
FUNCTIONAL MODELS OF PROCEDURAL PROGRAMS

Mark ý Harman

Submitted in partial fulf ilment of the requirements for award of Ph. D.

September 1992

The Polytechnic of North London

Declaration

(j) While registered as a candidate for

Ph. D. I have not been registered or enrolled for

another award of the CNAA or other academic or

professional institution.

(ii) None of this material has been included

in any other submission for an academic award.

Abstract

This thesis shows how any Procedural Programming notation may
be modelled by a purely Functional notation and discusses the
applications and Implications of this modelling approach.

Existing ad hoc modelling techniques are gathered together
within a common framework.

The thesis shows that these techniques break down when the
state of computation for a procedural language Is not an
environment mapping from identifiers to denotable values.

A simple method for overcoming this difficulty is Introduced,
demonstrating that models may be constructed for all procedural
programming notations.

The modelling approach allows the considerable body of
functional reasoning techniques to be brought to bear In the
analysis of procedural programs.

The thesis Introduces a simple technique called "Abstraction
Projection", with which the programmer may project a model onto a
sub domain suitable for a particular analytic task.

Abstraction Projection removes from the model all details
irrelevant to the computation of values within this sub domain.

The thesis also provides semantic definitions for the terms
"Functional Language", "Procedural Language" and "Referential
Transparency".

Keywords : Functional Programming, Procedural Programming, Denotational
Semantics, Program-Proving, Program-Transformation, Referential Transparency,
Axiomatic Method, Functional Models, Abstraction Projection.

Acknowledgements

I would like to thank my supervisor, Sebastian Danicic who, often in

difficult circumstances, provided the perfect environment in which to carry

out the research reported here. He often generalised my original ideas and

his considerable knowledge and wisdom has guided me down many fruitful

avenues.

I would like to thank Hugh Glaser for agreeing to be my second

supervisor.
Professors John Darlington and Dan Simpson, who adjudicated this thesis

have made a significant contribution by forcing my attention onto the

specifics of the work carried out. This focus has produced a far more cogent

account of the modelling strategy, f or which I am very gratef ul.
I would like to thank Albert Langton for introducing me to mathematics.
I would like to thank Roger Bailey and Chris Hankin for introducing me

to the practice and theory of functional programming.
I would also like to thank my parents, friends and colleagues for all

their support and encouragement.

Contents

1 Introduction ... 1

2 Functional and Procedural Languages
2.1 Introduction .. 5
2.2 The Functional Notation, ML 5
2.3 Fold/Unfold Transformation Rules 12
2.4 Programming Language Semantics 15
2.5 The Axiomatic Method 19

3 The Modelling Strategy
3.1 Introduction .. 25
3.2 Existing Techniques for Modelling 25
3.3 The Implicit State: A Problem for Existing Techniques ... 36
3.4 Assignment and Referential Transparency 47

4 Projective Abstraction 49

5 Converting Models Back into Procedural Notation 57

6 Applications of Functional Modelling
6.1 Introduction 77
6.2 Goto Removal In Fortran-IV

.............................. 79
6.3 Language Conversion and Error Analysis 88
6.4 Proof Construction for a Modula-2 Program

............... 102
6.5 The Program "Find .. 126
6.6 Correctness Proof for Pascal List Data Type 138
6.7 The "C" Programming Language

............................ 147
6.8 Parallel Evaluation Paths

............................... 152

7 Semantic Foundations
7.1 Introduction 155
7.2 Valid Substitution Rules and Referential Transparency ... 156
7.3 Functional Languages and Referential Transparency 163
7.4 The Modelling Strategy and the Implicit State 173
7.5 Algebraic Closure 186
7.6 A Definition of the Term "Functional Programming 191
7.7 A Definition of the Term "Procedural Programming 201
7.8 Interleaving of Input and Output Events 204

8 Conclusions .. 209

9 Future Work .. 211

Appendices
Al Subset of ML Used in this Thesis
A2 Implementation

References

CHAPTER ONE

INTRODUCTION

CHAPTER ONE INTRODUCTION

Functional notations are considered superior to their procedural

counterparts as a result of the rich algebraic properties that they enjoy.
This thesis describes a complete strategy for modelling procedural

programs by equivalent functional programs, thus allowing a procedural

programmer to apply functional reasoning techniques to the analysis of their

programs.

1.1 Chapter Two: Procedural and Functional Notations

Chapter two sets out the functional notation used in this thesis (a

small subset of MU and briefly highlights the differences between the

Procedural and Functional style. This chapter also describes, in outline, the

essential semantic framework within which the modelling strategy is

constructed.

1.2 Chapter Three: The Modelling Approach

The first author to describe a functional modelling technique was John

McCarthy in [44,611. McCarthy ý was concerned with describing the semantics of

programming languages, his work was subsequently incorporated into the

Denotational Description technique [161.

The first author to suggest that functional notation was an ideal

notation with wýýIch'to investigate the 'properties I of procedural, programs was

James Morris in [79,801.

In [79,80,44,611 Morris and McCarthy describe several techniques for

modelling various procedural programming constructs.

I

Together with well-known techniques, such as modelling loop constructs
by tail recursion, there thus exists a set of as hoc approaches to modelling

most common procedural programming constructs by functional equivalents.
§3.2 describes these techniques and shows that they break down when the

state of computation is not an environment mapping. That is, when the state
is not a mapping from the identifiers of the language to denotable values.

In §3.3 a simple technique for overcoming this difficulty is introduced.

This technique involves the inclusion of extra identifiers with a consequent
increase in the size of the denotable value space.

The inclusion of these extra identifiers allows the implicit part of the

state to be modelled (within the procedural notation) by the explicit part of
the state (the environment mapping).

Many authors, for example Stoy in [161, claim that the non-referential
transparency of procedural languages is attributable to the presence of the

assignment statement. §3.4 presents a brief polemic on the subject in which
this claim is refuted.

1.3 Chapter Four: Abstraction Projection

The model for a procedural program includes in its result tuple all the

semantic values computed by the program.
For large programs this is unacceptable.
Chapter four presents a simple technique called "Abstraction Projection"

which allows the programmer to project a model onto a reduced domain.
This means that several, distinct models may be produced for one

original procedural program, each projected onto a different domain.
Each of these models is a functional program that computes some part of

the overall effect of the procedural program. All computation details which
do not contribute to the computation of a model's result will be lost, thus

providing the programmer with clarity by abstraction.

a

1.4 Chapter Five: Converting Models Back Into Procedural Notation

Chapter five describes some techniques for converting procedural models
back into functional notation.

1.5 Chapter Six: Applications of Functional Modelling

Chapter six describes- some applications of --the modelling approach.
These are -many. and varied, since a model may be used to analyse and

prove properties of any compile-time feature of a procedural program. ,
, Several programs from textbooks are, used to. demonstrate the following

applications of modelling:

Proof

Specif ication-Recovery

Error-Detection

Ef f iciency Improvements

Restructuring

Language Conversion

The examples are only small (the largest, is about five pages). However,

the modelling techniques described in chapters three, four and f ive can all
be automated allowing the strategy,, to be applied to programs of arbitrary

size.

3

1.6 Chapter'Seven: Semantic Foundations

Chapter seven investigates the semantic foundations of the modelling

strategy.
The advantage of a functional notation are to be found in its algebraic

properties. Specif ically, many authors attribute a property called
"Referential Transparency" to functional programming notations. However,

authors disagree on what precisely constitutes "Referential Transparency". In

§7.2 a definition of "Referential Transparency" is given. The implications of
this definition are investigated in §7.3.

§7.4 shows how a modelling strategy can be derived from and proved

correct In terms of the semantic description of the programming language.

In many languages it is not possible to substitute two pieces of syntax

which have equivalent meanings. This observation highlights a discrepancy

between the syntax of a language and its semantics. §7.5 introduces a

property called "Algebraic Closure". "Algebraic Closure" is enjoyed by any
language in which a piece of syntax can be substituted for any other piece of
syntax with equivalent meaning. The definition of Algebraic Closure may be

used in a generative mode, allowing a language to be rendered "Algebraically
Closed", and thus ironing out the irritating discrepancy which denies a
programmer complete algebraic freedom.

The words "Functional Programming" and "Procedural Programming" have
been used throughout this thesis (and, indeed, throughout the history of
computing) without appeal to any definition of terms. This lack of rigor is

addressed and rectified in §7.6 and §7.7.
§7.6 presents a definition of "Functional Language".
§7.7 presents a definition of "Procedural Language".
Finally, §7.8 looks at the issue of representing the interleaving of

events in functional language, demonstrating that this information is not
captured by a stream-based program in the style of Henderson [301.

1.7 Chapter Eight and Nine: Conclusions and Future Work
Chapter eight summarises the contribution of this thesis and chapter

nine briefly lists directions for future work.

4

CHAPTER Two

FUNCTIONAL AND PROCEDURAL LANGUAGES

CHAPTER TWO FUNCTIONAL AND PROCEDURAL LANGUAGES

2.1 Introduction

The chapter outlines the semantic issues which differentiate between

procedural and functional languages.

The functional language, ML, is introduced in §2.2 and the algebraic

rules of manipulation which apply to functional programs are listed in §2.3.

In §2.5 the Axiomatic method is briefly described and attention is drawn

to the problems experienced by procedural-language programmers due to the

algebraic inflexibility of procedural languages.

2.2 The Functional Notation, ML

There are many functional programming languages currently in use
[41,51,52,20,39,371. All of these languages are semantically very similar.
The language ML has been used in this thesis since it seems to be the most

popular [531.

Only a very small subset of the whole language ML is required for

modelling purposes. This subset is described in appendix Al. The standard

reference on the whole ML language is to be found in [411, however, it should

not be necessary for the reader to consult this text in order to appreciate

the functional modelling strategy described in this thesis.

2.2.1 A Brief ML Tutorial

What follows is a brief tutorial on the subset of ML used in this

thesis.

2.2.1.1 Expressions

The basic forms of side-effect-free expressions permitted in all and any

procedural notation are assumed to be available in the subset of ML used,

together with the operators for forming new elements of these basic types

from old ones.

5

2.2.1.2 Function Def inition

In ML, a function definition is introduced with the keyword mf un". Thus:

f un times xy=x

describes the function which takes two parameters and, returns the result

of multiplying them together.

2.2-1.3 Function Application

The application of a function to its arguments is written by

juxtaposition. Thus the application of the function "times", to the two

arguments 'T' and "T', would be written: -I

times 23

2.2.1.4 Tuples

In addition to the basic types of the language, compounds of types may

be formed by enclosing several elements (possibly of differing type) in

parenthesis. The result is the formation of an object called a tuple:

I (l, true, z')
I

The arity of a tuple is often prefixed to the beginning of the word

tuple. For example the tuple just described is a "3-tuple".

6

2.2.1.5 Conditional Expressions

In a functional language, the 'conditional is an expression. It is

written (in MU:

if E then E else E
123

Where E must be a boolean expression, and E and E may be any
I' 2- 3

expressions provided they have the same type. -
The value of the conditional expression is E if the result of E is

2
true and E if it is f alse. 3

2.2.1.6 Lists

The following notation-As -used
for lists:

"hd" f or taking the head of a list and "tl" f or the tail. The list

construction function "cons" may be written as an' infix operator It:: ". The

empty list is written "nil", and the test for an empty list Is written
"null". A list of specified length may also be constructed by enclosing its

elements in square brackets. The "append" function perf orms list

concatenation.

2.2.1.7 Strong Typing

The model functions used in this thesis 'make use of- untyped-lists. This

is a generalisation of the'ML list (which is* typed).

It is fortunate that the functional notation may be executed, but from

the point of view of functional 'models, it is only the conciseness and

"algebraic" nature of the notation that is important.

The untyped lists used in I models can always 'be replaced by completely

typ I ed versions with 'the introduction of some extra construction and selection

functions for a "universal type".

7

2.2.1.8 Partial Application and Higher-Order Semantics

Consider the function "add", defined below:

f un add xy= x+y
I

X+Y

This function takes two parameters and returns their sum. Using an ML

interpreter, a console session might include the following (the machine's

printing is shown in italics):

fun add xy= x+y
add : tnt int int
add 23 5
28 : tnt
add I (add 2 3)
6: tnt

The machine responds to expressions by evaluating them.

When the programmer enters a function definition, the machine responds

by deducing the type of the function, in this case integer to (a function

from) integer to integer.

The type-inference aspect of ML is not an issue in this thesis and may
be ignored.

A common slogan associated with functional programs is that functions

are "first class citizens" [321. This phrase is intended to convey the idea

that a function can be treated in the same manner as integers, characters and

other base-types. That is, functions may be the result of expressions and may
be combined to, form new functions using various operators over functions.

To achieve a paradigm for programming in which functions are treated in

a similar manner to base types, functional languages allow their functions to

be applied to fewer arguments than they actually require.
The result of such a "partial" application is, itself, a function (which

requires the rest of its arguments before it can be "fully" evaluated). In

[321, Turner demonstrates the dramatic increases W program brevity that may
be achieved using partial application.

8

A simple illustration is the partial application of the addition
function defined above. The console session described above could be

continued as follows:

f un succ = add 1
succ :_ Ent, -> Ent

The first line shows the programmer defining the successor function by

partially applying the function "add" to only one of its two arguments.
The meaning of "add 1" can be viewed as the substitution of the

expression, 1, for the argument, x, in the body of add, thus:

I
succ-y =---l+y -I

Applying a function to none of its arguments and applying a function to

all of its arguments are simply special cases of partial application.

2.2.1.9 Higher-Order Functions

Applying a function to none of its arguments simply yields the function

itself. This is how higher-order semantics are achieved in functional

notations. Namely, a function "g", may take -as its parameter a function. In

order to supply a particular (named) function to "g", say 'T ", all that is

required is to apply "f " to none of its parameters.

For example, a very useful function, usually- called "map", is one which

takes a function and a list and applies the function to each element in a

list to give a new list. Consider the console session:

f un map fL=1f nul IM then [I
else Mead(l.)) :: (map f tall(L))

map : (alpha -ý-> beta)- I Lst(alpha) -> Itst(beta)
fun listinc =map succ

-I Is t Inc :I Lst (Ent) -> I ist(Lnt)
Ii st i nc [12,3,4,51
[2,3,4,5,61 :I ist(int)

9

2.2.1.10 Anonymous Functions

Any function may be supplied as an argument to a higher-order function,

not just named functions and their partial applications.
_

This is achieved by having a notation for describing a function

anonymously, using an expression which yields a function as its result. These

functions are often called "Lambda Functions", in recognition of the fact

that 'the Lambda notation provides just such a facility, and was the first

"functional notation" [12,561.

In ML, a lambda function whose formal parameters are xII... Vx n'
and

whose result Is given by the expression E, is written:

fn x => E

Thus the definition of the successor function can also be written:

val succ = fn x => x+l

2.2.1.11 Let Abstraction

The values of expressions which are to be "stored" for later use can be

achieved using the let abstraction clause:

let val x=E in G

This is an expression, the value of which is f ound by evaluating G with

all occurrences of "x" replaced by "E".

The let abstraction construct is thus merely syntactic sugar (641 for:

Inx
=> G) E

--I

10

The let abstraction construct may also be used with a tuple of
identif iers, xI..., x and a tuple-valued expression, E:

let val (x ..., x)=E in G
A

The let abstraction construct can also be written as a "where"

abstraction:

I
let val x=E in GG where x=EI

2.2.1.12 Sequencing

In a functional notation the only sequencing of expression-evaluation is

that which is implicitly demanded by the data-dependency in the function-call

hierarchy.

In particular, there is no notion of the procedural statement sequence.

2.2.1.13 Henderson's Lazy Streams

Because the programmer has no ability to explicitly demand a certain

execution sequence, representing Input and Output sequencing is a particular

problem for a functional style.
One solution to this problem, suggested by Henderson in [301, is to

write a functional program as a function, 'T', from lists to lists. The

result of "f" (a list) is the output, and the input (also a list) is provided
to "f" as the value of its actual parameter.,

In this thesis, functional programs are used as models of procedural

programs only in order to investigate properties of these programs. Input and

output sequencing does not normally form part of such. investigations and so
the problem of representing it does not normally arise. -- I

In chapter three, a general modelling strategy is described. A modelling

strategy can always be constructed from the semantics of the programming
language to be modelled. This means that it is possible to model input and

output sequencing in a perfectly natural way if it is described in the

semantics of the language (see, for example §7.8).

11

2.3 The Fold/Unf old Transformation Rules

There are well-established rules of algebraic manipulation for

functional languages. These rules are collectively known as the "Fold/Unf old

Methodology" [221.

The rules allow new functions to be created and existing functions to be

altered, whilst guaranteetng that the whole functional program will still

compute the same result. These rules are used extensively throughout this

thesis, and form one of the main motivations for the modelling approach.

The six transformation rules are listed below. The notation E[a/bl

represents the expression formed by substituting all occurrences of b in the

expression E, by a.

(1) Fold

Let f(xl,..., xn) =E and g(xl,..., Xm) = E' be the equations of two

f unctions f and g.
If E' contains an expression E[tl/xl,..., tn/xnl where tl,..., tn are n

terms, then E' can be written E'[f(tl,..., tn)/Ej.

