ADAPTIVE FUNCTION MODAL
LEARNING NEURAL NETWORKS

BY

Miao KANG

A THESIS SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

LONDON
metropolitan s°, *
university o ®

FACULTY OF COMPUTING

FEBRUARY 2011

ABSTRACT

Modal learning method is a neural network learning term that refers to a single neural
network which combines with more than one mode of learning. It aims to achieve more
powerful learning results than a neural network combines with only one single mode of
learning. This thesis introduces a novel modal learning Adaptive Function Neural Network
(ADFUNN) with the aim to overcome the linear inseparability limitation in a single weight
layer supervised network. Adaptation in the function mode of learning within individual
nheurons is carried out in parallel with the traditional weights adaptation mode of learning

between neurons; thus producing a more powerful, flexible form of learning.

ADFUNN employs modifiable linear piecewise neuron activation functions and meanwhile
adapts the weights using a modified delta learning rule. Experimental results show the single
layer ADFUNN is highly effective at assimilating and generalising on many linearly
inseparable problems, such as the Iris dataset, and a natural language phrase recognition task.
A multi-layer approach, a Multi-layer ADFUNN (MADFUNN) is introduced to solve highly
complex datasets. It aims to find a suitably restricted subset of neuron activation functions
which has a good representational capacity and enables efficient learning for complex models
with large datasets. Experiments on analytical function recognition and letter image
recognition are solved by MADFUNN with high levels of recognition. In order to further
explore modal learning, ADFUNN is combined with an unsupervised modal learning neural
network called Snap-Drift (Palmer-Brown and Lee) to create a Snap-drift ADFUNN
(SADFUNN). It is used to solve an optical and pen-based handwritten digit recognition task

from the UCI machine learning repository and exhibits more powerful generalisation ability
than the MLPs.

An additional benefit of ADFUNN, as well as a MADFUNN and SADFUNN, is that the
learned functions can support intelligent data analysis. These learned activation function

curves reveal many useful information about the data.

il

ACKNOWLEDGEMENT

First of all, T would like to thank Faculty of Computing, London Metropolitan University for

providing resources and support for my research.

And the most important acknowledgement is to my project supervisor Professor Dbminic
Palmer-Brown. I would like to extend my heartfelt gratitude to him for his guidance, patience,
encouragement and kindness from the beginning to the final level of my PhD. His enthusiasm
and insights in the subject, incredible talent, energy and personality have not only inspired me

throughout the project, but also will motivate me every day for the rest of my career.
Special thanks to Dr Vincent Hargy’s great feedbacks and proof-reading to this thesis.

I would also like to thank my parents for their support and encouragement, also for creating
an environment where I can follow my dreams.

Last but not least, Songtao, the very special person you are. Thank you for your support and

love over the past few years which have made the completion of this thesis possible.

1

TABLE OF CONTENT

LIST OF FIGURES XI
LIST OF TABLES XV
CHAPTER1 INTRODUCTION 16
1.1 NEURAL NETWORKS 16
1.1.1 The Definition of Neural NetWorkccooceiivinimininininiiiniieniicein 16
1.1.2 The Appeal of Neural Networks..............cccccoevivcviiiniinininiiniiiiicns 16
1.1.3 Computation in the Human Brain...................cccccooiviniiinniiniiiniinin 17
1.14 Neural Networks in the Braincoooeveeeeceevcceenoeieiiieieieecienie e 17
1.1.5 A Brief History of Neural NetworKs..............cccccoovvcuiiiiniiiinnnianniieeeeen 17
1.1.6 Model of a Simple Active NeUronc.cooceeereviiciiiiiinieinic e, 19
1.1.7 Modelling a Simple Neural Networkccooovviininiiniiinnnnnnnnn, 20
118 The Learning of Neural Networkscccccoeovvniciniiiiiciioiiiiieins 21
1.2 PATTERN CLASSIFICATION 21
1.2.1 Single Layer Network for Pattern Classification.................cccccvververencnnnnn. 22
1.2.2 Multi Layer Network for Pattern Classification...............c.cccoevevenveennenen. 22
1.2.3 Linear Separabilitycocoovevciiiieieiiiiicieniiiiieieeeee s 23
1.2.4 PeFCEPITONS ...t 24
1.2.5 Perceptron Learning AIGOFithmMm.................ccoocovviiiiceinenienieneececeiinie e 25
1.3 . SUPERVISED AND UNSUPERVISED LEARNING 25
14 MODAL LEARNING 26
1.5 THE MODELLING OF ARTIFICIAL NEURAL NETWORK 29
1.6 OBJECTIVES OF THIS THESIS 29
1.7 THE STRUCTURE OF THE THESIS 30
CHAPTER2 A SURVEY OF RELATED WORK 32
2.1 INTRODUCTION 32
2.2 LEARNING ALGORITHMS 32

v

2.2.1
2211
2212

222
2221

2222

23
2.3.1
232
2.3.2.1
2322
2323
2.3.24
2325
2.3.3
2331
2332
2333
24
24.1
242
243
2.44
245
25
235.1
252

SYMBOLIC LEAFRINAG ... s 32
DECISION THCE.......covevvesriseeivrrerrerestessereteseeereeresseesessasstsesses e st sstesbesassrssnsenbevanassasanssens 32
RUIE TNAUCHION ..c..oeeceoevvereereeereeeersreeit ettt s et et sb s s srs s e be s reeaes 33
2.2.12.1 CN2 Induction Algorithmccoconvimieceniniininiicinrceere s 33
Non-Symbolic Learningccoeeueieueuiiininininiiiiiinisee e 34
Neural Network Learning Paradigmsc.covovviviiininniiniieiiicevsinesisnnens 35
2.2.2.1.1 Supervised Leamingccceceeveinnremninininiiisicennn s 35
2.2.2.1.2 Unsupervised Leamingcccccoeveiemreiernnnnininiiiiineee s 35
22213 Reinforcement LEArningcoocevceeeieencntenrienicnenteinrssseecresrensesesecnnes 35
Neural Network Learning AIGOFItRIMSovvivvvinviiniininiiiiiiicevnsienes 36
22221 Linear ClasSifIerScocvieeeeieireeereereeireeeeeniesereresce e e esnesesesnesins 30
2.2.2.2.2 Support Vector Machines..........ccoovuvenrnieieieiineiececccvveene 41
22223 K-Nearest NeighbOUr.......cccoociivviiiieineeeieiereneici v 42
22224 Bayesian NetWOTKScccovervceereirenineiiiiiine e eene 44
2.2.2.2.5 BOOSHNZ ucteurrieeenretetreriete sttt cte st e ss s e e st sbs st era s saeenes 45
2.2.2.2.6 Minimum Message Lengthcoccovevvevrvceninniicnneni e, 46
22227 Quadratic Classifiercovveveeirrcenrenreer e 46
NEURAL NETWORKS ARCHITECTURE 47
Fuzzy Neur@l NetWOTKS ..o 47
Feed-forward Neural Network..................c.cccccoovvvciniiiniiiinniiienn, 48
Single-Layer PErCePIrON.............woueeiiieeiiiirriii it 49
Multi-Layer PercepITon............ccccovvvvviisineeteirinteseeseeseeneesnecreeneense st sressbsonsansonsennes 49
BaACk PrODAZALIONucvvviiiiiiiiiiececireiee st seesas e saosassrenssussnssaene 49
Adaptive Linear Neuron (ADALINE)cccoeeevimvrvncicirciniinecisesnsenenn, 51
Radial Basis Function (RBE) NetWOrk.............c.cocvcvivvecuivviiireeeneeisesesesisnseeesesenas 51
Recurrent Neural NEtWOFK.................cc.cooooveeeeeceeieeiiiveeeeeeeeeeereeesvinssseneeens 53
Simple Recurrent NETWOT k...t snsss e 53
HOPSIeld NEtWOTK.......ovvviniiiiiiiiiiiniiiiitc s s 54
ECho StAte NEtWOFKccoooveiaiiviciecie ittt sttt see e e set e sresbesseaneeons 55
FUNCTION MODIFIABLE LEARNING METHODS 56
TRIPOAUCTION ...ttt e st et sttt 56
Adaptive Polynomial Activation FURCEIONSc.ccovvviviiiiccnniccnns 56
Adaptive Spline Activation Function Neural Networksc.c............ 56

Adaptive Optical Radial Basis Function Neural Networks
An Adaptive Activation Function for Classification of ECG Arrhythmias... 59

INTELLIGENT DATA ANALYSIS 59
TNEFOAUCTION ...ttt sttt et st essaeesaennes 59
Important Information Revealed from Learned Weights...............c............. 60

253
2.5.3.1
2532

254
2.6
2.7

CHAPTER 3

3.1.

3.2
3.2.1
322
3.2.3
3.24

3.3.

34.
3.4.1
3.4.2
3.4.3
3.44
3.4.5
346
3.4.7

3.5.
3.5.1

3511

3.5.12
3.5.1.3
3.5.14
3.5.2
3521
3.5.2.2
3.5.2.3
3524

Statistical Mathematical Method.................cccocouviuiiieioeeieneeieeceiieceeeeeenen 61
Simple MOVING AVEFAQE...........c.ccceerevereeceiciinieereenit ettt et seeste st san e cnennens 61
Least Square Polynomial SMOOIRING.............ccoovuivvivireiennieniieerssrneereseesineseninns 61
Other Data Analysis MEtROGS................cccceevcoeniunmnierieieieeeeeesesieeeeevens 62
NEURAL NETWORK GENERALISATION 62
CONCLUSION 63
AN ADAPTIVE FUNCTION NEURAL NETWORK (ADFUNN)......... 65
INTRODUCTION 65
PIECEWISE LINEAR ACTIVATION FUNCTION ese:66
The Number Of F-POIRLSc..ccccouviviveiinieiiniiiiiinienieneeienenesenecseesee e nens 67
Proximal-Proportional BaSs.................cccceicvioiiiiieniiiiieciercciaeeeenens 68
FUunction SIope..............ccooceiiiiiiiiiiiiiiiiiniec b 68
Function Adaptationccccooeeueviininiiniinininii 69
ADFUNN ARCHITECTURE 70
THE LEARNING METHOD 71
The Delta Learning Rule....................co.coooiueiveivieiieeeiieeeieeieeereeeeesieeee s 71
Learning Rates for Weights and FUNCHIONSc.coeeveeeeeeceecienneeninennnns 71
Weight NO¥mMAliSQLIONc.c.cooueviiriniiiciriencieeie ettt 72
Weight AdQDIALIONcccccovceviiiiiiiiienieieietetece e 72
Function Adaptationc.ccccoeeuvemeniiinenteeceiseeeeeee e 73
ADFUNN General Learning Rule..................ccccoocvvvueviarvenvicinieiiriireeeseennns 74
Mathematical Principles Employed in the Learningcc.ccooevvenenne.. 75
ADFUNN SIMULATIONS 76
XOR PrODIEm..........ooeceeveieeeteeete ettt 77
KOR PrOBIEmM...........oceeeeeeeverereresseersieisises st sasesesss s ses st snass st s ssnns s esesens 77
ADFUNN 01 XOR Problen..............ccovoviemeeeererenieieereiseiensesessisssssssenssssssssnns 77
SIPUIGLION RESUILcovovvevereeeeeeeerieeree st eeseese bbb ss s s b snsenans 77
GeneraliSAtion ADBilify................coooeeeververererssssssssssssssssssssssssssssse s ssssesesssssssaens 78
IFiS PPODBIEM ...t b 79
VIS DQIASEL ... e es sttt sttt bbb tee e 79
ADFUNN 011 IFiS DAIGSELcooooeevevereeereressessssinessensessnsissssssssssssssssssssssssasesssssssns 79
SIMUIGLION RESUIL ... s sasenas 80
GeneraliSation Ability.................ovvoveeeveeeeererereriseseeesesessissesseeseesene s sss e eeeses 81

3525 Comparison of Related Works Applied 1o Iris Dataset.................c..ccovreverireersrnnen. 82

3.5.3 Natural Language Phrase Recognition Problem.....................c.cccovreeenn... 82
3.5.3.1 Natural Language Phrase Recognition Data SOUrceuueeeeoveveevvrerernvernnnn. 83
3.5.32 Natural Language Processing Background.....................covvcrereereeccvvisoresennnnns 84
3.5.33 ADFUNN on Natural Language Phrase Recognition Task.................c.ccvcveriverennnn 84
3.5.3.4 SIMULALION RESUILo..ovveeniieeeeieceeeeeeree ettt st s st erenas 85
3535 GeneraliSation ADIliLy...........ceccicciiiiiniinicinc s 86
3536 Comparison of MLP with Back-Propagation Applied on this Task 87

354 ADFUNN vs. Adaptive Cubic Spline Activation Fucntion 88
3.5.4.1 Comparison of Performance on Continuous XOR (cXOR) Problem.................. .. 88
3.54.2 Comparison of Performance on Iris Dataset.................cocovoecenevvrcrnrarcervressinnnns 90

3.6. CONCLUSION 1

CHAPTER4 A MULTI-LAYER ADAPTIVE FUNCTION NEURAL NETWORK

(MADFUNN) 94
4.1 INTRODUCTION 94
4.2 THE MADFUNN ARCHITECTURE . 94
4.2.1 Input LAYer..........cccoveevininiiiiinneniannnn o, e 95
4.2.2 Hidden Layer ..ottt 95
4.2.3 OUIDUE LAYET ..ottt sttt s 95
43 THE SYSTEM LEARNING 96
4.3.1 Learning Rates for Weights and FURCHIONScccocevverereeenieeeieninnann, 96
4.3.2 Errors in Output Neurons and Hidden Neuron.....................ccooeeeeveerevnnenn.. 96
4.3.3 Weight Normalisation and Weight Limiterccccuoeeeeveeeeeveivienennne. 96
4.3.4 Weight AQAPIALIONcccvvieueiiiiniinineeeseeseete e, 97
935 FUNCHONS AQAPIGHION...........oooooooooooeoeeeeeeeees oo seesessesee oo 97
4.3.6 MADFUNN General Learning Rule...............cccoovmvvroenieineeiioreveeeseeans 98
4.4 ANALYTICAL FUNCTION RECOGNITION 99
4.4.1 Motivation for INVeSHIGALIONcccoevvevveoricenieniesiseeee e, 99
44.2 PaIterns GEReration....................ccoeeeeeueveeeeereereeisisiseseseseeses e 100
4.4.3 Analytical Function Recognition Insolvable Using a Single Layer ADFUNN103
4.4.4 Complexity and Availability of the TaSK.............coovveeeeeecereeeeeeeerreesrenn. 104
4.4.5 MADFUNN on Analytical Function RecOgnition...................o.cocooeveernnnn.. 105

vii

4.4.6
44.7
448
4.5
45.1
4.5.2
4.5.3
454
4.6.4.1
4.64.2
4.6.4.3
4.5.5
4.5.6
4.5.7
4.6

CHAPTER 5

3.1

5.2
5.2.1
3.2.2
5.23

5.24
53

5.3.1

3.3.2

5.3.3
354

54.1
54.2

SImulation RESUIL................oovovviiirieireenecsiesises s e enae st 106
Generalisation ADility.................ccccoeveeveceeeeeieieieeeeeeeeee e 108
Comparison of a Simple Back-Propagation with MADFUNN................... 108
LETTER IMAGE RECOGNITION 109
Letter Image Recognition DALaSetcoeevenesvvnrneeernnsresisssennnns 110
MADFUNN for Letter Image ReCOGRitiOn.................c.coovvvoevererreeneenn. 111
Letter Regrouping 10 EXtract FeQtUres...............cccouuuveeoerevevevereueneesvennnns 113
Confusion Matrix for the Regrouping ARGIYSISccocovveneneererinren, 114
Rules of Letter REGroupingoovveovereerreeserseeresesesissasesnsssssssesnesssssns ... 114
Letter ClaSSifiCtioncceevevevereeesiesissessessssssisssssssssssessessesssnssssesesassssens 116
One-shot Multi-grouping and RUIESoovvceneveonserionerrevneirnseeinesnssscsssennns 119
SIMULALION RESUIL ..., 121
Generalisation ABilify.................cooeeeveeeeeereerereissesssessessssssssessssnse s 123

Performance Comparison with other Methods Applied to this Problem.... 124
CONCLUSION 125

SNAP-DRIFT ADAPTIVE FUCTION NEURAL NETWORK

(SADFUNN) 127
INTRODUCTION 127
THE SNAP-DRIFT ALGORITHM 128
Weights INItiQliSQLION...............cooeeoeeeeeeeeeeeeeeeeeeereee e e e e e e s e e e e ees e e e e 128

Distributed Snap-Drift Neural Network (dSDNN) for Feature Extraction 129
The Selection Snap-Drift Neural Network (sSDNN) for Feature

ClASSIfICALION ... 129
SNAP-DFift LeArning RUIeo.oooveoreereeeeeseeeeserees s eseseeeres e, 130
THE SYSTEM LEARNING 130
Unsupervised Distributed Snap-Drift Neural Network (dSDNN)............... 131
Supervised ADFUNN...........cooocoveeeereeereeereeeessssssssiesseeeseeeeeeseees e essee 132
SADFUNN AFCRItECIUTEeeeoeveoeeeoeeeeeeeeeereeeeeeseeeseseeeeeeee s 132
SADFUNN ON OPTICAL AND PEN-BASED HANDWRITTEN DIGIT

RECOGNITION 133
Optical and Pen-Based Handwritten Digit Recognition Datasets 133

SADFUNN on the Two Datasets

5.4.3

544

345

546
5.5

CHAPTER 6

6.1
6.2
6.2.1

6.2.2

6.2.3
6.2.4
6.2.5
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.4.1
6.4.4.2
6.4.5

6.4.6
6.5

CHAPTER 7

71
7.2
73

SITMUIALION RESUIE .. eeeeeeeeeeeeereeaeneeeese ettt b s s 135
Generalisation ABDili1..........ucoiiirrsmsitneiin st 137
Related Work on Methods of Handwritten Cursive Letter Recognition...... 139
Comparison with other Methods Applied to the Datasetscoveevvene 140
CONCLUSION . 141
ADAPTIVE FUNCTION NEURAL NETWORKS FOR

INTELLIGENT DATA ANALYSIS. 142
INTRODUCTION ‘ 142
LEARNED FUNCTIONS AND WEIGHTS ANALYSIS 143

Retrieve Important Inputs Variables and Features for Each Class from the

Learned WEigRLsc.cocvruimmeuissisinmismsisssss st 143
Retrieve Important Information for Each Class from the Learned Functions
GO WEIGRLS.........oovveeeeveraeeeiereaensisas s 143
Analysis Result for Iris DatASercoovecunesmsesenissmimmmismisss s 144
Inequality Rule for Iris DAIASELcc.oovmuimnirenmsinmiisisisiss s 145
Analysis Result for Natural Language Phrase Recognition.............cceeeen 147
WELL-REGULATED ADFUNN LEARNED FUNCTIONS WITH NOISE......... 149
LEARNED FUNCTION CURVE SMOOTHING 150
Function Range Transaction using Min-Max Normalisation.................... 150
Simple Moving Average SMOOHIAG...........c.ocvvvinmiersnimsisi e 150
Least-squares Polynomial SMOORINGccooovveiniiiiminn 151
A New Self-Sizing Moving WindOW ..o 151
Deviation wWithin the WildOW..........cceeevveeienirinrinessimisniii e 152
Self-sizing moving window smoothing MEthOdccovevveceviimniiinieeenens 152
SMOOtRING EXPEFIMENLScoveveneereiiniaiesisinisissssssi s 153
Smoothed Curves PerfOrmancecooovevvmimmsisesmiinisninin 159
CONCLUSION 162
CONCLUSIONS 164
INTRODUCTION 164
SUMMARY ERROR! BOOKMARK NOT DEFINED.
DISCUSSIONS 166

ix

7.4
7.4.1
7.4.2
7.4.3

7.4.4
7.4.5
15

REFERENCES
APPENDIX A:

APPENDIX B:

FUTURE WORK 167
Unsupervised ADFUNNcccooevmenmininiiiiiiiinieseee e 167
Apply ADFUNN (or MADFUNN or SADFUNN) to UrbanBuzz ESP Project] 68
Apply ADFUNN (or MADFUNN or SADFUNN) to Handwritten Electronic
Signature AULRENTICATIONccooveveeeeeiniieiiniiiieiieeee s 168
Apply ADFUNN (or MADFUNN or SADFUNN) to More Collected Data 169
Apply ADFUNN (or MADFUNN or SADFUNN) to Fuzzy Neuron System 169

FINAL THOUGHTS 170

171
TERMINOLOGY GLOSSARY 184
PUBLICATIONS 186

LIST OF FIGURES

Figure 1: A simple processing active NEUIOM.............ev.vrereeeseremererereremnueremsuesesaresnsesessssseseuesenens 19
Figure 2: A simple three 1ayer neural NEIWOTKcocevererereererreieeremeneemeseeseeereeessisenenene 20
Figure 3: A single 1ayer NEUTal NEIWOTKocveviveeeierreiriesenesecseeessesesesesesesesesesesesesseesesens 22
Figure 4: A simple multi-layer neural NEtWOTKcovueererseremmeenememremenemrensensesecnemenaes 23
Figure 5: A linear separable ProbIEIcccoeveeveereereerssrensseesecseesecueireessmmeesensessensssesenaes 24
Figure 6: A linear inseparable XOR ProbIEIccoveveereennreserimeresemmsenssessessssssninsssssanens 24
Figure 7: Two class problem in @ 2D eNVITONIMENLo..veveevecriveriesserseeesesesssssssssssessssesseses 27
Figure 8 Increasingly complex solution to a 2-class PIOBIEM ... 27
FIQUre 9: 3 mMOAE SOIILONcoo.veoeeeoeeeeeeese oo ss s s s 28
Figure 10: 2 MOde SOMHONS................oveeeeeeereeeereeeers s eesesesseeesssssssssssesesssssessssssessssnsesssssnsnes 28
Figure 11 Searching for conditions to classify class “Round” and class “Triangle”................ 34
Figure 12: Mixed two classes Project 0nto 0ne Lieo...verevereeeereroseererereesseeoseersesssseesons 37
Figure 13: Better SEPATALEd TWO ClASSESvviurrrireeiieiteiereeeieereereere et sess 37
Figure 14: The regression line which separates data (generated using linearregression Java
APIEL [62]) s 38
Figure 15: Objects of two classes “Round” and “T; FIANGIE” ..ottt 39
Figure 16: Objects surround the new OBJECE c.vvivieieireeteereeecerirteeree e eerees e besae e esn et eaeeenenees 39
Figure 17: Random bIue OF PInK dataooovvveeeeeerssseseseeseesesemeomeonsssssesesesssssmsesasssne 43
Figure 18: 8 nearest neighbours calculated by Euclidean Distance [72]ccovceveurureerecnenecn. 43
Figure 19: A SIMPLE BAYESIan NEtWOTK...............cooevreveeeeeeeeeseevsseeseeseessessessessesssssssessssssssssnens 45
Figure 20: A feed-forward NEtWOrk StUCHUIEoooeeeeeeeeeeseeeeseeevessessesmmsmsesessessessssseeee 49
Figure 21: The traditional radial basis function NEtWOTK................veererrvererrerrerereereeseeeeeeeeeeseee 52
Figure 22: The simplified representation of Elman’s [96] SRN....cociviiirerrerecrierrirnesiesenerenas 54
Figure 23: Spline activation function with its uniformly spaced control points [48]............... 57
Figure 24: A PieCewise LiNear FUNCHONooooooosooesesseseerereesssesssesssessssesssssssseenenennens 66
Figure 25: To represent 16arned fUnCHON......................ooooooceereseseeesseseseseesssreseesseseseessnes 67
Figure 26: Proximal-Proportional Basisovveeoveeereeossessssssssesesesseesssesesseessesees 68
Figure 27: Adapting the linear piecewise neuronal activation function in ADFUN 70

X1

Figure 28: ADFUNN network archit€Ctureoccovevevevereverceesesereeereseseseseseaesenesesesressesssenssees 70
Figure 29: Activation function adaptationccceeeveuereererereeeererereeeseseresesssesenessseseseseenes 73
Figure 30: ADFUNN SyStem dia@ramceouevueremrenrsesenseessessessessssssssssssssssssessasssssnssnses 74
Figure 31: XOR problem solved using ADFUNNccooiiiiiirreenrnrcreeee e s 78
Figure 32: Single layer ADFUNN fOr IFiS dataSet........c.eveveeememeeeerreeeeeeeeeeeesesessssnesereseeenees 80
Figure 33: Iris Setosa learned function using ADFUNN............ccccruumrurienrnreerenreensnssressnsensenens 80
Figure 34: Iris Versicolor learned function using ADFUNNcccovvririrereieienirceneenanenns 81
Figure 35: Iris Virginica learned function using ADFUNNccccoetueemmerermmeemnisnssnriensensanees 81
Figure 36: Sentence phrase learned fUnCHON................c..ervvereessereseresmeesmereeeesseersessseessnnes 85
Figure 37: Verb Phrase 1€armed fUnCtioncoorreevressssssssessesssssssecssesnesssessssssmnnesees 86
Figure 38: Noun Phrase 16arned fUnCtioncoovweeomreveemersssssssssssssssssssesssssnessssnesees 86
Figure 39: Cubic spline activation function for cXOR in the 2-1-1 network [149] 89
Figure 40: Cubic spline activation function for cXOR in the 2-1 network [149]......c...ccoooenn.. 89
Figure 41: Sine function f{x) = sin (5X) e ettt 101
Figure 42: Normalised sine function f(x) = Sin (5X) vt s 102
Figure 43: Pulse function EXAMPLE .ottt e rar e et baeese s aesaeeane 102
Figure 44: Step fUNCHION EXAMPIE..........o.oeoeeeereeeeeeeeee oo eeres e se e rereesesasts s sanaens 102
Figure 45: Random analytical function eXample............cccovverrerereneneneneininienereneneneneineeiene 103
Figure 46: Example of an empirical output that contains approximations to two analytical
BUNCHONS. ..o eeee s snenes st 104
Figure 47: Sigmoid function recognition output using MADFUNN...........cccoceiniirnnnnnnn 106
Figure 48: RBF function recognition output using MADFUNN...........cccovererereeierercrnrenenenenes 106
Figure 49: Pulse function recognition output using MADFUNN........ccecvrrueeercrmniniiiincncnin. 107
Figure 50: Typical form of a hidden neuron function OULPUL ..ot 107
Figure 51: Examples of the character images generated by “distorted” parameters 110
Figure 52: Networks applied to letter image recognition task...........ccoovrvevereerrrveneeneerensennen. 112
Figure 53: Confusion matrix generated in the first roundccocecevennivninecnennrecneneens 117
Figure 54: Confusion matrix generated in the third roundcocecveeevvenenninceicnceeene 119
Figure 55: Group 3 learned function in MADFUNN 1occccooooveeerresseeressseeesessssneeses e 122
Figure 56: Group 7 learned function In MADFUNN 1 ...ttt 122
Figure 57: Letter I learned function in MADFUNN 6.....cooverrrrnirereseresevenseseestrvesesesnenes 123
Figure 58: Letter M learned function in MADFUNN 8ooovrrrirereeereerereresesseesessssnessssssnens 123

xii

Figure 59: Snap-Drift Neural Network (SDNN) architeCturecovveveeeeveeeeieerersenerennens 128
Figure 60: Snap-drift ADFUNN (SADFUNN) Neural Network architecture........................ 133
Figure 61: The processing of converting the dynamic (pen-based) and static (optical)

representations (image adapted from [164, 165])......ccccvvreererrrererrinieieenerrnreressssereseseesenes 134
Figure 62: Digit 1 learned function in optical dataset using SADFUNN.........c.cccovcrirrrnnnn. 136
Figure 63: Digit 1 learned function in pen-based dataset using SADFUNN...........cc.ooonrven... 136
Figure 64: Digit 8 learned function in optical dataset using SADFUNNcccoo..ormnrrvrnnne.. 136
Figure 65: Digit 8 learned function in pen-based dataset using SADFUNN..........cocccoerumnnncs 137

Figure 66: The performance of training and testing for optical dataset using SADFUNN.....137
Figure 67: The performance of training and testing for pen-based dataset using SADFUNN

.. 138
Figure 68: Digit 9 misclassified to QIZIES oo 138
Figure 69: Digit 2 miSclassified t0 diGit 8oooovvvvverveerrresssrmrnreesssssssssessssssrsessessssssssnns 138
Figure 70: Digit 3 misclassified t0 digit 9oooovereveveemeemeerssrssreneeresssssssssssssssssssesesesssenns 139
Figure 71: One example of learned functions of ADFUNN on the Iris dataset 144
Figure 72: The learned weights with corresponding learned ADFUNN functions in figure 71

.. 144
Figure 73: Another example of learned functions of ADFUNN on the Iris dataset............... 144
Figure 74: The learned weights with corresponding learned ADFUNN functions in figure 73
.. 145
Figure 75: The learned activation functions and weights for Iris dataset using ADFUNN....145
Figure 76: A sentence which is composed BYNP + VP 4+ PP . 147
FIgUIE 77: IPUL tagS fOT SENLENCE..........cooooeeeeoeeeeooeee oo eeenes e 148
Figure 78: Input 1agS fOr VETb PRIASE........ovveveoree et 148
Figure 79: Input 1ag8 fOT NOUN PRIASE ... 148
Figure 80: Easily identified learned TATIZE ...veeeeetveeeeeeeeeeeeeeseeeeeseneeesonaerseesstssesessansessessuseesssnne 149
Figure 81: Original learned function of verb PHLASE.....oviviiieirirtee ettt 154
Figure 82: Smoothed curve of verb phrase learned fUNCHON......c.oovvvevvereeveeeeeeeeeeereeeennes 154
Figure 83: The best fitting 8 degree polynomial function using the least-squares method.....154
Figure 84: Normal learned Sentence funCtion.....................oooooooooooeooeeoesooeeoe 155
Figure 85:

Smoothed curve of learned sentence function using this self-sizing window....... 155

Figure 86: Smoothed curve of the learned sentence function using simple moving average.156

Xiii

Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:

Pulse function class learned function CUIVecocccvvvvrecreererreienrrreseceecneennen 156
Smoothed function curve using simple mOVINg averagecccceceveecervcrcrnnnns 157
Smoothed function curve using self-sizing windowcccccceceeiniiiiinnnnnnnn 157
Learned function with sSmoothed CUrvesc.ccccovvveinnuinircrnnencenenrecie e 158

Comparison of three smoothing methods on phrase recognition sentence class ..159

0] 1 OO RO 160
Verb phrase learned functionc.coeoeeevvvniinininneneeiinccea
Substituting this smoothed curve to the verb phrase neuron............coceveeccrerenennee 160
Comparison of three smoothing methods on phrase recognition sentence class ..161

Closer look of comparison of three smoothing methods........coovevvnieiiiiniinnnnnen. 162

Strategy of the neural network matching system for ESP project...........c.c.......... 168

Xiv

LIST OF TABLES

Table 1: Generalisation of ADFUNN for Iris dataset (150 total patterns, 100 runs)................ 82
Table 2: Input Fields Representationc.ccuvieeueiersrsnsesessesnniniiic e &3
Table 3: Generalisation of ADFUNN on Phrase Recognition (254 patterns, 30 Runs) 86
Table 4: Comparisons between ADFUNN and MLP with back-propagation..........c.c.c.c.cc.... 87
Table 5. Chance that a Hidden Neuron is Not Needed.........ooovererereneennniinnnnccnicnncnene 90
Table 6. Comparison between ADFUNN, Cubic Spline and MLP on cXOR Problem........... 90

Table 7. Comparison between ADFUNN and Catmull-Rom Spline on Iris Problem.............. 91

Table 8: Generalisation of ADFUNN on Analytical Function Recognition (1400 patterns, 30
Runs)

.. 104
Table 9: Generalisation ability of MADFUNN on analytical function recognition................ 108
Table 10: Comparison of MADFUNN with a simple Back-Propagation(BP) neural network

.. 109
Table 11: Comparison of MADFUNN with MLP on the Letter Image Recognition............. 124
Table 12: Performances comparison between smoothed curves and original curves............. 162

XV

CHAPTER 1 INTRODUCTION

This research looks at neural network supervised learning methods which have advantages
that lead to efficient learning in terms of power, flexibility and the ability to solve complex

nonlinear problems.

The general idea of this project is to enhance a single neural network or module by equipping
it with several modes of learning to achieve powerful results. It focuses on investigating and
combining novel activation function modifiable learning methods with the conventional
adaptive pattern of connections between neurons, to overcome the linear inseparability

limitation, in a single weight layer supervised network.

In this chapter, some general fundamentals of neural networks are introduced, in order to

provide a context for the literature review in the following chapter.
1.1 NEURAL NETWORKS

1.1.1 The Definition of Neural Network

A neural network is a distributed network which simulates the structure of human brain with
fully interconnected artificial neurons working together to produce an output. It is like a

multiprocessor computer which has very simple processing neurons and synapses but a very
high degree of interconnection.

1.1.2 The Appeal of Neural Networks

Whenever it is not possible to formulate an algorithmic solution to the data, or the data or the
algorithm is too complex to be processed by either humans or other computer techniques,

neural networks are worth considering. The ability to learn complex relationships between

16

——

input and output patterns that would be difficult to model with conventional algorithms is the
appeal of neural networks. This ability can significantly simplify the modelling work involved
in data analysis. With their excellent ability to find meaningful patterns in complicated or
imprecise data, neural networks have very broad applicability to be used to extract patterns
and detect trends in many real world problems. For instance, they can be widely applied in
industry process control [1]; environmental forecasting [2]; financial and accounting
predictions[3] like sales forecasting, target marketing prediction, risk management and credit

evaluation; medical diagnostics [4] like disease recognition; and speech and face recognition
5, 6]. |

1.1.3 Computation in the Human Brain

In the nervous system, a neuron is the basic computational unit. It receives thousands of
inputs from other neurons, computes the input’s sum and discharges an electrical pulse down
the axon to the next neurons when this input exceeds a critical level. The transmission site of
the electrical signal passing from one neuron to another is called a synapse. Brains can learn
either by modifying the weights of connections between neurons or by inserting or deleting
connections between neurons. The learning is ‘on-line’ and based on experience. However,

there are still many things unknown or unsure about how the brain trains itself to process
information [7] .
1.1.4 Neural Networks in the Brain

The bundles of neural connections between the difference parts of the brain (cortex, midbrain,
brainstem, and cerebellum) are extremely complex, and they are only partially discovered or
known by now. So far only feed-forward projections that go from earlier processing stages to

later ones can be distinguished from feed-back connections that go in the opposite direction.

