
E-business framework design using an enhanced
Web 2.0 technology

By

Muhammad Sajid Afzal

The Learning Centre
Library
236·250 Holloway Road
London N7 6PP

....,'..-.:., ...:.-
LONDON .:::

metropoUtan : I,-.
unlvarslty. •

Faculty of Life Sciences and Computing

Director of studies: Professor Karim Ouazzane

A thesis submitted in partial fulfilment of the requirements of
London Metropolitan University

For the degree of
Doctor of Philosophy

December 2012

1

IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BEST COpy AVAILABLE.

VARIABLE PRINT QUALITY

http://www.bl.uk

Abstract

In the current era of state-of-the-art cutting edge technologies, businesses and

organisations are rushing to transform their trade into e-business. The

opportunity to utilise e-business improves their chances of gaining a larger

market share by maximizing product availability, reducing the day-to-day

business activity processing time, and providing related services in a convenient

and inexpensive way to their customers.

However in this race, the e-business growth pendulum is only swinging one way,

and it is easy to understand the reason for this by observing today's business

market. Due to the current financial condition, small business organizations (e.g.

local retail shops) cannot afford costly IT systems and the associated

maintenance/administration costs, but despite these financial constraints they

have an overriding need for computing facilities in order to survive and compete

with larger competitors by expanding their businesses.

In this research, Web 2.0 and SOA (Service Oriented Architecture) technology

are used to provide a middleware collaboration model between data persistence

logic and an operation's requests. This layer helps to overcome the hard-coded

service mapping with interface and generic customized workflow problems. This

research further provides a mediation platform for request brokers and a high

level of abstraction by encapsulating the low level details of the system. These

are the most vital requirements to provide a platform, which have the capability

of customizing business logic and handle both generic and customized workflows

and subsequently to help SMEs (Small- to Medium-sized Enterprises) to convert

their businesses to e-business swiftly at minimal cost.

2

A new W2ASVB (Web 2.0 Architecture for Service and View Brokerage) has

been developed, and the validation results confirm that this framework performs

efficiently in different conditions, provides on-demand customization of business

logic without any data loss as compared to conventional e-business frameworks,

and reduces the platform cost drastically due to its shared running environment.

3

Acknowledgments

I would first of all like to thank my director of studies, Professor Karim

Ouazzane, for his unfailing support and encouragement at every step of the way.

Without him I would never have come this far. I also feel very privileged to have

worked with my supervisors, Professor Hassan Kazemian and Doctor Jun Li. To

all of them lowe a great debt of gratitude for their patience, inspiration and

friendship. They have taught me a lot about the joy of discovery and

investigation that is the heart of research. They have always provided the precise

balance of suggestions and criticism.

I am grateful to the Vice Chancellor of London Metropolitan University and the

Faculty of Life Sciences and Computing for their generosity in providing me the

fee waiver assistance. The Faculty of Life Sciences and Computing has provided

an excellent environment for my research; without this rich environment I doubt

that many of my ideas would have come to fruition.

4

Contents

1 . In.troduction , 11
1.1 Web 2.0 based e-business framework 12

1.2 Problem analysis 13

1.2.1 A simple workflow 17
1.2.2 A complex workflow 19

1.3 Motivation , It 21
1.4 Research Requirments 22

1.4.1 User request management modelling 22
1.4.2 Workflow modelling 23

1.5 Overview of the following chapters 23

2 .Literature Review 25
2.1 Introduction 26

2.2

2.3

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9 A brief analysis about enterprise applications 43

2.4 Web 2.0 based SOA models 44

2.5

Brief overview of Web technology 26

Enterprise application architecture 31

E-business SOA-based layer Architecture 33
E-business SOA-based XML Schema Architecture 35
Service Oriented Enterprise Architecture 36
SOCRADES Integration Architecture 38
MerchantOS 39
Retail-J , 40
PHP Point of Sale 41
ZohoCRM 42

Request management principles 49

2.5.1 Conventional technique 50
2.5.2 Request brokering technique 50

2.6 Conclusion , 59
3 . Conceptual Modelling of New Web 2.0 e-Business Framework 61

3.1 Introduction 62
3.2 SOAW2 model framework evaluation 62

3.2.1 Concerns 63
3.3 Proposed web 2.0 model framework 64

3.3.1 Introduction of the request broker architecture 65
3.3.2 Introduction of service adapters 65

5

3.3.3 Proposed work flow model 67
3.3.4 Request broker actions on user request.. 68
3.3.5 Profile Management Technique 71

3.4 System component structure 73

3.4.1 Presentation layer 74
3.4.2 Request management layer 74
3.4.3 Operationallayer 74
3.4.4 Core services layer , 75

3.5 System use-case model 75

3.5.1 General request use-case model ·76
3.5.2 General request use-case descriptions 76
3.5.3 Sales person use case diagram 80

3.6 Conclusion 83

4 . Design ofa W2ASVB Model Framework 84
4.1 Introduction 85
4.2 An enhanced web 2.0 e-business framework 85

4.3 Component Representation 87

4.3.1 System manager component · 88
4.3.2 Profile Factory Component 90
4.3.3 Request broker component 94
4.3.4 User interface container component 95
4.3.5 Authentication component 96
4.3.6 Service adapter 97
4.3.7 User Interface Component Design ·.. 99
4.3.8 Systems Class Stru.cture 99

4.4 Request routing technique explanation 101

4.4.1 Action management 101
4.4.2 View management 103

4.5 Business logic on-demand customization mechanism 104

4.5.1 Customization of business logic 104
4.5.2 Customization of user interface 105

4.6 System Interactions Diagrams 107

4.6.1 System Initialization Sequence Diagram 108
4.6.2 Employee Login Sequence Diagram 109
4.6.3 Request Processing Sequence Diagram 110

5 . A W2ASVB framework implementation 111
5.1 Introduction 112
5.2 Implementation Technology 112
5.3 Implementation Details 113

5.3.1 System Manager 113

6

5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

5.4

Profile Factory 114
Session profile 116
Web request broker 118
Action Processor 118
Mapping output data to the user interface 120

System Outputs 122
6 . A W2ASVB framework validation 125

6.1 Environment. 126
6.1.1 Hardware Environment · 126
6.1.2 Software Environment 126

6.2 Validationprocess 127
6.2.1 Validationtesting cases 127
6.2.2 Execution time 128
6.2.3 Average cost per user 136
6.2.4 Scalability 141

6.3 Advantages of the proposed solution · 146
6.4 Shortcomings of proposed solution 148

7 . Conclusions and Future Recommendations · 150
7.1 Contribution of the work : · 151

7.1.1 Request handling 151
7.1.2 Service adapter 152

7.2 Evaluation of research question · 152
7.2.1 User request management modelling 152
7.2.2 Workflow modelling 152

7.3 Research contributions 153

7.4 Future recommendations ISS
8 .References 157
9 . Abbreviations 169
10 Appendix 172

10.1 Source Code 173
10.1.1 SystemManager.java 173
10.1.2 ProfileFactory.java 176
10.1.3 XMLReader.java , 179
10.1.4 Login.java 183
10.1.5 LoginProcessor.java 185
10.1.6 WebRequestBrorker.java 187
10.1.7 JSFActionDispatcher.java 190

7

List of figures

Figure 1.1: Electronic retail industry business processes 14
Figure 1.2: Examples of generic and customized workflows 15
Figure 1.3: Examples of generic and customized sales invoice views 16
Figure 1.4: A single company base simple work flow 18
Figure 1.5: Single company business system over service oriented platform 19
Figure 1.6: Multi-companies e-business systems over one enterprise system 20
Figure 2.1: Transition of Internet to web 2.0 (Hinchcliffe, 2007) 29
Figure 2.2: Web 2.0 product development (Hinchcliffe, 2007) 30
Figure 2.3: e-Business implementation process (Zhao, 2008) 33
Figure 2.4: A framework for the e-business system based on SOA (Juan, 2010) 34
Figure 2.5: e-business system architecture (Edzus, 2010) 35
Figure 2.6: Service oriented enterprise architecture (Zeng, 2009) 37
Figure 2.7: The SOCRADES integrated architecture (Dominique, 2010) 38
Figure 2.8: MerchantOS POS System (MerchantOS, 2007) 40
Figure 2.9: PHP Point of Sale System (PHPPointOfSale, 2007) 41
Figure 2.10 : ZohoCRM System (ZohoCRM, 2007) 42
Figure 2.11: SOAW2 model framework by (Omar, Abbas, & Bendiab, 2007) 44
Figure 2.12: SOAW2 in action (Omar, Abbas, & Bendiab, 2007) 45
Figure 2.13: Modular dependency in a system (Olson & Batni, 1997) 51
Figure 2.14: Request Broker Architecture as proposed by (Olson & Batni, 1997) 52
Figure 2.15: Agent based web services platform for Tele-portal (XiaoQin, LinPeng,
Lin, & Minglu, 2004) 55
Figure 2.16: Service mediation in ADSS (Koerner, et al., 1999) 56
Figure 2.17: Service composition model (Zhao & Tong, 2007) 58
Figure 3.1: Application of SOAW2 model framework on problem 62
Figure 3.2: W2ASVB - A new proposed model framework 64
Figure 3.3: W2ASVB in workflow - Example 1 67
Figure 3.4: Request brokering process on request (Binding data with service adapter)
... 68
Figure 3.5: Request brokering process getting data from service adapter 69
Figure 3.6: W2ASVB in workflow - Example 2 70
Figure 3.7: Profile factory in action 72
Figure 3.8: System components - Layered representation 73
Figure 3.9: Request use-case model 76

. lty diFigure 3.10 Request activt iagram 77
Figure 3.11: Sales person use-case model 80
Figure 4.1: An architectural design of a modified Web2.0 base model framework 86
Figure 4.2: System Manager Component sub-modules 88
Figure 4.3: Profile Factory sub-components and their relationship 90
Figure 4.4: Request broker sub-modules 94
Figure 4.5: User Interface sub-modules 95
Figure 4.6: AutI:entication Component 96
Figure 4.7: Service Adapter sub-components 97

8

Figure 4.8: User interface component designnent design 99
Figure 4.9: Systems class structure 100
Figure 4.10: Action management activity for make sale process 101
Figure 4.11: View management activity for make sale process 103
Figure 4.12: Action processor customization example 104
Figure 4.13: User Interface Customization Example 106
Figure 4.14: System initialization sequence diagram 108
Figure 4.15: Employee login sequence diagram 109
Figure 4.16: Request processing sequence diagram - Adding new invoice in the
database 110
Figure 5.1: System Initialization - Loading process of company profiles from
CompanyProfileJCML file 123
Figure 5.2: System Initialization - Initialization of request broker pool 124
Figure 6.1: System confirms addition of customer items on the sale invoice 131
Figure 6.2: System confirms collection of customer payments on the sale invoice .. 131
Figure 6.3: System confirms registration ofa new customer on the sale invoice 132
Figure 6.4: System shows the printable version of the sales invoice 132
Figure 6.5: Results of the execution time validation 135
Figure 6.6: Execution time of the ZohoCRM 136
Figure 6.7: Execution time of the Microsoft Dynamic 136
Figure 6.8: Results of the average cost per user validation 140
Figure 6.9: Profile factory initialization confirmation 143
Figure 6.10: Results of the scalability validation 145

9

List of tables

Table 6-1: Results of the execution task 135
Table 6-2: Average cost per user of ZohoCRM 138
Table 6-3 : Average cost per user of Microsoft Dynamics 138
Table 6-4: Average cost per user ofW2ASVB model 139
Table 6-5: Results of the average cost per user 139

10

1. Introduction

II

1.1 Web 2.0 based e-business framework
The development of the Internet and its integration with Web 2.0 has provided

users with sophisticated technologies which ease the process of carrying out their

day-to-day activities; this has enabled users to collaborate and interact with

systems seamlessly across various domains.

The development and advancement of the Internet has enabled users to complete

their tasks in less time and reducing delays associated with conventional methods

of interaction. At the same time, it has boosted efficiency and has helped

businesses to improve their sales, productivity and economy. However, as

mentioned in previous research (Chang, 2006) 'The dynamic, open and

convenient web environment not only boosts business potential and the economy

but also creates concerns of security, trust, privacy and risks', so users, before

utilizing facilities provided for their advantage, should consider and analyze

these aspects in order to ensure that they achieve what they require, or get the

maximum output from their interactions.

Innovation in Information Systems has changed the way people do business on a

global basis, although there are security concerns. During the last two decades,

the introduction of IT systems in business has offered new dimensions and

challenges to a wide range of different companies. However, existing e-business

systems are not affordable for all businesses, especially small retail businesses

(such as local shops). This is one of the major problems that need to be

addressed. Large businesses tend not to have such concerns, as their main focus

is in global expansion of their business.

The gap between large enterprises and small companies in terms of business

growth has widened as a result of rapid e-business transformation initiated by

12

large enterprises, and as a consequence, local retail shops are among the worst

affected. The "High-Street Britain: 2015" research report (published by the All-

Party Parliamentary Small Shops Group in January 2006), highlighted the

essence of small retail shops as:

"The vast majority of contributors agreed that all small shops are important to,

and influenced by, economic, social and political trends. The small retail sector is

a key driver of: entrepreneurship, employment, skills, local economies,

innovation, and sophisticated business networks, as well as accessibility to vital

goods and services, diversity, social inclusion and community activities" (Dowd,

2006).

In the context of the relationship between technology and business growth, it can

be concluded that the affordability of modern cutting edge technologies has

created discrimination in the UK business community, where one giant

organization can make significant growth on a daily basis by using sophisticated

IT systems; whereas small, independent enterprises (e.g. local shops) are losing

their businesses. Financial constraints are the most common cause of non-

investment in technology by small businesses; such organizations cannot afford

expensive IT systems and the associated maintenance and administration costs

due to more limited budgets and investment. In other words, smaller

organizations cannot take advantage of new technology because they cannot

afford to do so. This technology acquisition gap is now growing faster than ever

before.

1.2 Problem analysis
It is always helpful to understand the problem domain before considering the

problem in detail. In order to have a better understanding of e-business

13

frameworks; it is very important to understand the business domain in context,

such as the electronic retail industry. This section provides a high-level

description of the electronic retail industry, including how this industry works,

how individual business organizations run their businesses, what business

procedures are common amongst these businesses and which business procedures

are different.

Figure 1.t: Electronic retail industry business processes

Any electronic retail business consists of 3 core aspects known as sales, purchase

and stock management, as illustrated in Figure 1.1. Retail organizations run their

businesses on these three core aspects. For example, any retail company manages

the stock of its products, the sale of these products to customers, and the

reordering of stock in order to replenish products that have been sold. Regardless

of the company size, every retail company has to run this cycle in order for the

business to function.

These three core aspects are referred to as core business processes. At the basic

level, these core business processes consist of activities and tasks e.g. the "Make

14

Sale" activity is an activity of sale processing and consists of the following four

tasks:

• Entering customer information

• Scanning customer products

• Taking payments

• Saving and printing sale invoice for customer

These tasks are the standard tasks of sale activity, but the execution sequence of

these tasks may vary from one company to another. For instance, one retail

company might scan customer products first, take payments, record customer

details and finally save and print an invoice. While another retail company might

perform these tasks in a different execution sequence. The sequence of execution

of these tasks is known as workflow.

During analysis, it was noted that most small retail companies follow a common

sequence in executing these tasks compared to a few retailers that have a

different sequence of execution. Therefore, the common sequence of execution

can be considered generic workflows, whereas company-specific execution

sequences can be referred to as customized workflows. Figure 1.2 illustrates

examples of generic and customized workflows for the "Make Sale" activity.

} {

1' Sctln C:ultOm.r Produat.
2. SCln Payment.
3. Sean CUltomer InfanMtIon
4.S_ • Pltnt 'nvolce } {

t. Sdn CUltom.r ProdUC1l
, 2. $can C... tomer InfoRnation
3.Beln" VIM""".s.ve a Print Invole. }

Gtq,rig Wodraow ComD",y 1 : Cy.tom(Itd
WorkQoW

CoroDln\, Z i CVltom/ltd
WqrlrOott:

Figure].2: Examples of generic and customized workflows

15

Similarly, most companies share common presentation formats for representing

their business data compared to a few that have their own presentation format. In

general, this business data presentation format can be referred to as a view. For

example, in the case of a customer's sales invoice, the majority of retail

companies have their company logo printed at the top of their sales invoices,

followed by the shop address, telephone number, information for customers, and

then details of products purchased, payment information, VAT information and a

"thank you" message at the end. Only a few companies will have some variations

in the format of their sales invoices. Therefore, the common view can be referred

to as the generic view whereas the company-specific view can be considered a

customized view. Figure 1.3 illustrates examples of generic and customized

workflows for the "Make Sale" activity.

r: COMPANY LOGO " r COMPANY lOGO <, r COMPANY LOGO "xv'/. 81..... ABCTown, XVZSuwl, ABCTown. Mr. X John
VO<IBVN V0<I8VN XVZ S_I, ABC T.......

0i67ST8eS702 01873 7ae 5702 WiCt ..
Mr.X John PRQDUeD PURCHAseD PRODUCTS PURCHAIEDXV'/. SItH!, ABC TOWft.
W1CeHI
eBggU~e~HAlig I!AnWIIl UY!Wdl.......... .,..................
I!AXIII!;!a1i Mr.X John XYl 11tftt. ABC T................. XVZSI,",. ABCTown. VO<I'VN.......... W1CeHI 01513 78' 5702

TIIInk you torlll>llppfr!g wtlh 1M -, ThooIII you tor ItIoppI"II_ ut -, ThInII you tor lhojIpIng _ 1M

Gtnttic S". IOAIIUIIII" 1; "IIIWlIIIHl IOgDUl.ak I; !<II.aIQlJltllHl
la~gl(lJ.l! BJllla'tSll11.1 k'lU §11.IQ"~. I!ltll

Figure 1.3: Examples of generic and customized sales invoice views

As a result of the discussion presented above on the electronic retail industry, the

following important conclusions are drawn:

16

• All small retail companies follow standard sales, purchase and stock

management business procedures.

• The majority of small retail companies share common workflow patterns

(i.e. generic workflows) and views (i.e, generic views) during their daily

business activities.

• Only few retail companies apply different workflows (i.e. customized

workflows) and views (i.e. customized views) during their daily business

activities.

• Some retail companies have a combination of both e.g. generic workflows

with customized views; customized workflows with generic views; or in

special cases, a combination of generic and customized workflows with a

combination of generic and customized views.

No business can survive only on its core business processes. It also requires other

supporting business processes. Combinations of core and all other supporting

processes define the Company Business Process Infrastructure (CBPI). Figure 1.1

represents a typical business process infrastructure for an electronic retail

company, where sales, purchase orders and stock management business processes

exist in the core process, and other processes such as marketing, accounting,

website and logistics support the core business process.

1.2.1 A simple workflow

In a single company system development scenario, information architects usually

transform the business activities into services. These services contain the

implementation of both data logic and workflows specific to that company.

Developers then connect user interfaces (i.e. views) with services to make a

17

system capable of performing operational requests. An operational request is a

request which is initiated by the user via a user interface for data processing

purposes.

Op... Uon.'
R.c!u•• t.

U•• r

•
SALES

• Services

• PURCHASE
• Services

•• STOCK
Services

Figure 1.4: A single company base simple work flow

In a traditional Web 2.0 based system, operational requests are usually mapped to

services by hard coding the name of the service in a user interface (e.g. an HTM L

form), as shown in Figure 1.4. After the service finishes dealing with the request,

it sends back the response to the user by redirecting it to another user interface

e.g. a confirmation page or an error page. When such a system is amended to

meet new requirements of a business, new services and user interfaces are added

to handle the new operational requests.

18

Company

Views

Figure 1.5: Single company business system over service oriented platform

Figure 1.5 illustrates a single company business system infrastructure. It consists

of services S 1, S2 and S3 and a set of views. Such services encapsulate both

logic and the workflow implementation of company-specific business activities.

Views (i.e. user interfaces) call these services for processing data and output

results are sent back to the user via the user interfaces. In this simple case,

explicit request management is not required as user interfaces know which

services to call for data processing and services know which user interface is

needed to send response back to the user. A web application server performs this

request-response routing job automatically.

1.2.2 A complex workflow

A single company system scenario is transformed into a complex state when the

idea of developing an enterprise system which not only holds, but also provides,

sharing and customization of standard POS business logic is desirable. This

enterprise system ideally encapsulates the standard business logic in its core, and

facilitates multiple retail companies in executing sales, purchase and stock

19

management business procedures. Figure 1.6 illustrates the concept of such an

enterprise system.

Views Workflows

Figure 1.6: Multi-com panies e-business systems over one enterprise system

The core of this enterprise sy tem is referred to as the core platform. Initially, to

build up this enterprise platform, work flows of each company need to be

separated and segregated into one of two categories, namely generic and

customized workflows, Subsequently, the core business logic (data persistence

logic) that is embedded inside these generic and CLl tomized workflow need to

be extracted and will become part of the core platform. In next phase, each

company's views need to be separated and segregated into two categoric,

namely generic view and customized views. Thi: separation of views,

workflows and core business logic create a 3-dimensional ystem, as shown in

Figure 1.6.

To achieve the propo cd framework model, the f llowing key question need to

be answered:

20

• How could the scenario presented be modelled in the proposed

framework?

• Are existing Web 2.0 model frameworks capable of solving the above-

mentioned scenario?

• How would generic workflows be shared between retail companies?

• How would the customization of these generic workflows be achieved for

a retail company (or companies) without affecting others?

• How would a generic view be shared among retail companies?

• How would the customization of these generic views be achieved for a

retail company (or companies) without affecting others?

• How would the composite combination of different views and workflows

be achieved for a retail company (or companies) without affecting others?

These research questions reflect the complexity of this scenario and need to be

addressed in order to find a solution.

1.3 Motivation
This thesis is motivated by the requirement of developing a robust, reliable,

efficient and novel framework by using Web 2.0 technology and SOA (Service

Oriented Architecture) that will serve as a front and middleware collaboration

model between data persistence logic and operational requests. This framework

will serve as a mediation platform for request brokers. Itwill provide a high level

of abstraction by encapsulating low level details of the system such as request

handling, request mediation, response handling, service loading etc. In order to

overcome the hard-coded service mapping to interfaces, with no customizable

21

business logic and no generic customized workflows problems etc. These are the

essential requirements for swiftly converting SME's business into a single e-

business platform.

The intended outcome of this research is to provide a platform that will be able to

be used as a shared platform for small retail organizations over the Internet. No

additional setup, installation, client-side hardware or change in operating system

will be required. The system will run over a standard Internet browser and will

have the look and feel of a desktop application. On payment of a small annual

fee, retailers will have access to an environment to transform their manual day-

to-day business processes into e-businesses, and will also be able to manage and

customize it according to their individual needs without any major modification

in the platform.

1.4 Research Requirments
The following research requirments are posed prior to the main investigation on

the basis of the problem analysis.

1.4.1 User request management modelling

Requests can be modelled, located, tracked and then processed based on the

request and user profiles to obtain the desired results by using the request

management technique. Moreover, to certain extent, this technique handles

actions and view management for users' requests. It will allocate a request broker

to move the request from a waiting area to the processing area, and start the

analysis of a request header. It decomposes the request into sub sections and then

allocates the data portion of the request to services modules and finally broking

back the responses to the users via the presentation layer.

22

1.4.2 Workflow modelling
Various generic and customized workflow mechanisms can be identified using

different request handling and mediation mechanisms and subsequently the core

business logic (i.e. persistence logic) will be embedded within this workflow, in

order to overcome the hard coded service mapping between the user interface and

business logic.

1.S Overview of the following chapters
Chapter 2 reviews relevant past work in the field of SOA-based e-business

frameworks. It starts with the research of Omar Abbas and Bendiab (2007) on the

proposed model framework for defining Web 2.0 components and their relations.

It also includes general request handling techniques useful to enhance the

performance of SOA bases frameworks.

Chapter 3 describes the conceptual modelling of the framework. It describes the

fundamental changes in the proposed framework. It also describes the

hypothetical working mechanisms of the proposed model framework within the

layer representation.

Chapter 4 describes the details of the proposed model framework architecture. It

describes the novel modules involved in complete request workflow and use

cases.

Chapter 5 describes the implementation of different modules such as request

management, service adapters and system manager. This chapter also discusses

request routing techniques used for processing and returning the results back to

the desired user.

23

Chapter 6 describes the validation process of the new e-business framework. This

chapter presents the set of instructions used for validation, the pseudo-code of

the executor and compares the results of the validation processes.

Chapter 7 offers conclusions, evaluating the overall effectiveness of the proposed

model framework described in this study, and a number of directions in which

future research could progress.

24

2. Literature Review

25

2.1 Introduction

This chapter focuses on an overview of the Web 2.0 SOA standard and the

techniques used in enterprise applications. The advantages of SOA-based

applications are compared to other similar applications in justification and

support of this research, and to discuss the possibility of transferring Web 2.0

SOA.

In an environment where changes are taking place at an increasingly faster rate

(Oosterhout, 2006) and organizations face intense rivalry, globalization, and

time-to-market pressures (Sambamurthy, 2003), the need for organizational

agility and information system agility is considered to be imperative for

organizations (Pankaj, 2004). There is considerable interest in service-oriented

architecture (SOA) as an agility-building vehicle among IT practitioners. A

survey of adoption trends reveals that SOA has become a key consideration for a

majority of businesses and is a prominent technology issue in the IT market. It

has been proposed as a mechanism to address alignment of IT with business

requirements and as a means to achieve IS agility (Bieberstein, 2005), (Kano,

2005). The demand for Web-based solutions and the push toward enterprise-wide

integration have led to the use of Web services as a building block for SOA-

based applications (Xiong, 2008), (Fan, 2011).

2.2 Brief overview of Web technology
In the last decade or so, Web 2.0 (Murugesan, 2007) ignited innovative and

successful web applications such as Blogger, Flicker and YouTube. Although the

term "Web 2.0" is regarded as a concept of user-centric web development

(Sinton, 2008), most Web 2.0-based software provides its own web services that

26

are realized in Representational State Transfer (REST) fashion. REST

(Mahmood, 2007) is a style of software architecture for distributed hypermedia

systems such as the World Wide Web. REST defines a set of architectural

principles (Pautasso, 2009) by which one can design web services that focus on a

system's resources, including how resource states are addressed and transferred

over HTTP by a wide range of clients written in different languages (Almeida,

2011).

We are in the process of moving from Web 2.0 to Web 3.0, however in order to

appreciate what is new about it and which version is working as a core platform

of all web applications, we need to examine the characteristics that defined the

previous and current versions.