(2) Unf old
Let f(xl,..., xn) =E and g(xl, ---, Xm) = E' be the equations of two

functions f and g, where E' contains a function application f(al,..., an)

(n': sn). The equation for g can be replaced by g(xl,..., xm)

E'[A/f(al,..., an')] where A= E[ai/xij.

(3) Instantiation

Let f(xl,..., xn) = E, and let cl,..., cm be constants (m: sn), then some
(or all) of the free variables (xl,..., xn) in E can be replaced by cl...., cm
(assuming that the ci's have identical types to the xi's). In other words the

equation for f can be replaced by f(xl,..., xn)[ci/xil = E[ci/xil.

(4) Abstraction

An expression E containing sub expressions Al,..., An can be replaced by

the expression: let val ((pl,..., Wn) = (Al,..., An) in Ekpi/Ail.

12

Def inition

A new function equation can be introduced providing the left hand side

of the equation does not already exist in - the program. Thus either a

completely new function is introduced, or the domain 'of an existing -function
is extended.

(6) Algebraic Laws

The algebraic properties of the equation used in the' functional program

can be exploited. Although this may seem , to be obvious, it is, in fact, a

unique advantage of declarative programming over procedural programming. In a

procedural program it is not even possible to replace the occurrence' of the

expression el + e2 by the expression e2 + el, thus exploiting the law of

commutativity of addition. This is because the semantics of the language does

not guarantee that the symbol "+" has the same algebraic properties as the

mathematical operator 'Y'. In particular side effects in the expression el

may cause these properties to be denied.

2.3.1 Partial Correctness

The Fold/Unfold transformation rules are partially correct. That is,

although programs produced by transformation are guaranteed not to produce a

different result to their untransformed versions, there is no guarantee that

the transformed functions will terminate.

It is quite easy to see how the method can introduce non-termination

into a terminating program:

f un f (x) =x;
f un f (x) =f (x)

foldIng

2.3.2 Completeness

There are many equivalent sets of recursion equations which cannot be

shown to be equal by transformation, however in these cases inductive proof
techniques can be employed to demonstrate equivalence. In this sense an extra

rule can be added to the six transformation rules above:

13

(7) Induction

Let f(xl,..., xn) .=E. If there is an inductive proof that the' function

9(xl,..., Xn) = E' is equivalent to f then the function f(xl,..., xn) E' can

be introduced into the functional program.

The inductive technique used in this thesis is called "structural

induction" (It was introduced by Burstall in [231). Many other proof

techniques exist (see, for example [50,57,60,61,85,861). , t-
There has been considerable debate as to whether or not it is possible

and/or- desirable to construct proofs for large-scale programs. The main

arguments for either side of the debate can be found in [43,46,47,48,491.

14

2.4 Programming Language Semantics

The unifying framework which binds all programming languages together is

the "state of a computation".

The next section describes the concept of the state of computation for

procedural and functional languages.

2.4.1 The State Of Computation

The state of computation is an abstract representation of the physical

configuration of the machine executing the program.

The state is abstract in the sense that it need only describe those

features of the machine's state which can effect the meaning of a program.

The precise construction of the state therefore depends upon what the meaning

of a program is. This is a choice made by the language designer.

Considerable work- has been conducted on the meaning of programming
languages, much of which has been seminal to the work reported in this

thesis. References to some of the established results are summarised below:

The origins of the state-concept can be found in [9,10,11 26,44,611. '

The mathematical aspects of semantics are described in [13,15,55,59,761.

Programming Language Semantics are described in [16,36,57,821.

Applications of and extensions to the basic theory can be found in

[17,35,45,81,841.

A semantic description of a program is- called a- "direct" semantics, if

the meaning that it gives a program is a mapping from initial state to final

state. This thesis is conerned with procedural programs for which a direct

semantics can be defined.

Functional language Semantics are characterised by expression evaluation

within a (highly restricted) state called an "environment".

In §7.6 and §7.7 these remarks are made completely precise. In the next

section a more informal approach is taken, highlighting the essential
difference between the procedural and functional' style and laying the

conceptual foundations for the modelling strategy described in the next

chapter.

15

2.4.2 The State Of A Procedural Program

Each statement in a procedural program is described as a modification to

the state in which it is executed. The meaning of an entire

statement-sequence is simply the composition of the individual state-changes

which describe each component statement.

2.4.3 The Environment

For any procedural language in which identifiers may be assigned values,

the state will include an "environment".

The environment is a function which maps identifiers (in the domain D

to the values (in the domain V). The domain, 1, is the set of all identifiers

in the syntax of the language. The domain, V, is the domain of all values

which may be bound to these identifiers. V is termed the "denotable values"

of the language [16).

- The environment represents, in an abstract , manner, the values stored in

the memory of the computer.
For - example, an environment which represents the fact that

identifier "x" is bound to 1, "y" to 2, and all the other variables

unassigned could be written (in MU:

fun Environment identifier = if identif ier 'Y' then 1
else if identif ier "Y" then 2
else unassigned

Environment :14V;

the

are

2.4.4 The Meaning "Unassigned" and Abstraction
lfunassLgned" is simply a member of V, which describes the value of any

and all variables which have not been assigned a value.

.
The use of "unassLgned" is an example of abstraction in the semantic

description: Unassigned variables on a computer will be - bound to "rubbish

values" (whatever happens to be in the machine's memory at the time). However

these machine-dependant features are deliberately overlooked, all unassigned
identifier names being mapped to the same value by the environment. The

environment described here is thus sufficiently abstract that it can describe

the state of execution upon any computing device (including a trained human

with pen an paper).

16

2.4.5 The Meaning of a Statement Sequence

The meaning (or abstract effect of computation) of the statement

sequence:

x: =1; y: =2

can be described as a mapping f rom some initial environment, p, to a

f inal environment, which adds to p the bindings f or 'Y' and "y" (overwriting

any existing binding for these two identifiers in p) :

fun Mp identif ler = if identif ier = 'x" then I
else if identifier "y'! then. 2
else p(identifier)

m: (I -) V) 4 (1 4 V)

2.4.6 The Implicit State

There exist procedural language statements that create
- changes other

than to values in the store. For example, consider the statement: "Mode n",

which alters the screen mode of the display device.

Imagine a screen with four modes, numbered zero through to three.

In order to describe the meaning of a program in this janguage, the

state must now be extended from the environment I4V, to a cartesian product,

the first component of which is the environment mapping and the second

component of which is a number between zero and three, describing the

screen-mode.

Using this extended computation-state, the statement sequence:,

Mode 2; Fred :=1

will be described by the state mapping M, below:

fun M (p, p) (fn z => if z="Fred" then 1 else p(z), 2)

M: ((I4V) x int) 4 ((I4V) x int)

17

As more procedural features are considered, there is a consequent
increase in the size of the state required to describe the language.

For example, describing the ef f ect of input and output statements

requires a description of the state of the corresponding devices.

Describing aliasing of identifier names (two names for the same value)

requires a more detailed description of the heap store.

2.4.7 The State Of A Functional Language

For a functional language, there are no statements; there are only

expression constructs. The meaning of an expression is the value produced by

expression-evaluation. This value may only depend upon the bindings for the

free variables in the expression, and thus the state for a functional

language is simply the environment mapping (14V), which defines the meaning

of the free variables.
As more expression constructs are considered the size of the value

space, V, may increase, but the state Itself remains simply an environment

mapping from U4V).

2.4.8 Reasoning About Procedural Programs

In §2.3, a powerful reasoning technique for functional programs was
described. Using this technique, a programmer can regard their programs as

algebraic expressions, performing simple meaning-preserving manipulations
upon them.

In procedural languages, it is possible to prove properties of programs
using a technique called the "Axiomatic Method", but algebraic manipulation
rules, where such rules exist, will be highly complicated as a consequence of
the complexity of the computation-state.

is

2.5 The Axiomatic Method
The proof technique most widely applied to procedural programs is- the

Axiomatic Method. The technique is also called the "Weakest Precondition"

method by Dijkstra in [43).

Assertions, written in the Predicate"' Calculus, arý inserted in between

the statements of a program. -The free variables in these assertions are

simply the identifiers used in the program. This creates a connection between

the values computed by the program and the truth-value of assertions-.
Each statement of the programming language can be described as an

assertion-mapping. The particular mapping for a statement defines the

assertion which will hold after the statement has been executed, in terms of
the assertion that held prior to its execution. '

This approach was first suggested .
by Alan Turing in 1949 [41, but

received little attention until 1967 when Floyd suggested the idea as a means

of describing the semantics of a language[6]. (the idea was also put forward

in 1966 by Peter Naur[51).

In 1969, Hoare
-was

the first_ author to develop a calculus for program

proving, using insertion of Predicate Calculus assertions. Hoare extended the

approach to include most commonly used language features, creating what is

now known as the "Axiomatic Method" [7,8,33,34,421.,

Consider a small subset of Pascal, the syntax of which is- described

below:

Syntax

<Statement> skip x :=e Is' Si"; Sz : if e i-hen Si else' Sz

whileb do Sod

19

The following rules may be used to modify assertions placed between

statements:

(1) Assignment Axiom
lp[e/xl) x :=e Jp) I

Composition, Rule
jpý Si (qý A (q) S2 irl

(pý Sl ; S2 (r)

(3) Conditional Rule

pAeS1 q) A (p A -e) S2 (q)

pIife then S1eI se S2 (q)

Whi le Loop Rule

lp A e) S 4p) ,
Jpýwhileedo Sod (pA-e)

I(S) Skip Axiom

fp) skip (p)

(6) Consequence Rule

(p * p' A p' ýS (q' A (q' 4 q))
ipý S iq)

2.5.1 An Example Proof Using the Axiomatic Method

The following procedural program calculates the quotient and remainder

produced by the division of two numbers. The input to the program is the two

values "x" and "y" and the output is the quotient "a" and remainder "b" of
it x" divided by "y".

a0
bx
while b?: ydob : =b-y ; a: = a+ Iod

20

ý In - order to prove that the correct values reside in "a"' and "b" after

execution, the assertion "ay+b=x A -b2: 0, A Vy" must be shown to hold. It

is necessary to add the conjunction "b-4o A Vy" to ensure that the solution
is not "degenerate", for instance,, without this qualifier "a=O, b=x", would

satisfy "ay+b=x" without necessarily entailing that "a" is the quotient and
"b" the remainder. -- I-

Let the entire program be named S. An Axiomatic Proof, taken from [81,

is presented below:.

I jxýo A y2: 0ý S fay+b=x A O: sb<y)

by the axiom of assignment
40*y+x=x A xz: O) a :=0 (ay+x=x A xzto) (1)

also by the axiom of assignment

(ay+x=x A xýO) b :=x (ay+b=x A bztOý (2)

combining (1) and (2) using the composition rule gives (3)

io*y+x=x A xýW a : =-O; b :=x 4ay+b=xAba: OI 1 (3)

by the consequence rule

since xz: o A yýo =ý (O*y'+X=x A xaO') assertion (3ý can be rewritten
(XaO A y2tO ýa0; bx4 ay+b=x A b?: O) (4)

Now considering the body of the while loop

by the axiom of assignment

I (a+l)y+b-y=x Ab -y?: Ol b b-y J (a+ I)y+b=x A ba: O) (5)

also by the axiom of assign ment :
((a+I)Y+b=x A b2tO)a: = a+l (ay+b=x A b2: 0) (6)

As before, the composition rule allows (5) and (6) to be combined:
j(a+I) y+b -y =xAb- y2tO) b: = b -y; a: =a +1 (ay+b=x A býO ý (7)

by the consequence rule :

since (ay+b=x A býo A b2: y) zo (a+l)y+b-y=x A b-y2tO

assertion (7) can be rewritten :
f ay+b=x A bý: O A b2ty ý b: = b-y; a: = a+1 f ay+b=x A b2tO) (8)

(This is the while loop invariant)

21

The while loop -rule allows the invariant (s) to be combined with the

while loop predicate "b2: y" giving (9), below:

iay+b=x A b'aO) while bay do b: =b-y; a: =a+l od iay+b=x A O: sb<y) (9)

FinallY combining (9) with (4) gives the required proof:

(xao A yýo ý

a: =0; b: =x; while b2: y do b: =b-y; a: =a+1 od

4ay+b=x A Oib<yl

2.6 Manipulation Of Procedural Programs

Using the Axiomatic Method, the assertions written by the programmer in

Predicate Calculus notation "sit on top of" the procedural notation. It is

the assertion-notation that is manipulated and not the procedural notation in

which the program is written.
In a functional notation, the notation in which the program is written

is also the notation in which manipulations are performed and proofs

constructed.
On reason why proof s using the Axiomatic Method become drawn-out,

appears to be procedural notations' lack of "algebraic flexibility".
A comparison of the Axiomatic Method and the Functional Modelling

approach can be found in §6.5.

22

2.7 Summary

This chapter has introduced the concept of functional and procedural

programming styles. The chapter raises the following issues, which shall be

taken up in the next chapter:
Proof techniques exist for both procedural and functional notations.
Proof techniques for functional notations use the functional notation

itself. Programs written in a functional style can be manipulated

algebraically using rules of transformation (the fold/unfold rules).
The procedural proof technique (the Axiomatic Method) requires the

introduction of extra notation (in the Predicate Calculus), in which the

proof is constructed.
Programs written in a procedural notation are algebraically

inf lexible. Functional language semantics can be described using a state

which only requires a mapping from identifiers to values. Such a state is

called an environment.
Procedural Language semantics require a state which includes many other

components in addition to the environment.

23

24

CHAPTER THREE

THE MODELLING STRATEGY

CHAPTER THREE THE MODELLING STRATEGY

3.1 Introduction

This chapter introduces the functional modelling approach aý a means for

analysing procedural programs.

A variety of techniques exist in print [79,80,44,611 and in ' the

"folklore" of functional programming, that will allow procedural programming

features to be compiled, into equivalent' functional programming features.

In §3.2 these existing techniques are introduced in the common framework

of a procedural language whose 'computation-state is simply identifiers to

denotable values (14V).

In §3.3 it is shown that the existing techniques break down when the

state of computation 'contains extra components other than (I4V). A simple

technique for overcoming this difficulty is introduced.

§3.4 sets out a brief polemic concerning referential transparency and

assignment. Specif ically It is argued that assignment is not a

referential ly-ýopaque construct.

3.2 Existing Techniques For Modelling

In §3.2 the state of computation is assumed to 'b6 'so'leily' aii envir'onment

mapping. ' In §3.3 this restriction is relaxed.

3.2.1 What is a Functional Model?

The meaning of a 'procedural program is a state mapping (this thesis is

only concerned with programs for which a direct semantics is possible)

The meaning of a procedural program, P, is thus a function which takes

an initial state, S, and produces af inal state, S'.

If this state is simply a mapping from the identifiers in the program,

1, to some arbitrary value domain, V, then the program can be considered to

be a prescription for modifying some number of the identifier bindings in S,

in order to create S'.

25

Since a statement-sequence can only ever affect af tnite number of these

bindings, it can be modelled by an expression which def ines a set of values.
The values of the "affected variables".

The final values of these affected variables will depend upon -the
initial state, S, in which the statement sequence is executed. However, these

final values will also only depend upon a finite number of the bindings (in

S).

Thus, for a statement sequence, def ined by a mapping (14V) 4 U-M,

there exists af inite set of affected variables, and a finite set of values
needed to compute the f inal value of these affected variables.

The "needed values" are simply the initial bindings (in S) for some of
the variables used in the statement sequence.

A model f or such a statement-sequence is simply a function, which takes

as its argument, a tuple of initial values for needed variables, and returns,
as its result, a tuple of f inal values of affected variables.

This section explores some standard techniques for modelling procedural
programming constructs.

These techniques only apply where the state of computation
,

is an
environment mapping.

3.2.2 Modelling Assignment
The archetype of a procedural language is the assignment statement.
It is possible to model assignment by let abstraction. All that is

required, is to ensure that the scope of the let abstracted identifier,

exists only up until any re-assignment to the variable.. That is, the scope of
the, let abstraction must correspond to the extent [161 of the assignment.

26

A nice illustration of this approach (ana the benefits' thai"'a"ccrue from

modelling) is given by the following example.

Consider the sequence of assignments below:

X

The "needed variables" of this sequence of statements are -the
identifiers "x" and

The "affected variables" are also "x" and
Thus the model is:

. un f(x, y) = let val x=x+y in
let val y=x-y. in
let val x=x-y in (x y)

This function can be manipulated (unfolding "x" and "y" in the result

tuple) to remove the let abstractions:

fun f(x, y) ((x+y)-((x+y)-y)), ((x+y) - y)

Which can be manipulated (using simple arithmetic properties) to:

fun f(x, y) (y, x)

Thus, the effect of the three assignment statements is_ revealed: that, of

swapping the contents of the variables 'Y' and "y". (However, the proof

relied upon the laws of arithmetic, thus 'Y' and "y" contain numeric data).