In addition to these long-range connections, neurons also link up with many thousands of

their neighbours. In this way they form very dense, complex local networks.

1.1.5 A Brief History of Neural Networks

17

Many neural network applications seem to have been introduced and developed quite recently.
However, this field was established even before the advent of computers. It experienced at

least one major setback and several eras.

In 1943 [8], the neurophysiologist Warren McCulloch and the logician Walter Pits produced
the first artificial neuron. They demonstrated that: “networks of simple interconnected binary
units which they called ‘formal neurons’, when supplemented by indefinitely large memory
stores, were computationally equivalent to a Universal Turning Machine”. During that period,

even funding and professional support were limited, some researchers still delivered
convincing technologies [9)].

However in 1969, Minsky and Papert [10] published a book, called ‘Perceptrons’, in which
they summed up a general fecling of frustration against neural networks among researchers.
Without further analysis, their theory was accepted. They even demonstrated that: “the single
layer perceptron which was introduced by Frank Rosenblatt [11, 12 and 13] was restricted to
learn classes of patterns that were linearly separable only”. The publication of ‘Perceptrons’
was the only factor in the decline of network research in the late sixties and early seventies. A

number of apparently significant research successes from the non-network approach, also
proved to be influential.

After a ten year gap, neural networks come back to the stage. One important reason for this
was because a number of technical developments were made which seemed to indicate that

Minsky and Papert were wrong and their publications turned up to be very premature and too
early to be concluded.

To overcome the linear separablity limitation, many researches were carried out in response to

Minsky and Papert. The classic multilayer supervised back-propagation method was then
introduced .

A brief history of neural networks can be summarised as the following milestones:

18

> Research started in the 1950°s and 1960’s by researchers like Rosenblatt (Perceptron),
Widrow and Hoff (ADALINE) [14].

> In 1969, publications from Minsky and Papert effectively ended the interest in neural
network research.

> In the late 1980’s interest in neural network increased with the success of algorithms
like Back Propagation, Hopfield, Cognitions and Kohonen. (Many of them developed
quietly during the 1970s) [15, 16, 17 and 18] and also the parallel distributed processing
model [19, 20].

> Progress continued during the 1990’s with more emphasis of Bayesian statistics.

» Currently neural networks are widely used in commercial applications like character
recognition, image recognition [5, 6], credit evaluation [3], fraud detection [3],

insurance [3), and stock forecasting [3] etc [1, 2, 4].

1.1.6 Model of a Simple Active Neuron

In neural networks, a neuron represents a model of a neural cell in the brain. It is the basic
processing element which has one or more inputs and produces one output in a neural
network. The inputs simulate the signals that a neuron gets and the output simulates the signal
which the neuron generates. The output is normally calculated by the sum of weighted inputs,
being passed through an activation function (sigmoid function in this example), and being

scaled to a number between 0 and 1.

\

v

Figure 1: A simple processing active neuron

19

PRSP

An active neuron is used in hidden and output layers of the neural network. However, the
neuron used in the input layer does not normally have an activation function; the input will
only be weighted and passed to next layer neurons. An example of simple processing active

neuron is shown in figure 1.

1.1.7 Modelling a Simple Neural Network

A neural network is a group of neurons connected together. The most commonly used
structure of a neural network is formed in three layers, the input layer, hidden layer, and
output layer. There is at least one neuron in each layer. In this type of neural network, the
information flows only from the input to the output. However, other types of neural networks
may have more complex connections, like feedback paths. A simple three layer neural

network is shown in figure 2.

Input Layer

Hidden Layer

Figure 2: A simple three layer neural network

Each value from input layer is duplicated and sent to all of the hidden neurons, while the

values entering a hidden neuron are multiplied by weights and then summed to produce a

20

single number. This number is then passed through an activation function to generate an
output. Each of these outputs from the hidden layer is duplicated and applied to all of the
output neurons. The active neurons in the output layer will combine and modify the data to

produce outputs values of this network.

1.1.8 The Learning of Neural Networks

In adaptive neural networks, learning is the process of adjusting the weights to proper values.
There are two major learning methods categories: supervised leaming and unsupervised
learning. In a supervised learning neural network, the learning starts by initialising the
weights for all neurons to the random numbers normally between 0 and 1, then

1. Present input to the network

2. Calculate the output

3. Calculate the error by compare the actual output with the expected output for the given

input

4. Adjust the weights according to the error

5. Repeat 1-4 until error gets to an acceptable value.
While in unsupervised learning, the network self-classifies data applied to the network and

automatically detects their emergent collective features.

There are other learning methods like associative mapping, in which the network learns to
produce a particular pattern on the set of input neurons whenever another particular pattern is
presented on the set of input neurons, for instance, the nearest-neighbour learning. Also
learning like regularity detection, neurons learn to respond to particular features of the input
patterns. In associative mapping the network saves the associations among patterns whereas
in regularity detéction the response of each unit has a particular meaning. In some methods,

the weights are fixed before hand according to the problem to solve instead of being adapted.

1.2 PATTERN CLASSIFICATION

An important application of neural network is pattern recognition [21]. It is widely used, also

known by the names of ‘classification’, ‘diagnosis’ and ‘learning from examples’.

21

e e s

Y

Pattern Classification [22, 23, 24 and 25] aims to classify patterns based on either a priori
knowledge or on statistical information extracted from the patterns. The patterns used for

classification are usually groups of measurements or observations, defining points in an

appropriate multidimensional space.

1.2.1 Single Layer Network for Pattern Classification

A single-layer neural network as shown in figure 3 consists of a set of neurons organised in an
input layer. They are fully connected to a neuron (or multiple neurons) in the next output
layer. Each neuron in output layer takes a weighted sum of all its inputs x; with weight w;; and

provides one network output o;.

Input Layer

Output Layer

04

02

Figure 3: A single layer neural network

1.2.2 Multi Layer Network for Pattern Classification

Multi-layer networks are multiple layers links of input, hidden and output neurons. Hidden

neurons are so called because they are not visible from either input or output.

22

A Simple Muiti-Layer Neural Network

Hidden Layer

Output Layer

input Layer

Figure 4. A simple multi-layer neural network

The network diagram shown in figure 4 is a simple fully-connected multi-layer neural
network with only one hidden layer. All multi-layer neural networks have an input layer and
an output layer, but the number of hidden layers may vary. Input can be a vector and so is
output. There may be any number of hidden nodes. When there is more than one hidden layer,

the output from one hidden layer is just simply fed into the next hidden layer.

The term ‘fully connected’ means that the output from each input and hidden neuron is

distributed to all of the neurons in the following layer. But if a weight is adapted to zero, then

that connection may as well not exist.

1.2.3 Linear Separability

Classification problems for which there is a line that exactly separates the classes are called
linearly separable as shown in figure 5. Most single layer networks are only able to solve
linearly separable problems and most real world problems are not linearly separable. However,
the work of this thesis questions this by solving linearly inseparable problems using a single

layer network. The detail of the approach will be introduced and explained in Chapter 3.

23

4 Decision Boundary
®|® /50
® ® ®
® ® O O
< - >
® © R Classl o :Class2
v

Figure 5: A linear separable problem

The simplest well known linear inseparable problem is the XOR problem (in figure 6). Here

two straight line boundaries are needed to separate the two classes of 0 and 1.

Decision Boundaries

®: Classl ok Class2

Figure 6: A linear inseparable XOR problem

1.2.4 Perceptrons

The perceptron is a type of artificial neural network invented in 1957 at the Cornell
Aeronautical Laboratory by Frank Rosenblatt [11, 12 and 13]. It can be considered as the

simplest kind of feed forward neural network, the linear classifier.

The perceptron is more like a binary classifier that maps its input vector x to an output f(x),
calculated as

J) =<w, x> +b

where w is a vector of weights and <w, x> computes a weighted sum. b is the “bias™, a

Constant which does not depend on any input value.

24

The perceptron is considered to be equivalent to an artificial neuron with weighted inputs and
some additional, fixed, pre-processing. Although Perceptrons have been mainly used in

pattern recognition, their capabilities can be extended a lot further in other areas, like Natural

Language Parsing [26] and feature extraction [27].

1.2.5 Perceptron Learning Algorithm

The perceptron learning rule was originally developed by Frank Rosenblatt [11, 12 and 13] in
the late 1950s. Training patterns are presented to the network’s inputs and the output is
computed. Then the connection weights are modified by an amount that is proportional to the
product of the difference between the actual output, the desired output and the input pattern.
This is to say, the perceptron learning uses iterative updating of weights to learn a correct set
of weights which minimise the errors to achieve de/dw = 0 (de/dw is the error derivative of

the weights(‘e’ for error and ‘w’ for weight).

The algorithm can be summarised as:
1. Initialise the weights and threshold to small random numbers
2. Present an input pattern as the neuron inputs and calculate the outputs
3. Update the weights
wj(n+1) = wy(n) +n < Error+ 4
where error is the difference between expected output and real output, 1 is the learning
rate and A is the input vector

4. Repeat step 2 and 3 till the error is less than a user-specified error threshold.

1.3 SUPERVISED AND UNSUPERVISED LEARNING

The leaming algorithm of a neural network can either be supervised or unsupervised. For a set
of inputs, if the correct set of outputs used to train the network is given in the database, it is a
supervised neural network. Inputs are applied to the input layer in the network and outputs are
generated by the output layer. Outputs are then compared to the target outputs. An error value

is computed based on the difference between output and target. The greater the computed

25

error value is, the more the weight values will be changed.

However, in unsupervised learning, there are no target outputs. It can't be determined what the
result of the learning process will look like. During the learning process, the weight values of
such a neural net are arranged inside a certain range, depending on given input values. Many

unsupervised methods are similar to clustering [28].

1.4 MODAL LEARNING

Since neural network became popular, many artificial neural network algorithms and
architectures have been developed. Along the way, many remarkable forms of learning are
presented, including Back-propagation (BP), Bayesian [29] and Kernel methods [30].

However, none of the methods have dominated with each method showing strength in

different application.

The term “Modal Learning” was introduced into neural computing by Palmer-Brown [31]
with the aim of achieving powerful learning results by equipping a single neural network or
module with the combined power of several complementary modes of learning. In modal
learning, a mode refers to an adaptation learning method that could be applied in more than
one type of architecture or network. Widely known modes include Delta Rule [13], BP [33],
Learning Vector Quantisation (LVQ) [31, 32], and Hebbian learning [34]; but not Adaptive
Resonance Theory (ART) [35] or Bayesian Neural Networks [29], since they define

architectures and approaches to learning.

Modal Learning (ML) differs from hybrid and modular approaches. In hybrid and modular
approaches, every module or network utilises one mode, and modules are bolted together with
cach designed to solve a sub-problem. Whereas, in Modal Learning, more than one mode of
learning is working on the same problem in one network. Modes in a hybrid and modular

approach are less able to work cooperatively

26

Two Class Problem

V1 distance
o o
4 6]
<+
ki ()
)
+ @ o
+<4
<+
* fe)
0

V2 time

Figure 7: Two class problem in a 2D environment

Figure 7 is a classic 2D two class problem which can be used to illustrate some of the
advantages of the modal learning approach. The following example illustrates the potential
benefits of a modal learning approach in the sequence of class boundaries. It can be seen how
necessary it is to increase complexity to an extent that is not justified by the data in order to
find a single mode solution from step 1 to step 4 (in Figure 8). Also as can be seen from the
sequence solutions, the geometrical margins are very small along the separating curve which

suggests poor generalisation and over fitting.

V1 distance
Step 1

© o
+ o
= o
+ © oO

++
4+
+ o

O

Figure 8 Increasingly complex solution to a 2-class problem
Alternatively, a relatively simple and good margin solution can be achieved by combining a

straight line (perceptron), a simple curve (multilayer perceptron) and a cluster. This requires 3

modes of learning, as in figure 9:

27

V1 distance

V2 time

Figure 9: 3 mode solution

Or by combining a simple curve (multilayer perceptron) and a cluster. This requires 2 modes

of learning (as shown in figure 10):

V1 distance

3
J
. 2

++
+
O
o
o

V2 time

Figure 10: 2 mode solutions

It is clear that rather than trying to solve the whole problem with a single mode of learning, a

simpler learnt solution is achievable by combining modes of learning.
When looking at human and machine learning in a wider context, there are many reasons and

motivations to consider modal learning, as it allows for the spectrum of learning to be taken

into account, from memorisation to generalisation.

28

1.5 THE MODELLING OF ARTIFICIAL NEURAL
NETWORK

In this thesis, software simulations are developed in order to model the behaviour of an
artificial neural network. This research is carried out with a simulator program implemented
by the author using Java programming language on a Microsoft Windows XP platform
computer. The simulator program has the basic components of the proposed neural network
architecture: the input patterns as the input data, the output as the output data of the program

and the activity of the network are the processes in the program.

The powerful GUI design tool in Java enables the simulations with helpful visual
representations of the neural network, for example input nodes, hidden nodes, output nodes,
the performance of the network and the data. Data analysis can be investigated with the help

of visual simulation results, such as weights, functions.

Moreover, it helps to find the limitations of the system, and any suitable parameters such as

weights initialisation and learning parameters, since multiple simulation runs are easily
achieved.

1.6 OBJECTIVES OF THIS THESIS

This thesis aims to create an innovative new Modal Learning method by adapting the
activation function inside each neuron in parallel with the traditional weights adaptation

between neurons in a single layer neural network structure.

The new approach is expected to overcome linear inseparability limitations of single layer
neural networks, as a single layer neural network is incapable of solving linear inseparable
problems due to the lack of enough neurons. By combining the power of both function
adaptation and weights adaptation, this new approach aims to produce powerful performance
improvements, significantly speed up the learning process, simplify the hardware structure

and reduce the hardware requirements, compare with traditional and related approaches.

29

Additional benefits are also expected from the learned results of this new approach.
Traditionally, intelligent data analysis using neural networks only looks at the learned weights
because the activation function shape is fixed. However, this new approach can produce both
learned weights and functions. It should offer a more intelligent way to interpret data and this

interpretation can be modelled to a generic method which offers speedy, accurate and efficient

data analysis.

1.7 THE STRUCTURE OF THE THESIS

In the next chapter, a review of the work from other researchers will be discussed to justify
the work produced in this thesis. Both the strong and weak points of related works are
introduced and compared specifically with the intended work of this thesis. It is then followed
by a chapter on the proposed learning algorithm, ADFUNN, and its system architecture. It
includes the explanation of how and why the system is chosen and the learning algorithms of
ADFUNN. It also summarises a general learning rule for ADFUNN. The simulations and
experimental results of ADFUNN on different datasets are then described and compared with
other networks. Datasets applied to ADFUNN include: classic XOR problem, iris dataset, and
a natural language processing phrase recognition task.

In Chapter 4, an extended multi-layer ADFUNN (MADFUNN) is proposed. It explains the
reason to extend ADFUNN and how is it constructed and learns. A general learning rule for
MADFUNN is also presented. MADFUNN is applied to two complex datasets: analytical
function recognition and letter image recognition tasks. Generalisation abilities are discussed

and compared to other methods on the same data.

In Chapter 5, a multi modal combination of ADFUNN with another modal learning method,
Snap-Drift is introduced to solve the optical and pen-based handwritten digit recognition tasks

from the UCI repository. Generalisation is compared with other methods on the same data.

Chapter 6 introduces a complementary benefit of the approach, intelligent data analysis. It

describes how to find intelligent solutions and new ways of looking at problems from the
learned system.

30

In the final chapter, the research from the earlier chapters is reviewed. A final discussion and
conclusion is presented together with a section on some proposed research that provides a

logical progression of the research work in the thesis.

31

CHAPTER 2 A SURVEY OF RELATED WORK

2.1 INTRODUCTION

In this chapter, the advantages of related learning methods, network architectures, data
analysis methods and their limitations are discussed. It provides a platform for the following

chapter where a new approach is introduced to overcome limitations and enhance advantages.

2.2 LEARNING ALGORITHMS

In general, there are two approaches for machine learning. One is the symbolic approach and
the other is the non-symbolic approach. A Decision tree is a typical model for symbolic
learning, and an artificial neural network (ANN) is the most popular approach for

non-symbolic learning.

2.2.1 Symbolic Learning

Symbolic learning algorithms are determined by a set of rules that form a relationship
between the attributes and classes. There are a variety of symbolic learning algorithms and

they vary in the way that they construct these rules.

2.2.1.1 Decision Tree

A decision tree [36] is one of the symbolic learning algorithm examples. A decision tree is “a

decision support tool that uses a model of decisions and their possible consequences” [37].

In the data mining and machine learning area, a decision tree [38] maps from one item’s
observations to conclusions about its target value. In the tree structure, leaves represent

classifications and branches represent conjunctions of features that lead to those
classifications.

32

However, the basis of decision tree learning [39] is that the tree is induced from a set of
labelled training instances represented by a group of pairs of attribute values and a class label.
Because of the huge searching space, the decision tree learning is typically a greedy, top
down and recursive process starting with the entire training data and an empty tree. Therefore,

if the tree is too thick (with plenty branches and leaves), the searching can be very inefficient.

Sometimes the model is too complex to be visualised as a single tree. It could be created as a
decision tree forest model [40] which contains a set of several decision trees. However, this
makes the model rather complicated in the sense of various methods, predictors and

parameters being used in the network.

Neural networks can be used to learn decision tree type problems by casting attributes and

classes as binary or analogue patterns [41, 42 and 43]. There have been many research efforts
in converting decision trees into equivalent neural networks [44 and 45] that classify

accurately as the input decision trees.

2.2.1.2 Rule Induction

In machine learning, rule induction [46] introduces formal rules which are extracted from a
set of observations. As rule induction is sensitive to the order of data, it is not always suitable

for data with noise [47]. One good example of rule induction is the CN2 induction algorithm.

2.2.1.2.1 CN2 Induction Algorithm

The CN2 algorithm [48] was developed by Peter Clark. The CN2 algorithm induces an
- ordered list of classification rules from examples using entropy as its searching guide in
solving a problem [49]. It uses the classic if statement: “if condition, then class”. The
algorithm consists of two main procedures: the searching algorithm searches for a good rule

to apply and a good control algorithm for repeatedly executing the search.

33

Condition Y @ Round A Triangle

Condition 1: y=d

Condition2:y=b b

X Condition

1 2 3 4 5
Condition 3: x=5

Figure 11 Searching for conditions to classify class “Round” and class “Triangle”

For example, as illustrated in figure 11, by searching for a condition (y = d in the example)
that covers a large amount of examples of an arbitrary class (“Round” in this case) and a
couple of other classes (one from “Triangle” class), a rule (condition 1) is conducted. This
condition is then added as a rule “if condition then predict A” to the end of the list and the
algorithm removes those examples it covers from the training set. The procedure is repeated

for the remaining set, as new rules are constructed until no further conditions of sufficient
quality can be found.

As the size of data increases, the time consumption [50] can be a big issue when the CN2
algorithm (as well as other rule induction methods) is the essential symbolic learning method.
The system efficiency is significantly reduced because of the huge consumption of learning
time and system memory. Besides, the performance of using a set of rules will be limited and
depended on whether the problem is solvable by the rules. The rule induction methods will

not be effective if the required solution is a fizzy, probabilistic or weighted combination of
attributes.

2.2.2 Non-Symbolic Learning

As mentioned before, symbolic and non-symbolic approaches are two main categories in
machine learning. In general, symbolic approaches can provide comprehensible rules, but

cannot adapt to changing environments efficiently and can be very difficult and inefficient in

34

dealing with complex data. In contrast, non-symbolic approaches can adapt more effectively

to changing environments in order to achieve the expected learning results.

2.2.2.1 Neural Network Learning Paradigms

One of the most popular models for non-symbolic learning is the artificial neural network
(ANN). There are three major learning paradigms in artificial neural networks; each addresses
a particular abstract learning task. They are supervised learning, unsupervised learning and

reinforcement learning. Usually, any given type of network architecture can be employed in

any of these tasks.

2.2.2.1.1 Supervised Learning

In supervised learing, a set of paired (x, y) examples are given and the aim is to find a cost
function which maps from x toy in the allowed class of functions that matches the examples.
In other words, the expected output of the network is already known for each pattern and it is

expected to discover how the mappings are implied by the data [51].

22212 Unsupervised Learning

Unsupervised neural networks learn on their own as a form of self-organisation. In
unsupervised learning the input data and an activation function are given, but the network's
output is not given. The network learns to recognise patterns in the data set to categorise into
groups [51].

However, the network does not label these groups. It is up to human users or another method

to interpret or label the groups in some meaningful way.

22213 Reinforcement Learning

“Reinforcement learning is learning what to do and how to map situations to actions [52]". 1t
differs from the supervised learning problem in the sense that the correct input and output
pairs are not present, nor any alternative actions that might be used. This is because, in many

situations, there is less detailed information available. Even in some extreme situations, there

35

is little information indicating whether the output is right or wrong after a long sequence of
inputs. Reinforcement learning is one method developed to deal with such situations. It

focuses on the online performance by finding the balance between the unknown knowledge

and existing knowledge.

Artificial neural networks are frequently used in reinforcement learning as part of the overall
algorithm. Reinforcement learning is mainly applied in control problems [53], games [54] and

other sequential decision making tasks [55].

2.2.2.2 Neural Network Learning Algorithms

There are many algorithms for training neural networks; some of them are applications of
optimisation theory [56] and statistical estimation [57]. Other commonly used methods for
training neural networks include: evolutionary computation methods, simulated annealing

[58], expectation maximisation [59]; and, non-parametric methods [60].

2.2.2.2.1 Linear Classifiers

Linear classifiers predate and are related to simple neural network methods.
22.2.2.1.1 Fisher's Linear Discriminant

The Fisher linear discriminant (FLD) gives a projection matrix that reshapes the scatter of a
data set to maximise class separability. The projection defines features that are optimally
discriminating. In other words, the high dimensional data is projected onto a line and so the
classification can be simply performed in this one dimensional space. The projection

maximises the distance between the means of the two classes while minimising the variance
within each class.

It projects data from d dimensions onto a line. For example, in figure 12, two figures project

from mixed two class samples onto two different lines.

36

-

Figure 12: Mixed two classes project onto one line

Figure 13: Better separated two classes

Figure 13 shows a better separated two classes. However, the constraint on the number of
features available from the Fisher linear discriminant has significantly limited its application
to a large class of problems [61]. In other words, FLD works out the projection that best
separates the data corresponding to different classes, so the number of features derived is
dependent on the number of the classes to be recognised. This disadvantage prevents FLD

from classifying problems with large number of classes.

2.2.2.2.1.2 Linear Regression

When people want to look at the relationship between two different things (e.g. between a
person’s blood type and height), a good way is to use the scatter diagram. Linear regression is

the process of finding the straight line that is satisfied by the points on the scatter diagram.

It is to find the line that best predicts y from x. Linear regression does this by finding the line

that minimises the sum of the squares of the vertical distances of the points from the line. This

37

method assumes that the data is linear, and finds the slope and intercept that make a straight

line best fit the data as shown in figure 14.

Show Line and Residuals_v | Clear| y= 3 +
2] 187.45261000000002 + -0.478

Figure 14: The regression line which separates data (generated using linear regression Java
applet [62])

However, linear regression is appropriate only if the data can be modelled by a straight line
function, which is often not the case. Also, linear regression cannot easily handle categorical

variables nor is it easy to look for interactions between variables.

2.2.2.2.1.3 Naive Bayes Classifier

The Naive Bayes Classifier technique is based on the Bayesian theorem and is suited when
the dimensionality of the inputs is high [63]. Its classifier assumes that the presence of a class

feature is unrelated to the presence of any other feature.

If the objects in figure 15 can only be classified as either Round or Triangle, then to classify a

new class based on the existing ones using Naive Bayes Classifier is very easy to understand.

38

B4 o
AAA
@ o A

Figure 15: Objects of two classes “Round” and “Triangle”

Obviously there are twice as many as Triangle objects as Round ones, therefore it is
reasonable to think that a new object is twice likely to be a Triangle class than a Round class,
which is known as prior probability in Bayesian method. Since there are 10 Round objects and

20 Triangle objects, the prior probability for Round is 10/(10+20) = 10/30 and for Triangle is
20/(10+20) = 20/30.

Now when a new object arrives as the question mark in figure 16, it is obvious that the objects
are well clustered and therefore if more of one class of object are close to the new object, this
object is more likely to be from this class (e.g. more Round objects around the question mark
than Triangle objects). The big circle covers all objects around the new object. Hence the

likelihood that this new object is Round is 3/(10+20) = 3/30 of that it and is Triangle is
1/(10+20) = 1/30.

Figure 16: Objects surround the new object

39

In Bayesian method, the classification is produced by combining both sources of information,
€.g. prior probability and likelihood. In this case, posterior probability of this new object
being Round is (10/30) x (3/30) = 1/30 and being Triangle is (20/30) x (1/30) = 1/45.

Finally Naive Bayes Classifier classified this new object as Round since it achieved the

largest posterior probability.

Naive Bayes Classifiers are easy to understand as above and if data is discrete the induction
can be very fast because only a single pass through is needed for data. However, Naive Bayes
Classifiers require the attributes to be statistically independent, when this assumption is
broken; the achievable accuracy will fail to improve as the database size increases. Hence this

method does not scale well in larger and complex databases [64].

2.2.2.2.1.4 Perceptron

As introduced in chapter 1, the perceptron is a type of artificial neural network invented in
1957[11, 12 and 13] at the Cornell Aeronautical Laboratory by Frank Rosenblatt. It is one of

the simplest forms of feed-forward neural networks and acts as a linear classifier.

The perceptron is a binary classifier [65] that maps its input x (a binary vector) to an output

value f{x) (a single binary value) calculated as

Lifwex+b)>0
Jix) =

0else

where w is a vector of real valued weights and w * x is weighted sum of inputs , and 5 is the
bias.

The result (0 or 1) of f(x) is used to classify x as either a positive or a negative instance, to
Solve a binary classification problem. The bias is like the offset of the activation function, or

gives the output neuron a basic level of activity. If b is negative, then the weighted inputs

40

must produce a positive value greater than b in order to push the classifier neuron over the 0

threshold. The bias alters the position of the decision boundary.

Because the inputs are presented directly to the output using the weighted connections, the

perceptron can also be considered as the simplest feed forward neural network.

Data from a training set are applied to the network one after another. If the actual output is the
same as the expected output, it means the result is correct and no change is needed. Otherwise,
the weights and biases are updated using the perceptron learning rule. The procedure of
passing through all of the input training vectors is called an epoch. The procedure is repeated
until errors are minimised. The perceptron network training is then completed. If a pattern not
in the training set is presented to the network, the network will generalise to a certain extent
by responding with an output similar to target vectors for input vectors close to the previously

unseen input pattern.

There are several limitations of perceptron networks. Firstly, the output values of a perceptron
can take on only one of two values (True 1 or False 0). Secondly, perceptrons can only
classify linearly separable problems. As described before, if a straight line can be drawn to
Separate the input vectors into their corresponding categories, the input vectors are linearly
Separable and the perceptron will find the solution. If the input vectors are not linearly
S€parable learning will never reach a point where all input vectors are classified properly. The
most famous example of the perceptron’s inability to solve problems with linearly

lonseparable vectors is the boolean XOR problem.

22222 Support Vector Machines

Support Vector Machines (SVMs) [66 and 67] are an alternative approach to solving the
Classification problems by constructing an N-dimensional hyper-plane that optimally
Separates data into two categories. SVMs models are closely related to neural networks [68].
They can perform pattern recognition, regression estimation tasks and non-linearly map their
N-dimensional input space into a high dimensional feature space [69]. In this high dimensional

feature space a linear classifier is constructed.

4]

In SVMs, ‘an attribute’ is used as the predictor variable, and ‘a feature’ is a transformed
attribute that is used to define the hyper plane. ‘Feature selection’ is to pick the most suitable

representation and ‘a vector’ is a set of features that describes one case.

SVMs typically generalise well from a small number of examples and do not assume prior
knowledge of the probability distribution of the underlying data. They use a particular type of
function class: classifiers with large ‘margins’ in a feature space induced by a kernel. SVMs
are computationally intractable when dealing with large problems, and they require a
pre-determined system parameter for the kernels. The selection of the kemel function
parameters is also addressed as a major practical problem by many researchers [70]. A batch

algorithm, SVMs require many repeated presentations of input patterns [71].

2.2.2.2.3 K-Nearest Neighbour

In pattern recognition, the k-nearest neighbour algorithm (k-NN) is a method for classifying
Patterns based on closest training examples in the feature space. It is a supervised learning
algorithm where the result of new class is created based on the majority k-nearest neighbour
Category. The classifier is therefore memory-based. For a given object to be classified, the
method finds £ objects closest to the query object. The classification votes the majority among

the classification of the & objects.

K is normally a positive integer, typically very small. For example if £ is 1, then the pattern is

Sirr'lply assigned to the class of its nearest neighbour.

The k-nearest neighbour classifier labels an unknown pattern with the label of the majority of
the k nearest neighbours. A neighbour is believed nearest if it has the smallest distance, in
feature space. In neural networks, this is analogous to the winning neuron, with the highest
activation. For example, the data points in figure 17 can either be blue (diamond shape) or

Pink (square shape) objects:

42

12

10 } E
8 Ll . "
* []
6 = L] L] L]
'] n
4] e * L]
. . -
2 .
*
0 L . i
0 2 2 6 8 10 12

[+ Blue = Pink 7]

Figure 17: Random blue or pink data

To classify whether the unknown yellow object is blue or pink, a parameter of k& must be
determined. Suppose 8 nearest neighbors are used, then the distance between all training
objects and the unknown object are calculated using Euclidean Distance [72]. However, if the
data contains more than two variables, a weighted distance will be calculated instead. The

eight nearest neighbours are found in figure 18 to the query object:

12
10 | -
8] = =
* -
6 @ o ® ®
> @ -
4 r ® O ®
. *» 0+
2t .
*
0 A A 2
0 2 4 6 8 10 12

| » Blue = Pink ?]

Figure 18: 8 nearest neighbours calculated by Euclidean Distance [72]

43

Since the majority (seven out of eight) of these eight nearest neighbours are pink objects, the

query object is therefore classified as a pink object.

However, for classifying a pattern its distance to all the patterns in the learning set has to be
calculated, as in the example in figure 18. If the patterns or data dimensions are huge, one
significant disadvantage of this method is its large computing power requirement. Also extra
effort needs to be paid to determine the value of parameter k (number of nearest neighbours).
Furthermore, in distance based learning it is not clear which type of distance to use and which

attribute to use to produce the best results. For instance, whether all attributes need to be used

or certain attributes only.

2.2.2.24 Bayesian Networks

Bayesian networks use a simple, graphical notation for conditional independence assertions
and therefore for compact specification of full joint distributions. Normally, a Bayesian
network has a set of nodes, one variable per node, a directed and acyclic graph of direct
influences and a conditional distribution for each node given its parents. For example, in
figure 19, assume that there are two ways to cross the river: either taking a boat or using a
bridge if there is one. Also, assume that there is a bridge has a direct effect on the use of the
taking a boat (namely that when there is a bridge, the boat is not being used). Then the

situation can be modelled with the adjacent Bayesian network. All three variables have two

possible values, T (for true) and F (for false).

44

Take a Boat Use Bridge
Use Bridge T F l T F
F 04 06 l 0.2 08
T 0.01 0.99 .
Cross River
Cross River
Take a Boat Usc Bridge T F
F F 00 10
F T 08 0.2
T F 09 0.1
T T 0.990.01

Figure 19: A simple Bayesian network

This Bayesian model can answer questions like “What is the probability that there is a bridge,

if the person has crossed the river?” by using the conditional probability formula and

variables [73].

One advantage of Bayesian networks is that it is easier for a human to understand direct
dependencies and local distributions than complete joint distribution. However, deciding
conditional independence is hard in noncausal directions and exact inference in large

networks takes a very long time [79]. In neural networks, it is not necessary to determine

which factors or variables are dependant.

2.2.2.2.5 Boosting

Boosting is a machine learning meta-algorithm to perform supervised learning. It is based on
the question posed by Kearns [74]: “Can a set of weak learners create a single strong
learner?” A weak learner is a classifier which is slightly related with the true classification. In

contrast, a strong learner is a classifier that is well related with the true classification.

45

Normally boosting occurs in iterations, it continually adds weak learners to a final strong
learner. In each iteration, a weak learner learns the training data with respect to a distribution.

Then the weak learner is added to the final strong learner. This is done by weighting the weak
learner related to its accuracy. After the weak learner is added to the final strong learner, the
data is weighted once again. Misclassified examples gain weight and on the other hand, the

correctly classified examples lose weight. Thus, future weak learners will focus more on the

examples that previous weak learners misclassified.

However, a disadvantage of boosting is the overweighting of errors, which is sometimes a

problem in real world classification problems that contain noise [75].

2.2.2.2.6 Minimum Message Length

Minimum Message Length (MML) is a method of Bayesian model comparison and it gives
every model a score. MML [76] is a technique based on information theory for discovering
and confirming patterns in data. Essentially, it considers a pattern to have occurred in data if

the assumption of the pattern enables the data to be encoded more concisely.

It is a formal information theory restatement of Occam's Razor [77]: “Even when models are
not equal in accuracy, the one generating the shortest overall message is more likely to be
correct”. Tt is to say that “When deciding between two models which make equivalent
predictions, choose the simpler one [78]”. There is a reasonable question, “Why not just pick
the hypothesis with the highest Bayesian posterior probability?” instead of using MML. This
is because in Bayes's theorem, the probability of a hypothesis (H) given evidence (E) is
proportional to P (E | H) P (H), which is just P (H * E). But MML produces the model with
the highest such probability and also generates the shortest description of the data.

