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equation A2z (t) +t~'z(t — o) = 0 is oscillatory. Clearly, this equation is a special

case of (4.3.9) when p=(=0.

Example 4.3.2 Consider the difference equation

7 _3(t—m) =0, (4.3.10)

A (e(t) = pe(t —m)) + 82t = ) + T

where o > 0 is a constant. Regarding (4.3.10) as (4.3.4), we have 7 = 7, r =
7, g(t) =t — 7 and ¢(t) = 8. Then, for any a € (0,1), g2 = 8a by (4.3.5) so

(4.3.6) is satisfied. For p =1, ko = 1 and t; = ¢, we have m, = n and

n

Z(S+l—mn)C72(t]+ST):8a>lzki

S=mMnp 0

if & > 1/8. Moreover, we also have

n

Z(s+1—-mn)(h(t1+s7‘):8a>p:

s=mn

(1 —p)po

1 — pko

if p € (0,1) U (1,8) and a > p/8. By Theorems 4.3.1-4.3.4 every solution of
(4.3.10) is oscillatory if 0 < p <1 and every bounded solution of (4.3.10) is
oscillatory if 1 < p < 8. If p > 8, then (4.3.10) with & = 0 has a bounded positive
solution z(t) = X, where y = X" is a root of (y —p)(y — 1)+ 8 in (0, 1). Also, for
p>1+3V2and o =0, (4.3.10) has an unbounded positive solution (t) = A

for some A > 1.

4.3.3 SOME LEMMAS

To prove the results given in subsection 4.3.1, we need the following lemmas.
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Lemma 4.3.1 Assume that z is an eventually positive (negative) solution of
(4.3.4) not satisfying 2(t) — pz(t — r) — —oo (00) as t — oco. Then, with u(t) =
z(t) —pz(t —7), u'(t) <0(>0), ¥/(t) > 0(< 0), u is increasing (decreasing) and
satisfies

u'(t) + q(t)z(g(t)) < 0(=>0) (4.3.11)

for t large enough.

Proof  Suppose z is an eventually positive solution. From the assumption
and (4.3.4) we have z(g(t)) > 0 and (4.3.11) for large enough t. So there is a
T > to such that «”(t) < 0 for ¢ > T. We claim that «/(¢) > 0 for t > T. Indeed, if
not so, there is a t; > T such that «/(¢;) < 0. Since v”(¢) < 0 for t > T, we have
u/(t) < u/(th 4+ 1) < /(1) <0 fort > ¢ + 1. This implies u(t) — —oo ast — oo,
which contradicts the assumption. Therefore, v/(t) > 0 for t > T so that u is
increasing. When x is an eventually negative solution, the parallel conclusions

within brackets follow obviously.

Lemma 4.3.2 Suppose z is an eventually positive (negative) solution of (4.3.4)
not satisfying z(t) — pz(t — r) — —oo(00) ast — o0. Then A2u(t) < 0(>
0), Aru(t) > 0(< 0), u is increasing (decreasing) and, for every integer k > 0,

satisfies

) + Gt Z pu(g(t) — kr) <0 (> 0) (4.3.12)

1=0

for sufficiently large t.
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Proof Suppose ¥ is an eventually positive solution. From Lemma 4.3.1
and the assumption, we have A?u(t) < 0, A,u(t) > 0, z(g(t)) > 0 and (4.3.11)

for some T > ¢y and all ¢t > T. Then, for t > T, the assumptions on g and q give

/ ds/ 6)do
> guin, fa0) / i / olo(0)d

: glttm) o peleTie)) e
> o, a0} [ e / 2(0)(97(0)
g(t)+7- st+T .
- - /
z i, (e} /@ ))'ds / 2(6)(97'(6))'de
> qa(t)z(g(t

Hence, integrating (4.3.11), we have

Alu(t) + g2(t)2(g(t) <0, (4.3.13)
SO
k—1
AZu(t) + q(t) Y plu(g(t) —ir) + Ga(t)p*2(g(t) — kr) <O
i=0

for t > T and every integer k > 0. Then (4.3.12) follows from this for large
enough t as g2(t)p*z(g(t) — kr) > 0 and w is increasing. When z is an eventually

negative solution, the conclusions within brackets follow in the same way.

4.3.4 PROOF OF THEOREMS

Here, the proofs of Theorems 4.3.1-4.3.4 will be given.

Proof of Theorem 4.3.1  Suppose the conclusion does not hold. Let z be

an eventually positive solution of (4.3.4) not eventually satisfying 2(t) < pz(t—r).
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By Lemmas 4.3.1 and 4.3.2, there is a T > to such that «"(t) < 0, u'(t) > 0 and,
for any positive integer k, (4.3.12) holds for ¢ > T. As u(t) < 0 is not eventually
satisfied and u is increasing, we may assume u(t) > 0 for t > T. Take T} > T
such that g(t) — kr > T for t > T). Note that (A;u(t)) = Azu/(t) < 0so Ayu(t)

is decreasing. Hence, by (4.1.2),
u(glt + 7) — kr) — u(g(t) — kr) > A,u(g(t) — kr) > Ayu(t) > 0

for t > T;. Then, by the Riccati transformation

A u(t)

m, (4.3.14)

v(t) =

we have v(t) > 0 and

Alu(t)

RARRRTTORTY

—v(t)v(t+71) <O.

Thus, v(t) > v(t + 7). Further, from (4.3.12),

k
Awv(t) < —@(t) Y _p = v (t+7)

1=0

SO
k

Av(t) + G@t) Y P+ 03 (t+T7) <0 (4.3.15)

i=0

for t > T. There is an integer K > 0 such that ¢’ + K7 > Ty. Now replacing t by
# + j7 and summing up both sides of (4.3.15) for j from K to n, we have
n k n
o + (n+ D7) — vt + KT)+ ) @ +57) D> _p + DA+ (G + 1)7) <0.
=K i=0 =K

Therefore, for all n > K,

n k
@t +37) Y _p <ot + K7) < 0.

=K i=0
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This contradicts (4.3.6). Thus, every eventually positive solution x must satisfy
z(t) < pz(t —r) eventually. Now let & be an eventually negative solution of
(4.3.4) not eventually satisfying z(t) > pz(t — r). Then, from Lemmas 4.3.1 and
4.3.2, the above argument is still valid with necessary changes of “decreasing” to
“increasing” and of inequalities to opposite directions before (4.3.14). Then the

contradiction proves the conclusion of the theorem.

Proof of Theorem 4.3.2  Suppose the conclusion does not hold. Without
loss of generality, let z be an eventually positive solution of (4.3.4). If lim;_ . u(t) =
—00, then u(t) = 2(t) — pz(t — r) < 0 for large enough t. Using this repeatedly
and by the condition 0 < p < 1, we obtain lim;_, 2(t) =0 and lim;_. u(t) = 0.
This contradiction shows that u(t) 4 —o0o0 as t — 00. Thus, the conclusions of

Lemmas 4.3.1 and 4.3.2 hold. From (4.3.13), we have

2(g(t) +r) <0.

au(0) - Bty 4 vy + 21

Using the same technique as that used in the proof of Lemma 4.3.2, we obtain

k

1

u(t) — q2(t) Y 17 ) +ir) < 0. (4.3.16)
i=1

As u is increasing and Zle 1/pt = (1 — p*)/[p*(1 = p)], (4.3.16) leads to

Lk
A2u(t) < ot} —E—u

F0—p) (g(t) + kr). (4.3.17)

Replacing k by ko and t by ¢; + 47 in (4.3.17) and summing up both sides for i

from s to n, we have

— pko

Asulty +(n+1)7) — Aru(ty +57) < Y @t +ir)u(g(ts + i7) + kor).

il
(1 - p) &
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Then, summing up the above inequality for s from m,, to n, we obtain
Aru(ty +(n+ 1)71)(n4+ 1 —my,) —ulty + (n + 1)7) + u(ty + m,7)

kol_ Zqu ty +im)u(g(ts + i) + kor).

smnzs

Combining this with u(g(t; + ir) + kor) < u(ty + m,7) gives

Au(ty + (n+ )1)(n+ 1 —my) —u(ty + (n+ 1)7)

1-ph L
<u(t1+mnT){W Z 3+1—mn)Q2(t1+ST)—1}

S=MMn

This inequality holds for large enough n as (4.3.17) holds for large enough ¢t. By
Theorem 4.3.1 and Lemma 4.3.2, u(t) < 0 and A,u(t) > 0 for large enough t.

Hence, from the above inequality, we have

s:Zm: (s4+ 1 —mp)g(ty +57) < 21(_;191:0&)

for sufficiently large n. This contradiction to (4.3.7) shows that every solution of

(4.3.4) is oscillatory.

Proof of Theorem 4.3.3  The proof of Theorem 4.3.2 up to (4.3.17) is still
valid when z(¢) — 0 and u(t) — 0 as ¢t — oo is replaced by the boundedness of z

and u due to p = 1. With p=1, (4.3.16) and (4.3.17) now become

ko

Alu(t) — q@t) > u(g(t) +ir) <0 (4.3.18)

i=1

and

Alu(t) < koga(t)ul(g(t) + kor). (4.3.19)
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Replacing t by ¢; + i¢7 in (4.3.19) and using the same technique as that in the

proof of Theorem 4.3.2, we obtain
Auty + (n+D1)(n+1-m,) —u(ty + (n+1)7)

< u(ty +m,7) {ko zn: (s —my, + 1)g@(t; + s7) — 1} :

S=Mmn

As u(t) < 0 and A;u(t) > 0 for large enough ¢, we must have

n

1
Z (s—mn+1)(72(t1 +ST) < —
ko

s=mn

for large enough n, which contradicts (4.3.8). Therefore, every solution of (4.3.4)

is oscillatory.

Proof of Theorem 4.3.4  Without loss of generality, suppose (4.3.4) has a

bounded eventually positive solution = so z is bounded. Then tlim u(t) # —oo.
—00

The rest is the same as the proof of Theorem 4.3.2.

4.4 FOURTH ORDER EQUATION (4.1.1)

In this section, we will discuss equation (4.1.1) with m =4, i.e.,
Ad((t) - po(t - 1) + f(t,2(9(8)) = O, (4.4.20)

The assumptions given in section 4.1 guarantee the existence and differentia-

bility of the inverse g=! of g. Let

qa(t) = a min {q(s)}( min {(g'l(s))'}) , (4.4.21)

t<s<t+4r g(t)<s<g(t)+4r
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where 0 < a < 1. We will see in subsection (4.4.2) that oscillatory behaviour of

the solutions of (4.4.20) can be determined by conditions involving the function

4.
To prove the main results, lemmas will be presented in subsection 4.4.1. Fol-

lowing this subsection, we will state the oscillatory criteria in subsection 4.4.2.

Examples will be given in subsection 4.4.3 to illustrate the obtained results.

4.4.1 RELATED LEMMAS

The lemmas in this subsection will be needed to establish the oscillatory be-

haviour of solutions for (4.4.20).

Lemma 4.4.1 Assume that 2(t) is an eventually positive (negative) solution of
(4.4.20) such that y(t) = z(t) — pz(¢t — r) > 0(< 0) eventually. Then A y(t) >

0(< 0), Ady(t) > 0(<0) and Aty(t) <0(>0) hold eventually.

Proof  Suppose z(t) is eventually positive. Note that (t) > 0 and y(t) >0
eventually. By g(t) < ¢, ¢’(t) > 0 and (4.1.2), there exists a t; > #p such that

x(g(t)) > 0 for all t >¢,. Further, from (4.4.20), we have
Ay(t) + f(t,z(g(t))) = 0.
By (4.1.3), we obtain f(t,z(g(t))) > q(t)z(g(t)) > O for t > t;. Therefore

Ady(t) < —q()x(g(t) <0 (4.4.22)
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for all large enough ¢, namely, Aly(t) < 0 cventually and Ay(t) is not iden-
tically zero. Then, by Lemma 4.2.2, we obtain A,y(t) > 0 and Ady(t) > 0.
Suppose x(t) is eventually negative with y(t) < 0 eventually. Then (4.4.22) be-
comes Ady(t) > —q(t)x(g(t)) > 0. Replacing y(t) by — y(¢) in Lemma 4.2.2, we

have A,y(t) <0 and A3y(t) < 0.

Lemma 4.4.2 Let the hypothesis of Lemma 4.4.1 be satisfied and let g(t) be

defined by (4.4.21). Set

t+7 t1+T1 to+T t3+T
U(t) = / dtl / dt2/ dtg / y(&)d&
t t to t3

Then u satisfies u(t) = Ay(t) < 0(> 0),u(t) > 0(< 0),(t) > 0(<

0), u®(t) > 0(< 0), and
k
Atu(t) + qa(ulg(t) — kr) 3P < 0(2 0)
i=0
for each fixed natural number & and for all large enough ¢.

Proof Suppose z(t) is an eventually positive solution. From Lemma 4.4.1,
we know y(t) > O eventually. Then by the definition of u(t), we can see that

u(t) > 0 and ul®(t) = Aly(t) <0 eventually.

From (4.4.22), we have
Aty(t) + q(t)z(9(t)) < O. (4.4.23)
From the definition of y(t) and (4.4.23), we obtain

Aly(t) + q(t) (y(g(t)) + pz(g(t) — 7)) <O.



Repeating the above process, we have

k

Ady(t) +9(t) Y y(g(t) — ir) + q(t) P a(g(t) — (k+ 1)r) < 0.

=0

Therefore, since g(t) p**'z(g(t) — (k + 1)r) > 0, the above inequality implies

k
Aly(t) +q(t) Y py(g(t) —ir) <0
i=0
Hence,
k
@ty + q(t) Z Py(g(t) —ir) <0. (4.4.24)

Then, for large enough ¢, the assumptions on g and ¢ give

t+7 s1+7 32+T s3+T
[ / ds, / o [ ulol0) - in)a()ap
t+s'r SI+": S2+T s3+T
min }/ dS]/ d82/ d83/ —zr)d&
t<l<t+4'r 83

9(‘+T a(g™(s1)+7)
= tS{ISl%EM- q(t }/ dsl/SI (9~ ( 2)) dso
g(g“l(sz)+r) . . 9(g™ (s3)+7)
/ (97 (s3)) d83/ y(0 — ir)(g~'(6))'ds
$9 s3

. I 4 po(t)+T s1+T s2+T
> min {q(l) min (s / ds / ds / ds
t<l<t+4'r{ } (g(t)gsgg(t)+4f(g ( )) ) ot) ! s 2 P

s3+T
/ y(6 — ir)do
s3

4
: -1 ! s
> uin, (a0} (i (57 ) atg(9) - i
> qa(t)ulg(t) —ir).

Hence, integrating (4.4.24), we obtain

k -

u(t) + Ga(t) ) p'u(g(t) — ir) < 0.
1=0

By Lemma 4.2.3, we know that «/(t) > 0 and u®(t) > 0. Thus

k
Au(t) + ga(t)ulg(t) — kr) S p < 0
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holds for each fixed natural number k and for all large enough ¢t. Now suppose

z(t) is an eventually negative solution. Then from Lemma 4.4.1 and the definition

of u we have y(t) < 0, u(t) < 0 and uV(t) = Aty(t) > 0 eventually. From the

inequalities parallel to (4.4.22) we obtain

Ady(t) + q(H)z(g9(t)) 2 0

so we have the inequalities

"
u®(t) +q(t) Y p'y(g(t) —ir) 2 0

=0

and

Atu(t) + qu(t) ) Pu(g(t) —ir) 2 0.

i=0

Applying Lemma 4.2.3 to —u(t), we have v/(t) < 0, u®(t) < 0 and

Adu(t) + @a(t)ulg(t) —kr) Y_p' > 0.
i=0

4.4.2 MAIN RESULTS

By the above lemmas, we are now able to obtain the following theorems.

Theorem 4.4.1 Assume that, for some ¢’ > ¢y,

> @t +ir) - o0
i=0

(4.4.25)

as n — o0o. Then every solution z(t) of (4.4.20) is either oscillatory or, for any

T > to there exists a t” > T such that |z(¢")| < pla(t” — 7).



Proof Suppose the conclusion does not hold and let x(t) be an eventually
positive solution of (4.4.20). Then z(t) > 0 with =(t) —pz(t—7r) > O for all large
enough t. Let y(t) be as in Lemma 4.4.1 and u(¢) be as in Lemma 4.4.2. By
Lemma 4.4.2, u(t) satisfies ul¥ (t) = Aly(t) <0, u®(t) > 0, u(t) > 0,4/(t) > 0,
and, for any positive integer k, there is a T' > ty such that

k
Abu(t) + qu(t)ulg(t) — kr) S p' <

i=0

and u(g(t) — kr) > 0 hold for ¢t > T. Note that Au(t) < 0. By Lemma 4.2.2, we
know that A3u(t) > 0 and A, u(t) > 0. Let v(t) = Adu(t)/u(g(t) — kr). Hence,

v(t) > 0. Thus, by ¢/(¢) > 0 and u®(t) > 0, we have

Aro(t) = o(t+7) = o(t)

Adu(t + 1) Adu(t)
u(g(t +7) —kr)  u(g(t) - kr)
u(g(t) — kr)A3u(t + 1) — u(g(t + 1) — kr)Au(t)
u(g(t + 1) — kr)u(g(t) — kr)
u(g(t) — kr)Adu(t +7) + u(g(t + 7) — kr)(Alu(t) — Adu(t 4 7))

u(g(t +7) — kr)u(g(t) — kr)
Alu(t) Adu(t + 1)Aru(g(t) — kr)

((t)—kr)_ u(g(t) — kr)u(g(t + 1) — kr)
Zp—vt+ )Au(() kr)

u(g(t) — kr)
< —(74(t)zpi-
i=0

Therefore, for large enough ¢’ > ¢, satisfying (4.4.25) and j € N, we have

IA

k
A v+ §7) + @t + 1) Z (4.4.26)
i=0

Summing both sides of (4.4.26) for j from 0 to n — 1, we have

k n—1
u(t' +nr) — () + P Y @t +jr) <.
i=0 ;=0

64
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Thus

k n—1
P @t + ) < u(t') < oo,

i=0  j=0

which contradicts (4.4.25). Now suppose z(t) is an eventually negative solution
of (4.4.20). Then z(t) < 0 and y(t) = =(t) — pz(t — r) < O for large enough ¢.
By Lemma 4.4.2, u(t) satisfies u(t) < 0, v/(t) < 0, u®(¢) < 0,u®(t) = Ady(t) >

0, u(g(t) — kr) < 0 and

k
Alu(t) + au(Dulg(t) - k)Y p >

i=0
fort > T > to. Applying Lemma 4.2.2 to —u(t), we have Au(t) < 0 and Adu(t) <

0. These also lead to (4.4.26) and then a contradiction. Therefore, the conclusion

of the theorem holds.

The following Theorem 4.4.2 and Corollaries 4.4.1-4.4.3 are for equation (4.4.20)

with0<p< 1.

Theorem 4.4.2 In addition to (4.4.25), we assume that 0 < p < 1 and
that there is a positive integer ko and a t; > to satisfying mi(n) = [(g(t; +
nt) — t; + kor)/T] < n for all large enough n. Moreover, there is a sequence

{ny} with ny — 0o as k — oo such that

S Pe-p)
Z Qu(ta +i7) 2 T (4.4.27)

i=my

holds for all large k with n = n;, m; = m;(ng). Then, for every solution z(t) of

(4.4.20), either z(t) or z(t) — pz(t — r) is oscillatory.
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Proof By Theorem 4.4.1, if (4.4.25) holds, we have that every solution
z(t) of (4.4.20) is either oscillatory or for any T > t;, there exists one t’ >
T such that |2(¢t")| < ple(t” — 7).

Assume that (4.4.20) has an eventually positive solution 2(t) such that y(¢) =
x(t) — px(t — ) is not oscillatory. Then, by Theorem 4.4.1 we must have y(t) <0
for large enough t.

Since y(t) is not oscillatory, we must have y(t) < O for all sufficiently large ¢.

Set 2(t) = —y(t). Then z(¢) > 0 and by Ady(t) = —~A4(—y(t)), we find

Azz(t) — f(t.2(g(1) = 0.
Further, by the assumption, we have

Alz(t) — q(t)z(g(t)) > O, (4.4.28)
ie.,

Azz(t) > q(t)z(9(2) > 0.

Therefore by Lemma 4.2.2, we have A2z(t) > 0,|A,z(t)] > 0 and |A32(t)] > 0.

We claim that A,2(t) < 0 and A2z(t) < 0. Indeed, if A;2(t) > 0, then,
since AZz(t) > 0, we may assume A.z(t; + k7) > 1 > 0 for a large enough t;

and all k € N. Then

Z Arz(ty +i7) = 2(t + (n + 1)7) — 2(t1) > nl.

Let n — oo, then z(¢t; + (n + 1)7) — +00. We have lim;_o 2(t) = 0 by re-

peating z(t) < pz(t — r) for 0 < p < 1. Thus, by the definition of z(t), we
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have lim;—o 2(t) = 0 which contradicts z(¢; + nt) — +00 as n — oo. Thus,
A,z(t) < 0. Then, by Lemma 4.2.2, h = 0 so A22(¢) < 0.

By z(t) = px(t —r) —x(t), we have x(t) = (z(t+7) +2(t +7))/p. Substituting
this into (4.4.28) we obtain

atalt) - L a(g0) 4 1) - 22

2(g(t) +r) > 0.