This swapping technique was used in the past when there, was a high premium on

storage use. Nowadays, a programmer would be more likely to use the more

familiar technique involving a temporary variable. One ..
benefit of functional

modelling, is that these two techniques could be proved equivalent (for

numeric data), simply"by unfolding model functions.

27

3.2.3 Modelling Conditionals

In providing functional models, there are often several choices as to

the strategy used to model a particular statement.

Of course, one model will be convertible to any other alternative, using

functional reasoning.
Here are two methods for modelling conditional statements using

conditional expressions:

3.2.3.1 Modelling Conditionals In Context

A conditional may be modelled by appending the statement sequence after

the conditional to the end of each of the statement-sequences for the "then"

and "else" branches. Clearly, this strategy is inappropriate if a large

amount of copying is required.

if e then s1 else s2 endif; s3

zo if e then s; s else ss endif

.ý if e then e else e

Where eI and e2 are the results of transforming s1; s3 and s2; s3

respectively.

3.2-3.2 Modelling Conditionals In Isolation

Alternatively, by forming the tuple of all the variables affected by

either the "then" and/or "else" branches, it is possible to form the Lh. s.

of a let abstraction, defining the new values for the variables in terms of a

conditional expression.

if e then seI se s 12
let val (x x-x (if e then eI else e2

where x1... x are the affected variables of the statements sI and s 21,
and eI and e2 are models for the statements s1 and s2 respectively.

28

3.2.3.3 An Example of a Model f or a Conditional Statement

if x > 10 then a :=x else b
,

ýx

Can be modelled by the let abstraction:

let val (a, b) = if x >, 10 then (x, b) else (a, x) in

Where the "... " is the model for the rest of the program after the

conditional statement.

3.2.4 Modelling Iteration

Procedural languages typically provide several repetitive constructs. In

each, a condition controls the repeated execution of a sequence of

statements. It is well known that all these constructs can be converted into

a while loop which, in turn, can be modelled by a recursive procedure:

while b do sa procedure P
begin
if b

then
beg in
s
P
end

end

29

3.2. S Modelling Procedures

In order to model a any procedure, it is necessary to collect together

all the effects the procedure may have upon the values of variables.

There are two types of variable affected by a procedure call: those

passed as call-by-reference parameters and those global variables assigned a

new value in the body of the procedure. The two can be both treated in the

same manner by re-casting all global variable assignments within a procedure
body to call-by-reference parameter assignments.

For example, if 'Y' is a global variable then the procedure "p"

procedure p;
begin
x :=e
end

can be recast:

procedure p'(var x: integer
begin
x :=e
end

so long as calls to "p" are recast as calls to "p", with the global

variable 'Y' passed as actual parameter.

3.2. S. 1 Modelling Call-By-Ref erence Parameter Passing

The approach adopted by Morris in [791 for modelling procedures with

call-by-reference parameters is to use a function which returns the final

values of the call-by-reference parameters in a tuple.

30

3.2.6 A Complete Example ., I

All the above modelling techniques can be used together in modelling the

procedure "locate", below:

type SomeArray = array [1. . 1000 of integer
procedure locate(A SomeArray

Element integer
var Location integer
var Found integer

var i integer
begin

i0
while W=1000) and (A[iI <>Element) do i+I
if 10 1001 then begin

Found := true;
Location
end

else Found := false
end

The while loop, within the procedure "locate", is modelled (in the

procedural notation) by the recursive procedure, "loop", below:

procedure loop
begin

if i 1000 then
if AM 0 Element then begin i :=i+1

loop
end

end

The conditional has to be nested in order to model the ef f ect of

short-circuit evaluation of the booiean expression in the while loop.

31

Librarv and mricormiatioa t)ervice

The global variables affected by the procedure "loop" can be written as

a Call-By-Ref erence parameter, giving:

procedure loop(var i
begin

if i <= 1000 then
if AM

I end ;

: integer);

0 Element then begin i :=i+I
loop

end

procedure locate(A: SomeArray
Element : integer
var Location : integer
var Found : integer

var i integer
begin

i0
loop(!)
if i <> 1001 then begin

Found := true;
Location
end

else Found := false
end

Using a strategy also employed by Morris in [791, it is' possible to

model an array, using a function from array-indexes to values stored in the

array.

Thus the procedures "loop" and "locate", can be modelled in ML, by the

functions "loop" and "locate":

fun loop(A, i, Element) =
if i <= 1000 then if AM 0 Element then loop(A, i+l. Element)

else i
else 1;

fun locate(A, Element, Location)
let vat i= loop (0) in

if 10 1001 then (i, true)
else (Location, false)

32

3.2.7 Modelling Aliasing

It is possible to create an alias using call-by-reference parameter

passing. An alias is a name for a value which already has a name.

When a procedure, P, with two variable parameters is called "P(z, z)",

then an alias is created: within the body of P, there will be two names for

the global variable "z".

For a procedure-call which creates an alias, the semantics will

typically be written with a two-level store [161, and so will not be in the

domain (14V).

In §3.3 a general method is described,
. which allows modelling of

programs which exhibit such semantics.

3.2.8 Modelling Goto Statements

11 goto" statements can be modelled by breaking the procedural program up

into sequences of statements which are not labelled, and modelling these as

parameterless procedures. The "goto" statements, themselves, are modelled by

a call to the corresponding procedure.

This strategy is based on a method first used by McCarthy in (44,611.

Consider the program below:

x :=0
n : =N

Ll : if n=0 then goto L2
xx+n
nn -1
goto LI ;

L2 :x: =x 10
Result x

33

The program consists of three blocks: the ý, two statements before "Ll",

the four statements between "Ll" and "L2" and the f inal two statements.

1

Ll : if n=0 then goto L2
xx+n
nn -1
goto Ll ;

L2 :x :=x 10 I
Result x

Each block can be modelled by a procedure:

procedure LO
begin

x0
nN L2

end

procedure LI
begin

if n=0 then L2 else begin
xx+n
nn
Ll
end

end

procedure L2
begin

x :=x 10
Result x

end

These parameterless procedures can be modelled by functions according to
the strategy outlined earlier in §3.2.

34

In the model below, the function-, "'10% takes the initial value of "N"

and returns the final value of the affected variables; 'Y', "n" and "Result":

fun LOM =, Ll(O, N) ;

fun- LI(x, n) =Af n=O then L2(x, n) else LI(x+n, n-1)

fun L2(x) (x, n, x*10)

3.2.9 Modelling Calculated Goto Statements

If the label used by a goto statement may only be calculated at' the time

the statement is executed then the statement is called a "calculated goto".

Some procedural programs contain goto statements, which cause execution

to jump into the body of a procedure.

Programs which make use of either of these features may require a

continuation-based semantics [16,451. Such programs can be modelled, but the

strategies that may be used lead to models which effectively interpret the

program that they model, and as such are not particularly well-suited to

manipulation.

3.2.10 Program Semantics verses Language Semantics

An important feature of the modelling approach, is that it is concerned

with individual programs and not languages.

The semantics of a language has to be constructed in such a way as to

prescribe a meaning for every program in the language. The denotation for a

particular program (derived from Ahe semantics of the language) is thus

defined over a, state which must account for the most semantically: intricate

program.

The semantics of, a particular program, may, however, ý only require a
highly simple semantic description, even if it were -to be written, in a
language which allows for highly intricate semantics.

jbus, a language may require a continuation semantics due to the

inclusion of calculated goto statements, but a program which does not use a

calculated goto statement can still be described without recourse to

continuation semantics.

35

3.3 The Implicit State: A Problem f or Existing Techniques

Using the standard techniques described in §3.2, a model may be created

f or any program which can be described by a mapping from (14V) to U4V).

In order to model any language construct one simply has to consider the

effect of the statement on the bindings in the environment.

However, procedural language semantic-descriptions typically require a

far larger state than simply (14V) in order to describe other effects of a"

program's execution, such as changes to the input and output streams, the

state of the heap store, the screen-mode and so on.

In this thesis the term Implicit state is used to describe all those

components of the state which are not in U4V). The
'explicit

state (or

environment as Stoy calls it in [161 and elsewhere) is simply Ahe domain

(14V). It is "explicit" in the sense that, for all its components, there

exists an explicit piece_ of program syntax (the identifier), which is bound

(by the environment mapping), to a semantic value.

The requirement for an implicit state in a program's semantics, makes

the modelling techniques described in §3.2 invalid, as the following example

demonstrates:

program P;
var x integer
begin

x
wr 1te 'He IIo, world')

end.

The model for this program (using, the techniques described in §3.2)

would be simply the number 1, describing the value residing in the variable
it x" after execution of the program and reflecting the change to the explicit

state.

Unfortunately, in addition to assigning 1 to "x", changing the expItcLt

state, the program also affects the output device, which is 'part of the

implIcLt state. This implicit effect is not modelled.
Were there to be no assignment statements avall, then the program would

cause no change to the explicit state and would thus have no modeL.

36

3.3.1 The Output List: An Implicit State

The state, S, for the program, P above, is defined by Gordon, in [361,

as:

S= U4V) xV

Where V is a sequence-, of - values drawn from' V. V is the implicit

state, it represents the sequence of values on the output device.

3.3.2 Modelling the Implicit State

Clearly, the solution to modelling a program whose state is not in the

domain G-M, is to alter the description of the state so Ahat it uses the

domain (14V).

This can be achieved in a very straight forward manner:

A new, unused, identifier is introduced into the, procedural program.

This new identifier is bound to the value of implicit state, thus"making it

explicit. Where a program affects the implicit state, this can be modelled in

the procedural notation as an assignment to the ' new identifier. Modelling

implicit effects as explicit assignment statements is'simply modelling of one

procedural program (with implicit effects) by another , (without implicit

effects).

Of course allowing the value of the implicit state to be' bound to an

identifier, may lead to an extension of the (denotable) ' value; space, V.

However, this appears to present no problems.

In practice, it may be more convenient to introduce a separate

identifier for each component of the implicit state. To illustrate the

modelling of the implicit state, two examples of implicit-state semantics are

now described: Input/Output and Heap-Store usage.

37

3.3.3 Modelling Input and Output I

Given that input and output are defined as semantic operations upon

lists (in a standard manner described by Gordon in 1361), then this implicit

state, and the effects upon it can be modelled as follows:

Two extra identifiers are introduced: "Input" and "Output", making

explicit the input list and output list state-components.
The affect of read and write statements upon the input list and output

list will be (procedurally) modelled by assignments to "Input" and "Output"

as follows:

read(x)
is procedurally modelled by

x := hd(Input) ; Input := tl(Input)

write(E)
is procedurally modelled by

Output := append(Output, [EI)

Bef ore the program is executed, no output will have been produced, so
the output list will initially be assigned a value "nil".

Thus, a statement sequence consisting of read and write statements is

modelled in the procedural notation by a sequence of assignment statements.
The state will then be the domain (1-*V), which can be modelled in the

functional notation by the standard techniques described in §3.2

38

3.3.4 An Example of Input/Output Modelling

Consider the statements:

read(x) ; write(x+l)

These can be modelled procedurally, by the statement-sequence:

Output nil
x hd(Input)
I nput tl(Input)
Output append (Outputj x+1

These statements can be modelled by a function from needed variables to

affected variables in the manner described in §3.2:

fun f (Input) (tl(Input), hd(Input)+l)

3.3. S Modelling Interleaving of Input and Output

Consider the two programs:

program PI ;
var x: integer
begin

read(x) write(l)
end.

program P2

var x: integer
begin

write(l) ; read(x)
end.

39

The models for these two programs are identical:

I
fun f (Input) = (tl(lnput), 1) ;I

However, they do not behave identically when executed: execution of PI

will not cause any output to appear if no input is received, whereas

execution of P2 will always cause output, regardless of whether or not any
input is ever received.

3.3.6 The Semantics of the Program Def ines the Model

The fact that the modelling approach used here does not represent the

interleaving of input and output events is a direct consequence of the fact

that the semantics of the language (as described in [361) does not describe

the interleaving of input and output events.
It is a matter of choice, when describing the semantics of a language,

as to what features of a program's execution are significant enough to form

part of the semantic description. In §7.8, a different semantic description

for Input and Output is used to construct a modelling strategy. For this

semantic description the interleaving of input and output events forms part

of the state of a computation and, thus, interleaving Ls represented in the

model.

3.3.7 Programs Which Use the Heap

The heap store is another example of an implicit state in Programming
language semantics.

Programs which use a heap may be described by a state which is formed

from the cartesian product of three values:

(I-4V) xAx (A-W)

Where "A" is the domain of addresses and "A4V" is an abstract
representation of the heap. The second component of the state, "A". records
the address of the top of the heap.

40

The semantic domain, V, will now include an extra, value, Rubbtsh, the

initial contents of the heap.

3.3.7.2 Modelling the Heap Store

In this, exposition, the domain of integers will be used for addresses.

To model the heap, two identifiers are -introduced:

"H", the heap function, a mapping from A->V

and

"hp", the variable which contains the, address of the top of the heap.

Statements which affect the heap -are modelled, in Pascal by assignment to

these two identifiers, thus making explicit the implicit heap, and top of
heap.

Of course, procedural languages do not usually allow f or assignment of

function-valued expressions. However, there is no reason why they should not
(see for example [27,371). For the purpose of modelling, it is possible to

suppose that any procedural language contains any denotable value domain

required by the introduction of the extra identifiers.

3.3.7.3 Modelling Pointer Deref erence

An address may be dereferenced, that is, the information stored at this

address in the heap can be referred to, using the addre. ss. For the address,

a, the value stored at a in the heap, is found by applying- the' heap function,

H, to the address, a.

Of course, the dereference of an address may, Uself, be an address,
thus allowing the heap to contain values which refer to other parts of the

heap.

3.3.7.4 Modelling Address Values

The "nil" pointer value will be assigned a "special" value, outside the

source domain of H. For example, -1 could be used.

In order to make models easier to read, nil, will be referred to by its

symbolic name.

41

Deref erence of the value "nil" is an error.
Demonstrating that the heap function is never applied to "nil", is thus

a form of store-access integrity proof.
In languages like "C" and assembly code, where address arithmetic is

permitted, it will not always be possible to refer to addresses" symbolically.
In particular, the store-access integrity proof will be that the heap

function, H, is always applied to values x, such that 0 :5x :s hp.

3.3.7. S Modelling Changes to the Heap

An assignment statement may update the contents of the heap by

dereferencing an address.
The simplest example of this is the dereference of ,a pointer variable.

For example:

42 1

This statement can be modelled procedurally by the (re)assignment to the
heap f unction:

H := fn x => if x=p then 42 else H(x)
I

That is, the new heap maps all addresses to the same values as the old
heap, except for the address, p, which is mapped to 42.

42

3.3.7.6 An Example of Modelling: Aliasing '

Assignment of one pointer variable to another does not affect the heap

itself, but it creates an alias as the following example shows-

program SimplePointer ;
var x, y: ^ integer ;
begin

new(x) new(y)
x: =y
X- := 42 ;
wr it e(y^)

end.

get an address for pointers x and y
x^ and y^ are now al lases
implicitly assigns a value to y^

The call new(p) simply assigns to the pointer variable, "p", the value
of the top of the heap and increments the

,
top of heap heap pointer.

The single write instruction can be modelled by the introduction of an

extra identifier, "Result", to store the value that appears on the screen.

3.3.7.7 The Model for the "SimplePointer" Program

The model for the program "SimplePo inter" is given below. The

intermediate stage of writing assignment statements for Implicit state

changes is omitted.

The model is simply a sequence of definitions, modelling changes to the

environment.

43

The model is given below:

fun SimplePointer =
let val hp =0 initial value of top of heap

val H= fn z => Rubbtsh initial value of heap

val x= hp
val hp = hp +I models new(x)

val y= hp
val hp = hp +1 models new(y)

val x=y x and y now identical

val H= fn z => if z xthen42 else H(z ; (* models x-: =42

val Result = H(Y) models write(y-)
in
(H, hp, x, y, Result)

Unfolding "Result" gives: Result= 42.

The aliasing of 'Y' and "y" is modelled by the fact that these two

identif iers are bound to the same integer value. Thus, when the heap function

is applied to either, the same value will be returned.

3.3.7.8 Modelling A Self Referential Structure

Used in a disciplined manner, pointers allow the programmer to def ine

and use lists, trees and other Abstract Data Types. Indeed, using the

modelling technique, the programmer can prove that an Abstract Data Type is

correctly implemented (see, for example, §6.6).

44

Used in an undisciplined manner, however, the structures created can
become circular, as this simple example demonstrates:

program Money
type

string -11strec
listrec record

data : char
rest : string
end ;

var Inf : string
begin

new(I nf
Inf ^. data
Inf^. rest Inf

end.

3.3.7.8.1 Modelling Record Structures

Record structures can be modelled using the tuple type.

The record type, "listrec", is modelled by a tuple, with selection of

tuple-elements written using the symbolic names "data" and "rest", taken from

the field names of the record.

For a tuple, T, and an index, f, the notation '74T' represents an

expression which indexes the fth element of the tuple, T.