However, like Bayesian networks, it also takes very long time to get accurate inference in

huge networks [79].

22227 Quadratic Classifier

46

A quadratic classifier finds a quadratic discrimination function, like a circle or a parabola in
feature space. An example is the normal densities based quadratic classifier. It is almost

identical to the linear classifier based on normal densities, but it calculates covariance

matrices for each individual class.

The quadratic classifier is used in machine learning to separate measurements of two or more
classes of objects or events by a quadric surface. It is almost identical to the linear classifier

based on normal densities, but a more general version because it calculates covariance

matrices for each individual class.

However, quadratic classifiers may have a severe disadvantage in that they tend to have

significantly larger biases than linear classifiers particularly when the number of design

samples are relatively small [80].

2.3 NEURAL NETWORKS ARCHITECTURE

2.3.1 Fuzzy Neural Networks

Fuzzy logic is a type of multi-valued logic in which there are many possible values for a
statement rather than truth or false. In other words, fuzzy logic can express attributes in

different levels (0.9, 0.7, 0.5, 0.2...), rather than just O or 1 or different shades of greys, rather
than just black and white [81].

A fuzzy neural network embeds a fuzzy system in the body of an artificial neural network. It
uses a learning algorithm derived from neural network theory to determine the fuzzy sets or
rules by processing data samples [82]. To integrate an artificial neural network with a fuzzy

system, the selection of learning algorithm and fuzzy rules totally depends on the data or the

application itself.

According to [83], three categories can be used to classify different types of fuzzy neural

networks: Cooperative Neuro-Fuzzy System, Concurrent Neuro-Fuzzy System and Hybrid

Neuro-Fuzzy System [83].

47

In a cooperative model, the neural network algorithm will learn from the training data and
then determine the parameters or rules for the fuzzy system, whereas in a concurrent model,
the neural network will assist the fuzzy system continuously to determine the required
parameters. In other words, the neural network pre-processes the inputs of a fuzzy system in a

concurrent model.

In a hybrid neuro-fuzzy system, a neural network is used to learn some parameters of the
fuzzy system through the patterns processing. The majority of neuro-fuzzy systems used in
recent research refer to the hybrid neuro-fuzzy system. There are many popular hybrid fuzzy

neural network models, for example, ANFIS [84], FuNe [85], GARIC [86], FALCON [87].

The combination of fuzzy logic system with artificial neural network can help solve the
inherited limitations of each isolated paradigm and therefore produce a more powerful and
efficient model. However, this thesis will not further investigate fuzzy-neuro systems as it

will mainly focus on developing efficient learning algorithms, rather than control systems.

2.3.2 Feed-forward Neural Network

Feed-forward artificial neural networks (as in figure 20) allow signals to travel in one way
only; from input to output. No feedback is allowed. The output of any layer does not affect
that same layer. Feed-forward neural networks are straight forward networks that connect
inputs with outputs. They are extensively used in pattern recognition. This type of

organisation is also referred to as bottom-up or top-down network.

A Feed-forward Neural Network

Hidden Layer

Input Layer

48

Figure 20: A feed-forward network structure

2.3.2.1 Single-Layer Perceptron

The simplest perceptron is the single layer perceptron, developed by Rosenblatt in 1958,
which is capable of classifying linearly separable patterns only [10]. A single-layer perceptron
network consists of one or more artificial neurons in parallel. It is a single layer network with
continuous perceptrons and each neuron possesses a continuous activation function. This
network learns by adopting the delta learning rule separately to each neuron. However, a

single layer perceptron can not deal with linear inseparable problems [10], that is why a

multi-layer perceptron is introduced.

2.3.2.2 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is the most widely used type of neural network. It is both
simple and based on solid mathematical grounds. There is an input layer, with a number of
neurons equal to the number of variables of the problem; and, an output layer, where the
perceptron response is made available, with a number of neurons equal to the desired number
of quantities computed from the inputs. The layers between input and output layers are
“hidden” layers. A network can contain more than one hidden layer. Theoretically the

perceptron can not perform non-linear tasks without a hidden layer.

2.3.2.3 Back Propagation

In order to enable a neural network to learn tasks, the weights of each neuron are adjusted so
that the error between the desired output and the actual output is reduced. This process
requires that the neural network compute the error derivative of the weights (de/dw the error
derivative of the weights (‘e’ for error and ‘w’ for weight)). In other words, it must calculate

how the error changes as each weight is increased or decreased slightly.

Supposing all the neurons in the network are linear, the back-propagation algorithm will be
easier to understand. In back-propagation, it computes each EW by firstly computing the EA,

which is the rate at which the error changes as the activity level of a neuron is changed. For

49

each output, EA is simply the difference between the actual and the desired output. In order to
compute the EA for a hidden unit, firstly all the weights between that hidden neuron and the
output neurons to which it is connected need to be identified. Then the weights are multiplied
by the EAs of those output neurons and add the products. The sum is the E4 for the chosen
hidden neuron. After calculating all the E4s in the hidden layer just before the output layer, it
is able to compute the EAs for other layers, moving from layer to layer in a direction opposite
to the way activities propagate through the network. That is where the term back propagation
comes from. Once the EA4 has been computed for a neuron, it is straight forward to compute

the EW for each incoming connection of the neuron. The EW is the product of the £4 and the

activity through the incoming connection.

The above description can be summarised as the following back propagation rule:
1. Randomly initialise the weights in the network
2. Repeat
For each pattern in the training set do
1) Calculate the actual output (A) from each output neuron; forward pass
2) Get the desired output (D) for each pattern
3) Calculate error (D - A) at each output neuron

4) Compute Aw for all weights from hidden layer to output layer ; backward pass
5) Compute Aw for all weights from input layer to hidden layer ; backward pass
6) Update the weights in the network

3. until all examples classified correctly or stopping criterion satisfied

The difference between feed-forward and back propagation: when considering a network with
a single input x and network function F, the derivative of F(x) can be computed in
feed-forward: the input x is presented to the network. The primitive functions and their

derivatives are calculated at each node. Then the derivatives are stored.
However in back propagation: constant 1 is applied into the output neuron and the network

processes backwards. Information came to a node is added and the result is then multiplied by

the value stored in the left part of the neuron. The result is transmitted to the left of the neuron

50

The result collected at the input neuron is the derivative of the network function with respect

to x.

Over the traditional methods of error minimisation, the back propagation algorithm reduces
the cost of computing derivatives by a factor of the number of derivatives to be calculated.
Also it allows higher degrees of nonlinearity and precision to be applied to problems. It is an
effective learning rule but it also has disadvantages, i.e. poor scaling properties [88], slow rate
of convergence commonly for most of the multi-layer networks, requiring very long training

time.

2.3.2.4 Adaptive Linear Neuron (ADALINE)

ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is a single layer
neural network and an important generalisation of the perceptron training algorithm. It was
presented by Widrow and Hoff [89] as the “least mean square” (LMS) learning procedure,
also known as the delta rule which accepts multiple inputs and generates a single output. The
delta learning rule adopted in ADALINE is a data-adaptive technique for deriving a least
squares error solution. The main difference between the delta rule and the perceptron training
rule is the way that the output of the system is used in the learning rule. In the perceptron
learning rule, it uses the output of the threshold function (-1 or 1) for learning. Whereas the

delta rule uses net output without further mapping into output values -1 or +1 is used.

2.3.2.5 Radial Basis Function (RBF) Network

A radial basis function network (figure 21) is an artificial neural network which uses radial
basis functions as activation functions. Radial functions are simply a class of functions. They
could be used in both linear and nonlinear models, single layer and multi-layer networks.
However, since Broomhead and Lowe's 1988 seminal paper [90], radial basis function

networks (RBF networks) have traditionally been associated with radial functions in a multi

layer network such as shown in the figure below.

51

Radial Basis Function Network

Figure 21: The traditional radial basis function network.

Each of » components of the input vector x feeds forward to m basis functions whose outputs

are linearly combined with weights{w;}"; into the network output Jx).

The most commonly used formula for any radial basis function (RBF) is
hx) = B((x-c)"R” (x-c))

where @ is the function used (Gaussian, multi-quadric), c is the centre and R is the metric. The
term ((x-c)’R” (x-c)) is the distance between the input x and the centre ¢ in the metric defined by
R. There are several common types of functions used, for example, the Gaussian, @(z) = e, the
multi-quadric, ®(z) = (1+z)"”, the inverse mullti-quadric, D(z) = (1+z) " and the Cauchy &(z)
=(I+z)".

A further simplification is a 1-dimensional input space in which case

(x-¢)°
h(x) = ‘,ﬂ
The training of RBF networks is relatively fast and they can deal with universal
approximation with non-restrictive assumptions [91]. However, one of disadvantages of RBF
is it is too expensive because of using a series of computationally expensive functions for a
single model [92]. RBF networks also require good coverage of the input space by radial basis

functions. The network includes all the input variables and as a result, representational

52

resources may be wasted on areas of the input space that are irrelevant to the learning task

[93].

2.3.3 Recurrent Neural Network

A recurrent neural network [94, 95] is a neural network where the connections between the
neurons form a directed cycle. Recurrent neural networks are approached differently from
feed forward neural networks, both when analysing their behaviour and training them.

Usually, dynamical systems theory is used to model and analyse these type of networks.

2.3.3.1 Simple Recurrent Network

Simple recurrent networks (SRNs) are similar to traditional feed-forward networks in the
sense that information propagates all the way through the network during the forward pass on
each tick. In simple recurrent networks, groups are updated in the order in which they appear
in the network’s group array. A group will be updated by computing its inputs and outputs.
This differs from fully recurrent networks where all groups update their inputs and then the
groups compute their outputs. Thus the continuous networks can be considered to have

synchronous update and standard or simple recurrent networks have sequential update.

A SRN is just a feed-forward network with one or more ELMAN [96] type groups. As shown
in figure 22, neurons of the input layer /, the recurrent layer R and the output layer O are fully
connected as in the feed forward multilayer perceptron (MLP). Time delay connections send
the current activities of recurrent neurons R” to the context layer so that C® = R*D, Hence,
every recurrent neuron is fed by the activities of all recurrent neurons from the previous time
step through recurrent weights WRC. Recurrent neurons’ activities from the previous time step
can be viewed as an extension of input to the recurrent layer. These activities represent the

memory of the network, since they hold contextual information from previous time steps.

33

Output Layer O

Time / WOR
Delay
Recurrent Layer R
WRC .
WRI
Context Layer C Input Layer I

Figure 22: The simplified representation of Elman’s [96] SRN

Williams and Zipser [97] have developed the real-time recurrent learning (RTRL) approach,
which enjoys the generality of the BPTT [98, 99] approach which can be derived by unfolding
the temporal operation of a network into a multilayer feed forward network that grows by one
layer on each time step, while not suffering from its growing memory requirement in
arbitrarily long training sequences. Although the RTRL algorithm has great power and
generality, it has the disadvantage of being computationally very expensive. In spite of

several modifications of RTRL [100 and 101] to reduce the computational expense, it is still

complicated when dealing with complex problems.

2.3.3.2 Hopfield Network

In the beginning of the 1980s Hopfield [102] showed that models of physical systems could
be used to solve computational problems. These type of systems could be implemented in

hardware by combining standard components such as capacitors and resistors.

The importance of the different Hopfield networks in practical applications is limited due to
the theoretical limitations of the network structure. However, in certain situations, they may

form interesting models. Hopfield networks are typically used for classification problems with

binary pattern vectors.

The Hopfield network is created by supplying input data vectors with corresponding different

classes. When a distorted pattern is presented to the network, it is associated with another

54

pattern. If the network works properly, this associated pattern is one of the class patterns. In
some cases (when the different class patterns are correlated), false minima can appear. This

means that some patterns are associated with patterns that are not among the pattern vectors.

However, the main disadvantage of the Hopfield network is that operates satisfactorily it
needs a large number of nodes [103] which can accordingly increase the physical system

requirements.

2.3.3.3 Echo State Network

The echo state network (ESN) is a recurrent neural network with a sparsely connected hidden
layer (typically with 1% connectivity). The connectivity and weights of hidden neurons are

randomly initialised and are normalised. The weights of output neurons can be learned so that

the network can produce a specific temporal pattern.

Although this network is non-linear; the only parameters are the weights of the output layer.

The error function is thus quadratic with respect to the parameter vector and can be

differentiated easily to a linear system.

Echo state networks (ESN) provide architecture and supervised learning principle for
recurrent neural networks (RNNs). The main aim is to drive a random, large, fixed recurrent
neural network with the input signal, thereby inducing in each neuron within this network a

nonlinear response signal, and also to combine a desired output signal by a trainable linear

combination of all of these response signals.

However, ESNs have a number of disadvantages, higher computational cost (quadratic in

filter length) and space complexity: they are very difficult to implement; and, can fall prey to

instability [104].

55

2.4 FUNCTION MODIFIABLE LEARNING METHODS

2.4.1 Introduction

The classical neuron computes the weighted sum of its inputs and feeds it into a nonlinear
function called an activation function [105]. The performance of a neural network built with

neurons depends on the chosen activation functions.

Recently, more and more computational neuroscience research has started to suggest that
neuromodulators play a role in learning by modifying the neuron’s activation function [106,
107]. This research introduced new methods which involve the adaptation of the gain and the
slope of the sigmoidal activation function during the learning [108] and using adaptive

polynomial functions [109]. In this section, several recently proposed activation function

modifiable learning methods are introduced.

2.4.2 Adaptive Polynomial Activation Functions

Uncini et al [109] introduced an adaptive polynomial neural network (APNN) based on

adaptive polynomial activation functions.

The authors employed a polynomial function neural network which allows increasing the
neuron complexity and reducing the size of the network. Experimental results showed similar
generalisation ability to the conventional Volterra’s polynomial classifiers or filters. As some
of the parameters are related to the polynomial activation functions, the APNN is therefore
able to reduce the structural complexity of the network. However, although APNN is efficient
for various applications, APNN could have problems because of local minima and in the case

of high-degree polynomials could cause numerical instability to arise, due to the presence of

high narrow peaks in the polynomial functions.

2.4.3 Adaptive Spline Activation Function Neural Networks

Pizza et al. [110] use an adaptive spline approach to function modification, and elsewhere

both Fiori [111] and Piazza [112] use a Digital Look-Up Table (LUT) for the activation
function.

56

Vecci et al [110] described a cubic spline activation function by n control points (x;, y;) on R,

where i = 1...n. These n points define n-1 intervals on the x-axis. Therefore each of these

intervals is defined by function fi(x):

F0) =fifx) + aifx - x;) + bifx - x)° + cifx - x)°

where a;, b; and c; are constants on R. Demanding equality of the function value, and the first
and second derivative at the interval borders the constants can be determined for each interval

yielding a continuous and differentiable function composed of a number of cubic splines.

The maximum number of control points n.is set prior to the evolutionary run. And the x-, y-
range of the cubic spline activation function is fixed to specific intervals [Xxmin, Xmax/

(sensitivity interval) and [dmin amay/ (activation interval) respectively.

Uncini et al [113] extended the above adaptive activation functions to a complex-valued

neural network by varying the control points of a pair of Catmull-Rom cubic splines, which

are used as an adaptable activation function.

This method is a complex extension of the adaptive spline neural network as shown in figure

23. The control points are points that define a spline, they are equally spaced and fixed on the

X-axis.

1 _

o G & & - 9va v v WY
“ —r
=0 s
\
K] \ ’
(N i=h4 S

=Xa

Figure 23: Spline activation function with its uniformly spaced control points [48]

57

The Catmull-Rom spline, a member of the family of cubic convolution filters, is the unofficial
standard for high-quality rendering in visualization. However, Catmull-Rom spline filters are
insufficient for high-quality rendering of refractive effects since here the error is multiplied by

the length of the redirected ray before it hits an opaque surface.

By comparing with an adaptive linear combiner and sigmoidal MLP on QAM equalization
problem, this method showed the ability to improve the generalisation capabilities using few
training samples in terms of conquering the long adaptation time and high number of

interconnections.

However, in the cubic analytic spline approach, a cubic level of complexity is assumed and a
good suboptimal solution to the cubic spline curve fitting problem is applied. If the required

function is linear, or a step, ramp or pulse function, splines are inappropriate.

In addition, LUT requires a bounded input address and a suitable linear transformation

(scaling and offset adding) has to be performed on the output of the linear combiner in order

to obtain the best LUT address.

Recently [174, 175 and 176], a class of activation function has been introduced based on
bi-dimensional (2D) spline, which aims to obtain bounded and locally analytic functions. It
also uses the generalised splitting activation function. Its architecture is based on a
multi-dimensional adaptive cubic spline basis activation function that collects information
from the previous network layer in an aggregate form. In other words, each activation
function represents a spline function of a subset of previous layer outputs so the number of

network connections in terms of structural complexity can be at a low level.

2.4.4 Adaptive Optical Radial Basis Function Neural Networks

In [114], an adaptive optical radial basis function neural network classifier is introduced. It is
a spatially multiplexed system incorporating on-line adaptation of weights and basis function
widths to provide robustness to optical system imperfections and system noise. The optical

system computes the Euclidean distances between a 100-dimensional input vector and 198

58

stored reference pattems in parallel using dual vector-matrix multipliers and a
contrast-reversing spatial light modulator. Software is used to emulate an analogue electronic
chip that performs the on-line learning of the weights and basis function widths. An
experimental recognition rate of 92.7% correct out of 300 testing samples is achieved with the
adaptive training, as compared to 31.0% correct for non-adaptive training. They compare the
experimental results with a detailed computer model of the system in order to analyze the

influence of various noise sources on the system performance.

2.4.5 An Adaptive Activation Function for Classification of ECG
Arrhythmias

Ozbay and Karlik carried out [115] a comparative study of the classification accuracy of ECG
signals using a multi-layered perceptron (MLP) with back-propagation training algorithm, and
a neural network with adaptive activation function (AAFNN) for classification of ECG
arrhythmias. The ECG signals are taken from the MIT-BIH ECG database, which are used to
classify ten different arrhythmias for training. These are normal sinus rhythm, sinus
bradycardia, ventricular tachycardia, sinus arrhythmia, atria premature contraction, paced beat,
right bundle branch block, left bundle branch block, atria fibrillation and atria flutter. For
testing, the proposed structures were trained by back-propagation algorithm. Both of them
tested using experimental ECG records of 10 patients (7 male and 3 female, average age is
33.8+16.4). The results show that the neural network with the adaptive activation function is
more suitable for biomedical data like the ECG in the classification problems. Also, the

training speed is much faster than a neural network with fixed sigmoid activation function.

2.5 INTELLIGENT DATA ANALYSIS

2.5.1 Introduction

Data analysis is the process of looking at and summarising data with the intent to extract
useful information and develop conclusions. Data analysis is closely related to data mining,
but data mining tends to focus on larger data sets, with less emphasis on making inference,

and often uses data that was originaily collected for a different purpose [116].

59

Applying neural networks to model complex data for data analysis has been developed for
two decades; a successful example by Roadknight et al [117] is to use Artificial Neural

Networks (ANN’s) to model the interactions that occur between ozone pollution, climatic

conditions, and the sensitivity of crops and other plants to ozone.

Intelligent data analysis can cover a variety of disciplines. Techniques applied in intelligent
data analysis can cross many areas such as: data visualization, data mining, knowledge
acquisition from data, knowledge discovery, machine learning, neural networks, and
mathematical or statistical methods. Therefore, this section only looks at some aspects of
intelligent data analysis related to this project, e.g. neural networks in data analysis and some

mathematical methods which will assist neural network in analysing the data.

2.5.2 Important Information Revealed from Learned Weights

As described above, neural networks learn from experience and are useful in detecting
unknown relationships between a set of input data and an outcome. It detects patterns in data,
generalises relationships found in the data, and predicts outcomes. Training continues until a
neural network produces outcome values that match the known outcome values within a
specified accuracy level, or until it satisfies some other stopping criteria. The weights
assigned to each of the inputs are obtained during a training process in which outputs
generated by the nets are compared with target outputs. The answers people want the network
to produce are compared with generated outputs, and the deviation between them is used as

feedback to adjust weights. The process of readjusting weights is important to increasing a

model’s accuracy.

Therefore, when the specified accuracy level is achieved, training stops. The learned weights
yield very important information about the dataset. For each output class, the stronger the

weight is, the more this output will be dependant on this corresponding input.

60

2.5.3 Statistical Mathematical Method

2.5.3.1 Simple Moving Average

A simple moving average is formed by computing the average (mean) of a set of points over a

specified window. The calculation is repeated for each point. The averages are then joined to

form a smooth curve. The formula for a simple moving average is:

7t= (yt +yot . +yt-n—1)/n

Where y is the variable, ¢ is the current point, and # is the window width for the average. For

instance, if there are 100 points, the window width, », is 5, as the calculation continues, the

newest point is added and the oldest point is subtracted.

2.5.3.2 Least Square Polynomial Smoothing

The least squares curve fitting technique is the simplest and most commonly applied form of
linear regression. Its theory is to find the best fitting curve to a given set of points by
minimizing the sum of the squares of the residuals (offsets) of the points from the curve. By
implementing the least-squares linear regression analysis, it is easy to fit any polynomial of m
degree Y = ap +ax + ...+anx" to experimental data (x;, y1), (X2, 2)..., (¥n,), (provided that
n>m+1]) so that the sum of squared residuals S is minimized:

n . n

S=Y [pi-yl’= XD (ao+amt...taw)]’

i+1 i+1

After getting the partial derivatives of S with respect to ay, aj, .., an and equating these

derivatives to zero, the following system of m-equations and m-unknowns (ay, ay, .., a,) is

defined: spap + ;a7 + ... t SmOm =10 ceeveeeen) S0+ Sma1G7 F oo Somlm = by

where:

n n
k _ k
Sk=Yxi, =Xy
i+] i+]

Thus the set of coefficients (@, a1, ..., a») Which gives the resulting smoothed curve can be

calculated.

61

2.5.4 Other Data Analysis Methods

The plausible reasoning is rather open-ended and it is the central to data analysis [118]. Data
analysis is a highly complex activity. It requires repetitive analysis of the data. Plus the size,

format or the data may vary. Traditionally people use statistical and mathematical methods to

look into their data.

Bayesian statistical analysis is one approach in the data analysis area. It involves a field that
combines elements of decision modelling and statistical analysis. Applications of Bayesian
data analysis appear in different fields, including business, computer science, economic,

educational research, environmental science, epidemiology, genetics, geography, imaging,
law, medicine, political science, psychometrics, public policy [119]. However, there are also
some very significant disadvantages of Bayesian approach. First of all, the information
theoretically infeasible in which means to specify a prior is extremely difficult. A real number

of every setting of the world model parameters must be specified. Other disadvantages

include computational infeasible and unautomatic.

2.6 NEURAL NETWORK GENERALISATION

A supervised neural network learns to approximate the actual outputs to the target outputs,
from the given training set. This is helpful by itself, but a wider purpose of using a neural

network is to generalise to predict the actual outputs to target values for inputs that are not in

the training set.

Given an x value that has not been seen, the trained network can predict what the most likely

y value will be. The ability to correctly predict the output for an input the network has not

seen is called generalisation.

There are three factors that are typically considered important to achieve good generalisation
in terms of acquiring good prior knowledge, proved by Wolpert [120]. They are just important

factors, and not sufficient by themselves in order to get the best generalisation result.

62

The first factor is that the inputs have to contain sufficient information which somehow
relates to the target output. This means there must exist a mathematical function which can
link the inputs to the expected outputs with an expected level of accuracy. This is why a poor
generalisation sometimes suggests insufficient data collection. The neural network is able to
find and extract the answer only if enough information is present for an answer to be defined.
A very simple example can explain this, e.g. if the experiment only has last year’s global
economic data, it is unlikely any neural network can predict the economic trend for the next 5
years. Similarly, if we only have data on blood attributes and eating habit attributes, it is still

very hard to predict whether a person has diabetes or not, more attributes like medication

history, sugar consumption need to be collected.

The second factor Wolpert proved is that the function the network is trying to learn is in some
sense, smooth. In other words, a small change in the inputs should, most of the time, produce
a small change in the outputs. However, the work in this thesis challenges this requirement as
the shape of activation functions do not have to be smooth, they can be initialised to any
random shape and they are adaptive, working with the adaptive weights together to reduce

errors produced from the output neurons. More detail will be introduced in the next chapter.

The third necessary factor for good generalisation is that the training cases be sufficiently

large and be a representative subset of the set of all cases that the network wants to generalise

to.

In this thesis, for all dataset, generalisation is performed by multiple rounds of

cross-validation using different partitions but same proportion for each class, and the

validation results are averaged over the r ounds.

2.7 CONCLUSION

This chapter firstly looks at two major categories of machine learning algorithms, namely
symbolic and non-symbolic learning, and typical methodologies for each category. As one of

the most popular models for non-symbolic learning, the Artificial Neural Networks (ANNY’

63

learning paradigms, learning algorithms, network architectures and their advantages and

disadvantages are then discussed.

One of the most innovative ideas of this thesis is the adaptive activation function in a single

layer network structure, therefore this chapter also looks at related works which involved

function modifiable learning methods and their limitations.

To provide a context for intelligent data analysis which is expected to be an additional benefit
from the new approach of this thesis, this chapter then looks at traditional data analysis

methods using neural networks, as well as other mathematical or statistical methods and their
nethods usin .

limitations.

At the end of this chapter, neural network generalisation is discussed and introduced, in order
en ,

to set up the standards in experimental practices in this thesis to evaluate the new method.

In su this chapter provides a platform and context for the new approach which is to be
mmary,

introduced to overcome limitations of and enhance advantages over the traditional methods in
uced to

the next chapter.

64

CHAPTER 3 AN ADAPTIVE FUNCTION NEURAL
NETWORK (ADFUNN)

3.1.INTRODUCTION

The motivation of the proposed modal learning method, ADFUNN (An Adaptive Function
Neural Network) in the thesis is inspired from recent neuroscience, which suggests that
€uromodulators play a role in learning by modifying the neuron’s activation function [106,

107).

Conventionally, the artificial neural network system tries to simulate the structure and
functional aspects of a biological neural system. In biological neural system, inputs to neurons
are weighted by the strength of the synapse that the signal travels through. It is biologically
Plausible that the total input to the neuron is the sum of all such synaptic weighted inputs and
adapting a weight is a reasonable model for synaptic modification. In contrast, the widely
accepted assumption of a fixed shape output activation function is for computational rather
than biological reasons. A fixed analytical function activation function can facilitate
Mmathematical analysis to a higher degree than an empirical one. However, there are some

Computational benefits to trainable and modifiable activation functions, and they are quite

Possibly biologically plausible as well.

The norm in neural computing is to learn to classify different classes from input patterns by
adapting the strength of connections between neurons [121]. However, the great success
ANNs has brought to the world including the high speed neuron computing feasible on the
desktop and more recently in the palm of the hand [122]. However, it has resulted in Iittle

attention being paid currently to the range of possibilities of adaptation within the individual

Deurons,

65

There might be good computational and biological reasons for examining and discovering the
internal learning neural mechanisms. It is interesting that recent research in neurosciences also
suggests the neuromodulators play a role in learning by modifying the neuron’s activation
function [106, 107]. In fact it is very surprising real neurons are essentially fixed entities with
no adaptive aspect, apart from their synapses changes, since such a restriction leads to

non-linear responses typically requiring many neurons.

Using MLPs is very effective with an appropriate number of hidden neurons but since the
number of hidden neurons depends on the activation function it is, therefore, not efficient if
the activation function itself is not optimal. Typically training is very slow on linearly
inseparable data which always involves hidden nodes. In some cases adapting a slope-related
parameter of the activation function may be helpful, but not if the analytic shape of the
function is unsuited to the problem, in which case many hidden nodes may be required. In

contrast with an adaptive function approach it should be possible to learn linear inseparable

problems fast, even without hidden nodes.

In contrast with the conventional artificial neural network learning which is typically

i i ter describes a modal learning method
accomplished via adaptation between neurons, this chap g

in which adaptation is simultaneously between and within neurons.

3.2. PIECEWISE LINEAR ACTIVATION FUNCTION

In mathematics f:Q>Visa piecewise linear function (figure 24) if any function with the

property € can be decomposed into finitely many convex polytopes, such that f is equal to a

linear function on each of these polytopes” [123].
fix) = ax + b

fo4

1
1
! |
! i
! 1
!)
!]
']
!)
! '
' '
!)

v

X Xs X6
X0 X1 X2 X3 4

Figure 24: A Piecewise Linear Function

66

Functions like spline, polynomial and piecewise linear can all be chosen as the adaptive
function in ADFUNN. The reason to choose piecewise linear function is simple, because it
has the maximum plasticity and represent any shape the data may produce, whereas a spline
function or a polynomial function cannot. As in the example shape in figure 25, if data
Produces a learned function shape like this, the polynomial function and spline function can
only produce the shape on both sides, but they cannot represent any sharp steps as in the
Central part. However, the piecewise function can better represent all kinds of different shapes.
The only constraint is that the maximum slope is A/interval (A is input data and interval is the
Space between two x points). Therefore, with sufficient points sharp edges (discontinuities)

can be represented.

Polynomial can not

Spline can not produce

Piecewise can

Polynomial can Polynomial can

Spline can produce

Spline can produce
Piecewise can Piecewise can

Figure 25: To represent learned function

3.2.1 The Number of F-Points

In thig thesis, f-point refers to the x point interval in the piecewise linear function. The
Tlumber of f-points depends on the input data range which applied to the neural network, the
put data precision and the weights initialisation. For instance, if the input data has a known
fange of /0, 10]. Weights are initialised randomly between /-1, 1], then the sum of weighted
Mput ' aw; will have a range of /-10, 10] which marks the function’s X-axis range. The data
Precision is the minimum difference between data. If, for example, the dataset has a preéision
of 0.1, then the whole range can be coded with a resolution of 0.1 as the f-point interval.

T .
herefore’ (10-(-10))/0.1 + 1 = 201 points are sufficient to encode the data precisely.

67

3.2.2 Proximal-Proportional Basis

J fx)=ax+b

P

.
—

Xna Xn Xna+l

Figure 26: Proximal-Proportional Basis

The proximal-proportional value for the f-point X, in linear function Jf&x) = ax + b indicates
how x,, is close to x point. As shown in figure 26, [xn, xu+/ is the function f-point interval.
The proximal-proportional value p, for x, is: (%n+1 - %) / (n+1 = Xn) and Pp+1 fOT Xgu is: (x - Xn)

/ (psg - Xy). In this case p, > pn+s, it’s apparent that X, is more close to x than x,. is.

3.2.3 Function Slope

By varying the slopes of activation functions, better performance can be achieved by
baCk-propagation neural networks [124]. This indicates that the activation function slope

Plays a role in reducing errors, as well as accelerating the convergence speed, when used

alongside wei ghts adaptation.

In ADFUNN, since functions are adapted, it follows that functions slope is variable. Hence by

Calculus as follows the weight update rule includes the slope.
If:

z: Y(aw)

J): real output

T: target output (constant)
a . input value

€. output error

S: activation function slope

68

ve=T- f(2)
sdefdw=d(T - f(2))/dw=—-d(f(z))/ dw
wdy/dx =dy/duedu/dx
According to chain rule [125]
= del dw = (de/dz) ® (dz/ dw)
. de/dw = (de/ dz) ® (dz/ dw) = (—d(f (2))/dz) ® (d(Zaw)/dw) =-Sea [F3.1]
S Aw=keSeqg [F3.2]

In the standard non adaptive function delta rule, d(f(z))/dzis a constant for the output
neurons and hence from the calculus in F3.1 de/dw= Aw=—a. Since we also want Aw to
be proportional to the error e, Aw becomesde/dw = Aw =k eeeqa. In the adaptive function
case, de/dw = Aw = —S ¢ a and so it follows that Aw becomes

Aw=kecegeS§

3.2.4 Function Adaptation

In neural networks, the difference between the expected output and the actual output for each
output is its error. Hence the piecewise linear activation function is adapted using a function

modifiable learning rule as follows:

Af(Za,-w,-J) =] ej
where / is the learning rate for function and ¢; is the difference between the expected output

and the actual output at output neuron j. Thus the error at each output is directly reduced by

modifying the function.

69

3.3.ADFUNN ARCHITECTURE

By providing a means of solving linearly inseparable problems using a modal learning
adaptive function neural network, ADFUNN is investigated and introduced in this section; it

is based on a single layer of linear piecewise function neurons, as shown in figure 27.

t P2 X AFf

ATy

XnaT Xna+l ”

Xx=)aw

Figure 27: Adapting the linear piecewise neuronal activation function in ADFUNN

By calculating Y aw, the two neighbouring f-points that bound Y aw can be found on the
function. Two proximal f-points are adapted separately, on the proximal-proportional basis.
The proximal-proportional value PI is (Xn+1 - X)/(Xn+1 —xy) and value P2 is (x - x,)/(Xp+1 - Xp).
Thus, the change to each point will be in proportion to its proximity to x. The output error is
then obtained and the two proximal f-points can be adapted separately, using a function

modifying version of the delta rule to calculate Af.

Figure 28 is a simple example of ADFUNN with 2 inputs and 1 output neurons.
output

Figure 28: ADFUNN network architecture

70

ADFUNN is a single layer adaptive function neural network. It is composed by a layer of
input neurons which fully forward connected to a layer of output neurons. Like the classic
neural network structure, the nodes of the input layer are passive, meaning they do not modify
the data. They receive a single value on their input, and duplicate the value to their multiple
outputs. In comparison, the nodes of the hidden and output layer are active, they modify the
data. The values entering an output node are multiplied by weights, a set of predetermined
small numbers (or randomly initialised small numbers) stored in the program. The weighted
inputs are then added to produce a single number. Before leaving the node, this number is
passed through a piecewise linear activation function. This is continuous piecewise cﬁrve that

limits the node's output. That is, the input to the piecewise function is a value between -<

and +<o, while its output are between 0 and 1.