The second generation of the Web is defined by the empowerment of the end user

actively to create content and participate in the Web to display them and relate to

other users. The emphasis here is on technologies that enable collaboration such

as social networks, RSS Feeds, Blogs, and content publishing services (for

images, text and video). Most of these tools are easy to use, which allows

virtually anyone to publish a variety of different multimedia content on the Web.

RSS feeds in particular allowed for the fragmentation of the "discrete page"

concept from Web 1.0. With powerful technologies such as AJAX (Barragans-

Martinez, 2010) in Web 2.0, it has become easy to create dynamic and interactive

pages that are built by taking information from different sources into a single

page, according to the interests of the user. Web 2.0 systems are systems

developed using Web 2.0 technologies. These systems offer a rich experience to

end-user by providing a desktop-like environment over web browsers on their

machines.

27

Web 2.0 is a second generation design pattern and business model for web

applications. The term was first coined by Tim O'Reilly in (O'Reilly, 2005) and

states that "Web 2.0 is the business revolution in the computer industry caused

by the move to the Internet as platform, and an attempt to understand the rules

for success on that new platform. Chief among those rules is this: Build

applications that harness network effects to improve as more people use them".

The term Web 2.0 is a triggers debate among the research community at present,

where some researchers are classifying it as a buzzword, whereas, others are

calling it a new concept - a concept which does not change the World Wide Web

specification but defines a new way of using it.

Web 2.0 is a new concept that is based on the idea of developing software as

service (i.e. SOA) by considering the Internet as a platform and utilizing the

power of user contribution towards its improvement (Carey, 2008). In other

words, it is a concept of building server-side software as opposed to conventional

client-side software where end-user feedback plays a vital role in its evolution.

The implementation of software in the form of services on a server-side rather

than a client-side is beneficial in terms of providing organization with central

management and control without the need of upgrading hardware and software on

client machines. Furthermore, using such a technique will not require periodic

patch releases to end-users (Clarke, 2010) and (Felber, 2004).

28

Internet - 24 Years Old 1.1 BIllion users

Web-iS Years Old 500 Million Web
Nodes

Web 2.0 70 Million Blogs
Exponential

Growth

E2.0 ?7?

Jan. 1". 198J
IPlrlr9ffl!llls
Lm,nc/lOd

Augwst ff'. 1991 Early 2004.
T/J9 Web Becomes ~b 20' T9m) Is
Publicly Available Coined

Ewly 2006
"Enterp..1S9 2 0"
Is Articulated

Figure 2.1: Transition of Internet to web 2.0 (Hinchcliffe, 2007)

Figure 2.1 depicts the exponential growth of the Internet in terms of users.

According to Internet usage statistics published by Internet World Stats

(WorldStats, 2007) nearly 1.7 billion people have been connected with each other

on the Internet so far, and these figures are increasing exponentially on a daily

basis. Due to the great popularity of the Internet in terms of social networks,

nowadays the Internet has moved into a second generation i.e. it is now a self-

contained operating platform (Dubney, 2004) - a platform that is technology

independent, device independent, always available, accessible to everyone and

ever-growing; the more people use it. Software enterprise has realized the power

of this new emerging platform and the production of Web 2.0 systems is a

current "hot topic". Interactive encyclopaedia, Blogs, and Mash-ups are example

applications of the Web2.0 era (Dubney, 2004).

"Web 2.0 is a transformation of web-applications from information to services of

contents and functionality, thus becoming computing platforms serving end-

users. It promotes concept of community-based collaborative environment and

29

hosted services - such as social networking sites, wikis, and folksonomies -

which aim to facilitate collaboration and sharing between users" (Web 2.0,

2007).

Web 2.0 App
Back Office

Infrastructure
reuse and
extenSion

UserControlled]
Elements

FeaWrils and capabili'ies
• User (/e(flllnfl ronl"'buJrons

CusromllT community IJnd support
Mbdl ~ling and Il<iWlr'tisirlii

• (J$ltffeIiHJOfttlt; (RIt¥/ftQ. ~ ,,~/ftQ
Rt:viclws Comment >

• O.
Co-nII'"OIover

If>tl~AlllfIg m"$$ of
hsrd 10 recrOil
dala ('coll<H:tfo,os
~/'I!I~J:letlCe')

continuous
refinement

• ArchltsCWfS of PartJoipst.ion
• Gnv flO rI(dlld cOII$ttgillr:
• MontltllM.on IIItd ~ ve"'J8 $~ fU>11

Figure 2.2: Web 2.0 product development (Hinchcliffe, 2007)

Figure 2.2 illustrates a typical Web 2.0 system development scenario along with

the description of the user and institutional controlled elements. Institutions build

up the functionalities in the form of web services and then Web 2.0 systems (or

Web 2.0 products) are constructed using the power of these services. This is an

approach to building new applications from existing functionalities. Web 2.0

systems also allow access to their functionalities in the form of API to other

organizations acting as partners for the purpose of sharing functionalities. End-

users play the role of consumer along with contributor in Web 2.0 scenario and

contribute by supplying constant feedback for the improvement of the system

(Dorn, 2009) and (Hsinchun, 2010).

30

2.3 Enterprise application architecture
Rapid advances in industrial information integration methods have spurred

tremendous growth in the use of enterprise systems. Consequently, a variety of

techniques have been used for probing enterprise systems. These techniques

include business process management, workflow management, Enterprise

Application Integration (EAI), Service-Oriented Architecture (SOA), grid

computing, and others. Many applications require a combination of these

techniques, which is giving rise to the emergence of enterprise systems (Li Da

Xu, 2011). The emergence of service-oriented technologies, dynamism and

flexibility are becoming the core characteristics of modern e-business processes,

such as business application integration, distributed auction services, and order

processing. Within a service-oriented architecture (SOA), an organization may

encapsulate and publish its applications as services, and select and interact at

runtime with the services provided by other organizations. However, such

dynamic interactions at runtime raise immediate problems of security, trust, and

dependability. Until these problems are addressed and solved satisfactorily, the

potential of automatic e-business processes will be severely restricted. In a

dynamic and distributed environment, it is often difficult for a complex business

process to follow a static business specification. The execution order of its

activities at runtime is usually unpredictable, and on some occasions, the actual

execution of a process can be "one-of-a-kind" (Jie Xu, 2012).

According to (Choi, 2009) the emerging e-business practices require integration

of core interoperable business processes to be reflected in e-business standards.

Unlike traditional standards efforts that focused on IT infrastructure (e.g., data

network communications protocols, physical interfaces, data format, etc.), the

more recent trends and expectations in setting standards for e-business has been

31

to focus on interoperability across business functions and verticallhorizontal

collaborations. In the field of e-commerce/e-business, such interoperability may

be viewed from both business operations and IT infrastructure perspectives

highlighting:

• Business aspects such as business data and information, business

conventions, agreements, and rules among organizations and

• Technical concerns such as protocols and messaging architectures

necessary to support business process execution at the transactional level.

In the research of (Zhao, 2008) e-Business implementation process is

characterized with three dimensions and six constructs relating to e-business

strategy implementation as illustrated in Figure 2.3, the six constructs are

strategic initiative, information systems, partner e-readiness, IT human resources,

information sharing capabilities (ISCs), and collaborative process capabilities

(CPCs). This research describes and recognizes the effect of strategic initiative

on deploying and utilizing IT related resources for creating e-business

capabilities and the causal relationships. This leads to a better understanding of

the underlying mechanisms in the e-business implementation process of the firm.

In the model, ISCs and CPCs are conceptualized as new types of e-business

capabilities to improve organizational performance. They are viewed as

significant indicators for successful e-business strategic implementation.

32

, ,, ,,,,:L....- ..J

,,..----..,,
I,,:"----_.....
I: ...-------,
I,
L_L._-_-__-_-__-_-_-__-'_.!

Second-order construct
r- ..-- ...--------.
, I

Figure 2.3: e-Business implementation process (Zhao, 2008)

2.3.1 E-business SOA-based layer Architecture

Juan (2010) provided a framework for the basic e-business system based on

SOA. The whole proposed model from bottom to top is composed of 5 basic

layers: network, logistics resources, services support, service integration and e-

business, as shown in Figure 2.4.

33

5 sen

Figure 2.4: A framework for the e-business system based on SOA (Juan, 2010)

The e-business layer includes intranet portal, extranet portal and Internet portal.

This layer provides information of supply and demand, logistics news, logistics

knowledge, and online logistics business consultation etc. The e-business layer

is a unified system interface and directly interacts with the user (including

industrial and commercial enterprises, transportation company warehousing

company, distribution, circulation and processing, etc) (Juan, 2010).

34

2.3.2 E-business SOA-based XML Schema Architecture

888888
Bookend systems

"udh

Figure 2.5: e-business system architecture (Edzus, 2010)

E-services are incorporated; (Edzus, 2010) proposed e-business architecture in a

number of parts. It includes all the components, conditions and mutual links

required to design e-services. Figure.2.5 shown how the systems and system

components used in the service are combined into unified e-service system

architecture (Edzus, 2010). For every data object that is required in the

implementation of an e-service, an XML schemas catalogue has to be developed.

Data called from the relevant functional system is done by means of web

services. When web service calls are performed then metadata that describes the

request is sent. In addition, any information that is required for audit trails is sent

together with the metadata. Web services can be distinguished between two

groups: simple and complex. Complex web services are logical combinations of

35

several simple web services that result from process integration requirements; a

combination may comprise simple services of one or several independent

functional systems. Complex web services can be executed by using a BPEL

processor. A BPEL processor is used as the orchestration (integration)

environment for the e-service's web services. Portals, one-stop agency

applications etc ensure the delivery of e-services to users. E-service entry forms,

stop points, information on payments and execution results are transferred

through HTML or HML pages that can. be used in the portal to implement the

service using the XSLT transformation. Web service and e-service holders, i.e.

institution specialists and system administrators who are responsible for the

maintenance and development of web services and e-services, must have an

ability to intercommunicate on various issues connected with the execution and

advancement of web services and e-services. Also, asynchronous e-services have

to be executed. Messaging systems are designated for this purpose. The

messaging system enables working with text messages and work tasks (Edzus,

2010).

2.3.3 Service Oriented Enterprise Architecture
The service-oriented enterprise architecture (SOEA) is a development and

operational architecture for enterprise integration in a service oriented computing

environment (Zeng, 2009). SOEA provides an integrated development and

execution environment based on SOA and model-driven architecture (MDA) as

illustrated in Figure 2.6.

36

(

Ser icc:
infrastructure

User portal)

I Organization I I Process IEnterprise model model

, integration model I Data I I System I I Service Imodel model model

Business
modeling

Service
modeling

Implementation
modeling

< Service bus)
(Service 0 0 C) C)C))repository

(Service Cl L 0 0 0 *]adapter

Model
transformation

Model
management

Model
deployment

Figure 2.6: Service oriented enterprise architecture (Zeng, 2009)

Business processes supported by service oriented enterprise architecture (SOEA)

include not only all traditional process elements, but also networked services

(NS). Thus, a service-oriented business process (SOBP) may comprise the

following three types of activities:

• The manual activity means an activity implemented by human beings.

People can be helped by resources including enterprise applications and

services.

• The network services activity represents an activity implemented by the

NS which is normally called a service.

37

• If an activity is implemented by an enterprise application system that is

not an NS, then the activity is an application-system-activity (Sen, 2009).

2.3.4 SOCRADES Integration Architecture
The research of Dominique (2010) proposes a process and a suitable system

architecture that enables developers and business process designers to query,

select, and use running instances of real-world services (i.e., services running on

physical devices) dynamically, or even deploy new ones on-demand, all in the

context of composite, real-world business applications. The proposed model IS

illustrated in Figure 2.7.

-"~"''''''''-'-''''''• !!mil,"," fIlHOtJll'm """"nu
• Custr;wy., I 'LJ~.f ftdIIIOrlflNp :uure,..
• Gl4:t<lYCh ... """"" _.

'

Loo .. Om""......,..., __ ,
. Inlll.. . ,.,.,"', •...,..,

I -"-·1 0_ I.... CMJr • fth"'.I~

Figure 2.7: The SOCRADES integrated architecture (Dominique, 2010)

38

The process described in Dominique (2010) has been developed and implemented

as part of the SOCRADES Integration Architecture (SIA) (Souza, 2008),

(Karnouskos, 2007), (Spiess, 2009), which is depicted in Figure 2.7. The role of

SIA is to enable the ubiquitous integration of real world services running on

embedded devices with enterprise services. Web service standards constitute the

de facto communication method used by the components of enterprise-level

applications, and for this reason SIA is fully based on them. In this manner,

business applications can access near real-time data from a wide range of

networked devices through a high-level, abstract interface based on web services.

Furthermore, the SIA also supports RESTful services in order to be able to

communicate with many emerging Web 2.0 services. This enables any networked

device that is connected to the SIA to participate directly in business processes

while requiring neither the process modeller, nor the process execution engine to

know about the exact details of the underlying hardware (Dominique, 2010).

2.3.5 MerchantOS
MerchantOS is a Web 2.0 based POS system developed by a US-based company.

The system is completely Internet based and does not require the installation of

any additional software. Interested companies (having one or more POS) can get

access to the MerchantOS by paying a small monthly fee. The cost of the system

is customizable depending on the features required. It ranges from $29.95 to

$99.95 per month. The system offers the transformation of manual POS,

Inventory Control and Customer Relations business procedures into e-business.

Figure 2.8 illustrates the login page of MerchantOS system.

39

System Login
MerchantOS

login Imydemo

Password 11

Figure 2.8: MerchantOS POS System (MerchantOS, 2007)

Complementary to all offered features, the system requires installation of related

hardware such as receipt printer, cash drawer, label printer, barcode scanner and

credit card reader. Moreover, MerchantOS only offers standard business

procedures and user interface to run POS system and it does not offer any

customization facilities, such as customization of standard business logic into

company-specific business logic, or customization of standard user interfaces

into company-specific user interfaces.

2.3.6 Retail-J

Retail-J is another Web 2.0 based integrated suite of in-store and central

applications for medium and large size retail companies by Torex Retail. Retail-J

a complete retail solution offering features ranging from multi -version POS to a

complete back-office system. The POS system offered by Retail-J is not only

40

capable of running on web browsers, but can also run on tills and hand held

mobile devices. Successful implementation of this system has recently been

achieved in 250 UK based stores of Hutchison 3G. Despite having good features

such as cross-platform portability, this system is only affordable to medium and

large size retail organizations and requires extra hardware installation.

2.3.7 PHP Point of Sale

The PHP Point of Sale system is the result of efforts by the software developer

community. The purpose of this system is to help small business organizations in

achieving e-business transformation. This system contains an implementation of

industry-specific business procedures for sales, purchases and stock management

activities and offers a range of standard user interfaces. Figure 2.9 presents a

view ofa sales screen from the demo version of the system.

Sllopp"" Cart

lh'fI1on 1'.11\ N~.II tnil Pllu 'tu~, Qrs-.ilJr 1-~"tldtd ~ •• l~Jd.t. ler(fart orr
[erltltl S20GIOC.ild ~e-. [III ,S2060 ~O·I.P.rc(l1l10

If~tl:).} central do nlarme ~ U. l1li SIl6 00 I!1:mII 0',', }It>rrrni 0

SlIe Sub Total; 1120.00

Tu: 116.60

Sal. TO'lll C.,r. $136.60

Figure 2.9 : PHP Point of Sale System (PHPPointOfSale, 2007)

41

Despite being an open-source project, this POS system is not usable for small

retailers who require business logic and/or user interface customization. If a

retail company decided to use this system they would have to hire an IT

professional to undertake the customization needs of the business. Most

importantly, no technical support and API is available from sourceforge;

therefore the upgrade and maintenance responsibility of the system relies solely

on the organisation using it.

2.3.8 ZohoCRM

Zoho is one of the prominent Web 2.0 Companies which is progressively making

their contribution to the Web 2.0 field. They have transformed various desktop

applications into Web 2.0 systems. From a large array of their Web 2.0 products,

they offer ZohoCRM, which is an affordable on-demand customer relationship

management system with integrated POS. Any individual or company that runs a

retail business can access the system, and is allowed to create up to three free

user accounts. Zoho start charging retailers from fourth user account and the fee

is as little as USD 12 per user per month.

CRM
II '" , ... tI. ...~....,,'!!.,t I U''.,!:\1't. 1'»1~,.tl .. l. ~ ""''''''U''~ u, ." .. " "U".hI.~~" Ut i" I ''1~'.'•• "" .!O'I!~.DN_J..t D

... .1ul,. ~nn7 • P..."h ..:t. AlIl.arh

""""""" ,~,
""""""'"

• 9 10 J.l .u 13 14

16 1. 11 11 1'" ac 21

n Z) z.4 n 26 Z' 21

U 3tI !It

Figure 2.10 : ZohoCRM System (ZohoCRM, 2007)

42

In addition to standard features, ZohoCRM also offers limited customization of

various business reports to its client companies (see Figure 2.10). Despite

offering valuable features such as limited free access and customized business

reporting, ZohoCRM does not facilitate on-demand customization of its business

logic and other user interfaces.

2.3.9 A brief analysis about enterprise applications
The thorough review of the current Web 2.0 retail systems such as MerchantOS,

Retail-J, PHP Point of Sale and ZohoCRM etc that are built upon the existing

SOAW2 model framework has shown the lack of fundamental functionalities that

are desirable in an e-business framework for SME's, such as on-demand

customization of business logic and user interfaces. A system like ZohoCRM

(zohoCRM, 2007) has shown some capabilities of user-interface customization

but it is only limited to the customization of business reports. One of the

important observations is that, none of current Web2.0 retail systems are capable

of providing on-demand customization of business logic due to the fact that

applied SOAW2 model framework does not support explici t request

management. The current SOAW2 model framework directly exposes user

interfaces to business services that reside within the resource container. This

direct exposure results in the form of user interfaces that contain concrete

business services mapping instructions. Due to fundamental shortcoming of the

model framework, developed systems do not provide on-demand customization

of business logic at run-time. Secondly, the model framework does not provide

any extra layer for dealing with this customized business logic. Therefore, an

investigation is required to propose a new Web 2.0 model framework that will

overcome these fundamental shortcomings of SOAW2.

43

2.4 Web 2.0 based SOA models
Web 2.0 is a useful concept that is based on the idea of developing software as

service by considering the Internet as a platform, and utilizing the power of user

contribution towards its improvement. In other words, it is a concept of building

server-side software as opposed to conventional client-side software where end-

user feedback plays a vital role in its evolution.

A research conducted by (Abbas, & Bendiab, 2007) proposed the model

framework for defining Web 2.0 components and their relationships. This

proposed model is called SOAW2. They apply the SOA approach to underline

the important components of Web 2.0 and SOA technologies in 5 core and 3

managing and protection support layers, as illustrated in Figure 2.11.

User

User Interface layer

Monitoring HIStory log Intel~nt
Inte ace "2

'"'" i~support functions c

1 15'"
s: ~EE • $2

E Deploy Discover Invoke GIg r~GI i-ii. ~"2... ~~ ~~~ Control system ~c'
a tB i~

18-3: ...~
Replication Fault tolerance ~E s.,

8-
Resources (Infrastructures and services) ~.

~;
Web services

!it'
Communication 1:

g
Intelilgent Monitoring
services resources

Figure 2.11: SOAW2 model framework by (Omar, Abbas, & Bendiab, 2007)

44

Web 2.0 systems are incomplete without the user, and hence their model

framework includes a 'User' as a separate layer. The Resources layer in SOA W2

acts as a container for core services such as financial services, stock services etc.

These services playa part in building additional services. The Control system

layer represents a placeholder for a model manager which manages and controls

the services sitting in resources layer. The Support function layer contains

standard SOA functions for service providers to deploy services. The Discover

and invoke functions are reserved for the user interface layer. The user interface

layer contains set of user interfaces for end-users and acts as a gateway for users,

to enable access to services. The User layer represents an end-user (i.e. a

consumer) who interacts with the system by means of the user interface layer.

The remaining three managing and protection support layers encapsulate the

overall management and support function capabilities of the model framework.

Web 2.0 framework
User

Interface
PrOYIdersUsers+r----------_

Knowledge
Administrator

authority
Collected "y---_

data

Service level
agreement

Managing
user

framework

Control
system

Controlling resources
Managing
protection

system

Figure 2.12: SOAW2 in action (Omar, Abbas, & Bendiab, 2007)

45

Figure 2.12 illustrates the collaboration between different components of the

SOAW2 model framework while in action. It is worth mentioning here that

SOAW2 is not a new model framework, rather, it is an outcome of research

activity that analyzed in depth the internal working models of existing Web 2.0

systems.

The Service Oriented Architecture (SOA) is becoming a mainstream approach for
designing and integrating enterprise applications. The research conducted by (Sheikh,
Aboalsamh, 2011) proposed a mechanism to convert the old systems in to SOA
systems. The proposed solution applies the following principles of service-orientation:

• It is impossible to isolate SOA services directly while business logic is
bundled with presentation logic. Therefore, an appropriate restructuring and
reorganization of the code is required so that business functions are isolated as
candidate services or service components. This technological dimension of
reengineering towards SOA represents an architectural transformation towards
a multi-tiered architecture. Typically 3 tiers are used.

• Service-orientation is based on an assumption that services ought to interact

without significant, cross-service dependencies. Hence, rearranging different
functionalities is required to provide a sufficient degree of independence.

• Legacy applications normally contain elements that are fine-grained in nature,
for instance components with operations that represent logical units of work.
An example would be reading individual items of data. Object oriented class

methods are an example of such fine-grained operations. The concept of

service is of a more coarse-grained nature. SOA services represent logical
groupings of fine-grained operations that work on top of larger data sets, and
in general offer an extended range of functionality.

These services are made available to the Enterprise Service Bus (ESB) acting as a
mediation, service and protocol virtualization. This layer is accessed by the top level
business process management and presentation applications / systems. This research
did not address problems such as missing data packets between the business layer and

the user interface or load balancing of the requests etc.

46

In the last decade or so, we have witnessed the software industry moving towards

service-oriented architecture based technologies. Especially in the business software

domain, complex applications based on the composition and collaboration among

diverse services has appeared. According to the research conducted by Dominique

(2010) the service-based information systems blur the border between the physical

and virtual worlds, providing a fertile ground for a new breed of "real-world"

applications.

The advent of Service Oriented Architectures (SOA), and the automation of business

processes can be aided by service composition (ErI, 2005) which is dynamic and

creates opportunities for runtime management. A single business process can

encompass many different functional components such as orchestration engines,

legacy middleware, application servers, data transformation hubs, and web service

facades. Governance of such complex business processes requires a monitoring

system as a starting point for the enforcement of relevant management decisions. The

motivation for monitoring of frameworks, middleware solutions, engines, and

databases has been addressed in many studies (e.g., (Wang, 2009), (Simmonds, 2009),

(Pistore, 2004), (Liu, 2007), (Yuan, 2008), including, among others, performance

evaluation, security evaluation, testing conformance with requirements, ensuring

stability, and detecting anomalies. This motivation is especially important in

distributed, loosely coupled and dynamic SOA systems, where the required level of

Quality of Experience (QoE) and Quality of Service (QoS) cannot be ensured without

sophisticated monitoring of interactions between consumers and providers. Ongoing

studies related to SOA system monitoring focus on specific elements, i.e.,

orchestration engines (Baresi, 2005), (Barbon, 2006), (Moser, 2008), (Wetzstein,

2009) and web services (Wang, 2009), (Simmonds, 2009). However, this is not

enough for end-to-end monitoring of SOA systems, which often span multiple

functional elements and automate cross-organizational business processes.

Open Service Process Platform 2.0 is a central SOA infrastructure including several

extensions. This platform can be used as the basis for the development of further

extensions.

47

The unique features of the platform are:

• Orchestration and execution of processes in an easy way.

• Arbitrary extensibility with regard to simple specialization for various

domains.

• Central infrastructure within an organization.

• Full accessibility through Web 2.0 technologies.

Firstly, with the help of this platform, it should be possible to both orchestrate and

execute processes. Secondly, access to the platform should be available from

everywhere, so that, for example, the current state of the process execution can be

monitored, necessary interaction with the processes can be performed, process

definitions among users can be shared and users are able to design processes in a

collaborative way. Thirdly, the platform should be easy to extend with the help of a

plug-in concept to make it possible to customize it for different domains. Fourthly, the

platform should take on the role of the central process platform within an

organizational unit, i.e., we require repositories for services and processes as well as a

rights management system.

The research of (Marek, 2012) presents an end-to-end solution on SOA systems by

focusing on the Integration Layer, part of the SOA Solution Stack. The proposed

architecture provides detailed architectural definition of an SOA across nine layers,

which aim to reinforce business value. The stack defines five horizontal layers:

Operational Systems, Service Components, Services, Business Process, and

Consumers. The horizontal layers are cut across by five vertical layers: Integration,

Quality of Service, Information architecture, Governance, and policies. Integration

layer focuses on bringing together layers of Service Components, Services, and

Business Process. This model points to the Enterprise Service Bus (ESB) as the most

appropriate solution for implementing the Integration Layer, whose purpose is

mediation, routing, and transporting service requests from service consumers to

correct service providers.

The Service-oriented architecture is an architectural paradigm for building software

applications from a number of loosely coupled distributed services (Baker, 2012).

This paradigm has seen wide spread adoption through the web services approach,

48

which has a suite of simple standards (e.g. XML, WSDL, and SOAP) to facilitate

interoperability .

2.5 Request management principles
One of the major deficiencies of the SOAW2 model framework is the absence of

a request management mechanism. SOA (Nickull, 2007) allows enterprises to

centralize computer-based services and offer those services over a network. On

the basis of a published interface, the service can be used or a platform-

independent basis within and outside the enterprise. The concept of a SOA is

often realized by web services (WS). The interface ofWS is usually described by

WSDL (Web Service Description Language) in accordance with SOAP (Simple

Object Access Protocol). Both standards, SOAP and WSDL, are based on XML.

Interaction with web service requests and responses acts as events within the

environment (human users or other systems). Requests' function calls WS which

will supply appropriate responses. In spite of its functional correctness, a request

may be useless if it is not delivered "in time", e.g., a request for a stock price is

of no interest if it is not delivered before the next change (Nickull, 2007). Taking

such time constraints into account requires time monitoring from request to

response; in other words, we need a real-time service-oriented architecture

(RTSOA). Time can be measured either server-side or client-side. The time

difference between client and server time primarily depends on SOAP calls

which entail intense XML parsing. Also the size of a response plays an important

role: A search function, triggered by a single query, can return huge amounts of

entries. To this end, subsequent sections contain discussion on the classification

of request management techniques followed by a detailed review of relevant

request management techniques. There are only two types of request management

49

technique currently available: conventional, and request brokerage. The

following paragraphs elaborate further on this request management technique.