3.3.7.8.2 The Model f or the Program: "Money"

The model for the program "Money" is as follows:

fun Money-
let val hp =0

val H= fn z => Rubbtsh
val Inf = hp
val hp = hp +1
val H= fn z => if z=Inf then CV, H(Inf), ýdata) else H(z)
val H= fn z => if z=lnf then (H(Inf)4*rest. Inf) else H(z) in

(H, hp, lnf) ;

45

Unfolding, "H" in the returned tuple, gives:

H= fn z => if z=lnf then ('L', Inf) else Rubbish ;

Unfolding H(Inf) gives:

I H(Inf) = CV, Inf) ;I

In chapter four a technique called "Projective Abstraction" is
described. This technique makes it possible to create a model specific to a
particular value, or set of values. This technique can be used to produce

models specific to particular values, such as:

I
H(Inf) = CV, Inf) ;I

It should be pointed out that the pleasing way
self-referential structure such as H(Inf) "announces, itself"

notation is possible, only because an address may be

symbolically.

in which a
in the model

referred to

3.3.8 Proving a Model Strategy Correct

Proving that a modelling strategy is correct (in terms of the semantics

of the language) is a straight forward, but long-winded matter.
A example demonstration of the construction of a simple modelling

strategy and a proof of its correctness can be found in §7.4.

46

3.4 Assignment and Referential Transparency

In literature concerning functional programming, there appears to be

some confusion about precisely what' feature of procedural languages makes

them non-referentially transparent (or referentially-opaque).
Many authors claim that It is the statement that causes a

language to be referentially-opaque.
For example on'page six of [161 Stoy says:

of In most programming languages referent !aI

transparency appears to be destroyed. For -example, the

fact that we have deduced x=6 would not imply that, we

could, replace x by 6 everywhere within the scope of the

declaration of x; if the program contains a statement

like

if x>y then x :=x-1

the value of x is not independent of position

af terwards it, even depend s upo nt he val ue ofy. "

This view is slightly misguided.

The statement used as an example by Stoy, can be modelled by af unction

'T', which takes'the original values of the variables 'Y' and "y" and returns

it if it the f inal values of X and y.

run M, y) = let val x= if x>y then x-1 else x'ln (x, y)

There are six occurrences of the identIf ter "x" in this string of

characters. The 'first, third, f ourth and f if th occurrence of 'Y' ref er to one

value, the second and sixth refer to 'a different value. A variable is a

binding of an Identifier to a value. The above string thus contains one

idýntif ier, "x", but two variables which use "x". Scope rules are used to

distinguish between different variables which use the same identifier.

47

If an assignment statement such as the one described above is

ref erentially-opaque, then the lambda calculus must also be

ref erentially-opaque. However, this conclusion would clearly be -absurd: the

Beta reduction rule distinguishes between different variables which happen to

have the same identifier. It does this using a scope consideration embodied
in the notion of bound and free variables[121.

It is not the assigm-nent statement that denies a language the

referential transparency property. It is the implEctt state. Changes to parts

of this implicit state cannot be manipulated by substitution simply because

there is no identifier for which a value may be substituted.
It may be that changes to an implicit state are written using an

assignment notation (for example, in the case of heap changes), however,

other implicit-state changes are notated differently, for example, input and

Output statements.

3. S Summary

This chapter collects together known functional modelling techniques

under a common framework.

Some of these techniques exist in print [44,61,79,801 and some are

simply part of the "folklore" of programming.

The framework used, is the semantics of the program, specifically the

program's computation state.

If this state is of the form identifiers to values, then the "known

techniques" can be used to construct a model for a statement sequence.
This model is a function, taking, as its argument, a tuple of the needed

variables of th e statement-sequence, and returning as its result, the tuple

of final values of the affected variables of the statement-sequence..
Unfortunately, the "known techniques" break down when the state of

computation is not of the form identifiers to values. However, as shown in

§3.3, this problem can be overcome by the introduction of extra identifiers.

The chapter thus presents a strategy for modelling any procedural

programming language feature.

The chapter also introduces the concept of an implicit and explicit

state and demonstrates that it is the latter that prevents a procedural
language from being referentially transparent.

48

CHAPTER FoUR

PROJECTIVE ABSTRACTION

- CHAPTER FOUR PROJECTIVE ABSTRACTION

4.1 Introduction

A model is a function which returns -a tuple of values'. Each' value in

this tuple is a semantic value computed by the procedural program being

modelled. A semantic value 'is either a value bound to an identif ier used by

the program or a value of a component of the implicit state (for which an
identifier has been introduced according to the strategy described In chapter

three).

For any reasonably large program there will clearly be a large number of

values in this result tuple, too many to make the model usef ul as a tool for

analysis of the procedural program.

This chapter introduces a very simple technique for analysis of

functions which return tuples of values. The technique Is called "Projective

Abstraction".

In conjunction with the implicit-state modelling approach described

earlier in chapter three, Projective Abstraction allows a programmer to

create many distinct models of a single procedural program. Each model is

specific to the analysis of a particular set of semantic values computed by

the procedural program and "abstracts away" from all other details of the

execution which do not contribute to the computation of this set of values.

4.2 The Projective Abstraction Technique

The Projective Abstraction Technique consists in simply omitting some of

the values of a model function's result tuple.

Thus, a function is projected onto a smaller target domain by

restricting the result tuple.

An important consequence of this projection is that the amount of

computation required to produce the result tuple is also reduced.

Specifically, an expression is only included in the projected function if it

contributes to the evaluation of the restricted result tuple.

Using the approach described in chapter three, a model function will

contain an identifier for any and every semantic value change created by the

execution of the program.

49

The Projective Abstraction Technique thus allows the programmer to

choose some of these semantic values, and to produce a functional program
which computes only the changes in these values arising from execution.

The large body of work on functional reasoning techniques
[2,20,23,40,50,601 can then be brought to bear in analysing the affect of the

Procedural program upon the semantic values.
Consider the example below:

program TwoAssignments ;
var x, y: Integer ;
begin

x := Ei ;
y := E2

end.

The model for this program is simply a function:

I M, Y) = (El, E2) 11

If the programmer is interested in the f inal value of "x", then the
projected model would be:

Lf l(Ei 1-

50

4.3 Reduction in Needed Variables

A further simplification that arises from projective abstraction is that

the size of the needed variable tuple may be reduced.

If the programmer decides to project the model onto "x", then the needed

variable tuple tells the programmer what the final value of 'Y' depends upon.

For example, if the needed variable tuple is empty, then "x" is a constant.

The Projective Abstraction Technique allows a programmer to use similar

kinds of analysis familiar from "run-time debugging", that is, the Inspection

of the contents of a particular variable or variables. However, there are two

crucial diff erences:

(1) The analysis is performed at compile time and is thus a symbolic

analysis, ranging over all possible executions of the program.

(2) All values of semantic interest are available for inspection due to the

modelling of the implicit state (with identifiers).

The Projective Abstraction Technique is thus simple, but powerful.

In the next few sections some applications of the technique are

described:

4.4 Henderson's Lazy Streams

If the programmer projects the model onto the output list, then the

model will be a stream-based program in the Henderson Lazy Stream style[301.
Using stream-based models of this kind does not allow a programmer to

investigate the tnterleaving of input and output events.
However, this is often an advantage, as the programmer will want to

ignore such details and focus on the functional relationship between Input

and output.
Should the programmer wish to investigate the interleaving of input and

output then they could employ the modelling strategy described in §7.8.

51

4.5 New Programs From Old f

Many programs compute several values within one part of the program. A

programmer may wish to reuse only a part of a program to compute just one of

these values.
Consider f or example the program below:

program ArrayProcessing-;
var i, total, Biggest, Smallest : integer

A: array [l.. 10001 of integer ;

begin
total 0; Biggest := A[11 ; Smallest : =A[l]
for 11 to 1000 do

begin
total := total +A[i)
if Mil > Biggest then Biggest A[i
if AM < Smallest then Smallest := A[i]

end
I end.

Separate programs can be created f or each value computer using

Projective Abstraction. For example, choosing the final value of the

identifier "Biggest" as the result of the model yields the following model:

fun Biggest(A) = for(A, A(l), I)
where fun f or(A, Biggest, 0= if i <= 1000

then if A(i) > Biggest
then for(A, A(i), i+l)
else f or(A, Biggest, i+1)

else Biggest ;

Using the techniques described in chapter f ive it is possible to convert

this model back into a procedural notation.
However, it would be foolish to convert any model back into a procedural

notation without first investigating the model a little. The whole point of

modelling is to permit the use of functional analytic techniques. One such

technique is partial evaluation, which can be conducted symbolically at

compile-time.

52

4.5.1 Partial Evaluation and Efficiency Improvement

Partially evaluating a functional program can result in an Improvement

in the efficiency of the program. This benefit is demonstrated by partial

evaluation of the model "Biggest".

The call to "for" in the definition of Miggest" is partially evaluated,

giving:

for(A, A(l), l) = if 1 <= 1000
then if AM > AM

then for(A, A(l), 2)
else for(A, A(l), 2)

else A(1) ;

Clearly

"I <= 1000" is "true"

and
"A(l) > AU)" is "false"

Thus

I for(A, A(l), l) = for(A, A(l), 2)1

Using this identity, the model can be rewritten:

fun Biggest(A) = for(A, A(l), 2)
where fun for(A, Biggest, i) if I <= 1000

then if -A(l) > Biggest
then for(A, A(l), i+l)
else for(A, Biggest,! +l)

else Biggest ;

53

When converted back into the Pascal notation this leads to the program
below:

program Biggest ;
var Biggest, i: integer

A: array [1.. 10001 of integer
begin

Biggest := AM
for i :=2 to 1000 do if Mil > Biggest then Biggest := A[il

end.

4.6 Values of Program Constants

In the program "ArrayProcessing", projecting the model onto the final

value of the identifier "i" gives the model:

I
val i= 1001 ;I

This does not tell the programmer much about the program but then, since
the techniques can be automated, it does not require any effort either.

4.7 Heap Store Use

The identifier "hp" is introduced to model the top of _
the heap.

Projecting a model onto the value of "hp" will tell a programmer how much
heap store is used.

If the model yields a constant when projected onto this value, then it

reveals that fact that there is no need for the heap. The heap storage

strategy is only required when a programmer does not know how much store will
be required.

54

4.9 Nothing New

Of course, there is nothing, that a programmer can do using Projective

Abstraction (or modelling --in general) that was , not, possible using the

original procedural, program. The procedural program's text- is a, complete
specification of the programs behaviour, and can be used to answer these

sorts of question about the program's execution.
A good programmer will be able to extract -the "Biggest" program from the

"ArrayProcessing" program (§4.5) and will notice the efficiency improvement

to be gained by omitting the first loop cycle.

,
The modelling approach offers two significant, enhancements, to such ad

hoc" reasoning: I

(1) All the reasoning , perf ormed using. the manipulation of the , model is

guaranteed to be correct. That is, no manipulation can alter the values

computed by the program. The programmer is thus, f ree to "play" with their

program as if it were simply a piece. of algebra, ignoring the fact that it Is

to be executed by a computer. This algebraic freedom is the principal

advantage of a functional notation over a procedural notation (see, for

example [80,901 and [21,18,321). The modelling technique allows, procedural

programmers to avail themselves of this advantage.

(2)1 The production. of , projected models may be performed entirely
automatically by a CASE tool (or to put, it more prosaically, by a Compiler,

albeit a compiler parameterised by the choice of Projection),

In a small program, such as the array processing example above, it may
well be that a programmer can see immediately how to alter a program to

calculate only one value. However, the dependencies that have to be

considered in order to do this become too intricate for programs of greater
size and Projective Abstraction becomes a necessity.

1 55

4.10 Summary

The technique of Projective Abstraction is very simple.

A programmer simply omits some values from the result tuple of a

function, thus simplifying the function by specialising its result.

Together with the (equally simple) technique of introducing identifiers

to model the implicit state described in -chapter three, the programmer can

analyse, evaluate, manipulate and prove properties of any semantic value of

interest.

The functional modelling technique thus involves two abstractive filters

which "filter out" irrelevant aspects of a program's execution, sharpening

the analytic focus.

The first of these filters is applied by the programming language

designer, who chooses which aspects of all possible programs are to be

, described in the semantic description of the programming language.

The modelling strategy uses this semantic description when creating a

model, and so any aspect of execution ignored in the semantics will be

ignored in the model.
The second abstractive filter is applied by the programmer, who chooses

(by Projective Abstraction) those aspects of a particular program that are to

be modelled.

The technique of Projective Abstraction reduces the complexity of the

model to that which is sufficient to compute the semantic values onto which
it is projected. In small programs this complexity-reduction is of little

consequence, but for large programs its benefit will be keenly felt-.

56

CHAPTER FIVE'

CONVERTING MODELS BACK INTO PROCEDURAL NOTATION

CHAPTER FIVE CONVERTING MODELS BACK INTO PROCEDURAL NOTATION

5.1 Introduction

In this chapter various strategies for converting functional models back

into a procedural notation are discussed.

Converting a model back into a procedural program is inherently a matter
for the programmer, since the point of functional modelling is to reveal
inadequacies in the original procedural - program.

What constitutes an inadequacy depends upon the program, concerned, so a

highly intelligent (i. e. human) strategy is required to produce an improved

program from a model.
Other techniques are discussed in the seminal work of John Darlington,

which was originally aimed at compilation of functional programs Into

efficient procedural counterparts [911.

S. 2 Evolution of program transformation rules
The techniques presented here are intended to be an ald to the

programmer only. It may well be that using a semi-automated system, various
heuristic rules will evolve and then become incorporated into automated parts

of the system (see appendix A2).

For example the method of goto removal set out in [881 and [891 are

examples of such heuristic rules: if the model produced by a "goto program"
is converted into "while" loops by the strategy outlined here, then the

resulting program will be very much like that produced by the algorithm
described in [891.

5.3 Some Things which Will Not be Converted Back

The strategy outlined here is directed at converting functions in

iterative form and does not address the problem of 1/0 interleaving.

57

S-3.1 Iterative Form

The model functions which can be converted back into a procedural
notation, using the strategy outlined here, are those which are in iterative
form [44,611.

A function, f, is in iterative form if all calls to the function do not
occur within calls to any other function.

S. 3.2 Loss of 1/0 Sequencing Information

As shown in chapter three, the information concerning the interleaving

Of input and output events is lost when a procedural program is modelled,

using a simple list-based input and output semantics.
If a program, P, is manipulated to alter its structure and subsequently

converted back into the procedural program, P', then P' will not necessarily
interleave the input and output events in the same order as P.

5.3.2.1 Keeping the 1/0 Information Means Restricting 'the Fold/Unfold Rules

If the programmer wishes to maintain interleaving, information then the

model should include a "trace" in its projection (see §7.8).

5.4 Converting Functions in Iterative Form to Loop Constructs

The strategy proceeds by performing manipulations to the model
functions, rendering all models in a common form, from which, conversion to
loop constructs becomes trivial.

58

5.4.1 - Maximal Substitution

All let abstractions, "let val x= Ei in Ez", where Ei does not involve

a call to a model function, are unfolded so that model functions all take the

form:

fW= if pW then E

else if p2W then E

else

else E

Where x is the tuple of identifiers which form the parameters to the

function f, p are predicates on this tuple and E are expressions containing

no conditional sub expressions.

5.4.2 Unfolding of Functions

The expressions EI will be one of four possible forms:

An expression involving only base functions and members of R.

An expression of the form g(x), where g is a model function.

iii) An expression involving a model function which is not in iterative

form.

iv) The fourth possibility is "let val. (y) = g(z) in E", where y, and z

are subsets of x, g is another model function and E is an expression in one

of the forms D- iv). This fourth possible form, when converted into a

procedural notation, leads to nested looping, it is discussed separately in

§5.7.

59

As stated earlier, it is not possible, using this strategy, to convert
functions which are not in iterative form, so case iii) is ignored.

Expressions in form il) should be unfolded until either, a recursive call
is encountered, or a call to a recursive function is encountered. That is, if

an Expression, E, occurring in a function, f, is unfolded to produce 'a call
to f (by definition in iterative form) or a call to a function g, where g is

a recursive function, then E should not be unfolded any further.

If the model contains mut ' ually recursive functions then the strategy
that must be employed is less . elegant due to the introduction of extra
variables. For this reason models containing mutual recursion are discussed

separately in §5.8.

5.4.3 The Fully Unfolded Model

After unfolding, each model function, f(x), is in the form described in
§5.4.3, where each EI is one in one of the following three f orms:

An expression involving only base functions and members of

il) A recursive call, f (e), where e is an expression involving only
base functions and members of x.

iii) A call to a function g, of the form g(e), where e is an expression
involving only base functions and members of x-.

5.4.4 The Terminating Condition f or a Model Function

"Termination" occurs when an expression of the f orm 0 or iii) above is

evaluated.

In this discussion, the condition under which such a call is evaluated
is called the "termination condition" of the function.

That is, within a function, 'T', the condition under which any of the
expressions Ei which contain no recursive calls to 'T', are evaluated.

The "termination" condition of a model function is not, therefore. a
condition under which the model program Uself, would terminate, but as will
be seen, it Ls the condition under which the loop that models the function
will terminate.