3.4. THE LEARNING METHOD

Artificial neural network learning is typically accomplished via adaptation between neurons.
As a modal learning method, learning (adaptation) in ADFUNN is simultaneously taking
place between (the synapses/weights between neurons) and within (the adaptation functions)
neurons. It is introduced to overcome linear inseparability limitation in a single weight layer
supervised network which normally cannot solve such problems with the traditional weights

adaptation learning. .

3.4.1 The Delta Learning Rule

The delta learning rule is used by neural networks with supervised learning. It changes
weights by multiplying a neuron's input with the difference of its output and the desired
output and the network's learning rate. In ADFUNN, the delta learning rule is extended to add

the function slope to adapt weights. The function slop is required, because it is changing.

3.4.2 Learning Rates for Weights and Functions

It is clear that every dataset will have its own range. In order to cope with this, two learning
constants are introduced, where WL is for weights and FL is for functions. WL depends on

input data range and the F point interval. Different WLs are used with different magnitudes of

71

input vectors to achieve better performance. Whereas FL just depends on the required output

range.

3.4.3 Weight Normalisation

During learning, inputs are presented to the network and the sums of weighted input are
calculated. As in delta learning rule, the weights are adapted by adding the neuron’s input
times its error and the network’s learning rate. Some of the sums will become very large
whereas the others are very small. As in ADFUNN, the sum of weighted input will b‘e passed
to the activation function as an input. Since the range of input to the piecewise activation
function is fixed, a large weight will be out of the function range and therefore crash the
system. Even if the training data is already between the limits 0 and 1 and the data dimension

is limited, normalisation is still necessary in ADFUNN and desirable in other systems.

Weight normalisation is performed just like the vector normalisation in mathematics. For
example, in ADFUNN, for a set of weights which are from all input neurons to one output
neuron, the normalisation is done by dividing the given set of weights by its magnitude. The
magnitude of this set of weights a is denoted by ||a||, where ||a|| = (w12 + wi + W32)1/2 ina
three-dimensional space. And w;, w», w3 are weights from the three input to one output. This
will result in a weights vector with magnitude 1, but its direction remains the same as in the

original vector.

3.4.4 Weight Adaptation

The aim of weight adaptation is to remove noise and find the weights which can produce the
right outputs. In ADFUNN, the mode of weights adaptation is carried out using an improved
delta learning rule. In the delta learning rule, the change in weight from input #; to output ; is

normally given by:

Aw,-j=r°a,~°ej,

where 7 is the learning rate, a; is the activation of input »; and ¢; is the error from output u;. As
mentioned above calculus, multiplying the slope can achieve an accurate learning. Therefore,

in ADFUNN, the delta learning rule is modified as:

72

Aw,-j=r'a,-'ej°sj

where s;is the slope of the line which runs through two neighbouring f points which bounds

2aw in output neuron ;.

3.4.5 Function Adaptation

As mentioned before, ADFUNN has been invented to overcome the linear inseparability
limitation in a single weight layer supervised network. In ADFUNN, piecewise liner‘function
is used as the activation function. Apart from the mode of weights adaptation, the other mode
in ADFUNN is function adaptation learning works by finding the two neighbouring f-points

that bound X'aw and adapting them separately to reduce errors, on a proximal-proportional
basis. The f-point which is nearer to the L'aw is adapted more than the other f-point based on
its proportion. If the Xaw is accidentally the exact f-point, then only this f-point is being

adapted with the proximal-proportional basis equals to 1.

Prxaf

i/ \

Xna T Xna+l

X ="aw

Figure 29: Activation function adaptation

As seen from figure 29, by passing the sum of weighted input as x to the piecewise function,
the two neighbouring f points which encloses x are found. f{x) is simply the actual output
from the neuron which this function resides in. Af is the value of function learning rate
multiplied by the error. The proportional change of x,, (PI) to the point of Xn+; is (*pa+s -
X)/(Xna+1 — Xng) and the proportional change of X+ (P2) to the point of x,, i (X - Xpe)/(Xna+1 -
Xng). Thus x,, and x,4+; can be adjusted by their corresponding proximal proportional value

multiply by Af upwards or downwards depending on the error.

73

Therefore, it should come to a complete idea of how adaptation is simultaneously or
sequentially between (weights) and within (functions) neurons. Figure 30 shows a whole
system diagram of ADFUNN.

Output Layer

Weights adaptation <&

‘e

Figure 30: ADFUNN system diagram

3.4.6 ADFUNN General Learning Rule

The weights and activation functions are adapted in parallel, using the following algorithm:
A = input node activation, E = output node error.
WL, FL: learning rates for weights and functions.
Step1: calculate output error, E, for input, A.
Step2: adapt weights to each output neuron:

Aw = WL * Fslope * A * E
w =w+Aw
weights normalisation
Stepjz adapt function for each output neuron:
AfQaw) =FL+FE
f1=fi +Af Pl
fa=fa+ Af P2
Stepd: f Y aw) =f S aw);

w=w'

74

Step5: randomly select a pattern to train

Step6: repeat step 1 to step 5 until the output error tends to a steady state.

3.4.7 Mathematical Principles Employed in the Learning

The delta learning rule introduced by Widrow and Hoff [14, 126] which is also called the
Least Mean Square (LMS) method. It is mathematically proved by McClelland and
Rumelhart [127] that the delta learning rule provides a very efficient way to modify the initial
weights vector in order to minimise the errors. The extension of the delta rule in ADFUNN is
to add the function slope in order to achieve a faster and better learning result as
mathematically proved in 3.2.3. In ADFUNN the extended delta learning rule combine the

above two mathematically proved theorems.

In linear algebra, the process of normalisation is to assign a strictly positive length or size to
all vectors in a vector space. This length is calculated by the magnitude of the vector and then
each single value of the vector is divided by this length in order to keep each single value
(weight) within the range but without losing any information it contains. This is also called
the Euclidean norm [128]. In ADFUNN, weight normalisation is strictly based on Euclidean

normalisation in linear algebra.

Also functions are adapted to reduce the errors on a proximal-proportional basis. The
proximal proportional value for each neighbouring point is based on mathematical calculation,

in which:

The left hand neighbour’s value = D, /D,, (Dg, is the distance between right hand
f-point to input x and D,, is the distance between the left hand to right hand f-point/f-point

interval), and the right hand neighbour’s value= D,, /D, , .

Adapting the two neighbouring f-points proportionally which enclose the input x is

theoretically reasonable in order to make sure the function is adapted accurately according to

75

the allocated position of Xaw. The f-point always move in the direction of reduced error, it

is simply the explain of the movement that is moderated.

3.5.ADFUNN SIMULATIONS

There was a time that designing a modular simulator became difficult because of the need to
consider how to dissect neural algorithms into the appropriate modules. These modules had to
be flexible enough to support new algorithms. Moreover, the modules had to be

computationally efficient [129].

Things were dramatically changed when Object Oriented Programming (OOP) was invented.
OOP designs have an enormous advantage with respect to simulation speed [130]. Normally,
interpreted environments are flexible but slow. On the other hand, compiled code is very fast,
but it normally restricts the user interface. Object oriented designs combine the advantages of
both methods. Object instantiation provides the user with a great deal of flexibility, while the

objects themselves still run a compiled code [131].

Java is an object oriented programming language which has powerful tools to design
graphical user interface [132]. It provides a highly flexible environment that allows the user to
get direct access to the network parameters, provides more control over the learning details,
and moreover, it provides a good visualisation for the learning results which leads to easier

data analysis.

Therefore, the framework is written in Java and contains all the components of ADFUNN. It
is used to create a powerful environment to train and test ADFUNN. Learning algorithms are
written in code and network parameters can be adjusted in real time. Data resources to train or
test ADFUNN are stored in external files and imported by the framework during learning,
The real time learning processes can be visually captured through the graphical interface,

including the weights and activation function changes.

76

In this chapter, a single layer ADFUNN is applied to three linear inseparable problems: the
XOR, the Iris dataset, and the natural language processing of phrase recognition task. These

tasks are simulated in the Java framework and visual results are shown as well.

3.5.1 XOR Problem

3.5.1.1 XOR Problem

The Exclusive-OR (XOR) is the simplest initial linearly inseparable test for any pattern
recognition algorithm. It is a binary example, and therefore serves as a good basic test to
establish that linearly inseparable problems can be solved by ADFUNN. It is important to set

up this experiment before ADFUNN is further evaluated on more complex datasets.

The XOR problem can be easily described as: Consider a neural network implementation of
the two input XOR function. In this function, if the two inputs match (i.e. input pattern = {(0,
0), (1, 1)}) the output is (0). If the inputs do not match (i.e. input pattern = {(0, 1), (1, 0)}) the
output is (1).

3.5.1.2 ADFUNN on XOR Problem

In ADFUNN, two weights are needed for the two inputs problem and there is one output to
show the result of 1 or 0. Weights are initialised randomly between -1 and 1, they are then
normalised to make sure the weighted input does not go out of range of the fixed activation
function x range. F point values are initialised to a constant value of 0.5 so that the final
learned range of the function can be easily identified as it has been adapted towards either 0 or
1. Each F point is simply the value of the activation function for a given input sum. To proves
this binary data, f points are equally spaced with an interval of 0.4, and the function value
between points is on the straight line between them. This network is adapted using the the

general learning rule introduced in section 3.4.6.

3.5.1.3 Simulation Result

77

The ADFUNN learns the problem very fast with a learning rate of 0.5. Too low a learning
rate makes the network learn very slowly, but too high a learning rate makes the weights and
objective function diverge. In this case, WL and FL are both 0.5. As described in Section
34.2,

An example of the weights after learning is: w; = 0. 62, w; = (.73, and therefore, the sum of
weighted inputs w; » 0 + w;+ 0 = 0 for input pattern (0, 0), w; » 0 + w; » I = 0.73 for input
pattern (0, 1), w; * I + w; « 0 = 0.62 for input pattern (1, 0) and w; * I + wy » 1 = 1.35 for
input pattern (1, 1). |

As can be seen in figure 31, a characteristic XOR curve is learned. The raised curve (between
0 and 1.2) marks the learned region, within which adaptation has occurred. The data all

projects onto this range, so beyond it none of the points are relevant in the final analysis.

1.2

1l
08 |
08 |
04 }
0.2 }

0
0.2

XOR learned function

2 15 -1 0.5 0 0.5 1 1.5 2
Sum of weighted input

Figure 31: XOR problem solved using ADFUNN

3.5.1.4 Generalisation Ability

It can be seen from figure 31 that when input pattern is (0, 1), the weighted sum of input x =
0.73 and its corresponding f{x) = 1.0, which gives the accurate output as expected. Similarly,
the other three inputs all give the expected correct answers. In the region projected onto
between (0.3, 0.9), the slope of the activation is nearly 0 and f = 1, and beyond this region, the
function slopes down towards 0. Thus, it can be summarised that ADFUNN has learned the

XOR. The generalisation is 100% correct within no more than 50 epochs of training.

78

3.5.2 Iris Problem

3.5.2.1 Iris Dataset

Iris Dataset [133] is perhaps the best known dataset found in pattern recognition literature and
therefore represents a clear benchmark to test and compare a simple linearly inseparable .
problem for any proposed learning algorithm. It consists of 150 four dimensional data. Four
measurements: sepal length, sepal width, petal length, and petal width, were made by Fisher
on 50 different plants from each of three species of Iris (Iris Setosa, Iris Versicolor and Iris
Virginica) [133]. One class is linearly separable from the other two, but the other two are not

linearly separable from each other.

The dataset contains three classes of Iris flowers collected by R.A. Fisher in Hawaii is a
popular multivariate dataset that was introduced as an example for discriminant analysis [133].
The statistical analysis to this dataset was initially carried out by plotting the dataset onto
scatter plots to determine patterns in the data in relation to the Iris classifications. And the
relevant statistical information revealed from the dataset can be summarised as follows[134]:
if the Iris flower has a long sepal (6-8cm), long petals (5-7cm) and wide petals (71.5-2.5¢m)
then the Iris is most likely an Iris Virginica. If the Iris flower has a short sepal (4.5-5.5¢cm),
short petals (I-2cm) and very narrow petals (0.1/-0.5¢m) then the Iris is most likely an Iris
Setosa. Any Iris flower that falls in between these two classifications is most likely an Iris

Versicolor.

3.5.2.2 ADFUNN on Iris Dataset

A 4 « 3 network (in figure 32) is constructed to solve this problem using ADFUNN. Thé
weights are initialised randomly between [-1, 1]. By looking into the dataset, the Yaw;has a
known range [-11, 11]. The Iris dataset has a precision of 0.1, so this range can be coded with
a resolution of 0.1 as the F-point interval. Therefore, 221 points (11 + 11) /0.1 + I = 221)

are mathematically sufficient to encode the data precisely.

79

Input Layer

Sepal Length Output Layer

Setosa
Sepal Width

Versicolor
Petal Length

Virginica

Petal Width

Figure 32: Single layer ADFUNN for Iris dataset

3.5.2.3 Simulation Result

Learning rates WL = 0.01 for weights, FL = 0.1 for functions are applied to ADFUNN to
adapt weights and functions respectively on Iris dataset. The learning rates are chosen on the
following basis. F point interval 0.1 and the activation function is adapted between [-1, 1],
hence the range of function slope is [-10, 10]. To cope with weights adaptation involving a
function slope of maximum 10, we set WL=0.01. In contrast, FL just depends on the required
output range [0, 1] and hence FL = 0.1. Using the general learning rule of ADFUNN outlined

in 3.4.6, learned function curves are achieved as in figure 33-35:

1.2

-

od
w

[
b

o
N

Iris Setosa leamed function
o
L

W

L] -5 4 3 2
Sum of welghted input

5

[N
&
S

Figure 33: Iris Setosa learned function using ADFUNN

80

-
a N

°
1]

4
'S

o
X

Iris Versicolor learned function
e
&

-1

s
19

&5 -4 -3 -2 -1 (] 1 2
Sum of waighted input

Figure 34: Iris Versicolor learned function using ADFUNN

12

1 |

0.6 |

04 |

Iris Virginica learned function

1 2 3 4 5 [] 7 8
Sum of weighted input

Figure 35: Iris Virginica learned function using ADFUNN

3.5.2.4 Generalisation Ability

After approximately 200 epochs, the average error for these three classes tends to a steady

state, which is always below 0.05. Convergence takes an average of only about 50 epochs.

The problem is learned with 100% successful classification when all patterns are used in
training, and also with only 120 (the other unseen 30 patterns are used for the independent
test), whilst 90 patterns were insufficient to achieve complete generalisation in some
simulations. Results are tabulated in Table 1. The functions are clearly non-linear and
non-monotonic, illustrating the usefulness of the adaptive function method which is able to

acquire these functions.

81

Table 1: Generalisation of ADFUNN for Iris dataset (150 total patterns, 100 runs)

Generalisation | Best (%) Average (%) | Worst (%)
60 test patterns | 100% 93.33% 86.67%
30 test patterns | 100% 100% 100%

3.5.2.5 Comparison of Related Works Applied to Iris Dataset

There are many neural network methods for solving the popular linearly inseparable Iris
plants dataset. Most of them use a network of multi-layer perceptrons (MLPs), so they require
hidden neurons. In contrast;, ADFUNN can solve the problem in a single weight layer

supervised network.

A reinforcement learning method called SANE [135] (Symbiotic, Adaptive Neuro-Evolution)
uses an evolutionary algorithm. It searches for effective connections and/or connection
weights within a neural network. The weights or architecture of the neural networks are
encoded in structures that form the genetic chromosomes. With the Iris dataset, SANE
constructs a network of 5 input, 3 hidden and 3 output units, and the transfer function of the
network is sigmoid function. The level (averaged over 50 runs) of the learning and
generalisation abilities is about 90%. Cantu-Paz [136] also achieved about 90% accuracy with
5 hidden unites, and a spiking neural network with 4 hidden neurons has achieved more than
96% accuracy [137]. However, ADFUNN can achieve 100% accuracy without any hidden

neuron.

There have been other attempts to solve the problem without a hidden layer, by transforming
the input space, but this involves many extra input neurons. For example, Eldracher [138] use
several units for each of the four measurements, in a form of coarse coding, and with 90

training and 60 test patterns they achieve an overall misclassification rate of 2.5%.

3.5.3 Natural Language Phrase Recognition Problem

According to George F. Luger [139] "One of the long-standing goals of artificial intelligence

is the creation of programs that are capable of understanding and generating human language.

82

Not only does the ability to use and understand natural language seem to be a fundamental
aspect of human intelligence, but also its successful automation would have an incredible

impact on the usability and effectiveness of computers themselves".

Natural Language Phrase (NLP) datasets have been applied to many machine learning
algorithms [140, 141], providing a challenging comparison task for ADFUNN. ADFUNN is
applied to a natural language processing task of phrase recognition on a set of phrases from
the Lancaster Parsed Corpus (LPC) [142].

3.5.3.1 Natural Language Phrase Recognition Data Source

The input patterns are generated using the pre-tagged corpus in [142]. It is achieved by
separating the input space into several regions where each corresponds to a different symbol
type. A total of 49 bits are used to encode all possible input symbols as shown in table 2. The
terminal symbol groups are: punctuation (Pu), conjunctions (Co), nouns (NP), verbs (VP) and
prepositions (PP). The non-terminal symbol groups are sentences (S), finite clauses (F)
non-finite clauses (T), major phrase types (V) and minor phrase types (M). There are 4
look-back symbols, 10 phrasal symbols and 1 look-ahead symbol, which make a total of 15
inputs symbols. Thus, the total number of inputs is 49 bits x 15 symbols = 735. 254 input

patterns are used from the pre-tagged sentences in [143, 144].

Table 2: Input Fields Representation

D e 49 bits
L 27 -5 e 22 -
Pu Co NP VP PP '; ' S F T \' M
59 3o 8o 7o (—4—>§ €39 4o 59 6> i
» Word Tag Section é Constituent Tag Section

According to LPC [142], constituent tags can be sub-divided into five main groups: sentence
tags, finite clause tags, non-finite and verbless clause tags, major phrase tags, and minor
phrase tags. There are 41 constituent tags altogether [143], and so 41 outputs are needed. The
anticipated output value is either 0 or 1 and only one output should ideally be 1 for each input
pattern. The format of the output is, for instance: 1000...000. The first output in this case

represents sentence and so it is 1, the other 40 outputs are 0. This indicates the input pattern is

83

a sentence. When the output is, for example: 0...010...0, and the 17th output is 1, the input

pattern should be a verb phrase.

3.5.3.2 Natural Language Processing Background

Connectionist parsers are neural network based systems designed to process words or their
tags to produce a correct syntactic interpretation, or parse, of complete sentences [145]. These
neural network based systems are, for instance, Multi-Layer Perceptrons (MLP), Simple
Recurrent Networks (SRN), Recursive Autoassociation Memory (RAAM), or localist
networks [145, 146, and 147].

In the early 1990s, the first modular distributed parsers typically consisted of combinations of
feed-forward multi-layer perceptrons (FF-MLP), SRN and RAAM architectures. The purpose
of decomposing the parsing task into sub-modules is often to: “simplify the network’s
learning task, and to reduce training set size and complexity; or to evaluate the computational

and cognitive plausibility of a given composition of modules” [145].

The hybrid connectionist parser is a hybrid of neural network and a symbolic module, which
builds the neural network based on a given context free grammar. It has an advantage over
traditional parsers because of the use of graded activation and activation passing in the
network [148]. The symbolic modules are typically: “short-term storage of parse states;
long-term storage of structured knowledge, such as grammar rules, semantic networks, and
tree structures; and symbol manipulation and communication to control the parsing process
and coordinate interactions between (connectionist) modules” [145]. The ability to learn to
represent syntactic structures from examples automatically, without being presented with
symbolic grammar rules is the key aspect for evaluating the connectionist parsers. In
particular, learning phrase recognition has proved to be a good test of neural networks, as

both learners and parsers [145].

3.5.3.3 ADFUNN on Natural Language Phrase Recognition Task

84

A single layer network with 735 input and 41 outputs is required to deal with the phrase
recognition, using the 254 input patterns generated. Weights are initialised to very small
random numbers between -0.1 to 0.1. F-points are initialized to 0.5. > aw has a know range:
{-5, 5} after analysing the input patterns and therefore 2001 points are considered sufficient to

encode the data precisely, giving a resolution of 0.005 on the function.

The f-point interval is 0.005 and the activation function is adapted between [-1, 1], hence the
range of function slope is [-200, 200]. To cope with weights adaptation involving function
slope, WL is set to 0.00001. Whereas FL depends solely on the required output range [0, 1]
and therefore just one decimal place is needed. So WL = 0.00001 is picked to reduce the
effect of big slopes on weights adaptation and FL = 0.1 is picked to adapt functions.
According to the general learning rule, Aw = WL « Fslope * A ¢ E and Af(3aw) = FL « E are

used to adapt weights and functions respectively.

3.5.3.4 Simulation Result

Over many simulations, each consuming about 400 epochs, the average error tends to 0, and
100% generalisation can be achieved with 200 training patterns (out of 254). Only 3 phrase
types are listed out of the 41 in figures 36, 37 and 38. They are for the major types phrases:
sentence, verb phrase and noun phrase (in which f-points are also initialized to a constant

value (0.5) making it easy to identify the active range over which adaptation has occurred).

12

1}

learned functi

04 |

¢
P

02 |

0.2
-4 -3 2 - 0 1 2
Sum of weighted input

Figure 36: Sentence phrase learned function

85

Verb phrase learned functior

Noun phrase learned functior

Figure 37: Verb Phrase learned function

0 1 2 3

Sum of welghted input

-1 0 1
Sum of weighted input

Figure 38: Noun Phrase learned function

3.5.3.5 Generalisation Ability

Table 3: Generalisation of ADFUNN on Phrase Recognition (254 patterns, 30 Runs)

Generalisation Best (%) Average (%) Worst (%)
54 test patterns 100% 97.2% 94.4%

104 test patterns 90.2% 86% 81.2%

154 test patterns 81.1% 73.7% 66.2%
L

This experiment is evaluated by independent test with running for 30 times (30 simulations).

100% generalisation cannot be achieved using 150 training patterns (out of 254), however

86

with 200 training patterns, 100% generalisation can be achieved in most of the cases. The

functions are obviously non-linear and non-monotonic, illustrating once again the value of the

adaptive function method which is able to acquire these functions.

3.5.3.6 Comparison of MLP with Back-Propagation Applied on this Task

The performance of ADFUNN is compared with the MLP connectionist parser phrase

recogniser from [143] and a simple back-propagation network, in table 4. TD is the result for

the training data, ND is the result for testing using natural test data and PD is the result for

testing using just pure test data. Natural test data is where patterns that have already occurred

in the training are left in the test dataset, whereas for the pure test data they are removed.

The most obvious advantage of ADFUNN is the lack of hidden neurons, whereas 50 hidden

layer nodes are required in the other two networks. Additionally, ADFUNN achieves 100%

correct classification compared to 98.76% and 89.01% for the best of MLP and

back-propagation networks.

Table 4: Comparisons between ADFUNN and MLP with back-propagation

Network Type | Total No. No. of No.of | Totalno.of | No.of No. of Correct Overall

of input patterns | epochs patterns hidden | correspon | Classificat | performance
per presentation layer ding Tags ions (%)
epoch nodes

Connectionist | 2588 (TD) 2588 800 2070400 50 72

parser MLP | 2765(ND) - - 50 72 2461 89.01

phrase

i 2433 (PD) - 50 72 2132 87.63

recogniser ,

Back 127 (TD) 127 ~128 16256 50 14 125 98.76

propagation 154 (ND) 50 14 135 87.80
89 (PD) 50 14 74 83.05

ADFUNN 127 (TD) 127 ~400 50800 0 14 100.0

30 127

simulations) 154 (ND) - - - 0 14 142 92.21
89 (PD) - - - 0 14 78 87.6

87

3.5.4 ADFUNN vs. Adaptive Cubic Spline Activation Fucntion

ADFUNN is compared with an adaptive spline activation function neural network is
investigated, as well as their performances and recent developments. The adaptive cubic
spline neural network is in some ways the closest relative of ADFUNN. In this section,
ADFUNN and the adaptive spline neural network are applied to a number of datasets and
performances are compared, based on their network structures, learning methodologies, and

hardware costs.

3.5.4.1 Comparison of Performance on Continuous XOR (cXOR) Problem

In Chapter 2.4, an adaptive spline activation function neural network was introduced [110,
111, 112, and 113]. The Catmull-Rom cubic splines are used as the activation function in the
network. The spline parameters and weights are adapted together by the back-propagation

learning method.

An evolution of this cubic spline activation function is reported by Mayer and Schwaiger
[149]. In [149], experiments were set up to address the performance of the cubic spline
network in comparison to a generic MLP with conventional sigmoid activation function.
Intuitively, the decision boundaries in classification can be modelled much easier by cubic

splines than by the logistic function.

A simple continuous XOR problem with piece-wise linear decision boundaries is used to
evaluate and compare the single layer ADFUNN with this adaptive cubic spline function
neural network (as well as to compare to the MLP, although better performance by ADFUNN
has already been reported in this thesis). This continuous XOR problem is applied to
ADFUNN under the same conditions as it applied to the other two.

The contiuous XOR (cXOR) is defined by a division of the unit square into four squares of
identical area separated by line x = 07‘5 and line y = 0.5. The lower left and the upper right
square are labelled with binary value 1 and the two other squares represent the class with

binary value 0. The training set is composed of 100 randomly selected points in each unit

88

square and the test set is made of 10,000 equally spaced points covering the complete unit

square.

Two input and one output neuron are required for all the networks. The binary output value 1

is defined by an activation of the output neuron a, > 0.5; otherwise the output is mapped to 0.

In [149], the experiment on ¢cXOR with cubic spline activation function was set with a
maximum of three hidden neurons and the sensitivity interval of the neurons’ cubic spline to
[-10, 10]. In 4 runs out of the total 20 runs, 1 hidden neuron was used to get fhe best
performance. For the other 16 runs, better performance is achieved without a hidden neuron.
They then summarised that “a single perceptron cannot learn the XOR function [10]” but in
fact the result they achieved (which is: there are 16/20*100% = 80%) indicates an 80%
chance that a cubic spline activation function neural network can solve the XOR problem

without a hidden neuron.

14

. 7N
. \
[\

2.1 \‘ .// \\/fl

-2
10 -8 - 4 2 [2 a 6 8
v

Saw
Figure 39: Cubic spline activation function for cXOR in the 2-1-1 network [149]

/_\

/ N\
t Ve Y\’\,"

] -4 -2 [2 4 6 8 10
. v

Yaw
Figure 40: Cubic spline activation function for cXOR in the 2-1 network [149]

&9

Table 5. Chance that a Hidden Neuron is Not Needed

ADFUNN Cubic Spline

Chance of No

0, 0,
Hidden Neuron 100% 80%

In contrast, ADFUNN always solves ¢cXOR (without a hidden neuron). In ADFUNN, there
are two inputs and one output. The following is a comparison table for ADFUNN, cubic
spline activation function neural networkl and a generic MLP on the ¢cXOR problem. It is
obvious that both the MLP with Sigmoid and Cubic Spline require hidden neurons, whereas
ADFUNN can learn the cXOR problem in a single weighted neural network. Furthermore,
neither of these two methods achieved better performance than ADFUNN, with in average
95.8% to 96.7% compare to ADFUNN’s 98.9% classification.

Table 6. Comparison between ADFUNN, Cubic Spline and MLP on ¢XOR Problem

¢XOR
Activation function hidden Test Set
Average Best
(MLP)Sigmoid 2.8 0.9679 0.9752
Cubic Spline 25 0.9583 0.9767
(ADFUNN)Piecewise linear 0 0.989 0.9994

3.5.4.2 Comparison of Performance on Iris Dataset

Catmull-Rom spline activation function is applied to the Iris dataset [133] in [150]. The
activation function proposed is based on the Catmull-Rom spline function where each patch
curve is a polynomial of degree three. Four control points for the x-axis and four for the
y-axis are used to control the slope of the activation function. For the Iris dataset, the network
is constructed with four inputs, four hidden neurons, three outputs and error back propagation

is used as the learning algorithm.

90

Although 100% successfully trained within 30,000 epochs, the simplicity of network
implementation, learning speed and even hardware implementation of this Catmull-Rom
spline activation function are not comparable with ADFUNN. ADFUNN achieved 100%
classification within 200 epochs and without a hidden neuron (as introduced in section 3.5.2).

The following compares the performance between them:

Table 7. Comparison between ADFUNN and Catmull-Rom Spline on Iris Problem

Hidden Neurons Epochs Classification |
Catmull-Rom Spline 4 30,000 100%
ADFUNN 0 200 100%

3.6.CONCLUSION

This chapter explained how and why the system was chosen and the learning algorithms of

ADFUNN were introduced, as well as a general learning rule for ADFUNN.

ADFUNN was then applied to a range of linearly inseparable problems which normally
require a hidden layer to solve. Although these tasks can be solved by introducing a
multi-layer structured neural network, the success of ADFUNN is its clear advantages in
training speed and computational requirements. A multi-layer perceptron is in the inferior
position compared to ADFUNN in the sense of much higher computation and architecture

complexities, when being attempted on the same task.

As compared in table 4, the single-layer ADFUNN, with 735 inputs and 41 outputs, has more
computational efficiency than a hierarchically structured multi-layer back-propagation (735
inputs, 50 hiddens and 41 outputs), in terms of much less computer memory and CPU usage

and less time consumption.

91

ADFUNN is also more efficient and powerful than the adaptive cubic spline function. Order
expressions can be defined as follows, in order to compare the complexity of the order of

computations for ADFUNN and adaptive cubic spline function.

E: Number of epochs

N: Number of neurons

X: Number of f-points or control points which need to be calculated when a pattern is passed
to a neuron

C: Calculation required per f-point (ADFUNN) or control point (cubic spline), e.g. f(x) = ax
M: Memory usage per calculation per f-point (ADFUNN) or control point (cubic spline)

O (nn): Order of computations of a neural network for all patterns

O (p): Order of computations of a pattern passing through a neural network

O (n): Order of computations of a neuron

O(mn)=E-O() -0 (n
O/ =N
Om=X-C-M

To compare ADFUNN and adaptive cubic spline function on the Iris dataset, the order of
calculations per neuron is related to the number of f-points (ADFUNN) or control points
(adaptive cubic spline function) which need to be calculated when a pattern is passed to the
neuron, the calculation of each point and the memory cost per calculation. For ADFUNN,
only two points which bound the input value and the input point itself need to be calculated,
however, for the adaptive spline function, there are 8 control points (4 for x-axis and 4 for

y-axis) need to be calculated using fi(x) = fi(x) + a;(x-x;) + b,-(x-xi)z +c,-(x-xl-)3 . Therefore
For ADFUNN O (n) = 3 - C - M, for adaptive cubic spline O (n) =8 - C- M
The order of computations of each pattern going through the networks O (p) is related to the

number of neurons. For ADFUNN, as there is no hidden neurons, the calculation only

happens in the output neuron, O@p) =1 -Om) =1-3-C- M =3 - C - M Whereas for the

92

adaptive cubic spline function, there are 4 hidden neurons and an output neuron, so O(p) =
5:-:0m=5-8-C-M=40-C- M.

The overall order of computations of an algorithm is related to the number of epochs, order of
computations per pattern and order of computations per neuron. For ADFUNN, the O (nn) =
E-O@)-OMm =200-3-C-M=4600-C-M and for adaptive cubic spline, O (nn) =E - O
(p) - O (m) = 30000 - 40 - C - M = 1200000 - C - M. The calculation for each control point in
the adaptive spline function is a three degree polynomial function; for ADFUNN it is a linear
function for the neighbouring two points and a two degree polynomial function for the input
point. And obviously, ADFUNN consumes less memory per calculation per point. Thus,
ADFUNN scales up computational over 2000 times (1200000/600 = 2000) more efficiently

than the adaptive cubic spline function.

In addition, ADFUNN is extremely easy to implement, very high in training speed, and

requires much less hardware memory to learn.

93

CHAPTER 4 A MULTI-LAYER ADAPTIVE FUNCTION
NEURAL NETWORK (MADFUNN)

4.1 INTRODUCTION

In the previous chapter, the single layer ADFUNN has been shown to be effective on some
linearly inseparable datasets. These datasets are small or medium sized data. As the size and
complexity of the model required increases, at some point ADFUNN’s performance is

limited.

Multi-layer ADaptive Function Neural Network (MADFUNN) is introduced to solve the
practical problem of finding a suitably restricted subset of functions f which would have good
representational capacity but would also form a space with a structure regular enough to

enable efficient learning for complex models with large datasets.

In this chapter, a multi-layer adaptive function neural network extended from ADFUNN is

introduced, a new learning rule for MADFUNN and its applications are also introduced.

MADFUNN’s introduction is to enable efficient learning for more complex classifications
with large datasets. Although ADFUNN has exhibited a highly effective generalisation ability,
if the dataset itself is too complex, a single layer ADFUNN is not capable of dealing with the
problem. Therefore, a multi-layer ADFUNN emerges with the ability to encode more

functions and information.

4.2 THE MADFUNN ARCHITECTURE

94

MADFUNN is composed of a layer of input neurons which are fully forward connected to a
layer of hidden neurons. The hidden layer is then fully connected to an output layer of
neurons. Like the back-propagation algorithm, MADFUNN propagates inputs forward to a
hidden layer and then to the output layer in the usual way. All outputs are computed using a
linear piecewise function and MADFUNN propagates the errors backwards by apportioning
them to each unit according to the amount of this error the unit is responsible for. After
feeding the sum of the weighted value into a hidden or an output neuron, this value is passed
through a piecewise linear activation function. Like the activation function in ADFUNN, the
piecewise linear function is a continuous piecewise curve that limits the node's oﬁtput. In
simple words, the activations are propagated from the input to the output layer, and the error
between the observed actual and the requested nominal value in the output layer is propagated

backwards in order to modify the weights and functions.

4.2.1 Input Layer

The input layer in MADFUNN is composed of neurons. The number of these neurons is
specified by the dimension of the data. Data can be any format of numbers, and they are
normalised wherever needed to keep the sum input within range. The input layer is fully
connected to the hidden layer. The calculated sum inputs will be presented as the input to the

hidden layer.