By repeating the above process, we have

k

1 t

Alz(t) —g(t) S = 2 1) = Waow + kr) >0,
i=1 p p
and hence,
k
1
Adz(t) —q(t)) = z(g(t) +ir) >0 (4.4.29)

since x(g(t) + kr) > 0. With

T s1+7 s3+T t+s3+T
_ / ds, / dss / dss / 2(6)d6,
0 81 82 t+s3

we have ul¥(t) = Alz(t) > 0 and u(t) > 0. Moreover,

T s1+T s2+T
= / dsl / ng/ A.,-Z(t + 53)d33.
0 s 82

Then A,z(t) < 0 implies 2/(t) < 0.
By the same technique used in the above proof of w/(t) < 0, we have u®(t) <
0 and u®(t) > 0. Integrating (4.4.29) and using the proof of Lemma 4.4.2 with

the replacement of y by z , we have
N
Atu(t) — Ga(t ZE t)+ir) > 0.
As u(t) is decreasing, the above inequality leads to

Alu(t) — ga(t) u(g +kr)Z—>0



Since Zle 1/p' = (1 —p*)/(p*(1 — p)), it follows that

ok
Abu(t) > Rl

1 —p) Ga(t) u(g(t) + kr) > 0.

Replacing k by ko and t by t; +i7 in the above inequality, we obtain

1—p"°

Alu(ty +i1) > ————
T

gs(ty +iT)u(g(ty +47) + ko) > 0.

Summing up both sides of the above inequality for 7 from s to n and by 4/(t) < 0,

we have

1 — pko °
P ) u(g(ty +nT) + kor) Z%(tl +i7),

Alu(ty + (n+1)7) — Adu(t, + s7) > —
pe(l—p

1=s

which implies that

1 — pho

F T w(g(ty + n7) +kor) 3 Ga(ts +i7)  (4.4.30)

i=s

—A3u(t; + 1) >
since A3u(t) < 0. Further, from the above inequality it follows that

— pho n
P )“(9(t1+n7)+k07‘)th(tl-l—iT),

9 2 L
-AT’LL(t1 + (3+ l)T) +A‘ru(t1 +ST) > pko(l —p

i=s

and so,

1-—
Alu(t) + sT) > T

ko n
ol Ii ) u(g(ty + nt) + kor) Z Ga(ty + i1).

i=s

The above inequality implies

— pko n
Asu(ty +(s+ 1)) — Aru(ty +s7) > m u(g(t; +n7) + kor) Z Ga(ty + 7).

i=s
Further, we obtain

1 — pho “ ,
_ATu(tl + ST) > m U(g(tl + n7') + ko’f') Z Q4(t1 + 'LT),

i=s

68
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ie.,

1 — pho

p’“"(l—~p) u(g(ts +n7) + kor) Z Ga(ty + 7).

i=s

—u(ty + (s + 1)7) +u(ty + s7) >

Since u(t) > 0, from the above inequality it follows that

1 — p*o

STy () 4 or) Yl + i),

i=s

u(ty + s7) >

Note that g(t; + n7) + kor < t; + my7 and u is decreasing. By taking s = my,

we obtain
u(ty +m7) > u(ty + mT) ko 1 — Z Ga(ty +i71),
=

ie.,

ko
P p*(1-p)
E Gs(ty +1i1) < l—pko

This inequality contradicts (4.4.27) and, therefore, if z(t) is an eventually positive

1m1

solution then z(t) — pz(t — r) is oscillatory.

Assume that (4.4.20) has an eventually negative solution z(t) such that y(¢) =
x(t) — px(t —r) is not oscillatory. Then, by Theorem 4.4.1, z(¢) < 0 and y(t) > 0
hold eventually. From (4.4.20) and (4.1.3), Ay(t) > —q(t)z(g(t)) > O for t >
T > to. Using the same argument as above for z2(t), we know that A,y(t) <

0, A2y(t) > 0and A3y(t) < 0. From the definition of y(t) we have z(t) =

-:;(m(t +7)—y(t+7)) so

and
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Replacing z(t) by y(t) in the definition of u(t) and using the same proof as above,
we derive a contradiction to (4.4.27). Therefore, for any nonoscillatory solution

z(t), z(t) — px(t — r) must be oscillatory.

Corollary 4.4.1 In addition to (4.4.25), we assume that 0 < p < 1 and
that there is a positive integer ko and a t; > to satisfying my(n) = [(g(t1 +
nt) — t; + kor)/7] < n for all large enough n. Moreover, there is a sequence

{n4} with ny — 00 as k — oo such that

n

D (6= my 4+ 1)Ga(ty +i7) 2

i=m1

p(1-p)

T (4.4.31)

holds for all large enough k with n = ng, m; = mq(ng). Then, for every solution

x(t) of (4.4.20), either x(t) or z(t) — pa(t — r) is oscillatory.

Proof  The proof is the same as that of Theorem 4.4.2 until (4.4.30).

Summing up (4.4.30) for s from m; to n, we have

~A2u(t+H(n+1)T)+A2u(t +myT) > p’CO(l{)— ) u(g(t1+nt)+kor) Z Zq4 t1+iT).

Since AZu(t) > 0, the above inequality implies

s=m; i=s

. -
Afu(tl +myT) > e Ii o) u(g(t1 + n1) + kor) Z Zq4 t1 +1ir). (4.4.32)

s=my i=s

Further, by the same technique used for the proof of Theorem 4.4.2, we obtain
1 — pko
p*(1-p)

Note g(t1 +nt) + kor < t3 + my7 and u is decreasing. So, from the above

u(g(ty + nt) + kor) Z Z(M ty +47).

s=my i=s

U(tl + ml'r) >

inequality it follows that

ko n
u(ty +mut) > (6= my + 1)Ga(ty +7),

i=my

1-p
ubtmn > )
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i.e.,

n

z ('L —my + I)Q4(t1 + lT) <

t=my

This inequality contradicts (4.4.31). Thus, this contradiction shows that the

p* (1 =p)
1 —pko ~

conclusion holds.

Remark 4.4.1 Compared with (4.4.27), the requirement (4.4.31) for gu(t) is

weaker than (4.4.27) since i — m; + 1 > 1 holds in (4.4.31).

Corollary 4.4.2 In addition to (4.4.25), we assume that 0 < p < 1 and
that there is a positive integer ko and a t; > tp satisfying m;i(n) = [(g9(¢t1 +
nt) — t, + kor)/7] < n for all large enough n. Moreover, there is a sequence
{ng} with nx — oo as k — oo such that

p¥(1 - p)

1 &~ . _ .
52(1—m1+1)(z—m1+2)q4(t1+z7')2 T

i=my

(4.4.33)

holds for all large enough k& with n = ng, m; = m;(ng). Then, for every solution

x(t) of (4.4.20), either 2(t) or x(t) — px(t — ) is oscillatory.

Proof  The proof is the same as that of Corollary 4.4.1 until inequality
(4.4.32) with m, replaced by mq (m; < my < n). Summing up (4.4.32) for my
from m; to n, we have

1 — pho
p*(1 - p)

D 2D sl i),

ma=mj $=my =8

Au(ty + (n+ D7) = Aru(ty +myr) > u(g(t; + nt) + kor) x

and so

1—pk
_ATu(tl+m17')>pk(1_p) u(g(t; + n7) + kor) Z ZZ (t1 +i7).

ma=m) s=m32 i=38

(4.4.34)



Next, by the same technique used for the proof of Theorem 4.4.2, we obtain

1 —
u(t1+m1‘r) > p ) ((t1+n'r +k07’ Z ZZQ4 t1+ZT)

"[)I‘O(l - mo=mi s=m
1 — pho o
= o) u(g(ty +nt) + kor) x
( > Z (i —mg + 1)Gu(ty +i7’))
l—pko 1 1=m2
= mu(g(tl + TLT) + k‘()?') X

Further, since g(t; + n7) + kor <t; +my7 and u is decreasing, we obtain

1 — p*o N
u(ty + mit) > m u(ty +my7) 3 E (1 —mq+ 1)(i —mq 4 2)Ga(ty + i7),
i=m1
i.e.,
1 . . _ (1 - p)
5 E (t=my+ 1)(E—m +2)qs(t: +i7) < i St
1 — pko

i=m;
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This inequality contradicts (4.4.33) and, hence, this contradiction shows that the

conclusion holds.

Remark 4.4.2 Note that (i —m; +1)(i —m1 +2)/2>i¢—my +1 > 1. Hence,

(4.4.33) is weaker than (4.4.27) and (4.4.31) in general.

Corollary 4.4.3 In addition to (4.4.25), we assume that 0 < p < 1 and that

there are a positive integer ko and a t; > to satisfying my(n) = [(g(¢t; +

nr) — t1 + kor)/7] < n for all large enough n. Moreover, there is a sequence

{nx} with ny — 00 as k — oo such that

p*(1 - p)

1 o=, .
—,E (i —my + 1)@ —my +2)(i —my + 3)qa(ty +iT) > —
_pO

ti=my

(4.4.35)
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holds for all large enough k with n = ng, m; = mi(nk). Then, for every solution

z(t) of (4.4.20), either x(t) or x(t) — px(t — r) is oscillatory.

Proof  The proof is the same as that of Corollary 4.4.2 until (4.4.34) with
m1 < my replaced by my < m3. Summing up (4.4.34) for ms from m; to n, we

have
_1-ph
p( -p)

2: Zj}:ﬁimm+mm

mo=mj] M3=my S=M3 t—3s§

—u(ty + (n+ 1)7) + u(ty + myr) > u(g(ty + n7) + kor) x

which, since u(t) > 0, implies

u(t1+m17)>pkl(1_ > u(g(t; + nt) + kor) Z Z ZZ (1 + i7).

m2=mj]1 ma=m3 $=mM3 i=s

Note g(t; + n7) + kor < t; + my7 and u is decreasing. Then, we obtain

W_zzzmmW

mo=mj] ma=mgy S=mM3 i=5

> pkol—- (ZZ z—m2+1(z—m2+2)q4(t1+z7'))

mao=m] i=my

p’“°1— (Z%tﬁ—n’ Z %(i—m2+1)(z‘-m2+2)>

i=m mo=m]

1

1-p° (1
pro(1 — p) (Z 3] —(i—my + 1)1 —my +2)(¢ — my + 3)gs(t1 + w))

i=my
So

p“ﬂ—p)

' Z z_ml+1)(z—m1+2)(2—m1+3)Q4(t1+”') l_pko

i=m

This inequality contradicts (4.4.35) and, thus, this contradiction shows that the

conclusion holds.
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Remark 4.4.3 Notice that

(i—my+ 1)([{—my +2)({ —my +3) > (t—my+2)(t—my+1)
3! - 2

> 1—-m+1

v
[a—

in general. Therefore, (4.4.35) is weaker than (4.4.33), (4.4.31) and (4.4.27).

The following Theorem 4.4.3 and Corollaries 4.4.4-4.4.6 are for equation (4.4.20)

with p = 1.

Theorem 4.4.3 In addition to (4.4.25), we assume that p = 1 and that there
exists a positive integer ko and a t; > tp satisfying mi(n) = [(g(t; + nr) —¢; +
kor)/7] < n for all large enough n. Moreover, there is a sequence {n,} with n; —

oo as k — oo such that

1
Z Gt +47) 2 1 (4.4.36)

i=my

for all large enough k with n = ng,m; = mi(nk). Then, for every solution z(t)

of (4.4.20), either z(t) or x(t) — z(t — r) is oscillatory.

Proof  We refer to the proof of Theorem 4.4.2 line by line with the replace-

ment of p by 1 and

by k. Since limino z(t) = 0 and lim;o0 2(t) = 0 follow from xz(t) < px(t —
7) for 0 < p < 1, the boundedness of z(t) and z(t) follows from z(t) < z(t — 7).

Then the proof of Theorem 4.4.2 is still valid here after a minor modification.
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Corollary 4.4.4 In addition to (4.4.25), we assume that p = 1 and that
there is a positive integer kg and a t; > to satisfying my(n) = [(g(¢t; +
nt) — t; + kor)/7] < n for all large enough n. Moreover, there is a sequence

{nk} with ny — oo as k — oo such that

n

1
D (= my+ )Gty +i7) 2 . (4.4.37)
0

i=m
holds for all large enough k with n = ny, m; = m;(k). Then, for every solution

z(t) of (4.4.20), either x(t) or z(t) — x(t — r) is oscillatory.

Proof  The proof of the Corollary 4.4.1 can be used here almost verbatim

after the replacement of (1 — p*)/[p*(1 — p)] by k.

Corollary 4.4.5 In addition to (4.4.25), we assume that p = 1 and that
there is a positive integer ko and a t; > ty satisfying my(n) = [(g(t1 +
nt) — t1 + kor)/7] < n for all large enough n. Moreover, there is a sequence

{nk} with ny — 0o as k — oo such that

L3 (=4 )= my+ Dt +i7) > (4.4.38)

i=m;

1
ko
holds for all large enough k with n = ny, m; = m;(ng). Then, for every solution

z(t) of (4.4.20), either z(¢) or z(t) — z(t — ) is oscillatory.

Proof  Refer to the proof of the Corollary 4.4.2 with the necessary replace-

ment of (1 — p*)/[p*(1 — p)] by ko.



Corollary 4.4.6 In addition to (4.4.25), we assume that p = 1 and that
there is a positive integer ky and a t; > t, satisfying my(n) = [(g(¢; +
nt) — t; + kor)/7] < n for all large enough n. Moreover, there is a sequence

{nk} with ny — oo as k — oo such that

1 . . . _ , 1
o 2 (= mu+ 1)@ = my +2)(E = my + 8)au(ts +i7) 2 k—o (4.4.39)

i=m

holds for all large enough k with n = ny, m; = my(ng). Then, for every solution

z(t) of (4.4.20), either x(t) or x(t) — x(t — r) is oscillatory.

Proof  Refer to the proof of Corollary 4.4.3 with the necessary replacement
of (1 — p*)/[p*(1 — p)] by ko.
Note that remarks for Corollaries 4.4.4-4.4.6 similar to these for Corollar-

ies 4.4.1-4.4.3 are also true.

The following Theorem 4.4.4 and Corollaries 4.4.7-4.4.9 are for equation 4.4.20

with p > 1.

Theorem 4.4.4 In addition to (4.4.25), we assume that p > 1 and that
there is a positive integer ko and a t; > { satisfying my(n) = [(g(¢t; +
nt) — t1 + kor)/T] < n for all large enough n. Moreover, there is a sequence

{ny} with ny — 0o as k— oo such that

Y Gty +i7) 2 %,5@ (4.4.40)

holds for all large enough k with n = ng, m; = my(nx). Then, for every bounded

solution of (4.4.20), either z(t) or x(t) — pz(t — r) is oscillatory.

76
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Proof Suppose that z(t) is a bounded eventually positive solution of
(4.4.20). The proof of Theorem 4.4.2 is then still valid for Theorem 4.4.4 subject

to a few obvious minor changes.

Corollary 4.4.7 In addition to (4.4.25), we assume that p > 1 and that
there is a positive integer ky and a t; > to satisfying my(n) = [(g9(t; +
nt) — t1 + kor)/7] < n for all large enough n. Moreover, there is a sequence

{n} with n, — oo as k — oo such that

n ko(1 —
S (= + Daalts + 1) > 711—(_—575'1)- (4.4.41)

holds for all large enough k with n = n,, m; = my(nk). Then, for every bounded

solution z(t) of (4.4.20), either z(t) or z(t) — pz(t — r) is oscillatory.

Corollary 4.4.8 In addition to (4.4.25), we assume that p > 1 and that
there is a positive integer ko and a t; > ty satisfying mi(n) = [(g(t1 +
nt) — t1 + kor)/T] < n for all large enough n. Moreover, there is a sequence

{nk} with ng — o0 as k — 00 such that

p¥(1 - p)

1~ . _ .
-2-Z(z—m1+l)(z—m1-I—2)q4(t1+z7')2 l—pko

i=m

(4.4.42)

holds for all large enough k with n = ng, m; = my(ng). Then, for every bounded

solution z(t) of (4.4.20), either z(t) or z(t) — px(t — r) is oscillatory.

Corollary 4.4.9 In addition to (4.4.25), we assume that p > 1 and that

there is a positive integer ko and a t; > to satisfying mi(n) = [(g(t1 +



nt) — t1 + kor)/7| < n for all large enough n. Moreover, there is a sequence

{nx} with n; — co as k — oo such that

R . . _ s PP —p)
gT Z ('l —mq + 1)(1 —my + 2)(2 —mq + 3)Q4(t1 + ZT) Z —'1"-_—-2;]6—0— (4443)
Ci=m

holds for all large enough k with n = ny, m; = my(ng). Then, for every bounded

solution z(t) of (4.4.20), either x(t) or z(t) — pz(t — r) is oscillatory.

Note that remarks for Corollaries 4.4.7-4.4.9 similar to those for Corollar-

ies 4.4.1-4.4.3 are also true.

4.4.3 EXAMPLES

Two examples will be given in this subsection to demonstrate the results in

last subsection.

Example 4.4.1 Consider the linear difference equation

g
143t

Ad(z(t) — pz(t — 1)) + %:L‘(t - )=0 (4.4.44)

for t > 0, where p, r, 7 and o are positive constants. Viewing (4.4.44) as (4.4.20),
we have q(t) = 1/t and g(t) =t — o /(1 + ft). Then, according to (4.1.3), gs(t) =

a/(t+4r) for =0 and

Ja(t) = Q ] o )4
% —t+47'< (4 B2 +ap

for B > 0. Since gy(t) > o//(t + 47) for some o’ > 0 and all ¢t > 0, g, satisfies

(4.4.25) with t' = 0. By Theorem 4.4.1, for every solution z(t) of (4.4.44), either
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z(t) is oscillatory or for any T > tg there exists a ¢’ > T such that |z(¢")| <

plz(t” — r)|. In particular, when p = 0, every solution of (4.4.44) is oscillatory.

Example 4.4.2 Consider the difference equation

1 +0t2:1:3(t — 1) =0, (4.4.45)

Ad(a(t) — pr(t — m) + 8a(t — 7) +
where o > 0 is a constant. Regarding (4.4.45) as (4.4.20), we have 7 = 7, 7 =
7, g(t) =t — 7 and q(t) = 8. Then, for some a € (0,1), g4 = 8a by (4.1.3) so

(4.4.1) is satisfied. For p=1, ko = 1 and ¢, = ¢, we have m,, = n and

n

Z(3+1‘mn)q4(t1+sr) =8a>1= 1
s=my ko
if @ > 1/8. Moreover, we also have
n 7 (1 = p)p™
Y (s+1—m)@alts +57) =8a>p —

s=my

if p e (0,1)U(1,8) and a > p/8. According to Corollaries 4.4.1 and 4.4.4,
for every solution x(t) of (4.4.45), either z(t) or z(t) — pz(t — r) is oscillatory if
0 < p < 1. Furthermore, by Corollary 4.4.7, for every bounded solution z(t) of

(4.4.45), either z(t) or z(t) — pz(t —r) is oscillatory if 1 < p < 8.

4.5 HIGHER EVEN ORDER EQUATION (4.1.1)

In this section, we will deal with equation (4.1.1) of the general form

AT (2(t) — px(t — 1)) + f(2,2(g(t))) = 0, (4.5.46)
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where m > 4 is an even integer.

The assumptions given section 4.1 guarantee the existence and differentiability

of the inverse g~ ! of g. Let

Gm(t) =@ min {q(s)}( min {(g'l(s))'}> , (4.5.47)

t<s<t+mr g(t)<s<g(t) +mr
where 0 < a < 1. We shall see that the function g, will play an important role

in the oscillatory criteria for the solutions of (4.5.46).

This section is composed of three subsections. In subsection 4.5.1, lemmas will
be stated for the proofs of the criteria and the main oscillatory criteria will be

given in subsection 4.5.2. Finally, examples will be discussed in subsection 4.5.3.

4.5.1 RELATED LEMMAS

In next subsection, we shall present the following lemmas which will be needed

in the proofs in next subsection.

Lemma 4.5.1 Assume that z(t) is an eventually positive (negative) solution of
(4.5.46) such that y(t) = z(t) — pz(t — r) > 0(< 0) eventually. Then A,y(t) >

0(< 0) and AP"'y(t) > 0(< 0) hold eventually.

Proof  Suppose z(t) > 0 and y(t) > 0 hold eventually. Due to g(t) <
t, ¢'(t) > 0 and (4.1.2), there exists a t; > to such that z(g(t)) > 0 for all £ > ¢,.

Further, (4.5.46) becomes

ATy(8) + f(t,2(g(t))) = 0.
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According to (4.1.3), f(t.a(g(t))) > q(t)x(g(t)) > 0 for ¢ > t; hold. Therefore,
ATy(t) < —q(t)x(g(t)) <0 (4.5.48)

for all large enough t, namely, A"y(t) < O eventually. By Lemma 4.2.2, h
could be odd with 1 < h < m — 1. For all cases, we could obtain A,y(t) >
0 and A™ 1y(t) > 0 eventually. If 2(t) < 0 and y(¢t) < 0 hold eventually, then
(4.5.48) becomes AT'y(t) > —q(t)x(g(t)) > 0. Applying Lemma 4.2.2 to —y(t),

we obtain A,y(t) <0 and A™"1y(t) < 0.

Lemma 4.5.2 Let the hypothesis of Lemma 4.5.1 be satisfied. Moreover, let

Gm(t) be defined by (4.5.47). Set

t+r ti+T tm—o+T tm—_1+7
u(t) = / dt, / dty - - / dt, / y(6)do.
t t t t

m-2 m—1

Then u satisfies u(™ (t) = A™y(t) < 0(> 0), u(t) > 0(< 0), ¥(t) > 0(<
0), u™=V(t) > 0(< 0), AP~lu(t) > 0(< 0), and

k
ATu(t) + Gm(t) u(g(t) — kr) Y _p' <0(20)
i=0
for each fixed number k and for all large enough ¢.
Proof  Suppose z(t) > 0 and y(t) > 0 hold eventually. According to the
definition of u(t) and (4.5.48), we can see that u(t) > 0, u(™(¢) = A™y(t) < 0

and

ATy(t) +q(t)z(g(t)) <0 (4.5.49)

for sufficiently large t. Taking into account the definition of y(t), we have

ATy(t) + q(t)(y(9(t)) + px(g(t) — 7)) < 0.
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By repeating the above process k times, we deduce

) +qlt ZP!/ ) —ir) + q()p*Ha(g(t) — (k + 1)r) < 0.