60

5.4.4.1 Examples

Below are two functions together with their "terminating conditions":

fun f(x, y) if x=ythenx
else if x= (Y+I) then y-x

else f(x-I, Y+I)

'Me function, f, has "terminating condition", p(x, y):

p(x, y) = (x=y) or (: i=y+l)

fun h(x, y, z)
if x0y then h(x-l, y+l, x+z)

else if y=z then y
else if X=z then h(x-l, y-l, z)

else g(x, y, z) ;

The function h has "terminating condition", p(x, y, z):

p(x, y, z) not(x0y) and (y=z or (not(x=z))

In each case, the condition is produced, merely by examining the

predicates in the conditionals, without regard to the value computed by the
function.

Of course, the terminating condition may, itself, be manipulated

according to the rules of the predicate calculus. For example the second

predicate, p, can be rewritten:

I
P(X, Y, Z) = x=Yl

61

5.4.5 Converting to an Unbounded Loop K.,

A recursive function, in iterative form, is converted into an unbounded
loop. That is, it is converted, either into a "while" loop, or a "repeat"

loop.

A recursive function will be converted into a "while" loop if
"

it

"terminates" without modifying any of its parameters. That is, if it returns

a subset of its parameter tuple or passes some subset of its parameter tuple

to another model function.

A recursive function will be converted to a "repeat" loop if - it

"terminates" with some modified subset of its parameter tuple. That is, if
_

it

returns an expression involving a subset of its- parameter tuple and some base

functions, or passes such an expression to another model function.

There is, of course, some choice that may be exerted, since a "repeat"

loop with a body S, is equivalent to a "while" loop with S- executed once
before entry.

5.4.5.1 The Loop's Boolean Expression

If a "repeat" loop is being produced then the boolean expression is

simply the "terminating condition" of the model function.

If a "while" loop is being produced then the boolean expression is the

negation of the "terminating condition" for the model function.

62

5.4.5.2 The Loop's Body

The nested conditional exprýession is converted to a nested conditional

statement:

if pi(x) then el
else if p2(R) then e2

else..
else en

Is converted to:

if pl(x) then Si
else if p2(x) then S2

else
else Sn

Except that those predicates that form part of the "terminating

condition" need not be included.

Each statement, Si, is produced by ý converting the expressions, , ei, , as
follows:,

5.4.6 Local States and Variables

The parameters of a model function are the "local state" in which the

function is evaluated.

The parameter names of this local state will be -used as,, varlableý names
in the procedural program.

The body of the loop produced contains assignments toý'these variables.

These assignments are formed by_- assigning, to each variable, the expression

passed on recursive call to the function.

63

5.4.7 Input and Output

Theý re-assignments to' the output list and input-list will be converted
back into write and read statements.

If input occurred in the part of the procedural program modelled by a

model function, f, then f will include a parameter, "inp" (or some other name
introduced according to the strategy set out . in chapter 3). If output

occurred in that part of the procedural program, then f will include a formal

parameter "out" in its parameter list.

The parameters "inp" and "out" correspond to the input list and output
list. (The situation where there are more than one output device can be dealt

with naturally by extending the strategy outlined here).

Obviously, names are significant in the model, so if conversion into a

procedural notation is performed automattcalLy, a convention on names for

devices must be followed (see §5.9).

S. 4.7.1 Output

Output is modelled by appending output' elements onto the output list. So

to convert this back into the procedural notation, where ever the actual
parameter "append(Out, L)" is passed for the formal parameter "Out" in a
function call this will be converted to write(L'), where L' are the elements
of the list L.

5.4.7.2 Input

Converting operations on the input list back into the procedural

notation as read statements presents a some problems:

The statement "read(x)" is modelled by "let val x= hd(InpY in let val
Inp = tl(lnp) in

Now, these two definitions may become "separated" in the model due to

manipulation, but in converting a model into procedural notation expressions,
involving "hd(ln*p)" and "tl(lnp)" must be converted to as. ingle "read"

statement.

64

5.4.7.2.1 Introducing New Variables

Normally (for example, in Pascal, C and Fortran) the read statement

takes a variable parameter, in which the input is to be stored. The name' for

this variable parameter will have to be "invented".

5.4.7.2.2 Where to Locate the "read" Statements

In order to discuss conversion of operations on the input list it is

necessary to introduce two concepts: the "depth of input" In a' model function

and the "amount of inputý, consumed", corresponding to the expressions

"hd(Inp)" and "tl(lnp)" respectively.

5.4.7.2.1 The Amount of Input Consumed

The recursive call to a function will "pass an actual parameter for the

formal parameter "Inp". The expression for this actual parameter represents
"how much input is consumed on that call".

5.4.7.2.2 The Depth of Input

The selection of elements from the input list has a "depth", this is the

highest index used to select an element from the input list.

'Me value of the depth and the amount of input consumed In a particular

model function are not necessarily identical.

65

5.4.7.2.3 Depth is the Same as Amount Consumed

In most model functions the depth will be
_

identical to the amount of
input consumed.

In such cases all the read. statements are to be put. LnsLde the loop at
the appropriate point in the conditional statement structure.

For example, the function f, below, the depth is identical to the amount
of input consumed on each call:

fun f(Inp, t) = if t>100 then t
else f(tI(Inp), t+hd(Inp))

It will be converted into the "while" loop:

while not(t>100) do
begin
read (x);
t :=t+
end

5.4.7.2.4 Depth is Smaller than Amount of Input Consumed

If the depth is smaller than the amount consumed, then "dummy" read

statements must be included to read the extra input.

For example the function f, below, consumes 3 elements from the input

list on each call, and has a depth of 1.

fun f Onp, t) =
if t>100 then t

else. f(tI(tl(tl(Inp))), t+hd(lnp))

66

It will be converted into the "while" loop:

while not(t>100) do
begin
read (x)
read(Dummy)
read(Dummy)
t :=t+x
end

5.4.7.2.5 The Depth is Greater than the Amount of Input Consumed

If the depth is greater than the amount of input consumed then some

input must be read before the loop is executed, and then at the end of the

loop body these variables must be updated.

For example consider the model function, f, below:

fun f(Inp, t)
if t>1

then t
else
f (hd(Inp) +hd(tl(Inp))+hd(tl(tl(lnp))), tl(lnp));

In this function the depth is 3 but the amount of input consumed on each

recursive call is 1.

Two values must therefore be read before the loop is executed, and these

variables must be updated at the end of the loop body.

The "while" loop produced to model this procedure. 1s:

read(Xi)
read(Xz)
while not(t>100) do

begin
read(X3)
t X1 + X2 + X3
X1 X2
X2 X3

end

67

This is a highly unlikely eventuality however.

5.4.8 Example

Consider the function, "S", below:

fun S(Inp, N, M, t) = if N=M then t
else let val t' = t+hd(Inp) in

let val N' = N+l in
S(tl(Inp), N', M, t')

5.4.8.1 Unf olding

First, the let abstractions are unfolded, to produce:

run S(Inp, N, M, t) = if N=M then t
else S(tl(lnp), N+1, M, t+hd(Inp));

Next, all function calls are unfolded until recursion is encountered. In

this case, this means no unf olding, since the function call
"S(tl(lnp), N+I, M, t+hd(Inp))" is already recursive.

S. 4.8.2 The Loop-Body

The conditional structure is

if M=N then S1 else S2

Where Si and S2 are produced according to the strategy outlined in
§5.4.6. (This simply reduces to S2, since there is no need to test the
terminating condition within the loop).

68

S. 4.8.3 Converting to a "while" Loop

The function is converted into a "while" loop, since it returns "t"

unaffected if its "termination condition" is satisfied.

The "Termination condition" is "p(N, M) = N=M", so the "while" loop

predicate is "not(N=M)".

5.4.8.4 Input and Output

Now, this function consumes one element of "Inp" on each call so tile

expression "hd(Inp)" is converted to the read statement "read(x)" which is to

be placed inside the loop, and where ever "hd(Inp)" occurs In an expression

it is replaced by "x".

5.4.8.5 Re-Introduction of Assignment

The'body of the loop contains the assignments:

t := t+x

and

N := N+l

The "while" loop produced is thus:

while not(N=M) do
begin
read(x)
N N+1
tt+x
end

5.5 Putting the Loops into a Statement Sequence

All that is required to produce a complete procedural program, is to put

the various "while" and "repeat" loops into a sequence, reflecting the call

graph of the model.

The model is a function fl, which may call a functions f2,..., fn, each

of which may, themselves, call more functions.

69

The first "while" loop in the statement, sequence, is the one which was

produced from fi. If there is only one other function, fz, called from fi,

then the next loop in the statement sequence is that produced from f2.

If there is more than one function, 4f2,..., fn), called from fi, then a

conditional statement is the next statement in the procedural program

produced. This conditional selects which loop is to be executed next from

those produced from the functions 4f2,..., fn1.

S. S. 1 Avoiding complexity
A little consideration leads to the reallsation that for a large set of

model functions, each of which calls several other model functions, , the

procedural statement-sequence produced by this naive strategy will be long

and complicated, involving many nested conditionals. The depth of conditional
nesting being roughly proportional to the number of model -functions.

This situation is clearly unacceptable; it arises from the fact that the

procedural program produced according to this strategy makes no use of
procedure-abstraction: the program produced will be one monolithic sequence
of statements.

The obvious way to subdivide this monolith is to make use of the

procedural abstraction contained in the original procedural program.
The model functions fall into three categories: Those whose names are

introduced to model "goto" statements (i. e. those whose names are labels),
those whose names are introduced to model loop constructs, and those which
model procedures and functions in the original program, and use the original
names.

The last of these three are those model functions which correspond to
procedures in the original program. These model functions can be converted
into separate procedural programs, and each of -these programs can then be

written as a procedure. The procedure will take as formal parameters, the
needed variables of the statement sequence produced, and return (via variable
parameters) the affected variables of the statement sequence produced.

70

S. 6 Automation

All of these conversions can be carried out automatically. 'H'owever, ' it

is doubtful whether a fully automated strategy would be desirable: The

programmer's intuitions about the' model functions will provide valuable

insights into what manipulations to perform, and what conversion strategy to

use when converting back into a procedural notation.

For example, the programmer may decide that some of the, model functions

produced from loops or "goto" statements should be converted back into

procedures, thus increasing the resulting procedural abstraction, and

improving the readability (and reusability) of the resulting procedural

program.

What is highly desirable is a semi-automated "CASE tool", many parts of

which would be fully automatic (for example production of the initial model

f unctions, converting back according
.

to various pre-def ined strategies,

f old/unfold rules in the functional notation, maximal substitution and so

on).

Such a tool would be used interactively by a programmer, who would

analyse and manipulate a procedural program, producing proofs of program

properties, correcting mistakes,, removing redundant computations and altering

the program's structure to produce a better documented, more reliable,

efficient, reusable and proven program.

Some preliminary work has already been conducted on these lines (see

appendix A2), -and work continues[741, but more time and resources are

required.

The strategy is not complicated, all examples could easily be performed
by a programmer in a heuristic manner without reference to an algorithm of

conversion. Automation would merely act to remove the "donkey work" involved

in conversion of notations.

5.7 Nested Loops

The discussion so far has been concerned with model functions which

contain no nested calls to functions.

71

A nested call, occurring within af unction f, is an expression ýE of the

f orm below:

let val W= g(x) in E'
- -, - II

Where E' is either of the four forms listed in §5.4.2.

Such nested calls to functions produce procedural programs with nested

loops.

5.7.1 Example

In this example the function "r" is used to strip leading spaces from a

list, it terminates when the head of the list is not a character.

fun f(Inp, out)
if hd(Inp)

then Out
else
if hd(Inp)

then let val Inp' = r(t I(Inp))
in f(Inp', Out)

else f(tl(lnp), append(Out, [hd(Inp)]))

fun r(Inp) = if hd(Inp) then r(tl(Inp))
else tl(Inp) ;

The function "r" is converted to the "repeat" loop:

I
repeat read(x) until x0''I

72

The f unction "f " is converted to the repeat loop:

repeat
read(y)
if y= then repeat read(x) until x0

else write(y)
until y=

For greater perspicuity, the programmer may elect to f orm a procedure

out of such nested loops, particularly if the same model function is nested
in several places. This will be another area where a "CASE tool" would need
to be interactive, allowing the programmer to choose how a model is converted
into a procedural program.

5.8 Mutually-Recursive Model Functions

In [891 the authors demonstrate that it is not possible to convert all

procedural programs, which contain "goto" statements, into procedural

programs, where the "goto" statements are replaced by "while" loops, without

introducing extra variables.

This is 'also obviously true for functional models. Those models which

cannot be converted into "while" 'loop programs, 'without the introduction of

extra variables, are precisely those model functions which are mutually

recursive.
Consider the two mutually recursive functions below:

fun M
..., x if p (x

9 .,. ., x) then EI-

else if p2 (x
1x

then g(E
2

else f (E

fun g(x xn if p3 (x
I' xn then E4

else if p (x xn then f (E
5

else g(E 6);

73

ervice 1' NW, // i ibrarv and informatiOn 4,

These two mutually recursive functions can be joined together into one
function, "Both", by adding an extra parameter to "switch" between the two in

the body if this new function:

fun Both(xl,..., Xn switch)

if switch

then
if p then E

else if P2 (x
1 '. .. 'x n

then Both(E
7" g")

else Both(E
3f

if switch = "g"

then
if p (x

'... 'x) then E4

else if p4 (x
1,... 'x n)

then Both(E
5,

f

else BOWE
6"' g")

else (* invalid switch *) ;

Now the call 'T (e
I ..., e

n
Y' is equivalent to Both(e,,..., e

n
"f") and a

call "g(e
1en

Y' is equivalent to Both(e
I ..., e

n"'
g").

These are the onLy two calls to the function "Both" which are valid.
Passing a value for "switch" other than "f" or "g" will not reflect any

possible call in the original model program.

However, the production of a function like "Both" is only intended to

indicate a strategy for converting mutually recursive model functions into

procedural notation; functions like "Both" will never actually be executed.
The strategy can clearly be extended to cope with an arbitrary number of

mutually recursive functions, all that is required is for "switch" to have as

many possible values as there are pos
Now the function "Both" can be

to the strategy outlined in §5.4.5.

mention the new variable "switch".

Clearly, it would be possible
recursive procedures, in which case
introduced.

sible mutually recursive calls.

converted into a "while" loop according
Of course, the "while" loop will also

to convert the model into mutually

no extra variables would need to be

74

5.9 Naming Conventions in the Model

In converting operations on input and output lists, an assumption is

made that the names used for input and output lists are "inp" and "Out"

respectively. It has also been assumed that names of procedures will be

maintained in the model.

This presents no problems, and is only mentioned since it runs contrary

to the normal experience that the choice of particular identifiers is

unimportant and that consistent name changes may be performed in functional

programs without changing meaning.

The model functions are used to model procedural programs and so in

addition to their "meaning" as recursion equations, model functions also have

a "meaning" in terms of the program that they model.

75

76

CHAPTER SIX

APPLICATIONS OF FUNCTIONAL MODELLING

CHAPTER SIX APPLICATIONS OF FUNCTIONAL MODELLING

1 6.1 Introduction

Any aspect' of a procedural program which can be analysed, proved or

altered will be an aspect to which the'' functional modelling technique may be

applied. There are thus many applications of the modelling approach.
Moreover, by simply projecting a model onto the desired "'problem domain"

as described in chapter four, the programmer can "home in" on the particuiar

aspect of interest an drop from the model any irrelevant details.

This chapter demonstrates some of the wide variety of application areas

for which the modelling strategy is suited. It seems that the larger a

procedural program is, the more benefit will be gained from the abstractive

features offered by the approach. However, only reasonably small' examples can

be contained in this exposition (the largest program Is about five pages
(§6.4)).

Automation of the modelling techniques will allow the programmer to

approach programs of unlimited size.

6.1.1 A Brief Outline of the Examples Contained Here

There are seven examples in this chapter.

These are as follows:

In §6.2 a Fortran program is modelled. The modeý Is manipulated and

converted back into procedural notation. Several equivalent Pascal programs

are produced and an equivalent Fortran IV program is produced with "goto"

statements removed.

In §6.3 a Fortran program is modelled. For this program the (English

language) specification is known. The program is shown not to obey its

specification and is corrected. Once again the model is converted back into

several equivalent procedural programs (in Pascal).

77

In §6.4 a larger program is considered. This program is taken from a

standard reference on the programming language Modula-Z [671.

The program implements a simple data base.

The modelling strategy is ideally suited to proving properties of, such

programs. Many simple proofs, are constructed, demonstrating simple, properties

of the Modula-2 program. These simple proofs are then used to construct a few

more general assertions about the program. These general assertions can be

treated as a specLfIcation for the behaviour of the Modula-2 program.

The construction of proofs for the program reveals some shortcomings in

the program design whereby certain input values could cause-Ahe program to

misbehave. The procedural program is thus rewritten to take account of these

problems, making it more robust.