4.2.2 Hidden Layer

The hidden layer is composed of a set of neurons and is fully connected to the output layer.
The number of hidden neurons depends on the data complexity. It is the general critical
problem a multi layer neural network always faces. Too few hidden neurons, too little “brain”
available to learn the problem. If there are too many neurons, the network will memorise the
problem instead of learning it. Taking the sum inputs as inputs, the hidden layer is able to
produce outputs from the piecewise linear function. These outputs will be passed to the output

layer.

4.2.3 Output Layer

95

Taking the outputs from the hidden layer as inputs, the output layer is also able to produce the
results which are the actual outputs from MADFUNN. The number of neurons in the output
layer is the number of classes of the data. These actual outputs will be compared with the
desired outputs to produce the errors. In MADFUNN, errors from the output layer are sent

back to the hidden layer for weight adaptation.

4.3 THE SYSTEM LEARNING

4.3.1 Learning Rates for Weights and Functions

As described in 3.4.2, different learning rates are needed for weight and function adaptations.
This is mainly because of the different factors the weights and functions depend on. As there
are different input data ranges for the hidden layer and the output layer, in the sense that the
input data to hidden layer depends on the dataset whereas the input to output layer mostly
depends on the number of hidden neurons. Therefore different weight learning rates are

required for hidden neurons and output neurons, as well as different function learning rates.

4.3.2 Errors in Output Neurons and Hidden Neuron

The errors in the output layer are simply the difference between the actual output and the

expected output. For instance, the error from output neuron o is:
EO = to - yo
Where t, is the target output and y, is the actual output. The errors from the output nodes are

propagated back to the hidden neurons. For each hidden neuron, the error is calculated as:

Ey =Y E* Wyy* FSLOPEy
Y=1

It sums the product of error, weight and slope from each output neuron.

4.3.3 Weight Normalisation and Weight Limiter

96

Weight normalisation is done by calculating the weights’ vector’s magnitude and dividing
each of the weights by this magnitude as in ADFUNN. The result of this process is a weights
vector whose magnitude is 1, but whose direction remains the same as the original vector. The
aim of this is to keep the weights in range without losing any information. Another method of
doing this is to use a weight limiter. The reason to introduce a weight limiter is to make the
function more stable. Having said that, as MADFUNN is particularly introduced to solve
complex problems which normally have large data ranges and overlapping classes. Therefore
small f-point intervals are required for the activation functions. For example, if the f-point
interval is 0.001, because the functions are adapted between {0, 1}, function slopeé can be
any value between {0, 1000}. Large slopes can make large swing errors and therefore make
the learning unstable. Thus the weight limiter is used in MADFUNN to limit the weights
between {-1, 1}. Using a weight limiter requires the weights to be initialised in very small

numbers or as zero, and they are adapted slowly in each epoch.

4.3.4 Weight Adaptation

In MADFUNN, the output neuron weights are adapted according to the delta weight. The
delta weight is calculated by multiplying the hidden neuron activation, the output error, the
function slope and the weights learning rate together.

AWyy= WL « FSLOPEy* Ay* E
Each weight from a hidden neuron to an output neuron is adapted by this delta weight and if
no change is made beyond the weight limitation.

Wuy ' = Way+ AWpy
Likewise, the hidden neuron weights are adapted in the same way except the error and slope
is from the hidden neuron and A is the input node activation.

AWy = WL * FSLOPEg* A * Ex
Each weight from an input neuron to a hidden neuron is adapted within the weight limiter by:

Wig'=Wm+AWng

4.3.5 Functions Adaptation

97

As introduced in 3.4.5, the piecewise linear activation functions in both hidden and output
neurons are adapted by finding the two neighbouring f-points that bound X aw and adapting
them separately, on a proximal-proportional basis. To adapt each output function. Delta F is
calculated by multiplying the function learning rate and the output error. Two f-points which
bound the input activation are adapted separately based on the proximal proportional basis.

AFy=FL+E

Fy"=Fy +AFy* Py,

Fy))=Fy+AFy* Py,
The same with the hidden neuron functions. They are adapted in the same way but thé delta F
is calculated from the hidden neuron error and learning rate. |

AFy=FL « Ey

Fui'=Fg +AFy Py,

Fiu' =Fg; + AFg* P

4.3.6 MADFUNN General Learning Rule

In this general learning rule, instead of normalising the weights, a weight limiter is introduced
which will limit all weights within the range of [-1, 1]. Weight and activation functions are

adapted in parallel, using the following algorithm:

A = input node activation,

Ay = hidden node activation,

E = output node error,

Ey = hidden node error,

FSLOPEYy= slope of output neuron functions,

FSLOPE= slope of hidden neuron functions,

Py;, Pyy:the two proximal-proportional values for the two neighbouring f-points for the output
that bound) aw

Py Pyy:the two proximal-proportional values for the two neighbouring f-points for the hidden
neuron that bound) aw, ‘

WL, FL: learning rates for weights and functions.

Step 1: calculate output error, E

98

Step 2: calculate hidden error, Ey

Ey=Y E * Wyy* FSLOPEy
Y=I
Step 3: adapt weights to each output neuron
AWyy= WL « FSLOPEy* Ay E
Wyy ' = Why+ AWpy
Step 4: adapt function for each output neuron
AFy=FL-*E
Fyi'=Fy1 + AFy* Py,
Fy2' =Fy2+AFy*Pv2
Step 5: adapt function for each hidden neuron
AFy=FL+*Ey
Fyi'=Fy + AFge Py,
Fy'=Fm+ AFg* P
Step 6: adapt weights to each hidden neuron
AWy = WL » FSLOPEy* A *En
Wi'=Wu+ AW
Step 7: Fy=Fy, Fn=Fy'
Way= Why',
Win= W'
Step 8: randomly select a pattern to train

Step 9: repeat step 1 to step 8 until the output error tends to a steady state.

4.4 ANALYTICAL FUNCTION RECOGNITION

4.4.1 Motivation for Investigation

The learned function curves from XOR, Iris dataset and natural language phrase recognition
tasks which ADFUNN has been applied to, are very well-regulated. It should be possible, for
a given set of analytical function prototypes to determine which analytical function matches

best to a given smoothed curve from the learned function output. Some points on the

99

activation function have never been adapted even though they are within the active range of
adaptation, in which case they are in effect noise. To smooth these curves, which include the
smoothing of unlearned points, a simple moving average method, least-squares polynomial
smoothing, and a new self-sizing moving window method are applied and compared. The
smoothed curves are then available for function recognition. The implementation of this
function recognition task also helps to interpret the hidden features of data and understand

what happens inside the network.

4.4.2 Patterns Generation

Six commonly used analytical functions classes plus one random numbers curve class are
selected as the prototypes to train the network. The random number class is used for any case
where the testing curves do not resemble one of the given function classes. Each analytical

function has 200 training patterns generated, which makes 1400 training data in total.

The analytical functions selected in the training data are based on the general shapes of
ADFUNN learned function curves in different applications. Piecewise linear function is the
activation function which is being adapted during the learning of ADFUNN. The supervised
ADFUNN always adapts its functions towards 1 or 0. Therefore, the analytical functions
whose shapes most closely resemble the ADFUNN’s learned function curves are: pulse

function, step function, sine function, sigmoid function, straight line and RBF.

200 patterns are generated for each of the six analytical functions and one random function.
These patterns are transformed and normalised within the range of {0, 1} in the two
dimension épace. There are 101 points used as the input data within this range. Having looked
at the general shapes generated from ADFUNN’s learned functions in the XOR problem, Iris
dataset, the phrase recognition task and considered the nature of ADFUNN being adapted

either towards O or 1, the training patterns are generated as follows:

For Step and Pulse function classes, patterns are generated using the piecewise constant

function y=1 moving with different size of intervals on the range of x belongs to {0, 1}.

100

Because the learned functions in ADFUNN normally have one or two peak (where y=1)

intervals, the patterns generated also have one or two peaks.

For Sine function class y = sin (bx+c), the patterns are generated with angle b varies between

{0, 2n} and c varies between (0, m). For Sigmoid function class y =-—+m;, a varies

1+g

between {-1, 0}. The Straight line function y=ax+b class patterns are generated based on the
gradient g varies between {0, 1} and intercept b varies between {0, 1} where the incremental
change for a is a = a+0.2 and for b is b = b+0.1. And the RBF function y = ¢ ~a(x~? ¥ class
patterns are generated based on a varies between {0, 10} and b varies between {0, 1}. For the

Random Number class, the 101 input points are randomly selected between {0, 1} for every

training pattern.

For instance, the following is a Sine function, f{x) = sin(5x), on the x range of {0, 1}, its

original curve is illustrated in figure 41.

f(x) = sin(5x)

0.75
0.5
0.25

L L 1

-025 0 01 02 03 04 05 06 87 08 09 1
-05 +
-0.75 -

Figure 41: Sine function f{x) = sin (5x)

After normalisation to the range of {0, 1}, it has a pattern as shown in figure 42:

101

Normalised f(x) = sin (5x)

08
0.6
04

02

0 L 1 A 1 I . . 1 —)
0 01 02 03 04 05 06 07 08 09 1

Figure 42: Normalised sine function f(x) = Sin (5x)

Figure 43 and 44 are examples of pulse function and step function.

pulse functionf(x)=0on0 < x< 020r0.5 < x< 1and
f(x)=10n0.2<x<0.5

1.2

06
04 1
02 r

0 ‘ ,
0 01 02 03 04 05 06 07 08 09 1

Figure 43: Pulse function example

step functionf(x) =0 on0 < x< 0150r 0.3 < x< 0.50r
0.8<<x<t1andf(x)=10n0.15<x<030r0.5<x<0.8

1.2

08
06 |
04 r
02 r

Figure 44: Step function example

102

Patterns are generated and then normalised in the same way, whereas random f(x) values are

generated for the random analytical function class as illustrated in figure 45.

Random class

1.2

06
04 |
0.2
0 { L L L L 1 i |

0 01 02 03 04 05 06 07 08 09 1

Figure 45: Random analytical function example

4.4.3 Analytical Function Recognition Insolvable Using a Single
Layer ADFUNN

A single layer ADFUNN is trained with the generated 1400 patterns in order to test and
recognise the best matched analytical function from the empirical ADFUNN learned function

curves, such as learned ADFUNN for Iris dataset and natural language recognition.

Data are generated or normalised within the range of {0, 1} in the x-axis with precision of
0.01, hence the vector size is 101 for the input data. For the 7 typical analytical function
outputs, 1260 (90% of the total patterns) training patterns are randomly selected from the total

1400 patterns in each run.

In this single layer network, weights are initialised randomly between -1 and 1, and then
normalised. F point values are initialised to 0.5 so that the learned function curve can be
clearly and easily seen. The network is adapted using the general learning rule of ADFUNN
outlined in 3.4.6. However, the best generalisation ability is only 89.26% with 90% patterns

used for training as shown in table 8.

103

Table 8: Generalisation of ADFUNN on Analytical Function Recognition (1400 patterns, 30
Runs)

Generalisation Best (%) Average (%) Worst (%)
140 test patterns 89.26% 83.75% 78.25%
280 test patterns 78.92% 74.28% 69.64%

4.4.4 Complexity and Availability of the Task

As experimental results show table 8, 100% correct classification is not possible to be
achieved with these 1400 patterns using the single layer ADFUNN. The task of replacing
learned functions with matched analytical ones is an undeveloped field and challenging topic
in artificial neural network research. Identifying the closet analytical function to an empirical
one is a complex task. Firstly, not every empirical output belongs to an analytical function.

Secondly, the empirical output is sometimes a combination of two or more analytical ones.

12

-0.2

L— Iris Versicolor Learned Function I

Figure 46: Example of an empirical output that contains approximations to two analytical
~ functions

104

As illustrated in figure 46, the learned function of Iris Versicolor class contains two separate
parts of a learned curve. It intuitively looks like a combination of a sine and a pulse function
when the noise is ignored. Sometimes, the learned function can be more complicated than this
illustration. Therefore, it is rather difficult to classify an experimental learned function curve

to an analytical function.

However, the implementation of this function recognition task is significant because it helps

to interpret the hidden features of data and understand what happens inside the network.

4.4.5 MADFUNN on Analytical Function Recognition

As shown in Table 8, ADFUNN is not able to successfully classify the analytical function
recognition task due to the highly complex dataset and insufficient network structure. In this
case, to deploy ADFUNN with a layer of hidden neurons will enable the network to encode
more functions and information. This may be more efficient than other networks in terms of
the dual-modes of learning. By adding a hidden layer of neurons to ADFUNN, MADFUNN is
constructed by 101 input neurons, 30 hidden neurons and 7 output neurons to solve this
function recognition problem. Weights are initialised as small random numbers between [-0.1,
0.1] for output neurons and [-0.4, 0.4] for the hidden neurons limited by a weight limiter.
F-points are initialised to 0.5 in order to easily reveal the learned function range. In the same
way as ADFUNN, F-points are equally spaced on the function and the function value between
points is on the straight line joining them. A slope limiter is also applied to ensure that the
adaptation to weights will not be too large which would produce instability. The two learning
rates FL and WL are equal to 0.1 and 0.0001 respectively. The weights learning rate WL for

output neurons is chosen on the following basis:

The change of a weight is related to several factors: net input, corresponding output function’s
slope and error. When a slope limiter is applied, a relatively smaller WL (0.0001) can help to
balance any over-adaptation caused by these factors and thus produce a more stable weights
adaptation. In contrast, function learning rate FL just depends on the required output range [0,
1]. After testing, these training pattei‘ns’ >aw; have a known range of [-1, 1] for output

neurons and [-10, 10] for hidden neurons. It has a precision of 0.01, so 201 and 2001 points

105

are enough to encode all training patterns for output and hidden neurons respectively.
Different weights initialisation range and f-point ranges are being set for output and hidden
neurons because the maximum range of sums of weighted inputs to output and hidden

neurons are different.

4.4.6 Simulation Result

The network is trained using the general learning rule of MADFUNN. Within 50 epochs in
each run (experimented for 30 runs), 100% correct classification can be achieved. The
following function outputs can be obtained. Only the sigmoid function in figure 47, RBF
function in figure 48 and pulse function in figure 49 are listed here.

-
N

-

0.8 |

06 |

04 |

0.2 |

Sigmoid function class learned functior
o

b
N

s
N

-0.18 -0.09 0 0.09 0.18 0.27
Sum of welghted input

Figure 47: Sigmoid function recognition output using MADFUNN

1.2

1 5

04

02}

RBF class learned functior

o -

0.2 * * : -
-0.66 0.44 -0.33 0.22 -0.11 0 0.11

Sum of weighted input

Figure 48: RBF function recognition output using MADFUNN

106

1.2

08

04

02}

Pulse function class learned functior

0.2
.16 0 0.16 03 0.46

Sum of welghted input

Figure 49: Pulse function recognition output using MADFUNN
Apparently, the function outputs in figures 47 - 49 are very well regulated in the sense that the
learned region has very clear and sharp steps. For sigmoid function in figure 47, a
characteristic curve is learned. The curve range shown is the learned region, within which
adaptation has occurred. All the data are projected onto this range, and points outside the

range are not relevant in the final analysis.

In the region projected onto between [0.09, 0.23], the slope of the activation is nearly 0 and f
= 1, the sigmoid function is activated in this range. Beyond this region, the function slopes
drop down towards 0. In conjunction with the weights on the input to this neuron, it is able to

recognise input patterns that resemble Sigmoids.

Figure 50 illustrates is a typical form of learned hidden neuron function output. It is a kind of

cluttered and characterless curve between two straight lines, except that there are clear spikes.

% os

06

04

0.2

-10 -8 % -4 -2 0 2 4 6 8 10
Sum of weighted input

Figure 50: Typical form of a hidden neuron function output

107

4.4.7 Generalisation Ability

The analytical function recognition task is learned with 100% successful classification when
all patterns are used in training for 30 runs, and also with 1300 (the other 100 unseen patterns
are used for independent test) patterns, whilst 1100 and 900 patterns were insufficient to

achieve complete generalisation. Results are tabulated in table 9.

Table 9: Generalisation ability of MADFUNN on analytical function recognition

Average Worst
Generalisation Best (%)
(%) (%)
100 testing 1300 training 100.0 99.8 99.7
300 testing 1100 training 91.7 86.7 81.7
500 testing 900 training 82.2 79.6 77

4.4.8 Comparison of a Simple Back-Propagation with MADFUNN

A simple back-propagation network is also built to solve this analytical function recognition
task to compare with MADFUNN. This network propagates inputs forward in the usual way.
All outputs are computed using sigmoid function and it propagates the error backwards by
apportioning them to each neuron according to the amount of this error the nueron is
responsible for. Table 10 is a comparison table between a simple back-propagation network

and MADFUNN. Both of the two programs have been run for 30 simulations.

108

Table 10: Comparison of MADFUNN with a simple Back-Propagation(BP) neural network

Number of
Network Number of Number of % Correct
epochs each
Type training patterns hidden nodes Classification
run
1400 ~1000 30 63.3%
1400 ~1000 80 100.0%
Simple BP 1300 ~1000 80 91.0%
1100 ~1000 80 85.3%
1400 ~100 30 100.0%
MADFUNN 1300 ~100 30 100.0%
1100 ~100 30 91.3%

As seen from the comparison, this simple back-propagation exhibits poorer performance than
MADFUNN. With the same number (30) of hidden neurons, it can only achieve 63.3 %
correct classification with 1000 epochs. The best performance using back-propagation
network is with 80 hidden neurons, the correct classification can reach 100%. In contrast,
MADFUNN can solve this problem with 100% correct classification efficiently within 100

epochs using only 30 hidden neurons.

4.5 LETTER IMAGE RECOGNITION

The letter image recognition dataset [151] from UCI repository [152] provides a complex
pattern recognition problem which is to classify distorted raster images of English alphabetic
characters. This is an extremely complex dataset that even a 4 layer fully connected MLP of
16-70-50-26 topology [153] can obtain 98% correct classification with AdaBoost, but
required 20 computers to implement the system. In this thesis, a Multi-layer ADFUNNs
(MADFUNN:S) is applied and tested in this UCI distorted character recognition task [154]. A
system with two parts is constructed, letter feature grouping and letter classification. This type

of system is used to cope with the complexity of the wide diversity among the different fonts

109

and attributes. Here ‘grouping’ means letters are randomly categorised into different groups
initially and during the learning they will be regrouped according to the common group

features.

4.5.1 Letter Image Recognition Dataset

This complex task is that of letter recognition (in figure 51) as presented by D.J. Slate [151].
The 20,000 character images consisting of on average 770 examples per letter, are based on
20 different fonts and each letter within these 20 fonts is randomly distorted to prodﬁce a file
of 20,000 unique stimuli. Sixteen numerical attributes (statistical moments and edge counts)
were defined to capture specific characteristics of the letter images. Each of these attributes is
then scaled to fit into a range of integer values from 0 through 15. Each of the letter images is

thus transformed into a list of 16 such integer values

AAUA 44444 A
BBTsFBBOAD

e e Yecec Ol
glIRFF FFR
YK KRK KK
35835 S555 4
Xx UX xXXax X

Figure 51: Examples of the character images generated by “distorted” parameters

110

4.5.2 MADFUNN for Letter Image Recognition

As explained in 6.3.1 this letter image recognition task contains extremely complicated data.
In order to achieve the best classification performance, a group of optimised networks with
letter feature grouping and letter classification are developed and investigated. The letter
feature extraction is applied to the data prior to the letter classification stage, in order to
simplify the complexity of the data and thus produce more accurate generalisation results.
Due to the complex nature of this dataset, extracting general features of letters into groups
(e.g. the common feature between letters C, O, G and even Q) can help to reduce the
classification complexity, in terms of reduced number of patterns, features and classes that
need to be classified in each feature group and powerful learning from the combination of

networks for all groups.

The construction of these networks utilises the classic model of feature extraction followed by
classification [155] which effectively balances the classification load. Theoretically, the more
the feature group number is, the easier the letters will be classified in each group. On the other
hand, a large number of feature groups will also increase the complexity of feature extraction.
For this dataset, there are 26 letters to be classified. In order to find an optimal number of
feature groups and initial number of letters in each group of features, experiments are
performed with different number of groups (2, 13 and 26 which are also the factors of number
26). The results show that with 13 feature groups, the feature extraction can get the best
performance. Having said that, technically 15 groups probably will get better performance
than 13 groups. However 15 groups will result the unbalanced distribution of letters in each

group, for example it will have 11 groups having 2 letters and 4 groups having only 1 letter.

Therefore, to extract common features, letters are firstly categorised and grouped using a

supervised learning method using MADFUNN_1 (as in figure 52).

111

Group |
(MADFUNN_2)

Group 2
(MADFUNN 3)
Group 3
(MADFUNN 4)

Group 4
(MADFUNN 5)

Group 5
(MADFUNN_6)

Group 6

(MADFUNN_7)
Group 7
/ (MADFUNN_R)
Group 8
MADFUNN 9)
Group 9
(MADFUNNI10)
Group 10
(MADFUNNI 1)

Input Grouping

(MADFUNN_1)

Group 11
(MADFUNNI12)
Group 12
¥ (MADFUNNI3)
Group 13
(MADFUNN 1 4)

Figure 52 Networks applied to letter image recognition task
Letters are assigned and initialised to 13 groups followed by their original sequence as in the
English alphabet:
Groupl: AB
Group2: CD
Group3: EF
Group4: GH
Group5: 1J
Group6: K L
Group7: M N
Group8: O P
Group9: QR
Groupl0: ST
Groupll: UV
Groupl2: W X
Groupl3: Y Z

112

4.5.3 Letter Regrouping to Extract Features

MADFUNN 1 is used for classifying common features of these letters. It is a neural network
with 16 input neurons, 100 hidden neurons (experimentally optimised number of hidden
neurons) and 13 output neurons (13 feature groups). It is trained to learn the above 13
assigned groups. Patterns are passed to MADFUNN_1 where the network is then being
adapted using the MADFUNN’s general learning rule. A pattern will be passed to its
corresponding group (e.g. letter A goes to groupl, letter M goes to group7) after the feature
extraction. The stage of letter classification is performed in MADFUNNSs 2-14 and they are
adapted using the same general learning rule. In MADFUNNs 2-14, each has 16 input
neurons, 100 hidden neurons and 4 output neurons in stagel and 6 output neurons in stage2

(will be explained later). They are used to classify each individual letter.

In the beginning, the groups are assigned without any human judgment. When error rate
reduces to a steady state, the results are analysed by a confusion matrix which contains
information about actual and predicted classifications. The letters which have big confusions
will be regrouped according a predefined rule. The principle of this predefined rule is to
regroup a letter to the group where it will share common features with other letters. Ideally, if
all letters are assigned to the correct groups in the first step, all samples for each letter should
all be classified to the current group this letter is assigned to. However, because letters are
assigned to these 13 groups without any human judgement, different samples for one letter
may share different features with other letters. In the experiment, all letter samples are passed
to MADFUNN 1 to learn these 13 groups. The result will be drawn in a confusion matrix
with the distribution of samples in each group for each letter after learning. The network is
trained to learn these 13 groups with all samples. The number of misclassified samples in
other groups for each letter should suggest a potential feature sharing in these groups. In the
first round, the majority samples for each letter should be correctly classified to its initially
assigned group as being trained. However, the number of misclassified samples in one
particular group class may be relatively high, say greater than nearly half of the number of
samples in the expected class (empirically). That means this letter has a lot of common

features with letters in the misclassified group and it should be regrouped to that group.

113

However, to balance the number of letters in each group, the maximum number of letters
allowed to be grouped in each group should not exceed the twice of the average number of
letters in each group (e.g. if there are on average 2 letters assigned in each group, the
maximum number of letters allowed to be regrouped to one group should be, empirically say,

no more than 4).

4.5.4 Confusion Matrix for the Regrouping Analysis

Therefore, in order to identify letters which have been mis-grouped, a confusion matrix is
used to help find letters which have the highest confusion values in groups and regroup them.
In neural networks, a confusion matrix is used to evaluate the performance of a classifier
during supervised learning. It is a matrix plot of the predicted versus the actual classes of the
data. In the confusion matrix for regrouping the mis-grouped letters in MADFUNNI1, each
row of the matrix is set to represent the instances of a predicted group, while each column

represents the instances of an actual letter.

One benefit of this confusion matrix is that it is easy to see if the system is confusing letters in

grouping.

4.6.4.1.Rules of Letter Regrouping

After each round of learning, the letters with high confusion values in groups will be
regrouped according to the following rule. The regrouping method has two stages; in the first

stage the following rule is applied:

No(X): the number (N) of correctly grouped patterns in group X where letter w is currently
assigned to (for the following case, e.g. Np (1) = 479).

No(Y): the number (N) of mis-grouped patterns in group Y for letter @ (for the following case,
e.g. Np (2) =16, Ng (3) =81... ... Ng (13) =1).

N(Z): the number(N) of letters which have been assigned to group Z. e.g. if AB were assigned
to groupl then, N(1) = 2. '

Universal set U =G, (groupl), Gi(group2)... ... G2 (groupl2), Gy (groupl3).

114

The relative complement of group G in U is denoted by G°.

Ve any
Nieers number of letters = 26
Ngrowp: number of groups = 13
For example: lettter B is assigned to Group 1 initially. After one round of learning, the
correctly classified patterns in Group 1 for B is Np (1) = 479. And the mis-classified patterns
in Group 2 for B is N (2) = 16, in Group 3 is Np (3) = 81, in Group 4 is Ng (4) = 32, in
Group 5 is N (5) = 5, in Group 6 is Ng (6) = 10, in Group 7 is Ng (7) = 13, in Group 8 is Np
(8) = 18, in Group 9 is Ng (9) = 71, in Group 10 is Np (10) = 14, in Group 11 is Ng (11) = 3,
in Group 12 is Ng (12) = 23, and in Group 13 is Ng (13) = 2.

The relative component of group 2 is G, ¢ = {Gi, G3, Ga, Gs, Gs, Gy, Gz, Go, Gig, G11, G12,
Gi3}

Rules (R1):

RL1: if (No(VY)>1/2 Ny (X)) 7/ if the Number(N) of misclassified letter w patterns in

group Y is more than half of the Number(N) of correctly classified letter w patterns in group
X

{
R1.2: if Ne (Y) > No (VZ:ZC (XUY)C// if group Y contains the largest Number (N) of

letter w patterns among all misclassified groups.
&& R1.3: N(Y) < 2 - Nieter/Nerowp //AND if there are fewer than 2 - Nieger/Ngroup
different letters already assigned in group Y
{
This letter @ will be regrouped to group Y.
}
}

For each specific letter ®, after each round of learning, the rule checks the number of

correctly classified patterns and the number of misclassified patterns in a particular group in
which the number of misclassified patterns is significant (more than at least half of the
number of correctly classified patterns). The rule then confirms if this group contains the

largest number of patterns among all misclassified groups and the current number of letters

115

assigned to this group is no more than the maximum allowed number. If so, the letter will be

regrouped to the new group. Examples are given in the following sections.

Rulel.1 looks for a group which has a significant number of misclassified patterns. The
amount to judge for such group is set to “1/2 of the correctly classified patterns” in Rulel.1.
This amount does not have to be 1/2, and theoretically it can be any value less than 1.
However, this amount does require a significant number of patterns to help the learning. If the
value is too small, the rule will pass through too many qualified groups, hence too many
directions are given to the network. Whereas if the value is too big, a qualified groui) will be
difficult to find. “1/2” is an experimentally selected reasonable number of value being used in
this rule. Rule 1.3 checks whether the selected group (with large number of misclassified
patterns) has already contained too many letters. The average number assigned in each group
initially is 2. In order to classify letters with similar features together, the rule allows more
letters to be added into one group. However, to avoid too many letters from going into one
group, a maximum number of letters allowed in each group is set to 4 in this rule. It is

experimentally optimised and selected in Rule 1.3.

4.6.4.2. Letter Classification

Initially the groups are assigned without human judgment into thirteen groups. When error
rate becomes steady, the system generates the following confusion matrix in figure 53. Taking
letter H as an example, (Ny (7) = 161) > (1/2 « (Ny (4) = 295)) which satisfies R1.1. And Ny
(7) contains the largest number of mis-grouped H letter patterns which satisfies R1.2. (N(7)
=2) < (2 Nietter/Ngrowp) = (2 * 26/13=4) which satisfies R1.3. Thus letter H should be regrouped
to group 7 from group 4.

For each epoch in this stage, each input training pattern is randomly selected from the whole
20,000 patterns, e.g.: (2,8,3,5,1,8,13,0,6,6,10,8,0,8,0,8) is a letter T pattern. It should go to
group10. If correctly classified in PART1, pass this pattern to Group10.

In this round (as shown in figure 53), e.g., for letter S, the system predicted that group 3

mis-grouped 167 patterns which is than half the number of correctly classified patterns in

116

group 10 (323) where S is currently assigned. This satisfies RI.1. Group 3 is the largest

misclassified group and it has only 2 letters, which satisfies R1.2 and R1.3. Hence letter S is

regrouped from group 10 to group 7. For letter X: group13 mis-grouped 143 patterns which is

more than at least half number of correctly classified patterns in group12 (254) where X was

assigned, this satisfies RI.1. Group 13 is the largest mis-classified group and it has 2 letters

now, which satisfies R1.2 and R1.3. Letter X is therefore regrouped from group 12 to group

13.

Gl |G2 |63 |C4a |05 |06 [G7 | G8 | G9 | G0 | Gl | G612 | 613
A |692]8 3 11 |3 20 |12 |0 17 {10 |0 10 |3
B |479)16 |81 |32 |5 10 |13 |18 |71 |14 |3 23 |1
C |2 |485]57 |53 |4 |54 |3 19 |14 |8 17 {17 |3
D |56 |496 |37 |32 |14 |12 |23 |45 |13 |15 |5 56 |1
E |20 {21 | 40966 |3 62 |6 10 |54 [18 |0 45 | 54
F |20 |8 sogfe |9 5 |5 g7 |13 |50 |10 |27 |24
G |4 |23 |42 [415]1 20 |10 |36 | 124 9 42
H |24 |45 |46 | 2952 50 |161]| 46 |33 |5 9 16 |2
I |20 |3 16 |9 |611 |10 |0 11 |19 [14 |2 13 |27
I |11 |4 |8 |5 |624|3 |9 9 137 |4 1 21 |11
K |15 |9 60 | 121]2 39617 (3 |62 |3 7 39 |S
L |24 |3 6 |19 |5 632 | 2 0 19 |0 0 12 |9
M 1 13 |5 |5 7 |31 4 5 2 10 |0
N 15 |11 |14 |8 17 [662(19 |5 |5 7 13 |1
O |15 |55 {13 |100| 4 12 |6 40454 |13 [19 |58 |0O
P |11 [12 |61 |14 |5 2 666 |5 | 4 1 14 |6
Q31 |14 |15 |45 |1 3 2 |56 11 |2 3 |10
R |74 [11 |4 |25 |9 2 (290 |7 |s52]3 9 2
S |64 |9 167 |31 |18 |18 |0 20 |32 |323 39 |25
T|5 |5 54 |27 |7 6 |0 4 |616 |15 |13 |37
U |1 15 |10 |51 [14 |20 |34 20 |5 612 |20 |4
v]io |7 28 |10 |2 3 |0 23 117 |19 [616 |15 |14
wl|s |3 3 16 |0 1 50 |12 |9 1 6 646 | 0
X |72 [11 |84 |26 |6 103|106 |7 |49 |24 |38 254 | 143
Y |3 |3 12 | 7 1 4 |9 17 |20 |47 |102 |8 553
Z |21 |9 20 11 |6 11 |0 1 |31 |40 |3 11 | 561

Figure 53: Confusion matrix generated in the first round

Thus letters are regrouped as follows:

117

Group 1: AB
Group 2: CD
Group 3: EF S
Group 4: G
Group 5: 1J
Group 6: K L
Group : MN H
Group 8: O P
Group 9: QR
Group 10: T
Group 11: UV
Group 12: W
Group 13: YZX

MADFUNN 1 is then trained to learn the above rearranged groups again and at the same time

the other 13 MADFUNNS are adapted to classify letters. After another round of learning, the

groups are regrouped as follows according to the rule R1:

Groupl: A
Group2: C
Group3: EFSB
Group4: PR
Group5: 1J
Group6: K L
Group7: MN H
Group8: O D
Group9: Q G
Groupl0: T
Groupl1: UV
Groupl2: W
Groupl3: YZX

118

Following another round of learning (third round), the confusion matrix is generated in figure
54:

o1 |02 o3 |ca|os |os|o7 | o8 |09 |cio]|oit|c12] o3
Aless|lo |27 |2 |4 |10 |24]38 |3 [1 13 |5 |28
Blo [1 |ew|a |1t [3 [9 |16 |4 [1 0 1 12
clo |as|7 |4 |4 |51 |15 |20 |38 [2 |26 |1 3
D|2 |2 |13 [2 |19 |4 |s81]0 [o |3 |[o |23
E|lo |15 |ses|lo |8 |23 |6 |3 |29 [3 |6 1 97
Fl1 [9 [sa|72 [13 |6 [7 |10 |3 [18 |6 1 81
g1 |15 [wa]7 |o [37 [15 |35 |498](2 0 16
H 2 [3 [129]23 [0 |24 [382]93 |23 [0 |24 [0 |3
1 o |[o [so |10 61514 [2 |6 |5 |t 0 |[o |s2
3y {1 [2 Jas |8 |e6t9|o [15 |29 |2 |1 3 o |22
K|lo o |72 |27 |1 |4m7{3. |5 |15 |1 2% |0 63
L a4 [2 |53 |11 |6 |eos|2 |a |28 [0 |7 1 38
M|la [0 |22]2 |1 |4 {7451 [3 |1 3 |3 |3
N1 [5 {12]o |4 |8 |e6s7{30 |1 |1 12 |3 19
olo o Ja2s |17 o |7 |58 |sss|e2 |o 16 (6 |7
Plo [3 [|147]|546(13 |5 (3 |20 |13 |1 1 10 |32
olz o |99 |5 [12 |31 |7 |47 |seolo [7 |o 12
R|o [1 [151]a60|4 |46 |57 |18 |4 |1 0o |o 16
s |2 o |so05|10 |24 |25 |8 |72 |13 [3 s 2 144
Tlo |1 [57 (|3 |5 |15 9 |14 |615|9 |2 |60
ulo [3 [17]o |2 |18 (7 |27 |72 [0 [ea7 |1 12
vio [3 [s53 |1 {1 |72 |8 |4 9 |[697 [34 |35
wl1 o {21 |5 |o |6 |és |o |s |1 16 |625 |7
x |2 |o {11012 |9 |24 7 (13 |4 |8 |o |s04
v|o [o |4 |1 |6 |9 s |24 |18 |86 |1 590
zlo |6 [124]7 |5 1 (2 |1 2 |0 |s79

Figure 54: Confusion matrix generated in the third round

4.6.4.3. One-shot Multi-grouping and Rules

As shown in figure 54, no more regrouping is required based on the regrouping rules.
Essentially, this means that the groupings are now stable. Thus regrouping stage 2 with a
one-shot multi-grouping is introduced. After classification of the groups and letters, ideally,
all letters should have mostly been classified to their corresponding groups. But actually there

are still some misclassified patterns for each letter. So to follow stagel, a one-shot

119

multi-grouping is performed. This allows letters to reside in more than one group where
necessary. As theoretically, letters do share common features with other letters, especially

when patterns for each letter are generated with very distinct features.