Therefore, since q(¢)p**1x(g(t) — (k + 1)r) > 0, it follows that

.
ATy(t) +q(t) > p'ylg(t) —ir) < 0.
=0
Furthermore,
k
u™ () + ()Y plylgt) —ir) <0. (4.5.50)
i=0

Then, for large enough ¢, the assumptions on g and g give

sp+7 Sm—2+T Sm—1+T
/ ds, / dsm_s - / dsns [ 4l006) ~ ir)a(0)d0
Sm—1

31+T Sm-2+T Sm-1+T
2, min {q(D} / dsy / dsm—2- /Sm 2 dsm-1 / y(g(0) — ir)do

Sm—1

(t+'r g7 (s1)+7)
> min }/ 31 dsl/ (9—1(32))'d32...
g(t)

- t515t+m‘r

( l(~‘3rn 2)+7) ( l(sm 1)+T)
/ (6 (5mt)) d5ms / y(0 — ir) (g1 (6))'do
m-2 Sm-1

. , m eg(t)+T s1+T
> i l min s ds dso -« -
>, min (a0}, win (@7 ) [ s [ s

Sm-2+T Sm—-1+T
/ dSm—1 / y(6 — 1r)dl
Sm-2 Sm—1

g-1<s)>') u(g(t) - ir)

. l .
2 tSIréltle-r{q( )} <g(t)§snslglg)+m‘r

> gm(t)u(g(t) = ir).

Thus, integration on both sides of (4.5.50) gives

A
ATu(t) + gm(t) Y p'ulg(t) — ir) 0. (4.5.51)

i=0

According to the definition of u(t), the equality

t+r tq+‘r tm—2+T tm-1+T
vy = [ [ atae [T s [T Ayt
tm-1
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holds. Then it follows from Lemma 4.5.1 that «/(¢) > 0. Similarly, we have

t+7
w0 = [ ary(o)ae
t

so (™= (¢) > 0 from Lemma 4.5.1. Hence,
t+7 t+T b —o+T
AT u(t) = / dn/ dty - / u™=1(9)df > 0.
t t tm_2
Further, (4.5.51) implies
k .
ATu(t) + Gm (D) u(g(t) — kr) Y _p' <0
i=0

for each fixed natural number k and for all large enough ¢. 1f z(¢) < 0 and y(¢) <
0 hold eventually, then u(t) < 0, u(™(t) = A™y(t) > 0 and A™y(¢)+q(t)z(g(t)) >

0 for large enough f. Moreover, (4.5.50) becomes

k
ut™ () +q(t) Y p'y(g(t) —ir) > 0

i=0

and (4.5.51) becomes

k

ATu(t) + Gm(t) Y _ p'u(g(t) —ir) > 0.

i=0

That «/(t) < 0and u(™=D(¢) < 0 follow from A,y(t) < 0 and A™ y(t) < 0.
Then A™ 'u(t) < 0 follows from the integration of u(™=1(¢t). Since u(t) is de-

creasing, each u(g(t) —ir) can be replaced by u(g(t) — kr) in the above inequality.

4.5.2 MAIN RESULTS

Using the above lemmas, we can obtain the following theorems for any even
order difference equation in the form (4.5.46). Essentially, the spirit of the the-

orems is the same as the fourth order. However, it is impossible that a general
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case could be completely the same as a specific case. We, therefore, shall stress
the difference between the general case and the specific case, the fourth order. In

addition, we shall not give the proof in details if it is similar to that of the fourth

order.

Theorem 4.5.1 Assume that. for some t' > tg,

Y Gt + i) — 00 (4.5.52)
i=0

as n — 00. Then for every solution x(t) of (4.5.46), either x(¢) is oscillatory or

for any T > to there exists a t” > T such that |z(t")] < pla(t” - r)|.

Proof In essence, the proof is the same as that of Theorem 4.4.1 for the
fourth order equations. Thus we shall not give the proof in details but an outline.
Let z(t) be a solution of (4.5.46) satisfying x(t) > 0 and z(t) — px(t — r) >
0 for all large t. Let y(t) be as in Lemma 4.5.1 and u(¢) be as in Lemma 4.5.2.

Furthermore, for any positive integer k, we have
k
ATu(t) + Gm(t)u(g(t) — kr) > p' <0,
i=0

where u(g(t) — kr) > 0. Define the Riccati transformation by

L APt
RETTORTD)

Notice that v(¢t) > 0. Moreover we deduce
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Au(t) = v(t+T7)—v(t)

Amu(t + 1) AM=1y(t)
u(g(t +7)—kr)  u(g(t) — kr)
u(g(t) = kAT u(t + ) = u(g(t + 7) = kr)Ar=lu(t)
u(g(t + 1) — krju(g(t) — k'r)
u(g(t) = kr)ATYu(t 4+ 7) + ulg(t + 7) = k) (ATu(t) — AP Vu(t + 7))
u(g(t +7) — kr)u(g(t ) kr)
ATu(t)  Arhu(t 4 1)Au(g(t) — k)

S e - ) W (D) — kryulg(t + 1) — k1)
S _qm ZO:P - U t + )AUZL(( () ) k:c)r)

k
S "qm(t) Z pi~
i=0

Therefore, there exists a t’ > ty such that
k
At + 1)+ gt +§7) D _p' < (4.5.53)
i=0

Summing up both sides of (4.5.53) from 0 to n, we have

v(t' + (n + 1)7) = o(t) +Zp qu (t'+j7) <

i=0 j=0

Thus

n

k

Zp’ gm(t" + J7) < v(t') < 00,

i=0 3=0
which leads to a contradiction to (4.5.52). If x(t) is a solution of (4.5.46) satis-
fying z(t) <0 and y(t) < 0 eventually, from Lemmas 4.5.1 and 4.5.2, the above

argument about v(t) is still valid and also leads to a contradiction. Therefore,

the conclusion of the theorem holds.

The following Theorem 4.5.2 and Corollaries 4.5.1-4.5.2 are for equation (4.5.46)

with0 < p< 1.
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Theorem 4.5.2 In addition to (4.5.52), we further assume that 0 < p < 1
and there is a positive integer kg and a t; > { satisfying m;(n) = [(g(t; +
nt) — t1 + kor)/7] < n for all large enough n. Moreover, there is a sequence

{ni} with ny — oc as k — oc such that

n i ’ ,)k'o 1.
Z qm(tl + 'IT) Z ]1(_701)) (4.5.54)
i=mj

holds for all large enough k with n = ng.m; = my(ny). Then, for every solution

z(t) of (4.5.46). either 2(t) or x(t) — pax(t — r) is oscillatory.

Proof According to Theorem 4.5.1, if (4.5.52) holds, we have that every

solution x(t) of (4.5.46) is either oscillatory or for any T' > ¢y, there exists one
¢ > T such that [z(¢")] < plz(t” — ).
Assume that (4.5.46) has an eventually positive solution 2(¢) such that y(¢) =

x(t) — px(t — 7) is not oscillatory. Then from Theorem 4.5.1, we deduce that

y(t) < O for all large enough t. Let z(t) = —y(¢). Therefore, z(t) > 0 and
AT(t) — f(ta(g(t) = 0.

Moreover,

ATz(t) > q(t)x(g(t)) >0

SO

A7z(t) — q(t)x(g(t)) 2 0. (4.5.55)

For z(t), according to Lemma 4.2.2, h is even. So Alz(t) > 0 for all even

number ¢ with 2 < i < m —2, and |Alz(t)| > 0 for all odd number j with 1 <

j<m-1
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We show that A, z(t) < 0. Indeed. if A, z(t) > 0, then, since A2z(t) >0, we

may assume A, z(f; + k1) > [ > 0 for a large enough ¢, and all k € N. Then

d
Y Acz(tybiT) = 2t 4+ (d 4 1)7) = 2(t) 2 (d+ 1)L

i=0

Let d — oc, then z(t; + (d + 1)7) — +oo. We have lim;_ o 2(t) = O by re-

peating z(t) < px(t —r) for 0 < p < 1. Thus, by the definition of z(t), we

have lim;_ 2(t) = 0 which contradicts z(¢t; + d7) — +00 as d — oo. Thus,
Arz2(t) < 0.

So, according to Lemma 4.2.2 again, h = 0. Thus, AZz(¢) > 0 for all even

number ¢ with 2 < i< m—2, and AJz(t) < 0 for all odd number j with 1 <
j<m-—1

Notice z(t) = (z(t + ) + z(t + r))/p. Hence, from (4.5.55), it follows that

ar=(t) - L a(o) +1) - Loty +1) 2 0,
and further
fl g(t)
ATz(t) —q(t) Z = z(g(t) +ir) — Fw(g(t) + kr) > 0.
So,
ATz(t) - q(t) Y l z(g(t) +ir) >0 (4.5.56)

=1 p

since z(g(t) + kr) > 0. Let

T s1+7 Sm—-2+T t+5m—l+r
u(t) - / dS] / d82 s / dSm_l/ z(0)d0
0 81 Sm -2 t+sm_1

Then we have u{™(t) > 0 and u(t) > 0. Since

T s1+7 Sm—2+T
ul(t) = / ds / ds? e / A‘rz(t‘ + Sm—l)dsm-la
0 81

Sm—2



88
then A,z(t) < 0 implies w/(f) < 0. Moreover, u{?(t) > 0 for all even number
i with 2 <i<m—2. and uY(¢) <0 for all odd number j with 1 < j <m—1.

Integrating (4.5.56) and from the proof of Lemma 4.5.2 with the replacement

of y(t) by z(t). we have

k
ATu(t) = Gm(t) Zl, u(g(t) +ir) > 0,
i=1 p
which leads to
k
m,, 1
i=1

Due to Zf;l 1/pt = (1 - p*)/(p*(1 — p)), we deduce that

APu(t) > - () ulglt) + kr) > 0
pk(l_p)Qm Ug()+7‘)> .

Replacements of k by kg and t by ¢; + 47 in the above inequalities yield

ko

ATty + i) > ——E— g (ty + i7) u(g(ty + iT) + kor).

1
~ pre(l-p)
Summing up both sides of the above inequality for i from s to n and since v/(t) <

0, we have

1 — pho n
AT Yty + (1) T) = AT u(t +sT) 2 pTO-(li—p_) u(g(ty+nt)+kor) qu(t1+z'7),

i=s

which implies

1 _ n
_AmTu(ty + s7) ,,ko(lli — u(g(ty +n7) + kor) Y Gm(ts +147)  (4.5.57)

i=s
due to A" 'u(t) < 0. For the above inequality, we will reduce the order of

Adu(ty + s7) by rewriting it as A7 u(t + (s + 1)7) — Ai-u(t + s7) for any j =

1,2,--,n—L Taking into account the fact that all even terms are positive and
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all odd terms are negative, we will write off all the negative terms from the left

hand side of this inequality. It yields then

1 - p"'o

Ty 9l nT)+ Rar) 3 i)

i=s

u(ty + s7) >

Since g(t; + nt) + kor < ty + m7 and u is decreasing, by taking s = m;, we

obtain
1—phe &
u(ty +my7) > ulty + M) 4 Z Gm(t1 +17),
po(l—p) &
i.e.,

ko
PP0-p)
mi
Zq I+IT 1_pk0

This inequality contradicts (4.5.54). If 2(t) is an eventually negative solution such

i=m)

that y(t) is not oscillatory, then y(t) > 0 holds eventually. The above reasoning
with an obvious minor modification also leads to a contradiction. Therefore, for

every solution x(t), either x(t) or y(t) is oscillatory.

Corollary 4.5.1 In addition to (4.5.52), we assume that 0 < p < 1 and there is
a positive integer ko and a t; > to satisfying my(n) = [(g(ti+n1)—t1+kor) /7] <
n for all sufficiently large n. Moreover, there is a sequence {nx} with ny —

oo as k — oo such that

n kO _
Z (2 —my + 1)gm(ts +i7) > p_(l__pl
1 — pko

i=my

(4.5.58)

holds for all large enough k with n = ng, m; = m;(ni). Then, for every solution

£(2) of (4.5.46), either z(t) or z(t) — px(t —r) is oscillatory.

Proof  Without loss of generality, we suppose (4.5.46) has an eventually

positive solution z(t) such that y(t) = z(t) — pz(t — r) is not oscillatory. The
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proof is the same as that of Theorem 4.5.2 until (4.5.57). By the same technique
we reduce the order of the difference on the left hand side of this inequality down

to the second order and it yields

l—p""’

pko(l _ p) u(g(tl + ’IlT) + kOT) Z (im(tl + lT)

i=s

Alu(ty + sT) >
Summing up the above inequality for s from m; to n, we have

A u(ty+(n+1)7)=Azu(ty+myT) > pko(lzi = u(g(t; +n7)+kor) Z qu t1-+it).

s=mi i=s

Due to A,u(t) < 0, it follows from the above inequality that

1
—Ayu(ty +myT) > e (llip) u(g(ty + nt) + kor) Z qu (t; +17),

s=my i=$

SO
ko

1 _ n n
u(ty + my7) > pT(lli_p)' u(g(t1 + nt) + kor) Z qu(tl +171).

According to g(t; + nT) + kor < t; + my7 and u is decreasing, it follows that

1—ph —~ .
u(t; + myt) > ]Wlip)u(h +myT) Z (2 —mqy + 1)Gm(ty + i1),
i=m
i.e.,
~ ) . _p*(1-p)
z (1 —my + 1)gm(ty +i1) < —ITpT

i=my

This inequality contradicts (4.5.58). Thus, this contradiction shows that the

conclusion holds.

Remark 4.5.1 Compared with (4.5.54), the requirement (4.5.58) for gn,(t) is

weaker than (4.5.54) since (i —m; + 1) > 1 holds in (4.5.58).

In the next corollary, we consider more general case for any [, 1 <! < m.
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Corollary 4.5.2 In addition to (4.5.52), we assume that 0 < p < 1 and that
there is a positive integer ky and a t; > ¢y satisfying my(n) = [(g(t; + n1) ~
t; + kor)/7] < n for all sufficiently large n. Moreover, there is a sequence

{nx} with nx — oc as k — oc and an integer I (1 <! < m) such that

1 < . . _ (1 —p)
i Z (i—mi+ D —m +2)- (i —m + DGty +i1) 2 1_—pko (4.5.59)

holds for all large enough &k with n = ny, my = my(ng). Then, for every solution

i=m

z(t) of (4.5.46), either x(t) or a(t) — pa(t — r) is oscillatory.

Proof  The proof is the same as that of Theorem 4.5.2 until (4.5.57). We
reduce the order of the difference at the left hand of this inequality down to the

Ith order as we did in the proof of Theorem 4.5.2. Since 1 <1 < m, ifl is odd,

we obtain

1 — p*o

T u(g(ty + nr) + kor) qu(tl +1i71),

i=s

—ALu(t; +s7) >

and if [ is even,

1 — pko

R U0 ) Ror) )Gty 4 7).

i=s

Alu(ty + s7) >

We can reach the same conclusion for the above two cases. Thus, we only give

the details of the proof when [ is odd. Summing up the above inequality for s

from my to n, we have

_AR Tty + (n+ 1)7) A u(ty + myr)

_ kO n n
> ITU% u(g(ts +n7) + kor) D) Gmlty + 7).

s=my i=s

Since Al~u(t) > 0, the above inequality implies

1 — pko

> mu(g(tl +n7) + kor) ) Y Gm(ts + 7).

s=m; i=s

Alr_lu(tl + myT)
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Further, by repeating the above procedure, we obtain

1 — pho
u(t1+m]7')>pk0(1_p) u(g(ty +nr) + kor) Z z Zqu ty +1i1).

my=my mz=ma2 s=my i=s

Due to g(t; + n7) + kor < t; + my7 and u is decreasing, it yields

R D DRtt) ) WU

mo=mj m3=my s=my i=s

B ,,M_. (Z >

mao=m} mz=my

n

1
Z 2’(1 —my_y + D= my_y + 2)@m(ty + 'iT))

i=my_y

n i

— pho
B péaém<§:%ﬁ«+”)z:(LLMU_"”+Uﬁ_"b+ﬁX

i=m, mo=m,

coli=mg+ (I - 1)))

n

1 — pko 1 . . _ )
= m(zl!( m1+1)(z—m1+2)x---(z—m1+l)qm(t1+z—,—)>,

i:m1

ie.,

1 n . L B . pko(l _p)
il Z(l —my+ 1) (f=my + DGty +i1) < T:_p-l;—'

i=m

This inequality contradicts (4.5.59). Thus, this contradiction shows that the

conclusion holds.

Remark 4.5.2 Note that (4.5.59) coincides with (4.5.58) for { = 1. For [ > 1,

(z—m1+1)(z—m1+2)(z—-m1+l)
A

>i—m+1>1

hold. Thus, (4.5.59) is weaker than (4.5.58) and (4.5.54) in general.

The following Theorem 4.5.3 and Corollaries 4.5.3-4.5.4 are for equation (4.5.46)

with p=1.
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Theorem 4.5.3 In addition to (4.5.52), we assume that p = 1 and that thereis a
positive integer ko and a t; > t, satisfying my(n) = [(g(t1 +n7) —t;+kor)/7] <
n for all sufficiently large n. Moreover, there is a sequence {n;} with n, —

oo as k — oo such that

" , 1
D dmltitin) 2 (4.5.60)
0

i=m

for large enough k with n = ny, m; = my(n). Then, for every solution z(t) of

(4.5.46), either x(t) or x(t) — a(t — r) is oscillatory.

Proof The proof is similar to that of Theorem 4.5.2. However, the proof
of the feature of z(t) is different from that of Theorem 4.5.2 due to p = 1. We,
hence, just outline the proof about the feature of z(¢). For z(t), by Lemma 4.2.2,
we notice h could be even with 2 < h <m—2. So Aiz(¢) > 0 for all even number

i with 2<i<m-2, and |AJz(t)| > 0 for all odd number j with 1 < j <m-—1.

If A;z(t) > 0, from the proof of Theorem 4.5.2 we have z(t; + dr) —
+o0 asd — oo for some t; > t;. Since p = 1, from 0 < z(t) < z(t — r),
we know that x(t) is bounded on [tp,00). Thus, 2(t) is bounded on [tg, 00).
This contradicts z(¢t; + dr) — +oo as d — oo. Thus, A,2(t) < 0. So, ac-
cording to Lemma 4.2.2 again, h = 0. Thus, Aiz(t) > 0 for all even number

i with 2 <i<m—2, and AJz(t) <0 for all odd number j with1 < j <m-—1.

The rest is the same as the proof of Theorem 4.5.2 with the necessary replace-

ment of p*(1 — p)/(1 = p*) by 1/ko.
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The proofs of the following corollaries are very similar to those of Corollar-

ies 4.5.1-4.5.2 except minor changes. Thus. we will omit the proofs.

Corollary 4.5.3 In addition to (4.5.52), we assume that p = 1 and that there
is a positive integer ko and a t; > to satisfying mi(ng) = [(g(t1 + nr) —
t1 + kor)/7] < n for all sufficiently large n. Moreover, there is a sequence

{nx} with n; — oc as k — o0 such that

n

1
D (i=my o+ D)gu(t +i7) > o (4.5.61)
0

i=m

for large enough k with n = ng, my = my(ng). Then, for every solution z(t) of

(4.5.46), either x(t) or z(t) — x(t — r) is oscillatory.

Corollary 4.5.4 In addition to (4.5.52), we assume that p = 1 and that there
is a positive integer ko and a t; > to satisfying my(ng) = [(g(t1 + n1) —
t; + kor)/7] < n for all sufficiently large n. Moreover, there is a sequence

{ni} with ng — oo as k — oo and an integer [ (1 <1 < m — 1) such that

217 z": (G—m+1)E=m+2) - (i—mg+DGn(t; +ir) > (4.5.62)

it=m)

1
ko
for large enough k with n = ng, m; = my(ng). Then, for every solution z(t) of

(4.5.46), either x(t) or (t) — x(t — r) is oscillatory.

Suppose that x(t) is a bounded eventually positive solution of (4.5.52). The
proof of Theorem 4.5.2 is then still valid for Theorem 4.5.4 subject to a few
obvious minor changes. Therefore, we will omit the proof of the following results

for equation (4.5.46) with p > 1.
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Theorem 4.5.4 In addition to (4.5.52), we assume that p > 1 and that thereis a
positive integer ko and a t; > to satisfying my(ng) = [(g(t1 +n7)—t;+kor)/7] <
n for all large enough n. Moreover, there is a sequence {n;} with n, — oo as k —

oo such that

ko 1 —
Z Qm [1 + IT ] ]_(—p p) (4.563)

holds for all large enough k with n = ng, my = my(ny). Then, for every bounded

solution z(t) of (4.5.46), either a(t) or a(t) — px(t — ) is oscillatory.

Corollary 4.5.5 In addition to (4.5.52), we assume that p > 1 and that
there is a positive integer ko and a t; > to satisfying my(n) = [(g(t; +
nt) — t; + kor)/7] < n for all large enough n. Moreover, there is a sequence

{ni} with nxy — oo as k — oo such that

n ko _
D (i = my o+ Vgt +i7) 2 Ql(_l—pkf) (4.5.64)

holds for all large enough k with n = ng,m; = my(n). Then, for every bounded

solution z(t) of (4.5.46), either x(t) or x(t) — pz(t — r) is oscillatory.

Corollary 4.5.6 Inaddition to (4.5.52), we assume that p > 1 and that there is
a positive integer ko and a t; > to satisfying mi(n) = [(g(ti+n7)—t1+kor)/7] <
n for all sufficiently large n. Moreover, there is a sequence {n,} with n; —

oo as k — oo and an integer [ (1 <1 < m) such that

p*(1 - p)

Z(z—m1+1)(1—m1+2) (i =my 1) Gty +i1) > e

z=m1

(4.5.65)

holds for all large enough k with n = ny, m; = my(ng). Then, for every bounded

solution z(t) of equation (4.5.46), either x(t) or (t) — px(t — r) is oscillatory.
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Remark 4.5.3 Note that

((—my+1)i=—m+2)---f—m+1l-1)
(IL-1)!

holds. Thus, (4.5.65) is weaker that (4.5.64) and (4.5.63) in general.