2.5.1 Conventional technique
The conventional request management technique is a technique that is commonly

used in traditional web-based systems. In this conventional technique, request

management is automatically performed by the application server. For example,

in an ordering system scenario, on submission of a sales order form by a user, a

request goes back to the application server. On arrival of the request, the

application server automatically redirects it to the designated sales order service

for processing. At the end of processing, the service directs control back to the

application server by specifying the appropriate response page address (e.g.

confirmation or error page). Finally the application server loads the response

page and sends it to the user. The biggest disadvantages of this technique are its

limited usage and incapacity of handling complex scenarios, such as a generic

business login to handle the "make sale" process etc. The request brokering

technique has proven its successful implementation in many complex scenarios,

such as in (Hitachi, 1999), (XiaoQin, 2004) and (Yerom, 2009) etc.

2.5.2 Request broke ring technique
The concept of dynamic service binding through request brokering is an active

research topic. This section presents findings of a thorough literature review of

the latest research attempts made by different researches in the field of request

brokerage. It also elaborates their respective drawbacks and associated issues.

The primary focus of this effort is to find out any attempt which can resolve the

request management problem, as discovered in SOAW2 model framework. If

50

not, then it could at least form the basis that justifies the need of a new request

brokerage technique.

FunctIOn can Path _ Dill Refnnct Pith _

Figure 2.13: Modular dependency in a system (Olson & Batni, 1997)

What does request broke ring replace? It is an important question that needs to be

addressed. Figure 2.13 illustrates a modular system, in which different modules

are connected to each other. The Figure shows an intensity of modular

dependencies within a system. This modular dependency between different

modules makes any system very complex thus limits system scalabil ity and

increase complexity. This modular dependency is very common in network based

system and to reduce this modular dependency (Olson & Batni, 1997) proposed

the concept of service brokerage architecture. Figure 2.14 illustrates their

proposed request broker model.

51

Figure 2.14: Request Broker Architecture as proposed by (Olson & Batni, 1997)

In their proposed model, they connect every component with a centrally placed

request management component known as the request broker. Introduction of this

request management component synthesizes the way different components

communicate with each other.

This concept of request broker-based system architecture became the focus of

interest for the research community and is still gaining popularity. Request

brokerage in service-oriented architectures is an active research area. Research

community explored the suitability of a request brokerage in SOA based systems,

such as in (ACTS, 2000) and have proposed some stable models in which a

request can be dispatched to the most suitable service(s), transparent to the user,

with the help of request brokers. Literature is scarce on the topic of dispatching

back a response from the service to the most suitable user interface. In simple

terms, current request broker architectures support action management but not

view management.

52

(Howard & Kerschberg, 2004) proposed a complete framework called KDSWS

(Knowledge-based Dynamic Semantic Web Services). Their proposed framework

approach is mainly based on a multi-agent system in which web services have

been converted into semantic web service. KDSWS's brokerage technique is

based on four agents, namely broker agent, classification agent, discovery agent

and selection agent. The framework applies a rule-based approach to facilitate

the run-time generation of the dynamic profile. Using this dynamic profile

brokers discover, negotiate and finally bind the service that best meets the user's

needs. In contrast to offered features, this proposed framework does not facilitate

a response mapping back to a user-defined interface. In addition, the proposed

model is not applicable in situations where a request demands execution of more

than one service or requires a partial collaboration of different services in order

to fulfil user needs.

In other research (Beck, Konana, Liu & Mok, 1999) proposed an idea of a next

generation electronic brokerage for performing active and real-time

functionalities. Since every standard brokerage system follows a set of activities

to bind services, the execution of these activities sometimes becomes very costly

especially when a user request is of a complex nature involving time as a major

factor. The proposed brokerage model in this research deals with the timeliness

factor by involving an active database in the brokerage scenario. This model

allows the user to express complex preferences in the form of Event, Condition

and Action (ECA) rules. Every request gets forwarded to the request brokers

along with these ECA rules. Brokers continuously monitor the request and if a

specified event occurs, and the condition (which is a predicate or database query)

becomes true, they execute the specified action(s) in a timely manner. These

actions, triggers the pre-complied routines of attached pro-active databases.

53

These pro-active databases run as a part of brokerage system and support pro-

active transactional triggering. In nutshell, the execution of requested services is

achieved in a timely manner by involving databases of a pro-active nature. This

brokerage model contains architectural deficiencies such as involvement of pro-

active databases making the model implementation dependent on databases.

Moreover, no concerns have been expressed on mapping responses back to a

view that is acceptable to user.

The request broker model proposed by (XiaoQin, LinPeng, Lin, & Minglu, 2004)

is a concept of an agent based web-services platform. This proposed model has

been successfully implemented on Tele-portal solution for Shanghai Information

Science and Technology. The scope of the proposed brokerage model is to handle

e-commerce operations by providing assistance to consumers and operators.

Automated assistance (by request brokers) helps consumers in finding feasible

offers and at the same time assists operator in marketing different offers to the

consumers. The request brokers' model proposed in this research is actually an

extension of the Architecture for Information Brokerage Service models

proposed in (ACTS, 2000).

54

CLlP

Figure 2.15: Agent based web services platform for Tele-portal (XiaoQin, LinPeng, Lin,
& Minglu, 2004)

Figure 2.15 illustrates the Tele-portal system that was built by applying the

proposed model. The complete system is physically divided into two hardware

units - Web Server and OLTP (On Line Transaction Platform). The portal core

exists on a web server and is composed of three modules, namely presentation

module, logic module and entity module. The portal reserve proxy exists in front

of a web server where client and operators communicates. This portal reserve

proxy houses the multi-agents (i.e. request brokers). These multi-agents break

down the client's request on arrival. This is a part of a divide-and-conquer

technique used to solve complex and distributed requests. Despite having a real-

world implementation of the proposed model, the model does not support the

customization of business logic and user interfaces. Presentation and operation

logic components of the system only contain a default set of user interfaces and a

default set of business logic, respectively.

55

A CORBA-based mediation platform design for efficient brokerage is proposed

in (Koerner, et al., 1999). The design is primarily based on the concept of a

complete mediation platform presented in (Tothezan, Athanassiou, Alzon, &

Karetsos, 1997). The proposed model also complies with TINA and OMG

specifications. The design beauty of this model is in its dynamic profile and

profile rule management techniques. Unlike (Howard & Kerschberg, 2004), the

model has an applied profile management philosophy on both user and service

provider ends.

Mediator
End-user Domain Serviceaccess access
Domain 'Subscription Provider
C;V 'Accounting Domain

service -Security service

G usage -Customization usage
'Brokerage

,\ /Qos , stream , 'NAI-tlme I , mulrtrASt

multiple rnntrel ORB
JotertAres ADd (RFP) DPE (RFP) ".U.blUty

tOIDposltion (iFP) ORB (dependability)

Figure 2.16: Service mediation in ADSS (Koerner, et al., 1999)

The research project was collaboration between Hitachi, Ltd. and GMD FOCUS

to develop a new ADSS architecture to apply the ADSS concept on an

application level; especially in the context of electronic commerce and social

information systems. Figure 2.16 depicts a visual design of service mediation in

ADSS. The ADSS model classified business in three major business roles namely

mediator (which mediates the services between parties by maintaining a high

level of service agreement), end-user (a party who acquires and consumes the

services according to agreement with the mediator) and service provider (a party

56

who publishes services information in mediator domain to be consumed by the

end-user). Because of the mediation domain in the middle, end-users have

flexibility in choosing the services they want without worrying about the low

level details. Similarly, service providers get the flexibility of offering services

without going into technical details such as publishing, discovery and binding of

the services.

The proposed ADSS model supports profile management techniques. It spans the

entire service provisioning process including service brokerage, subscription,

access sessions and service session. Service providers publish their service

related information in the form of service templates for type information

description. End users have the choice of subscription to these services by using

these service templates, and can also customize services by specifying the

features they want. Despite a sophisticated model for service brokerage, the

proposed model does not support the customization of output data (i.e. user

interface customizations). Moreover, service usage scenarios presented in this

paper are based on the assumption that complete user requests will be fulfilled by

only one service, hence, the proposed model is not appropriate in scenarios

where service composition is required to fulfil one user request.

Research conducted by (Zhao & Tong, 2007) has proposed a service composition

model: 'A Dynamic Service Composition Model Based on Constraints'. This

model is not a request broker based model, but is capable of handling complex

situations where a user request has a very complex execution nature such as

requirement of partial (or full) execution of more than one service. Figure 2.17

illustrates the proposed model. A domain expert initially sets up the Domain

Ontology for a domain and put it into the registry. This domain ontology defines

57

common information types, the quality indexes for this domain and a set of

abstract workflows. A user interacts with the system via the user's portal, then

the user selects an abstract workflow and specifies requirements as a set of

constraints. The Configuration Engine receives the user request and converts it

into a concrete workflow using domain ontology. This concrete workflow

contains every detail of service(s) required to perform the request. The

configuration engine then binds the matching services in the execution order

Figure 2.17.

using the registry and passes it to workflow engine for execution as shown in

Workflow

Service
Provider Service

Selection

User's P0I1al

Requirement Result

Configuration Wcn'kflow
Engine Engine

Workflow Service

Figure 2.17: Service composition model (Zhao & Tong, 2007)

Unlike the other models presented, this model leaves a selection of abstract work

flow to user. This technique could be beneficial where a user is an expert user

having a sound knowledge of the business domain, but in case of a novice user

this technique could have drastic effects such as execution of wrong business

58

logic. Secondly, this model has presented no explanation on how response data

will route back to user.

A review of request management techniques above has shown that only the

request brokering technique has proven its strategic importance and successful

application in complex scenarios. Therefore it can be considered as a candidate

for fundamental changes in the SOAW2 model framework. It has also been

observed that existing request broker techniques are more service-centric than

view-centric, they are primarily focused on routing a user request to best

matching destination service but are incapable of routing servi ce output back to

best matching destination user interface. Hence, existing request broker

technique needs to be improved and then integrated in a newly proposed model

framework as a request management component.

2.6 Conclusion
The research studies introduced above were conducted over the last decade.

During the review all aspects of the SOAW2 model framework were discussed in

detail along with its application. None of the Web 2.0 retail systems built upon

the SOAW2 model framework exhibit characteristics that are required in the e-

business framework such as on-demand customization of business logic and user

interfaces. Amongst other factors, one major factor of this shortcoming is the

absence of a request management component. Therefore, the proposal of new

Web 2.0 model framework is inevitable and is a key motivation of this project.

Moreover, review of popular request management techniques has shown that only

the request brokering technique has proven its strategic importance and

59

successful application in complex scenarios as required in an e-business

framework. It can therefore be considered as a candidate for fundamental

changes in the SOAW2 model framework. It has also been observed that existing

request broker techniques are more service-centric than view-centric, i.e. they are

primarily focused on routing a user request to the best matching destination

service, but are incapable of routing service output back to best matching

destination user interface. Hence, existing request broker techniques need to be

improved and then integrated in a newly proposed model framework as a request

management component.

60

3. Conceptual Modelling of New Web 2.0
e-Business Framework

61

3.1 Introduction
Enterprise applications are increasingly being architected in a service-oriented

architecture (SOA) style, in which modular components are composed to

implement the business logic. The properties of such applications, such as the

loose coupling among the modules is promoted as a way for an agile business to

quickly adapt its processes to an ever changing landscape of opportunities,

priorities, partners, and competitors. The proliferation of Web services standards

in this area reflects the industry interest and demand for distri buted enterprise

applications that communicate with software services provided by vendors,

clients, and partners.

3.2 SOAW2 model framework evaluation
The model framework is based on the Web 2.0 paradigm. Therefore, prior to

proposing a new model framework, an evaluation of the existing SOAW2 model

framework in this context is essential.

Sya"m Manag.r

Operational R.qu •• t ••,~"tJ

ViV
i'j'if !ll~ saSupport en

Funotlon.
~••W;p z
0

Where to put < ~ m
the Workflows

_, ::J' r<: Ii i 8n••w~ 0z
~, ~ ~

?R•• pon •• dl.patohlng Ii ~
Where to send the
response back? CORE Platform

Figure 3.1: Application of SOAW2 model framework on problem

62

Figure 3.1 presents a visual representation of the problem solution with the

application of the existing SOAW2 model framework. As discussed and

concluded in the literature review, chapter 2, it was found that the SOAW2

framework does not support explicit request mediation. Due to this architectural

deficiency, every company that runs its e-business on a system requires its own

dedicated set of views with the names of required services embedded inside

them. Figure 3.1 illustrates such limitations where the users of company 1 and

company 2 are using replica copies of the same generic views, whereas the users

of Company 3 have their own set of customized views. As a result, this system

does not offer any sharing of user interfaces.

In addition, scalability of the system is a big concern. Every time a new company

is registered on the system, the service provider has to allocate a dedicated set of

views to this new company.

3.2.1 Concerns
The application of the SOAW2 framework in a given problem scenario has also

raised the following important concerns.

• Services that exist in the core platform contain only persistence logic;

they contain no implementation of workflows. The SOAW2 model

framework does not provide a slot for workflows.

• Applications of the SOAW2 framework do not contain any response

navigation logic; hence there is a question of where to send the response.

• Finally, due to the non-sharing nature of the model, if a generic view

requires an update, then a solution provider company has to update each

single matching generic view in every company's view set. Since this

63

requires more time and will increase the cost of administration, the

solution provider company will recover this cost from retailers. How can

the system then be classified as a shared and affordable system?

The SOAW2 model framework has no answers to these critical questions. Hence,

it can be concluded that existing model frameworks are not sufficient to be

applicable for generic e-business platforms and require fundamental changes.

3.3 Proposed web 2.0 model framework
This section describes the new Web 2.0 model framework called W2ASVB (Web

2.0 Architecture for Service and View Brokerage). The new model framework is

based on SOAW2 and also contains two fundamental changes in the basic model

framework. These fundamental changes include the introduction of an effective

and intelligent request broker architecture, and the replacement of supporting

functions with service adapters. Figure 3.2 illustrates the W2ASVB model

framework. Justification of these two fundamental changes is given in the

following sub-sections.

uwu++---------- ..

AdmlnlUr6,IOt
authority

Control
ytl'm

Resources
(,ont Iflef

Man<tglng
prof~lon
syslem

Figure 3.2: W2ASVB - A new proposed model framework

64

3.3.1 Introduction of the request broker architecture
By taking into consideration the shortcomings of the request management

component in SOAW2 and the need for an effective and intelligent request

brokerage mechanism to handle complex on-demand sharing and customization

issues, a new request broker architecture is integrated between the user interface

and the resource container, as shown in Figure 3.2. W2ASVB consists of a new

request broker mechanism concept. This request broker concept improves on

existing request brokers, which are responsible for action and view management

inside a W2ASVB model framework and eventually provide on-demand request

routing between user interfaces and services of core platform.

The knowledge layer of the model framework is shared between service

providers and users (i.e. employees of retail companies). This knowledge layer is

a typical requirement of Web 2.0 model frameworks and it is there to represent

the architecture of participation. This means that new knowledge in the model

will evolve through the experiences of both users and service providers. Now, it

is worth asking the question, "how and where should the workflows be handled"?

The next section will provide the answer to this question.

3.3.2 Introduction of service adapters
The second fundamental change to the proposed W2ASVB model framework is a

replacement of supporting functions with service adapters. The reasons for this

replacement are as follows:

Supporting functions like deploy, invoke and especially discovery are pure SOA

based functions. They are useful in situations where one type of service is

published in the resources container from more than one service provider and a

user request needs to be resolved to the best matching service. In this case, the

65

discovery function provides help in resolving the best matching service within

the resources container. Moreover, a pure SOA approach requires deployed

services to comply with W3C standard specifications as described in (WC3,

2004). However, in W2ASVB, services that are deployed inside the resources

container (i.e. the core platform) are implemented by applying a SOA based

approach but they do not comply with W3C standards, as W3C standards services

are deployed outside the core as a separate entity. Therefore, associated

supporting functions are no longer needed.

The replacement of supporting functions in the new model framework is

provided by service adapters. A service adapter is a new concept of "light

weight" services and contains implementation of workflows. In the SOA

tradition, services are relatively large, shared, intrinsically loosely coupled units

of functionalities, and have no embedded calls to each other. Web Services are a

version of SOA which run over the Internet and provide services to users

transparent to their locations. These web services expose their services to the

outside world through end-points written in WSDL and communicate with users

using SOAP. There is still concern that if W2ASVB requires sharing of generic

workflows among different retailers then why can generic workflows not be

modelled as web services? The simple answer to this is that, in W2ASVB,

workflows are actually sequential calls to the services of the core platform.

Therefore, if workflows are modelled as web services, it would be a violation of

the principles of loose-coupling and no embedded calls within SOA.

To overcome this limitation and to avoid any conflict with the SOA principles,

workflows are modelled as service adapters. After receiving a request from a user

through the user interface, these adapters are connected with the core platform to

66

execute the workflow modelled inside them. All the workflows (including

generic and customized) are modelled as service adapters. Generic workflows are

executed by the generic service adapters, whereas customized workflows are

executed by customized service adapters.

3.3.3 Proposed work flow model

A user request for data processing will be divided into two parts - a data and an

action part. The data part contains the data that requires processing, whereas the

action part describes the required operation on the given data. Request brokers

are a key concept in the proposed W2ASVB model framework. They are semi-

autonomous objects which are completely equipped with all the capabilities to

handle action and view management for user requests. In other words they can be

called middle agents that provide a mediation mechanism. They have been

classified as semi-autonomous because they can complete the user's request

without any assistance from other brokers but are bound to be controlled by

managing authority. This managing authority is called the system manager and is

summarised in Figure 3.3.

Request I.• . . ••• •.1r;;;;l
Broker Pool_ _ , __ ~

1 J._ --- ---- - -.jG.n.rlc U•• r 1_ - 1 _
Inl.me.. 1 1

1 ,..,
1 1r-.I:~~~ 1 1 I.W~~
1 1
I 1
I
1

,,__-.,,~ ,
••••••-

Cu.tomlzed u...
Interfac••

Waiting
Area

Proc•• lng
Area

Platform

Figure 3.3: W2ASVB in workflow - Example J

67

3.3.4 Request broker actions on user request

On arrival of a user request, it is queued in the waiting area as illustrated in

Figure 3.3. The system manager continuously checks the waiting area and as

soon as a request arrives, it is allocated a free request broker. This allocated

request broker moves the request from the waiting area into the processing area

and starts analysis of a request header to find out the source details, such as the

name of the user interface from which the request is being generated and the

action it requires. On identification of source and action, it starts searching to

find out the name of the matching service adapter in the user session profile. The

user session profile is a profile carried by each user and was initially allocated to

each user by the system manager when they first logged in.

U•• ,S.lIlon
Profil.

3. Selfch for
Service Adllpte,

5. Execule by
supplying Request

D.t. + Action

(Sourc. + Data + ActJon)

Figure 3.4: Request brokering process on request (Binding data with service adapter)

On a successful match, the request broker binds the relevant service adapter

(either generic or customized) and executes it by providing the data and action

parts of the request. This binding of the service adapter is called request

68

brokering. The service adapter only requires data and action to be executed.

Hence they are services that are independent of their usage scenario and can be

used by any user. This is one of the major features of the proposed W2ASVB

model framework and it promotes multi-company sharing of service adapters

(except customized ones because they are company-specific implementations and

are only shared by the users of that particular company). Figure 3.4 illustrates the

flow of control in the request brokering mechanism.

On completion of the execution of the bounded service adapter, the request

broker unbinds the service adapter and loads the output data (if any) which has

been generated in response to the request object. It then starts searching the user

session profile to find the destination user interface address. On a successful

match, it dispatches the response data back to the user along with any output

data. This unbinding of the service adapter and mediation of the response back to

the user is called response brokering. Since the user interfaces that generate the

(Output Data)
User Session

Profile

U•• r Interfac.

[Source + Data + Action)
Service Adapter

Figure 3.5: Request brokering process getting data from service adapter

69

request and receive the response data are independent of the company's usage

scenario, they can be used by any user. This is a second major feature of the

proposed W2ASVB model framework as it promotes multi-company sharing of

user interfaces. Figure 3.5 illustrates the flow of control in response to the

brokering mechanism.

At the end of response brokering, the request broker releases all the holding

resources and makes itself available to the system manager to be allocated to

another request.

Customized u.. ,
Interf.c ..