Multi-grouping Rule (R2):

R2.1: if (No(VA) > 10% N (X)) && R1.2: (N(A) <3 ° Nietter/Neroup) // if the Number

(N) of misclassified letter @ patterns in group A is more than 10% of correctly classified

patterns in group(X) AND if the number of letters in group A are less than 6

{
This letter will be multi-grouped to both group A and X,
}

The maximum allowed number of letters in each group has been increased to 6 (3 -

Nietter/Ngroup) from 4 (2 * Nietter/Ngroup) in this stage. This is to increase the number of different
letters which can be catergorised into each group. Therefore the whole network’s output
number in PART2 will be increased from 4 to 6, as mentioned in the beginning of this section.
According to R2, letters are regrouped as follows:

Groupl: A

Group2: C;

Group3: BE; Fi P R; §;

Group4: F, P, Ry

Group5: 11J

Group6: C; KLR3

Group7: H1 MNO; Ry U,

Group8: D H; O,

Group9: G 03 Q

Groupl0: T

Groupl1l: U, VY,

Groupl2: W

Groupl3: E; F3$: X Y2 Z

120

4.5.5 Simulation Result

As described in figure 50, there are 14 MADFUNNS in this system. One is used to (io the
grouping and the others are for letter classification. The only difference between
MADFUNN 1 and the other MADFUNNS is the number of outputs. MADFUNN_1 has 13
and MADFUNN 2 — MADFUNN_13 has 4 in stage 1 and 6 in stage 2. They are all adapted
according to the general learning rule. For each MADFUNN, weights are initialised to small
random numbers which are between [-0.1, 0.1] for output neurons and [-0.4, 0.4] for hidden
neurons. F-points are initialised to 0.5. A slope limiter is also applied to weight adaptation in

order to ensure stability.

There are still two learning constants for each MADFUNN, WL and FL. WL depends on
input data range and the F-point interval (0.1 in this case), whereas FL depends solely on the
required output range. However, MADFUNN_1 has a more difficult (large amount of data to
learn and 13 classes to be classified) problem domain than the other MADFUNNS (only data
to letters assigned to each group and 4 to 6 classes to be classified). Therefore, a smaller FL is
required for MADFUNN'_1 than the others to enable sufficient learning. The learning rate WL
is equal to 0.00001 for both MADFUNN_1 and other MADFUNNs, FL is 0.005 for
MADFUNN 1 and 0.05 for other MADFUNNS. These training patterns’) aw have a known
range [-10, 10] for output neurons and [-50, 50] for hidden neurons. They have the precision
of 0.02 and 0.1 respectively, so 1001 points are sufficient to encode all training patterns for

output and hidden neurons.
The training takes about 500 epochs before the overall error rate reduces to a steady state.

Some representative classes’ learned functions are listed in figure 55, 56, 57 and 58 as an

illustration.

121

=
N

-
T

e
©
T

oS
»
-

e
N

Group3 learned function in MADFUNN_1
o
(-]

................ R\....

-1 0.6 0.2 0.2 0.6
Sum of weighted input

o

Figure 55: Group 3 learned function in MADFUNN_1

-
- N
T

e
©

o
a
T

Group7 learned function in MADFUNN_1
o [
N (-]

o

Sum of weighted input

Figure 56: Group 7 learned function in MADFUNN 1
In figure 55 (as well as in 56, 57, and 58), the raised and decreased curves mark the learned
region, within which adaptation has occurred. As showed in figure 55, the sum of weighted
inputs (3aw) in the range [-0.54, -0.34] for group 3 function in MADFUNN_1 activates a
group 3 response. Similarly in figure 56, there are two learned parts where the Y aw in the
range [-0.5, -0.38] and [0, 0.1] for group 7 function in MADFUNN_1 activate a group 7
output.

122

1.21

079

0.58

0.37

0.16

Letter | learned function in MADFUNN_6

005 b
0.3 -0.18 -0.06 0.06 0.18 0.3

Sum of weighted Input

Figure 57: Letter I learned function in MADFUNN_6

Letter M learned function in MADFUNN_8

0 01 02 03 04 05 08 07 08 0.9 1
Sum of weighted Input

Figure 58: Letter M learned function in MADFUNN_8

Figure 57 and 58 are learned function curves for letter classification. Figure 57 is for letter I in

group S(MADFUNN_6) and figure 58 is for letter M in group 7(MADFUNN_8).

4.5.6 Generalisation Ability

The overall generalisation is the accuracy of correctly classified letters which come from the
correctly classified groups, in other words, it equals generalisation of PART 1 (group

classification) times generalisation of PART _2 (letter classification).

123

The performance of this system is tested both by the independent testing data (pure test data)
and non-independent testing data (natural test data). Natural test data is all testing patterns
including any that already participated in training whereas for the pure test data they are never
used in training. With 4,000 pure test data, 87.60% generalisation can be achieved compared
to only 79.3% [156] generalisation using a simple back-propagation MLP. And 93.77%

accuracy can be achieved if testing with the 4,000 natural test data.

Table 11 Comparison of MADFUNN with MLP on the Letter Image Recognition

Generalisation MADFUNN | MLP
4000 test patterns | 87.6% 79.3%

4.5.7 Performance Comparison with other Methods Applied to this
Problem

Using a Holland-style adaptive classifier and a training set of 16,000 examples, the authors of
this dataset reported the classifier accuracy [154] is a little over 80% (actually, 80.8%, 81.6%

and 82.7% are the three best) based on the independent testing data (compared to 87.60%
correct classification by MADFUNN).

Philip and Joseph [157] introduced a Difference Boosting (DB) less intensive Bayesian
Classifier algorithm. Using the first 16,000 patterns from the dataset as the training set
resulted in 85.8% accuracy (compared to 87.60% by MADFUNN) on the independent test set
of remaining 4,000 patterns. They can get 94.1% accuracy (compared to 93.77% by
MADFUNN) on the entire 20,000 data. However, this can only be achieved by repeated
reordering of the training and test sets (this is to say, the training and test sets are selected).
Also, a second guess is allowed on the test set if the first prediction fails. This is not the case

with the MADFUNN tests.

124

Partridge and Yates [158] used a selection procedure known as pick heuristic with three
different measures: CFD (coincident-failing diversity measure), DFD (distinct-failure
diversity measure) and OD (overall diversity which is the geometric mean of CFD times DFD)
as three multi-version systems, pickOD, pickCFD and pickDFD. By exploiting distinct-failure
diversity in these three ways on the 4,000 test patterns, they achieved 91.6% generalisation
using pickCFD, 91.07% generalisation using pickDFD and 91.55% using pickOD. However,
implementation of these three multi-version systems is complex with each containing nine

networks. For instance, the pickDFD system was composed of 4 RBF networks and 5 MLPs.

With AdaBoost on the C4.5 algorithm [156}, 96.9% correct classification can be achieved on
the 4,000 test data. However computational power is required over 100 machines to generate
the tree structure [156]. And with a 4 layer fully connected MLP of 16-70-50-26 topology
[153], 98% correct classification with AdaBoost can be achieved but required 20 machines to

implement the system. In contrast, all the MADFUNN tests have been carried out on one PC.

4.6 CONCLUSION

In this chapter, a multi-layer ADFUNN is deployed in order to solve more complex nonlinear
models. The structure of this multi-layer ADFUNN is like the back-propagation algorithm but
with activation function adaptable. The activations are propagated from the input to the output
layer through a hidden layer, and the error between the actual value and the desired nominal
value in the output layer is propagated backwards in order to modify the weights and adjust

the activation functions.

The reason to introduce MADFUNN is to overcome the limitations that ADFUNN faces in
some large highly non-linear complex datasets to establish whether the hidden layer supports
better learning. Even so ADFUNN has exhibited extraordinary performance as compared to
other single layer and many multi-layer neural network methods by combing two modes of

learning into one network.

The structure of MADFUNN -- a multi-layer ADFUNN, is similar to the structure of a
Multi-layer perceptron, but with only one layer of hidden neurons. Just like ADFUNN, it

125

combines the mode of weight adaptation and the mode of function adaptation within one
network. The only difference between ADFUNN and MADFUNN is the adaptation of hidden
neurons because ADFUNN does not have a hidden layer. The adaptation in the hidden layer
of MADFUNN has the same objective to reduce output errors based on the Delta Rule, by
distributing the error of each output neuron to all the hidden neurons that is connected to it.
The error in a hidden neuron is therefore the weighted sum of all output errors which have
connections to it. Both weights and functions for hidden neurons are adapted to reduce these

CITors.

In this chapter, a dataset contains a large size of patterns, from the UCI repository is
investigated for MADFUNN. This letter image recognition task has 20,000 different
examples collected from a large number of human subjects. The performance of MADFUNN

is significant compared to other methods.

The experiment has not only shown that MADFUNN is very efficient in extracting common
features from letter examples, but also shown that MADFUNN is very powerful in classifying

each featured group of letters into their correct classes.

To achieve more accurate feature detecting result, a regrouping rule and a one-shot very last
regrouping rule are introduced based on the confusion matrix obtained during learning. The
aim of these rules is to categorise the letter to a group in which other letters all share similar

features. The categorised letters are then very easy to be classified.

126

CHAPTER 5 SNAP-DRIFT ADAPTIVE FUCTION
NEURAL NETWORK (SADFUNN)

5.1 INTRODUCTION

Another modal learning method Snap-drift was first introduced by Palmer-Brown and Lee
[159, 160, and 161] as: “an attempt to simplify and modify Adaptive Resonance Theory (ART)
learning in non-stationary environments where self-organisation needs to take account of
periodic or occasional performance feedback™[160, 161]. Since then, the snap-drift algorithm
has been applied in many different fields and applications and proved extremely valuable for
continuous on-line learning. The reason to combine Snap-drift with ADFUNN into a one
neural network echoes the classic model of feature extraction followed by classification [155].
Snap-drift is very effective at finding appropriate features that, for example, Learning Vector
Quantization (LVQ) [162] cannot find and ADFUNN is highly efficient single layer neural
network in pattern classification. The combination provides a general method suitable for

feature extraction followed by classification.

The snap-drift learning method utilises a mode of fast, minimalist learning (snap) and a mode
of slower drift learning. Snap is based on the logical intersection method from ART and is
implemented as a fuzzy AND; and drift is based on LVQ. It enhances the strengths of the two
modes of learning in a rapid form of adaptation that balances minimalist pattern intersection

learning with LVQ.

Snap-drift has been effectively applied on a range of databases [159, 160 and 161] and proved
to be a very fast unsupervised method suitable for real-time learning and non-stationary
environments where new patterns are continually presented to the network. It is also very
effective in extracting distinct featgres from the complex cursive-letter datasets. The

combining of one modal learning Snap-drift with another modal learning single layer

127

supervised ADFUNN (i.e. SADFUNN) offers effective and simple learning strategies and

therefore produce a powerful supervised method.

5.2 THE SNAP-DRIFT ALGORITHM

Snap-Drift system architecture is shown in figure 59. The first layer, a distributed snap-drift
neural network (ASDNN) learns to group the input patterns according to their features. In this
case, 10 F1 nodes whose weight prototypes best match the current input pattern, are used as
the input data to a selection snap-drift neural network (sSDNN) module for feature
classification. In the dSSDNN module, the output nodes with the highest net input are accepted
as winners (only 3 winners shown in figure 59). In the sSSDNN module, a ‘quality assurance
threshold’ is used. When the net input of a sSSDNN node is greater than the threshold, the
output node is accepted as strong enough to be the winner; otherwise another uncommitted
output node will be selected as the new winner and initialised with the current input pattern.

In general, the snap-drift algorithm can be described as: w = a(snap)+ o(drift), where & and

o are toggled between (0, 1) and (1, 0) at the end of each epoch. The overall effect is to

perform two complementary forms of feature discovery within one system.

/ AL

¢— Input

Pattern

/ %

F3 F2 Fl1
sSDNN dSDNN
(Feature Classification) (Feature Extraction)

Figure 59: Snap-Drift Neural Network (SDNN) architecture

5.2.1 Weights Initialisation

The weights are initialised to small random numbers in snap-drift in the beginning of

simulations. Top-down weights, w;; are initialised using a randomly selected input pattern data.

128

The bottom-up weights wj are initialised corresponding to the initial values of the top-down

weights w;; They are:

o= Wi0)
wil0= 77N

where N = number of input nodes

5.2.2 Distributed Snap-Drift Neural Network (dSDNN) for Feature
Extraction

The purpose of the distributed SDNN (dSDNN) module is to learn and detect key features,
which can then be used by the selection Snap-Drift Neural Network (sSDNN) to select an
appropriate output. When an input pattern is presented, the network attempts to categorise the
input pattern by comparing it against the stored knowledge of the existing distributed output
categories of the F2 layer in figure 59. dSDNN is based on the concept of distributed ART
(dART) [163], there is more than one winning node, in this case D (the number of winning
nodes) = 3. The three F2 nodes with the highest bottom-up activations are selected. Generally
speaking, the dSDNN learns to group input patterns according to their features using
snap-drift. The neurons whose weight prototypes result in them receiving the highest
activations are adapted. Weights are normalised weights so that in effect only the angle of
the weight vector is adapted, meaning that a recognised feature is based on a particular ratio

of values, rather than absolute values.

5.2.3 The Selection Snap-Drift Neural Network (sSDNN) for
Feature Classification

The winning neurons from dSDNN output act as input data to the selection SDNN (sSDNN)
module for the purpose of feature grouping and it is also subject to snap-drift learning [159].
The distributed output representations of category, produced by dSDNN acts as inputs to the
sSDNN. The architecture of the sSSDNN is the same as that described dSDNN but only one

final wining node with the highest activation is for learning and classification.

129

5.2.4 Snap-Drift Learning Rule

The learning process in SDNN is unlike the traditional error minimisation in MLPs and other
kinds of networks which optimise the classification by forcing the features in a way that
minimises errors, and does not consider the feature’s significace within the input data. In
contrast, SDNN toggles its learning mode to find a rich set of features in the data and uses

them to group the data into categories.

Each weight vector is bounded by snap and drift in which snapping gives the angle of the
minimum values and drifting gives the average angle of the patterns grouped under the neuron
[78, 79 and 80].

The following is a summary of the steps that occurs in SDNN ([159, 160 and 161]):
Step 1: Initialise parameters: (a =1, s = 0. a = 1 will invoke a snap learning whereas s = 1 will
invoke a drift learning)
Step 2: For every input pattern in every epoch (t)
Step 2.1: Find D (D is the number of) winning nodes at F2 with the largest net inputs
Step 2.2: Weights of dSDNN are adapted according to the alternative learning procedure:
(a, s) becomes Inverse (a, s) after every successive epoch, i.e. (0, 1)
Step 3: Process the winning nodes as an input pattern of sSSDNN
Step 3.1: Find the node at F3 with the largest net input
Step 3.2: Test the threshold condition:
if (the net input of the node > the threshold)
Weights of the sSSDNN output node adapted according to the alternative learning
procedure: (a, s) becomes inverse (a, s) after every successive epoch
else ~ An uncommitted sSDNN output node is selected and its weights are adapted
according to the alternative leaming procedure: (a, s) becomes Inverse (a, s) after

every successive epoch.

5.3 THE SYSTEM LEARNING

By combining an unsupervised distributed snap-drift neural network (dSDNN) for feature
detection and a supervised ADFUNN for classification, a powerful network SADFUNN is

130

constructed. SADFUNN combines two modal learning methods, with one plays the role in
feature extraction and the other plays the role in pattern recognition. SADFUNN is
particularly suitable for relatively complex tasks which contain high dimensional input data

many hidden features among the data.

5.3.1 Unsupervised Distributed Snap-Drift Neural Network
(dSDNN)

As described in 5.2.2, in SADFUNN, only the distributed snap-drift neural network (dSDNN)
is used for the key features detection. Simply speaking, the snap-drift weights adaptation can

be described as:

Snap-Drift = a (Fast_Learning_ART) + o (LVQ)[159]
The top-down weights are adapted using:

wil" =a (I 0V ws®) +o(ws®? + BT - wi*?))[159]

where wy; is the top-down weights vectors, I is the input vector and p is the drift speed
constant. When a = 1, a fast minimalist snap learning is invoked, otherwise, a drift learning is

activated.
WJi(new) =q (I N WJi(OId))

And when o = 1, wi™” = w;®? + B (I - w,{) which employs a clustering at 8 speed.
Whereas, the bottom-up learning is just a normalised version of the top-down learning.

wu(new) = wy; (new) / | Wi (new)|

where w,; ™"

is the top-down weights after learning. From the predefined number of winning
features (for example 10), 10 winning F2 nodes with the highest bottom-up activations are

selected by:

131

Tr=max{T;|j=1 2... M)}
These 10 F2 nodes will be passed to ADFUNN to perform pattern classification. In
SADFUNN, patterns are applied to ADFUNN only after snap-drift has converged. This is

because ADFUNN can only optimise once snap-drift has successfully extracted the features.

5.3.2 Supervised ADFUNN

Instead of using a selection snap-drift (sSSDNN) for pattern classification, ADFUNN is
applied to classify the feature categories. ADFUNN has the same number of dSDNN F2
nodes as the inputs. When patterns pass through the learned dSDNN to ADFUNN, only the
inputs corresponding to the dSDNN top winning nodes (say 10 for example) in ADFUNN are
activated and calculated. The inputs applied to these 10 input nodes in ADFUNN are the
weighted sums from the dSDNN top wining features. The input data for the inactivated inputs
are all set to zero. Weights and functions in ADFUNN are adapted in parallel to reduce the

output errors. The number of outputs is the number of classes of the dataset.

5.3.3 SADFUNN Architecture

By combining two modal learning methods: an unsupervised snap-drift and a supervised
ADFUNN together, SADFUNN is shown in figure 60. As input patterns are introduced at the
input layer F1, the distributed SDNN (dSDNN) learns to group them. The winning F2 nodes,
whose prototypes best match the current input pattern, are used as the input data to ADFUNN.
For each output class neuron in F3, there is a linear piecewise function. Functions and weights
are adapted in parallel using a gradient descent supervised learning algorithm. The output
error is obtained in each output neuron and the two nearest f-points on the piecewise
activation function are adapted separately, using a function modifying version of the delta rule
on a proximal-proportional basis, as described in section 3.4.6. Patterns are being applied to

ADFUNN after snap-drift has converged.

132

Output 1

A
'
Output Neuron Input
Activation Function < P tlt
' Winning e
! QOutput
v P

Outpmt n

v ADFUNN dSDNN

Figure 60: Snap-drift ADFUNN (SADFUNN) Neural Network architecture

5.4 SADFUNN ON OPTICAL AND PEN-BASED
HANDWRITTEN DIGIT RECOGNITION

5.4.1 Optical and Pen-Based Handwritten Digit Recognition
Datasets

These two complex datasets are those of handwritten digits presented by Alpaydin et.al [164,
165]. They are two different representations of the same handwritten digits. 250 samples per
person are collected from 44 people who filled in forms which were then randomly divided
into two sets: 30 forms for training and 14 forms by distinct writers for writer-independent

testing.

The optical one was generated by using the set of programs available from NIST [166] to
extract normalised bitmaps of handwritten digits from a pre-printed form. Its representation is
a static image of the pen tip movement that have occurred as in a normal scanned image. It is
an 8 x 8 matrix of elements with each element in the range of 0 to 16. Thus the 8 x 8 = 64
input dimensions are needed for this dataset. There are 3823 training patterns and 1797

writer-independent testing patterns in this dataset.

133

The Pen-Based dataset is a dynamic representation of the movement of the pen as the digit is
written on a pressure-sensitive tablet. It is generated by a WACOM PL-100V pressure
sensitive tablet with an integrated LCD display and a cordless stylus. The raw data consists of
integer values between 0 and 500 at the tablet input box resolution, and they are then
normalised to the range 0 to 100. This dataset’s representation has eight(x, y) coordinates as
shown in the spatial resampling image in dynamic representation in figure 61. The eight
coordinates are connected in sequence to form the dynamic digit representation. To represent
these eight coordinates, 8 (coordinates) - 2(for x and y) = 16 input dimensions are needed for
the dataset. There are 7494 training patterns and 3498 writer-independent testing patterns. The

diagram in figure 61 shows how these two datasets are generated from the raw data.

RAWDATA
./
Normalization
Spatial Converting
resampling

DYNAMIC Blurring
REPRESENTATION

STATIC
REPRESENTATION

Figure 61: The processing of converting the dynamic (pen-based) and static (optical)
representations (image adapted from [164, 165])

134

5.4.2 SADFUNN on the Two Datasets

In ADFUNN, the activation functions are adapted in parallel with the weights using a
function modifying version of delta rule. All the inputs are scaled from the range of {0, 16} to
{0, 1} for the optical dataset and from {0, 100} to {0, 1} for the pen-based dataset. Training
patterns are passed to the Snap-Drift network for feature extraction. After a couple of epochs
(feature extraction learned very fast in this case, although 7494 patterns need to be classified),
the learned dSDNN is then ready to supply ADFUNN for pattern recognition. The training
patterns are applied to dSDNN again but without learning. Results are calculated using the
learned dSDNN weights. Winning F2 nodes (whose prototypes best match the current input
pattern) are used to form the input data for ADFUNN.

In this single layer ADFUNN, the 10 digits are the output classes. Weights are initialised to 0.
F-points are initialised to 0.5 to help to discover the active learned function range Again
instead of normalisation, a weight limiter is applied to ensure that the adaptation to weights
will not be too large in order to ensure stability. The two learning rates FL and WL are equal
to 0.1 and 0.000001 respectively. The training patterns’ y'aw; has a known range of [-10, 10].
The precision of it is 0.01, so 2001 points are able to encode all training patterns for output.
The learning rates are picked in the following basis. WL mainly depends on input data range
and f-point range. Function is adapted between [-1, 1] and the f-point interval is 0.01, hence
the range of function slope is [-100, 100]. To cope with weights adaptation involving function
slope, and to enable a more acute leaming, a smaller learning rate 0.000001 is selected for
WL. Whereas FL just depends on the required output range [0, 1] and a normal learning rate

can be applied.

5.4.3 Simulation Result

After specifying the learning and network parameters, the network is ready to learn using the
general learning rule of ADFUNN outlined in 3.4.6. By varying the number of snap-drift
neurons (learned features) and winning neurons (detected features) in F2, within 200 epochs
in each run, about 99.53% correct classification for the optical dataset and 99.2% correct

classification for the pen-based dataset can be obtained for the training data. The output

135

neuron functions (as in figure 62 — 65) can be obtained (only a few of the learned functions

listed here):
1.2
|
o
k3]
5
[
=)
(a]
v
[]
£
©
@
|
_0.2 1 L 1 L 1 L 1 L " 1 1 N n i " 1 " 1 L 1 1 s
-0.12 0.08 0.28 0.48 0.68 0.88

Sum of Weighted Input(Optical Recognation of Handwritten Digits)

Figure 62: Digit 1 learned function in optical dataset using SADFUNN
1.2

1
0.8
0.6
0.4
0.2

0

-0‘2 i i 1 1 1 il 1
-0.28 -0.18 -0.08 0.02 0.12 0.22 0.32 0.42

Learned Digit 1 Function

Sum of Weighted Input{Pen-Based Recognation of Handwritten Digits)

Figure 63: Digit 1 learned function in pen-based dataset using SADFUNN

12

1t

08 |

06 |

04

Learned Digit 8 Function

-0.55 -0.4 -0.25 -0.1 0.05 0.2 0.35
Sum of Weighted Input(Optical Recognation of Handwritten Digits)

Figure 64: Digit 8 learned function in optical dataset using SADFUNN

136

12

1t
08 r
06 |
04 r
02 |

0
-0.19 -0.09 0.01 0.11 0.21
Sum of Weighted Input(Pen-Based Recognition of Handwritten Digits)

Learned Digit 8 Function

Figure 65: Digit 8 learned function in pen-based dataset using SADFUNN

5.4.4 Generalisation Ability

The learned network is tested using the two writer-independent testing data for both of the
optical recognition and pen-based recognition tasks. Performance varies with the varying of a
small number of parameters, including learning rates FL, WL, the number of snap-drift

neurons (features) and the number of winning features.

Based on the experimental results, a large total number of features has a positive effect on the
overall performance, however too many may limit generalisation if there is too much
memorisation. The performance charts in figure 66 and 67 show how the generalisation

changes along with the total number of features

100%

98% | o7 99% 98.88% 99.14% 99.53%
96% ¢)

0,
oas |96-03%
92% |

94.68% 94.99%

SADFUNN Performance on
Optical Dataset

90% 90.82%
88% 188.93% 90.15%
86% |
84% |
82% . : .
300 400 500 900 1000

Number of Total Features(with 10 Winning Features)

| —e— Training —s— Writer-Independent Testing |

Figure 66: The performance of training and testing for optical dataset using SADFUNN

137

100% '
98% B61% 9920%
96%

95.17%
94% —— 94.9% o471 94.60%
92% I 92

90%

: 90.17% 90.19%
88% Tpg.67%
86%
84%
82%

Based Dataset

SADFUNN Performance on Pen-

300 400 500 900 1000
Number of Total Features(with 10 Winning Features)

[—e— Training —m— Writer-Independent Testing|

Figure 67: The performance of training and testing for pen-based dataset using SADFUNN

Figure 68 to 70 are examples of some misclassified patterns from SADFUNN for optical

recognition case.

Digt |0 |1 |2 |3 |4 |5 |6 |7 |8 |9
Actual | 0.0]0000] 0110008 100]00]00] 038

output
Expected [0 |0 |0 |0 0 10 0 [0 |O 1

output

Figure 68: Digit 9 misclassified to digit 5

As can be seen from above figure, a digit 9 pattern was misclassified to digit 5 which has the
largest output. In this misclassified example, the upper part of digit 5 must have been almost
looped, making the 5 similar toa 9.

The following figure 69 and 70 are another two cases which illustrate similar confusions,

where digit 2 is misclassified to 8 and digit 3 is misclassified to 9.

Digit 0 11 2 3 4 |5 |6
Actual 00100|049(00|00]00|00]0.12[052]0.1

~1
0

output
Expected | 0 0 1 0 0 0 0 0 0 0

output

Figure 69: Digit 2 misclassified to digit 8

138

Digit o |1 [2 |3 |4
Actual | 00|00 00| 025|00|00]00]|01]0.0] 082

th
(=)
~X
-
o

output
Expected | 0 0 0 1 0 0 0 0 0 0

output

Figure 70: Digit 3 misclassified to digit 9

5.4.5 Related Work on Methods of Handwritten Cursive Letter
Recognition

Handwritten letter recognition task has a long history and always been a challenging problem
encountered in many real-world applications, such as postal mail sorting, bank cheque
recognition, and automatic data entry from business forms. A good computational solution
must have the ability to recognise complex cursive letter patterns and represent commonsense

knowledge of them.

Handwritten cursive letter recognition problem is made complex by the fact that the writing is
fundamentally ambiguous as the strokes in the letter are generally linked together. The
recognition techniques can be classified according to two criteria: the way preprocessing is

performed on the data and the type of the decision algorithm.

Artificial neural network can finely approximate complicated decision boundaries. It is one of
the most popular methods which has been applied to this area as far back as to the 1950’s.
Letter recognition was included in Frank Rosenblatt’s [167] perceptron. It was one of the first
computers based on the idea of a neural network, which is a simplified computational model
of neurons in a human brain. It was the first functioning neurocomputer, and it was able to
recognise a fixed-font character set. Since then, many neural network learning methods like
(Multi Layer Perceptron)MLP, k Nearest Neighbours (kNNs), RBF etc have been applied to

this area and the difficulty of handwriting recognition has been always underestimated.

Zhang and Li [168] propose an adaptive nonlinear auto-associative modelling (ANAM) based
on Locally Linear Embedding (LLE) for learning both intrinsic principal features of each
concept separately. The LLE algorithm is a modified k-NN developed to preserve local

139

neighbourhood relation of data in both the embedded Euclidean space and the intrinsic one. In
ANAMs, training samples are projected into the corresponding subspaces. Based on the
evaluation of recognition criteria on a validation set, the parameters of inverse mapping
matrices of each ANAM are obtained adaptively. The forward mapping matrices are
calculated based on a similar framework. 1.28% and 4.26% error rates can be obtained by
ANAM for optical recognition and pen-based recognition respectively. However, given its
complex calculation of forward mapping and inverse mapping matrices, many subspaces are

needed and also suboptimal auto-associate models need to be generated.

A feed forward neural network trained by Quickprop algorithm, which is a variation of error
back propagation is used for on-line recognition of handwritten alphanumeric characters by
Chakraborty [169]. Some distorted samples in numerals 0 to 9 are used as experiment which
are different from the dataset used in this section. Good generalisation capability of the

extracted feature set is reported.

SADFUNN is computationally much more efficient, simpler and achieves similar results. It

will be a straight forward process to apply it to many other domains.

5.4.6 Comparison with other Methods Applied to the Datasets

Using multistage classifiers involving a combination of a rule-learner MLP with an
exception-learner k-NN, Alpaydin et al. [83 and 84] reported 94.25% and 95.26% accuracy on
the writer-independent testing data for optical recognition and pen-based recognition datasets
respectively. Patterns are passed to a MLP with 20 hidden layers, and all the rejected patterns

are passed to a k-nearest neighbours with k = 9 for a second phase of learning.

For the optical recognition task, 23% of the writer-independent test data were not classified by
the MLP. They were passed to k-NN to give a second classification. In the single network
combination of a single layer Snap-Drift and a single layer ADFUNN (SADFUNN) only 5.01%
patterns were not classified on the testing data. SADFUNN proves to be a highly effective

network with fast feature extraction and pattern recognition ability. Similarly, with the

140

pen-based recognition task, 30% of the writer-independent test data are rejected by the MLP
whereas only 5.4% of these patterns were misclassified by SADFUNN.

The original intention of Alpaydin et al. [83 and 84] was to combine multiple representations
(dynamic pen-based recognition data and static optical recognition data) of a handwritten digit
to increase classification accuracy without increasing the system’s complexity and recognition
time. By combing the two datasets, they get 98.3% accuracy on the writer-independent testing
data. However, this combined dataset was not tested using SADFUNN as Apaydin et al. [83
and 84] have already proved the combination of multiple presentations work better than a single
one, because SADFUNN has already exhibited extremely high generalisation ability compared
to a MLP.

5.5 CONCLUSION

In this chapter, a single layer modal learning supervised adaptive activation function neural
network learning method is combined with another single layer modal learning unsupervised
distributed snap-drift neural network learning method, to perform pattern classification and

feature extraction respectively.

The combination of these two highly effective modal learning methods proved to be very
powerful in extracting and detecting features, and being accurate in classification. This was
shown for a complex large dataset. When compared with other work on the same data it was
shown that SADFUNN is rather effective in terms of: very fast training time (a couple of
epochs for dSSDNN to perform feature extraction and no more than 100 epochs for ADFUNN
to perform classification), higher performance and simpler network structure. In addition, for
extremely complex or special data, it is possible to combine the unsupervised Snap-Drift
learning method with the Multi-layer ADFUNN which integrates more neurons to the

network to learn the problem.

141

CHAPTER 6 ADAPTIVE FUNCTION NEURAL
NETWORKS FOR INTELLIGENT DATA ANALYSIS

6.1 INTRODUCTION

Intelligent data analysis with neural networks requires analysis of the weights to establish the
most important factors and generate simplified equations to explain network decisions [117].
It is to discover the information contained in the data and helps finding intelligent solutions
and new ways of looking at problems. There are software tools for intelligent data analysis
which combine statistical methods with neural networks and fuzzy technologies. However,
these tools mostly depend on the statistical methods to analyse weights and retrieve
information. The activation function itself is not used to inform the analysis. However, the
learned activation function curves in ADFUNN (MADFUNN and even SADFUNN) can
reveal much more useful information about the data, especially when considering and
analysing the learned weights and functions together. In this chapter, the learned weights and

functions from different applications of ADFUNN are analysed.

Some learned ADFUNN (as well as in MADFUNN and SADFUNN) functions contain
discontinuities (steps) in the activation function curves. In fact, many learning algorithms
have been investigated for neural networks with discontinuous activation functions [170, 171].
However, these works all employed pre-defined shapes of the discontinuous activation
functions to better suit the problems rather than let the network produce a meaningful curve.
In contrast, discontinuous activation functions produced by the learned ADFUNN contain
very important information about data, e.g. class boundaries. In order to remove curve noise,
analyse the useful information and yet keep the important discontinuous characteristic of the
learned activation functions, a self-sizing moving window is introduced. The moving window
is used to filter the learned function curve in order to keep useful sharp edges (discontinues)

and remove the unrelated information (noise). It is compared with some well known

142

smoothing methods, like simple moving average and the least square polynomial smoothing

method.