2i—-m+121

Corollary 4.5.7 In addition to (4.5.52). we assume that p > 1 and that there is
a positive integer ko and a t; > tg satisfying mi(n) = [(g(ti+n7)—ti+kor)/7] <
n for all sufficiently large n. Moreover, there is a sequence {n;} with ny —

oo as k — oo such that

1—m1+n——1) . pko(l——p)
(n—1)! Z G —my)! Gm(ts +17) 2 = e (4.5.66)

i=m

holds for all large enough k with n = ny, m; = my(nx). Then, for every bounded

solution z(t) of (4.5.46). either z(t) or 2(t) — px(t — r) is oscillatory.

4.5.3 EXAMPLES

Three illustrating examples will be given in this subsection to demonstrate

the applications of the results given in last subsection.

Example 4.5.1 Consider the linear difference equation

g
1+ 6t

AP (z(t) — pa(t — 7)) + %1:(1‘ — )=0 (4.5.67)

for t > 0, where n is a positive integer, p > 0, 8 > 0, r, 7 and o are positive
constants. Viewing (4.5.67) as (4.5.46), we have g(t) = 1/t and g(t) =t —o/(1 +

ft). Then, according to (4.5.47), §an(t) = a/(t + 2n7) for 3 =0 and

~ B a 0’,3 2n
an(t) = t+2nr (1 B (1+8t)2+ aﬁ)
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for 3 > 0. Since g2,(t) > o'/(t + 2n7) for some & > 0 and all t > 0, ¢, satisfies
(4.5.52) with ¢ = 0. By Theorem 4.5.1, for every solution x(t) of (4.5.67), either
z(t) is oscillatory or for any T > to there exists a t” > T such that |z(t")| <

plz(t" — r)|. In particular, when p == 0. every solution of (4.5.67) is oscillatory.

Example 4.5.2 Consider the difference equation

8o
1+ ¢2

AT (x(t) = pr(t — 7)) + 8x(t — ) + 2t —7m) =0, (4.5.68)

where ¢ > 0 is a constant. Regarding (4.5.68) as (4.5.46), we have 7 = 7, r =
r, g(t) =t — m and g(t) = 8. Then, for some a € (0,1), §2n = 8a by (4.5.47) so

(4.5.52) is satisfied. For p=1, ko = 1 and ¢; = ¢, we have m; = [ and

l

1
E (s+1—m)gon(ty +57)=8a > 1= P

0
s=my

if a > 1/8. Moreover, we also have

[}
1 — p)pho
Z(S‘*‘ 1 —7n[)62n(f1+8T):8a>p: %

s=my

if p€ (0,1) U(1,8) and o > p/8. According to Theorems 4.5.2-4.5.3, for every
solution z(t) of (4.5.68), either x(t) or x(t) — px(t —r) is oscillatory if 0 < p < 1.
Furthermore, by Theorem 4.5.4, for every bounded solution z(t) of (4.5.68), ei-

ther z(t) or z(t) — pz(t — 1) is oscillatory if 1 <p < 8.

Example 4.5.3 Consider the difference equation

AP (z(t) — z(t — 1)) + 2" 2(t - 3) = 0, (4.5.69)
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where 7 and r are positive odd integers. Viewing (4.5.69) as (4.5.46), we have
g(t) = t—3 and ¢(t) = 2*"*1. Then, for some a € (0,1), G2, = @221 by (4.5.47)

so (4.5.52) is satisfied. For p = 1. ko = 1 and t; = ¢, we have m; = [ and

!
Z (s + 1= m)Gon(t; + s7) = a2t > 1 = ki
0

S$=my
if @ > 27+, According to Theorems 4.5.3, for every solution z(t) of (4.5.69),

either x(t) or a(t) — 2(t — r) is oscillatory.

4.6 CONCLUSION

In this chapter we concentrate on neutral difference equation (4.1.1) of even
order. Here we just give a brief summary and a detailed summary will be pre-
sented at the end of chapter 5 in order to compare the difference of the results

between the even order and the odd order of (4.1.1).

From the known results about the difference of discrete argument we have
obtained the similar results on the difference of continuous variable. By defining
the new functions, we have transformed (4.1.1) to difference equations/inequalites
without neutral term. Furthermore, applying Riccati transformation to (4.1.1),
we have obtained sufficient conditions for x to be oscillatory or z(t) — pz(t —r) to
have constant sign. Thg results are given in three separate cases according to the
value of p, i.e., 0 <p<1,p=1, and p > 1. We managed to establish weaker

oscillatory criteria in each case.



Chapter 5

ODD ORDER DIFFERENCE

EQUATIONS
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5.1 INTRODUCTION

Our main interest in this chapter is to investigate the bounded solutions of
equations (4.1.1) with m > 3 being an odd integer. In chapter 4, we discussed
(4.1.1) with m > 2 an even integer. We shall adopt an approach here different
from that for even order equations due to the difference between the format of

odd order and even order equations.

A well-known result on differential inequalities will be stated in section 5.2
since it will be needed in later sections. Section 5.3 will consist of three subsec-
tions for the third order equations with subsection 5.3.1 covering some lemmas,
subsection 5.3.2 the main results and subsection 5.3.3 some illustrating examples.
Section 5.4 will be presented for higher order equations in a way similar to sec-

tion 5.3. Finally, we will close this chapter with a conclusion section.

5.2 PRELIMINARIES

The following lemma is about the inequality of the form
'(t) + q(t)z(7(t)) <0, (5.2.1)
where ¢, 7 € C([to,0), R*), 7(t) <t and lim;_,o 7(t) = 00. Let

t
n= liminf/ g(s)ds.

t—o00 )

Lemma 5.2.1 Assume that 7 is nondecreasing, 0 < n < 7!, and z(t) is an



eventually positive function satisfying (5.2.1). Set

r = |limi ————a"(t)
g Sen)s

Then r satisfies

l—-n—1=-2n—n2

<r<l.
5 Srs

The above lemma can be found in [15] (page 18).

5.3 THIRD ORDER EQUATION (4.1.1)

In this section, we deal with equation (4.1.1) with m = 3, i.e.,
Ad(z(t) — pa(t — 1)) + f(t,z(g())) = C. (5.3.2)
For the convenience of later use, let

3
%(t) = o _min {q(s)}( min {(g-1<s>>'}>, (5.3.3)

t<s<t+3r g(t)<s<g(t)+37
where 0 < a < 1. We shall see from the following subsections that gs will play

an important role in the oscillatory criteria for (5.3.2).

The oscillation of (5.3.2) will be considered in this section when 0 < p <
1 or p > 1 and sufficient conditions will be obtained for the bounded solutions of

(5.3.2) to be oscillatory.

101
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5.3.1 RELATED LEMMAS

The properties of the bounded solutions of (5.3.2) are in some way determined

by the values of p. Thus we investigate the solutions when 0 < p <1 and p > 1

respectively.

Lemma 5.3.1 Let 0 < p < 1. Assume that z(¢) is a bounded and eventually
positive (negative) solution of (5.3.2) with z(t) = a(t)—pz(t—r) and liminf; . 2(t)

> 0 (limsupy_q 2(t) < 0). Let

t+1 t1+7 to+T
y(t) = / dt, / dty / 2(0)de.
t t1 ta

Then y(t) > 0(< 0), y®(t) < 0(> 0),¥'(t) > 0(< 0), and ¢/(t) < 0(> 0)

eventually. Moreover,

n

Aly(t) + @) Y _ py(g(t) —ir) <0 (> 0) (5.3.4)

i=0

holds for each fixed natural number n > 0 and for all large enough ¢.

Proof Suppose z(t) is a bounded and eventually positive solution. Note
that g(t) < t, ¢'(t) > 0and (4.1.2) hold, so there exists a ¢; > #, such that

z(g(t)) >0 for all ¢ > ¢;. From (5.3.2) it follows that
A72(t) + f(t,2(g(1)) = 0.
By (4.1.3), we obtain f(t,2(g(t)) > g(t)z(g(t)) > O for > t,. Therefore,
¥ ) +q()z(9(1) < 0 (5.3.5)

for t > t;. According to g(t)z(g(t)) > 0 and (5.3.5), y®(t) < 0 forall t > ¢,.

Thus, ¢(t) is decreasing so either y"(t) > 0 for ¢t > t; or there is a t; > t; such



that ¢"(t) < 0 for t > t,. Suppose y’(t) < 0 for ¢t > t,. Then y/(t) is decreasing

and

Y () =9(t2) + /t y'(s)ds <9/ (t2) + 4" (t2)(t — tz) — —o0

2

as t — o0o. Thus, there is a t3 > ¢3 such that y'(¢) < y'(t3) < 0 for t > ¢3. This

implies that
t

y(t) = ylts) + / /()ds — —oc

t3

as t — 00, a contradiction to the boundedness of y since both z and z are
bounded. Therefore we have y”(¢) > 0 for ¢ > ¢;. From this we know that ¢/(¢) is
increasing so either ¢/(t) < 0 for all ¢ > t; or there is a t; > ¢; such that y/(¢) >

1/ (t4) > 0 for t > t,. If the latter holds then

y(t) = y(ta) + / y(s)ds > y(ta) + ¥ (t)(t = ta) — 00

2
as t — 00, a contradiction again to the boundedness of y. Therefore we must
have ¢/(t) < O for all ¢ > t;. This shows that y(¢) is decreasing so either y(t) >
0 for t > t; or there is a t5 > t; such that y(t) < y(t5) < Ofort > t5. In the

latter case, then

t+ t1+T1 ta+T t+r ti+T totr
/ dtl / dtg/ :1:(0 + p/ dtl / dtg/ - r)d@
t t t t1 ta
t+r t1+1 ta+T
S y(t5) -+ p/ dtl/ dtg/ x(@ - r)d@
t t1 t2

h—1 t+7 ti4r to+7
y(ts)Zp’+p/ dt1/ dtz/ z(6 — hr)do
i=0 t2

_nh
WD) |

IA
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for t > t5 + hr, where M = sup,, {z(t)} and h is any integer with h > 1. Let

t — 00 s0 h — 0o as well, p" M 72 then is arbitrarily small since 0 < p < 1. Thus,

t+7 t1+7 to+T7
t t1 ty

which contradicts the assumption that x(t) is eventually positive. Therefore, we

must have y(t) > 0 for ¢ > ¢;.
From (5.3.5), it follows that
Alz() +q(t)z(9(1)) + pg(t)z(g(t) — 1) 0.
By the definition of z(t), the above inequality gives
AZz(t) + q(t)z(g(t) +pa(t)z(g(t) — ) + p* q(t)z(g(t) — 2r) < 0.
Proceeding in the same way as the above, we obtain

Az(t) +q(t) > p'a(g(t) — ir) + p" g(t)z(g(t) — (n + 1)r) <0.
i=0
Since q(t)p" 'z (g(t) — (n + 1)) > 0 when ¢ is large enough, the above inequality

implies

n

A3z(t) +q(t) > p'a(g(t) —ir) < 0.

i=0

In order to integrate the above inequality, we show that z(t) is eventually
positive. This is true if p = 0 since 2(t) = z(t) in this case. Now suppose
0 < p < 1. Since y®(t) = A3z(t) < 0 for t > t,

A2z(t 4 (R4 1)7) = A22(t + h1) = Ad2(t + k1) <0
so A2z(t + hr) is decreasing as h increases. By the boundedness of z(t) we know

that limp—eo A22(t + h7) exists. If limp_oo A22(¢ + h7) = S(t) # 0, then

h
Arz(t+ (A + 1)) = Arz(t) + Y AZz(t + k) — —00 or 00

k=0
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as h — oo, a contradiction to the boundedness of A,2(t). Thus, for each t > ¢,
AZz(t + hr) is decreasing and tends to 0 as h — oo. Similarly, A,z(t + h7) is
increasing as h increases and A, z(t + ht) — 0 as h — 00; 2(t + h7) is decreasing
as h increases so limy_ 2(t + h7) exists for each ¢ > ¢;. Then 2(t + h7) is
decreasing and, by assumption, limy_e 2(t + h7) > 050 2(t + h7) > 0 for all

t>t;and h 2> 1.

Integrating ¢(t)z(g(t) — ir), by the assumptions on g and ¢, we obtain

s1+'r so+T
/ dsl/ / 2(g(8) — ir)q(6)do
tj—‘r s1+T 32+"’
2 i, o) [ o [T s [ o0 —inya
g(t+T) g7 (s1)+7) .
> min o) [ (@ ey ds / (971 (s2))'ds»

t<s<t+37 ot)

g(g™(s2)+7)
/ 20— ir)(g™(6))'d8

52

> min {q(s)}< min {(9_1(3))/}>3/g(t)+rd31 /:1+Td32

t<s<t+3r g(t)<s<g(t)+37 g(t) 1

s2+T
/ 2(0 — ir)df

> min_ {q(s)} min 9_1(3))’}> y(9(t) —ir)

t<s<t+3r 9(t)<s<g(t)+37
> gs(t)y(g(t) —ir).
Therefore, it follows that

Ay(t) +3s(t) 3_p'y(g(t) —ir) <0

holds for each fixed natural number n and for all large enough t. If z(t) is a
bounded and eventually negative solution, then the corresponding inequalities in

the above proof reverse to the opposite so the conclusion within brackets follows.
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Lemma 5.3.2 Let 0 <p <1 and r = k7 for a positive integer k. Assume that

z(t) is a bounded and eventually positive (negative) solution of (5.3.2). Let

(t) = a(t) - pa(t - 1),

t1+7 to+T
y(t) = / dtl/ dt2/

Then the conclusion of Lemma 5.3.1 holds.

Proof  The proof is the same as that of Lemma 5.3.1 until lim,_ 2(t + h7)
exists for each ¢t > t;. Suppose there is a t' > t; such that lim,o 2(t' + h7) =

§ <0. Then 2(¢ + hr) < §/2 <0 for h > hy > 0. So
z(t' + k(h+ h)7) = 20"+ k(h+ hy)7) + p2(t' + k(h + hi)T — k7)
1
< 55 + px(t' + k(h — 1+ hy)7)

1
< S 4pt- T 4P + k) <0

for large h, a contradiction to the assumption that z is eventually positive. There-
fore limp—oo 2(t + h7) > 0 for any t > t;. Since z(t + ht) is decreasing as h
increases, z(t) > O for all ¢ > ¢;. The rest of the proof is the same as that of

Lemma 5.3.1.

Lemma 5.3.3 Under the assumptions of Lemma 5.3.1 or Lemma 5.3.2, let

t+r t1+T ta+r
_ / dt, / dt / y(0)do
t i to

Then v(t) > 0(< 0), v®(t) < 0(> 0), v"(t) > 0(< 0), and v'(t) < 0(> 0)

eventually. Moreover,

v () + Sa(t) Z pu(g(t) —ir) < 0(> 0) (5.3.6)
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holds for each fixed natural number n and for all large enough ¢.

Proof Suppose 2(t) is a bounded and eventually positive solution. By the

definition of v(t), due to y(t) > 0, we have v(t) > 0 for all ¢ > t;. Further, we

t+7 t1+71 to+T1
_ / it / dt» / 4/(6)d9
t t to

Since y'(t) < 0, then v'(t) < 0. Similarly, we have v"(t) > 0 and v®(t) < 0.

have

Note that v®(t) = A3y(t). Since y/(t) <

thh+7 to+T
v(g(t) —ir) = / dtl/ dtg/ (0 — ir)do
g(t)
g(t)+ t1+7 ta+T
9(t) t) t2

g(t)+71 ti+7
< T/ dtl/ Y(to — ir)dts

9(t) t

g(t)+7
< 7'2/ y(t; — ir)dty
g(t)

< Ty(g(t) —ir).

IN

Hence, from (5.3.4), we obtain

() + =aa(t) Y P(g(t) — ir) < 0

T i=0

for each fixed natural number n and for all large enough t. If z(t) is a bounded
and eventually negative solution, then the conclusion within the brackets follows

from the same argument with an obvious modification.

Lemma 5.3.4 Under the assumptions of Lemma 5.3.3, for each ¢ > ¢, there is

a 0 € (g(t), t) such that

i [v®(6)]. (5.3.7)
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Proof  Under the assumptions of Lemma 5.3.3, we know that ¢/(¢t), —v"(¢) and

v®3)(t) have the same sign. By Taylor’s formula, we have
1
v'(g(t) = v'(t) + 0" (t)(g(t) — t) + 50(3)(9)(9(0 —t)°

for some 8 € (g(t), t) and (5.3.7) follows immediately.

The following three lemmas are for the solutions of (5.3.2) with p > 1.

Lemma 5.3.5 Let r = k7, k € N. Assume that z(¢) is a bounded and eventu-

ally positive (negative) solution of (5.3.2) with p > 1. Let

2(t) = a(t) - pa(t—7),

t1+T1 tr+T
y(t) = / dtl/ dt'z/
ty

Then y(t) < 0(> 0), ¥®() < 0(> 0), ¥'(t) > 0(< 0), and ¢/(t) < 0(> 0)

eventually. Moreover,

A2y(t) — Gs(t) ]%;y(g(t) T ir) < 0(>0) (5.3.8)

i=1

for each fixed integer n > 1 and all large enough ¢.

Proof Suppose x(t) is a bounded and eventually positive solution. By
g(t) < t, g'(t) > 0 and (4.1.2), from the assumptions, there exists a ¢; > t; such

that z(g(t)) > 0 for all ¢ > ¢;. Note that
Alz(t) + f(t,2(9(t))) =

According to (4.1.3), we may assume f(t,z(g(¢))) 2 q(t)z(g(t)) > 0 forall t > t,.

Therefore
AZz(t) + q()z(g(t)) <0 (5.3.9)
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for t > t;. By the definition of y(t), we notice y®(t) = A3z(t). Thus, from
(5.3.9) it follows that

¥ () + q(t)z(g(t)) <0 (5.3.10)

for t > t1. By q(t)z(g(t)) > 0, y®(t) < 0 holds for ¢ > t;. Thus, y"(¢) is
decreasing so either y”(t) > 0 for ¢ > t; or there is a to > t; such that y"(¢) <
y/'(t;) < Ofort > t. By the same procedure as that used in the proof of
Lemma 5.3.1, we have y”(t) > 0 and ¢/(t) < 0 for ¢t > ¢;. So y(t) is decreasing
and either y(t) > 0 fort > ¢; or there is a t3 > t; such that y(t) < y(t3) <
0 for t > t3. Now we claim that y(t) < y(t3) < 0 for all t > ¢3. To prove this,
we consider the feature of z(t) at first. Since y®(t) = A3z(t) < 0 fort > ¢,
by the same reasoning as that used in the proof of Lemma 5.3.1, we know that
z(t + hr) is decreasing for each fixed t > t; as h increases. Suppose there is a
¢/ > t; such that z(¢’ + hr) > Oforall A > 1. Under r = k7, we then have

z(t' + hr)>0forall h >1so0
a(t + hr) > pa(t’ + (h = 1)r) > pla(t’ + (h = 2)r) > - > pPa(t!)

forall h > 1. So z(t'+hr) — oo as h — 00, a contradiction to the boundedness of
z. Therefore, for each t € [t;,t;+7], 2(t+h7) is decreasing as h increases and there
is an integer H(t) > 0 such that z(t + h7) < z(t + H(¢)7) < 0 for all h > H(¢).
Since 2(t) is continuous for each t' € [t;,¢; + 7|, there is an open interval I(t')
such that z(t+h7) < 2(t+ H(t')7) < 0 hold for all t € I(t') and h > H(t'). Since
[t1,t: + 7] is compact and {I(t') : ' € [t1,¢1 + 7]} is an open cover of [t1,t + 7],

there is a finite subset of {I(t) : ¢’ € [t1,t; + 7]} covering [t;,¢; + 7]. Therefore,
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there is a K > 0 such that
zZt+hr)<z(l+ K1) <0

for all t € [t;,t; + 7] and all h > K. Hence, there is a t3 > t; such that 2(¢) < 0

so that y(t) < 0 for all ¢ > t3.

From (5.3.9), we have

19 (9(t) + 1) <.

A3z(t) —

q—gzz(g(t) +7r)+

According to the definition of z(t), it follows from the above inequality that

q(t) q(t)

2%(t) - LY gy 4 1) + <_%z(g(t) For)+ })w(g(t) +2r)) <0,

Proceeding in the same procedure as the above, we obtain

n

B3(t) = a(t) 3, —=(9(0) + i)+ a(t)a(g(t) + 1) < O

i=1

Since q(t)z(g(t) + nr) > 0 for all large enough ¢, the above inequality yields

A3z t)—qt)Z—z ) +ir) <0.

Integrating g(t)z(g(t) + ir), by the assumptions on p and g, we obtain

s1+T so+T
/ ds, / ds, / (9(0) + ir)q(6)do

t+7 s1+T s2+T
< min {g( l)}/ dsl/ d32/ 2(g(0) + ir)do
t s1 S2

t<I<t+37
. l ot+r) / 9(9™ (s1)+7) ,

. - - !
< i, ta0) [ @y ds [T (g e

9(g7 (s2)+7)
/ 2(0 + ir)(g™1(0))'df

2

< _min {Q(l)}( min (9“1(8))’>3

t<I<t+3r g(t)<s<g(t)+3

g(t)+7 s1+7T so+T
x/ dsl/ dsz/ 2(0 + ir)d

< @s(t)y(g(t) +ir).
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Therefore, we have

n

Ary(t) - go(t) 3 éy(g(t) 1ir) <0
=1

for each fixed integer n > 1 and for all large enough t. If z(t) is a bounded and
eventually negative solution, then the conclusion within brackets follows from the

above proof with minor modifications.