In §6.5 the Algol 68 program "FIND", first proved correct by Hoare in

[331, is modelled. Since the program was constructed and proved in [331 using

the Axiomatic Method, the program provides an opportunity to compare the

relative merits of the Axiomatic Method and the Modelling strategy. The

conclusion of this comparison is that modelling is better for analysis of

existing programs, whilst the Axiomatic Method is ideally suited to the

construction of correct programs.

One of the lemmas used in the proof of the program "FIND" presented
here, allows the program to be manipulated to remove its "goto" statement.

In §6.6 an example of disciplined use of pointers is examined. A set of
Pascal functions which implement a linked-list are modelled.

A proof is then constructed, demonstrating that the ýPascal functions

respect the list Abstract Data Type axioms.

§6.7 turns attention to the programming language "C". This language
contains many semantic subtleties which become transparent when modelled.

Finally, §6.8 looks at the possibility for locating possible paths for

parallel evaluation using the modelling strategy.

The modelling strategy may well be applicable to other areas of analysis
and proof. Some of these are described in chapter nine.

78

6.2 Goto Removal in Fortran IV

In [431 Dijkstra argues against the use of the goto statement.

In this example a Fortran IV program from [871 has been used to

illustrate how manipulation of the functional model can lead to a more

elegant program, in the sense of goto-removal

After manipulation the model can' be converted back into a procedural

notation in several ways. In this example the program is converted back into

a "repeat loop" program in Pascal, a "for loop" program in Pascal and a "do

loop" program in Fortran.

The strategy used to convert back into the procedural notation is the

one described in chapter five.

79

6.2.1 The Program

The program is taken from page 145 of [871.

I= 11 -1 1ý I "; - 6j J1 -1
7 IF I. EQ. Il AND. J. EQ. Jl), GO TO 9

IF 1. LT. I OR. I. GT. 8 OR. J. LT. 1 OR J. GT. 8) GO TO 9
IF (BOARD(I, J). EQ. 0) WRITE(6,8) I, J

8 FORMAT (2IS)
9jj+1

IF (J. LE. Jl+l) GOTO 7
II+1
IF (I. LE. Il+l) GOTO 6

6. S. 2 The Model

The model uses a function to model the array "Board" and the McCarthy

strategy for modelling goto statements. The identifier "Out" which is a list

modelling the output device 6, is the result onto which the model is

projected.
The program is modelled by the ML function f:

fun f (Out, il , jl, Board) = f6 (Out, il-1 , il, jl, Board) ;
fun f6 (Out, i, i l, jl, Board) = f7 (Out, i, jl-l, il, jl, Board);

fun f7(Out,!, j, il, jl, Board)
if (i=il) and (j=jl)

then f9(Out, i, j, il, jl, Board)
else if (i<l) or (i>8) or (j<l) or (j>S)

then f9(Out, i, j, il, jl, Board)
else if Board(i, j) =0

then f9(append(Out, [i, j]), i, j, il, jl, Board)
else f9(Out, i, j, il, ji) ;

fun O(Out, i, j, il, jI Board)
if (i + 1) <= (i 1+ 1)

then f7(Out, i, j+l ,il, jl Board)
else if H+l) <= (il+l)

then f6(Out, i+l, j. i l, jl Board)
else End(Out) ;

so

,
6.5.3 Manipulation of the Model

6.5.3.1 Initial Manipulation

The parameters il. jl and Board are not altered in any of the model

functions and so they can be treated as constants. The whole program Is then

modelled by the call f(Out), and is a function from the original output list

to the final output list resulting from executing the program.

fun f (Out) =f 6(Out, i 1-1);
fun WOut, i)=f 7(Out, i, jl-l)

fun MOut, i, j) =
if (i=il) and (j=jl)

then MOut, i, j)
else if (M) or (i>8) or (J<I) or (J>S)

then f9 (Out, i, j)

else if Board(i, j) =0
then f9(append(Out, [l, j1), I, J)

else MOut, i, j) ;

fun f9(Out, i, J) =
if (j+l) <= U1+1)

then MOut, i, j+l

else if (1+1) <= (11+1)
then f6(Out,! +l, j)
else End(Out) ;

6.5.3.2 Unfold f6

Note that f6(a, b) = f7(a, b, jl-l) so the calls to f6 can be replaced by

the corresponding call to M

6.5.3.3 Predicate Properties

Trivially, the following identity for predicates holds:

if p then e if p or q
else if q then e then e

else r else r

Thus the first two calls to f9 in f7 may be "collected together" and

guarded by a single predicate.

81

Finally, the predicates in f9 may be "cleaned up" using the (e4ually

trivial) property of %=" that a+1 <= b+1 *a <= b.

These manipulations further increase the "readability" of the model, and
begin to unveil the algorithm that the model implements:

fun f(Out) = f7(out, il-l, ji-1) ;

fun MOut,!, j) =
if ((i=il) and (j=jl)) or (iQ) or (DS) or (jQ) or (j>8)

then f9(Out, i, j)
else if Board(i, j) =0

then f 9(append(Out, i, j i, j)
else f9(Out, i, j) ;

fun f9(Out, i, j if j<=jl then MOut, i, j+l
else if i<=il

then f7(Out, i+l, jl-l)
else End(Out) ;

6.5.3.4 Folding to Reduce the Number of Calls to f9

The three calls io the function "f9" in, "f7" can be collected together

by introducing a let abstraction to define the value of the first actual

parameter in the call.

fun f(Out) = f7(Out, 11-1, jl-l)

fun f7(Out, i, i)
let val Out'

if (i*i I or J*jl) and i2tl and i: sS and jatl and jýS and Board(i, j)=o
then append(Out, E ij])
else Out in

f9 (out, I i, j) ;

fun f9(Out, i, j) = if j<=jl then f7(Out, i, j+l
else if i<=il

then f7(Out, i+l, jl-l)
else End(Out) ;

82

6.5.3.5 Finally

Finally, by unfolding the one call to, the, function "f9" In the function

"f7", the model is transformed into one recursive function.

fun f (Out) = f7(Out, il-1 JI-1)
ý;

fun f7(Out, i, i)
let val Out'

if (i#i I or j*jl) and iL-1 and 1: 58 and jýl and j: s8 and Board(i, j)=O
then append(Out, ij])

else Out in

if j<=jl then MOut' ,1 j+1
else if i<=il

then f7(Out., ' 1+1, jl-l),,
else End(Out')

fun End(Out) = Out

6.5.4 Conversion of the Model Into Pascal

The termination of the function f7 occurs only when "End" Is called.

Deducing the predicate which has to be true in order for this function

to be called, allows a recursive function like f7 to be converted, Into a
"while" or "repeat" loop in the manner described In chapter 5.

In this example the recursive function f7 corresponds to a repeat loop.

6.5.4.1 The Termination Condition

The termination condition for f7 is:

I fun P(j, jl,!, il) = (j>jl) and (Dil) ;

6.5.4.2 Re-Introducing Assignment

A function in iterative form has a local state :
the 'bindings of its

parameters on call. Modification of these parameters is a direct analog of

assignment. This is used in the transformation strategy to model assignment

by let abstraction (see §3.2.2). Here, the correspondence Is used In reverse

(let abstraction being converted into assignment).

83

71

6.5.4.3 A Pascal Program with a Repeat Loop

A Pascal program which corresponds to the, model is:

j := j1-1
repeat

if ((I=il) and (j=jl)) or'(i<l) or (IM or (j<l) or (j>S)
then
eIse if Board(i, j) =0 then wri te(i, j)

if j<=jl then j := j+I
else begin 1 := 1+1; j -. = j1-1 end

until (j>jl) and (Dil)

6.5.4.4 An Alternative Pascal Program

Of course there are many procedural programs that correspond. to

functional models just as there are many modelling strategies for a

particular procedural construct.

By manipulating the model further using functional reasoning, it is

possible to use the strategy described in chapter- 5 to produce two nested

repeat loops.

This is achieved by introducing a new function, which is 'done using the

following rule:

fun f (x
..., x)=

lf p(x
1 ... x)

then f (g
1(x1, ..., x

n) 9 ... p9 (x
10..., x))

else E

can be re-written:

fun f (x ... xn)= let val (x
1 ... ,xn)= inner(x

1 ..., x
n)

in E

fun inner(x
1,..., x)=

lf p(x
1 ..., x

n)
then inner(g

1
(xl,..., x

n)""'gn(XIP..., x
n»

else (x ..., x);
1n

84

Thus

fun f(Oui) f7(out, il-l, jl-j)

fun f7(Out, i, j)
let val Out'

if I or j*jl) and i2: 1 and i. -58 and jL-1 and jý58 and Board(i, j)=O
then append(Out, [i, j 1)
else Out in

if j<=jl then f7(Out, ', i, j+l)
else if ! <=il

then f7(out, 1+1, jl-l)
else End(Out')

fun End(Out) Out

can be written:

fun f(Out) f7(Out, il-l, jl-l)

fun f7(Out, i, j)
let val Out' inner(Out,!, J) in

if ! <=il
then f7(Out',! +I, Jl-l)
else End(Out')

fun inner(Out, i, j)
let val Out' =

if(i*i1 or j*j1) and i and i: 58 and jz: l and j: 58 and Board(ij) =0
then append(Out, [i, j])
else Out in

if j<=jl then inner(Out' ,I , J+l)
else Out'

fun End(Out) Out

85

6.5.4.4.1 Converting This to Pascal Notation

Converting this model function into the procedural notation gives rise
to nested repeat loops (the same conversion strategy is used as that outlined
In chapter 5, which was used to produce the-repeat loop in. §6.5.4.3):

repeat
j := jl-l;

repeat
if MOM or (j<>jl)) and (i>=l) and (i<=S) and (j>=l) and (j<=S)

then if Board(ij) 0 then write(ij)
:= j+1

until j>jl

i := i+1
until M1

6.5.4.4.2 Converting Repeat Loops to For Loops

Given the statement sequence S and expressions El and E2, a repeat loop,

of the f orm:

j := El ;
repeat S; j+1 until j>E2

is equivalent to:

I for j := El to E2+1 do SI

Provided E2 2: El.

86

So the model function could also be converted to two nested, for loops as

f ollows:

for i := il-I to il+l do
for j : =' jl-l to jl+l do

if (Board(i, i) = 0) and
(i<>il) and (j<>Jl) and

(! >=l) and (i<=8) and (J>=I) and (J<=8)
then write(i,

_j)
;

I

6.5.4.4.3 Converting Into a Fortran-IV Program

It is -most likely that conversion of a model back into a 'procedural

notation will mean converting the program back Into the same procedural

notation from which it originated. In the case of this program the' Fortran

"do" loop can be used, and in this case leads to af ar more elegant solution

to the problem, the principal inelegance being the cumbersome notation f or

boolean expressions in Fortran IV.

The Original Program

I= 11 -I
6j= J1 -I
7 IF (I. EQ. Il AND. J. EQ. Jl) GO TO 9

1F(I. LT. 1. OR. 1. GT. 8. OR. - J. LT. I OR J. GT. 8) GO TO 9
1F (BOARD (1, J EQ. 0) WRITE(6,8) 1, J

8 FORMAT (215)
9jj+I

IF (J. LE. Jl+l) GO TO 7
II+1

-IF I. LE, 11+1) GO TO 6

The Modified Program

DO 10 1=11-1, Il+l
DO 10 J=Jl-I, Jl+l

10 IF (BOARD(I, J)=0 AND. MNE. Il OR. J. NE. Jl) AND.
I. GE. 1 AND. I. LE. 8 AND. J. GE. 1 AND. J. LE. 8)

WRITE(6,30) I, J

30 FORMAT(2I5)

87

6.3 Language Conversion and Error - Analysis

This example is also taken from McCracken's "guide to Fortran IV

programming" [871.

The example shows that analysis-can reveal errors in a program, and like

§6.2 shows how the modelling strategy may be used to produce a more elegant.

program (in the sense of goto removal).

In this case the program is converted into an equivalent Pascal program.
The program could be converted back into 'a later version of the Fortran

programming language (Fortran 77, for example), since such later versions of
Fortran contain a "while" loop construct.

Of course, revealing the error in the program requires a priorL
knowledge of the programmer's intent, and, as with the transformation to a

structured" program, such analysis and manipulation may be carried out

without using functional models.

These examples merely serve to demonstrate the applicability of the

modelling strategy to analysis, proof and manipulation. The technique clearly

cannot reveal anything that is not already in the program text itself.

6.3.1 The Fortran program

The Fortran program, written in Fortran IV, is taken from page 145 of
[871.

It is supposed to perform the following task:

"A rook is on square Il, Jl. If the path from there to

12, J2 is unobstructed, set MOVE to TRUE., and FALSE.

otherwise. (The square 12, J2 itself may or may not be

occupied.) Do this only if Il = 11 or J1 = J2; if neither of
these is true, set LEGAL to FALSE.. "

Page 81 of [871.

88

The program is as follows:

IF (II. EQ, 12) GO TO 16
'IF (J1 EQ'. J2) GO TO 17
LEGALý= FALSE. '
GO T. 0 15

16' 'J ='MINO(JI, J2) +1
LIMIT = MAXO(Jl, J2)
IF (LIMIT. EQ. J + 1) GO TO 18

20 IF (BOARD(11, J) NE. 0) GO TO 19
IF CJ + I. EQ. LIMIT) GO TO 18
jj+I
GO TO 20

17 1 MINO(11,12) +1
LIMIT = MAXO(I1,12)
IF (LIMIT. EQ. I+ 1) Go To 18

21 IF (BOARD(1, Tl) NE. 0) GO TO 19
IF (I + l. EQ. LIMIT) GO TO 18
II+1
GO TO 21

18 MOVE = TRUE.
GO TO 15

19 MOVE = FALSE.
15

89

6.3.2 The Model

The model is projected onto the -f inal value of the vari;
The original value of this variable is chosen to be

be a possible f inal value of the model, , it will thus

program may fail to assign a value to the variable. "Move".

The program is modelled by calling
f(undef, Il, i2, j1, j2, Board):

3. ble "Move".

undef. Should this
be clear that the

the function

fun f (move, il, i2, jl, j2, Board) =
if il = iZ then f16 (il, 12, jl, j2, Board)

eIseifj1 =jZ then f 17 (i1, i2, jl, j2, Board)
else f15(move) ;

fun f16(il, i2, jl , j2, Board) =
let val j= min(jl, j2) +1 in

let val limit = max(jl, j2) in
if limit = j+1 then f18

else fzo(il, j, Board)

fun fzo(ll, J, Board) =
if Board(iI, j) <> 0

then f19
else if j+1 = limit

then fis
else let val j= j+I in f 2o (il, j, Board);

fun f17(il, 12, jl , j2, Board) =
let val i =min(il, i2) +1 in

let val limit = max(il, i2) in
if limit = i+1 then fis

else f2l(jl, i. Board)

fun fzl(jl, i Board) =
if Board(I, jI) <> 0

then f19
else if i+l = limit

then f 18
else let val i= i+l in f2l(jl, i, Board)

fun f18 = fi5(true)
fun fig = f15(false)

_fun
fi5 (move) = move

90

6.3.3 Manipulation

It may be thought, on f irst inspection, that the model is In f act more

complex than the original program! This would certainly - be a likely

observation if the reader is familiar with Fortran notation and unfamiliar

with ML notation. However, the model Is easy to mantpulate as will be shown.

The modelling strategy could be viewed as automatically producing an,

initially, longer program, but one with far simpler transformation rules.

The following discussion is typical of an analysis session that might be

conducted by a programmer investigating whether the program meets Is

specif ication.

6.3.3.1 First Manipulations

The following manipulations are all fairly trivial and can, of course,

be automated, so that the programmer may simply "press buttons" marked
"remove constant parameters", "maximal substitute let abstractions" and
"unfold functions For details of automated functional reasoning see
[401.

The identifiers "il", '12", "il", "j2" and "Board" are not changed in

any model functions, and so can be treated as constants.
Identif iers introduced by let abstraction and f unctions 'T 18" and 'T ig"

are unfolded.

91

These manipulations lead to the following model:

funf =if il=iZ then f16
else if j I=j2 then f17

else undef

fun f16 = if min(j 1, j2) +2 max(i 1, i 2)
then true
e Ise f 2o(min(j I j2)+I, max (jl, j2)

fun f 17 = if min(i 1,12) +2 = max(i 1, i 2)
then true
else fzi(min(il, i2)+I, maxHl, i2))

fun f2o(j, limit) = if Board(il, j) <> 0
then false
else if j+1 = limit then true

else f2o(j+l, limit)

fun fzi(i, limit) = if Board(i jl) <> 0
then false
else if i+1 = limit then true

else fzi(i+l, limit)

92

6.3.3.2 Unfolding

Next the function calls "f16" and 'T17" are unfolded in the function
Iffit.

fun f= if il=i2 then if min(jl, j2)+2 = max(jl, j2)
then true
else f2o(min(jl, j2)+l, max(jl, j2))

else if jl=j2 then if min(il, i2)+2 = max(11,12)
then true 11
else fzl(min(il, 12)+l, max(il, i2))

else undef ;

fun f2o(j, limit) = if Board(il, j) 00
then false
else if j+1 = limit then true

else fzo(J+I, Iimit)

fun fzi(i, limit) = if Board(I, jI) 00
then false
else if i+1 limit then true

else f2i(i+l, limit)

6.3.4 Errors in the Program

The specification does not say what the program should do to the

variable "move" in the case where the move is "illegal" (that Is, not In a

straigh -t horizontal or vertical line).