Waiting
Area

~~~"Request •
Broker Pool .... _ _,_ +o_~

,. 1 --- 1
Gene,lc U'.'I I I
Int.rfac.. ,..-----------1'-

, I ,., -'-
I I

~·~-'I I
I I
I 1
I I
I I,

Procealng
Area

Platform

Figure 3.6: W2ASVB in workflow - Example 2

Figure 3.3 and Figure 3.6 illustrates four examples of request mappings. In both

figures, user 1 of company 1 uses generic user interfaces only. Whereas user 2 of

company 2 uses some generic and some customized user interfaces and finally

user 3 of company 3 uses customized user interfaces only. Figure 3.3 depicts

mapping of request R4 (generated by generic user interfaces) to generic service

70



adapter and request R2 (generated by customized user interface) to customized

service adapter. On the other hand, Figure 3.6 depicts changes in the scenario

where request R5 (generated by customized user interface) is mapped to the

generic service adapter and request R6 (generated by generic user interface) is

mapped to customize service adapter. However, the given mapping examples are

not the boundaries of the model; this model is also capable of supporting other

mappings such as the case of both users' requests being mapped to generic

service adapters etc. the following are all possible combinations that this model

can support.

All Possible Combination Supported bv W2ASVB Model

Company ~ All Generic User Interfaces + All Generic Service Adapters

Company ~ All Generic User Interfaces + All Customized Service Adapters

Company ~ All Customized User Interfaces + All Generic Service Adapters

Company ~ All Customized User Interfaces +All Generic Service Adapters

Company ~ (Some Generic + Some Customized User Interfaces)

+

(Some Generic + Some Customized Service Adapters)

3.3.5 Profile Management Technique
Profiling techniques have proven their success in scenarios where user service

requirements need to be modelled in a sophisticated manner, such as in (Howard

& Kerschberg, 2004). In addition, XML is considered as a most powerful and

self-descriptive language in representing complex SOA related data structures for

71



brokerage. It has also proven its successful applications in many real-world

scenarios, such as in (Shafiq, Ding, & Fensel, 2006), (Howard & Kerschberg,

2004) and (Lee, Kuk, Kim, & Park, 2007). The same sort of technique has been

applied in the proposed model with the following modifications:

• In the proposed system, the profile factory holds all the companies'

profiles and each company profile only contains company information, its

service adapters and user interface mapping details. It does not contain

user information.

• Direct access to companies profile by request brokers is restricted.

• Direct access to companies' profiles by system manager is restricted.

Instead it can only request profile factory to make changes.

Figure 3.7 illustrates the functionality of profile factory in the proposed model.

Visual representation of profile factory is not presented in the proposed model as

it is an integral part of management capabilities component.

Companies Profiles

Figure 3.7: Profile factory in action

72



3.4 System component structure
UML is a language that defines a standard way of representing such components

and their internal/external relationships with other components. There are two

ways to represent the system components, namely layered representation and

package representation. Layered representation is selected for explaining the

overall system .

•
User Interface

•
Core Platform

Figure 3.8: System components - Layered representation

Figure 3.8 depicts a layered representation of the system components. The

overall system is divided into the following four layers:

• Presentation Layer

• Request Management Layer

73



• Operational Layer,

• Core Service Layer

3.4.1 Presentation layer
The presentation layer is the first layer of the model framework and it consists of

a user interface component. Internally this component is divided into two sub

components namely Generic user interfaces and Customized user interfaces.

Generic user interface components hold the generic set of user interfaces. These

user interfaces are shared across the interested companies. Customized user

interface components hold the set of user interfaces that are customized for some

companies. The presentation layer of the system is directly exposed to users and

this serves as a gateway to the system. The users will use it for sending data

processing requests to the system.

3.4.2 Request management layer
The request management layer consists of request brokers and VI container

components. Presence of the system manager component on this layer indicates a

control and administration task operations. Request broker components on this

layer are responsible for brokering user requests (received via the presentation

layer) to service adapters, and then brokering back the responses to the users via

the presentation layer. The VIContainer serves as a data container that holds the

response data.

3.4.3 Operational layer

The operational layer consists of a profile factory, service adapters and

authentication components. The profile factory component is responsible for

holding the profiles of the client companies. The authentication component is

74



part of a security system and provides assistance to the system manager by

authenticating and authorizing users and their respective locations.

3.4.4 Core services layer
The last layer is the core services layer and it consists of core platform

components. This layer provides access to core business and persistence services

to the components that exist in the operational layer. Moreover, it assists the

operational layer components in the accomplishment of their required

functionalities. For example, it facilitates service adapters in making business

services related calls for data storage and retrieval, and it also assists the

authentication component in validating user credentials such as user id, password

and roles. In addition, it also provides services to the profile factory component

for retrieval of company-related information from the database such as location

details, employee details, addresses, contacts numbers etc.

3.5 System use-case model
During the detailed analysis phase of W2ASVB all the possible use-case models

for the framework were considered. The primary focus during the design,

implementation and validation phases will be on the proof of model framework.

75



3.5.1 General request use-case model

User

Figure 3.9: Request use-case model

3.5.2 General request use-case descriptions

The use case displayed in Figure 3.9 represents the general flow of all requests in

the proposed model framework. All the users' requests such as process sales

orders, query about the stock quantity etc are shown by this use case, but on the

basis of the logged in user profile, "Action Processor" performs the different

operations with the help of system core functionality. Figure 3.10 displays the

activity diagram of the above use case diagram. It shows the functionality of the

internal request process.

76



•

C XML Reader )
~--,--~

Profile validation

Request validation

Figure 3.10 Request activity diagram

Use case: Request Management
ID: uuci
Brief Description:
Registered user enters hislher requests and gets the response on the
basis ofhis/her profile and request with the helpofthe system.
Primary Actors:
User (Registered user of the system).
Secondary Actors:

77



None.
Preconditions:
Registered user should be logged in into the system.
Main Flow:
1. The use case starts when the user enters the request into the

system (Request can be 'Make sale', 'Process order' etc).
2. The system transfers the user request to "Request management"

area. Requests are queued in this area for processing.
3. The "Request management" area transfers the user information

to "System Management" .
4. "System Management" allocates the request to the "Service

Request Broker" .
5. "Service Request Broker" processes the request on the basis of

the "System Management" output and allocates the request data
with desire action instructions to the "Action Processing".

6. "Action Processing" transfers the user's request to the
"Response Navigation". "Response Navigation" returns the final
response to the user.

Postconditions:
The user gets the response of his request.
Alternative Flow:

1. "Service request broker" objects are not available.
2. User does not have privilege for this action.
3. Invalid values in request.

Alternative flow: Request Management: "Service request
broker" objects are not available

ID: UUC1.1
Brief Description:
The system informs the user that all resources are busy and request
will process in few minutes. (It is important to inform the user and
keep hirnlher update in order to keep the connection active in web
browser).
Primary Actors:
User
Secondary Actors:
None.
Preconditions:
Registered user has entered a request to the system.
Alternative Flow:
1. The alternative flow begins after step 4 of the main flow.
2. The system informs the user that his/her request is in a queue

and for that moment no resource is available for processing.
Postconditions:
1. The system updates the user about the request progress.
2. The user will have an option to cancel the request and process it

later.

78



Alternative flow: Request Management: User does not have
privile&e for this action

ID: UUCl.2
Brief Description:
The system informs the user that hislher profile is not able to
perform this request.
Primary Actors:
User
Secondary Actors:
None.
Preconditions:
Registered user has entered a request which is not allowed in hislher
profile (like sales order of more than £10,000 can only be processed
by managers level profile, while, staff level profile users are not
allowed to process the sales orders of this worth).
Alternative Flow:
1. The alternative flow begins after step 3 of the main flow.
2. The system informs the user that hislher profile has no privilege

to perform the request.
Postconditions:
1. System does not processe the user's request.
2. The system asks the user to re-enter the request.

Alternative flow: Request Management: Invalid values in
request
ID: UUC1.3
Brief Description:
The system informs the user that hislher request has invalid values.
Primary Actors:
User
Secondary Actors:
None.
Preconditions:
The user has attempted to process the request without providing the
require information.
Alternative Flow:
1. The alternative flow begins after step 5 of the main flow.
2. The system informs the user that his/her request has missing

information,
Postconditions:
1. The system asks the user to re-enter the value(s) in the request.

79



3.5.3 Sales person use case diagram

Following are few use case diagrams for sale person on the system built by using

the W2ASVB model framework.

«include»
~~------ ~

________ «Include»

~ -~Sale. person
R.que.t M.ngement

Figure 3.11: Sales person use-case model

Use case: Search Product Stock & Price
ID: SPUCI
Brief Description:
Sales person checks a product price and availability in stock.
Primary Actors:
Sales person
Secondary Actors:
None.
Preconditions:
Sales person is logged in into the system and have privilege to
access the product.
Main Flow:
1. The use case starts when the sales person selects "Search

Product Stock & Price".
2. Sales person enters the criteria to search for product details.
3. System passes the user's request to the "Request Management".

"Request Management" passes the request to the "System
Manager" for request permission on the basis of the profile.

4. "System Manager" transfers the user's request to "Service
Request Broker" after getting the valid permission.

5. "Service Request Broker" allocates the service adapter to the
request on the basis of the request and profile of the logged in
user. lfthe profile is configured to use a custom search for
products then it allocates the customized service adaptor for
process otherwise generic service adaptor. All these service
adaptors exist into the "Action Processing".

6. After getting a response from the core functionality, appro_Qriate

80



service adaptor will transfer the response to the "Response
Navigation".

7. The system displays a list of locations containing the required
products and respective stock with the price for each location.

Postconditions:
1. The sales person gets information about the current stock

situation at each location with price.
Alternative Flow:
No Product Found (Invalid product).
Out of stock.

Alternative flow: Search Product Stock & Price:
No Product Found

ID: SPUCl.l
Brief Description:
The system informs the sales person that the product does not exist
in the system.
Primary Actors:
Sales person
Secondary Actors:
None.
Preconditions:
1. Sales person is logged in into the system and has a privilege to

access the products.
2. Sales person searches__m-oductby providing required criteria.
Main Flow:
1. The alternative flow begins after step 6 of the main flow.
2. System informs sales person that the requested product does not

exist in the ~stem.
Postconditions:
The sales person is informed that the requested product is out of
stock and is subsequently asked to re-enter the search criteria.

Alternative Flow:
None.

Alternative flow: Search Product Stock & Price:
Out of stock

ID: SPUCI.2
Brief Description:
The system informs sales~n that the product is out of stock.
Primary Actors:
Sales person
Secondary Actors:
None.
Preconditions:
3. Sales~son is logged in into the system and have a privilege to

81



access the products.
4. Sales person has searches the product by providing required

criteria.
Main Flow:
3. The alternative flow begins after step 6 of the main flow.
4. System informs the sales person that the requested product is

out of stock.
Postconditions:
The sales person is informed that the requested product is out of
stock and is asked to re-enter the search criteria.

Alternative Flow:
None.

Use case: Make Sale
ID: SPUC2
Brief Description:
Sales person wants to record a sale in the system.
Primary Actors:
Sales person
Secondary Actors:
None.
Preconditions:
Sales person is logged in into the system and have privilege to log
sales activity. Customer does the payment in cash.
Main Flow:
1. The use case starts when the sales person selects 'Make Sale'

option.
2. Sales person records all the sales item(s) one by one by using a

scanner or manual data entry (providing item number).
3. Sales person enters the customer information.
4. Sales person enters the amount; customer has paid and presses

the process button.
S. System sends the request to the "Request Management".
6. "Request Management" sends the request to "System Manager"

and then "System Manager" allocates the request to "Service
Request Broker".

7. After getting a response from the system, "Service Request
Broker" transfers the response back to the user.

8. If everything is fine in the order then the system displays the
order information with the remaining customer's price.

9. The system gives an option to prints out the current sales
receipt.

Postconditions:
1. The new sale has been successfully recorded in the system.
2. The Quantity in stock of the relevant product is updated.
Alternative Flow:
Cancel Sale.

82



Alternative flow: Make Sale: Cancel Sale
ID: SPUC2.1
Brief Description:
The sales person cancels the 'Make Sale' process.
Primary Actors:
Sales person
Secondary Actors:
None.
Preconditions:
The sales person is logged in into the system and has privilege to
log the sales activity. Customer does the payment in cash.
Alternative Flow:
1. The alternative flow begins at any time before step 4.
2. The sales person cancels the 'Make Sale' process.
Postconditions:
1. The 'Make Sale' process has not been recorded in system.
2. System asks the sale person to re-enter the sale information or

navigate to the main screen.

3.6 Conclusion
This framework will serve as a mediation platform for request brokers. It will

also provide a high level of abstraction by encapsulating low level details of the

system such as request handling, request mediation, response handling, service

loading etc. Implementation of this proposed model framework will result in a

prototype version of the system. This version will be verifiable by the user and

its designed parameters can also be validated by the service providing firm.

83



4. Design of a W2ASVB Model Framework

84



4.1 Introduction
The concept of a new proposed model along with a very high level description of

its internal functioning has been discussed. From this point onwards, a system is

required to be successfully built upon the proposed model framework to validate

the model framework objectives. It is worth mentioning here that although the

model framework itself does not contain any use-cases, the internal

functionalities of the model framework will be triggered on the initiation of use-

cases of the system. To this end, subsequent sections present detailed functional

descriptions of the proposed model framework.

4.2 An enhanced web 2.0 e-business framework
W2ASVB with fundamental changes provides an effective model framework

which serves as a front and middleware collaboration model between the core

platform and client operational requests. This model framework will provide an

intelligent way of providing interfaces for sharing core business logic among

small businesses and at the same time providing customization facility of their

individual core business logic without affecting other businesses. The proposed

model framework exhibits such capabilities and is intelligent enough to handle

such complex scenarios. Therefore, this new model framework needs to be

implemented on an initial version to evaluate its working capabilities.

85



1--1TIER-f ~ TIER_' ....1 --3 TIER---tll ~ TIER~

• System Manager

Figure 4.1: An architectural design of a modified Web2.0 base model framework

The output of the application of the proposed model framework on a multi-tier

Web2.0 based framework is presented in Figure 4.1. The fundamental changes

of the model framework are being integrated in between tier 3 and 4 and serve as

a front and middleware collaboration model. The framework makes use of

request brokers to intelligently route the users' request to appropriate service

adapters. On the completion of execution of that service adapter, it intelligently

routes the response back to the appropriate user interface. Figure 4.1 illustrates

the working relationship between different components of the system. Each

component in the system is developed as a standalone entity and is capable of

performing its functionality without being tightly coupled with other

components. This loosely coupled nature of the system component ea e the

development and maintenance activities. The detailed discussion about each

86



component including their internal structures and functionalities are presented in

the sections below.

4.3 Component Representation

IBrokeri:lt; SelVieesl

EJB SIlVie., I

2·,..·....,...]

Figure 4.2: System components

Figure 4.2 illustrates a component representation of the overall system. The

above group of components is named as Brokering Services. Details with regards

to the relationship between components such as internal interfaces with other

components and external interfaces with the outside world are also presented in

the Figure. A detailed discussion about each component, including its internal

class structure and functionalities, is presented in the following sections.

87



4.3.1 System manager component

System Manager Component

System Manager JSFActionDlspatcher
-profile Factory ---------
-requestBrokerPool +dispatchO
+initO
+setRequestBrokerPoolSizeO
+getWebRequestBrokerO ResourceRegister
+destroyt)

+registerResourceO
+unregisterResourceO
+registerAIiResourcesO
+unregisterAIiResourcesO
+lookupResourceByNameO

Figure 4.2: System Manager Component sub-modules

This component is a controller component of the system. It consists of three

classes, namely SystemManager, ActionDispatcher and ResourceRegister. The

functionalities of these classes are given below.

The JSFActionDispatcher class is a gateway module of the system. Its dispatchi)

method contains the business logic to obtain the free request broker from the

system manager, and then dispatches the request processing responsibility to the

allocated request broker. This method is called by the user interface when a user

sends a data processing request to the system.

The ResourceRegister class holds the references of all the services of the core

platform in a "Name-to-Service't-like mapping mechanism. Any object that needs

to execute the core platform services provides the name of the required service-id

to the ResourceRegister, and in response is given the reference of the requested

service. When the object finishes using the service, it returns the service

reference to the ResourceRegister.

88



The SystemManager class is responsible for controlling the overall system. This

module loads immediately at the deployment of the system on an application

server. It is mainly responsible for the following activities:

• Initialization of a request broker pool and its population with the

initialization of individual request brokers. The business logic for this

activity in initt) method.

• Initialization of the ResourceRegister; the business logic for this activity

is initialized at the loading of the system Manager module.

• Initialization of a profile factory; the business logic for this activity is

given in initt) method.

• Destruction of the Resourcekegister, request brokers pool and profile

factory when system is terminated; the business logic for this activity is

given in destroyt) method.

• Allocation of a free request broker to the JSFActionDispatcher; on request

from the JSFActionDispatcher, the SystemManager searches the pool for a

free request broker and allocates one for a request. The

getWebRequestBroker() method of the SystemManager class contains the

business logic to perform this function.

• Manually increasing or decreasing the size of the request broker pool on

request from the system administrator; the setRequestBrokerPoolSizeO

method contains business logic to perform this function.

To elaborate further on the above outlined interactions, UML sequence diagrams

are presented in section 4.6.1.

89



4.3.2 Profile Factory Component

Profile Factory Component

Profile Factory
hold

Location worlc.t
-ListOfAIiLocation -Location IPAddress
-ourlnstance 1 . -LocationName 1 'j
+init() -LocationAddress
+getinstanceO -LocationTelNo Employee

., +getLocationByIP() +get.. ..() ·Employeeld

+destroyO +set ..·O -EmployeeName

• I . -EmployeeUserld
1 -CompanyAdmin

have +isCompanyAdmin()
1 +set...O

Company
+get ... ()

I·-Companyld hire
-CompanyName
-ListOfLocations 1
+addLocationO

hive
ActlonEntry

+addActionMapEntryO -actionProcessorName
+addAdminMenultemO 1 -sourcePage
+addSalesPersonMenultemO destinationPage
+getAclionEnlryO errorPage
+removeLocalionO +gel ..·O
+get...O +set ..·O
+set...O

Figure 4.3: Profile Factory sub-components and their relationship

The Profile Factory is one of the most important components of the proposed

model framework; it holds the data dictionary which represents the meta-data

about the client's companies. This component consists of five core classes,

namely ProfiIeFactory, Company, Location, Employee and ActionEntry. The last

four classes collectively represent the companies' profiles. The ProfileFactory

class acts as a manager, and is responsible for the creation, allocation and

management of these profiles.

As mentioned earlier, a client of the system is a retail company running its

business on several locations. A location represents a retail shop (i.e. point of

sale) where a company sells its products. The company class of this component

represents a retail company, and holds the company-related data, such as a 1ist of

its locations. The location class of this component represents these locations and

90



holds the location-related data. The relationship between a company and a

location class is one-to-many. The Employee class represents a person who

works for a company. The relationship between a company and employee class is

one-to-many. Note that the owner of a company is also modelled as an Employee

of the company; this is because the system will be used by small retail companies

and the owners of such companies also need to work in the shops. The

CompanyAdmin attribute of the Employee class is a Boolean flag that

distinguishes between ordinary employees and the company owner. In addition to

performing ordinary retail functions, the owners of a company have additional

responsibilities such as administration and management of the company, its

employees and information on its location; for this reason they will have a

separate set of user interfaces to perform these functions.

The ActionEntry class is a key class in this component. A single instance of this

class holds the mapping instruction of one business activity for any single

company. In other words, it contains a detailed mapping from one source page to

a service adapter and then from the service adapter to a destination or error page.

Service adapters in the system are modelled as ActionProcessors. The term

"action processor" is nothing but an analogy of a service adapter. Since any

company may have more than one business activity to the run the e-business, the

Company class holds the array of ActionEntry objects. Request brokers (of the

Request Broker Component) use this array of action entry objects for dynamic

request and response routing.

All locations along with other related details are embedded in the meta-data file

as shown in Figure 4.4. This file is then supplied to the ProfileFactory class for

parsing. The ProfileFactory parses the information from the XML file and creates

91



the corresponding Company and Location objects. This parsing result in the form

of a Key-Value type list, where Key represents a location id and Value holds the

reference of an object in memory.

92



Figure 4.4: XML file representing meta-data of a company and its associated

locations

93



4.3.3 Request broker component

Request Broker Component

«interface»
IRequestBroker

+init()
+brokeRequest()
+brokeResponse()
+destroy()

,---- ____Jl_ . ~~~.~~:::~~::

I r------------L-----------_
I WebServlcesRequestBroker I

I I~ J

I+init() I
:+brokeRequest() :
:+brokeResponse() :~~!S~~~Q ~

WebRequestBroker
-busy
+init()
+brokeRequest()
+brokeResponse()
+isBusy()
+release()
+lookupActionProcessor()
+destroy()

Figure 4.4: Request broker sub-modules

The Request broker component is a main operational component of the model

framework. It consists of an IRequestBroker interface and the

WebRequestBroker class. The WebServicesRequestBroker class is only an

illustration of a possible future extension. Figure 4.4 illustrates the sub sections

of the request broker.

The IRequestBroker interface has four main responsibilities, namely init(),

brokerRequest() , brokerkesponset) and destroyt). The WebRequestBroker class

implements the IRequestBroker interface. The initt) and destroyt) methods of the

WebRequestBroker class are Iifecycle methods. These WebRequestBroker

methods are active throughout the workflow, whereas brokerRequest() and

brokerResponse() methods are active according to the request made. The

brokerRequest() method contains the business logic to route the user request to

the appropriate action processor, whereas the brokerkesponset) method contains

94



the business logic to route the response back from the action processor to the

destination user interface (destination or error web page).

4.3.4 User interface container component

UI Container Component
UIContainer
-uiView
-appException
+get.··O
+set...O
1 , l'hold

. I . I
hold

AppException UIView
-exception -hmViews
+get...O -addView
+set ..·O -removeView

-removeAIiViews
+get...O
+set...O

Figure 4.5: User Interface sub-modules

The new proposed model framework implements the user interface in a way that

they can work in a protocol-independent manner i.e. accepting plain data objects

for processing, and generating plain data objects as output. Now, the question is

how this protocol-independent output data will be sent back to protocol.

dependent user interfaces (i.e. web pages) to be presented to a user. The answer

to this question is the deployment of the User Interface Container component.

This component consists of three classes, namely UIContainer, UIView and

AppException. Figure 4.5 illustrates the internal design of this component.

The Action Processor generates output data during execution; this output data is

in the form of collection of data objects stored inside the UIView. Any

exception (if generated) loads into the AppException object. The UIContainer

95



class serves as a container for both UIView and AppException. On completion of

the request processing cycle, the request broker sends this UIContainer to the

user interface, which then parses the stored data (of UIContainer) into a format

that is presentable to a user.

4.3.5 Authentication component

LoglnProcessor

Authentication Component

+authenticateEmployeeO
+authenticateLocationO

Figure 4.6: Authentication Component

The Authentication Component is a sub-component of the main security

component. This component consists of only one class called LoginProcessor.

There are two main responsibilities of this class; one to authenticate the

employee credentials such as User Id, password and Role, and second to

authenticate its location of access, at the time of login. The

"authenticateEmployee" and "authenticateLocation" processes are designed to

perform these functionalities. These processes connect to the core platform to

verify required information. On successful authentication, the Login module (of

the user interface component) creates a user session profile and loads it with the

necessary object references such as employee, location, company, action

processor mapping and user interface menu mapping tables.