Lemma 5.3.6 Under the assumptions of Lemma 5.3.5, let

t+7 t1+1 to+T
u(t) = / dt, / dt / y(0)df.
t ty ta

Then v(t) < 0(> 0), v®(t) < 0(> 0), v"(t) > 0(< 0), and v'(t) < 0(> 0)

eventually. Moreover,
v®(t) — 1z (t)ilv( (t) =37 +ir) <0
)RR L 9 T+ir) <0(>0) (5.3.11)
for each fixed integer n > 1 and all large enough ¢.

Proof By the definition of v(t) we know that y(¢) and v(¢) have the same

sign for all large enough ¢. Further, we have

, t+T1 t1+71 to+1
v'(t) :/ dtl/ dt2/ ¥ (6)d6.
t £y ta

Thus, ¥/(t) and v'(t) have the same sign. Similarly, v”(t) and y"(t) have the same
sign and v®(t) and y®)(t) have the same sign. Note that v® (1) = Ay(t). If

y/(t) <0, then
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g(t)+r ti+7 ta+7
v(g(t) +ir) = / dtl/ dtg/ y(6 + ir)do
g(t)

g(t)+7 t1+7 to+T
> / dt, / dtg/ y(ta + 7 + ir)do
g(t)

glt)+7 ti+7
Z 7"/ dtl / y(t2 + 7+ ?:T)dtg
g

t)
(t)+‘r

> y(ty + 27 + ur)dty

\‘

g(t)

> Tay(g(t) + 371 + ir).

Hence, from (5.3.8), we have

n

1 1 .
v®(t) — —5(1) E;v(g(t) —3r +ir) <0

i=1

for each fixed integer n > 1 and for all large enough ¢. 1If ¢/(¢) > 0, then “>” and

“<” are replaced by “<” and “>” respectively in the above inequalities.

Lemma 5.3.7 Assume that 2(¢) is an eventually positive (negative) and bounded
solution of (5.3.2). Let z(t) and wv(t) be defined as in Lemmas 5.3.5 and 5.3.6.

Then, under the assumptions of Lemma 5.3.5 for any ¢ > ¢;, there is a 6 € (g(t),t)

such that

{t—g®)" (t))

[ (g(O)] > ———1D(O)]. (5.3.12)

Proof  Under the assumptions, from Lemma 5.3.6, we know that v/(t), —v"(¢)

and v® (t) have the same sign. By Taylor’s formula, we have

V(g(t)) = o'(8) + 0" (1)(g(t) — 1) + %v(a)(e)(g(t) —t)?,

where g(t) < 8 <t. Then (5.3.12) follows.



5.3.2 MAIN RESULTS

Using the above lemmas, we shall obtain the following sufficient conditions

for the bounded solutions of (5.3.2) to be oscillatory. Let

~1(4) — )2Ga(g™!
B :t%{(g (t) Qf)qu (9 (t))} (5.3.13)
and
B = nf {(g_l(t)g:.st)z%(t)}’ (5.3.14)

where T; > tg is sufficiently large. Note that both 33; and (32 are nondecreasing

as T3 increases.

Theorem 5.3.1 Assume that (5.3.2) with 0 < p < 1 satisfies

rBa Y _ip' > 1 (5.3.15)
i=1

and

273(1 — p)e!

e (5.3.16)

t
o< limint [ (57(9) = 5)a(g7! (6))ds <
—o0 t—r

for some integer n > 1. Also assume that g3(t) given by (5.3.3) is nonincreasing.

Then, for every bounded solution z(t) of (5.3.2), either z(t) is oscillatory or

liminfyoo(|2(2)| = plz(t — 7)) <0

Proof Suppose the conclusion does not hold. Let z(t) be an eventually
positive and bounded solution of (5.3.2) with lim inf, oo (2(t) —pz(t—7)) > 0. Let

y(t) be defined as in Lemma 5.3.1 and v(t) be defined as in Lemma 5.3.3. From
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Lemma 5.3.3, we know that v(t) > 0, v®(t) = Ady(t) <0, v"(t) >0, v'(t) <0
and
IR :
v (t) + 3‘13“) ZPl’U(g(t) —ir) <0
i=0
holds for any natural number n > 0 and for all large enough ¢. From Lemma 5.3.4

we know that

2
oy <@

for some 8 € (g(t), t). Since gs(8) > gs(t) by assumption and

V' (g(t))

v(g(0) —ir) > v(g(t) —ir),

from (5.3.6) with t replaced by 6, it follows that

OV =gy + B0 Pt =) <0,
i.e.,
— g(1))? "
(o) + L2 gy > pelg() = ir) <0 (5.3.17)

With the replacement of t by g~1(t), (5.3.17) becomes

=14\ _ )2 n
V(t) + (1%3—1")— gs(g™' (1)) Zp"v(t —ir) < 0. (5.3.18)

We assume that (5.3.18) holds for ¢ > ¢; > to. Since (33 defined by (5.3.13)
is nondecreasing as T3 increasing, if 33 for a fixed T; satisfies (5.3.15) then (s,
for any larger T also satisfies (5.3.15). Thus, without loss of generality, we may

assume that T3 > t; + nr. Let




Note that w(¢t) > 0 and v(t) = v(Tg)expf;3 —w(6)do for all t > T;. From

(5.3.18) we have

w(t) > (7 =1 qs(g Zp exp/ w(s)ds, (5.3.19)
w(t) > %3—71-_-(;22;)" exp /t_. w(s)ds (5.3.20)

for all ¢ > T, where Qs;(t) = (g7 1(t) — t)%gs(g™1(¢)) > O.

Let wo(t) =0 for ¢t > T3 — nr. And for each k € N and t > T + nkr, let

n t
wnn(t) = B> pexp [ s

=0

Let

= inf t ke N.
31k t2T3-+l—I(]k—1)nr{wk( )} €

Then

n

1
> i R ( lrasuc 4 "‘031k
Q31k+1 2 tlzana {Qsl(t) 5.3 > pe } Pa1 ZP e

i=0

Since eir@stk > 1 4 iragy, > iras;, by (5.3.15), {aaik} is an increasing sequence.

Suppose

lim azix = pa1 < 0.
k—00
So pa1 2= Ps1 Yoo pe’™. Let
F31 ,831 zpl irr

Then F},(z) = B i irp'e™ — 1 and Fyj(z) > 0, so Fjj(z) is increasing.
Since FU(0) = Ba1 Y igirp' —1 > 0 by (5.3.15), then Fj(z) > Oforz >

0. Hence F3(z) is increasing. Thus, from F3(0) = B3> 5 o0 > 0 we have
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Fs1(z) > 0 for all # > 0. This shows that no positive number ps; satisfies p3; >
Ba1 0o p'e™1. Therefore, we must have as;, — oo as k — oo. Note that
w(t) > wr1(t) 2 aziey for t > Ty +nkr. Thus w(t) — oo as t — oo. From this
it follows that

t+r
lim / w(s)ds = oo.
t

t-— 00

By the definition of w(t) we have

ult t+r
v(t(+)r) :exp/t w(s)ds — oo as t— o0,
ie.,

lim v(t) =
t—oo ¥(t + 1)

(5.3.21)

On the other hand, since v/(t) < 0 and v(t) > 0, it follows from (5.3.18)(by

dropping the ¢ = 0 term) that

V() < —-(;1(?—)—1— g Y )vat—zr

273
-1 _ _ antl
o e ae . Gam

By (5.3.16) and Lemma 5.2.1,

€ (0,1].

Thus, v(t + r)/v(t) has a positive lower bound so v(t)/v(t + r) has a positive
upper bound, a contradiction to (5.3.21). If z(¢) is a bounded and eventually
negative solution with limsup,_,(z(t) — pz(t — r)) < 0, the above proof with
obvious minor changes also leads to a contradiction. Therefore, the conclusion of

the theorem holds.
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Corollary 5.3.1 The conclusion of Theorem 5.3.1 still holds if (5.3.16) is re-

placed by

t=oo Jy_, ep

0 < lim inf/t (g71(s) — 5)%qs(g7*(s))ds < @_ (5.3.23)
t

Proof The proof is the same as that of Theorem 5.3.1 except (5.3.22). The

conclusion still holds if (5.3.22) is replaced by

V(1) < — L2 G Opvle - 7).

Corollary 5.3.2 Assume that (5.3.2) with 0 < p < 1 satisfies

n

rBa Y i’ >1 (5.3.24)
i=1
and
t 2 371 _ -1
0 <liminf [ (97}(s) = 5)°G(s)ds < %pn_’ff;_ (5.3.25)
— 00 t—r -_

for some integer n > 1. Also assume that gs(¢) given by (5.3.3) is nondecreasing.

Then the conclusion of Theorem 5.3.1 holds.

Proof The proof of Theorem 5.3.1 is still valid after the replacement of

gs(8) > Ga(t) by g3(0) = gs(g(?))-

Corollary 5.3.3 The conclusion of Corollary 5.3.2 still holds if (5.3.25) is re-

placed by

t 3
0< litm inf/ (g71(s) — 8)%q3(s)ds < a-—- (5.3.26)
-0 t—r ep

The proof of Corollary 5.3.3 is similar to that of Corollary 5.3.1.
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Corollary 5.3.4 Assume0 < p < | and » = k1, k € N. Under the assumptions
of either Theorem 5.3.1 or Corollary 5.3.1 or Corollary 5.3.2 or Corollary 5.3.3,

every bounded solution x(t) of (5.3.2) is oscillatory.

Proof The proof of Theorem 5.3.1 is still valid after the replacement of

Lemma 5.3.1 by Lemma 5.3.2.

The next results are for the bounded solutions of (5.3.2) with p > 1.

Theorem 5.3.2 Assume that p>1,r=kr, k€ N, r >t + 37 — g(¢) and

B ) ¢ ;,. >y (5.3.27)
i=1

for some integer n > 2. Also assume that gs(t) given by (5.3.3) is nondecreasing.

Then every bounded solution z(t) of (5.3.2) is oscillatory.

Proof  Suppose the conclusion does not hold. Let x(t) be an eventually
positive and bounded solution of (5.3.2). Let y(t) be defined as in Lemma 5.3.5
and v(t) be defined as in Lemma 5.3.6. By Lemma 5.3.6, we know that v(t) <

0, v®(t) = Ady(t) <0, v"(t) >0, V() <0, and

1 ~. 1
v®(t) — —(t) > Ev(g(t) —37+ir) <0
i=1

holds for any fixed integer n > 1 and for all large enough ¢. By Lemma 5.3.7, we

know that



for some 6 € (g(t), t). Since gs(8) > gs(g(t)) and v(g(0) — 37 + ir) < v(g(g(t)) —

3r +ir), from (5.3.11) with ¢ replaced by @ it follows that

V90 G — 754a(0) 3 ~0(a(a(0) = 37 4 ir) <0,

(t—g@)? 7 —
i.e.,
(0(0) = ESETE o) 3 ooy = 97 i) <0 (29

With the replacement of ¢t by g=1(¢), (5.3.28) yields

=104) _ #)2 n
v'(t) — (—q—;—:)_a-—i ga(t) Z I%'U(g(t) —3r +ir) <O. (5.3.29)

We assume that (5.3.29) holds for ¢ > ¢; > ¢y and T in 3, defined by (5.3.14)

satisfied T3 > t; + nr. Let

Note that w(t) > 0 and v(t) = v(t') exp [, w(0)do for all ¢, ¢ > Ts. From (5.3.29)

we have
(g71(t) — t)2qa(t 1 g(t)—37+ir
w(t) > ( — 3( )Z_;exp/ w(s)ds, (5.3.30)
-1 P t
ie.,
Qa2(t) o 1 9(t)—3r+ir
Sig Zﬁe’(p/t w(s)ds (5.3.31)
i=1

for all t > T3, where Qas(t) = (g7'(t) — t)gs(t) > 0.

Let wo(t) =0 for ¢ > T3. And for each k € N and t > Ty, let

Q32 g(t)~37+ir
wen(t) = 224 \;—exp / ds

and

Qaox = tgans {we(®)}, keN.
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Then w(t) > wiri(t) 2 wi(t) > agy forallk € Nandt > Ts.

assumption,

1 1 .
> ] f ") 0 — i (g(t)—t_37+lT)aa2k
Qak+l = ML {QS?(t) 973 ?:1 e

n 1
= f3 Z EE(l—l)TQSQk'

i=1

Since {a3c} is a bounded increasing sequence, we suppose
lim agop = p32 < 0C.
k—oo

So paz > Ba2 Sor (eli=Vreaz [piy Let

n e(i—])r:c
F(z) = ﬂszz = -

=1

Then, by

Then Fly(x) = Baa 3o o((i — Drelt=Dr=/pi) — 1 and Fjj(z) > 0, so Fiy(z) is in-

creasing. Since Fi,(0) = Ba2 piq(i — 1)r/p' — 1 > 0 by (5.3.27), then Fiy(z) >

0 for z > 0. Hence Fj2(z) is increasing. Thus, from F3(0) = B2 ) .y 1/p* > 0

we have Fip(x) > 0 for all £ > 0. This shows that no positive number ps, satisfies

psz = Pa2 S8 (eGVres2 /pi) - This contradiction shows that if z(t) is a bounded

solution of (5.3.2) then x(t) cannot be eventually positive. If z(t) is assumed to

be a bounded and eventually negative solution, then the above reasoning with

obvious changes also leads to a contradiction. Therefore, every bounded solution

of (5.3.2) must be oscillatory.

Corollary 5.3.5 Assume thatp>1,r=kr, k€ N,r > t+ 37— g(t) and

"L (i -1
rﬁslz( = ) > 1
i=1

(5.3.32)
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for some integer n > 2. Also assume that ¢s3(t) given by (5.3.3) is nonincreasing.

Then every bounded solution z(t) of (5.3.2) is oscillatory.

Proof  The proof of the Theorem 5.3.2 is still valid after the replacement

of 3(0) = Gs(9(t)) by 4s(6) = ga(t).

5.3.3 EXAMPLES

Two examples will be given in this section to illustrate the results in the
above section. The first one illustrates Corollary 5.3.1 for a difference equation

with 0 < p < 1. The second example demonstrates Theorem 5.3.2.

Example 5.3.1 Consider the difference equation

A3 (a:(t) - ;:v(t — 1)) + (1 + %) z(t—4)=0 (5.3.33)

for t > 0. Viewing (5.3.33) as (5.3.2), we have 7 = 2, 0 < p=2/3 < 1,7 =
1, g(t) = 141 and g(t) = t—4. Then, according to (5.3.3), gs(t) = a-(1+1/(t+6))

and is nonincreasing. And (3; = a. So when n = 3, by (5.3.15) we have

3 i
2 2 8 8 22
i (2) = i) =2Z0>
aizz;z(3> ax(3+9+9> 9oz_l
for some a € [9/22,1). Also (5.3.23) is satisfied since

t 1
. 2
0< h{ﬂglf t—14 xa(1+—s+10) ds

0
1
— | lim 42 14— Vds=
/_lt—’fg Xa( +t+s+10)ds 16a
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and

24 3
—:2X2_>_16a

holds for any o € [9/22,3/(2¢e)]. By Corollary 5.3.1, for every bounded solution

z(t) of (5.3.33), either x(t) is oscillatory or

t—o0

liminf (|7:(t)| - glr(t - 1)[) < 0.

Example 5.3.2 Consider the difference equation

1 +Ut2x3(t — 1) =0, (5.3.34)

A2 (x(t) — %l(f - 47r)> + 8z(t — ) +

for t > 0, where o is a positive constant. Regarding (5.3.34) as (5.3.2), we
have 7 = m,p = 4/3 > 1, r = 4r, g(t) =t — 7 and q(t) = 8 Note that

r =47, r =t + 37 — g(t). Then, for some a € (0,1), §s = 8« by (5.3.3). Then

_ 2 X 8av 4o
ﬁ32:tglifs{2xw3} e

™

and

3 . 2 3
i—1)r 4o 3 3 45
5325:( p,-) :-7r—X47rX((Z> +2X(Z>)=-2—a21

i=1

holds if a € [2/45,1). Thus (5.3.27) is satisfied for n = 3. Therefore, by Theo-

rem 5.3.2, every bounded solution z(t) of (5.3.34) is oscillatory.
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5.4 HIGHER ODD ORDER EQUATION (4.1.1)

In this section, we consider equation (4.1.1) with m > 3 being an odd integer,

ie.,

AT (2(t) — pr(t — ) + f(t,2(g(2))) = 0. (5.4.35)

For the convenience of later use, let

dm(t) = o _min {q(s)}( min {(g-l(s»'})m, (5.4.36)

t<s<t+mr g(t)<s<g(t)+mT

where 0 < a < 1. We shall see from the following parts that the function g, will

play an important role in the oscillatory criteria for (5.4.35).

The oscillation of (5.4.35) will be considered in two separate cases when
0 < p< landp > 1 Some lemmas will be given to make the proof of the
main results ready at first. Secondly, based on some results of differential equa-
tion or inequality, sufficient conditions will be obtained for the bounded solutions
of (5.4.35) to be oscillatory. To illustrate the main results, some examples will be

given in the last subsection.

5.4.1 RELATED LEMMAS

To obtain the main results, we need to prove the following lemmas first.

Lemma 5.4.1 Let 0 < p < 1. Assume that 2(¢) is a bounded and eventu-

ally positive (negative) solution of (5.4.35) with 2(t) = =(t) — pz(t — r) and
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liminf; e 2(t) > 0 (limsup,_, 2(t) < 0). Let

t+7 t1+7 tm—1+T7
y(t) :/ dtl/ dtg---/ 2(6)de.
t t tm1

Then y(t) > 0(< 0), (=1)*y¥(t) > 0(< 0) for 1 < k < m eventually. More-

over,

n

ATY(t) + Gm(t) Y P'y(g(t) —ir) <0 (> 0) (5.4.37)
=0

holds for any fixed natural number n and for all large enough ¢.

Proof Suppose z(t) is a bounded and eventually positive solution. Notice
that g(t) <t and ¢'(t) > O for all t > 5. So there exists a t; > ¢o such that

z(g(t)) > 0 for all ¢ > t;. From (5.4.35) it follows that
AT(E) + f(t 2(9(t)) = 0.
By (4.1.3), we have f(t,2(g(t))) > q(t)x(g(t)) > O for t > t;. Therefore
y™(t) + q(t)z(g(t)) <0 (5.4.38)

for t > t;. According to q(t)z(g(t)) > 0, y™(t) < 0 for all ¢ > ¢,. Thus, y(™(¢)
is decreasing so either y™~1(t) > 0 for all t > ¢; or y(™=V(¢) < y™m=D(t,) <

0 for some to > t1 and for all ¢ > ¢,. If the latter holds then
y(m—k)(t) — —0Q, k= 27 3) e ,Mm,

as t — oo, a contradiction to the boundedness of = and z. Therefore we have
ym=V(t) > 0 for all t > t;. Thus, y™=2)(t) is increasing so either y(™-2(t) <
0 for all t > t; or y™=I(¢) > y(™=A(t3) > 0 for some t3 > ¢; and all t > t;. If

the latter holds then

y(m_k)(t) — X, k:3a4’ , M,



as t — oo, a contradiction again to the boundedness of x and 2. Hence, we
must have y™~2(t) < 0 for all ¢ > ¢;. Repeating the above process, we obtain
(—1)ky®)(t) > Ofor 1 < k < mandallt > t;. Therefore, y(t) is decreasing
so either y(t) > 0 for all ¢ > t; or there is a t4 > t; such that y(¢) < y(ts) <

0 for t > t4. Suppose the latter case holds. Then

t4r t1+T tm—1+7'
/ dt / dty- - / 2(6)df
t ty tm—1

t+7 Li+1 tm—1+7
= y(t) +p/ dtl/ dt2---/ (0 —r)do
t t tm—1

t+7 ti+T trn—1+T
< y(ty) +P/ dtl/ dtz"'/ (6 — r)do
t ty tm -1
s=1 t+1 t1+T tm-1+T
< ylt) Y Py / dty / dty - / z(0 — sr)df
i=0 ¢ t tm-1
< y(ta)(1 — p°) LM

l1-p
for t > tg + sr, where M = sup,, *(t) and s is any positive integer. Let s —

0o so t — 0o as well, p° M 7™ then is arbitrarily small due to 0 < p < 1. Thus,

t+r t1+7 tm—1+7
/ dt / dty - / 2(6)df < 0,
¢ t tm—1

which contradicts the assumption that x(t) is eventually positive. Therefore, we

must have y(t) > 0 for all £ > ¢;.

From (5.4.38) it follows that
ATz(t) + q(t)z(g(t)) + pa(t)z(g(t) —r) < 0.
According to the definition of 2(t), the above inequality becomes

ATz(t) + q(t)z(9(t)) + pg(t)z(g(t) — ) + p° q(t)a(g(t) — 2r) < O.
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Proceeding in the same way as the above, we have

z(t) +q(t) Zp'é(g(t) —ir) + p*tq(t)z(g(t) — (n + 1)r) < 0.

Since q(t)p"t1z(g(t) — (n + 1)r) > 0 when ¢ is large enough, the above inequality

implies that

+qt)2p ) —ir) <O.

In order to integrate the above inequality, we need to show that 2(¢) is positive.
If p = 0 then z(¢) = z(t) > 0 holds eventually. Now suppose 0 < p < 1. By the
same reasoning as that used in the proof of Lemma 5.3.1, we have 2(¢ + ht) >

Qforallt>t;and h > 1.