This section looks at intelligent data analysis for different datasets learned by ADFUNN, and
conducted by analysing the learned functions and weights together, as well as a
complementary self-sizing smoothing method introduced to assist with removing noise,

thereby helping to reveal important information from learned function curves.

6.2 LEARNED FUNCTIONS AND WEIGHTS ANALYSIS

6.2.1 Retrieve Important Inputs Variables and Features for Each
Class from the Learned Weights

Every neural network possesses knowledge which is contained in the values of the
connections weights. This is to say the effect that each input has in decision making is
dependent on the weight of that particular input. A larger learned weight for a specific input
neuron indicates this input neuron is more important than other input neurons to in predicting

a specific output neuron.

Because the learned weights contain very important information on the data. By analysing the
learned weights, the relationships between input and output data are revealed, identifying

which inputs are decisive for a particular output.

6.2.2 Retrieve Important Information for Each Class from the
Learned Functions and Weights

The piecewise linear activation functions in ADFUNN are adapted either towards 1(true) or 0
(false). The learned curve of the activation function for an output class will have an obvious
learned range, to indicate which parts of the learned curve will active this class and which
parts will not. Combining these leamgd functions with the learned weights for each class, it is

then very easy to generate some inequality rules as a learned solution for the data.

143

These inequality rules can be rather efficient and accurate if the input dimension is low (as the
example for Iris dataset in the following). For medium or high dimensional inputs, the
inequality rules can still be calculated easily and quickly by software programs. These rules
are generic and easy to apply. One generated rule for the Iris dataset is introduced in section

6.2.4. Iris dataset has a 4 inputs dimension and the rule can be easily applied.

6.2.3 Analysis Result for Iris Dataset

As described in section 3.5.2, the current statistical analysis for Iris dataset is limited to
plotting the dataset onto scatter plots to determine patterns in the data in relation to the Iris
classifications However, from the learned ADFUNN, Iris data can be interpreted by
considering weights and functions together. The following are examples of learned weights

and functions in ADFUNN for Iris dataset.

Iris Betosa : Iris Versicolor Iris Virginica :

Figure 71: One example of learned functions of ADFUNN on the Iris dataset

Sepal Width
pal Length

Petal Lepnoutm T

Iris Setosa Iris Versicolor : Iris Virginica !

Figure 72: The learned weights with corresponding learned ADFUNN functions in figure 71

The following is another example of the learned functions and weights.

s Setosa Iris Versicolor Ins Virginica

Figure 73: Another example of learned functions of ADFUNN on the Iris dataset

144

o0.5{3epal Length 05

Petal Width L Petal LRejal Width

Iris Setosa Iris Versicolor

Sepal Width
1910pal Lon‘g’lh

Petal Liretal Widih

Figure 74: The learned weights with corresponding learned ADFUNN functions in figure 73

By considering and analysing a number of examples like those above, a rule can be

summarised. To identify Iris Setosa, sepal length, sepal width, petal width and petal length, all

must be taken into account as they have similar weights. In contrast, Iris Versicolor and Iris

Virginica are most dependent on petal length and petal width.

6.2.4 Inequality Rule for Iris Dataset

It is obvious that in figures 71 to 74, different weight initialisations yield different solutions,

but they are all of the same form, and they all generalise across the Iris data from training set

to test set, with 100% accuracy. Close examination of the learned solution example for Iris

data as shown in figure 75, taking the weights and the functions from the network, yields the

following inequality rules for the three types of Iris.

Petal Width
Sepal Width

epal Length paial L ength

Iris Setosa :

Petal LEgIAl Width

Iris Versicolor :

Petal Width
Petal Length

Iris Virginica :

Figure 75: The learned activation functions and weights for Iris dataset using ADFUNN

145

SL: Sepal Length

SW: Sepal Width

PL: Petal Length

PW: Petal Width

Wsetosa = (-0.45, 0.31, -0.52, 0.6)
Woersicolor = (-0.09, -0.01, -0.63, -0.61)
Wyirginica = (-0.09, -0.32, 0.51, 0. 69)
a= (SL, SW, PL, PW)

Y AWsetosa = A * Wsetosa

Y AWyersicolor = @ * Wrersicolor

ZaW virginica = a *® Wyirginica

Taking any example (SL, SW, PL, PW) from Iris dataset, the inequality rule can be
summarised as follows, in which the three statements are equally conditioned without any
particular priority in order. If the > aw satisfies any statement, the corresponding class is

selected and the execution of the inequality rule can terminate

if (-2.21 < ¥.aWsetosa < -1.12)
then Iris-Setosa
if (-5.72 < TaWyersicotor < -3.41)
then Iris-Versicolor
if (2.18 < Y.aWvirginica < 4.59)
then Iris-Virginica
The above inequality rule is summarised using neural network learning algorithm. Expressing
the inequialities in terms of weights * input variables:
if (-2.21 < (-0.45*SL + 0.31 *SW _-0.52*PL + 0.6*PW)< -1.12)
then Iris-Setosa
if (-5.72 < (-0.09*SL - 0.01 *SW - 0.63*PL - 0.61*PW) < -3.41)
then Iris-Versicolor
if (2.18 < (-0.09*SL - 0.32%SW + 0.51*PL + 0.69*PW) < 4.59)

then Iris-Virginica

146

This inequality rule is much more efficient and accurate than the rule summarised statistically
in section 3.5.2.1. The above rule can produce 100% accurate result for Iris dataset; whereas

the statistical rule in [134] produces 10% misclassified patterns.

6.2.5 Analysis Result for Natural Language Phrase Recognition

From the learned ADFUNN on the natural language phrase recognition task as described in
Section 3.5.3, locating the strongest 100 or so weights for sentence(S), verb phrase (VP) and
noun phrase (NP), it is possible to see some inputs performed more important than others for
that output and only these input tags will activate that output neuron. Therefore by looking at
the weights it is possible to tell which input tags are most important for each neuron (See
figure 77 for sentence, figure 78 for verb phrase and figure 79 for noun phrase). The tags
summarised for each output neuron are not all of those that can activate this neuron but they
have a higher chance of triggering a specific class because of stronger weights compared to

other input tags.

For example, several combinations of four phrasal tags, will have a higher chance of
producing a sentence phrase according to figure 77. For verb phrase (figure 78), a
combination of four look-back tags, four phrasal tags and one look-ahead tag, will produce a

verb phrase. There are many examples can be used to test the analysing result.
Take a combination input tags of NP VP PP from figure 77, the sentence example in figure 76

NP VP PP

»
»
b

can be produced:

John asked Mike’s brother abouthis missing cat

Figure 76: A sentence which is composed by NP + VP _+ PP
Dominant tags summarised are according to the experimental results for sentence, verb phrase

and noun phrase. Although only 4 phrasal tags positions are dominant for these three output

147

phrases, there are in total 41 output classes and tags in other columns are important for other

class below sentence such as ‘phrase beginning with wh-word’, or ‘finite clause’. The

proposed 15 input symbols: 4 look-back tags, 10 phrasal tags and 1 look-ahead tag in [145]

are experimentally picked for the best performance.

NP | NP | NP | NP

RP [RP | RP | RP

PP | PP | PP | PP
Rq P | Ti
E Ti
cc

Figure 77: Input tags for sentence

112314]5]|6 9101 f12{13114 (15
NP|VP|NP|NP| V]|V |V |V N
Na Na |Na|VP|VP|VP|VP v
RP | RP P
CC | vpP JP
cc cc
Rq
E
Figure 78: Input tags for verb phrase
1 21314567 8|9 1011121314115
NP|NP|NP|VP|N|N|N|N
vP | VP | VP|RP | NP | NP | NP [NP v
RP{RP{Rq| P [V |Po| P |Po
P INa|Na| V Po cc
N|N|N|[CC
cclcc|cc
Vi | E
Vi

Figure 79: Input tags for noun phrase

148

The tags in figure 77 to figure 79 are:
NP: noun phrase
VP: verb phrase
RP: adverbial phrase
JP: adjectival phrase
PP: prepositional phrase
Rq: an adverb phrase beginning with a wh-word, e.g. "How do you feel'
Ti: to-infinitive clause
E: label used for existential there' i.e. “There' is nothing wrong
CC: conjunction e.g. AND, AND/OR, BUT, OR, YET
Na: a noun phrase marked as subject of verb
Po: a prepositional phrase beginning with the preposition of
N: nouns
V: verbs
P: prepositions
ATL singular or plural article (THE, NO)
NN: singular common noun

6.3 WELL-REGULATED LEARNED FUNCTIONS WITH NOISE

Along the lines of previous chapters, it is apparent that the learned ADFUNN (MADFUNN
and SADFUNN) function curves are very well-regulated and characteristic curves. It has very

clear edges for the learned range and also obvious steps within the learned range.

M

Step

O

Iris Versicolor ;

Figure 80: Easily identified learned range

Figure 80 is from learned Iris versicolor function which is initialised randomly between 0 and

1 (for better contrast result to highlight the active learning range). It can be clearly seen that

149

the learned range of function is very easily to be revealed among the random numbers (The
learned range is the regulated curve within the two dashed lines). Also the steps are very clear

which indicate the start/end point from/to which an iris versicolor class is activated.

6.4 LEARNED FUNCTION CURVE SMOOTHING

From a given set of analytical function prototypes, ADFUNN and MADFUNN have been
developed to determine which analytical function matches best a given smoothed curve from
the learned function output in chapter five. The number of f-points mostly depends on the
complexity of the dataset. If a large number of f-points are needed for a complex dataset,
some points may have never been adapted even though they are within the active range of

adaptation; in this case they are in effect noise.

For a better analytical function classification result, the learned function curves are smoothed.
Two mathematical methods the simple moving average method, and, least-squares
polynomial smoothing are applied, as well as a more efficient method self-sizing moving

window is introduced.

6.4.1 Function Range Transaction using Min-Max Normalisation

The learned functions’ active ranges are different for each neuron if f-points or weights are
initialized randomly. To transform the functions into a desired range, the method of min-max
normalisation is ued to stretch or contract the range. The transformation formula is:

v'(i) = [(v(i) —mind) / (maxA - mind)] * (new_maxA4 — new_minA) + new_minA,

where [mind, maxA] is the active range of the learned function and [new_mind, new_maxA]

is the desired range. In this thesis, active range is transformed into {0, I 3.

6.4.2 Simple Moving Average Smoothing

A simple moving average is formed by computing the average (mean) of a set of points over a
specified window. The calculation is repeated for each point. The averages are then joined to

form a smooth curve. The formula for a simple moving average is:

7;= ity t . + Y} /1

150

Where y is the variable, ¢ is the current point, and » (»=35 in this case) is the window width for
the average. For instance, if there are 100 points, the window width is 5, as the calculation

continues, the newest point is added and the oldest point is subtracted.

6.4.3 Least-squares Polynomial Smoothing

The least squares curve fitting technique is the simplest and most commonly applied form of
linear regression. The technique is to find the best fitting curve to a given set of points by
minimizing the sum of the squares of the residuals (offsets) of the points from the curve. By
implementing the least-squares linear regression analysis, it is easy to fit any polynomial of m
degree Y = ap +aix + ... +ax" to experimental data (x;, 1), (x2, y3)..., (%n ¥o), (provided that »
> m+1) so that the sum of squared residuals S is minimized:

S=Y [yi-yl’ = §1[J’i — (@ + api+... +ax™)]?

i+l

After getting the partial derivatives of S with respect to ay, aj, .., a, and equating these
derivatives to zero, the following system of m-equations and m-unknowns (ap, aj, .., ap) is

defined: spap + sia; + ... + Smam =1to, s SmAp + Sma1a; + ... F SomQm = b

where:

n n
k
SE=2. xt, =Y yxi
i+1 i+l
Thus it is easy to calculate the set of coefficients (ay, a, ..., an) which gives the resulting

smoothed curve.

6.4.4 A New Self-Sizing Moving Window

This new method is introduced here because the two smoothing methods above both smooth
the curves without keeping the original features of the function. Step changes in the curve are
removed. Therefore this work has derived a novel approach to function smoothing, that
preserves steps changes (discontinuities) whilst smoothing between them. This is achieved by
means of a self-sizing smoothing window. The window expands over regions that do not
contain large variations; and contracts in order to zoom in and jump over on regions that do

contain large variations.

151

6.4.4.1 Deviation within the Window

A self-sizing moving window is formed by calculating the average deviation (6w) of all the
points in the window, then adapting the size of it and moving to the next point. Small
deviation indicates that there are no large steps in the window so it can be smoothed safely
and the size of the window can be enlarged. In contrast, large deviation shows that there are
big steps, the window size must be reduced and a standard deviation recalculated. If the large

deviation still exists, the size of the window is reduced again (no smoothing).

Deviation is calculated using the following formula:

4= /Z (x=%)°
- n-1
where ¢, indicates the standard deviation, x is each point on the curve, and x-bar, denoted by

the sign x is the average of the point set of the curve. And n is simply the number of values in

the data sample

6.4.4.2 Self-sizing moving window smoothing method

T: the threshold to set level of smoothing. T=0.2 in this case.
k: the level of resize. k=1.2 in this case.
Ow: the standard deviation in current window
S, the size of the window
X: a set of f points within the window
x: the mid point of current window
Np: the total number of f points on curve
Spin: the minimum size of the window, S,;,= 3 which is the minimum size a moving window
can be reduced
for (inti=0.5¢8, i<Np itt)
{
//smooth the mid point in the wiﬁdow at one time

while (6w >T) && (Sw >= Smin))

152

// reduce the size of the window

Sw=8u/k
/
l_.f (Sw > Smin)
{
x = avg(X),
//paint this new calculated mid point on curve
paint(x);
/
// enlarge the size of the window
Sw =k Sw

}

This smoothing method loops and smoothes through all the f-points on the curve, starting
from the middle point of the initial window size. If the standard deviation in current window
has exceeded the threshold and the current windows size is bigger than 3, it means there are
sharp steps in the current window and the window size must be reduced. When the window

size cannot be reduced any more, the big step will be kept and the window moves to the next

point.

6.4.5 Smoothing Experiments

After transforming the active range the following curves below can be obtained. Figure 81 is
the original active range transformed from the learned verb phrase function. Figure 82 is the

smoothed curve using the simple moving average and figure 83 is the best fitting 8 degree

polynomial function using the least-squares method.

It is apparent that after smoothing by the simple moving average (result in figure 82); much of
noisy data has been removed. Similarly, the polynomial smoothing removes more noise
(figure 83), but it requires human intervention to choose the degree of the polynomial

function for the best fitting curve. The best degree in this case is 8.

153

Verb phrase learned function

Sum of weighted input

Figure 81: Original learned function of verb phrase

Smoothed Curve using SMA

Figure 82: Smoothed curve of verb phrase learned function

Polyﬁomial function

Figure 83: The best fitting 8 degree polynomial function using the least-squares method

In contrast, by using the self-sizing moving window to smooth a learned sentence function

(with noise) in phrase recognition case, the important features of the original sentence (figure

154

84) learned function has been kept and the noise has been removed (figure 85). However, the

features can not be kept by using the simple moving average method (figure.86).

Sentence phrase learned function(f-point:
randomly initialized)

o o
© [
T

o
rS

e
[

1.2

o
(-]

e
o

o
>

Smoothed curve using self-sizing window
o
RN

i 'y 1Y
0 ‘ .;M.Lllu v, Jku;.ul i

|
|

-3.415 -2.665 -1.915 -1.165 0.415 0.336

Sum of weighted input

Figure 84: Normal learned sentence function

-
T

o

-3.415 -2.885 -1.815 -1.1685 -0.415 0.335
Sum of welighted input

Figure 85: Smoothed curve of learned sentence function using this self-sizing window

155

1.2

08 |

06 |

04

Smoothed curve using SMA

02 |

-3.415 -2.665 -1.915 -1.165 -0.415 0.335
Sum of welghted input

Figure 86: Smoothed curve of the learned sentence function using simple moving average

More examples have been tested and results show that the self-sizing window can get better
smoothing results than the simple moving average in terms of removing noise whilst keeping

the useful information. Figure 87 is a function curve learned for pulse function class in the

analytical function recognition case using ADFUNN.

1.2

1k

0.8 |

0.6 |

04 |

02 |

Pulse function class learned
activation function

Sum of weighted input

Figure 87: Pulse function class learned function curve

The smoothed curve in figure 88 is the result by applying simple moving average method on

the above learned function curve.

156

1
09 |
0.8 |
0.7 |
0.6 |
05
04 |
03 |
02 |
01 |

0

Smoothed curve using SMA

4 3 2 4 0 1 2 3 4 5 6 7 8

Sum of weighted input
Figure 88: Smoothed function curve using simple moving average

The above curve is smoothed, however it is obvious that the important information of the
learned function, like the discontinuities, have also been removed. In contrast, the smoothed
curve in figure 89 using the self-sizing moving window method can not only get rid of noise,
but also it can keep the sharp steps, which may indicate the starting/stopping of a learning

range in learned ADFUNN function, or a learned feature from the data/problem.

1.2

1 L

o

£

N

9

]

Q

n

4 08 |

-Eg

:"506_

g

£ 3

o 0.4

®

g oz

<]

E

n 0 — /o

» . %
";5?':\,-3\‘93’6%&\9‘»}5} LIS I

Sum of weighted input

Figure 89: Smoothed function curve using self-sizing window

157

Figure 90 compares the difference between the original learned ADFUNN curve for analytical
function recognition task pulse function class and the smoothed curves. The dark blue curve is
the learned ADFUNN curve for pulse function class, cyan curve is the smoothed curve using
simple moving average and the yellow curve is the smoothed curve using self-sizing moving
window. If substituting the smoothed curves to all learned classes, 82.3% generalisation can
be obtained from the smoothed curves using simple moving average and 85.1% generalisation
is achieved from smoothed curves using our self-sizing window smoothing method, compared

to 85.7% generalisation produced by the original learned function curves.

1.2

1
0.8 [

0.6 H,

04

\

4 3 -2 1 0 1 2 3 4 5 6 7 8

Figure 90: Learned function with smoothed curves

The following example of sentence class illustrates a very good example of the advantages of
the self-sizing window. After transforming the active range from the learned sentence class
the original learned sentence curve is shown at the top in figure 91. The curve below it in the
same figure are the smoothed curve using the new proposed self-sizing window; the smoothed

curve using the simple moving average; and, polynomial function by the least-squares

method.

It is apparent that after smoothing, a large amount of noisy data have been removed. Most
importantly, the example illustrates a very obvious advantage of self-sizing smoothing
method compare to other smoothing methods. The self-sizing window keeps discontinuities as

well as removing noise.

158

Original

LN ¥ T N [T

Self-Sizing Window.

WA

Simple Moving Average
‘\/’/L_

Least-square Polynomial

Figure 91: Comparison of three smoothing methods on phrase recognition sentence class

6.4.6 Smoothed C urvés Performance

How do these smoothed curves work when substituted back into the neural network? The
simple moving average method causes less distortion than the least square polynomial
smoothing. For the natural language processing case, experiments were performed to
substitute simplified curves smoothed by the simple moving average method for empirical
ones for all of the 41 constituent tag output classes. The simplified curves work well, the
correct classification is still 100% for all patterns used for training (254/254*100% = 100%)
e.g. for the verb phrase neuron as shown in figure 92 and 93. Figure 92 is the original learned

verb function and figure 93 is the smoothed one.

159

|—Verb phrase leared function |

Figure 92: Verb phrase learned function

~—Smoothed curve using SMA]

Figure 93: Substituting this smoothed curve to the verb phrase neuron

However, the best approach is the self-sizing moving window smoothing method, because it
keeps the important features of the original learned functions and increases the interpretability
of the functions. For example, when applied to the XOR adapted function, it preserves the
discontinuities, and equally it preserves the smoothing of an underlying sinusoid whilst
removing noise. Four phrase recognition function output curves are replaced with the

self-sizing moving window smoothed curves and the average correct classification is reduced,

but only very slightly from 100% to 98.7%.

The diagram in figure 94 shows a very obvious advantage of self-sizing smoothing method
compare to other smoothing methods. The self-sizing window keeps discontinuities as well as

removing noise. In this case, the original learned function has a small discontinuities near x =

160

0 around 0.5. However, only the self-sizing window method kept this discontinuity, SMP and

least-square polynomial smoothing methods both ignored and smoothed this part of the curve.

i — Sentence Class Learned Function B
; — Self-Sizing Window Smoothed

| SMP Smoothed

\ ~ Least-Square Polynomial Best Fitted

=

Figure 94: Comparison of three smoothing methods on phrase recognition sentence class

Figure 95 takes a closer look of this part of the graph. The input pattern presenting to the
range between {-0.235, -0.135} expect output above 0.5 which is the class threshold; a result
above 0.5 indicates a winning node as seen from the original learned function. However, only
the smoothed curve using self-sizing window can give a similar result, whereas in contrast,

the other two smoothing curves all give output below 0.5.

161

05

0

-0.235

-0.185

-0.135

-0.085 -0.035

——Sentence Class Learned Function
—Self-Sizing Window Smooth

SMP Smooth

-Least Square Polynomial Best Fitted

Figure 95: Closer look of comparison of three smoothing methods

Tabel 11 is a comparison table to substitute the smoothed curves to different learned function

curves. The self-sizing window smoothed curves work perfectly when substitute into the

learned network, the performance is much better than with the simple moving average

smoothed curves.

Table 12: Performances comparison between smoothed curves and original curves

Smoothed using

Smoothed using

Original function

SMA self-sizing window curves

XOR 86.7 % 100 % 100 %

Iris Dataset 94.2 % 99.1 % 100 %

Phrase Recognition 93.6 % 98.7 % 100 %
Analytical Function Recognition 82.3 % 85.1 % 91.6 %

6.5 CONCLUSION

This section firstly looks at intelligent data analysis for different datasets learned by

ADFUNN as examples (datasets learned by MADFUNN or SADFUNN can also be used for

experiments).

162

Using traditional intelligent data analysis method to analyse the learned weights, important
input factors can be identified and established for different classes. More significantly, this
Chapter introduces an accurate and efficient inequality rule can be produced by analysing the
learned weights and functions. This type of rules can obtain, e.g. for Irish Dataset, 100%
accuracy compare to a 90% accuracy statistical rule. As the best known pattern recognition
dataset, the Iris Dataset was created in 1936 by Mr Fisher [133]. This type of inequality rules

are by far the most efficient and accurate method in the research literature.

To further support the intelligent data analysis, a self-sizing moving window is proposed in
this chapter. It is introduced to smooth learned functions produced from ADFUNN (or
MAD|FUNN or SADFUNN). The self-sizing moving window expends and smoothes over
points that do not contain large deviations, zooms in and jumps over on points that do contain
large deviations. In this way, the class active boundaries are kept and noise data are removed.
Other smoothing method like the simple moving average and the least square polynomial

smoothing method will smooth both of the active boundaries and noise data.

163

CHAPTER 7 CONCLUSIONS

7.1 INTRODUCTION

In this Chapter, a general conclusion of the whole thesis is summarised in section 7.2. It
reviews the methodologies, experimental datasets, data analysis used in this thesis. The

performance results from experiments by applying the methodologies are also concluded.

It then discusses and summarises the key findings of this project and main contributions to
knowledge of this research in 7.3. At the end of this chapter, recent projects are reviewed and
future projects are proposed. Examples are: a proposed unsupervised ADFUNN (or
MADFUNN or SADFUNN) development, the application of ADFUNN (or MADFUNN or
SADFUNN) on Enabled Self Procurement (ESP) project to help people build sustainable

communities, a proposed handwritten electronic signature authentication project; and, an

assortment of collected data projects.

7.2 SUMMARY

The research in this thesis investigated a novel adaptive function neural network (ADFUNN)
and its two forms of extensions MADFUNN and SADFUNN. ADFUNN is based on a linear
piecewise artificial neuron activation function which is modified by a gradient descent
supervised learning algorithm. Its function adaptation Af process is carried out in parallel with
the traditional weights adaptation Aw process. Several linearly inseparable problems, as
proved in Chapter 3, like XOR, Iris dataset, natural language processing phrase recognition
task, were learnt rapidly and without a single hidden neuron with ADFUNN,

To support more complex datasets and to achieve more efficient generalisation abilities, a
multi-layer ADFUNN (MADFUNN) was introduced in Chapter 4. MADFUNN was applied
to two complex datasets, the letter image recognition tasks dataset and analytical function

recognition dataset. Experimental results showed that MADFUNN exhibited higher

164

generalisation ability than most of the other methods which have been applied on the letter
image task and required less complexity in the system implementation. On the analytical
function recognition task, the analytical functions which MADFUNN has classified the
smoothed learned function curves to, work very well if substituted back to its corresponding
output neuron. For a more accurate and efficient smoothing result, a self-sizing moving
window was introduced in Chapter 6. It smoothes the learned function curves yet keeps the

important information on step changes/discontinuities.

In Chapter 5, an existing unsupervised Snap-Drift was combined with a supervised ADFUNN
acting on the activation functions, to perform classification. Snap-Drift is very effective in
extracting distinct features from the complex cursive-letter datasets. Experiments show only a
couple of epochs are enough for the feature classification. It helps the supervised single layer
ADFUNN to solve these linearly inseparable problems rapidly without any hidden neuron.
From the experimental results, it is clear that when combined within one network
(SADFUNN), the two methods exhibited higher generalisation abilities than MLPs even
though the learning process is simpler. An additional benefit of ADFUNN is that the learned
functions can support intelligent data analysis. In Chapter 6 the learned weights and functions
from different applications of ADFUNN were analysed and some important information

revealed.

This chapter presents some specific conclusions from the discussion and summary of the
earlier chapters, but mainly on the novelty of the whole research. The powerful performance
and simple structure of ADFUNN can be extended and combined with other methods to
create new form of modal learning. Furthermore; the unsupervised learning method can be

deployed on ADFUNN to perform a fast and simple unsupervised learning. Therefore, further

work of this research is highly recommended.

165

7.3 DISCUSSIONS

One of the main novelties of this research is the new Modal Learning method introduced in
this thesis. It adapts the activation function inside each neuron in parallel with the traditional

weights adaptation between neurons in a single layer neural network structure.

To outline the key findings of this research, the core new approach introduced in this project
is ADFUNN which has proven to be able to overcome linear inseparability limitations in a
single layer network. It successfully solved non-linear problems in a single layer structure in
which no such method has ever been able to overcome in neural computing history. More
significantly, ADFUNN has been proved to be more powerful than related works
(computationally more than 2,000 times powerful than the closest work), yet faster and
simpler (a great contribution to speed up learning process and simplify hardware

requirements).

Another successful finding of this project is a Multi-layer extension of ADFUNN,
MADFUNN which was introduced for extremely large and complex datasets. It exhibited

highly efficiency comparing to related works (computationally much more powerful and

simpler than other works).

SADFUNN is a feature extraction version of ADFUNN combined with an unsupervised
Snap-Drift method. SADFUNN was introduced for extremely complex datasets with large
dimensional data. It has also proven to be able to obtain similar results comparing to related

works but with significantly simplified network structure and faster speed.

By utilising the novel learned functions and traditional learned weights from ADFUNN (or
MADFUNN or SADFUNN), this research can also produce highly accurate and efficient
inequality rules to perform intelligent data analysis. The rules offer a more intelligent way to
analyse data. Moreover, no such accurate or efficient rules have ever been invented in similar

research literature.

166

Another significant contribution of this research is the introduction of a self-sizing smoothing
moving window which was introduced to assist with data analysis. To the auther’s best
knowledge, no such function curve smoothing method has been reported or published, which
is able to smooth function curves whereas preserving useful information of the data at the

same time.

7.4 FUTURE WORK

7.4.1 Unsupervised ADFUNN

As unsupervised learning involves no target values, by changing the rules of function learning,

it is possible for ADFUNN to observe only the features rather than to describe how the data

are organised or clustered.

The idea is basically to find the tendencies of adaptation directions of adaptive functions and
make these tendencies more obvious and clear. As the functions are adapted either towards 0
or 1 and are initialised randomly between middle point 0.5, if the distance between maximum
output and the middle point is bigger than the distance between the middle point and the
minimum output, the maximum output neuron shows a tendency to go up and therefore it is
adapted upwards, whereas other neurons are adapted downwards. Otherwise, the minimum

neuron is adapted downwards and other neurons are adapted upwards.

A variety of parameters can affect the performance of this proposed unsupervised single layer
adaptive function neural network. For instance: the number of output nodes; the number and
initialisation range of f-points; initialisation of weights; learning rates for both functions and
weights. Further work based on these ideas are worthy of investigation, since the single layer
ADFUNN performed effectively whilst simpler than many other supervised learning methods,

this single layer unsupervised ADFUNN may achieve better performance than other

unsupervised methods.

167

7.4.2 Apply ADFUNN (or MADFUNN or SADFUNN) to
UrbanBuzz ESP Project

The Enabled Self Procumbent (ESP) is an UrbanBuzz funded project to help people design
their own houses in order to build sustainable communities in the Thames Gateway [178] area.
Each house is procured by an individual rather than delivered by a speculative volume house
builder on the open market. The ESP project is a multi-user platform where people can select
a plot, build their own house from a database of pattern book houses and even see their
neighbours’ designs. User can specify the design brief to perform design evaluation, scoring

and house type matching.

ADFUNN (or MADFUNN, SADFUNN) is going to be applied to the ESP project as a neural
network matching system. By specifying the design brief, such as number of bedrooms, size
of the garden, number of car parks, total budget, the neural network matching system will be

able to help the user to find an appropriate house type or suitable pattern book from the

database. The strategy is explained in figure 96.

Design Questions |Responses | Design | Neural |Selects House Type(s)
to User (————>| Brief »| Network | /Pattern Books
Define

Figure 96: Strategy of the neural network matching system for ESP project

7.4.3 Apply ADFUNN (or MADFUNN or SADFUNN) to
andwritten Electronic Signature Authentication

Electronic signature scheme notion was introduced by Whitfield Diffie and Martin Hellman
since 1976 [179], however it still has not become popular due to the lack of technology with
verification tools. An important feature of paper based signatures is that they can be
individually studied and analysed by handwriting experts, by comparing with other existing
samples for authentication. Whereas, this is the most significant challenge for authenticating
electronic signatures, which could make it become worthless if cannot be associated with

signers.

168

ADFUNN (or MADFUNN or SADFUNN) is proposed to be applied to an electronic
signature authentication project; specifically a computer mouse based electronic signature
verification which is more efficient, cost effective and easy to use. The proposed project will
be set up as a case study in a small to medium sized company. Signature samples will be
collected from the company and verification of their signatures will be performed for any new

signed document.

7.4.4 Apply ADFUNN (or MADFUNN or SADFUNN) to More
Collected Data

ADFUNN (or MADFUNN or SADFUNN) also is going to be applied to more collected data.
Complex data was used by Roadknight et. al [117] before. They collected data from open
topped chamber experiments, outdoor experiments, and closed-chamber experiments for
ozone related injury and the accompanying levels for a variety of pollutants and climatic
factors [117]. The methodology for data collecting used in ADFUNN (or MADFUNN or
SADFUNN) may be similar with the above, but the data type may vary. There are some
prospective projects where ADFUNN (or MADFUNN or SADFUNN) could be applied to,
such as a water hazard related project with the International Centre for Water Hazard and Risk
Management (ICHARM) in Japan, in order to help people better predict water-related

disasters.

7.4.5 Apply ADFUNN (or MADFUNN or SADFUNN) to Fuzzy

Neuron System

As introduced in section 2.3.1 in the beginning of this thesis, the combination of fuzzy logic
system with artificial neural network can help solve the inherited limitations of each isolated
paradigm and therefore produce a more powerful and efficient model. Because the new
methods proposed in this thesis have exhibited faster learning ability and produced more
powerful results with much simpler network structure and less hardware requirements.
Combining ADFUNN (or MADFUNN or SADFUNN) with a fuzzy logic system could

possibly produce more accurate and faster learning results, yet reduce the hardware costs in a

fuzzy neuron control system.

169

7.5 FINAL THOUGHTS

The research presented in this thesis has led to the development of a single weight layer
supervised network to overcome linear inseparability limitations. The experimental results
demonstrate that a single network becomes more effective (than clustering or perceptron in
this thesis) by integrating two learning modes into one network. The novel learning feature in
ADFUNN (as well as in MADFUNN and SADFUNN) is that of simultaneous adaptation
between (weights) and within (functions) neurons, which results in highly effective
performance in a simple network structure. The outcome of the research has provided
significant and immediate benefits to a range of applications. The research has also provided
opportunities for further development and implementations of modal learning methods. The
author believes that the ADFUNN (MADFUNN, SADFUNN) algorithms will be widely

explored and succeed in a wider range of applications.

170

REFERENCES

1. Bloch, G. and Denoeux, T., 2003. Neural Networks for Process Control and Optimization:
Two Industrial Applications. IS4 transactions, vol. 42, pp.39-51.

2. Roadknight, C. M., Palmer-Brown, D. and Al-Dabass, D., 2003. Simulation of
Correlation Activity Pruning Methods to Enhance Transparency of ANNs. International
Journal of Simulation, vol. 4 (2), pp. 68 - 74.

3. Kaastra, I. and Boyd, M., 1996. Designing a Neural Network for Forecasting Financial
and Economic Time Series. Neurocomputing, vol. 10, pp. 215 - 236.

4. Pattichis, C. S., Schizas, C. N. and Middleton, L., 1995. Neural Network Models in EMG
Diagnosis. IEEE Transactions on Biomedical Engineering, vol. 42 (5), pp. 486 - 496.

5. Palanivel, S., Venkatesh, B. S. and Yegnanarayana, B., 2003. Real Time Face
Authentication System using Autoassociative Neural Network Models. ICME, vol. 1, pp.
257-260.

6. Lee, S. W. and Palmer-Brown, D., 2006. Phonetic Feature Discovery in Speech using
Snap-Drift, International Conference on Artificial Neural Networks (ICANN'2006), pp. 952 —
962.

7. Johnson, R. C. and Brown, C., 1998. Cognizers: Neural Networks and Machines that
Think. New York, John Wiley & Sons.

8. McCulloch, W. S. and Pitts, W., 1943. A Logical Calculus of the Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics.