96



4.3.6 Service adapter

Service Adapter Component

II «Interface» ~
IActlonProcessor
l+eX8cute() l

generlc.ProductProcessor generlc.lnvolceProcessor generlc.SupplierProceisor

+execute() +executeO +executeO
-handleSearchProduct() -handleSearchlnvolce() handleSearchSuppller()
-handleAddProductO -handleAddlnvoice() handleAddSupplierO
-handleEditProductO -handleEditlnvoiceO -handleDeleteSuppller()

; -handleEdltSuppller()
-handlePlaceOrderO

IcompanyA.ProductProcessor I
l-handleAddProduclO I

Figure 4.7: Service Adapter sub-components

The Service adapter component holds the overall worktlows of the system in the

form of action processors. This component consists of an IActionProcessor sub

module. The IActionProcessor module is a gateway of service adapter component

and also serves as a plug-in point for new action processors. It defines only one

public interface process called "execute". All generic action processors use this

process by providing their own generic implementation of this process.

Afterwards, the name of these generic action processors is placed under the

interested company (or companies) profiles within a meta-data mechanism.

Figure 4.7 illustrates the design of the three generic and one customized action

processors. In addition to a standard "execute" process; these action processors

implement their own private request "handle" processes. These are the special

processes and are there to handle special functionalities based on user-provided

action commands. For example, in the case of the Sale activity, a user ubmits

97



the Invoice Data and provides the Action Command = ADD in the request to the

system. On arrival of the request, the request broker loads the corresponding

generic invoice processor (assuming that a company is using a generic invoice

processor) and runs the "execute" process command. The Execute process

internally checks the given Action Command and switches the control to an

appropriate handler process, which in this case is the "handleAddInvoice"

process. This is just a design approach to separate different functionalities.

Customized action processors need not implement the IActionProcessor module

directly; instead, they extend the existing relevant generic action processor that a

company wishes to customize. Because of this inheritance, all the generic

processes of selected generic action processor will become available for

customization. For example, if a company only wants to customize the way their

products are adding to the database etc; all the service provider needs to do, is to

extend existing generic product processor, and overrides its "handleAddProduct"

mechanism. Subsequently the name of old generic action processor needs to be

replaced by a new action processor name in the meta-data module. The rest is

automatically handled by the system. In Figure 4.7, the Company A's product

processor is an illustration of such customization.

To elaborate further on the above outlined interactions in the sample example,

UML sequence diagrams are presented in section 4.6.3.

98



4.3.7 User Interface Component Design

User Interface Component
GenericAddProduct GenericStockCheck
-source -source
-actionCommand -action Command

GenericMakeSale I login I
Company A_AddProduct

-source -source
-actionCommand -actionCommand

Figure 4.8: User interface component designnent design

The User interface component of the system contains user interfaces (i.e. web

pages or views). Both the generic and customized user interfaces are set up

together in this single component, as illustrated in Figure 4.8. These user

interfaces can have any number of attributes with any number of methods. The

only exception is that, they must contain source and actionCommand attributes.

The Source attribute indicates the name of the page that submits the data to the

system, whereas the actionCommand attribute indicates the user action required

on submitted data.

4.3.8 Systems Class Structure

Figure 4.9 illustrates the structure of the classes in the proposed model

framework modules.

99



~u
~ I : ~I' I:r;;
I J
I I
I I
, I

: I..._, ,_J

ID]
I
I
I
I
I

]:
I
I
I
I

'. {lli}2 ..
J j
I

Figure 4.9: Systems class structure

100



4.4 Request routing technique explanation
A better understanding of the overall component structure of the model

framework has been developed in the above sections. However, no discussion has

been provided on how the different modules of these sub-modules interact with

each other to perform certain functionalities. To understand the core functionality

of the system, one needs to understand the request routing technique. The

following sections provide further details on request routing processing.

4.4.1 Action management
After successful authentication of a user, the login class creates the user session

profile and allocates it to the user. This user session profile (along with other

details) holds the action processing mapping mechanism. Figure 4.10 illustrates

action processor mapping mechanism of a user session profile. This action

processor mapping mechanism helps the system decide about a user's request and

response routing paths.

Action Proc... or Mopping Tabl.

Co:q>.a:'1yAOrdurroc.uor G':dlrConts.[I'.atlo:\PI'1. ChplAylrrot

In.oIe.Some.

Figure 4.10: Action management activity for make sale process

101



Figure 4.10 depicts a sale process. This initiative was taken due to the irreducible

complexity of the scenario and to provide better understanding to the reader. In

the sale activity, by using the GenericMakeSale user component, a sales person

(i.e. a user) submits the customer invoice data to the system. On arrival of this

user request, the system creates the WebRequestContext object and fills it with

user-submitted information. This WebRequestContext object encapsulates three

important pieces of information, namely data, source and actionCommand. The

description of each part is as follows:

• The data part represents the InvoiceData that was keyed in by the user.

• The source part represents the name of the page from which the request is

being generated; and it is GenericMakeSale in the current scenario.

• Finally, the actionCommand part specifies the action that the user wants

the system to take on the submitted data. It is ADD in this current

scenario; which means that the user wants to save the InvoiceData in the

database.

Subsequently, the system manager allocates this user request to a free web

request broker. This web request broker uses the WebRequestContext object for

mapping the user request to an appropriate action processor. Figure 4.10 explains

the complete scenario. This phase is called Action Management. The next phase

is view management; it describes how the output data that is being generated in

response to the execution of the action processor is routed back to the user.

102



4.4.2 View management
Aation .roce •• or Mapping ~&bl •

...""--,..,,.-,..-_.
f· .... ufoO __

Prtn1I ... oI.. Pogo

Figure 4.11: View management activity for make sale process

Figure 4.11 illustrates the view management phase of the sale process. The

execute process of the GenericlnvoiceProcessor generates the output data in the

form of a UIView. The Web request broker creates the UTContainer and stores

this UIView within it (in the current case, the UIView holds the Invoice number

of the newly saved invoice). Eventually the UIContainer instance is stored inside

the web request context object.

The web request broker then searches for the corresponding destination page

name in the action processor mapping table. Once the destination page object is

found, the request broker dispatches the response to the destination page

container which is called PrintInvoicePage in the current scenario. Note that, the

names of the destination and error pages in the action processor mapping module

are abstract names e.g. GenericPrintlnvoicePage. Conversion of these abstract

names into absolute paths is the responsibility of the Navigator module. Finally,

103



PrintInvoicePage reads the output data (i.e. Invoice number) from the web

request context object and presents a printable sales' invoice to the user. Figure

4.11 explains the complete scenario.

4.5 Business logic on-demand customization mechanism
This is a key question based on which the investigation started. The answer to

this question is hidden in a meta-data module and its processing. As described

earlier, the CompanyProfile module and its mapping mechanism are the data

dictionary of this system and a profile factory which is a controller that uses this

data dictionary to provide direction to others. Subsequent sub-sections presents

examples of both business logic and user interface customizations.

4.5.1 Customization of business logic

Company A : Action Processor Mapping Table (BEFORE)

Source ActlonProcessorName Destination Page ErrorPage

GenericMakeSale C:GeneriClnvoiceprocesaor~ GenericPrintlnvoicePaqe DisplayError

........ ,.---

I-G_e_n_e_r~_'c_o_r_d_er_p_a_::g_e__ -I-'-G_en_ec...r_i_co_r_d_e_r_pr_o_c_e_ss_o_r__ +-o_r_d_e_r_co_n_f_irmationPage _ Displa y
companyASupplierPage GenericSupplierProcessor SupplierConfirmationPage DisplayI-'-~~~~~-~~-I-'----~-------~~~~~---------=--'_---

~------------~------------------~--- --- _,;:_ ....._...-

Company A : Action Processor Mapping Table (AFTER)
Source ActlonProcessorName Destination Page ErrorPage

ierConfirmationPage DisplayError

GenericMakeSale ("CompanyA Invoiceproce8s~ Gener
GenericOrderPage GenericOrderProcessor Order
CompanyASupplierPage GenericSupplierProcessor Suppl
.......... .......... ..........
.......... ....."... ..........

icPrintlnvoicePaqe DisplayError
ConfirmationPage DisplayError- _ -

Figure 4.12: Action processor customization example

104



For example, a Company A runs its business on this proposed W2ASVB model

framework by using all generic user interfaces and all generic action processors.

At some stage, Company A asks for customization of its

GenericInvoiceProcessor. In this case, the service provider needs to perform the

following steps:

• Creates a new action processor class called CompanyA_InvoiceProcessor

and customize it according to Company A's requirements.

• Compiles the code of this new action processor

• Plug-in this new action processor in the system by replacing the word

GenericInvoiceProcessor with CompanyA_InvoiceProcessor in Company

A's profile inside the meta-data module by the controller module.

• And finally, instructs the profile factory to refresh Company A's action

processor mapping.

Figure 4.12 reflects the changes in Company A's action processor mapping

before and after customization.

4.5.2 Customization of user interface
For instance, if at some point Company A decides to define its own sales invoice

format rather than using the default, then this customization of the user interface

will require the service provider to make the following changes:

• Create a new object and name it CompanyA_GenericMakeSale.

• Customize the sales invoice on the new object, where required.

lOS



• Assign the new object into the system by replacing the word.

GenericMakeSale with CompanyA_MakeSale in Company A's profile

inside the meta-data module by the controller.

• Update the existing user interface, mapping details of the make sale page

inside the meta-data module with a new one. This change ensures that the

system will open the new make sale page next time.

• Instruct the profile factory to refresh its action processing mapping

mechanism.

Figure 4.13 reflects the changes in Company A's action processor mapping

mechanism before and after customization. Since sales' invoice is a printable

object, the service provider can customize the corresponding print invoice page

in the same way. This is illustrated in the Figure 4.13.

Company A Action Processor Mapping Table (BEFORE)

Source ActlonProcessorName Destination Page ErrorPage
-

GenericMakeSale ----.. CompanyA Invoiceprocessor~nerieprintInvoiCepag~ Di_./

GenericOrderPage GenericOrderProcessor OrderConfirmationPage Di-
CompanyASupplierPage GenericSupplierProcessor SupplierConfirmationPage Di
....." ... "..... ,.. .......... ......--
.......... .......... .......... ......--- --

splayError
splayError
splayError

Company A : Action Processor Mapping Table (AFTER)

Source ActlonProcessorName Destination Page ErrorPage
-

CompanyA_MAkeSale ~companYA InvoiceProcessor ?CompanyA_Prin
GenericOrderPage GenericOrderProcessor OrderConfirma----
CompanyASupplierPage GenericSupplierProcessor SupplierConfi
.......... .......... .......... -
.......... .......". ..........-

DisplayError
tionPage DisplayError
rmationPage DisplayError

Figure 4.13: User Interface Customization Example

106



By adopting this approach, the system can provide a customization facility for

both user interfaces and action processors for any company on demand at low

cost. As a point of interest, the service provider needs to make no changes in the

core system design to perform this customization.

4.6 System Interactions Diagrams
A better understanding of the overall component structure of W2ASVB has been

developed. However, no discussion has been provided on how different classes of

these components interact with each other to perform certain functionalities.

To understand the core functionality of the system, one needs to understand the

following three system life-cycle interactions:

• Interactions between classes and objects that happen at system

initialization time.

• Interactions between classes and objects that happen when employee (i.e.

user) login to the system.

• Interactions between classes and objects that happen when employee

sends a request to the system for executing business workflows (i.e. action

processors ).

The following sub-sections contain UML sequence diagrams to elaborate further

on the above-mentioned interactions.

107



4.6.1 System Initialization Sequence Diagram

;:::: f---L... ....t

II" I~ - ..

i..
i---I :::t:::::~:::J .

i
0+< I: ~ .

Figure 4.14: System initialization sequence diagram

108



4.6.2 Employee Login Sequence Diagram

~ ----------------------------------------------------------------------------------------------------------------------------------------p---

u--- -----------p----------p -------------------------------------p-- -------------------------------------------------------- -----

[l-----------------------------------------------J --------------------------~ =------- -- ---------

~-------J 1_1____ 1 -----------! ". !L--1----

~-------! -f __D_, p--:;--!"--f----!-~--l-----------
[I}--- d-~t=J. P b i,----------o-i

[J---"J! m" ~ ~ t
~ I" H-_

o-t-< I'~ .
Figure 4.15: Employee login sequence diagram

109



4.6.3 Request Processing Sequence Diagram

~I----

[JI----
[JI----------
~

=

I I--

t.~[] -

~
.::J _=.2_

I l-'

~ I J f
~ 6: t, •

:n "rr 9 -- -

[J I
t .

r.= • , II t y f _y
"_: - -

~~IJ I·~[h" . · .[}-!f .. -~ - -, -

rr-- ---- - -
f
i

K~ ,
_

- -o

I i IJ
.

• Ri

I
,
•

r -

Figure 4.16: Request processing sequence diagram - Adding new invoice in the database

110



5. A W2ASVB framework implementation

111



S.1 Introduction
This section provides the implementation details of the W2ASVB framework.

The correct implementation of any framework design facilitates the validation

and verification of the framework and other design parameters. The section first

presents a brief discussion about the chosen implementation language and

technology. This is followed by a discussion of pseudo-code snippet from

different parts of the implemented system along with the details of their

execution.

S.2 Implementation Technology
As discussed in chapters 1 and 3, the W2ASVB model framework is using a core

platform, which is implemented in Java using EJB technology. The choice of the

language for the implementation of the system is Java. Moreover, the

implementation of the proposed model framework in Java makes integration of

different components of the system seamless and elegant within the existing core

platform. As an additional benefit of this choice, no coding or integration related

technology is required to develop collaboration mechanism between the

components ofW2ASVB and the core platform.

Whenever any web system goes under development, the selection of appropriate

front-end user-interface frameworks plays a vital role. The careful selection of

such a framework is critical for the success of the project. J2EE offers different

VI frameworks for the development of a web system. Amongst them, JSF (Java

Server Faces), Struts and Tiles are very good technologies. The application of

these frameworks on a web system is entirely dependent on the type of the

system in production. For example, Struts is known for its controller-based

architecture whereas Tiles is known for changing corporate layouts in a seamless

112



manner. Apart from these two, JSF has a developed user interface framework

designed by Sun Microsystems and is quickly getting closer to become an

industry standard. Taking into consideration the popularity of the JSF framework

and its acceptance as an industry standard; JSF has been adopted as a user

interface framework for W2ASVB. More information about JSF can be found at

(JSF, 2007).

5.3 Implementation Details
This section provides details on how certain parts of the design are translated

into working code. Only the key pseudo-code snippets have been extracted from

the respective classes and explained. It should be noted here that web systems

built on the JSF framework, contain code that is distributed across different parts

of the system. Hence, the complete code could not be understood unless its

related parts are explained.

5.3.1 SystemManager
init/) is a method of the SystemManager module that is called when the system

manager is initialized by the application server. On execution, this function first

initializes the ResourceRegister, and then initializes the ProfileFactory followed

by the initialization of the request broker pool (according to the given

POOL_SIZE). This pool is then filled with web request brokers. POOL_SIZE is

a variable that leads the system manager to decide about the size of the request

broker pool.

The following pseudo-code presents the flow of control inside the iniu) method

of the SystemManager.java file.

113



Start of InitO
1. Initialize ResourceRegister
2. Initialize ProfileFactory
3. Initialize Request Broker Pool size with given POOL_SIZE
4. For i=O to POOL SIZE

4.1 Create new Web Request Broker
4.2 Add newly created Web Request Broker in the Request Brokers
pool
[End ojjor loop]

For the complete code listing see Appendix (Section 10.1.1).

5.3.2 Profile Factory

The initt) method of the ProfileFactory module is responsible for performing this

task. It is called by the system manager module at the time when the manager

becomes initialized. This method is responsible for creating a company's objects

along with the initialization of their respective action-processor mapping tables,

admin-menu mapping tables and sales-person mapping tables in memory.

Moreover, this method is also responsible for creating the location objects of the

corresponding companies and then putting them one by one in the <key, value>

type collection object, where the key part represents the IP address of a location

and the value part represents the location object associated with that IP address.

114



The following pseudo-code presents the flow of control inside the initO method

of the ProfileFactory.java file.

Start of InitO
1.Declare <KEY, VALUE> type Locationi'rcfiles Collection
2.Declare CompanyList collection
3.Load all the companies in Companyl.ist from CompanyProfiles.XMLfile
4. Loop through each Company in CompanyList

4. J. Fill up the Company Object with company information using core
platform

4.2. Read the Action-Processing-Mapping table from
CompanyProfiles.XML File

4.3. Store the Action-Processing-Mapping Table in Company object
4.4. Read the Admin-Menu-Mapping table from Companyi'rofiles.Xbdl:
4.5. Store the Admin-Menu-Mapping table in Company object
4.6. Read the Salesl'erson-Menu-Mapping table from

CompanyProfiles.XML
4.7. Store the Salesi'erson-Menu-Mapping table in Company object
4.8. Retrieve all the locations of Company from CompanyProfiles.XML

file
4.9. Loop through each Location a/Company

4.9.1. Create Location object
4.9.2. Fill up Location object with required information using core

platform
4.9.3. Store reference a/Company object in Location object
4.9.4. Put Location object in LocationProfiles collection with

Location IP address as KEY and Location object as VALUE
End of Inner Loop

End of Outer Loop
End of In itO

115



For a complete code listing see Appendix (Section 10.1.2).

5.3.3 Session profile
The logint) method of the Login module is responsible for performing this job. It

is called when any employee of any company attempts to login to the system

from any location. It validates the employee credentials and location access

rights using the core platform's security service, and on successful authentication

of both employee and location details, it passes the location IP address to the

system manager to retrieve the associated location object. The system manager in

tum passes this request to the profile factory to locate the location object

associated with the given IP address. This location object holds the reference of

the associated company object which in tum holds the action-processors, sales-

menu and admin-menu mapping tables. On return from the call from the system

manager, this method stores the location object in the user session profile and

from this point onwards this user session profile serves as a reference document

for the system to route future requests from this employee.

The following pseudo code presents the flow of control inside the logint) method

of the Login.java file.

116



Start of Login(Userld, Password, Role)
1. Create UserSessionProfile object
2. Create LoginProcessor
3.Authenticate employee credentials using LoginProcessor

3.1. If authenticated, then
3.1.1. Retrieve the employee details from core platform
3.1.2. Store the employee details in UserSessionProfile object

3.2. Else
3.2.1. Return un-authorized user access error message to user

[End ofif-elsej
4. Retrieve IP address of location of access
5.Authenticate location of access using LoginProcessor

5.1. If location authenticated, then
5.1.1. Retrieve Location object associated with IPAddress using

System Manager
5.1.2. Store Location object in UserSessionProfile

5.2. Else
5.2.1. Return un-authorized location access error message to user

[End ofif-elsej
6.Destroy LoginProcessor
7.If employee role is Company Admin. then

7.1. Show Company Admin Desktop
B.Else

B.l. Show Sales Person Desktop
[End ofif-elsej

End of LoginO

For complete code listing see Appendix (Section 10.1.4).

117



5.3.4 Web request broker
The getWebRequestBrokerO method of the System Manager module is

responsible for performing this task. It is called by the JSFActionDispatcher

class when any request comes in to the system for processing. On receiving a call

from the JSFActionDispatcher, the system manager iterates through the request

broker pool to find a free web request broker. As soon as the system manager

locates any free web request broker it sets its status to busy and returns its

reference back to the JSFActionDispatcher for further processing.

The following pseudo-code presents the flow of control inside the

getWebRequestBrokerO method of SystemManager. java file.

Start of getWebRequestBrokerO
1.Do while there are WebRequestBrokers in request broker pool

1.1. Pick up WebRequestBroker from Pool
1.2. JfWebRequestBroker is busy. then

1.2.1. Continue loop
1.3. Else

1.3.1. Set WebRequestBroker busy flag to true
1.3.2. Break and Return WebRequestBroker

{End ofif-else]
{End of While loop]

End ofgetWebRequestBrokerO

For complete code listing see Appendix (Section 10.1.6).

5.3.5 Action Processor
The brokerRequestO method of the Web Request Broker module is responsible

for creating a user-profile session at the time of login. It is called by the

118



JSFActionDispatcher module after the allocation of free web request broker.

Moreover, the JSFActionDispatcher passes the reference of the web request

context object to this method as well. This web request context object holds the

details such as details of an employee who sends the request, location details of

the location from which request gets generated and a source name of the page.

This method loads the corresponding action processor with the help of source

page name and action processor mapping table. Each line of the action processor

mapping table is implemented as a single instance of an action entry or, in other

words each <Action> tag of XML meta-data file is translated into one action

entry. In memory, the action-processor mapping table is a collection of action

entry objects. At the end, control passes back to the JSFActionDispatcher, which

then calls the brokerResponseO to send the response back to the appropriate user

interface.

119



The following pseudo-code presents the flow of control inside the

brokerRequestO method of the WebRequestBroker.java file.

Start of brokerRequest(WebRequestContext)
1.Read Source Page name from WebRequestContext
2. Retrieve Location Profile from WebRequestContext
3. Lookup ActionEntry corresponding to Source Page from UserSessionProfile
4. Read Action Processor name from Action Entry
5. Load and execute corresponding Action Processor

5.1.lfexecuted successfully, then
5.1.1. Store output in U/View object

5.2. Else
5.2.1. Store exception in AppException object

[End of if-else]

6. Unload Action Processor
End of brokerRequestO

For complete code listing see Appendix (Section 10.1.7).

5.3.6 Mapping output data to the user interface
The brokerResponseO method of the Web Request Broker module is responsible

for routing back the output data from the action processor to the appropriate user

interface. It gets called by the JSFActionDispatcher when the brokerRequestO

method finishes its execution. Its main responsibility is to route the response

back to the appropriate destination page. This method creates the UIContainer

and stores the UIView within it. It then reads the action entry to find the

destination page. It then dispatches the response back to the destination page. At

the end, the JSFActionDispatcher calls the releaser) method of the web request

broker to make it available for the next processing request.

120



The following pseudo-code describes the flow of control inside the

brokerResponseO method of the WebRequestBroker.java file.

Start of hrokerResponse(WebRequestContext, WebResponseContextj
1.Create U/Container
2.Reads Applixception from WebRequestContext

2.1./f 'Applixception is null, then
2.1.1. Store U/View in U/Container

2.2. Else
2.2.1. Store Applixception in U/Container

[End of if-elseJ
3.Store U/Container in WebRequestContext
4.Read Destination Page namefrom ActionEntry
5.Dispatch response to the Destination Page

End of hrokerRequestO

121



5.4 System Outputs
SystemManager --> init() --> Start
SystemManager --> init() --> Initializing EJB Platform
ResourceRegisterar --> registerEJBS() --> Start
ResourceRegisterar --> registerEJBS() --> End
SystemManager --> init() --> EJB Platform Initialization complete.
SystemManager --> init() --> Initializing ProfileFactory.
ProfileFactory() --> getInstance() --> Start
Profile Factory --> init() --> Start
XMLReader --> getInstance() --> Start
XMLReader --> getInstance() --> End
XMLReader --> getCompaniesList() --> Start
Root node of XML document is: Company-Profiles
Total no of Company Profiles in XML file : 2
Company ID: 61
URL : www.ca-electronics.com
Total number of registered Locations for this Company : 3
Location IP-Address=217.35.95.208 logopath=resources/logodir/CompanyNamel-LocationName1.gif
Location IP-Address=217.45.161.252 logopath=resources/logodir/CompanyNamel-LocationName2.gif
Location IP-Address=217.35.95.138 logopath=resources/logodir/CompanyNamel-LocationName2.gif
Total number of Action-Entry : 6
[Action-Entry source->genericMakeSale.jsp dest->showGenericPrintlnvoice actionProcessor-
>generic.InvoiceProcessor errorpage->showGenericMakeSaleError)
[Action-Entry source->genericStockCheck.jsp dest->NULL actionProcessor-
>generic.stock.StockCheckProcessor errorpage->NULL)
[Action-Entry source->genericSupplierRelation.jsp dest->NULL actionProcessor-
>generic.supplier.SupplierProcessor errorpage->showSupplierRelationErrorPage]
[Action-Entry source->GenericAddProduct.jsp dest->messages actionProcessor->ProductProcessor
errorpage->error]
[Action-Entry source->GenericAddCustomer.jsp dest->messages actionProcessor->CustomerProcessor
errorpage->error]
[Action-Entry source->GenericAddSupplier.jsp dest->messages actionProcessor->SupplierProcessor
errorpage->error]
Total number of Admin Menu links: 11
[Menu name->desktop navigation-case->showGenericAdminDesktop)
[Menu name->recorddelivery navigation-case->/samand/faces/genericRecordDelivery.jsp]
[Menu name->reprintlabels navigation-case->/samand/faces/genericReprintLabels.jspJ
[Menu name->printsalesreports navigation-case->/samand/faces/genericPrintSalesReports.jsp]
[Menu name->printpurchasereports navigation-case->/samand/faces/genericPrintPurchaseReports.jsp]
[Menu name->printstockreports navigation-case->/samand/faces/genericPrintStockReports.jsp]
[Menu name->printattendancereports navigation-case->/samand/faces/genericPrintAttendanceReport.jsp)
[Menu name->addsupplier navigation-case->/samand/faces/genericSupplierRelation.jsp]
[Menu name->updatesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp)
[Menu name->closetill navigation-case->/samand/faces/genericCloseTill.jsp)
[Menu name->resetstaffpassword navigation-case->/samand/faces/genericResetStaffPassword.jsp)
Total number of Salesperson Menu links: 7
[Menu name->desktop navigation-case->showGenericSalesPersonDesktop
[Menu name->stockcheck navigation-case->/samand/faces/genericStockCheck.jsp
[Menu name->makesale navigation-case->/samand/faces/genericMakeSale.jsp