Integrating q(t)z(g(t) — ir), by the assumptions on g and ¢, we obtain

/ [ e [ " 2(0(6) — ir)a(@)ds

31+"‘ Sm—1+T
> min {q(s }/ dsl/ / 2(g(8) — ir)do
Sm—1

t<s<t+mr
. _ g(t+7) » y g(g71(s1)+7) i '
> min (o) [ G0 eYa [ (97 (s2)Ydss -
9(97 (sm-1)+7)
/ 2(0 — ir) (g™} (0))'do
Sm—1

L™ e si+T
> i - .-
<in {q(s)} (gm min (9 (s))) /g “ dsy /81 dss

Sm—-1+T
/ 2(0 — ir)do

m~1

> min {q(s )}( min
t<s<t+mr g(t)<s<g(t)+mr

> Gm(t)y(g(t) — ir).

g-1<s)>')m w(t) — ir)

Therefore, it follows that

ATY(t) + Gm(t) Zp"y(g(t) —ir) <0



holds for any fixed natural number n and for all large enough ¢. If 2(t) is a
bounded and eventually negative solution, then the above proof with obvious

changes shows the conclusion within brackets.

Lemma 5.4.2 Let 0 < p < 1andr = kr. Assume that z(¢) is a bounded and

eventually positive (negative) solution of (5.4.35). Let

) = aft) - palt—1)

y(t) = / dt, / " /tmlmz(e)de.

Then the conclusion of Lemma 5.4.1 holds.

Proof  The proof of Lemma 5.3.2 for the third order is still valid after the

replacement of the third order by any higher odd order m > 3.

Lemma 5.4.3 Under the assumptions of Lemma 5.4.1 or Lemma 5.4.2, let

t+7 t1+7 tm-1+T
) = / dt, / diy--- / y(6)de.
t 131 tm—1

Then v(t) > 0(< 0), (=1)Fv®)(¢) > 0(< 0) for 1 < k < m eventually. More-

over,

o™ (1) + -—lr;(jm(t) Zpiv(g(t) —ir) < 0(>0) (5.4.39)

T ;
i=0

holds for any fixed natural number n and for all large enough ¢.

Proof By the definition of v(t), v(¢) has the same sign as y(¢) for all ¢t > ¢,.

Furthermore, we have

t+7 t1+7' tm—1+7T
v [ [ [T 00
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Then o/(t) has the same sign as /(¢). Similarly, v9(¢) has the same sign as
yO)(¢) for all j = 1,2,--- ,m. Notice also that v(™(t) = A™y(t). If y'(t) < 0,

then

g(t)+7 i+ typ—1+T
v(g(t) —ir) = / dty / dtg - - / y(0 — ir)do
g t

(t) tm—1

g(t)+7 t1+r tm—1+T
< / dt, / diy--- / Y(tony — ir)d0
g(t) ty tm—1

g(t)+T 4T trn—o+T
S T/ dtl / dtg e / y(tm—-l - iT)dtm_l
g(t) t1 tm—2

......

g(t)+T
< 7'"’"1/ y(ty — ir)dt,
g(t)

Ty (g(t) —ir).

IA

Hence, from (5.4.37) it follows that

1 LI
(m) t - ¢ i £ — .
v ( )+TQO( )gpv(g( ) zr)<0
holds for any fixed natural number n and for all large enough ¢. If /() > 0 then
U(g(t) - ir) > T"‘y(g(t) — 'ir) SO

n

o(E) + -galt) D Po(g(t) = ir) > 0.

1=0

Lemma 5.4.4 Under the assumptions of Lemma 5.4.3, for each ¢ > t; there is

a 0 € (g(t),t) such that

o) > LI ), (5.4.40
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Proof  Under the assumptions of Lemma 5.4.3, we know that (—1)7v()(t)
for j = 1,2,--- ,m have the same sign. According to Taylor’s Formula, we have

V() = Y0+ 00 ~ 1)+ 5o () — 0 +

+(m—11_)7v(m) ) (g(t) — )™ !

for some 0 € (g(t),t) and (5.4.40) follows immediately.

The next lemmas are for the bounded solutions of (5.4.35) with p > 1.

Lemma 5.4.5 Let p > 1 and r = k7, k € N. Assume that 2(¢) is a bounded

and eventually positive (negative) solution of (5.4.35). Let

z(t) = =2(t) - px(t — 1),

y(t) = / dt, /t HT / " 1+Tz(0)d9.

Then y(t) < 0(> 0), (-1)*y®) () > 0(< 0) for 1 < k < m eventually. More-

over,

n

ATY(O - 4() Y Zula(®) +i) <0 (> 0) (5.4.41)

i=1

holds for any fixed integer n > 1 and for all large enough t.

Proof Suppose z(t) is a bounded and eventually positive solution. Since
g(t) <t and g'(t) > 0, from the assumptions, there exists a ¢; > to such that

z(g(t)) > 0 for all ¢ >t;. Notice also that
ATz(t) + f(t,z(g(t))) = 0.
According to (4.1.3), we have f(¢,z(g(t))) > q(t)x(g(t)) > 0 for t > t,. Therefore

ATz(t) +q(t)x(g(t)) <0 (5.4.42)



130

for t > t;. By the definition of y(¢), y™(t) = A™2(t). Thus, from (5.4.42) it
follows that

Y™ (t) + q(t)z(g(t)) < 0 (5.4.43)

for t > t;. Due to q(t)z(g(t)) > 0, y™(¢) < 0 for all ¢ > ¢;. From the proof of
Lemma 5.4.1 we know that (=1)ky*)(t) > 0 holds for 1 < k < m and all £ > t,.
Thus, y(t) is decreasing. We now prove that y(¢) < Oforall¢ > ¢;. Since
y™(t) = ATz(¢t) for all t > t;, from the proof of Lemma 5.3.1 we know that
z(t + h7) is decreasing for each fixed ¢ > #; as h increases. From the proof of
Lemma 5.3.5, we know that z(t) < 0 so that y(t) < 0 for some ¢, > #; and all £ >
to.

From (5.4.42), we have

Ara(t) - 1) +7) + q%)x(g(t) Fr)<o.

According to the definition of 2(t), it follows from the above inequality that

A1) — 5’%’z(g(t) Fr)+ lgl (—%z(g(t) +21) + 2alglt) + 27«)) <o,

Repeating the above procedure, we obtain

n

ATEO) — 40 5#(9(0) +ir) + alt)a(g(e) + ) <.
=1

Since q(t)z(g(t) + nr) > 0 for sufficiently large ¢, we have

AT - g®) > I%z(g(t) +ir) <0,

i=1
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Integrating ¢(t)z(g(t) + ir). by the assumptions on p and g, we obtain

/ dsy /+ /sm " 9(6) + ira(0)d0

81+T Sm—1+T
Stglrgth{lmr }/ dsl/ /S 2(g(0) + ir)do

m-—1

g(t+T) g(g~1(s1)+7)
< min {q()) / (g7 (s1))dsy / (g7 (s))dss - -

tlstymr 9(t) 1

(g7 (sm—-1)+7)
/ z(6 +ir)(g71(0))'do
Sm—1

. , g(t)+1 s1+7
< l) ' - d e
t<lr£1tlil—lm‘r{ ( } (g(t)gsr_i_]gl;g)—f—mr(g (S)) ) /g(t) %1 \/svl d32

Sm-1+T
/ 2(0 + ir)df

Sm—1

< min {q)} (g(t)ssrg;g;w(g-l(s))') y(o(t) + ir)

t<i<t+mr

IN

gm(t)y(g(t) +ir).

Therefore,

AZY(0) = 3n(0) ;—,.y(g(t) +ir) <0

holds for any fixed integer n > 1 and for all large enough ¢. If z(t) is a bounded
and eventually negative solution, then the conclusion within brackets follows from

the above proof with minor modification.

Lemma 5.4.6 Under the assumptions of Lemma 5.4.5, let

(i) = / dt, / " / T 0)d6.

Then v(t) < 0(> 0), (—l)kv("’)(t) > 0(< 0) for 1 < k < m eventually. Moreover,

o™ (t) — iq,,,(t) > pv(g(t) —m7 +ir) <0 (> 0) (5.4.44)
i=1

holds for any fixed integer n > 1 and for all large enough ¢.
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Proof By the definition of v(t), v(t) has the same sign as y(t). Further, we

t+r t1+7 tm—-1+T
v'(t) :/ dtl/ dtg--./ y'(6)d8.
t ty tm—1

Then ¢/(t) has the same sign as ¢/(¢). Similarly, (—1)*¢® () for1 < k < m

have

and (—1)7y@(t) for 1 < j < m all have the same sign. Note also that v(™)(t) =

Amy(t). If o/(t) <0, then

g()+7 ty+r tyn—1+T
v(g(t) +ir) = / dt, / dty - - / y(0 + ir)do
g t) t

t m—1

g(t)+7 ti+r trm—1+T
> / dtl / dt2 v / y(tm-—l + 7+ zr)dé?
q

® t tm—1

g(t)+1‘ ti+1 tym—2+T
> T/ dtl/ dt2"'/ Y(tm-1 + 7+ ir)dtym_y
g(t) t1 t

m-2

......

g(t)+7
>t [ gttt m= 17 iy
a(t)

"y(g(t) + mr + ir).

\Y

Hence, from (5.4.41) we have

1 = 1
o™ (t) — T—m(jm(t) E Ev(g(t) —mT+1ir) <0
i=1

for any fixed integer n > 1 and for all large enough ¢. If 3/(¢) > 0 then 0 <

v(g(t) +ir) < T™y(g(t) + mT +ir) so

™ (t) — —T-lgqm(t) 2": i@.v(g(t) —mt +1ir) > 0.

Lemma 5.4.7 Assume that z(t) is an eventually positive (negative) and bounded

solution of (5.4.35). Let z(t) and v(t) be defined as in Lemma 5.4.5 and Lemma 5.4.6.
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Then, under the assumptions of Lemma 5.4.5, for any given t > t;, there is a

6 € (g(t),t) such that

i) > 2 o) (5.4.45)

Proof  The proof of Lemma 5.4.4 is still valid for Lemma 5.4.7.

5.4.2 MAIN RESULTS

Using the related lemmas above, we shall obtain the following sufficient con-

ditions for the bounded solutions of (5.4.35) to be oscillatory. Let

. “HH) =)™ (g7 (1)
Brm1 = tlzr’}rfm { U = 1)!ng } (5.4.46)
and
-1 _ \ym—15
Bmz = Inf {(g ((i)n _tl))!qu’”(t) } ; (5.4.47)

where T,, > to is sufficiently large.

Theorem 5.4.1 Assume that (5.4.35) with 0 < p < 1 satisfies

n

B Y _ipt 21 (5.4.48)

i=1
and

t e
0<liminf [ (¢7'(s) = 8)™ 'gm(g™"(s))ds < (m—Dir™(1 - p)e
- e t-r p —_— p’n+1

(5.4.49)

for some integer n > 1. Also assume that ¢,(t) given by (5.4.36) is nonincreasing.

Then, for every bounded solution z(t) of (5.4.35), either z(t) is oscillatory or

lim infieo (Jz(t)| — plz(t — 7)]) <O.



Proof Suppose the conclusion is not true. Let z(t) be an eventually positive
and bounded solution of (5.4.35) with liminf, . (2(t) — pz(t — 7)) > 0. Let
y(t) be defined as in Lemma 5.4.1 and v(t) be defined as in Lemma 5.4.3. By
Lemma 5.4.3, we know that v(t) > 0, (—1)*v®(t) > 0for1 < k < m and
(5.4.39), i.e.,

) n

o (1) + = (1) gpwg(t) ~ir) <0

holds for any fixed natural number n and for all large enough ¢. By Lemma 5.4.4,

we know that

for some @ € (g(t),t). Since G,(0) > G (t) by assumption and
v(g(0) —ir) = v(g(t) —ir),

from (5.4.39) with t replaced by 0, it follows that

/ (m - 1)! 1o |
t—g)™' ' 7 Zp v(g(t) - ir) <
i.e.,
v'(g(t) + (Ln_i—(tl)))!:?dm(t) Z pu(g(t) — ir) < 0. (5.4.50)

With the replacement of ¢ by g=1(¢), (5.4.50) yields

(g7 (t) =)™
(m—1)lrm

1 n
V(1) + m(g7' (1) D _ Pt —ir) <0, (5.4.51)
1=0

Assume that (=1)*v®(¢) > 0 and (5.4.51) hold for 0 < k < m and t > t; > to.

Without loss of generality, we may assume T}, > ¢; + nr. Let

134



Note that w(t) > 0 and v(t) = v(T},) exp f;m —w(0)dl for all t > T,, > t; + nr.

From (5.4.51) it follows that

-1 _ pym—-1z 1
w(t) > g (()(rnt)—l 3::" Zp exp/ w(s)ds, (5.4.52)

ir

ie.,

w(t) > Qm] 'T'" Zp exp/ w(s)ds (5.4.53)

for all t > Ty, where Qui(t) = (971(t) = )™ 'gm(g7(t)) > 0.

Let wp(t) =0 for t > T,, — nr and let

wk+1(t) = m%—ll(;).,.rnzpi exp/ ' wk(s)ds
’ i=0

t—ir

for each k € N and t > T, + nkr. Let

Qmik = tZTm-lF%g—l)nT {wk(t)} ’ k€ N.

Then

le

Since (5.4.53), (5.4.48) and the definition of {1k} imply that {cm} is an
increasing sequence, by the same procedure as that used in the proof of Theo-

rem 5.3.1 we have a,,1x — 00 as k — 0o. Notice also that
w(t) > wi1(t) 2 amiryr for ¢ > T, + nkr.

Thus w(t) — oo as t — oo, which implies

v(t)
v(t + 1)

t+r
= exp/ w(s)ds — o0 as t— oo. (5.4.54)
t
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On the other hand, since v/(t) < 0 and v(t) > 0, (5.4.51) yields (by dropping the

i = 0 term) that

B (g(_ln(t—) I)'i‘z-:lz_ qm (g_l(t)) Zpiv(t _ lT)
i=1

( -1ty — fym-1 __ pntl
gO;zlﬂim 'plfp “Gm(97 ()t = 7). (5.4.55)

V() <

By (5.4.49) and Lemma 5.2.1,

liminf v(t)

i € (0,1].

Thus v(t+7)/v(t) has a positive lower bound so v(t)/v(t+r) has a positive upper
bound. This contradicts (5.4.54). Assume that x(t) is an eventually negative and
bounded solution of (5.4.35) with limsup,_ . (z(¢) — pz(t — r)) < 0. Then the
above proof with a minor modification also leads to a contradiction. Therefore,

the conclusion of the theorem holds.

Corollary 5.4.1 The conclusion of Theorem 5.4.1 still holds if (5.4.49) is re-

placed by

o)l s < 2N

0 < liminf (5.4.56)

Proof The proof is the same as that of Theorem 5.4.1 except (5.4.55). The

conclusion still holds if (5.4.55) is replaced by

(o7 () !

™ (m — 1)! Gn(g™ @)po(t = 7).

V(t) < -



Corollary 5.4.2 Assume that (5.4.35) with 0 < p < 1 satisfies

3o Zipi >1 (5.4.57)
i=1
and
t _ l-m _ -1
0<liminf | (g71(s) = )™ 'gu(s)ds < LmZ DT = PJe (5.4.58)
t—e Jir p— p"“

for some integer n > 1. Also assume that §,,(¢) given by (5.4.36) is nondecreasing.

Then the conclusion of Theorem 5.4.1 holds.

Proof The proof of Theorem 5.4.1 is still valid after the replacement of

Gm(0) = Gm(t) by §u(0) = Gm(g(t))-

Corollary 5.4.3 The conclusion of Corollary 5.4.2 still holds if (5.4.58) is re-

placed by

! m—1)lr™

(67(5) = 8" "m(s)ds < <

- - (5.4.59)

0 < liminf
t—o0

The proof of Corollary 5.4.3 is similar to that of Corollary 5.4.1.

Corollary 5.4.4 Assume 0 < p < 1 andr = k7. Under the assumptions of
either Theorem 5.4.1 or Corollary 5.4.1 or Corollary 5.4.2 or Corollary 5.4.3,

every bounded solution z(t) of (5.4.35) is oscillatory.

Proof  The proof of Theorem 5.4.1 is still valid after the replacement of

Lemma 5.4.1 by Lemma 5.4.2.
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The following results are for the bounded solutions of (5.4.35) with p > 1.

Theorem 5.4.2 Assume that p>1,r=k7, k€ N, 7>t +mr — g(t) and

"Bm2 ) (Z;,.l) > 1 (5.4.60)
i=1

for some integer n > 2. Also assume that §,,(t) given by (5.4.36) is nondecreasing.

Then every bounded solution x(t) of (5.4.35) is oscillatory.

Proof Suppose the conclusion is not true. Without loss of generality,
assume that (5.4.35) has an eventually positive and bounded solution z(t). And
let y(t) be defined as in Lemma 5.4.5 and v(¢) be defined as in Lemma 5.4.6.
By Lemma 5.4.6, we know that v(t) < 0, (—=1)*v®(¢) > 0 for 1 < k < m, and
(5.4.44), i.e.,

p(™ (t) — —qm(1) Z 2‘71;'0(9(5) —m7+ir) <0
i=1

holds for any fixed integer n > 1 and for all large enough ¢. By Lemma 5.4.7, we

know that
(m — 1)!
(t —g(t))m!

for some 6 € (g(t),t). Since gnm(0) > Gn(g(t)) and v(g(6) — ir) < v(g(g(t)) — ir),

v (g(t)) <v™(0)

with the replacement of ¢ by 6, (5.4.44) yields

n

o) gyt~ 70D L 5lolo®) = mr 4 ) <

ie.,

V(g(t) — (Z—m'_—_g_%fim(g(t)) ' I%v(g(g(t)) —m7+ir) <0, (5.4.61)

i=1
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With the replacement of ¢ by g71(¢), (5.4.61) becomes

(—] ) — ¢ m—1
v (t) — (J(m(_) 1)!1,,, gm (1) Z ]%v(g(t) —mr1 +ir) <0. (5.4.62)
1=1

Assume that v(t), (=1)*v®)(¢) > 0(1 < k < m) and (5.4.62) hold for t > ¢; >

to and, without loss of generality, that T, > t; + nr. Let

Note that w(t) > Oandu(t) = v(t) expftf w(6)df for all ¢, ¢ > T,,. From

(5.4.62), we have

(g—l(f) _ t)m lq-m g(t)—mr+1r
w(t) > = exp / ds, (5.4.63)

(m — 1)lrm

1.e.,

Qm? g(t)—mr-}-zr
w(t) 2 (m— 1) Z —exp/ ds (5.4.64)

for all t > T, where Qma(t) = (g7'(t) — )™ }gn(t) > 0.

Let wo(t) =0 for t > T, And for each k € N and t > Ty, let
Qm g(t)—m‘r+1r
wi1(t) = 2 'T’" Z— XP/ wi(s)ds

and

Amok = tlzr}‘fn {wk(t)}a ke N.
So w(t) > wis1(t) = Wi(t) > ooy for all k € N and ¢ > T,,. By assumption, we

therefore have

1 n
Am2k+1 Z inf {Qm2( ) ‘(_—“;;Z]%elg(t)—t—mrﬂr]amgk}
’ i=1

t2Tm

1
Bina Z e(i= l)Tszk

[\
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Note that {amac} is a bounded nondecreasing sequence and suppose that
klil};o Qmok = Pma < 0O. (5.4.65)

SO pma > Bma dop(et=1rPm2 /pi) . By (5.4.60) and the same reasoning as that
used in the proof of Theorem 5.3.2, we reach that no positive number p,,, satisfies
Pmz 2> Bm2 dorq(eC7Dm2 /pi) This contradiction shows that the conclusion

holds.

Corollary 5.4.5 Assume that p>1,r=kr, k€ N,r > t+m7 —g(t) and

B Y C ;,. D5 (5.4.66)
i=1

for some integer n > 2. Also assume that ¢, (¢) given by (5.4.36) is nonincreasing,

Then every bounded solution z(t) of (5.4.35) is oscillatory.

Proof  The proof of Theorem 5.4.2 is still valid after the replacement of

Gm(0) = Gm(g(t)) by Gn(8) = Gm(t).

5.4.3 EXAMPLES

Three examples will be given in this section to demonstrate the applica-
tions of the results obtained. From (5.4.46) and (5.4.47) it is clear that both
Bm1 and Br2 are nondecreasing functions of T,,,. The following examples show

that Bm1 and Bme may be independent of T, or increasing functions of Tp,.
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Example 5.4.1 Consider the difference equation

AT (a,(t) _ %I(t _ 1)) + ((m ) %) 2(t—1)=0 (5.4.67)

for t > 0, where m is an odd positive integer m > 3. Viewing (5.4.67) as (5.4.35),
wehaver = 1,0<p=1/2<1l,r=1,q(t) = (m— 1)+ 1/t and g(¢) = t — 1.

Then, according to (5.4.36),

In(t) = a <(m -+ —t—?l;n—> .

So

— m_l . — ——
Bml = inf (t ! t) “ ((m 1)1 Al t+nlz+1) =
t>Tm (m-—1-1m

with T,,, > 3. Since

3
. 1 1 1 lla
m 1: . - 2 - — — ——
ﬁlgzrp a(2+ x4+3x8> 821

i=1

holds for « € [8/11,1) and

t
0 < liminf (s+1-—s)""1-a((m—1)!+

- t—00 -1

1

Tm) do=a{m-1)

2-(m—1)!

- e
holds for any a € (0,2/e], (5.4.48) and (5.4.56) are satisfied for n = 3 and o €
[8/11,2/6]. Since 7 = 1 = 7, by Corollaries 5.4.1 and 5.4.4, every bounded

solution z(t) of (5.4.67) is oscillatory.

Example 5.4.2 Consider the difference equation

723t —7)=0, (5.4.68)

A% (x(t) — 22(t — 47)) + 8z(t — ) + T
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for t > 0, where m is an odd positive integer with m > 3 and o is a positive
real number. Regarding (5.4.68) as (5.4.35), we have 7 = «#/m, p = 2, r =
4r, g(t) = t — m and ¢(t) = 8. Then, for some a € (0,1), g, = 8a by (5.4.36).