9. McCulloch, W. S. and Pitts, W., 1947. How We Know Universals: The Perception of
Auditory and Visual Forms. Bulletin of Mathematical Biophysics.

10. Minsky, M. L. and Papert, S. A, 1969. Perceptron, MA, MIT Press, Cambridge.

11. Rosenblatt, F., 1962. Principles of Neurodynamics. New York, Spartan.

12. Rosenblatt, F., 1958. The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review, vol. 65, pp. 386 - 408.

13. Rosenblatt, F., 1958. Two Theorems of Statistical Separability in the Perceptron. In:

Proceedings of Mechanization of Thought Processes. National Physical Laboratory, London:
HM Stationery Office, pp. 421 - 456.

171

14. Efe, M. O., 2002. A Novel Error Critic for Variable Structure Control with an ADALINE.
Transactions of the Institute of Measurement & Control, vol.24, no.5, pp.403-415.

15. Hamilton-Wright, A. and Stashuk, D. W., 2005. Comparing “Pattern Discovery” and
Back-Propagation Classifiers. International Joint Conference on Neural Networks (IJCNN
2005), Montreal, Canada, pp. 1286-1291.

16. Widrow, B. and Lehr, M. A., 1990. 30 Years of Adaptive Neural Network: Perceptron,
Madaline and Backpropagation. In: Proceedings of IEEE, vol. 78, pp. 1415 - 1442.

17. Huang, X., 2005. A New Kind of Hopfield Networks for Finding Global Optimum.
International Joint Conference on Neural Networks (IJCNN 2005), Montreal, Canada, pp.
764-769.

18. Nishikawa, 1., Sakakibara, K., Iritani, T. and Kuroe, Y., 2005. Two Types of
Complex-Valued Hopfield Networks and the Application to a Traffic Signal Control.
International Joint Conference on Neural Networks (IJCNN 2005), Montreal, Canada, pp.
770-775.

19. McClelland, J. L. and Rumelhart, D. E., 1998. Explorations in Parallel Distributed
Processing: MIT Press.

20. Hinton, G.E., 1992. How Neural Networks Learn from Experience. Scientific American,
vol. 267, pp. 144-151.

21. Kurzynski, M., Puchala, E. and Rewak, A., 2006. The Bayes-Optimal Feature Extraction
Procedure for Pattern Recognition using Genetic Algorithm. 16th International Conference
on Artificial Neural Networks (ICANN 2006), Part I, Athens, Greece, pp.21-30.

22. Suykens, A. K., et al, 2003. Advances in Learning Theory: Methods, Models and
Applications. NATO Science Series III: Computer & Systems Sciences, vol.190, IOS Press
Amsterdam.

23. Schlesinger, M. L. and Hlavac, V., 2002. Ten Lectures on Statistical and Structural
Pattern Recognition, Kluwer Academic Publishers.

24, Webb, A., 2004. Statistical Pattern Recognition, Wiley.

25. Stork, D. G. and Yom-Tov, E., 2004. Computer Manual in MATLAB to accompany
Pattern Classification, Wiley Interscience.

26. Carreras, X., Collins, M. and Koo, T., 2008. TAG, Dynamic Programming, and the
Perceptron for Efficient, Feature-rich Parsing, Proceedings of CONLL0S.

172

27. Smart, M. H. W. and Murray, A. F., 1996. Multilayer Perceptron for Rotationally
Invariant Feature Extraction and Classification. Proceedings of Applications and Science of
Artificial Neural Networks.

28. Palubinskas, G., Descombes, X. and Kruggel, F., 1998. An Unsupervised Clustering
Method Using the Entropy Minimization. 14th International Conference on Pattern
Recognition, Vol.2.

29. Yager, R. R., 2006. An Extension of the Naive Bayesian Classifier. Information
Sciences, vol. 176, issue. 5, pp. 577-588. ‘

30. Shawe-Taylor, J. and Cristianini, N., 2004. Kernel Methods for Pattern Analysis,
Cambridge University Press.

31. Lee, S. W. and Palmer-Brown, D., 2006. Modal Learning in A Neural Network. Ist
Conference in Advances in Computing and Technology, London, United Kingdom, pp. 42 —
47.

32. Kohonen, T., 1990. Improved Versions of Learning Vector Quantization. International
Joint Conference on Neural Networks, vol. 1, pp- 545-550. San Diego, CA.

33. Callan, R., 1999. The Essence of Neural Networks, Prentice Hall Europe, pp. 36-41.

34. Hebb, D. O., 1961. Distinctive Features of Learning in the Higher Animal. Brain
Mechanisms and Learning, London: Oxford University Press.

35. Carpenter, G. A. and Grossberg, S., 2003. Adaptive Resonance Theory. The Handbook of
Brain Theory and Neural Networks, Second Edition. Cambridge, MA: MIT Press, pp. 87-90.
36. Quinlan, J. R., 1996. Improved use of continuous attributes in c4.5. Journal of Artificial
Intelligence Research, vol. 4, pp. 77-90.

37. Mitchell, T. M., 1997. Machine Learning. McGraw Hill, Chapter 3.

38. Quinlan, J. R., 1986. Machine Learning, Springer.

39. Su,J. and Zhang, H., 2006. A Fast Decision Tree Learning Algorithm. Proceedings of the
Twenty-First National Conference on Artificial Intelligence (AAAI-06).

40. Tong, W., Hong, H., Fang, H, Xie, Q and Perkins, R, 2003. Decision Forest: Combining
the Predictions of Multiple Independent Decision Tree Models. Journal of Chemical
Information and Computer Science.

41. Cios, K. and Liu, N, 1992. A Machine Learning Method for Generation of Neural

Network Architecture: A Continuous ID3 Algorithm. JEEE Transaction of Neural Networks,
vol. 3, no. 2, pp. 280-291.

173

42. Quinlan, J., 1986. Induction of Decision Trees. Machine Learning. vol. 1, pp. 81-106.

43. Drake, P. R. and Packianather, M. S., 1998. A decision tree of neural networks for
classifying images of wood veneer. The International Journal of Advanced Manufacturing
Technology. Springer London, vol. 14, no. 4.

44. Utgo, P. E., 1989. Incremental Induction of Decision Trees. Machine Learning, vol. 4, no.
161.

45. Cios, K. J. and Sztandera, L. M., 1992. Continuous ID3 algorithm with fuzzy entropy
measures. JEEE International Conference on Fuzzy Systems, vol. 8, no. 12, pp.469 — 476.

46. Quinlan, J. R., 1987. Generating production rules from decision trees. Proceedings of the
Tenth International Joint Conference on Artificial Intelligence (IJCAI-87), pp. 304-307.

47. Liu, H.,, 1996. Efficient Rule Induction from Noisy Data. Expert Systems with
Applications.

48. Clark, P. and Niblett, T., 1989. The CN2 Induction Algorithm. Machine Learning, vol. 3,
no. 4, pp.261-283.

49, Clark, P. and Boswell, R., 1991. Rule Induction with CN2: Some recent improvements.
Lecture Notes in Computer Science, Machine Learning — EWSL-91, vol. 482.

50. Kralik, P. and Bruha, 1, 1999. Discretizing Numerical Attributes in A Genetic
Attribute-based Learning Algorithm.

51. Fausett, L., 1994. Fundamentals of Neural Networks, New York: Prentice Hall.

52. Sutton, R. S. and Barto, A. G., 1998. Reinforcement Learning: An Introduction. MIT
Press, Cambridge.

53. Crites, R. H. and Barto, A. G., 1998. Elevator Group Control Using Multiple
Reinforcement Learning Agents. Machine Learning, Springer.

54. Littman, M. L., 2001. Value-Function Reinforcement Learning in Markov Games.
Cognitive Systems Research, Elsevier.

55. Pednault, E., Abe, N. and Zadrozny, B., 2002. Sequential cost-sensitive decision making
with reinforcement learning. Proceedings of the 8th ACM SIGKDD.

56. Peterson, C. and Soderberg, B., 1989. A New Method for Mapping Optimization
Problems onto Neural Networks. International Journal of Neural Systems.

57. White, H., 1992. Parametric Statistical Estimation with Artificial Neural Networks,

Economics Working Paper Series with number 92-13. University of California.

174

58. Fogel, G. B. and Corne, D. W., 2003. Evolutionary Computation in Bioinformatics.
Morgan Kaufmann.

59. Haykin, S., 2002. Kalman Filtering and Neural Networks. John Wiley and Sons Inc.

60. White, H., 1992. Parametric Statistical Estimation with Artificial Neural Networks.
Economics Working Paper Series with number 92-5, University of California.

61. Xiang, C., Fan, X. A. and Lee, T. H., 2004. Face Recognition using Recursive Fisher
Linear Discriminate with Gabor Wavelet Coding. 2004 International Conference on Image
Processing, Singapore, pp.79 — 82. "

62. Stanton, C., “Linear Regression Java Applet for Probability and Statistics”, Department of
Mathematics, University of Wisconsin-Madison, viewed 24 August 2010,
<http://www.math.csusb.edu/faculty/stanton/m262/regress/index.html>.

63. Kotsiantis, S. and Pintelas, P., 2005. Logitboost of Simple Bayesian Classifier.
Computational Intelligence in Data mining Special Issue of the Informatics Journal, vol. 29,
no.1, pp. 53-59.

64. Boulle, M., 2009. A Parameter-Free Classification Method for Large Scale Learning.
Journal of Machine Learning Research, vol. 10, pp.1367-1385.

65. Freund, Y. and Schapire, R. E., 1998. Large Margin Classification Using the Perceptron
Algorithm. In the Proceedings of the 11th Annual Conference on Computational Learning
Theory (COLT' 98). ACM Press.

66. Vapnik, V. N., 1998. Statistical Learning Theory. New York, John Wiley and Sons.

67. Vapnik, V. N., 1995. The Nature of Statistical Learning Theory. Berlin, Springer.

68. Joachims, T., 2006. Training Linear SVMs in Linear Time. KDD 06, 2006, Philadelphia,
Pennsylvania, USA.

69. Xiao, Y., Rao, R., Cecchi, G. and Kaplan, E., 2008. Improved Mapping Of Information
Distribution Across The Cortical Surface With The Support Vector Machine. Neural
Networks, 2008 Special Issue: Advances in Neural Networks Research: IJCNN07, vol. 21, pp.
341- 348.

70. Suykens, J. A. K., Horvath, G., Basu, S., Micchelli, C. and Vandewalle, J., 2003.
Advances in Learning Theory: Methods, Models and Applications. Computer and Systems
Sciences, vol. 190 of NATO-ASI Series-III.

71. Tipping, M. E., 2000. The Relevance Vector Machine. Advances in Neural Information

Processing Systems.

175

72. Gray, A., 1997. The Intuitive Idea of Distance on a Surface. Boca Raton, FL: CRC Press,
pp- 341-345.

73. Gill, B., 2007. Bayesian Methods: A Social and Behavioral Sciences Approach. Chapman
and Hall/CRC, 2nd edition.

74. Mason, L., Baxter, J., Bartlett, P. and Frean, M., 2000. Boosting Algorithms as Gradient
Descent. Advances in Neural Information Processing Systems, vol. 12, pages 512--518, MIT
Press.

75. Buf, H. D. and Bayer, M. M., 2002. Automatic Diatom Identification. World ’Scientiﬁc,
Series in Machine Perception and Artificial Intelligence, vol. 51, pp.316.

76. Dowe, D. L., Gardner, S. and Oppy, G., 2007. Bayes not Bust! Why Simplicity is no
Problem for Bayesians. Brit. J. Phil. Science, vol. 58, pp. 46.

77. Wallace, C. S. and Dowe, D. L., 1999. Minimum Message Length and Kolmogorov
Complexity. Computer Journal, vol. 42, no. 4, pp270-283.

78. Newall, P., “Ockham's Razor”, viewed 1 September 2010,
<http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor>

79. Chickering, D. M., Heckerman, D. and Meek, C., 2004. Deciding Conditional
Independence is Hard in Noncausal Directions. Exact Inference in Large Networks Takes a
Very Long Time. Journal of Machine Learning, vol. 5, pp. 1287-1330.

80. Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition (Second Edition).
Academic Press, New York.

81. Gegov, A., 2007. Complexity Management in Fuzzy Systems - A Rule Base Compression
Approach. Studies in Fuzziness and Soft Computing 211, 7-16, Springer-Verlag Berlin
Heidelberg.

82. Liu, P. and Li, H., 2004. Fuzzy Neural Network Theory and Application. World Scientific
Publishing Co. Pte. Ltd.

83. Abraham, A., 2001. Neuro Fuzzy Systems: State-of-the-art Modelling Techniques.
Springer-Verlag, Germany, pp.269-276.

84. Jang, S. R., 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference Systems. /EEE
Trans. Systems, Man & Cybernetics Vol. 23, pp.665-685.

85. Halgamuge, S. K. and Glesner, M., 1994. Neural Networks in Designing Fuzzy Systems
for Real World Applications. Fuzzy Sets and Systems, Vol. 65, pp.1-12.

176

86. Berenji, H. R. and Khedkar, P., 1992. Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements. IEEE Trans. Neural Networks, Vol. 3, pp. 724-740.

87 Lin, T. C. and Lee, C. S., 1991. Neural Network Based Fuzzy Logic Control and Decision
System. IEEE Transactions on Computers, Vol. 40, no. 12, pp. 1320-1336.

88. Haykin, S., 1998. Neural Networks a Comprehensive Foundation, Prentic-Hall Inc, 2nd
edition.

89. Widrow, B. and Hoff, M. E., 1960. Adaptive Switching Circuits. IREWESCON
Convention Record, pp. 96-104. ’

90. Broomhead, D. S. and Lowe, D., 1988. Multivariate Functional Interpolation and
Adaptive Networks. Complex Systems, vol. 2, pp. 321-355.

91. Park, J. and Sandberg, I. W., 1993. Approximation and Radial Basis Function Networks.
Neural Computation, vol. 5, no. 2, pp. 305-316.

92. Ma, L., Xin, K. and Liu, S., 2008. Using Radial Basis Function Neural Networks to
Calibrate Water Quality Model. In: proceedings of World Academy of Science, Engineering
and Technology.

93. Martin, D., Buhmann, M. and Ablowitz, J., 2003. Radial Basis Functions: Theory and
Implementations. Cambridge University Press.

94, Mandic, D. P. and Chambers, J. A., 2001. Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures and Stability. John Wiley & Sons Ltd, England.

95. Mandic, D. and Chambers, J., 2001. Recurrent Neural Networks. Wiley.

96. Elman, J. L., 1990. Finding Structure in Time. Cognitive Science, vol. 23, pp.417-437.

97. Williams, R. J. and Zipser, D., 1989. A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. Neural Computing, vol. 1, pp. 270-280.

98. Rumelhart, D. E., Hinton, G. E. and Williams, R. J.,, 1986. Learning Internal
Representations By Error Propagation. In: D.E. Rumelhart, J.L. McClelland (Eds.), Parallel
Distributed Processing, vol. 1, MIT Press, Cambridge, MA.

99. Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986. Learning Representations by
Back-propagation Errors. Nature, vol. 323, pp. 533-536.

100. Catfolis, T., 1993. A Method For Improving the Real-Time Recurrent Learning
Algorithm. Neural Networks, vol. 6, pp.-807-821.

101. Zipser, D., 1989. A Sub-Grouping Strategy that Reduces Complexity and Speed up
Learning in Recurrent Networks. Neural Computing, vol.1, pp. 552-558.

177

102. Hopfield, J. J., 1982. Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. In: Proceedings of the National Academy of Sciences of the USA,
vol. 79, no. 8, pp. 2554-2558.

103. Tzafestas, S. G., 2002. Computational Intelligence in Systems and Control Design and
Applications, Spinger, pp. 331-332.

104. Jaeger, H., 2001. The 'Echo State' Approach to Analysing and Training Recurrent Neural
Networks. German National Research Centre for Information Technology, Tech. Rep. 148.
105. Rumelhart, D. E., McClelland, J. L., and the PDP Res. Group, 1986. Parallel Distributed
Processing (PDP): Exploration in the Microstructure of Cognition. Cambridge, MA: MIT
Press, vol. 1.

106. Scheler, G., 2004. Regulation of Neuromodulator Efficacy: Implications for
Whole-Neuron and Synaptic Plasticity. Progress in Neurobiology, vol.72, no.6.

107. Scheler, G., 2004. Memorisation in a Neural Network with Adjustable Transfer Function
and Conditional Gating. Quantitative Biology, vol 1.

108. Chen, C. T. and Chang, W. D., 1996. A Feed-Forward Neural Network with Function
Shape Autotuning. Neural Networks, vol. 9, no. 4, pp. 627-641.

109. Piazza, F., Uncini, A., and Zenobi, M., 1992. Artificial Neural Networks with Adaptive
Polynomial Activation Function. In: Proceedings of. IJCNN, Beijing, China, pp. 11-343-349.
110. Uncini, A., Piazza, F. and Vecci, L., 1998. Learning and Approximation Capabilities of
Adaptive Spline Activation Function Neural Networks. Neural Networks, vol. 11, no. 2. pp.
259-270.

111. Fiori, S., 2002. Hybrid Independent Component Analysis by Adaptive LUT Activation
Function Neurons. Neural Networks, vol. 15, pp. 85-94.

112. Piazza, F., Uncini, A. and Zenobi, M., 1993. Neural Networks with Digital LUT
Activation Function. In: proceedings of International Joint Conference on Neural Networks
(IJCNN’93), Nagoya, Japan, pp. 1401-1404.

113. Uncini, A., Vecci, L., Campolucci, P., and Piazza, F., 1999. Complex-Valued Neural
Networks with Adaptive Spline Activation Function For Digital Radio Links Nonlinear
Equalization. IEEE Trans. Signal Processing, vol. 47, pp. 505--514.

114. Foor, W. E. and Neifeld, M. A., 1995. Adaptive, Optical, Radial Basis Function Neural
Network for Handwritten Digit Recognition. Appl. Opt. vol. 34, pp. 7545.

178

115. Ozbay, Y. and Karlik, B., 2001. A Recognition of ECG Arrhythmias Using Artificial
Neural Networks. In: proceedings of the 23rd Aunnual International Conference of the IEEE,
vol 2. pp. 1680 - 1683.

116. Lewis-Beck, S. M., 1995. Data Analysis: An Introduction, Sage Publications Inc.

117. Roadknight, C. M., Balls, G. R., Milis, G. E. and Palmer-Brown, D., 1997. Modelling
Complex Environmental Data. Journal Transactions on Neural Networks, IEEE, vol.8.

118. Sivia, D. S., 1996. Data Analysis: A Bayesian Tutorial, Published by Oxford University
Press. |

119. Gelman, A., Carlin, J. B. and Stern, H. S., 2003. Bayesian Data Analysis. Published by
CRC Press.

120. Wolpert, D. H., 1996. The Lack of a Priori Distinctions between Learning Algorithms.
Neural Computation, vol. 8, pp. 1341-1390.

121. Mehrota K., Mohan C.K. and Ranka S., 1997. Elements of Artificial Neural Networks,
In: The MIT Press, Cambridge, Massachusetts.

122. Moyle, S. A. and Watts, M., 2003. Fuzzy Neural Networks (FuNN) in the Palm
Environment. Department of Information Science, University of Otago, Dunedin, New
Zealand.

123. Vielma, J. P., Ahmed, S. and Nemhauser, G., 2010. Mixed-Integer Models for
Nonseparable Piecewise Linear Optimization: Unifying Framework and Extensions. Institute
for Operations Research and the Management Sciences (INFORMS), Linthicum, Maryland,
USA, vol.58, pp.303-315.

124. Bai, Y., Zhang, H. and Hao, Y., 2009. The Performance of the Back-propagation
Algorithm with Varying Slope of the Activation Function. Chaos, Solitons & Fractals, vol.
40, issue. 1, pp. 69-77.

125. Apostol, T., 1974. Mathematical analysis (2nd edition). Addison Wesley, 1974.

126. Widrow, B. and Hoff, M. E., 1960. Adaptive Switching Circuits. JREWESCON
Convention Record, pp. 96-104.

127. McClelland, J. and Rumelhart, D., 1986. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Cambridge, MA: MIT Press, vol.1.

128. Bourbaki, N., 1987. Topological Vector Spaces. Elements of Mathematics, Springer.

179

129. Boné, R., Crucianu, M., and Asselin de Beauville, J. P., 1998. Yet Another Neural
Network Simulator (YANNS). Proceedings of the Conference, NEURal Networks and their
Applications (NEURAP98), Marseille, France. pp. 421-424.

130. Robert, G. B., 2007. An Object-Oriented Analysis and Design with Applications. 31
Edition, Addison-Wesley.

131. Budd, T., 1991. An Introduction to Object-Oriented Programming. Addison-Wesley.
132. Culwin, F., 1998. 4 Java GUI: Programmer's Primer, Prentice Hall.

133. Fisher, R. A., 1936. The Use of Multiple Measurements in Taxonomic Problems. Annals
of Eugenics 7, pp.178-188.

134. Hoey, P. S., "Statistical Analysis of the Iris Flower Dataset", Univeristy of
Massachusetts st Lowell, viewed 10 Auguest 2010,
<http://patrickhoey.com/papers/Computer_Science/03_Patrick_Hoey Data_Visualization_Da
taset_paper.pdf>

135 Moriarty, D. E., 1997. Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. Ph.D. thesis, Department of Computer Science. The University of Texas at Austin.

136. Cantu-Paz, E., 2003. Pruning Neural Networks with Distribution Estimation Algorithms.
GECCO. US4, 2003, pp. 790-800.

137. Pavlidis, N. G., Tasoulis, D.K., Plagianakos, V.P., Nikiforidis, G., and Vrahatis, M.N.,
2004. Spiking Neural Network Training Using Evolutionary Algorithms. International Joint
Conference on Neural Networks (IJCNN 2004), Budapest, Hungary.

138. Eldracher, M., 1992. Classification of Non-Linear-Separable Real-World-Problems
Using A-Rule, Perceptions, and Topologically Distributed Encoding. In Proceedings of the
1992 ACM/SIGAPP Symposium on Applied Computing. vol. I, ACM Press.

139. Luger, G. F., 2005. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. 5th Edition, Addison-Wesley.

140. Collobert, R. and Weston, J., 2008. A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning. In: proceedings of the 25th
international conference on Machine learning, Helsinki, Finland.

141. Heidi, H, and Yeung, T., 2004. Online Semantic Extraction by Backpropagation Neural
Network with Various Syntactic Structure Representations. A4A47 2004, pp. 1042-1043.

142. Garside, R., Leech, G. and Varadi, T., 1987. Manual of Information to Accompany the
Lancaster Parsed Corpus. Department of English, University of Oslo.

180

143. Tepper, J., Powell, H. M. and Palmer-Brown, D., 2002. A Corpus-based connectionist
Architecture for Large-scale Natural Language Parsing. Connection Science, vol. 14, no. 2, pp.
93 - 114.

144. Tepper, J. A., 2000. Corpus-based Connectionist Parsing. PhD Thesis, Faculty of
Engineering and Computing, The Nottingham Trent University, 2000.

145. Palmer- Brown, D., Tepper, J. and Powell, H., 2002. Connectionist Natural Language
Parsing. Trends in Cognitive Sciences, vol. 6, no. 10, pp.437 — 442.

146. Pollack, J., 1990. Recursive Distributed Representations. Artificial Intelligent, vol. 46, pp.
77-105.

147. Elman, J., 1990. Finding Structure in Time. Trends in Cognitive Sciences, vol. 14, pp.
179-211.

148. Hasan, M., Manian, V. and Kemke, C., 2007. HCP with PSMA: A Robust Spoken
Language Parser. NeSy.

149. Mayer, A. H. and Schwaiger, R., 2001. Evolution of Cubic Spline Activation Functions
for Artificial Neural Networks. EPI4 pp. 63-73.

150. Sunat, K. and Lursinsap, C., 2001. Highly Successful Learning Based on Modified
Catmull-Rom Spline Activation Function. In: proceedings of IJCNN2001,vol 4, pp. 2783 —
2787.

151. Frey, P. W. and Slate, D. J,, 1991. Letter Recognition Using Holland-style Adaptive
Classifiers. Machine Learning, vol. 6, pp.161-182.

152. Slate, D. J, "Letter Image Recognition Data", viewed 2 September 2010,
<http:/archive.ics.uci.edu/ml/datasets/Letter+Recognition>

153. Schwenk, H. and Bongo, Y., 1997. Adaptive Boosting of Neural Networks for Character
Recognition. Technical report #1072, Canada.

154. Asuncion, A, and Newman, D. J., 2007. UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html], Trvine, CA: University of California,

School of Information and Computer Science.

155. Vamvakas. G., Gatos, B. and Perantonis, S. J., 2009. A Novel Feature Extraction and
Classification Methodology for the Recognition of Historical Documents. 10th International

Conference on Document Analysis and Recognition, Barcelona, Spain.

181

156. Schapire, R. E., Freund, Y., Bartlett, P. and Lee, W. S., 1997. Boosting The Margin: A
New Explanation For Effectiveness Of Voting Methods. Proceedings of the 14th
International Conference.

157. Philip, N. S., Joseph, K. B., 2000. Distorted English Alphabet Identification : An
application of Difference Boosting Algorithm. CoRR.

158. Partridge, D. and Yates, W. B., 1997. Data-defined problems and multi-version
neural-net systems. Journal of Intelligent Systems, vol. 7, no. 1-2, pp.19-32.

159. Lee, S. W., Palmer-Brown, D. and Roadknight, C. M., 2004. Performance-guided Neural
Network for Rapidly Self-Organising Active Network Management (Invited Paper). Journal
of Neurocomputing, vol. 61C, pp. 5 - 20.

160. Lee, S. W. and Palmer-Brown, D., 2006. Phonetic Feature Discovery in Speech using
Snap-Drift. International Conference on Artificial Neural Networks, ICANN'2006, Athens,
Greece, 10th - 14th, pp. 952 — 962.

161. Lee, S. W. and Palmer-Brown, D., 2006. Modal Learning in A Neural Network. Ist
Conference in Advances in Computing and Technology, London, United Kingdom, pp. 42 —
47.

162. Kohonen, T., 1990. Improved Versions of Learning Vector Quantization. Proc.
IJCNN’90, pp.545 ~ 550.

163. Carpenter, G., 1997. Distributed Learning, Recognition, and Prediction by ART and
ARTMAP Neural Networks. Neural Networks, vol. 10, pp. 1473 - 1494.

164. Alimoglu, F., Alpaydin, E., 1997. Combining Multiple Representations for Pen-based
Handwritten Digit Recognition. ELEKTRIK: Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 9, no. 1, pp.1-12.

165. Alpaydin, E., Kaynak, C., Alimoglu, F., 2000. Cascading Multiple Classifiers and
Representations for Optical and Pen-Based Handwritten Digit Recognition. /WFHR,
Amsterdam, The Netherlands.

166. Garris, M. D. et al, 1991. NIST Form-Based Handprint Recognition System. NISTIR vol.
5469.

167. Rosenblattm F., 1958. The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review, vol. 65, pp. 386 - 408.

168. Zhang, J. and Li, Z., 2005. Adaptive Nonlinear Auto-Associative Modelling through
Manifold Learning. PAKDD, pp.599-604.

182

169. Chakraborty, B. and Chakraborty, G., 2002. A New Feature Extraction Technique for
On-line Recognition of Handwritten Alphanumeric Characters. Information Sciences, vol. 148,
issues 1-4, pp.55-70.

170. Liu, Q. and Wang, J., 2008. Two k-winners-take-all Networks with Discontinuous
Activation Functions. Neual Networks, 2008 Special Issue: Advances in Neural Networks
Research: IJCNNO7, vol. 21, pp. 406 — 413.

171. Findlay, D. A., 1989. Training Networks with Discontinuous Activation Functions.
Artificial Neural Networks, vol. 16, issue. 18, pp. 361 — 363. |

172. Uncini, A. and Piazza, F., 2001. Blind Signal Processing by Complex Domain Adaptive
Spline Neural Networks. ICASSP '01.

173. Vigliano, D., Scarpiniti, M., Parisi, R. and Uncini, A., 2006. Flexible ICA in Complex
and Nonlinear Environment by Mutual Information Minimization. In: Proc. of IEEE Machine
Learning for Signal Processing, Maynooth, Ireland, pp. 59-64.

174. Solazzi, M. and Uncini, A., 2004. Regularizing Neural Networks using Flexible
Multivariate Activation Function. Neural Networks, vol. 17, pp. 247-260.

175. Vitagliano, F., Parisi, R. and Uncini, A., 2003. Generalized Splitting 2D Flexible
Activation Function. Lecture Notes in Computer Science, Sprinter-Verlag Heidelberg, vol.
2859, pp. 165-170.

176. Solazzi, M. and Uncini, A., 2000. Artificial Neural Networks with Adaptive
Multidimensional Spline Activation Functions. In: Proc. of the IEEE-INNSENNS
International Joint Conference on Neural Networks IJCNN2000, Como, Italy, vol. 3, pp.
471-476.

177. Scarpiniti, M., Vigliano, D., Parisi, R. and Uncini, A., 2008. Generalized Splitting
Functions for Blind Separation of Complex Signals. Neurocomputing.

178. Cherry, B. “The Thames Gateway: An introduction to the historical landscapes of the
northern riverside”, viewed 10 September 2010,
<http://www.helm.org.uk/upload/pdf/BCherry2.pdf?1283253165>

179. Diffie, W. and Hellman, M. “New Directions in Cryptography”, IEEE Transactions on
Information Theory, Vol. 22 Issue 6, pp. 644-654, 1976.

183

APPENDIX A: TERMINOLOGY GLOSSARY

The following is a summary of some common neural network terms. They have been used

throughout this thesis.

Network Layers: A layer of a neural network is an array of nodes. A layer of “inpuf” units is
called input layer. Input layer is connected to a layer of “hidden” units or connected a layer of
“output” directly in different network structures. However, the hidden layer does not connect
to the environment. It is connected to a layer of “output” units which is called output layer.
The activity of the input units represents the raw information that is fed into the network.
Whereas the activity of each hidden unit is determined by the activities of the input units and
the weights on the connections between the input and the hidden units. And the behaviour of
the output units depends on the activity of the hidden units and the weights between the
hidden and output units.

Af: Af is the modification of the neuron’s activation function that takes place during learning.
Aw: Aw is the modification of the neuron’s weights that takes place during learning.
Activation: The signal that a unit sends, to either other units or the environment.

Activation Function: Function used to calculate a unit’s activation from its input.
Classification: Problem in which patterns are to be assigned to one of several classes.

Delta rule: Learning rule based on minimisation of squared error for each training pattern.
Epoch: A single iteration through all patterns.

Generalisation: A term used to refer to how well a network performs on data on which it has
not been trained.

Learning rate: A parameter that is usually set to a constant value before training. This
parameter controls the amount by which a weight can change during a single update.

Linearly inseparable: Training patterns belonging to one output class cannot be separated
from training patterns belonging to another class by a straight line.

Multilayer perceptron (MLP): A type of feed forward neural network that is an extension of
the perceptron in that it has at least one hidden layer of neurons.

Pattern: Refers to a data record that is presented to a network.

184

Perceptron: The simplest type of feed forward neural network. It has only inputs and outputs,
i.e., no hidden layers.

Supervised learning: A type of learning that can be applied when it is known to which class a
training instance belongs.

Unsupervised learning: Learning that is used when the training instances do not have a
known class.

Weight: A connection between two units.

185

APPENDIX B: PUBLICATIONS

[1] Palmer-Brown, D., S. W. Lee., Draganova, C. and Kang, M., 2009. Modal Learning
Neural Networks. WSAES Transactions on Computers, vol. 8, no. 2, pp. 222 — 236.

[2] Kang, M. and Palmer-Brown, D., 2008. A Modal Learning Adaptive Function Neural
Network Applied to Handwritten Digit Recognition. Information Sciences. 178(2008), pp.
2802-3812.

[3] Palmer-Brown, D., Kang, M. and Lee, S. W., 2008. Meta-Adaptation: Neurons that
Change their Mode. In: proceedings of the 9th WSEAS International Conference on Neural
Networks (NN'08), Sofia, Bulgaria.

[4] Kang, M. and Palmer-Brown, D., 2007. Snap-drift ADaptive FUnction Neural Network
(SADFUNN) for Optical and Pen-Based Handwritten Digit Recognition. In: 10th

International Conference on Engineering Applications of Neural Networks (EANN’2007).
pp.247-253, Thessaloniki, Hellas, Greece.

[5] Kang, M. and Palmer-Brown, D., 2007. A Multi-layer ADaptive FUnction Neural
Network (MADFUNN) for Letter Image Recognition. In: the International Joint Conference
on Neural Networks (IJCNN’2007). Orlando, Florida, USA, pp. 2817-2822.

[6] Kang, M. and Palmer-Brown, D., 2006. A Multi-layer ADaptive FUnction Neural
Network (MADFUNN) for Analytical Function Recognition. In: the International Joint
Conference on Neural Networks (IJCNN’2006). Vancouver, Canada, pp. 1784- 1789.

[7] Kang, M. and Palmer-Brown, D., 2005. An Adaptive Function Neural Network
(ADFUNN) for Function Recognition. In: the 2005 International Conference on
Computational Intelligence and Security (CIS’2005). Xi’an, China.

186

[8] Kang, M. and Palmer-Brown, D., 2005. An Adaptive Function Neural Network
(ADFUNN) Classifier. In: the second International Conference on Neural Networks & Brain
(ICNN&B’2005). Beijing, China, pp586-590.

[9] Kang, M. and Palmer-Brown, D., 2005. An Adaptive Function Neural Network
(ADFUNN) for Phrase Recognition. In: the International Joint Conference on Neural
Networks (IJCNN’2005) Montréal, Canada, pp593-597. "

[10] Palmer-Brown, D. and Kang, M., 2005. ADFUNN: An adaptive function neural

network,” the 7th International Conference on Adaptive and Natural Computing Algorithms
(ICANNGA2005). Coimbra, Portugal, pp.1-4.

187