[Menu name->managesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp
[Menu name->viewperformance navigation-case->/samand/faces/genericPerformance.jsp
[Menu name->movestock navigation-case->/samand/faces/genericMoveStock.jsp
[Menu name->supplierrelations navigation-case->/samand/faces/genericSupplierRelations.jsp

122

http://www.ca-electronics.com


Company ID: 1
URL : www.N-Genius.com
Total number of registered Locations for this Company : 1
Location IP-Address=217.41.27.94 logopath=resources/logodir/CompanyName2-LocationNamel.gif
Total number of Action-Entry : 6
[Action-Entry source->genericMakeSale.jsp dest->showGenericPrintInvoice actionProcessor-
>generic.InvoiceProcessor errorpage->showGenericMakeSaleError]
[Action-Entry source->genericStockCheck.jsp dest->NULL actionProcessor-
>generic.stock.StockCheckProcessor errorpage->NULL]
[Action-Entry source->genericSupplierRelation.jsp dest->NULL actionProcessor-
>generic.supplier.SupplierProcessor errorpage->showSupplierRelationErrorPage]
[Action-Entry source->GenericAddProduct.jsp dest->messages actionProcessor->ProductProcessor
errorpage->error]
[Action-Entry source->GenericAddCustomer.jsp dest->messages actionProcessor->CustomerProcessor
errorpage->error]
[Action-Entry source->GenericAddSupplier.jsp dest->messages actionProcessor->SupplierProcessor
errorpage->error]
Total number of Admin Menu links: 11
[Menu name->desktop navigation-case->showGenericAdminDesktop]
[Menu name->recorddelivery navigation-case->/samand/faces/genericRecordDelivery.jsp]
(Menu name->reprintlabels navigation-case->/samand/faces/genericReprintLabels.jsp]
[Menu name->printsalesreports navigation-case->/samand/faces/genericPrintSalesReports.jsp]
[Menu name->printpurchasereports navigation-case->/samand/faces/genericPrintPurchaseReports.jsp]
(Menu name->printstockreports navigation-case->/samand/faces/genericPrintStockReports.jsp]
[Menu name->printattendancereports navigation-case-
>/samand/faces/genericPrintAttendanceReport.jsp]
[Menu name->addsupplier navigation-case->/samand/faces/genericSupplierRelation.jsp]
[Menu name->updatesupp1ier navigation-case->/samand/faces/genericSupplierRelation.jsp]
(Menu name->closetill navigation-case->/samand/faces/genericCloseTill.jsp]
[Menu name->resetstaffpassword navigation-case->/samand/faces/genericResetStaffPassword.jsp]
Total number of Salesperson Menu links: 7
[Menu name->desktop navigation-case->showGenericSalesPersonDesktop
(Menu name->stockcheck navigation-case->/samand/faces/genericStockCheck.jsp
(Menu name->makesale navigation-case->/samand/faces/genericMakeSale.jsp
(Menu name->managesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp
[Menu name->viewperformance navigation-case->/samand/faces/genericPerforrnance.jsp
(Menu name->movestock navigation-case->/samand/faces/genericMoveStock.jsp
[Menu name->supplierrelations navigation-case->/sarnand/faces/genericSupplierRelations.jsp

XMLReader --> getCompaniesList() --> End
ProfileFactory --> init() --> locationHome.findByIP(217.35.95.208) - 1
ProfileFactory --> init() --> locationHome.findByIP(217.45.161.252) - 6
ProfileFactory --> init() --> locationHome.findByIP(217.35.95.138) - 1
ProfileFactory --> init() --> locationHome.findByIP(217.41.27.94) - 1
ProfileFactory --> init() --> End
ProfileFactory() --> getInstance() --> End
SystemManager --> init() --> ProfileFactory initialization complete.

Figure 5.1: System Initialization - Loading process of company profile from ompanyProflle.XML
file

123

http://www.N-Genius.com


SysternManager --> init () --> About to call initRequestBrokersPool ().
SysternManager --> initRequestBrokersPool() --> Start
SysternManager --> initRequestBrokersPool() --> POOL SIZE set to->10
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status :false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
(samand.broker.WebRequestBroker@8cbOd2j added in pool at position->O
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
[samand.broker.WebRequestBroker@acdd8aj added in pool at position->l
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
(samand.broker.WebRequestBroker@1049065] added in pool at position->2
WebRequestBroker --> init() --> Start
webRequestBroker --> init() --> Initialized with BUSY status:false
webRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
[samand.broker.WebRequestBroker@a3e8d9] added in pool at position->3
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
(samand.broker.WebRequestBroker@lObfee3] added in pool at position->4
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
[samand.broker.WebRequestBroker@8aedb8j added in pool at position->5
webRequestBroker --> init() --> Start
webRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
[samand.broker.webRequestBroker@fd05c7] added in pool at position->6
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> webRequestBroker
(samand.broker.WebRequestBroker@1868cf3j added in pool at poSition->7
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> WebRequestBroker
(samand.broker.WebRequestBroker@8fb08fj added in pool at position->8
WebRequestBroker --> init() --> Start
WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End
SysternManager --> initRequestBrokersPool() --> webRequestBroker
[samand.broker.WebRequestBroker@190973e] added in pool at position->9
SysternManager --> initRequestBrokersPool() --> End
SystemManager --> init() --> End

Figure 5.2: System Initialization - Initialization of request broker pool

124



6. A W2ASVB framework validation

125



This chapter presents the results of testing conducted on W2A VB. The primary

purpose of the testing was to validate the system functionalities by comparing

them with other software. This chapter first describes the environment in which

testing was conducted. This is followed by the list of the test cases that were

developed to perform testing and finally, it presents the detailed description of

test results in tabular form. The presentation format for test results description

has been tailored from IEEE 829: 1998: Standard for Software Test

Documentation and the testing approach is black box testing.

6.1 Environment
The table below contains the description of hardware and software environment

under which the test cases were executed:

6.1.1 Hardware Environment

CPU Intel 1.5 GHz Centrino Mobile Technology

i"RAM "~ . 1.5 GB

Hard Disk. 60 GB
-

DispJay''''Cari:l i1l:.,
AGP Graphics card with 32 bit upport

Monitor SVGA
:';c'"" I,'

Keyboard " Standard 10 1 keys

Mouse Standard
-s. i';

,"

6.1.2 Software Environment

Operating System Windows Vista Home dition
'!

Application Server Sun One Appl ication erver 9 and IlS
,,"

,126



IDE ',"," "'-,
Netbeans 5.5.1 with Visual Web Pack installed

-~;

l~te:net Br~wser Mozilla Firefox v 2.0.0.6
'~'

6.2 Validation process
Validation of the W2ASVB framework is carried out by comparing its execution

time, average cost per user and scalability with the ZohoCRM and Microsoft

Dynamics. The reason for selecting the ZohoCRM and Microsoft Dynamic for

validation is that both consist of several features such as partial customization,

generic workflow management mechanism etc. similar to W2ASVB and also

both have their own software validation platform for providing data such as

instruction execution time etc.

6.2.1 Validation testing cases

:!. rest Case 'rt' ~ Description

Execution Time Executing the "Make Sale" activity process in Zoho RM,

Microsoft Dynamic and W2ASVB and then comparing the

results.

Average Cost Comparing the initial and customization co t of

per User ZohoCRM, Microsoft Dynamic and W2ASVB framework.

Scalability Using the Logic versus physical tiers scalability validation

method to compare the systems.

J27



6.2.2 Execution time

The execution time of a computational task is the length of time the task takes to

execute a specific platform. Knowing the execution time is of a major importance

for the analysis of real-time system performance.

The execution time is validated by running the set of the instructions under the

"Make Sale" activity as shown below. Subsequently, the process and the

execution time of the entire request are stored within the Profilefactory object

XML collections with the key and the associated values. These steps will help to

validate the model framework execution time as it is considered as a major factor

of any new e-business model. The execution time outcome comparison with

existing e-business frameworks along with execution process of the entire

selected and proposed model framework is presented in the next few sub

sections. The execution time of the different frameworks can be calculated by

performing the following steps.

Identifier Tl

Setup

Description

User is logged on to the system.

To test the make sale functionality of the y tem. AI 0, to

test the request routing from generic u er int rface t

generic action processor by web reque t broker.

User clicks on the 'Make Sale' button.

128



TC 1.1 User enters the customer items codes

'I'C 1.2 User enters the payments details

TC 1.3 User enters the customer details

T'C 1.4 User presses 'save' button

• genericMakeSale.jsp

• genericMakeSaie.java

• genericItemSale.jsp

• genericItemSale.java

• genericPaymentScan.jsp

• genericPaymentScan.java

• genericeustomerScan.jsp

• genericeustomerScan.java

• InvoinceBean.java

• ResourceRegister.java

• JSFActionDispatcher.java

• SystemManager.java

• WebRequestBroker.java

129



• GenericlnvoiceProcessor.java

For TC 1.1

• System adds the given items on the sale invoice (see

Figure 6.1).

For TC 1.2

• System adds the given payments on the sale invoice

(see Figure 6.2).

For TC 1.3

• System registers the customer details in the system

and shows confirmation on the sale invoice (see

Figure 6.3).

For TC 1.4

• New sale is recorded successfully in the system.

• Relevant product quantity is updated.

• System prints out the sale invoice (see Figure 6.4).

130



EConc ... loN

t "htf p lJIo"llho~1 8181 M.ike <idle MOIIII .. 1111.'101 r.. . r?<
o

Involet To:
C A ELECTRONICS
2STotttnhim toul1 ROld

London
LonCion

0207637"88 (uhl.r: Hlm.d
Invoice No.

SERIALNO CND CHKP~ODUCT
FWI 256MB XC MEMORY CARD
IPACl4700 POCKET PC

NEW Checked 59.99
TWC61200T5 NEW Chocked 399.99
TOTAL £A59.98

M£THOD REF. NO. AUTH.CODE

BALANCE TO PAY:
AMOUNT

£A59.98

BALANCE

PRICE

Ic~~-----------------------------------------------------------~
Figure 6.1: System confirms addition of customer items on the sale invoice

EConc .. ,loN

{'I11111 1II00dthosi 8181 MIke! C;,ifc MonU" luriD. ,,_ !is<

C A ELECTRONICS
21 Tott.nnlm Court Road

London
London

0207837 ""

Involet To: Datt 1 'eptember 2007

Cuhler: Hlm.d
Invoice No.

,RODUCT

FUJI 256MB XC MEMORY CARD
IPACl4700 POCKET PC

SERIALNO CND CHK PRICE
NEW Ch,cktti 59.99

TWC61200T5 NEW c","" 39999
TOTAL £469.98

METHOD REF. NO.

CARD 2342664597540989

CASH CASH

AUTH.cODE AMOUNT

300 0
159 se
~

2340984
NA
BALANCE TO PAY:

BALANCE ~

£1 .....,[ OMMdlclIM

Figure 6.2: System confirms collection of customer payments on the sale

invoice

131



, 'hllll"lol Ilhn\J G1Rl /,I"lw <;',111' Mnflll"I., ..I'H .... ~

~ "" !iO" ..."" """""" l~1 pm tloI>
ECone.llloN

C A ELECTRONICS
Involc. To: 21 Tottenham Court Road DHt 1 S.prember 2007

Miss DWilicOlC London

102 London

WIII.nhall Drlv. 0207137"18 Cashl.r. Hlmtd

UB' 2UX Invoice No.

~-------P-R-OD-U-C-T----~~~~SE~R!IA~L-N-O---C-N-D---e-HK----'-~-IC-I~ ~

FWI256MB XC MEMORY CARD NEW Chlc~d 59.99

IPAO 4700 POCKET PC TWC61200T5 NEW Ch.cktlt 39999 ~
TOTAL 1469.98

f------~.--------ii:Jl.CI I 13ii ..4
METHOD REF.NO. AUTli.CODE AMOUNT

CARD 2342664597540989 2340984 300.0
CASH CASH '" 115SUl8

BALANCE TO PAY: ~
BALANCE mm

a-L_"] 0 ...."'_~~~--~~======~--------------_

o

Figure 6.3: System confirms registration of a new customer on the sale

invoice

ECon .... loN

C A IiLICTRONICS
Invoice To: 21 Tottenh.m Court ROld Dare 1 S'ptember 2001
MluDWlllcox London

102 London

WIII,nhlll Drtvt 0207'315'1" e"hl.t: H,meCl
UB32UX Involet No. HOM. .

I'RODUCT 1."tAL NO CND CHK ".ICI
FUJI 2~6M8 Xl) MEMORY CARD NEW Chtekta 09 ss
IPAQ 4100 POCKET PC TWC61200Te NEW Cl'lttktd 99999

TOTAL mm
q,Si"JIMi;1

METHOD Rlf. NO. AUTH.CODI AMOUNT
CARD 2342664597540969 2340984 .000
CASH CASH NA 109 ge

BALANCE TO PAY: m:l!!!

"T ~ •• lsIlIlIon ~lIrn~.r.1n4llO BALANCE g
.~~.lf£l.U"'IIITOfto.i!."'81'.o.

Th"nkyou fot Shoppin. with Ut, ri,,, .. vl'lt LI' ,twWW,u .. I•• tronl ... co",

,"13,,-""_· -,'r 1... '"

Figure 6.4: System shows the printable version of the sale invoice

132



6.2.2.1 Zoho CRM framework

ZohoCRM handles the user request by a conventional request management

technique that is commonly used in traditional web-based systems. On arrival of

a request, an application server automatically redirects it to a designated module

for processing. At the end of the processing, the module redirects control back to

the application server by specifying the response page address (e.g, confirmation

or an error page). Finally the application server loads the response page and

sends it to the user where it gets displayed.

6.2.2.2 Microsoft Dynamic

Microsoft Dynamics CRM user request processes are based on the Windows

Workflow Foundation model. Windows Workflow Foundation runs a framework,

a base library of activities, and default implementations of the runtime services.

The Windows Workflow Foundation runtime engine manages process execution,

and supports processes that can remain active for extended periods of time. It

preserves the state of process execution during the request process and returns

back the results to the user after processing. The steps for executing the

validation process on the Microsoft Dynamics are given below.

• Install and open the SDK in Visual C# Express.

• Access to the tool's source code in the SDK\Tools\PJuginDeveloper folder

of the SDK installation.

• Network access to a Microsoft Dynamics CRM 4.0 server.

• Login in Microsoft Dynamics CRM system account.

133



• Execute the "Make Sale" action by using the SDK.

• Store the execution time in XML.

6.2.2.3 Proposed W2ASVB model framework

Any user request for data processing is divided into two parts - data and action

part. The data part contains the data that requires processing, whereas the action

part describes the required operation on the given data. Request brokers are a key

concept in the proposed W2ASVB model framework. They are semi-autonomous

objects which are completely equipped with all the capabilities to handle action

and view management for user requests. In other words, they can be called

middle agents that provide a mediation mechanism. They have been classified as

semi-autonomous because they can complete the user's request without any

assistance from other brokers but are bound to be controlled by managing

authority. This managing authority is called the system manager.

On arrival of a user request, it gets queued up in waiting area. The system

manager continuously checks the waiting area and as soon as a request arrives, it

is allocated to one request broker. This allocated request broker moves the

request from the waiting area into the processing area and starts analysis of the

request header to find the source details, such as the name of user interface from

which the request is being generated, and the action it requires. On identification

of source and action, it starts searching to find the name of a matching service

adapter in the user session profile. The user session profile is a profile carried by

each user, and is initially allocated to each user by the system manager when the

user first logs in.

134



6.2.2.4 Results

The results of the execution tasks are given below.

Table 6-1: Results of the execution task

Number of Zoho CRM Microsoft CRM W2ASVB model

instructions framework

100 instructions 0.25 seconds 0.20 seconds for 0.24 seconds for

for processing processing processing

1000 instructions 0.45 seconds 0.35 seconds for 0.38 seconds for

for processing processing processing

10000 instructions 2min 20 lmin 40 seconds lmin 10 seconds

seconds for for processing for processing

processing

160
140 /120 / ___'_Zoho CRM
100 / /

_ Microsoft CRM80 / /

60 ~ • W2ASV8 modelJ-/ framework
40 ~---20 ----
0

100 1000 10000

Figure 6.5: Results of the execution time validation

135



Figure 6.5 shows the execution time of the different frameworks on the provided

number of instructions. Execution time is a sum of the different activities in each

task as shown in Figures 6.6 and 6.7.

QMry b«1Itioe TN 0.0216 lee: (Hill

QlHll'¥Proc:.'Wtfn.n.r. Q,04l<4I«tB.M.)

H.....,c:.ctt.tkoIQ'f O,04S, .. (10,L~)(2.I"t;t OM.u.d 04do.a.OAltfT'O\-ed.Ohha,4abOru:

P•• kM......... u..,.. 7,215" mb (U'mbt¥"llblt)

.......... _ U_ l~""'" c.... _

""""" "'-- - Ilt,.t.MDiff.,.._bIJ .... .._,. todo4 ........ ....... ....- -,.... M"lHt 1.01mb 7.27 mb " ..
....... O.3UtiHC 4.1Imb '.21 ....b ,.

0.011l'l( 13.721ci 101mb,_I
...- OtOll.ec: "3.U Id! 1.27mb ..

Figure 6.6: Execution time of the ZohoCRM

General Perfonnance Ilttal1l
,..,.,~n.....l.Ia.I'¥

Q-.ryl.!o.c."'-n-.Ol:ln lu·' .. 1

Q-."',..., ..... .- O<l031 {3'.Z,,",)

,.._,.CNfI,eu...,. 12U •.c:II .•"l.:o.OlHot""""'IH 1'0 ..... J.~,OI'''.IioI .. ~l

...... .,...,..,.,u.... l'OOOU ....~!t:."'••••.I.~)

_ Uo_
_u_ ...- ....... ' •.'"M.......

"-':I'IM'I .. Mil ..... """"" OIH_"tW ."" .- ......... 0.1 ...... -T.... I'"'''''' If to ....1t ... " " " .., ..
.,.tt.". I.'OU,*, ""m. '"m".....~ O'VI_ 1,001ft. ... " .n

0,0027 .... nn"" .,n~.
...., ...._I .....V..... O,OU,)HlC I.U",b .,e,.... ..

•otte_,_ 0.000"' • 7""
o.u .... ' ... ",11 If 00 m. ... " ..

.. t~I."' OQOOAI" '.2b . . . • • . . ..
(0.0000."1 "lI~J CO, 10' ,ot 10' 10, .. 10'~-O, ..o..,H I." 1ft'

t .... "".

... " , " .. ..
(0.:11'02 ..... ) (I.~' .... , ("I I'" U, !I'/ (111 '"....... 0.0""_ IH.I'1ra.

0.00'0_ '.H'" I•• ' .... • . . • . . •(o,oonNeI '''uu) '01 10' ,01 ", ", '01 '01

Figure 6.7: Execution time of the Microsoft Dynamic

6.2.3 Average cost per user

The average cost per user of the system depends upon the oftware hardwar and

customisation costs of the system. The average co t per u er f the y t m

136



implementation varies from one company to another, due to different hardware

configuration and customisation. Each company has a number of different

departments, and each department within an organization can be diverse, so it is

imperative for software to be tailored to meet the unique requirements of its

users. The average cost per user of ZohoCRM, Microsoft Dynamics and the

W2ASVB framework under test is calculated by considering the following

scenario.

We applied the framework to a company which has about 300 employees, and is

organizationally divided into four departments, reflecting three different

segments: financial, commercial, technical, and management. Each department

has a different workflow on the same set of instructions; the management

department needs live stock statistics while the financial department requires

order history to manage the accounts etc.

6.2.3.1 ZohoCRM framework

ZohoCRM is available in different packages. The most suitable package for our

scenario is the enterprise package and costs £13 per user per month. We need to

customize this to fulfil the demands of each department, as currently all users

get the same set of options. The average cost for each department's business

logic implementation is approximately £ 10,000. It requires three developers to

work about 10 full working days. This customisation is only possible from the

ZohoCRM dedicated developer.

137



Table 6-2: Average cost per user of ZohoCRM

Cost Total cost

300 Users £13 per user 3900 per month

4 Department 10,000 per department 40,000 (Initial cost)

customisation

6.2.3.2 Microsoft Dynamics

Microsoft Dynamics CRM is available in different packages. The most suitable

package for our scenario is the CRM online package as the other packages need a

company-based server installation. Its cost is £23 per user per month. One needs

customization to fulfil the demands of each department, as currently all users get

the same set of options. The average cost for each department's business logic

implementation is approximately £5,000. Microsoft's CRM provides several

customization options to fulfil the different departmental requirements.

Table 6-3: Average cost per user of Microsoft Dynamics

Cost Total cost

300 User £23 per user £6900 per month

4 Department 5,000 per department 20,000 (Initial cost)

customisation

138



6.2.3.3 Proposed W2ASVB model framework

Average cost of the W2ASVB framework is calculated by using the above-

mentioned scenario. The approximate costing for the proposed model framework

is given below:

Table 6-4: Average cost per user ofW1ASVB model

Cost Total cost

300 Users £2 per user (100MB data £600 per month

usage)

4 department App.£ 100 (It depends on £ 100 (Initial setup cost)

customisation the server configuration)

6.2.3.4 Results

The results of the average cost per user analysis are given below;

Table 6-5: Results of the average cost per user

First Month Second Month Third month

ZohoCRM £43900 £3900 £3900

Microsoft £26900 £6900 £6900

Dynamic

W2ASVB model £700 £ 600 £600

framework

139



£30,000
Zoho CRM

• Microsoft Djnanic
o W2ASVB model framework

£40,000

£35,000

£25,000

£20,000

£15,000

£10,000

£5,000

£0
First Month Second Month Third rronth

Figure 6.8: Results of the average cost per user validation

In the new proposed model framework customisation for the different

departments is achieved by a customised business login for different departments

by performing the following steps;

• Create a new action processor class called «Company _ Department 1»

and customize it according to the Company's departmental requirement

• Compile the code of this new action processor.

• Plug-in this new action processor in the system by replacing th word

«GenericProcessor»with «Company_Department1» in the ompany

department profile in the XML meta-data file.

140



And finally, instruct the profile factory to refresh the Company action proce or

mapping table. Due to the customisation at the software level, it reduce the

customisation cost of the W2ASVB and will also reduce the overall average co t

per user.

6.2.4 Scalability

Careful planning and development are necessary for any framework development

and to make a truly scalable application, it is important to rigorously and

regularly validate it for scalability. The purpose of scalability validation is to

identify major workloads and mitigate bottlenecks that can impede the scalability

of the framework. There are number of different ways to perform scalability

validation, such as cluster technologies, isolated transactional methods and

business logic layer elimination etc. Logic versus physical tier calability

validation method has been used. In this method, all the layer of the framework

such as the business logic layer and the data access layer are distributed and then

tested by increasing the number of the users and their interface in the

framework. The scalability of the ZohoCRM, Micro oft Dynamic and W2A V

is performed by the following steps.

CompanyProfiles.xml file i pre ent n d ignated path

inside application server' hard di k.

Identifier T2

Setup

] 41



Description, To test the scalability, initialization and organization of

company profiles by Profile Factory from XML file, at user

login.

No explicit call is required to initiate this test-case; it i

called internally by the system manager.

• SystemManager.java

• ProfileFactory.java

• XMLReader.java

• ResourceRegister.java

• Profile factory successfully reads the company

profiles from XML file.

• Profile factory successfully initialize the action

processor mapping tables for each company.

• Profile factory succe fully initialize th ale

person menu mapping table for each c mpany.

• Profile factory successfully initialized the c mpany

admin menu mapping table f r each company.

• Profile factory succe fully I ad the mi ing

142



companies and their respective locations'

information from database (see Figure 6.9) .

• ,1. 5IockChKk"'__.tev •• "op..." It~-- -........ ~,,,
"'...----r",
rn.:uJI1\I--0..-"'-'>--_OH_

.. 11leA .... _->..," .....511.1.• & ... vi".. I. __ <:_._ ..,,._ .. >d.Itou:··'vw.. ,,j.<: ...... plJ. •• 1W1 ... J. ...... j 1

.~ :::::=~:~::.:~P~~:9::!!:~:=:;:~~7.::~;;::~::~:!:~~~~~latioi ..1
~ IX..... -> ... ,.-tlc.ffpu._rd ..... i.9.eio"-a ... - ..f ....... cl/f.., •• I..-ri.o~•••elt;.ftJI ,.tI.j .. ]

oil
e

focal mo.II ... at .aJ.•• pu'._XM\ .... l1.nk.: 7

'" ..... n_->d. •• lltop "_toa!:.i .... -., ••• -,..ha.c.Mrto:!I.I •• P.l'.GrIlI•• ~,,p
,,,..,,, "_o-"."o.,lr,,h_dr ..._"~1 ..n-".".-"I._-'-~.c •• /lJ4ln.ri"lt ..d.Ctwoelrj.p
lilP\I. JI_-~"&.1. 1la'ri00atiOll-c .... - .. '. __ ffae .. '''_rlclblr:.S ..h. ill'

Ill.,." "-'-"~nlllpl1U nanO'atl._-o:u,-",._dJtae"/qCD.nc:~pll.rIW1"'1_.:I"

IIlCmI n_-"V1..~."tont;.nc:. aMt19.t.ion-c .... - ..' • ..-cI1 tac"'9_rlel ... tonancI.)q
Ulenv. n_.-...ov .. t.oc. D.v1'1.tlOn.-e".-"I._llItac"/~ulC"OV.St;ocll",p
121..... n_.- ........plha:r.t.~i ..... 1I.vi9oatiOll.-c;: ... - ../._d/fK •• /'iI.lIuic.vppU.lhl.lIiII .... J.J1

lOll.l • ..an --. ,KC:-._i .. Lbt>O --. InoiI,
hofU .. ~ol''' __~ i.a1tll --~ loo.tioaHo ••• u..".at,.nI217.15.U.20., • 1

Pnfih'.et01'T --~ in.1t II --. loo.tioAlfo .... U,.O,1,!217 ... '.Ul.2U) ...

ProfU.'.c;:tor,. --~ int.t.O -- .. lOC;:lltionHolI•. UncU!l,TP(217.:U U. 13.) • I

P:rof:Lh'ACtol',. --. tA:Lt() -->- loc.tiollHo ... f1MUl,.lPI21?U.27.'.) .. 1

'rofihhctor,. --) 1AitO -->- In.4

,. !l.Mt :r..r...c

I~~ ~--------------~--------------------~------------------~~
o

Figure 6.9: Profile factory initialization confirmation

6.2.4.1 Zoho CRM framework

ZohoCRM is using the existing Web 2.0 framework and in the Web 2.0

framework all the user interfaces are directly bounded to the bu ine logic. Due

to this architectural deficiency, all companies that run their e-bu ine on

ZohoCRM require their own dedicated set of view with the name of r quir d

services embedded inside them. The increase in view (interfac th

memory usage on the hosting server and ultimately it call e mem ry h rtag at

the hosting server, increasing the response time and r dueing the overall

143



performance etc. The result of the ZohoCRM scalability validation is shown in

section 6.2.4.4.

6.2.4.2 Microsoft Dynamics

Microsoft Dynamics is available in different versions and currently the most used

version is Microsoft Dynamics 4.0. This version is developed by using

Microsoft's own work foundation platform. It is a modified form of the Web2.0

framework. This foundation platform provides a scalability and resource

management options in the Microsoft dynamics but it still increases the memory

usage as the view (user interface) increases. Microsoft Dynamics has its own

resource management feature which reduces the memory usage from the other

source as the memory usage increases from the views. The result of the

Microsoft Dynamic scalability validation is shown in section 6.2.4.4.

6.2.4.3 Proposed W1ASVB model framework

The W2ASVB framework replaces the supporting functions with the service

adapters. Service adapters are light weight and contain an implementation of the

workflows. Following a user request service. adapters are connected to the core

platform to execute the workflow modelled inside them. All workflows (both

generic and customized) are modelled as service adapters. This feature provides

an option in the W2ASVB framework to support a large of number of views (user

interfaces) without consuming lot of memory. The W2ASVB framework

provides a shared interface and performs user requests on the basis of profile

configuration.

144



6.2.4.4 Results

The results of the scalability validation are given below.

-ZohoCRM

-Mlcro,soft Dynamic

-W2ASVSmodel
framework

Figure 6.10: Results of the scalability validation

Figure 6.10 shows the results of the scalability validation. The W2ASVB

framework memory usage/user decreases gradually by increasing the number of

users. The reason for less memory usage at larger number of uri that

W2ASVB is using the service adapters rather than normal service function .

These adapters release the memory that was occupied for performing the ta k

after execution.

145



6.3 Advantages of the proposed solution
• The major contributions of the proposed system are the introduction of

two brand new concepts; a service called service adapters and a request

management mechanism called a request broker. As opposed to traditional

web services, service adapters are light weight services and have shown

better performance at run-time. This performance gain is a result of

elimination of discovery and binding supporting functions from the

SOAW2 model framework. In addition, they have proven their strategic

importance in scenarios where new services are required to be built from

existing web services without violating the SOA principles.

• The system enjoys good scalability and performance because of its

enhanced plug-n-play capabilities, if implemented according to chapter S.

The use of plug-n-play hardware devices is very common, but in the field

of software engineering this concept is quite new. Having software that

contains such a feature is still rare. Internal architectural variations of

different modules and absence of well-defined interfaces are the two

biggest reasons for this lack of achievement until now. W2ASVB has

overcome both of these deficiencies in a simple yet elegant and cost-

effective way. The data dictionary modules in W2ASVB contain a list of

modules and their functionalities information that is in use by different

companies. Request brokers efficiently load them upon request at run-

time. At any stage, if new modules are required to be plugged-in in the

system, a service provider only requires compilation and entry of new

module names in the data dictionary and the rest is handled automatically

146



by the intelligent brokers of the system. This new technique proved to be

better in handling complex system evolution problems as faced by current