Moreover, r > t +m7 — g(t) and r = k7 are satisfied. In addition,

Ba-(t+m—t)™1]  8m™a
(m — DIE)m } wm = 1)

where T,,, > 127. So (5.4.60) is satisfied since

Bm2 = inf {

3

(i — 1) 8m™ o 1 2 16m™
/Bm2z P n(m — 1)! X AT <22+23> a(m—l)! 21

i=1

holds for a € [(m — 1)!/(16m™),1). By Theorem 5.4.2, every bounded solution

z(t) of (5.4.68) is oscillatory.

Example 5.4.3 Consider the difference equation
AZ (x(t) - 22(t — 2m)) + e Fa(t — ) = O, (5.4.69)

for t > 0, where m is an odd positive integer with m > 3 and o is a positive con-
stant. Regarding (5.4.69) as (5.4.35), we have 7 = 7/m, p =2, r = 2z, g(t) =
¢ — 7 and q(t) = e~%. Then, for some a € (0,1), G, = @e~% by (5.4.36). More-

over, r >t + m7 — g(t) and r = k7 are satisfied. In addition,

ﬂm? = inf

ae™T - (t+ 7 —t)m? mho mmo
t>Tm

m-DIE)™ [ elTmn(m=-1)1  w(m—1)
as T, — 00. So (5.4.60) is satisfied when T, is large enough since
3

2r(i — 1) am™ 12 mm
B2 ) p "7r(m—1)!"2’”<(?Jrﬁ)‘“(m—m>1

i=1

as T, — oo for a € ((m—1)!/(m™),1). By Theorem 5.4.2, every bounded

solution z(t) of (5.4.69) is oscillatory.
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5.5 CONCLUSION AND SUMMARY

Our objective of this chapter and chapter 4 is to study a particular class of

neutral difference equation of the form
AT (2(t) — pz(t —r)) + f(¢t, 2(g(t)) = 0,

where m > 2 is a natural number, p > 0, 7 and 7 are positive constants, A,z (t) =
z(t+7)—2(t), 0< g(t) <t, g € C'([to,0), R*), ¢'(t) > 0, and f € C(|to, 00) X
R, R). Under the assumptions, the existence and uniqueness of solutions are
guaranteed. We have concentrated on the oscillatory behaviour of the nontrivial

solutions as t tends to oo.

According to our best knowledge, some known results are available only for
the first order of this type of neutral difference equations and special cases of
second order equations. Even though the results we have obtained incorporate
those known results as special instances, our study has been inspired by them
and some of our results could be regarded as the generalization of some previous
results. Due to that techniques used in dealing with the oscillatory behaviour of
solutions of the even order equations are very much different from those for the

odd order equations, we have dealt with them separately.

In chapter 4, we have focused on the even order equations which are composed
of the second, fourth and higher even order equations. Section 4.3 devotes to the
second order equation (4.3.4). To establish oscillatory criteria, g»(t) has been

defined as in (4.3.5) and z(t) has been defined by

2(t) = /tHT ds /:H x(6)do.




By constructing a Ricatti transformation, we have obtained a sufficient condition
(4.3.6) in Theorem 4.3.1 for every solution x(t) of (4.3.4), either z(¢) to be oscil-
latory or eventually satisfy |2(¢)| < p|z(t — r)|. Furthermore, in Theorem 4.3.2,
we have gained a sufficient condition (4.3.7) for (4.3.4) with 0 < p < 1 to be os-
cillatory. Condition (4.3.7) still holds when p > 1. Similarly, condition (4.3.8) in
Theorem 4.3.3 has been obtained for (4.3.4) to be oscillatory when p = 1. At the
end of this section, two examples have been given to demonstrate the applications

of the obtained results and to show the generality of the obtained results.

In section 4.4 we have concentrated on equation (4.4.20). The organization
of this section is the same as that of section 4.3 but the arguments are rather
more complicated. Let g4(t) be as in (4.4.21). We have defined y(¢) and u(¢t) as
in Lemmas 4.4.1 and 4.4.2, respectively, and obtained their qualitative features
as t tends to oo. Through a Ricatti transformation, equation (4.4.20) has been
converted to a first order inequality and then condition (4.4.25) has been estab-
lished in Theorem 4.4.1 for every solution z(t), either z(t) to be oscillatory or for
any T 2> to, there exists a t" > T such that |z(t)| < p|z(t” — r)|. Moreover, we
have obtained four more conditions in each case of 0<p<l,p=1landp>1.
When 0 < p < 1, condition (4.4.27) has been established in Theorem 4.4.2 for
every solution z(t), either z(t) or x(t) — pz(¢t — r) is oscillatory. Based on Theo-
rem 4.4.2, three more weaker conditions (4.4.31), (4.4.33), and (4.4.35) have been
gained in Corollaries 4.4.1, 4.4.2, and 4.4.3, respectively. By the same procedure
as before, we have condition (4.4.36) in Theorem 4.4.3 when p = 1, which has

been extended to conditions (4.4.37), (4.4.38), (4.4.39) in Corollaries 4.4.4, 4.4.5,
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4.4.6, respectively, and condition (4.4.40) in Theorem 4.4.4 when p > 1, which
has been extended to conditions (4.4.41), (4.4.42), (4.4.43) in Corollaries 4.4.7,

4.4.8,4.4.9. Two illustrating examples have been given at the end of this section.

In section 4.5, we have focused on equation (4.5.46). The idea in this section
was inspired by the previous two sections and could be viewed as a generalization
of them. However, as a general case, the reasonings in this section are much more
complicated. Let G,,(t) be defined as in (4.5.47). In addition, let y(¢) be as in
Lemma 4.5.1 and u(t) be as in Lemma 4.5.2. Based on the known results, the
properties of y(t) and u(t) have been gained. By a Riccati transform, we have
converted equation (4.5.46) to the first order inequality (4.5.53) then obtained suf-
ficient condition (4.5.52) in Theorem 4.5.1 for every solution z(t), either z(t) to be
oscillatory or for any T > to, there exists a t” > T such that |z(¢)] < p|z(t” —7)|.
When 0 < p < 1, condition (4.5.54) has been obtained in Theorem 4.5.2 for
z(t) or (t) — px(t — r) to be oscillatory. Basis on Theorem 4.5.2, we have man-
aged to have two weaker conditions (4.5.58) and (4.5.59) in Corollaries 4.5.1 and
4.5.2, respectively. In a same way, when p = 1 we have condition (4.5.60) in
Theorem 4.5.3, condition (4.5.61) in Corollary 4.5.3, and condition (4.5.62) in
Corollary 4.5.4 for x(t) or z(t) — px(¢ — r) be oscillatory, and when p > 1, we
héve condition (4.5.63) in Theorem 4.5.4, condition (4.5.64) in Corollary 4.5.5,
and condition (4.5.65) in Corollary 4.5.6 for z(t) or z(t) — pz(t — r) to be oscil-
latory. Three illustrating examples have been given at the end of this section to

demonstrate the applications of the obtained results.

In chapter 5, we have focused on equation (4.1.1) with odd m > 3. We
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investigated the third order equations at first then the higher odd order equations.
The obtained results for the odd order equations are weaker than those of the
even order equations. In this chapter, oscillatory criteria are just for the bounded

solutions except p = 1.

In section 5.3, we have concentrated on the third order equation (5.3.2). Let
gs(t) be as in (5.3.3). When 0 < p < 1, we have defined 2(¢) and y(¢) as in
Lemma 5.3.1 and obtained their qualitative properties as ¢ tends to co. By
defining v(t) as in Lemma 5.3.3 and Taylor’s formula, we have converted equa-
tion (5.3.2) to the first order differential inequality (5.3.18). Using the known
results about differential equations/inequalites, we have obtained sufficient con-
ditions (5.3.15) and (5.3.16) in Theorem 5.3.1 for every bounded solution z(t),
either z(t) to be oscillatory or liminf; e (|z(t)] — plz(t — r)|) < 0. From The-
orem 5.3.1, four corollaries have been gained. The conclusion of this theorem
are still valid if (5.3.16) is replaced by (5.3.23) in Corollary 5.3.1. Furthermore,
if conditions (5.3.24) and (5.3.25) in Corollary 5.3.2 or conditions (5.3.24) and
(5.3.26) in Corollary 5.3.3 hold, then the conclusion of Theorem 5.3.1 holds as
well. Corollary 5.3.4 is about the special case r = k7. When p > 1, by the
same procedure, we have defined 2(t) and y(¢) as in Lemma 5.3.5 and v(t) as
in Lemma 5.3.6 and obtained their qualitative features as t tends to co. By
(5.3.12) in Corollary 5.3.7, equation (5.3.2) has been transformed to the first or-
der differential inequality (5.3.29). Basis on the known results about differential
equations/inequalites and constructing the sequence {az9:}, we have obtained

(5.3.27) in Theorem 5.3.2 for every bounded solution z to be oscillatory. From

146



147

Theorem 5.3.2, we have Corollary 5.3.5. Two illustrating examples have been

given at the end of this section.

Section 5.4 devotes to the higher odd order equation (5.4.35). The structure of
this section is the same as that of the last section. The ideas were inspired by the
third order equations so the results could be regarded as a generalization. But,
the arguments are rather more complicated. Let g, (t) be as in (5.4.36). When
p > 1, let 2(t) and y(t) be as in Lemma 5.4.1 and v(t) be as in Lemma 5.4.3.
From the features of v(t), we have gained (5.4.40) in Lemma 5.4.4, by which equa-
tion (5.4.35) has been converted to the differential inequality (5.4.51). From the
known results on differential equations/inequalites, we have conditions (5.4.48)
and (5.4.49) in Theorem 5.4.1 for every bounded solution z(t), either z(t) be
oscillatory or lim;_(|z(t)| — p|z(t — r)|) < 0. Basis on Theorem 5.4.1, Corollar-
ies 5.4.1-5.4.4 have been gained. When p > 1, we have defined 2(¢) and y(t) as
in Lemma 5.4.5 and v(¢) as in Lemma 5.4.6. From these two lemmas, we have
obtained (5.4.45) in Lemma 5.4.7, by which equation (5.4.35) has been converted
to differential inequality (5.4.62). By the known results, we have obtained suf-
ficient condition (5.4.60) in Theorem 5.4.2 for every bounded solution = to be
oscillatory. Basis on Theorem 5.4.2, Corollary 5.4.5 has been obtained. Three

illustrating examples have been given at the end of this section.



Chapter 6

HIGHER ORDER NONLINEAR

DIFFERENCE EQUATIONS
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6.1 INTRODUCTION

In this chapter, even order nonlinear neutral difference equations of the form
A N anA(2n + (0, 21,))) + Gu f(24,) = 0 (6.1.1)

are considered, where m is an even positive integer,n > ng, {7} and {g,} are
nondecreasing sequences of nonnegative integers with 7, < n, g, < n, lim, 00 7 =
00, lim,_e gn = o0, {a,} and {g,} are sequences of real numbers with a, >
0, go >0and g, #0, and f : R — Rand ¢ : R? — R are functions. Assume

that the following conditions always hold throughout this chapter:

1
n=ng
0< (’O—(nu’i) <p.<l1 for u#0, (6.1.3)
%)- >¢e0>0 for u# 0. (6.1.4)

There has been an increasing interest in the study of oscillation for the so-
lutions of higher order difference equations recently. For instance, Zaffer and

Dabhiya [61] studied the equation
A(@nA™ (@0 + Pan-k)) + 84S (%a,) =0,
where § = £1, Thandapani, Sundaram, and Lalli [54] investigated
A™z(n) + q(n) f(z(a(n))R(A™'2(8(n))) =0, n € N, mis even,
as well as the forced difference equation

A™z(n) + g(n) f(z(c(n))R(A™ 'z(6(n))) = e(n), n € N, mis even,



and Graef, etc. [24] discussed the higher order neutral delay difference equation
A" (ivn—m+l + pn—m+l$n—m+l—-k) + 5f(n, :vn—l) = O,

where § = £1. In addition, Yan and Liu [58] studied the fourth order difference

equations of the form

A (r,A%2,) + f(n,2,) = 0.

Note that the highest order difference term in each of the above equations is
linear whereas ¢ in (6.1.1) may be nonlinear. Oscillation criteria will be estab-
lished, which completely cover the results of Zhang and Li [67] and Zhang and
Zhang [69] as special cases. Notice also that this chapter is a modified version
of the published paper [40] under the joint authorship of Z. Liu, S. Wu and Z.
Zhang, in an alphabet order. This reflects the contribution from the first and
third authors in the process of refining the previous drafts and developing and
sharping the original results, but the main idea and results belong to the second
author.

In this chapter, the wording is slightly different from the published paper in
order to be consistent with the previous chapters. At first, we will present some
related lemmas in section 6.2. In section 6.3 we shall state the main results and
give their proofs as well. In section 6.4 examples will be given to illustrate the

obtained oscillatory criteria. At last, we will finish this chapter with a conclusion.
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6.2 RELATED LEMMAS

To prove the main results given in section 6.3, we need the following lemmas.

Lemma 6.2.1 Assume that the positive sequence {y,} satisfies A™y, < 0 but
A™y, is not identically zero, where m is an even positive integer with m > 2. Then
there exist an integer k and an n, > ng such that 1 < k< m -1, m + k is odd,
and

Ajyn > 0, J=12,.,k,

(-1YY Ay, > 0, j=k+1,.,m-1,

for n > n;.

Lemma 6.2.2 Under the assumptions of Lemma 6.2.1, there exists an ny, > n,

such that

holds for n > ns.

The above two lemmas can be found in [2] (P31 and P33).

Lemma 6.2.3 Assume that {z,} is an eventually positive solution of (6.1.1).

Let z, = Z, + p(n,x,,). Then there exists an ng > ng such that

_ m—2
Az, > %ﬂ::”_)—m!a(m-”(agnmgn) (6.2.5)

for 7a 2 g, where rp = [ 58]
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Proof From (6.1.1) and the assumptions, we have A™"!(a,Az,) < 0. So
A™*(a,Az,) is nonincreasing. If m = 2 then A™ 2(a,Az,) = a,Az, is nonin-
creasing. If there is an 71 such that Az, <0 for all n > A then a,Az, < a;Az;, <
0. According to the definition of z(n), we have 2,11 + p(n + 1,2,,,,) — (z, +

o(n,z,,)) = Az,. Then

Ty Ho(n+Lan,,) = @+ e(d o)+ ZAzs

s=n
~ 1
< @+ ‘p(ﬁ»wrﬁ) + aﬁAzﬁ Z; -G:
By (6.1.2), zp41 < 2 + @7, 2r,) + aal2zi D ooy ;1: — —00 as n — 00, a contra-

diction to the positiveness of z,. Therefore, Az, > 0 for n > ny. We now show
that a,Az, is eventually positive for even m > 2. Since A™ %(a,Az,) is non-
increasing, we have either A™%(a,Az2,) > 0 for all n > ng or A™?(a,Az,) <
A™?(a,,Az,,) < 0 for some ny > ng and all n > n;. In the latter case, we see

that

n-1

A" HanDzn) = A (a0, Azn,) + Y A (a,A2,) — ~00

s=ny

and A¥(a,Az,) - —00(0 < i <m—3)asn — oo. This again will lead to a
contradiction to the positiveness of x,. Therefore, A™ %(a,Az,) is positive and
nonincreasing. Thus, A™ 3(a,Az,) is increasing with either A™ 3(a,Az,) <
0 for all n > ng or A™3(a,Az,) > A™3(a,,Az,,) > 0 for some ny > ng and all
n > ng. In the latter case, we have A'(a,Az,) > 0 (0<i<m-—4)asn —
oo 80 a,Az, > 0 holds eventually. In the former case, viewing m — 2 as m, we

obtain the required conclusion from the same reasoning as above.



From Lemma 6.2.2, there is an n3 > n, such that for r, > ns

(rn — ng)(m=2)

a, Az, > m=2)1 Am_2(02m~k—2rnAZQm-k—2r")
) (m—2) _
( T _3)2)' A" (aym-2,, Azom-2,.)
(Tn — n3)(m_2) m-—2
m=2) A" (ag, Azg,).

Therefore, we have

for r, > na.

Lemma 6.2.4 Assume that {2,} is an eventually positive solution of (6.1.1).
Let {A,} be an arbitrary positive sequence. Then there exists an n4 > nz such
that Riccati difference inequality

2
Aanu‘n—i—l

Aup + Qn +
Az

<0 for r,>ny (6.2.6)

has a solution {u,}, where

_ (A4 Sy
Qn = An {50‘]11(1 pgn) + 4A%Bn + A 2An—1B -1 ’
(Tn — n4)(m—2)

a4 (m—2)

B, =

Proof From (6.1.1), (6.1.3) and (6.1.4), it follows that

Am_](anAzn) + an(mgn) =0,
Am-l(anAzn) + 80Qnmgn S 0’

Am_l(anAzn) + €09n(2g, — ‘P(gmmrgn)) <0,

Am_l(anAzn) + €0qn(2g, — pgnz'rgn) <0.
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Since Az, > 0, 74, < g, and g, > 7, we have 2;, < zg, and zg4, > 2.,. So
A" N a,Azy) + €04a(1 = Py, )2g, <0

and

A" Y a,Az,) + €0l — pg, )2, < 0. (6.2.7)

Let

g (AT  Ade Y
z"'n 2An—lB -1

Note that {z,} is increasing and {A™ 2(a,Az2,)} is decreasing. In addition, by
the definition of r, we can always choose a subsequence of r, to replace r,, if

necessary, thus we assume that
rn:Tn+1_1:"’:rn+h_h:"' .

Therefore, by (6.2.7) and Lemma 6.2.3, there is an n4 > n3 such that for r, > ny4

we have
Au, = AA, " +Anzrn+1Am—l(anA2n) — Az, A™ % (a, 102, 41)
A”l+1 Z”'n+1z7'n
A/471—1
—AnA (2An—an—l>
AA, ApA™ (a1 02,41)A™ ¥a,, Az, )B,
< ———Upy1 — An€oqn(l — pg,) — (Gn +1) (05, 825.)
An+l Zrp frag
A14n——1
_AnA (2An—1Bn—1>
AA,_4 AA,
< - - n
< Ao (el =) + 8 () )+ G

A" (a,1102041) ) ?

z"n-H

B, (

B Ad,_y AA,
a ——A" (goq"(l - pgn) * A <2An-an—l>) * An+lun+l

u A4, \?
—Aan n+1 n
(An+l * 2Aan)

AA )2 AA —~1 A B
= —An n 1 —_— ( n ——-—-—n - _n__"l 2 M
{60(1 (1~ pg.) + 4A2 B, +4 (2An_1Bn—1>} Al i
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Therefore,

A, B,u?
22l <0 for r, > ng.

Au, + @y +
An

So the conclusion of the Lemma holds.

Lemma 6.2.5 Under the assumptions of Lemma 6.2.4, further assume that

A 6.2.8
2 AT, 7% (6:28)
and P(O) E Qs is a constant number or tends to co. Then there exists an
ns > ny4 such that for r,, > ns,
A,Bu?
u, > PO+ Z —, (6.2.9)
s+1
0
PO =3"Q, < o, (6.2.10)
and
A B us+l
Z o <o (6.2.11)

Proof Note that from Lemma 6.2.4 (6.2.6) is valid for r, > n4s. We will

show that (6.2.11) holds at first. In fact, if

2. A,B,u?
— —— =t = o, (6.2.12)
s+1

then in view of the definition of P,SO) and (6.2.12), there exists an N; > n for any

fixed n such that for £ > Ny,

3 Ni~1
ABUS A,B,u?
u5+1 S Up — ZQS = el Z —“"_+1

s=n s+1 s=Ny 8+]

< —-1- A_Bus_“.
Az,

s=Ny
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Therefore we have

A,B.u, A.B, A,B, <~ A:Byul
Z AEZH ‘Z Z Z u1+1-

s=N1 s=N, s+ s=N1 S+1 i=N; H’

Let

£
AsBsuerl
Ve = Z ——72——
s=N1 s+1
According to discrete Cauchy-Schmartz inequality, we have

A;B; uhLl -
Z A12+1 (zXI\;l Az2+l> '

=N

So

i+1

£ A,B, ¢ A B Uz - A B -
ve < — - e T = He.
s=N, s+1 i=Np

Note that He <0, He — —00 as { — oo by (6.2.8), and

A;B;

< |He| < el
A,

s=N1

Clearly,

AH, = —
R .

AgpBeiody, (&2 -
Ag41Ber1  Aer1De1V AsB, <0
£+2 s

=N; AS+1

Thus {H¢} is decreasing and

£+1 -1
At AHe  AMe As+lBe+1< ﬁ%) (6.2.13)

= = ) )
HeHeyr ™ HE+1 Ve Agio =Ny Ain

Summation of (6.2.13) for £ from N — 1 to £, we obtain
-1

1 1. fi . A;B;

Hyy  Hepn ™ — Al buye Al

41 £+1 -1
< § =G
= P - £
Al ( AH—I)

i=N1

In view of (6.2.8), G¢ — —1 and (1/H¢41) — 0 as § — 0o. Hence

1
Hy_4

<-1
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for large enough N, which contradicts H, — —oo as n — oo. Hence (6.2.11)
holds. Therefore, we have

A B us+1

un, > limsupug + P(O + Z T
s+1

E—'OO $=n

We will prove that limsup,_,., u¢ 2 0. Indeed, if limsup,_,, u¢ < 0, then there

must be an [ > 0 and an N, > N; such that ug < -l for £ > N,, so

= A B us+l 122

s=n s=n S‘H

a contradiction to (6.2.11). Hence we have limsup,_, u¢ > 0. Furthermore,
there is an n5 > ny4 such that for r, > ns, (6.2.9) holds and (6.2.10) follows from

(6.2.9). Therefore we have showed that the conclusion of the Lemma holds.