It is clear from the model that in this situation, the model returns

"undef", that is, the variable move is not assigned a value. '

Strictly speaking, this is not an error : it does not contradict the

specification, however, it is not desirable to leave the value of this

variable undefined. A suitable value would be "false". since a move cannot be

made by a rook if it is not horizontal or vertical.

93

There is also an error in the program in the boolean expression' in-., "f".

This does contradict, the specificatiom,
The test:

"if min(jl, j2)+2 max(jl', j2)
then true"

causes the value of "move" to be true even if there Ls an intervening,

occupied, square on the board.

The test should be:

"if min(jl, j2)+l ='max(jl, j2)
t hen true"

This also applies to the test for the case where jl=j2.

These observations lead to the model function, "f",

is then possible to consider the conversion of the

procedural programming notation.

The corrected program is:

being rewritten. It

model back into a

fun f= if ll=i2 then if min(jl, j2)+l = max(jl, j2)
then true
else f20(min(jl, j2)+l, max(jl, j2))

else if jl=j2 then if min(il, i2)+l = max(il, i2)
then true
e Ise f zi (min(i 1, i2)+I, max(il, i2)

else false ;

fun fzo(j, limit) = if Board(il, j) <> 0
then false
else if j+1 = limit then true

else fzo(j+l, limit)

fun fzi(i, limit) = if Board(i, jl) <> 0
then false
else if i+1 = limit then true

else f2l(i+l, limit)

94

6.3.5 Conversion Back into a Procedural Notation

The functions "f2o" and "f2i" 6an be converted into a' "while" loop

according to the strategy described in chapter 5:

6.3. S. 1 Termination condition

The termination condition for the function 'T20" iS:

Board(ii, j) 00 or J+I = limit

Thus to convert this function into a "while" loop It Is be necessary to

negate this condition to f orm the loop's boolean expression.

not(Board(il, j) 00 or j+I = limit)

not(Board(il, i) 0 0) and not(j+1 = limit)

Board(il, j) =0 and j+1 0 limit

The while loop produced is:

while (Board(il, j) = 0) and (j+1 0 limit) do j J+I
if Board(11, j) =0 then move := true else move false

6.3.5.2 The model f unction f 21

A very similar strategy leads to the following "while" loop for f2l:

, while (Board(ijil) = 0) and (J+I, <> limit) do I := i+1
if Board(i, il) =0 then move := trueelse move: = false

95

6.3.5.3 The Model Function f

The model function 'T" is a conditional choice between these two "while"

loops, leading to a procedural program:

if i 1=i2
then if min(jl, j2)+l = max(jl, j2)

then move := true
eIse
begin
jmin(j1, j2)+I
limit := max(jl, j2)
whi le (Board(il, j) 0) and (j+1 0 limit)

do j: = j+1 ;
if Board(11, j0 then move true

else move false
end

else if jl=j2
then if min(ii, i2)+l = max(il, i2)

then move := true
else
begin
j min(il, i2)+l
limit := max(il, 12)

while (Board(i, jl) 0) and (j+l 0 limit)
do i := i+l ;

if Board(i, jl) =0 then move true
else move false

end
elsemove false

6.3.6 Different Manipulations Give Rise to a Different Procedural Programs

A Pascal programmer would, of course, instantly notice the similarity

between the two "while" loops produced, and seek to form one "while" loop

that captured the effect of both.

However, as this is an exposition of the modelling strategy, the s, ame

approach will be taken in analysing'the functions "f2o" and "fzi", 'which will

lead to one function, which can then be automatically converted into "While"

loop.

96

The function "g" is introduced:

Now I

I
f2o(j, limit) = g(! I, J, il, limit, 0,1)

II

and

I
f2l(i, limit) = gG, jl, limlt, jl, ljo)

I

Proof
It is trivial to prove these identities in the functional notation:

partial evaluation of g0lj, 11, limit, 0,1) gives:

g(il, j, il, limit, 0,1) =
if Board(i 1, j)00

then false
e lse if (11 +1 = 11) or 0+1 =I 1mit)

then true
else g(il, j+l, il, limit, O, 1)

Now since il+I = il. =- false, this can be written:

g(il, j, il, limit, 0,1) =
if Board(i 1, j)00

then false
else if j+I = limit

then true
else g(il, j+l, il, limit, 0,1)

fun g(i, j, llmiti, lImitj, addi, addj)
if Board(i, j) 00

then false
else if (1+1 = limit!) or (j+1 lImItj)

then true ý--
eIseg(i+a dd i, j+addj, Ii mitl , Ilmitj, addi, addj) ;,

97

Clearly therefore this call to "g"' returns an identical value to the
call "f21(j, liM1t)".

A very similar argument shows that f20(j, IiMit) is equivalent, to

goij, 11,11mit'O'l).

Notice that the functional notation is ideally suited to the -
introduction of functions in this manner. To achieve the same "certainty" in

the procedural notation, the programmer might well find themselves embroiled
in an proof using the Axiomatic method.

In the functional notation all that is required is to partially evaluate
the function for some particular choice of arguments.

Using the new function "g" and the two identities for the calls to the
function 'T20" and "fzi", the model can be equivalently written:

fun f= if 1 1=12
then If min (jl, j2) +1 = max(j 1J2

then true
else g(I l, min(jl j2) +1,1 1 max(jl, j2), O, 1)

else if jl=j2
then if min(il, 12)+1 = max(il, i2)

then true
else g(min(ii, i2)+l, jl, max(il, i2), jl, 1,0)

else false ;

fun g(I, j, I Imiti I imitj addi, addj)
If Board(! ,j)<>0

then false
else if (i+1 = limiti) or (j+1 limitj)

then true
else g(i+addi, j+addj, limit! ,1 lmitj, addi. addj)

98

6.3.6.1 Conversion to the Procedural Notation

Converting this version of the functional model into Pascal gives rise
to a Pascal program with only one while loop. This Is the program that the

Pasýal programmer might have produced having seen the program produced In

§6.3.5.3, however, it should be stressed that this new Pascal program has

been proved to be equivalent to the original program.

i 6.3.6.1.1 Converting IIg" into a "while" Loop

The termination condition f or the function "g" Is:

(Board(i, j) 0 0) 'or R+1 = limiti) or Q+l = limitj)

The loop produced is:

whi Ie (Board(i, j)= 0) and (1+1 01 iml t1) and (J+I 0 limitj)
do begin 1 i+addi ;jj+ addj end ;

if Board(i, j) 0 then move true el se move false

6.3.6.1.2 Functions Can be Used in Pascal

Since the function "g" does not return a tuple but merely returns a

boolean value, it is an ideal candidate to be converted back Into a Pascal

function:

function g(i, j, limiti, limitj, addi, addj : Integer) : Integer
begin -

whi Ie (Board(i, j 0) and (1 +1 01 imi t 1) and (J+ 10 11mitj)
do begin i i+addI ;j :=j+ addj end ;

if Board(i, j) 0 theng -. = true else g := 'false
end ;

Of course, there was, in f act, no need to convert the recursion equation
for "g" into a "while" loop; Pascal call-semantics allows for recursion.
However, many programmers would not be pleased to find goto statements
removed, only to be replaced by recursive functions.

99

The whole Pascal program can be written as:

auxiliary function definition
function g(i, jI imit! , limitj, addi, addj: integer) : integer;
beg in

whi le (Board (i, j)=O) and i+l<>Iimitl) and (j+l<>Iimitj)
do begin i i+addi j :=j+ addj end ; -1 1, .'

if Board(i, j) 0 then g: = trueelse g : =false
end

Main program
if il=i2

then if min(jl, j2)+l = max(jl, j2)
then move := true
eIse

move := g(il, min(ji, j2)+l, il, max(jl, j2), 0,1)
else if jl=j2

then if min(il, i2)+l = max(il, i2)
then move := true
e1se

move g(min(il, i2)+I, jl, max(il, i2), jl, 1,0)
else move - false

6.3.7 Concluding Remarks

The two Pascal programs produced here should be equivalent. "Should",

that is, if the fold/unfold manipulation rules have been followed correctly,

and conversion back into procedural notation is free from error.
However, it should be noted that the Pascal programs will not produce

the same effect when executed as the Fortran program would.
This is not simply because the program has been "corrected",

_but
because

a variable, "legal", has been omitted in the choice of abstractive
projection.

Clearly, to obtain a program with identical behaviour, but differing

structure, using functional models, it is necessary to choose all affected
variables as the result onto which the model function is projected.

In this case the programs produced guarantee to assign identical values
to the variable "move".

100

The original program -and the final, Pascal version-produced by modelling

are as follows:
. 1, e, I

IF (1 1. EQ. 12) GO TO 16
IF (J1 EQ. J2) GO TO 17
LEGAL FALSE.
GO TO 15

16 J MINO(JI, J2) +1
LIMIT = MAXO(Jl, J2)
IF (LIMIT. EQ. J + 1) GO TO IS

20 1F (BOARD (II, J) . NE. 0) GO TO 19
1F(, J +, 1. EQ. LIMIT) GO TO 18
J, = j+I
GO TO 20

17 1= MINO(11, I2) +1
LIMIT = MAXO(11,12)
IF (LIMIT. EQ. 1 + 1) GO TO 18

21 IF (BOARD(I, Jl) NE. 0) GO TO 19
IF I+l. EQ. LIMIT)- GO TO 18
11+1
GO TO 21

18 MOVE = TRUE.
GO TO 15

19 MOVE = FALSE.
15

Pascal version:

(* auxiliary function definition *)
function g(11 imiti I imiti, addi, addj: integer) : Integer;
beg in

while (Board(i, j)=O) and (i+l<>Iimitl) and (J+I<>Iimitj)
do begin I i+addi ;j :=j+ addj'end ;

if Board(i, j) 0 then g := true else g := false
end ;

Main program
if ll=i2

then if min(jl, j2)+l = max(jl, j2)
then move true
eIse

move g(i l, min(j 1, j2)+1,11, max(jl, j2), O, l
else if jl=j2

then if min(il, 12)+1 = max(11,12)
then move := true
eIse

move g(min(il, i2)+l, jl, max(11,12), Jl, 1,0)
else move := false

101

6.4 Proof Construction for a Modula-2 Program ,

In this example a program is modelled and properties of -the program -are

proved. The analysis reveals some possible input values which might cause the

program to crash. This possibility is removed leading to a more robust

version of the program.

The properties which are proved for the program are of quite a general

character and could be used as a specificatton of the features offered and
limits enforced by the robust version of the program.

The program, which implements a mailing list, is taken from the book

"Modula-2 Made Easy" [671. Models are given for each procedure in the

program, and are used to analyse the properties of the program.

From the proofs of properties for individual procedures it is possible

to construct more general proofs about the properties of the program as a

whole. These proofs are, called "Global Assertions", and refer to the

compactness of storage used and the behaviour of the program when the list is

full and/or contains duplicates.

102

6.4.1 The Program

MODULE Mlist; (* a simple mailing list program

that uses an array of RECORDS

FROM InOut IMPORT Read, Write, WriteString, WriteLn,
WriteCard, ReadCard, ReadString,. EOL;

FROM Strings IMPORT CompareStr;

CONST
LSIZE = 100;

TYPE
ADDR =RECORD

name: ARRAY [0.. 301 OF CHAR;
street: ARRAY [0.. 301 OF CHAR;
city: ARRAY [0.. 301 OF CHAR;
state: ARRAY [0.. 31 OF CHAR;
zip: ARRAY [0.. 101 OF CHAR;

END;

VAR
mlist: ARRAY [O.. LSIZE] OF ADDR; array of addresses-,
choice: CARDINAL;

PROCEDURE Gets(VAR a: ARRAY OF CHAR);
CONST

BS = S; backspace

VAR
ch: CHAR;
LCARDINAL;

BEGIN
!: =O;
REPEAT

Read(ch);
Write(ch);
IF ORD(ch)=BS THEN i: =i-1; is backspace
ELSIF (ch0EOL) AND WHIGH(a)) THEN

a[il: =ch;
!: =i+l; L END;

UNTIL (ch=EOL) OR (i=HIGH(a));
a[!]: =CHR(O); all strings and in 0

END Gets;

103

PROCEDURE Puts(s: ARRAY OF CHAR);
BEGIN

WriteString(s);
WriteLn;

END Puts;

PROCEDURE Menuo: CARDINAL;
VAR

ch: CARDINAL;
BEGIN

Puts(' 1. Enter an address');
Puts(' 2. Delete an address');
Puts(' 3. Find an address');
Puts(' 4. List all addresses');
Puts(' 7. Quit');

REPEAT
WriteString CEnter Choice: I;
ReadCard(ch);
Writel-n;

UNTIL (ch>=l) AND (ch<=7);
Writel-n;
RETURN ch;

END Menu;

PROCEDURE GetEmptyo: INTEGER; (* returns next empty
Location in list, -1 if full

VAR
i: CARDINAL;

BEGIN
FOR i: =0 TO LSIZE DO

IF CompareStr(mlist[il. name, "")=O THEN
RETURN i; is an empty location

END;
END;
RETURN -1; (* list full

END GetEmpty;

i

104

PROCEDURE Enter(i: INTEGER); enter a name into the list 0)
BEGIN

if i= -1 then f ind new slot; otherwise modify
existing entry

IF i=(-I) THEN !: =GetEmptyo; END;
IF RX-1) THEN

WriteString('Enter name:
Gets (mlist[i bname);
WriteString('Enter street:
Gets (mlist[1 bstreet);
WriteString('Enter city:
Gets(mlist[il. city);
WriteString('Enter state:
Gets(mlist[i]. state);
WriteString('Enter zip:
Gets (mlist[i Lzip); WriteLn; WriteLn;

END
END Enter;

PROCEDURE Display(ml: ADDR);
BEGIN

Puts(ml. name);
Puts(ml. street);
Puts(ml. city);
Puts(ml. state);
Puts(ml. zip);
Writel-n; Writel-n;

END Display;

PROCEDURE List; display the entire list
VAR

i: CARDINAL;
BEGIN

FOR i: =O TO LSIZE DO
IF CompareStr(mlist[i Lname, "100 THEN

Display(mlist[il);
END

END
END List;

PROCEDURE Findo: INTEGER; (* return the index of a name
VAR

f: CARDINAL;
s: ARRAY [0.. 301 OF CHAR;

BEGIN
WriteString (Enter name to find:
Gets(s);
FOR f: =O TO LSIZE DO

IF CompareStr(s, mlist[f I. name)=O THEN RETURN f END;
END;
RETURN -1; (* not found

END Find;

105

PROCEDURE Locate; (*display an address based
on the name f ield

VAR
i: INTEGER;

BEGIN
i: =Findo; (* find the name
IF i0(-I) THEN Display(mlist[il); END;

END Locate;

PROCEDURE Delete; (* remove an address based

on the name f ield
VAR

I: INTEGER;

BEGIN
i: =Findo; (* find the name
IF RX-I) THEN

mlist[il. name: =""; (* mark as empty
END;

END Delete;

PROCEDURE Init; (* initialize list
VAR

t: CARDINAL;
BEGIN

use a null string in name f ield to indicate an
empty RECORD *)

FOR t: =0 TO LSIZE DO
mlist[tl. name: =....

END;

END Init;

BEGIN
Init; prepare the list
REPEAT

choice: = Menuo;
CASE choice OF

1: Enter(-I) new entry
2: Delete
3: Locate
4: List
5:
6:
7: Puts('program, completed');

END;
UNTIL choice=7;

END Mlist.

106

6.4.2 Auxiliary Functions

Some auxiliary functions are introduced to model access to 'data

structures.
The particular choices made here have 'little impact upon the model

produced and the kind of proofs that are constructed.
A tuple is used to model the record structure, and a list to model the

array structure.
Two list access functions are used: s, the list selection function, and

Update, the list update function.

fun s(i L) if 1=1 then hd(L) else s(I-1, tl(L))

fun Update(L, i, e) =

if i=1 then [e] else hd(L):: Update(tl(L), I-I, e)

Axiom Al For Update :

VL, e. Vi>O. i*x z* (s(Update(L, x, e), I) = s(L, j) A

s(Update(L, x, e), x) =e)

fun PeelOff(Inp) = (s(I, Inp), s(2, Inp), s(3, lnp),

s(4, Inp), s(5, I np));

f un Name (ATup I e) = ATup I eJ, I;

fun Street(ATuple) = ATuple', ý2

fun Ctty(ATuple) = ATuple,, ý3

fun State(ATuple) = ATuple-ý4

fun Zip(ATuple) = ATuple, ý5 ;

Where J, is the infix tuple-selection function.

6.4.3 The Model

In the model some substitution has'been performed, and input of strings

is assumed to be correct. It is only the storage and -retrieval of entries

into the mailing list that are analysed, thus the model is projected onto the

value of the mailing list's global array structure, "mlist".