retail systems. As a benefit of this technique, any number of new modules

can now be unplugged from the system and easily be replaced with new

ones. Conventional Web 2.0 systems do not exhibit such capabilities.

• One of the main aims of this project was to develop a generic set of user

interfaces and business workflows. The reason behind this is to facilitate

small retailers with ready-made solution for achieving instant e-business

transformation. Traditional web systems do not provide such generic

facilities as they are built on specific requirements of any particular

company. Since customization of any existing system to suit any other

companies' business process requires recompilation of the complete

system code and therefore such a system becomes unaffordable to both

solution provider and client companies. This situation becomes more cost-

centric when a system is a desktop system and requires additional

hardware installation.

• W2ASVB is equipped with basic essential features such as customized

user interfaces, customised workflow mechanisms, profile management

etc. that a small retailer needs; that is to put a first step on the e-business

ladder at an affordable cost. The system does not require any special set

up on the client side (such as hardware installation etc) and is accessible

from any point in the world where Internet access is available. Small

retailers who are interested in automation of their manual POS business

147



procedures need at minimum a standard desktop PC, a printer and a

standard Internet connection to start their e-business.

• W2ASVB compared to other traditional Web 2.0 based systems offers a

complete flexibility in its architectural design. Conventional web systems

always suffer from the risk of undesirable architectural modification

during upgrade and maintenance activities. W2ASVB architecture has

been designed in such a way that any system evolution due to

customization of either business logic or user interface does not pose any

risk to core system design. In addition, and due to the system's central

administrative nature, W2ASVB also offers central customization of

business logic and user interfaces on a request from the end users. Thus,

no visits of any personnel on client locations are required. This is a huge

benefit of the proposed system and its implemented proposed model

framework as it helps service provider in reducing maintenance and

administration cost.

6.4 Shortcomings of proposed solution
The proposed solution, although it provides many advantages, also has some

shortfalls. This section presents the disadvantages of the proposed solution and

as the reader goes through these shortcomings, it will be noticed that they are

very minor as compared to the advantages (i.e. as explained above) and only

require small improvements.

• There is no mechanism for the management of request broker pool size in

the proposed framework; at present the system demands a declaration of

148



constant request broker's pool size at a system initialization time.

However, as the system has shared features mechanism, the responsibility

for managing this pool size during busy times is on the system

administrator's shoulders. Application server logs can help the system

administrator in making this decision, but it requires extensive real-time

human calculations. Errors in this calculation could have very serious

impact on system performance.

• Although all the user requests pending in the waiting area are assured that

they will be allocated request brokers as soon as they become available,

no assurance is given on whether this allocation is made on the first come

first served basis. As a matter of fact, prioritization of incoming request is

an issue of application server; therefore, it should be researched at

application server level rather than system level. Research at application

server level requires extensive experience, a longer research period and a

well-documented knowledge base from a server vendor. Unfortunately

server vendors do not share their internal server architecture publicly;

therefore this request prioritization issue can be classified as a

shortcoming of the proposed system, but its solution is outside the scope

of this project.

149



7. Conclusions and Future Recommendations

ISO



7.1 Contribution of the work
The proposed work seeks to make a contribution to knowledge and understanding

in the field of Web 2.0 technologies and business process models, through the

development of a particular area of theory and related application. Technically, it

is intended to propose a new framework associated with specific optimisation

methods in order to provide the customizable platform after reviewing both Web

2.0 technology (e.g. information sharing, interoperability, user- centre design and

collaboration) and business process models (e.g. strategies, and operational

processes). In practice it is intended to develop a 'framework' based on an

efficient and secure model to facilitate small retail businesses in achieving e-

business transformation. The framework is capable of being customized and

scalable according to user requirements and reducing the overall installation cost.

7.1.1 Request handling

In this research by taking into consideration the shortcoming of request

management components in SOAW2 and a need for an effective and intelligent

request brokerage mechanism to handle complex on-demand sharing and

customization problems, an enhanced request broker architecture is integrated

between the user interface and the resource container. This proposed request

broker architecture followed the standards mentioned in research by (Alur, Curpi,

& Malks, 2003) but overcame limitations such as memory leaking and resource

management etc. These proposed request brokers are responsible for action and

view management inside the W2ASVB model framework. With the help of this

proposed architecture, the W2ASVB framework provides an on-demand request

routing between user interfaces and services of the core platform.

151



7.1.2 Service adapter

In this research, if workflows get modelled as web services, it would be a

violation of loose-coupling and no embedded calls principle of SOA. To

overcome these limitations and to avoid any conflict with SOA principles,

workflows are modelled as service adapters. Following a user request for

processing the adapters get connected with the core platform to execute

workflow modelled inside them. All the workflows including both generic and

customized are modelled as services adapters.

7.2 Evaluation of research question
The following conclusions are derived, related to the initial research question prior to

the main investigation.

7.2.1 User request management modelling

In this thesis, it is shown that user requests for data processing can be divided

into two parts namely data and action part. The data part contains the data that

requires processing, whereas the action part describes the required Operation on

the given data and the request brokers are semi-autonomous objects which are

completely equipped with all the capabilities to handle action and view

management for user requests.

7.2.2 Workflow modelling

The workflow management mechanism is introduced in W2ASVB to separate

and segregate operations into two categories, namely generic and customized

workflows. Also, the core business logic (i.e. data persistence logic) is embedded

152



in these generic and customized workflows as it helps to make a loosely coupled

business logic and user interface.

7.3 Research contributions

• In order to overcome the problem of service and user interface sharing, it

was found through the highlighted literature review that most of the

request mediation architectures are very useful in handling such complex

scenarios. By taking into consideration the shortcoming of request

management components in SOAW2, and the need of effective and

intelligent request brokerage mechanisms to handle complex on-demand

sharing and customization issues, new request broker architecture is

integrated between the user interface and the resource container. The

proposed framework consists of a new request broker architecture

concept. This request broker concept improves request handling process,

which is responsible for an action and view management inside W2ASVB

model framework. It provides on-demand request routing between user

interfaces and services of core platform. The knowledge layer of the

model framework is shared between service provider and users (i.e.

employees of retail companies). This knowledge layer is the essential part

of the Web 2.0 model framework and it is there to represent architecture

of participation. This means that new knowledge in the model will be

modified with the passage of the time.

• The research has also analysed the functional and non-functional

dependencies in the shared systems. These dependencies appear as an

153



effect of construction of new services from existing functionalities. It is

marked that in some situations due to the irreducible complexity of the

scenario, compliance with strict SOA principles becomes difficult. The

research answered this issue with a practical implementation of service

adapters. The service adapter is a new concept of "light weight" services

and contains the implementation of workflows. In SOA tradition, services

are relatively large, shared, intrinsically loosely-coupled units of

functionalities, and have no embedded calls to each other as W2ASVB

model framework workflows are modelled as service adapters.

• This research also analysed the mechanism to control the generic

workflow for each client as per its own requirements. In order to achieve

this task, the proposed framework introduces the concept of profile

management in XML format. It is one of the most powerful and self-

descriptive languages in representing complex SOA-related data

structures for brokerage. Furthermore, it can also be concluded that due to

the profile management an elegant customization capability introduced

into the proposed model framework, it reduces the development efforts of

the solution provider company. This indeed results in the reduction of

administration and development costs. Therefore, the model makes the

system affordability two-dimensional i.e. it is not only affordable to small

retail companies but is also affordable to the solution provider company.

• Another important outcome of this research is that the proposed

framework is built independently of any existing e-business architecture.

154



The W2ASVB framework is a business domain dependent system, but the

model framework itself is independent of any business domain. Therefore,

it can be concluded that the proposed W2ASVB model framework is

applicable to any relevant business domain to produce commercial scaled,

shared, robust, flexible and affordable e-business solutions. It also reduces

the operational cost dramatically due to its reusable nature and

customizable business logic as already mentioned in the validation

chapter.

• One of the main features of the proposed system is its on-demand

customization capabilities. Contrary to traditional web systems, this

customization facility is not only limited to the customization of business

logic, but it can also help retailers in customizing the look of their

business data i.e. customization of user interfaces.

7.4 Future recommendations
As an important activity of any research study. this section presents the issues

that were highlighted as future research elements and require further

investigation. Effective solution of these issues will contribute towards the

improvement of the proposed model framework and will provide enhancements.

One future research area is the need of a request management algorithm to

control the request brokers' pool size at run-time. Taking into consideration the

highly operational and business-centric nature of the system, there is a need for

serious investigation of this issue. Existing data mining algorithms would be

useful, but a careful review is required to develop an improved version that not

ISS



only performs the run-time statistical calculation of incoming requests, but also

uses its own knowledge base to decide the pool size. This new demand-and-

supply algorithm must ensure that this pool size is set according to the relevant

parameters such as available server resources and physical health of the system.

It must also ensure that the system makes the best use of its logical resources (i.e.

request brokers) to honour the maximum number of requests in a given time

frame. Further research in this area can be done by implementing this framework

by using the standard web service orchestration. In this case, the framework will

inherit all the existing web service features, and these framework services can be

used as external services.

Another possible future research area is the request prioritization issue. This

issue was also amongst the shortcomings presented in the validation chapter.

Further research is needed to come up with an effective algorithm which will

ensure that the requests that are waiting longer get first priority. This is not a

software level issue, it is rather an application hosting server level issue, and an

effort can be made to resolve this efficiently.

156



8. References

157



B. Martinez, "Exploiting Social Tagging in a Web 2.0 Recommender System",

IEEE Journal on Internet Computer Society, vol. 14, pages 23-30, 2010.

B. Choi, T. S. Raghu, A. Vinze, and K.J. Dooley, "Process Model for e-Business

standards development: A Case of ebXML Standards", IEEE transactions on

engineering management, vol. 56, pages 448-467,2009.

B. Dubney, J. Lehr, B. Willis, and L. Mattingly, "Mastering JavaServer Faces",

1st Edition. Wiley Publishing Inc, ISBN 0471462071, 2004.

B.C.C. Tan, S.L. Pan, R. Hackney, "The Strategic Implications of Web

Technologies: A Process Model of How Web Technologies Enhance

Organizational Performance", IEEE Transactions on Engineering Management,

vol. 57, pages 181-197,2010.

C. Leon and H. Enrique, "Virtual Service Grids: Integrating IT with Business

Processes" ,IT Professional. vol. 11, pages 7-11, 2009.

C. Schroth, "Web 2.0 versus SOA: Converging Concepts Enabling Seamless

Cross-Organizational Collaboration", 4th IEEE International Conference on

Enterprise Computing, pages 47-54,2007.

C. Pautasso, O. Zimmermann and F. Leymann, "RESTful Web Services vs. Big

Web Services: Making the Right Architectural Decision", International word

wide web conference, April 21-25, 2008, Beijing, China, ACM 978-1-60558-

085-2/08/04.

IS8



D. Breitgand, R. Cohen, A. Nahir, and D. Raz, "On Cost-Aware Monitoring for

Self-Adaptive Load Sharing", IEEE journal on selected areas in

communications, vol. 28, pages 70-83,2010.

D. Guinard, V. Trifa and S. Karnouskos, "Interacting with the SOA-Based

Internet of Things: Discovery, Query, Selection, andOn-Demand Provisioning of

Web Services", IEEE transactions on services computing Journal, vol. 3, pages

223-235,2010.

D. Hinchcliffe, "Web 2.0 Continues Its Move To The Workplace".Reterived 12

03, 2011 from http://www.zdnet.comlbloglhinchcliffe/significant-workplace-

inroads-for-enterprise-2-01l50.

D. Khazanchi and B. Munkvold. "On the Rhetoric and Relevance of IS Research

Paradigms: A Conceptual Framework and Some Propositions". Proceedings of

the 36th Hawaii International Conference on System Sciences (HICSS'03),

January 06 - 09, 2003, Big Island, Hawaii, pp. 252b.

E. Zeiris and M. Ziema, "SOA based e-business systems design", Proceedings of

the 2010 International Conference of e-business (ICE-B), pages 1-8,2010.

F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, "Run- Time Monitoring of

Instances and Classes of Web Service Compositions", Proceedings of IEEE 6th

International Conference on web Services, pages 63-71, 2006.

F. Sinton, "Enhancing an Application Server to Support Available Components",

IEEE Journal on Software Engineering, vo1.34, pages 531-545, 2008.

G. Carraro, "Software as a Service (SaaS): An Enterprise Perspective,"

159



Globus, "Globus Service Grid", Retrieved at 13 November 2011 from

http://www.globus.org!ogsa.

H. Chen, "Trends & Controversies", IEEE Journal on Intelligent System, vol. 25,

pages 68-83, 2010.

H. Zhao and H. Tong, "A Dynamic Service Composition Model Based on

Constraints", Sixth International Conference on Grid and Cooperative

Computing (GCC2007), pages 659-662, 2007.

H. Yuan, S.W. Choi, and S.D. Kim, "A Practical Monitoring Framework for

ESB-Based Services", Proceeding of IEEE Congress Services Part II

(SERVICES-2 '08), pages 49-56, 2008.

H.-M. Chen, "SOA, Enterprise Architecture, and Business-IT Alignment: An

Integrated Framework", Proceeding of software Eng. research and practice

conference, pages 566-573,2007

H. XiaoQin, H. LinPeng, C. Lin, and L. Minglu, "Design and Implementation of

an Agent-Based Web Services Platform for Electronic Commerce. Services

Computing", IEEE International Conference on Services Computing (SCC'04),

pages 643-646, 2004.

J. Dom, A. Rainer, and P. Hrastnik, "Toward Semantic Composition of Web

Services with MOVE", 8th IEEE International Conference on E-Commerce

Technology and The 3rd IEEE International Conference on Enterprise

Computing, E-Commerce, and E-Services, page 67, 2006.

160

http://www.globus.org!ogsa.


J. Asensio, J. Vergara, , and J. Berrocal, "Experiences with SNMP based

integrated management of CORBA-based elecronic commerce application", Sixth

IFIPIIEEE International Symposium on Integrated Network Management.

Page(s): 517 - 530 ,1999.

J. Zhao, W.V. Huang, and Z. Zhu, "An Empirical Study of E-Business

Implementation Process in China", IEEE journal on engineering management

transactions, vol. 55, pages 134-147,2008.

J. Xu, D. Zhang, L. Liu and X. Li, "Dynamic Authentication for Cross-Realm

SOA-Based Business Processes", IEEE transactions on services computing, vol.

5, pages 20-22, 2012.

J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O'Farrell, E. Litani and J.

Waterhouse, "Runtime Monitoring of Web Service Conversations", IEEE Trans.

Services Computing, vol. 2, pages 223-244, 2009.

J. Koskinen. "Software maintenance cost estimation and modernization support".

Retrieved 08 02, 2011, from

http://www .citeulike.orgiuser/mattbiehIlarticIel7 530373 .

L. Hitachi, "Proposal of Application Architecture in Electronic Commerce

Service between Companies". International conference on advance issues of e-

commerce and web-based information systems, page 46-49, 1999.

L. Baresi and S. Guinea, "Towards Dynamic Monitoring of WSBPEL Processes",

proceeding of 3rd International Conference on Service-Oriented Computing

(ICSOC '05), pages 269-282, 2005.

161



L.D. Xu, "Enter Systems: State of the Art and Future Trends", IEEE

Transcations on industrial informations, Vol. 7, 2011.

L.M.S. de Souza, P. Spiess, D. Guinard, M. Kchler, S. Kamouskos, and D.

Savio, "SOCRADES: A Web Service Based Shop Floor Integration

Infrastructure", Proc. Internet oj Things Con! (loT '08), pages 50-67, 2008.

M. Bichler and M. Kaukal, "Design and Implementation of a Brokerage Service

for Electronic Procurement". 10th International Workshop on Database & Expert

Systems Applications, pages 618-622, 1999.

M.J. Carey, "Service Oriented Architecture (SOA) What?", IEEE journal on

Internet Computing, vol. 41 , pages 92-94, 2008.

M.A. Davidson, E. Yoran, "Enterprise Security for Web 2.0", IEEE Journal on

Computers, Vol. 40, pages 117-119,2007.

Microsoft Corp., Retrieved at 12 September

http://msdn.microsoft.com/en-us/library/ aa905332.aspx.

MerchantOS. (2011). Introduction to MerchantOS. Retrieved 7 12, 2011, from

2011 from

MerchantOS: http://www.merchantos.com/try-itl2/

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso, "Planning and

Monitoring web Service Composition", Artificial Intelligence Methodology,

Systems, and Applications, vol. 3192, pages 106-115, 2004.

Milpied and Dubois, "Arrhythmia Discrimination in Implantable Cardioverter

Defibrillators Using Support Vector Machines Applied to a New Representation

162

http://msdn.microsoft.com/en-us/library/
http://www.merchantos.com/try-itl2/


of Electrograms", IEEE Journal on Biomedical Engineering, vol. 58, pages 1797·

1803,2011.

M. Kano, A. Koide, T.K. Liu, and B. Ramachandran, "Analysis and simulation of

business solutions in a service-oriented architecture", IBM System Journal, vol.

44, pages 669-690,2005.

M. Shafiq, Y. Ding and D. Fensel, "Bridging Multi Agent Systems and Web

Services: towards interoperability between Software Agents and Semantic Web

Services", Proceedings of the 10th IEEE International Enterprise Distributed

Object Computing Conference (EDOC'06), pages 85·96, 2006.

N. Bieberstein, S. Bose, L. Walker, and A. Lynch, "Impact of service oriented

architecture on enterprise systems, organizational structures, and individuals",

IBM System journal, vol. 44, pages 691-708, 2005.

O. Nasraoui and M. Soliman, "A Web Usage Mining Framework for Mining

Evolving User Profiles in Dynamic Web Sites", IEEE Journal Knowledge and

Data Engineering, vol. 20, pages 202·2 I5, 2008.

O. Mahmood, "Developing Web 2.0 Applications for Semantic Web of Trust",

International Conference on Information Technology (ITNG'07), pages 819·824,

2007.

P. Felber, P. Narasimhan, "Experiences, strategies, and challenges in building

fault-tolerant CORBA systems", IEEE journal on computers Transactions, vol.

53, pages 497·511, 2004.

163



PHPPointOfSale. (2011). Peoria Plumbing Supply. Retrieved 7 12, 2011, from

PHP Point of Sale: http://demo.phppointofsale.com/index.php

P. Pankaj, "An analysis and exploration of the construct of information systems

agility", Ph.D. dissertation, Southern Illinois Untv. Carbondale, Carbondale. IL,

2004.

P. Xiong, Y. Fan, and M. Zhou, "QoS-aware web service conguration", IEEE

Transaction System, vol. 38, pages 888-895, 2008.

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L.M.S.d. Souza, and

V. Trifa, "SOA-Based Integration of the Internet of Things in Enterprise

Services", Proceeding of IEEE International Conference on Web Services (ICWS

'09), pages 968-975, 2009.

Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, "An Online

Monitoring Approach for Web Service Requirements", IEEE Transaction

Services Computing, vol. 2, pages 338-351, 2009.

R. Battle, "Bridging the semantic Web and Web 2.0 with Representational State

Transfer (REST)", Journal of Web semantics: Science. Services and Agents on

the World Wide Web, vol. 6, pages 61-69, 2008.

R. Howard and L. Kerschberg, "A Knowledge-based Framework for Dynamic

Semantic Web Services Brokering and Management. Database and Expert

Systems Applications", 15th International Workshop on database and expert

systems applications, pages 174-178,2004.

164

http://demo.phppointofsale.com/index.php


R. Pressman, "Software Engineering: Practitioner's Approach". McGraw Hill

Inc, ISBN 0071267824, 2005.

S. Aughton, "Controlling the Business Growth Speed from Financial Angle of

View: Using Cash Flow System Dyanmics Model", IEEE conference on First

International Workshop on Database Technology and Applications, page 610·

613,2009.

S. Kuk, 1. Oh, H. Kim, I.K. Lee, and S.W. Park,"An e-Engineering Framework

Based on Service-Oriented Architecture and Agent Technologies", Proceedings

of the 2007 l Ith International Conference on Computer Supported Cooperative

Work in Design, pages 429·434, 2007.

S. Kuk, 1. Oh, H. Kim, I.K. Lee, and S.W. Park. "Service-Oriented Architecture

Based e-Engineering Framework to Support Collaborative Design", IEEE

International Conference on Services Computing (SCC 2007), pages 340-347,

2007.

S. Murugesan, "Understanding Web 2.0", IT Pro, vol. 9, pages 34-41,2007.

S. Shenoy and N. Mallya, "Integrating Struts, Tiles, and JavaServer Faces",

Retrieved 03 27, 2007, from IBM Research Center: http://www-

128.ibm.com/developerworks/library /j -integrate.

S. Kamouskos, O. Baecker, L.M.S.d. Souza, and P. Spiess, "Integration of SOA-

Ready Networked Embedded Devices in Enterprise Systems via a Cross-Layered

Web Service Infrastructure", Proceeding of IEEE Conference of Emerging

Technologies & Factory Automation (ETFA), pages 293-300, 2007.

165



T. Shan, "Taxonomy of Java Web Application Frameworks", IEEE International

Conference on e-Business Engineering, pages 378-385, 2006.

T. Erl, "Service-Oriented Architecture: Concepts, Technology, and Design",

Prentice Hall PTR, ISBN 0131858580,2005.

T.C. Shan and W.W. Hua, "Service-Oriented Solution Framework for Internet

Banking", International Journal of Web Services Research, vol. 3, pages 29-48,

2006.

V. Oosterhout, E. Waarts, and J.V. Hillegersberg, "Change factors requiring

agility and implications for IT", European Journal of Information System, vol.

15,pages 132-145,2006.

V. Sambamurthy, A. Bharadwaj, and V. Grover, "Shaping agility through digital

options: Reconceptualizing the role of information technology in contemporary

rms", MIS Quart., vol. 27, pages 237-263, 2003.

V.A.F. Almeida, "Internet Workloads: Measurement, Characterization, and

Modeling" , IEEE journal on Internet computing, vol. 15, page 15-18, 2011.

W. Freiler, "Interactive Visual Analysis of Set-Typed Data", IEEE journal on

Visualization and Computer Graphics, vol. 14, pages 1340- 1347,2008.

W. J. Clarke, L. C. Alves, "IBM System z10 design for RAS", IBM Journal of

Research and Development, vol. 53, pages 11-22, 2010.

166



W. Marin, "Remote Programming of Network Robots Within the UJ! Industrial

Robotics Telelaboratory: FPGA Vision and SNRP Network Protocol", IEEE

Journal on Industrial Electronics, vol. 56, pages 4806-4816, 2009.

W. Omar, A. Abbas, and T. Bendiab, "SOAW2 for Managing the Web 2.0

Framework", IEEE Journal on Computer Society, Vol. 9, pages. 30-3S, 2007.

WC3. (2004). "Web Services Specifications", Retrieved 7 28, 2010, from Web

Services Architecture: http://www.w3.orglTRJws-arch/.

X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, and H. Zhu, "A petri net approach to

analyzing behavioral compatibility and similarity of web services", IEEE

Transaction System, vol. 41, pages 510-521, 2011.

Y. Liu, I. Gorton, and L. Zhu, "Performance Prediction of Service-Oriented

Applications Based on an Enterprise Service Bus", Proceeding of Llst annual

Internation computer software and applications Conference (COMPSAC '07),

pages 327-334, 2007.

Y. Dang, Y. Zhang, H. Chen, "A Lexicon-Enhanced Method for Sentiment

Classification: An Experiment on Online Product Reviews", IEEE Journal on

Intelligent System, vol. 2S, pages 46-53, 2010.

Y. Juan and W. Hongxia, "Study on E-business Logistics System Based On

SOA", Computer Science and Information Technology (ICCSIT) Journal, vol. 3,

pagess 368 - 372, 2010.

ZohoCRM , "Zoho CRM Introduction" Retrieved 7 12, 2010, from Zoho CRM

website: http://crm.zoho.com/crm/ShowHomePage.do.

167

http://www.w3.orglTRJws-arch/.
http://crm.zoho.com/crm/ShowHomePage.do.


Z. Sen, H. Shuangxi and F. Yushun, "Service-Oriented Enterprise Network

Performance Analysis", tstnghua science and technology journal, vol 14, pages

492 -503,2009.

168



9. Abbreviations

169



ADSS Autonomous Decentralized Service System

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CBPI Company Business Process Infrastructure

CORBA Common Object Request Broker Architecture

EJB Enterprise Java Beans

EIS Enterprise Information System

GUI Graphical User Interface

HCI Human Computer Interaction

ISO International Standard Organization

IEC International Electro technical Commission

IEEE Institute of Electrical & Electronics Engineering

IP Internet Protocol

KDSWS Knowledge-based Dynamic Semantic Web Services

NS Networked Services

OMG Object Management Group

OOAD Object Oriented Analysis and Design

OLTP Online Transaction Platform

170



POS Point of Sale

RMI Remote Method Invocation

RTSOA Real-time Service-oriented Architecture

RUP Rational Unified Process

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TINA Telecommunications Information Networking Architecture

User A user interacting with a system

UI User Interface

UML Unified Modelling Language

WS Web Services

WSDL Web Services Definition Language

W2ASVB Web 2.0 Architecture for Service and View Brokerage

XML Extensible Mark-up Language

171



10 Appendix

172



10.1 Source Code

10.1.1 SystemManager.java

1*
* SystemManager.java
** Created on 28 June 2012, 23:50
*1

package w2asvb;

import com.sun.rave.web.ui.appbase.AbstractApplicationBean;
import java.util.Vector;
import javax.faces.FacesException;
import samand.broker.WebRequestBroker;
import samand.exception.AppException;
import samand.exception.ProfileFactoryException;
import samand.profile.ProfileFactory;
import samand.util.Constants;
import samand.util.DEBUG;

1**
* <p>Application scope data bean for your application. Create properties
* here to represent cached data that should be made available to all users
* and pages in the application.</p>
*
* <p>An instance of this class will be created for you automatically,
* the first time your application evaluates a value binding expression
* or method binding expression that references a managed bean using
* this class.</p>
*1

public class SystemManager extends AbstractApplicationBean
II <editor-fold defaultstate="collapsed" desc="Managed Component Definition">
private int __placeholder;

1**
* <p>Automatically managed component initialization. <strong>WARNING:</strong>
* This method is automatically generated, so any user-specified code in~erted
* here is subject to being replaced.</p>
*1

private void _init() throws Exception (
)

II </editor-fold>

1**
* <p>Construct a new application data bean instance.</p>
*1

public SystemManager () (
)

pubLi c void init I) (
DEBUG.println(DEBUG.Debug_Level, "SystemManager", "init()", "Start");
/1 Perform initializations inherited from our superclass
super. init ();
II Perform application initialization that must complete
II *before* managed components are initialized