Lemma 6.2.6 Under the assumptions of Lemma 6.2.5, further assume P,(LO) >0
eventually. Then there exist an ng > ns and a sequence {h,} such that for every
positive integer k,

A B h?
-—ilR(k) for r, > n, (6.2.14)

hy > PR Z -
As+1

s=n
where

k—1)\2
°°AB(3(+1)> *)

Prgk) = s,n)
o A |
s—1 (k-1) n—-1
2A;B;P,
k) __ i+1 -
ngn = H(l—}-—Zz——), H——l.
i=n i+1 n

Proof By Lemma 6.2.5, there exists a sequence {u,} such that (6.2.9) and
(6.2.11) hold. Let

A B u’s+1
N



then we have Ah, = —A,Bpu2, /A2, . Let

s—1 0)
i+1

i=n

and
24,B,PY A Bu?
A(hRY) = ho =z R = _ DBt pt) (6.2.15)
s+1 s+1

Summation (6.2.15) for s from n to N — 1, we have

N-1 N-1 (0)
ZA h R(l) Z hs+1 2A B Ps+1R(1) Z A B us+l R(I)

AE-H s,n?
i.e.,
N-1 () N-1
24, B P A Bu?
hNR(l)n _ Rigyg S st R(l) s+1 R(l
o Z Al pun Al
So

h 2 Z .glr)l ( Ugt1 — 2hs+1P.s(-(|)~)1)

+1

By Lemma 6.2.5, we have u,;; > PS(+1 +hsy1 > 0. Hence u2,; > (Ps(gl) +h2 .+

9PO h,;1. Then we obtain

Therefore
>\ A,B
ha 2 —s—fRﬁ‘,1< PGY) +R: )
;Ag+l s ( +1) +1
_ P‘,El) A B2hs+l R(l)
As+1

8$=n

Next we will prove that (6.2.14) holds for £ = 2. Replacing Rgl,), by R£2n in

(6.2.15) and following the same reasoning as the above, we have

R (421 — 2hea PYY)

158



159

Note that h, > PV, According to (6.2.9) and (6.2.11), there is an ng > ns such

that u, > 2h,, for r, > ng. So u, > h, + P,Sl). Furthermore,

A B;
hn Z Z Ag+1 R(Z) ((Ps(—:il-)l) +hs+1)

S=n

_ P(Q) Z A B h‘s+l R(?)

s+1

By the same argument as the above, we have

%R(k) (6.2.16)

hn > P+
" " A§+l

s=n

for all positive integer k and r,, > ne.

Lemma 6.2.7 Under the assumptions of Lemma 6.2.6, for every positive inte-

ger k, the following inequality holds

n—1 (k-1)
44,B, P!
limsup P® [] (1 + —;1—2—> < o0. (6.2.17)
n—00 s+1

8=neg

Proof Notice that from Lemma 6.2.6, (6.2.14) holds for k € N. Let

A B h’s+1 R(k)

w, —
" Al

s$=n

From (6.2.14) it follows that
hy > P 4,

So

A B hn+1 > 4A B P+1wn+1
Ana Aven

-Aw, =

i.e.,
44, B, P, +1wn+1

2
An+1

Wp — Wnt1 2



The above inequality implies that

44,B,P® "~ n 4A,B,P®
wn-l-lgwn 1+—2_nﬂ <'wn6H 1+__s+l
An+1 As+1

s=ne

From the proof of Lemma 6.2.6 and the definition of w,, we have

W, —

(k)
 AsBs hs+1R(k) Z ABy(Pn)? R®) > P(k+1)

— A2+1 8, e A§+1 s, =
Thus
n 4A,B,P® "
PT(Lk+1) S Wiy (1 + A +1
s=ns s+1
ie.,
(k)
P+ H ;44 B sPei1 < 1wy,
s=ng +1

Therefore,

-1 (k=1)
4A,B, P,
hmsupP(’“) ” ( T———) < 0.
s+1

k—o0 s=ng

6.3 MAIN RESULTS

Using the above lammas, we will be able to obtain the following sufficient

conditions for all the solutions of (6.1.1) to be oscillatory.

Theorem 6.3.1 Assume that there exists a positive sequence {A,} such that

> AsBy _ o (6.3.18)

and

) Q.= oo, (6.3.19)
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where B, and @), are defined in Lemma 6.2.4. Then (6.1.1) is oscillatory.

Proof Without loss of generality, suppose that {z,} is an eventually pos-
itive solution of (6.1.1). Then all conditions of Lemma 6.2.5 are satisfied. From

Lemma 6.2.5 we have

o0
> Q. < oo,
s=n

a contradiction to (6.3.19). Thus, this contradiction shows that (6.1.1) is oscilla-

tory.

Theorem 6.3.2 Assume that there exists a positive sequence {A,} such that
(6.3.18) holds, for Q, defined in Lemma 6.2.4, {37  @Q;} is convergent to a

positive number, and

2
0
o AB. (P) = (1 ' 2AiBz-P,-€?’1)

= 00. 6.3.20)
2, 2, (

s=n =n

Then (6.1.1) is oscillatory.

Proof Suppose that the conclusion does not hold and (6.1.1) is nonoscil-
latory. Without loss of generality, suppose that {z,} is an eventualiy positive
solution of (6.1.1). The conditions of Lemma 6.2.6 are met. So (6.2.14) holds for
ra > Mg, a contradiction to (6.3.20). Therefore, the contradiction proves that the

conclusion of the theorem holds.
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Theorem 6.3.3 Assume that there exists a positive sequence {A,} such that

po > 0 eventually, (6.3.18) holds, and for some positive integer kg
P® <00, k=0,1,2,-- ,kg— 1, (6.3.21)
and P does not exists. Then (6.1.1) is oscillatory.

Proof The proof of Theorem 6.3.2 is still valid after the replacement of a con-

traction to (6.3.20) by a contradiction to (6.3.21).

Theorem 6.3.4 Assume that there exists a positive sequence {A,} such that
P > 0 eventually and (6.3.18) holds. In addition, there exists a positive integer

ko such that

n—1 (ko~1)
4
limsup P& (1 + ——Afs—l'ﬁl——) = 00. (6.3.22)

Ag
n—00 s=no s+1

Then (6.1.1) is oscillatory.

Proof The proof is the same as that of Theorem 6.3.2. The conclusion

holds if the contradiction to (6.3.20) is replaced by a contradiction to (6.3.22).

Theorem 6.3.5 Assume that there exists a positive sequence {A,} such that

P® >0 eventually and (6.3.18) holds. In addition, there is a positive integer kg

such that
n s-1 (ko—1)\ "1
4A;B;P,
lim [ (1+ —-§PL—+1— < (6.3.23)
nmee s=ngi=ng A‘H'l
and
lim ) P = o0, (6.3.24)

s=ngp
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Then (6.1.1) is oscillatory.

Proof Without loss of generality, suppose that {z,} is an eventually posi-
tive solution of (6.1.1). Then all conditions of Lemma 6.2.7 are satisfied. By the

proof of Lemma 6.2.7, we have

n—1 (ko—1)\ ~1
P7Sk0) < Wng H (1 n 4AsBsPs+l ) :

2
As+1

n n  s-1 4A'B'P-(k0_l) -1
S < 3 ] (14 52
i+1

s=ng s=ngp i=ng

which contradict (6.3.23) and (6.3.24). The contradiction shows that the conclu-

sion holds.

To further study the oscillation of (6.1.1), we construct the following sequence

{a} for any sequence {PP}. Set

ale) — Pr(;k)a

2. AB,(@{))?
m — - LeTe et pl)
o N s=n A§+1 Rs,n,
o0 0 (ONRY
oty = E:A*’BS(O‘”]“LO‘W) R (6.3.25)

2
s=n As+l

If every term in (6.3.25) is defined, then we have ag“) > ag) and

lim o =
n—oo

Theorem 6.3.6 Assume that the assumptions of Lemma 6.2.6 are satisfied. If

(6.1.1) has a non-oscillatory solution and all o) in (6.3.25) are defined, then

lim oY = a,. (6.3.26)
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Proof Without loss of generality, suppose {z,} is an eventually positive
solution of (6.1.1). By Lemma 6.2.6, there are an n, > n; and a sequence {w,}

such that
> A,Bv?

wy, > PR+ Z yE sHRgf,{ for n>mny
s=n s+1

and

~—

< 0.

E]

X, A,B,(P%71)?
(k) _ sBPs\ s pq (k
S P

Hence we have

wp > PM = o),

n
2 (0) \2
wn+l > (an+1) ’
2. A,B,w?

s+1 R‘gl,crl

(1)
a,
Al

IA

Hence w, > o 4o, By mathematical induction, we have
w, > af +a?,

o < oY < .

Therefore, all o in (6.3.25) are defined and (6.3.26) holds. From theorem 6.3.6,

we can easily obtain the following theorems.

Theorem 6.3.7 Assume that there exists a positive sequence {A,} such that
{0 > 0 eventually and (6.3.18) holds. In addition, there exists a nonnegative

integer ko such that one of the following conditions is satisfied.

(i) There exists a nonnegative integer I such that ag), 1=0,1,2,--- ,lpb—1

are defined but a£,l°) does not exist.



(ii) All o in (6.3.25) are defined. In addition, for every sufficiently large n

there exists n* > n such that lim;_ o a(z = o0.

Then (6.1.1) is oscillatory.

Proof Suppose (6.1.1) is nonoscillatory and, without loss of generality, z, is

an eventually positive solution of (6.1.1). So all condition of Theorem 6.3.7 are

satisfied then (6.3.26) holds, which contradicts (i) or (ii). The contradictions

show that the conclusion hold.

Theorem 6.3.8 Under the assumptions of Theorem 6.3.7, and one of the fol-

lowing conditions is satisfied. For some kg, there exists a nonnegative integer [,

such that
nd 4A,B,P%
lim sup o H <1 —Az_s“) = 00
n—00 s=ng s+1
or

n-1 (ko)
4AsB,P;
lim sup a, I I (1 +_.A2 +1> ~
s+1

n—oo
s=np

Then (6.1.1) is oscillatory.

Proof Similar to Lemma 6.2.7, we obtain

n—1 (ko)
a(lo) M_O_ < w < 00
> Wy
s=nyg +1

and

n-1 (ko)
4A,B,P
an||<l+_A+'ls_+l")Swno<oo)

s=ngp

which contradict (6.3.27) and (6.3.28). Therefore (6.1.1) is oscillatory.

(6.3.27)

(6.3.28)
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Theorem 6.3.9 Assume that the assumptions of Theorem 6.3.7 are met. In

addition,

n  s—1 (ko) -1
m 3 4A;BP,

s=ng i=ng

And there exists a Iy such that

i (lo) _.
nl_l_’ngo Z ay®) = oo. (6.3.30)

s=ng

Then (6.1.1) is oscillatory.

Proof Suppose that {z,} is an eventually positive solution of equation
(6.1.1). Then all conditions of Lemma 6.2.7 are satisfied. Similar to the proof of

Lemma 6.2.7, we have

n-1 (ko)\ ~!

4A;B;P,

aff‘)) < Wy, | I (1 + —A?‘_HI) . (6.3.31)
i+1

i=ng

Summation both sides of (6.3.30) for s from ng to n, we have

n n s—1 n plko)\ !
Zaglo)szwnon<l+ﬂ/_gﬁ) |

s=ng s=ng t=ng

which contradicts (6.3.29) and (6.3.30). Therefore, (6.1.1) is oscillatory.

Remark 6.3.1 Our conclusions also hold for the mixed difference equations
with 7, < n and n < g, < 2™ 2n, all results in [67] and [69] are included and

extended.

Remark 6.3.2 By equivalence behavior of between in convergence of the series

i f(s —m), i f(s) and B, = (1, — n1)™?/(a,, (m — 2)!) in our theorems,

s8=n
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they can be replaced by

_ (m—2)
B (9n)

" g (m - o)l (2m ) mD)

6.4 EXAMPLES

Here, two examples will be given in this section to demonstrate the results

obtained in last section.

Example 6.4.1 Consider the fourth order difference equation

1
AY(zp + =Tp-1) + A Tp_1 =0. (6.4.32)

2 2(n —1)3

Regarding (6.4.32) as (6.1.1), we have m—1 =4, ap =1, g, = A/ (2(n—1)3), 7, =
g, =n—1land A > 0. Choose 4, =1, Q, = N (2(n—1)*), B, = (n—1)?/24.

Then we have

A — 1 A
o _ 2 —
F7o= 235:—;(5—1)3 (=2
X — (i—1)
@ _ A 1
R = 33 e Tl (1 2920
A — 1 A\~
= 2,224(3—1)2 (1+48>

@
il
=

So PV — 00 as n — 0o. By Theorem 6.3.4, (6.4.32) is oscillatory.
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Example 6.4.2 Consider the fourth order difference equation

1 A
A2, + =2y —2,_1 =0. 4.
(% + 52 1>+2(n_1)4m 1=0 (6.4.33)
Regarding (6.4.33) as (6.1.1), we have m—1 =4, a, =1, ¢, = A/(2(n—1)%), 7, =
gn =n — 1. Choose A, =1, Q, = A/(2(n — 1)*), B, = (n— 1)2/24. Then we

have

Aem 1 A
© - Z =
b 2; (s—1)* 6(n—-2)%¥

R A
P'S)_56224(3—1)3(3—3).[1(”72(z'—3)>

a[10]
T (s= 1)@’
n—1
A b
1 1 >
& H( ) SR

where a and b are positive constants. When A > 54,

n-1
A
p(l)” — )= — 0.
A (1+36(s—3)> 00 as 1 — o0

s=ny

By Theorem 6.3.3, when \ > 54 (6.4.33) is oscillatory.

6.5 CONCLUSION

The objective of this chapter is to investigate (6.1.1) with a nonlinear neutral
term. To establish the oscillatory criteria, we have managed to construct a Riccati
type inequality (6.2.6) in Lemma 6.2.4 based on the results about the features
of solutions of (6.1.1). Even better, we have obtained two more Riccati type

difference inequalities (6.2.9) and (6.2.14) in Lemma 6.2.5 and Lemma 6.2.6,



respectively. Based on these inequalities, we have managed to develop five criteria
for (6.1.1) to be oscillatory. The criteria have been presented in Theorem 6.3.1
-6.3.5. In addition, to deep the study of (6.1.1) we have constructed another
sequence o). From this sequence, we have managed to establish three more

oscillatory criteria, referring to Theorem 6.3.8 and 6.3.9. Examples are given to

demonstrate the results obtained in section 6.4.

The results in this chapter have completely covered the results in [67] and [69]
as special cases. Since a,, is a sequence, (6.1.1) is more general than the equations
in [61] and [54] except the forced equation in [54]. On the other hand, the results
in this chapter are not ideal. There are new effort should be made in future to

improve the results obtained here.

169



Chapter 7

CONCLUSION
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The objective of this thesis was to investigate the oscillatory and asymptotic
behaviour of the solutions of certain particular classes of equations when ¢ tends
to infinity. In this chapter, we briefly summarise what we have achieved so far

and then point out directions for further investigation.

The nonautonomous first order differential system of the form

.’l?i(t) = bi(t)xi(t) (1 - Zaij(t)xj(t)) ) i€ N(lvn)

has been studied in chapter 2. Here the functions a;;(¢) and b;(t) are continuous
on R and bounded above and below by strictly positive numbers. By adapting
the previous results about the canonical equations to the above system, a less
restrictive improved condition just involving coefficients has been obtained for a

particular type of solutions to be globally stable when ¢ is sufficiently large.

Second order nonlinear neutral differential equations having the form
(a(®)(2(t) + dp(t)z(t — 7)) + f(t,2(t — o)) = g(t,z(t — p)) =0

were investigated in chapter 3. Here § = 41 or —1,¢ > tp, a(t) is a con-
tinuously differentiable function, p(t) is a continuous bounded function with
a(t) > 0, p(t) > 0, f(t,u) and g(¢,v) are continuous functions, the constants
T, 0, p € [0,00). We are interested in nontrivial solutions on [tg, 00). Under the
assumption of existence and uniqueness, we have concentrated on the oscillation
of solutions. Sufficient conditions in terms of a(t), ¢(t), (t), p(t), o and p have
been achieved for the solutions to be bounded oscillatory, almost oscillatory, and
bounded almost oscillatory. Our results are more general than and coincident

with some of the previous studies though we did not find out the ideal conditions
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for the equations to be oscillatory.

Nonlinear neutral difference equations of the form

AT (x(t) — pe(t — 1)) + f(t,2(g(t))) =0

were studied in chapter 4 and chapter 5. Here m > 2 is a natural number,
p > 0, 7 and r are positive constants, g € C'(|tg,0), RY), ¢'(t) > 0, and f €
C([to,00) x R, R). Under the assumption of existence and uniqueness, we have
focused on the oscillatory behaviour of solutions when ¢ tends to infinity. Chap-
ter 4 focuses on the even order equations while chapter 5 devotes to the odd
order equations. Different techniques are needed to obtain oscillatory criteria for
the two kinds of equations. In chapter 4, by applying the available theory for
discrete differences to the differences with continuous argument, oscillatory crite-
ria involving the function g (¢ = 2,4,2n) defined by (4.3.5), (4.4.21) or (4.5.47)
for the second order, fourth order, and higher even order equations have been
obtained, respectively. For the odd order equations in chapter 5, sufficient con-
ditions for the third order and higher odd order equations have been established

for the bounded solutions to be oscillatory.

Even order difference equations with a nonlinear neutral term having the form
A" @A (Tn + @(n, T5,))) + Guf (24,) = O

were discussed in chapter 6. Here m is an even positive integer, n > ng, {m}
and {gn} are nondecreasing sequences of nonnegative integers with 7, < n, g, <
7, liMgy 00 T = 00, lim,_,o0 g = 00, {a,} and {g,} are sequences of real num-

bers with a, > 0,¢, > 0 andg, 20, and f : R —» Rand ¢ : R? — R are



functions. We are interested in the oscillatory behaviour when n tends to infin-
ity under the assumption of existence and uniqueness. By applying the previous
results, Riccati transformation, and Riccati inequalities to the above equations,

various criteria have been obtained for the solutions to be oscillatory.

Our work has been inspired by the previous studies as we mentioned in each
part so that our results can be regarded as the generalizations of the available
results.

There are some outstanding problems for the differential equations we have
discussed in chapter 3 and new effort should be made to improve the existing
theory. We list some of them below, which may require completely different

techniques.

(i) Higher order equations. For the higher order equation
(a()(z(t) + dp(t)a(t — 7)) + f(t,2(t — 7)) - g(t,2(t — p)) =0,

where n is a positive integer, whether oscillatory criteria analogous to those
given in chapter 3 could be obtained by the same method needs further

investigation.

(i) Corresponding difference equations. For the corresponding second

order difference equations
Do(a(t)Bo(z(t) + op(t)z(t — 7)) + f(t,2(t — 0)) — g(t, z(t — p)) = O,

under the same assumptions as in chapter 3, oscillatory criteria similar to

those given in chapter 3 might be achieved by the same method after the
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replacement of the derivatives by the differences. However, to carry out this

work, new techniques might be needed.

(i) Weaker conditions for the oscillatory solutions. The boundedness of
the solution z plays an important role in the proofs of oscillation criteria
and the proofs would fail without this condition. Sufficient conditions for

all solutions to be oscillatory demand new methods.

In chapter 4 and 5, nonlinear neutral difference equation (4.1.1) was studied.
There are some outstanding problems for further investigation. For instance, it
is natural to explore the corresponding nonautonomous equations in the future,

For the corresponding nonautonomous difference equation

AT(z(t) — p(t)z(t — r)) + f(t,2(9(2))) = 0,

oscillatory criteria for the even order equations will be expected by the same
methods in chapter 4 under the assumptions 0 < p(t) < p; < 1 or p(t) > p2 > 1.
Without such assumptions on p(t), oscillatory criteria might be gained by using
different methods. For the odd order nonautonomous equations, new techniques
might be demanded to establish oscillatory criteria even under the assumptions
0<p(t)<py<lorp(t)>ps>1

Some conditions in chapter 4 are not very general and new efforts are needed

to make to generalize the obtained results. Some examples are given as follows.

(i) In Theorem 4.5.1 (P84), we did not have the ideal sufficient conditions for

(4.1.1) to be oscillatory. In its proof, we suppose that z(t) — pz(t —r) > 0
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when ¢t is sufficiently large and the proof fails without it. New techniques

are needed to generalize the criteria for (4.1.1).

(i) Oscillatory theorems except Theorem 4.5.1 have been gained in three sep-
arate cases according top > 1,p = land0 < p < 1. The value of p
plays an important part in the proofs. Therefore, new methods and further

investigation are needed to establish the more general criteria only with

p>0.

(iii) In theorems except Theorem 4.5.1, the sufficient conditions are involving a
number kg for solutions to be oscillatory. In practice, it is not easy to find

such a number ky. New methods are needed to improve the gained criteria.

For the odd order equations in chapter 5, our results are not as good as those
in chapter 4. Further investigation is needed to improve the existing results by
new methods. First of all, various criteria in chapter 5 are for the bounded
solutions to be oscillatory. New methods are demanded to establish oscillatory
criteria for all solutions. Secondly, in the definitions of 3,1 and G2 (P133), a
Tm 2 to being large enough is required. In application, it is not easy to find such
a Ty, to fulfill the requirements. Thirdly, in theorem 5.4.1 (P133), conditions
(5.4.48) and (5.4.49) are demanded to hold at the same time. If we rewrite
condition (5.4.49), then we can see it involving (,,; as well. The requirements for
Bm1 in both inequalities are in the opposite directions. Thus the applications of
this oscillatory criteria are very limited. Finally, when p > 1, we have obtained

the oscillatory criteria just for certain particular classes of equations with r =
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kr and r > t+37— g(t). Less restrictive conditions are required for improvement.

For the oscillatory criteria given in chapter 6, in practice, it is difficult to use
them since a sequence {4, } needs to be built at the first place. By adopting the

methods in chapter 4 and 5, weaker conditions might be obtained.
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