II <editor-fold defaultstate="collapsed" desc-"Managed Component
Initialization">

/1 Initialize automatically managed components
II *Note* - this logic should NOT be modified
try {

_init ();
catch (Exception e) {

log ("ApplicationBeanl Initialization Failure", e) i
throwe instanceof FacesException ? (FacesException) e: new

FacesException(e);
)



II </editor-fold>
Ill. Initialize EJB Platform
DEBUG. println (DEBUG.Debug_Level, "SystemManager", "init ()". "Init1alizing EJB

Platform") ;
samand.services.ResourceRegisterar.registerEJBS();
DEBUG.println(DEBUG.Debug Level, "SystemManager", "init()", "EJB Platform

Initialization complete. "); -

112. Initialize profile factory
try (

DEBUG.println(DEBUG.Debug_Level, "SystemManager", "init()", "Initializing
ProfileFactory.");

this.profileFactory = ProfileFactory.getInstance();
DEBUG .println (DEBUG.Debug_Level, "SystemManager", "init ()",

"ProfileFactory initialization complete.");

) catch (ProfileFactoryException e)
DEBUG. print In (DEBUG.Debug Level, "SystemManager", "init ()".

"ProfileFactory initialization Failed-with exception::" + e);
Iisetting up PageAlert bean to be displayed on logon page
PageAlertBean pageAlertBean = (pageAlertBean) getBean("PageAlertBean");
pageAlertBean.setType("error") ;
pageAlertBean.setTitle("System Error");
pageAlertBean.setSummary("Internal System Error Occured. Please inform et

it@rankhour.com");
pageAlertBean.setVisible(true) ;

)
113. Initialize request brokers pool
DEBUG.println(DEBUG.Debug_Level, "SystemManager", "init()", "About to call

initRequestBrokersPool ().");
initRequestBrokersPool() ;
DEBUG.println(DEBUG.Debug Level, "SystemManager", "init()", "End");

}I lend of init () -

public void destroy()
DEBUG.println(DEBUG.Debug_Level, "SystemManager", "destroy()", "Start");

DEBUG.println(DEBUG.Debug Level, "SystemManager", "destroy()", "About to
destory EJB Platform Resources.")7

samand.services.ResourceRegisterar.unregisterResource() ;
DEBUG.println(DEBUG.Debug Level, "SystemManager", "destroy()", "EJB platfot'm

Resources destruction complete.") 7

DEBUG.println(DEBUG.Debug_Level, "SystemManager", "destt'oy()", "End");

public String getLocaleCharacterEncoding() (
return super.getLocaleCharacterEncoding();

private ProfileFactot'y profileFactory;
private Vector requestBrokersPool;

1*
public Vector getRequestBrokersPool()

return requestBrokersPool;
)

*1
public void setRequestBrokersPool(Vector requestBrokersPool)

this.requestBrokersPool = requestBrokersPool;

IIIIIIIIHELPER METHODS
public samand.profile.Location getLocation(String ipAddress) (

return(profileFactory.getLocation(ipAddress));

private void initRequestBrokersPool() {
DEBUG .println (DEBUG.Debug Level, "SystemManager", "initRequestBrok uPool ()",

"Start"); -
WebRequestBroker webReqBroker;



int poolSize = Integer.parseInt(Constants.REQBROKER POOL SIZE);
DEBUG.println(DEBUG.Debug Level, "SystemManager", "initRequestBrokerePool()",

"POOL SIZE set to->" + poolSize);-

Vector list = null;
list = new Vector();

for(int i=O; i<poolSize; i++) (
webReqBroker = new WebRequestBroker();
list.add(webReqBroker);
DEBUG.println(DEBUG.Debug Level, "SystemManager",

"initRequestBrokersPool()", "webRequestBroker [" + webReqBroker + "J added in pool at
position->" +i );

)

this.requestBrokersPool list;

DEBUG.println(DEBUG.Debug_Level, "SystemManager", "initRequestBrokerePool() ",
"End") ;

IIThis method will be called by JSFActionDispatcher to get free WebRequestBroker

public synchronized WebRequestBroker getWebRequestBroker()
DEBUG.println(DEBUG.Debug_Level, "SystemManager", "getWebRequestBroker()",

"Start") ;
boolean freeBrokerFound
WebRequestBroker broker

false;
null;

while(!freeBrokerFound) (
for(int i=O;i<this.requestBrokersPool.size(); i++) (

broker = (WebRequestBroker)requestBrokersPool.get(i);
if(!broker.isBusy()) (

freeBrokerFound = true;
broker.setBusy(true);
break;

J
Jllend of inner for

JIlend of while
DEBUG.println(DEBUG.Debug Level, "SystemManager", "getwebRequestBroker()",

"Broker [" + broker + "] is being-allocated to honour this request,");

"End"} ;
DEBUG.println(DEBUG.Debug_Level, "SystemManager", "getwebRequestBrok r()",

return broker;

17



10.1.2 ProfileFactory.java

/*
* ProfileFactory.java
*
* Created on 29 June 2012, 19:13
*
*1

package w2asvb.profile;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Vector;
import samand.exception.ProfileFactoryException;
import samand.services.EJBReferences;
import samand.services.ResourceRegisterar;
import samand.util.Constants;
import samand.util.DEBUG;
import samand.util.XMLReader;

1**
*1

public class ProfileFactory {
public static ProfileFactory ourInstance = null;
private HashMap<String, Location> hmLocationProfiles;

/** Creates a new instance of ProfileFactory *1
public ProfileFactory() throws Exception{

init ();

public void init() throws Exception(
DEBUG.println(DEBUG.Debug_Level, "ProfileFactory", "init() ", "Start");

Ill. initiate location profile hashmap (lP, Location)
hmLocationProfiles = new HashMap<String, Location>();

112. calling xmlreader to read file company profile file
List<samand.profile.Company> companiesList =

XMLReader.getInstance() .getCompaniesList(Constants.COMPANY_PROFILE_FILE_PATH);

113. Iterating List one by one filling missing informations in Location and
company Object

Iland then creating location based hashmap
samand.profile.Company companyObj; samand.profile.Location location;
orms.company.CompanyRemoteHome companyHome; orms.location.LoeationRemot Home

locationHome;
orms.company.Company companyRemote; orms.loeation.Location locationR motei
Vector locationVector;
Collection tempCollection;
System.out.println(companiesList.size()) ;

/**************************PLATFORM CODE*****·************************/
for(int i = 0; i < companiesList.size(); itt) {

companyObj = companiesList.get(i);

try{
I/locking up company home reference

companyHome =
(orms.company.CompanyRemoteHome) ResourceRegisterar.loo kupResouree(EJBR f r ne s.COMPAN
Y_HOME_NAME) ;



cornpanyRernote 0

cornpanyHorne.findByPrirnaryKey(companyObj.getCompanyID());

companyObj.setCompanyName(companyRemote.getCompName());

Illocking individual location objection inside each company
fland retreving and storing values
locationVector 0 companyObj.getLocations();
for(int j = 0; j<locationVector.size(); j++) (

location (Location)locationVector.get(j);

try(
locationHome = (orms.location.LocationRemoteHome)

ResourceRegisterar.lookupResource(EJBReferences.LOC HOME NAME);
tempCollection = --

locationHome.findBylp(location.getLocationIP()) ;
DEBUG.println(DEBUG.Debug Level, "ProfileFectory", "init()",

"locationHorne.findByIP("+ location.getLocationIP() + to) - " + tempCollection.size());
locationRemote = (orms.location.Location)

tempCollection. toArray ()[0J ;

flsetting the location object values
location.setLocationID(locationRernote.getLocld() );
location.setName(locationRemote.getLocName());
location.setAddrl (locationRernote.getAddressl ());
location.setAddr2 (locationRemote.getAddress2 ());
location.setCity(locationRemote.getCity());
location.setPostCode(locationRemote.getPostcode());
location.setTel(locationRemote.getTel());
location. setCompany (companyObj) ;

Iladding location into hashtable<IPAddress, Location Object
hmLocationProfiles.put(location.getLocationIP(), location);

catch (Exception e) (
DEBUG.println(DEBUG.Debug_Level, "ProfileFactory", "init()",

"Exception Occured[");
e.printStackTrace() ;
DEBUG .println (DEBUG. Debug_Level, "Prof11 Factory", "ini t ()",

"] n) ;

throw new samand. exception. InitiationException ("Profile
Factory: Company profile loading failed.");

)Ifend of inner try-catch
)Ifend of inner for

catch (Exception e) (
DEBUG .println (DEBUG. Debug Level, "Profile Factory" , otinit ()",

"Exception Occured["); -
e.printStackTrace();
DEBUG.println(DEBUG.Debug Level, "ProfileFactory", "init()", "]ot),
throw new samand. exception .lnitiationException ("Profile Factory:

Company profile loading failed.") i

)Ifend of oucer cry-catch

)ffend of for loop/**********+*.*.********* ••• ********* ••••••• *.*.*.**.* •••••• *~ ••• * •• /

DEBUG. println (DEBUG. Debug_Level, "profile Factory", "ini t () ", "End") I

public void destroy() (
)

public static synchronized Profile Factory getlnstanc () throws
ProfileFactoryException(

DEBOG.println(DEBUG.Debug Level, "profileractory()·, "g tlnstanc ()",
"Start"); -

if(ourlnstance •• null)
try(

return new ProfileFactory();



} catch (Exception e) {
throw new ProfileFactoryException("Profile Factory Initiataion

Failed: l" + e + "J ");

finally {
DEBUG .println (DEBUG.Debug_Level, "ProfileFactory ()", "get Instance ()".

"End") i

else {
DEBUG. println (DEBUG.Debug_Level, "ProfileFactory ()". "get Instance ()".

"End") ;
return ourlnstance;

public Location getLocation(String ipAddress) (
return (hmLocationProfiles ,get (ipAddress) );

17



10.1.3 XMLReader.java

/*
* XMLReader.java
** Created on 29 June 2012, 22:01
**/

package w2asvb.util;

import java.util.*;
import java.io.*;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;
import org.w3c.dom.*;
import samand.profile.ActionEntry;
import samand.profile.Company;
import samand.profile.Location;

/**
** @author Ather Mughal
*/

public class XMLReader (
private static XMLReader ourlnstance = null;
public XMLReader()

init ();

private void init{) (
)

public List getCompaniesList(String filePath) (
DEBUG .println (DEBUG. Debug_Level, "XMLReader", "getCompaniesList ()". "Start");

List<Company> companiesList Knew ArrayList<Company>();
Company company;
try(

DocumentBuilderFactory factory - DocumentBuilderFactory.newInstanc ();
DocumentBuilder builder - factory.newDocumentBuilder() I

Document document - builder.parse( new File{filePath) );

System.out.println("Root node of XML document is: " +
document.getDocumentElement() .getNodeName());

NodeList listOfCompanies - document.getElementsByTagNam ("Company");

int totalProfiles - listOfCompanies.getL ngth():
System. out .println ("Total no of Company Profiles in XML fil "+

totalProfiles) ;

//debug
int numberOfIPAddresses - 0;

for(int i-a; i<listOfCompanies.getLength(); i++) (

//selecting clients one by one
Node companyNode - listOfCompanies.item(i);
company· new Company() I

if(companyNode.getNodeType() .- Nod .ELEMENT_NODE) (

//casting client Node into Element
Element companyElement - (Element)companyNod

I/Retreving company id and url attribu
System.out.println("Compllny ID: " +

valu s



companyElement.getAttributes() .getNamedltem("id") .getNodeValue());
System. out .println ("URL : " +

companyElement.getAttributes() .getNamedItem("url") .getNodeValue());

company.setCompanyID(companyElement.getAttributes() .getNamedltem("id") .getNodeValue())

company.setUrl(companyElement.getAttributes() .getNamedltem("url") .getNodeValue());

II------------Going to retrieve Locations
NodeList companyLocationsList -

companyElement.getElementsByTagName("Locations") ;
Element companyLocationElement -

(Element)companyLocationsList.item(O) ;

NodeList companyLocationNodes -
companyLocationElement.getElementsByTagName("Location");

System.out.println("Total number of registered Locations for this
Company: " + companyLocationNodes.getLength());

for(int j=O; j<companyLocationNodes.getLength(); j++) (

Node locationNode - companyLocationNodes.item(j);
if (locationNode.getNodeType() -- Node. ELEMENT_NODE) (

System.out.println("Location lP-Address-" +
locationNode.getAttributes() .getNamedItem("IP-Address") .getNodeValue() .trim() +

" logopath-" +
locationNode. getAttributes ().getNamedltem ("logopath") .getNodeValue ().trim ());

company.addLocation(new
Location(locationNode.getAttributes() .getNamedltem("IP-
Address") .getNodeValue (I.trim (),

locationNode. getAttributes ().getNamedltem ("logopath") .getNodeValue ().trim ()))/
l//end of inner-if

I//end of Locations

I/------------Going to retrieve .Action Proces!lors List
NodeList companyActionProcessorsList -

companyElement.getElementsByTagName("Action-Processors-Mapping");
Element companyActionProcessorElement -

(Element)companyActionProcessorsList.item(O);

NodeList companyActionProcessorNode!l -
companyActionProcessorElement.getElementsByTagName("Action-Entry");

System.out.println("Total number of Action-Entry ";.
companyActionProcessorNodes.getLength() );

for(int j-O; j<companyActionProcessorNodes.getLength(); j;.+)(
Node actionEntryNode - companyActionProcessorNodes.i m(j)/
if (actionEntryNode.getNod Type() -- Nod .ELEMENT_NODE) (

System.out.println(" (Action-Entry soure ->"
actionEntryNode.getAttributes().getNamedltem("!lourc ").g tNod Valu ().trim() +

" d st- " +
actionEntryNode.getAttributes() .getNamedltem("dest") .getNodeValue() .trim() ...

" actionProcessor->"
actionEntryNode. getAttributes ().getNamedltem ("actionProc !Sor") .gotNodeValu (). rim ()
+

" errorpag _>to +
actionEntryNode. getAttributes ().getNamedltem ("errorpag ").getNodoValu (). rim ()
"] ");

company.addActionMapEntry(actionEntryNode.qetAttribut s ().gGtN medltem("sourc to).9 tNo
deValue() .trim(),



new
ActionEntry(actionEntryNode.getAttributes() .getNamedItem("source") .getNodeValue() .trim
(),

actionEntryNode. getAttributes ().getNamedItem ("dest") .getNodeValue ().trim (),

actionEntryNode.getAttributes() .getNamedltem("actionProcessor") .getNodeValue() .trim(),

actionEntryNode.getAttributes() .getNamedltem("errorpage") .getNodeValue() .trim()
)

) ;
}//end of inner-if

I//end of Action-Processors-Mapping

//------------Going to retrieve Admin Menu Mapping
NodeList adminMenuList -

companyElement.getElementsByTagName("Admin-Menu-Mapping");
Element adminMenuElement - (Element)adminMenuList.item(O);

NodeList adminMenuNodes =
adminMenuElement.getElementsByTagName("Menu");

System.out.println("Total number of Admin Menu links: " +
adminMenuNodes.getLength() );

for(int j=O; j<adminMenuNodes.getLength(); j++) (

Node menuNode - adminMenuNodes.item(j);
if (menuNode.getNodeType() -- Node. ELEMENT_NODE) (

System.out.println("[Menu name->" +
menuNode.getAttributes() .getNamedltem("name") .getNodeValue() .trim() +

" navigation-case->" +
menuNode.getAttributes ().getNamedltem("navigation-case") .getNodeValue ().trim() + "J ");

company.addAdminMenultem(menuNode.getAttributes() .getNamedltem("name") .getNodeValu ().
trim(} ,

menuNode.getAttributes ().getNamedltem("navigation-case") .getNodeValu ().trim()
) ;

I//end of inner-if
}//end of Admin-Menu-Mapping

//------------Going to retrieve Sales Person Menu Mapping
NodeList salesPersonMenuList -

companyElement.getElementsByTagName("SalesPerson-Menu-Mapping");
Element salesPersonMenuElement -

(Element)salesPersonMenuList.item(O);

NodeList salesPersonMenuNodes -
salesPersonMenuElement.getElementsByTagName("Menu") ;

System.out.println("Total number of Salesperson Menu links: " +
salesPersonMenuNodes.getLength());

for(int j-O; j<salesPersonMenuNodes.g tLenqth()I j+ )(

Node menuNode - salesPersonMenuNodes.item(j) I
if (menuNode.getNodeType() -- Nod .ELEMENT_NODE) (

System.out.println("[M nu nam ->" +
menuNode. getAttributes ().qetNamedltem ("name") .getNod Value ().trim () +

" naviqation-case->" +
menuNode.getAttributes ().getNamedltem("naviqation-case") .qetNodeValu ().trim()) I



company.addSalesPersonMenuItem(menuNode.getAttributes() .getNamedltem("name") .getNodeVa
lue() .trim(),

menuNode.getAttributes() .getNamedltem ("navigation-case") .getNodeValue() .trim()
) ;

Illend of inner-if
Illend of Admin-Menu-Mapping

Illend of outer-if
System.out.println("----------------------") ;

Iladding company to list
companiesList.add(company);

Illend of outer for

catch(NullPointerException e) (
throw new NullPointerException("Unable to locate given file:" + filePath

) ;
catch (SAXException sxe) (
II Error generated during parsing
Exception x = sxe;
if (sxe.getException () != null)

x = sxe.getException();
x.printStackTrace();

catch (ParserConfigurationException pce)
II Parser with specified options can't be built
pce.printStackTrace() ;

catch (IOException ioe) (
I I I/O error
ioe.printStackTrace();

DEBUG.println(DEBUG.Debug_Level, "XMLReader", "getCompaniesList()", "End");
return companiesList;

public static synchronized XMLReader getlnstance() (
DEBUG.println(DEBUG.Debug Level, "XMLReader", "getlnstance()", "Start");
if(ourlnstance ~- null)( _

DEBUG.println (DEBUG.Debug Level, "XMLReader", "getlnstance()". "End");
return new XMLReader(); _

else(
DEBUG.println(DEBUG.Debug Level, "XMLReader", "g tlnlltance()", "End");
return ourlnstance; _

182



10.1.4 Login.java

public String login btn action() {
DEBUG .println (DEBUG-:-Debug Level, "login. java", "login_btn_action ()", "Start");
IIO-retrieve user inputs -
String strUid (String) this. getUserName ().getText ();
String strPwd = (String) this.getUserPassword() .getText();

Ilreset the password for security
this.getUserPassword() .setPassword("");

Ilgetting role
String strRole = (String)this.getDrp_login_as() .getValue();

Iithis statement will initiate system manager, if not already initaited
SystemManager sysMgr = getSystemManager();

//1- authenticate user details
LoginProcessor loginProcessor = new LoginProcessor();
UserSessionBean usb ;

try

112. calling to authenticate user credentials
samand.profile.Employee emp = loginProcessor.authenticateEmployee(strUid,

strPwd) ;

I/Temporary code, making employee administator
emp.setCompanyAdmin(true);

112.1 checking wheather person is allowed to be logged in as admin or not
if(!emp.isCompanyAdmin() && strRole.equalsIgnoreCase("adminLogin")) (

PageAlert8ean alertBean = (FageAlert8ean)get8ean("FageAlert8ean");
alert8ean.setType("warning");
alert8ean.setTitle("User Access - Error:");
alert8ean.setSummary(Constants.INSUFFICIENT_PRIVlLAGES_ERROR_MSG);
alert8ean.setVisible(true) ;

1/ redisplaying page with page alert
return null;

I
//3. calling to authenticate location access
HttpServletRequest req-(HttpServletRequestl
FacesContext.getCurrentInstance(1 .getExternalContext() .getRequest();
String strAddr - req.getRemoteAddr(l;

Iitemporaryly setting ip address to 217.35.95.208
strAddr = "217.35.95.208";
DEBUG.println(DE8UG.Debug Level, "login.java", "login_btn_action()",

"Remote Location IF address is :" + strAddr);
loginProcessor.authenticateLocation(strAddr);

114. On sucessfull completion, loading user details into Us rSessionB an
usb - getUserSessionBean();

//5. Retreving and storing Location details of user from System M n ger
samand.profile.Location lac - sysMgr.getLocation(strAddr)/
usb.setLocation(loc);
usb.setEmployee(emp) ;
usb.setActionMenuMapping(loc.getCompany() .getHmActionFroc ssorMappinq());

"Setting up

//6. Setting up menu mepping based on role
if(strRole.equalslgnoreCase("adminLogin")) (

DEBUG.println(DE8UG.Debug_Level, "login.java", "lo<]in_b n_ae ion()",
Admin Menu Mapping table in User Session profile.");

usb.setCurrentMenuMapping(loc.getCompany(I.<] tHrnAdminMenuMapplnq())/
I else (

OEBUG.println(DEBUG.Debug_Lev 1, "login.java", "loqin_b n_ae 10n()",
Sales Person Menu Mapping table in User Ses,ion Profile."),"Setting up



usb.setCurrentMenuMapping(loc.getCompany() .getHmSalesPersonMenuMapping(»;
)

117. Navigating to target user desktop
String temp = usb.getNavigationCase(Constants.USER_DESKTOP);
return temp;
Ilreturn "showTempPage";

catch (Exception e) {
Iisetting up page alert to be displayed to user

PageAlertBean alertBean = (PageAlertBean)getBean("PageAlertBean");
alertBean.setType("error");
if(e instanceof AuthenticationException) {

alertBean.setTitle("User Access - Error:");
alertBean.setSummary(e.getMessage(» ;

else if (e instanceof PlatformException){
alertBean.setTitle("System Error:");
alertBean.setSummary(e.getMessage(» ;

alertBean.setVisible(true) ;
)
DEBUG .println (DEBUG.Debug_Level, "login. java", "login_btn_8ction ()", "Start");

return null;
)/Iend of login button()

184



10.1.5 LoginProcessor.java

1*
* LoginProcessor.java
*
* Created on 29 June 2012, 18:00
*
*1

package w2asvb.processor.authenticationi
import java.rmi.RemoteExceptioni
import java.util.Collectioni
import javax.ejb.FinderException;
import samand.exception.AuthenticationExceptioni
import samand.exception.PlatformExceptioni
import samand.profile.Employee;
import samand.services.EJBReferences;
import samand.services.ResourceRegisterari
import samand.util.Constantsi
import samand.util.DEBUG;

1**
*
* @author Ather Mughal
*1

public class LoginProcessor

1** Creates a new instance of LoginProcessor *1
public LoginProcessor() (
l

public Employee authenticateEmployee(String userName, String password) throws
AuthenticationException, PlatformException{

DEBUG. println (DEBUG.Debug Level, "LoginProcessor", "authenticateEmploye ()",
"Start"); -

Ill. Locate employee details in database
orms.employee.EmployeeRemoteHome employeeHome -

(orms.employee.EmployeeRemoteHome)
ResourceRegisterar.lookupResource(EJBReferences.EMP_HOME_NAME);

112. Create and load Employee object
orms.employee.Employee employeeRemote;
samand.profile.Employee emp;

/************************************************************ ** ••• ~*/
try

employeeRemote = employeeHome. findByUserName (userNsme, password);

113. Return Employee Object
emp = new Employee();
emp.setEmployeeID(employeeRemote.getEmployeeId(»i
emp.setUserName(userName);
emp.setFirstName(employeeRemote.getEmployeeName() );
emp.setSurName(employeeRemote.getEmployeeSurName(»i
emp.setCompanyAdmin(false);
Ilemp.isCompanyAdmin()llhamed: need to about method to v ri!y this role

lcatch (FinderException e) {
DEBUG .println (DEBUG.Tracing Level, "LoginProcusor",

"authenticateEmployee() ". "Exception OcCured[" + e + "J ");
throw new

AuthenticationException(Constants.INCORRECT OSERNAME PASSWORD MSG);lcatch (RemoteException e) ( _ _ _
DEBUG.println(DEBUG.Tracing Level, "LoginProcessor",

"authenticateEmployee() ". "Exception Occured!" + e + "l ");
throw new PlatformException(Constants.PLATFORM_EXCEPTION_LOGIN_ERROR_MSG)1



/**********************************************************************/

1*llllllllllllllllllllllllllllltemporary creation of employee object
emp = new samand.profile.Employee();
emp.setEmployeeID("l") ;
emp.setFirstName("Scott") ;
emp.setSurName("Tigher");
emp.setUserName(userName);
emp.setCompanyAdmin(false);
111111111111111111111111111111111111111111111111/1//1//1//111111111111*1
DEBUG.println(DEBUG.Debug_Level, "LoginProcessor", "authenticateEmployee()",

"End") ;
114. Returning Employee Object
return emp;

)11 end of authenticateEmployee()

public void authenticateLocation(String ip) throws PlatformException,
AuthenticationExceptionl

DEBUG.println(DEBUG.Debug_Level, "LoginProcessor", "authenticateLocation()",
"Start");

j********************************PLATFORM CODE*******************~*/
1/1. Locate location details from platform
orms.location.LocationRemoteHome locationHome -

(orms.location.LocationRemoteHome)
ResourceRegisterar. lookupResource (EJBReferences.LOC_HO ME_NAME);

orms.location.Location locationRemote;

1/2. Create and load Location object
try I

Collection locations = locationHome.findBylp(ip);
DEBUG.println(DEBUG.Debug Level, "LoginProcessor",

"authenticateLocation()", "Location [~+ ip +"J is an authenticated location.");
) catch (FinderException e) I

DEBUG.println(DEBUG.Tracing Level, "LoginProcessor",
"authenticateLocation()", "Exception Occured(" + e + "J");

throw new
AuthenticationException(Constants.UNAUTHORIZED_LOCATION_ACCESS_MSG)i

) catch(RemoteException e) I
DEBUG.println(DEBUG.Tracing Level, "LoginProcessor",

"authenticateLocation()", "Exception Occured[" + e + "J");
throw new PlatformException("Unable to load data from Location Object");

) catch(Exception e)1
DEBUG.println(DEBUG.Tracing Level, "LoginProcessor",

"authenticateLocation()", "Exception Occured[" + e + "J");
throw new PlatformException("Unknow Platform Exception Occured");

)

DEBUG.println(DEBUG.Debug_Level, "LoginProcessor", "authenticateLoca ion() ",
!lEnd") ;

/*****************************************************.****** •• ** ••• */
)llend of authenticateLocation()

18



10.1.6 WebRequestBrorker.java

/*
* WebRequestBroker.java
*
* Created on 29 June 2012, 18:03
**/

package w2asvb.broker;

import samand.context.RequestContext;
import samand.context.ResponseContext;
import samand.context.WebRequestContext;
import samand.context.WebResponseContext;
import samand.exception.AppException;
import samand.processor.IActionProcessor;
import samand.profile.ActionEntry;
import samand.util.DEBUG;
import samand.view.UIView;

/**
*
* @author Ather Mughal
*/

public class WebRequestBroker implements IRequestBroker{

private boolean busy;

/** Creates a new instance of WebRequestBroker */
public WebRequestBroker() (

init ();

public void init() (
DEBUG.println(DEBUG.Debug_Level, "WebRequestBroker", "init()", "Start");

setBusy(false);
DEBUG.println(DEBUG.Debug Level, "WebRequestBroker", "init()", "Initialized

with BUSY STATUS:" + isBusy()); -
DEBUG .println (DEBUG.Debug_Level, "WebRequestBroker", "init ()". "End");

public ResponseContext brokeRequest(RequestContext requestContext) (
DEBUG.println(DEBUG.Debug Level, "WebRequestBroker", "brokeRequest()",

"Start"); -

//initializing local variables
samand.profile.Company companyProfile - null;
samand.profile.Location location - null;
WebRequestContext webReqCtx = null;
ActionEntry actionEntry = null;
IActionProcessor actionProcessor = null;
String actionProcessorName - null;

//WebResponseContext webResponseCtx - new WebResponseContext();

//casting back RequestContext into WebRequestContext
webReqCtx = (WebRequestContext)requestContext;

object
//allocating references including retieval of company profile from context
location - webReqCtx.getLocation();
companyProfile m location.getCompany();

//mapping user action into appropriate Action Processor
actionEntry = companyProfile.getActionMapEntry(webReqCtx.getSourc Pag ())I
DEBUG. println (DEBUG.Debug_Level, "WebRequestBroker", "brokeR qu st ()=,

"ActionEntry for this request is ->" + actionEntry.toString());
//loading the appropriate Action Processor



actionProcessorName = samand.util.Constants.DEFAULT_PACKAGE_NAME
+".processor." + actionEntry.getActionProcessor();

DEBUG.println(DEBUG.Debug Level, "WebRequestBroker", "brokeRequest()",
"Loading ... ["+ actionProcessorName +"J");

try{
actionProcessor = lookupActionProcessor(actionProcessorName)
//executing action processor method
DEBUG.println(DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest()",

"Executing ...["+ actionProcessorName +"J");
UIView tempView = actionProcessor.execute(webReqCtx);
//Setting up reference of UIContainer.UIView
DEBUG.println(DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest()",

"Setting up retrieved UIView into UICotainer.");
webReqCtx.getUiContainer() .setUiView(tempView);

//In Case of sucessfull execution of action
webReqCtx.appendActionOutput(actionEntry.getDestination());

catch(AppException e) (
DEBUG.println(DEBUG.Debug Level, "WebRequestBroker", "brokeRequest()",

"System Exception Occured::" + e.getMessage ());
webReqCtx.appendActionOutput(actionEntry.getErrorPage());
webReqCtx.setAppException(e);

catch(Exception e) (
DEBUG.println(DEBUG.Debu9_Level, "WebRequestBroker", "brokeRequest()",

"System Exception Occured::" + e.getMessage());
webReqCtx.appendActionOutput (actionEntry.getErrorPage ());
webReqCtx. setAppException (new AppException(e.getMessage()));

DEBUG.println(DEBUG.Debu9_Level, "WebRequestBroker", "brokeRequest()", "End");

return null;

public void brokeResponse(RequestContext requestContext, ResponseContext
responseContext) {

WebRequestContext webRequestCtx - null;
WebResponseContext webResponseCtx - null;

//casting back requestContext into web request context
webRequestCtx = {WebRequestContext)requestContext;
webResponseCtx a (WebResponseContext)responseContext;
//setting up values
webRequestCtx.setUIView(webResponseCtx.getUiView()):
webRequestCtx. setAppException (webResponseCtx.getAppExc eption());
webRequestCtx. setActionOutput (webResponseCtx.qetAction Output());

public void destroy() (

public boolean isBusy()
return busy;

public void setBusy(boolean busy) (
this.busy - busy;

public void release() (
setBusy(false) ;



//Future Suggestion: Inside this method, action processor can be lookedup
//using JNDI type Resource Directory, instead of fresh initialization
private IActionProcessor lookupActionProcessor(String actionProcessorName){

try (
return (IActionProcessor)Class.forName(actionProcessorName) .newInstance();

) catch (Exception e) (
new AppException{"WebRequestBroker.lookupActionProcessor()@Unable to load

Action Processor.");
return null;

18



10.1.7 JSFActionDispatcher.java

/*
* JSFActionDispatcher.java
*
* Created on 29 June 2012, 19:08
*
*/

package w2asvb.system;

import samand.SysternManager;
import samand.broker.WebRequestBroker;
import samand.context.WebRequestContext;
import samand.exception.AppException;
import samand.util.DEBUG;
/**
*
* @author Ather Mughal
*/

public class JSFActionDispatcher

/** Creates a new instance of JSFActionDispatcher */
public JSFActionDispatcher() {
}

//this method contains the common logic of requesting request broker from system
manager

public void dispatch(WebRequestContext webReqCtx, SystemManager sysManager)
DEBUG. println (DEBUG. Debug Level, "JSFActionDispatcher", "dispa tch ()",

"Start"); -
WebRequestBroker webReqBroker a null;

//retreving request broker from system manager
DEBUG.println(DEBUG.Debug Level, "JSFActionDispatcher", "dispatch()", "About

to retrieve WebRequestBroker from-SystemManager.");

webReqBroker = sysManager.getWebRequestBroker();

//Broking incoming request to Action processor
DEBUG. println (DEBUG. Debug Level, "JSFActionDispatcher", "dispa tch ()", "Abou

to broke current request .."); -
webReqBroker.brokeRequest(webReqCtx) ;
DEBUG. println (DEBUG. Debug_Level, "JSFActionDispatcher", "dispatch ()". "Curr nt

request braking completed sucessfully.") i
webReqBroker.brokeResponse(webReqCtx, webResCtx)i

//releasing request broker
DEBUG. println (DEBUG. Debug Level, "JSFActionDispatcher", "dispatch ()".

"Releasing WebRequestBroker["+ webReqBroker +"J .") i
webReqBroker.release();
DEBUG. println (DEBUG. Debug Level, "JSFActionDisplltcher", "dispa tch ()"."WebRequestBroker released."); -

DEBUG .println (DEBUG.Debug_Level, "JSFActionDisplltcher", "dispatch ()", "End");