107

fun GetEmptY(m) =
let f un f(resul t, m, p)

if p> LSIZE
then result
else if not (Def i ned(m(p

then p
else f(resul t, m, p+l)

in
f(-l, m, O)

fun Enter(i, m, Inp) =
let val I if ! =-I then GetEmpty(m)

else 1 in
If I' *- -1 then Update(m, i' PeelOff(Inp))

else m;

fun List(m) =
let fun f(p, m, L)

if p> LSIZE
then L
else if Defined (m(p)

then f(p+1, m, L< > [m(pM
else f (P+l, m, L)

in
f (O, m, [I);

fun Find (m, I np)=
let fun g(m, f s, result)

if f> LSIZE
then result
else if s= Name(m(f))

then g(m, LSIZE+l, s, f)
else g(m, f+1 ,s result)_,

in
g(m, O, hd(Inp), -I)

fun Locate (m, I np) =
let val i= Find(m, Inp) in

if i* -1 then m(i)
else void

fun Delete(m, Inp) =
let val i= Find(m, Inp) in

if i# -1
then Update(m, 1, ("", Street (m) CLty(m), State(m), ZLp(m)))
else m; -

The Model for the Mailing List Program

108

6.4.4 Assertions About Model Functions

Def ined(x) -ý Name(x)

FULL(m) a- Vx. O: sx: SLSIZE. Defined(m(x))

GetEmpty

Al Vm. FULL(m) =o GetEmpty(m)

A2 Vm. -1 :s GetEmpty(m) :5 LSIZE

A3 Vm. -FULL(m) 4 Name(m(GetEmpty(m))) = fill

Enter

Al -FULL(m) 4 Vx. x#GetEmpty(m). Enter(-I, m, Inp)(x) = m(x) A

Enter(-I, m, Inp)(GetEmpty(m)) = PeelOff(Inp)

A2 FULL(m) 4 Enter(-l, m, lnp) =m

List

Al Vx. 0 :5x :s LSIZE. Defined(m(x)) =o m(x) rz List(m)

Find

Al 3x. (o :sx-. s LSIZE A Name(m(x)) = MUD

0s Find(m, i) :s LSIZE A Name(m(Find(m, i))) = hd(l)

A2 -3x. Name(m(x)) = hd(Inp) 4 Find(m, lnp)

A3 -3y. O: sy<Find(m, l) A Name(m(x)) = hd(D

Locate

Al Find(m, Inp) -1 4 Locate(m, Inp) = m(Find(m, lnp))

A2 Find(m, lnp) -1 =o Locate(m, Inp) = void

Delete

Al 0 :5 Find(m, lnp) :5 LSIZE 4

Vx. x*Find(m, lnp). Delete (m, Inp) W m(x) A

Name (Delete(m, Inp) (Find(m, Inp))) =

A2 Find(m, lnp) = -1 4 Delete(m, lnp) =m

109

6.4.5 Proofs for the assertions on Model Functions
In this section proof s are given for the assertions about model

functions. Most of the proofs follow by very simple inductive arguments, or
directly from other assertions, which have already been proved. In all cases

the inductive proof strategy used is structural induction.

110

6.4.5.1 GetEmpty

fun GetEmpty(m) =
let fun f (result, m, p)

if p> LSIZE
then result
else if not(Defined(m(p)))

then p
else f(result, m, p+l)

in
f(-l, m, O)

Al : FULL(m) * GetEmpty(m)

show FULL(m) 4f (r, m, p) =r so f (-l, m, O) -1
induction on 1 =LSIZE- p
base case i<0

1<0 -ý p> LSIZE 4f (r, m, p) =r
induct i ve step i 2t -1

assume f (r, m, p) r.
show f (r, m, p-1 =r

f (r m, p-1) =f (r m, p) (FULL(m) 4 Narne(rn(P-M

=r (Inductive Hypothesis)

A2 : -1 :5 GetEmpty(m) -5 LSIZE:

show r<p: SLSIZE 4r :5 f(r, m, p) : 5LSIZE
so -1 : S-f(-I, m, O) :5 LSIZE

induct ion on i= LSIZE -p
base case i<0

i<04p> LS IZE 4f(r, m, p) =r
inductive step i ý: -1

assume r :s f(r, m, p) :5 LSIZE

show r :sf (r
, m, P-1) :5 LS IZE

f (r
, m, p-1) has two cases :

etther -Def ined (m(p- 1)) 4f (r, m, p-1) = p-l
in which case i -a 04p: s LSIZE4 p-l < LSIZE

or Defined(m(p-1)) -ý f(r, m, p-1) f(r, m, p)
in which case the assertion is proved by Ind. Hyp.

ill

FA -3.
-FULL(m) 4 Name (m(GetEmpty (m)))

show 3x. (m(x) Ap :sx :s LSIZE) =* Name(m(f(r, m, p)))
so - FUL L (m) 4 Name (m(f (- 1, m. 0)))= ""
indu cti on on i=x-p where m(x) Ap :sx :5 LSIZE
base case i=0

i=0 :*x=pf (r, m, ppx
induct i ve step i0

assume Name(m(f (r, m, p
s how Name (m (f (r, m, p-1

f(r, m, p-1) has two cases
either -Defined(m(p-1)) zo f(r, m, p-1) =p-1

or Defined(m(p-1)) z* f(r, m, p) Und. Hyp.

6.4.5.2 Enter

fun Enter(i, m, lnp) =
let val P= if 1=-1 then GetEmpty(m)

else 1 in
if 1' * -1 then Update (m, V, PeelOf f (Inp))

else m;

Substituting -1 for i in the definition of Enter gives :

fun Enter(-I, m, lnp) = let val V= GetEmpty(m) in
if V# -1 then Upda te(m, V, Peet Off Unp))

else m

Al -FULL(m) 4 Vx. x: *GetEmpty(m). Ent er(-l, m, Inp) W= m(x) A

Enter (-l, m, Inp) (GetEmpty(m)) = PeelOff (Inp)

By maximal substitution in Enter and the axiom Al. of update

A2 FULL(m) 4 Enter(-l, m, lnp) -- Mý

FULL(m) co GetEmpty(m) = -1 by A1f or GetEmpty

-* Enter(-I, m, Inp) =M by maxImal substitutlon

112

6.4.5.3 List

fun, List (m) =
let fun f (p. m, L)

if p> LSIZE
then L
else if Defined(m(p))

then f(p+l, m, L<>[m(p)])
else f(p+l, m, L)

in
f (0, M, ID ;

Al : Vx. O: sx: 5LSIZE A Defined(m(x)) z* m(x) e List(m',

LEMMA Vp. p: SLS'IZE =o Li 0f (p, m, L2) f(P, M, Li 0 L2)

proof
induction on i LS IZE -p
base case i= -1

i= -1 4p= LSIZE + 1
f (p, m, Li <> L2) = Li 0 L2
Ll <>f (p, m, Lz) = Ll 0 L2

inductive step
assume f(p, m, Ll 0L 2) Li 0 f(p, m, L2)

show f(p-l, m, Ll 0 Lz) = Li 0 f(p-l, m, L2)
f (p-l, m, Li 0 Lz) has two cases

etther Def I ned(m(p-1))
f (p- 1 m, Ll <> L2 f (p, m, (Li 0 Lz) 0[m(p)])

f (p, m, Ll 0 (L2 0 [m(p)]))
Ll 0 f(p, m, L2 0 [m(p)])

Ll <> f(p-l, m, L2), = Ll, 0 f(p, m, L2 0 [M(P)I)

or -Def ined(m(p-1))
f(p-l, m, Ll <> L2) = f(p, m, Li 0 L2)

= Ll 0 f(p, m, Lz)
Li<>f (p- I, m. L2'), = Li <> f(p, m, L2)

113

Using the lemma the proof of Al for List can proceed.

Al : Vx. O: sx. -sLS IZE A Def ined(m(x)) =o, m(x) e List(m)
to do this show Vx. p: 5x: SLSIZE A Def ined(m(x)) 4 m(x)r=f(p. m, L)
which means f(0m, [I) sat i sf ies Al
induction on i LSIZE -p
base case i=

Vx. p: sx: SLSIZE A Defined(m(x)) 4 m(x) e f(p, m, L) vacuously
sat isfi ed.

inductive step iý -1
assume Vx. p: sx: sLSIZE A Def ined(m(x) m(x) ef (p, m, L)
show Vx. p-l: sx: SLSIZE A Defined(m(x)) zo, m(x) e f(p-l, m, L)

f(p-l, m, L) has two cases
eLther Def ined(m(p-1))
f(p-l, m, L) = f(p, m, L <> [m(p-1) I

=L <> [m(p-1)] 0f (p, m, l 1) by Lemma
so Vx. p: sx: sLSIZE A Defined(m(x)) =o, m(x)rzf (p-l, m, L) by Ind . Hyp.
and Def ined(m(p-1)) and m(p-1) ef (p-l, m, L)
so Vx. p-1: sx: sL SI ZE ADefined (m(x)) =* In Wef (p-1

, m, L)

or -Def ined (m(p-1))
f(p-l, m, L) = f(p, m, L)

so Vx. p -sx: -cLS I ZE A Def i ned (m(x)) 4 m(x) ef (p- l, m, L) by Ind. Hyp.
and -De fi ned (m(p-1)) and m(p-1) Vf(p- 1, In, L)
so Vx- p-1: sx: sLS I zE A Def ined (m(x)) =o m(x) em f (p-1 , m, L)

6.4.5.4 Find

fun Find(m. Inp) =
let fun g(m, f, s, result)

if f> LSIZE
then result
else if s= Name(m(f))

then g(m, LSIZE+l, s, f)
else g(m, f+l, s, result)

in
g(m, O, hd(Inp), -l)

Al : 3x. (0 :sx :s LSIZE A Name(m(x» = hd(1» ->
0 :s Find(m, i) -5 LSIZE A

Name(m(Find(m, i») = hd(i)

114

to do t his show 3x-. (O: sx: sLSI ZE A Name(m(x))=sAO: sf: sx), 4-
O: sg(m, f, s, r): sLS I ZE A Name (m(g(m, f, s, r) s

induct 1 on on i= x-f where O: sx: sLSIZE A Name(m(x)) s
base case i=0

g(m, f s, r) = g(m, LS lZE+l
, s, f) =f=x

induct i ve step i 2: 0
i>040 :5f<x :5 LSIZE
assume g(m, f, s, r) satisfies Al
show g(m, f-l, s, r) satisfies Al

g(m, f-I, s, r) has two cases
either s Name(m(f-1)) =0 g(m, f -1 , s, r)

g(m, LSIZE+l, s, f-1)
f-1 (f-l satisfies Al)

or s Name(m(f-M =og(m, f-ls, r) =g(m, f, s, r)
(which satisfies Al by the Induction Hypothesis)

A2 : -3x. Name(m(x)) = hd(Inp)'zo Find(m, lnp) = -1

to do this show -3x. Name(m(x)) =s4 g(m, f, s, r) =r
induct i on -on 1= LS IZE -f
base' ca'se i<0

i<0 =o f> LSIZE zo g(m, f, s, r) =r
inductive step 1 ý-l

-1 =* f :s LSIZE
assume g(m, f, s, r) =r
show g(m, f-l, s, r) =r

-3x. Nam e Wx) s =* g (m, f -1, s, r) = g(m, f, s, r) =r
(by In ductlon Hypothesis)

I
A3 -3y. O: sy<Find(m, l) A Name(m(x)) = hd(l)]

115

Show 3y. O: sy: s F ind (m, 1)A Name (m(x)) = hd(i)
Name(m(x)) = Find(m, i)

let k be the index of the f irst element that equals the element to
be f ound :
O: sk: sLSIZE. m(k) = hd(Inp) A

Fi nd (m. I np) =kA
(Vy. Os y<k. m(y) *h d(I np))

show f :5k zo g(m, f, hd(Inp), r) =k
induction on i= k-f, i ý: 0
base case i=0
i=O =ý k=f

k=f 4 m(f hd(Inp)
k: sLS IZE g (m, f, hd (I np) , r)

g (m, LS IZE+ I, hd (inp) , k)

inductive step 1? --0
assume g(m, f, hd(Inp), r) =k
show g(m, f-l, hd(Inp), r) k
i? --O =o O: sfsksLSIZE

-o g(m, f-l, hd(Inp), r)
if hd(Inp) = Name(m(f then g(m, LSIZE+l, hd(Inp), r)

else g(m, f, hd(Inp), r)
since Vy. O: sy<k. m(y)#hd(Inp)

g(m, f -1, hd(I np) r) = g(m, f, hd(Inp) r) =k

6.4.5.5 Locate

fun Locate(m, Inp) =
let val i= Find(m, Inp) in

if i# -1 then m(i)
else void

Al Find(m. Inp)
-* -1 4 Locate(m, lnp) = m(Find(m. Inp))

By maximal substitution in Locate and substitution of true
for Find(m, Inp) * -1.

I
A2 Find(m, lnp) = -1 :* Locate(m, lnp) = void

I

By maximal substitution in Locate and substitution of false
for Find(m, Inp) # -1.

116

6.4.5.6 Delete

fun Delete(m, lnp) =
let val i= Find(m, Inp) in

if i* -I
then Update(m, i, (" ", Street (m), CI ty (m), State (m)Ztp (m)))

else m;

Al 0 :sF1 nd(m, I np) :5 LS IZE -o
Vx. x*Find(m, Inp). Delete(m, lnp)(x) m(x) A

Name(Delete(m, lnp)(Find(m, Inp))) =

O: sFind(m, Inp): 5LSlZE .4
Del ete(m, i. ("" Street (m), C I ty(m), State(m), ZIp(m)))

by substItution
Vx. x*Find(m, Imp). Del ete(m, Inp)(x) = m(x)

A Name (De 1 et e (m, I np) (F 1 nd (m, In p))) = 11 "
by axtom Al for Update

[A
2 Find(m, Inp) = -1 4 Delete(m, lnp) =mI

By maximal substitution in Delete.

6.4.6 Higher-Level Proof s

The proofs constructed so far concern the properties of individual

routines that are used to implement the mailing list program. These proven

assertions can be used to construct proof s of a general character about the

mailing list as a whole.

Some examples of such "Universal Assertions" are described below:

117

6.4.6.1 UAI: Compaction

UA1 asserts that the entries in the mailing list are stored

contiguously. This is proved by showing that the free-space allocation
function "GetEmpty" always returns the ftrst free space in the mailing list.

Of course, Delete will leave a "gap" in the mailing list, however, the

assertion UAI guarantees that this space will be used up before any of the
block of free space at the end of the mailing list array is used.

UAl : (VmVx. 0: 5x<GetEmpty(m) 4 Defined(Name(m(x)))) A

-Def ined (Name (m(GetEmpty(m))))

The proof f or the second half of this conjunction comes from assertion
A3 for GetEmpty for all non-fuLL mailing lists. The case where the mailing
list is full is vacuously satisf led by assertion Al of GetEmpty.

(Vx. O: sx<-l. P(x) is a tautology).

In order to show the f irst half of the conjunction of UAl it is

sufficient to show that Lf there is another "least, undefined element" then

it is one and the same as that returned by GetEmpty.

Assume 3x. x: sk A X2: 0 A -Defined(Name(m(x))) A
(Vy. y<x A y; --O =ý Defined(Name(m(y))))

where k= GetEmpty(m)

Show (1)4x= k.
To do this show O: sp: sx 4 f(r, m, p) =x

Induction on i=x-p

base case i=0
i=04x=p
Now (x :sk :s LSIZE) 4pS LSIZE (Al of GetEmpty and-AM'
and from (1) -Defined(Name(m(x))) =o -Defined(Name(m(p)))

-Defined (Name (m(p)))4f (r, m, p) =p=x.

indu cti ve step
as s ume : O: sp+ 1: sx f (r, m, p+ Ix
show : f(r, m, p) x
P+ I :Sx =0 p<x
so fr om (1) f(r, m, pf (r, m, p+ 1x by the induct ion hypothesis.

118

-9

6.4.6.2 UA2: Delete is the Inverse of Enter

This assertion -shows that deleting an element from a mailing list to

which it has been added leaves the mailing list unaltered.
The assertion is onLy true given certain provisos which will be

discussed after the proof has been described.

UA2 : -3x. (Name(m(x)) = hd(Inpi) A hd(Inpl) = hd(Inp2) A -Full(m)

:* Del ete(Enter(-l, m, Inpi), Inp2) = m(x)) (2)

let s hd(Inpl) hd(Inp2).
let Find(Enter (-1 m, Inpl Inpl k
(by Al for Find and (2))

-3x. Name(m(x)) =sA Name (Enter (-I, m, I npl)k) =s
(and by Al for Enter)

Name (Enter (- I, m, I npl) (Ge tEmpty(m))) = Name(PeelOff(Inpl)) =s
so Flnd(Enter(-1, m, Inp1), lnpl) =k =GetEmpty(m)

Now (by Al. for Delete)
Name (Delete (Ent er (-I, m, I np 1), Inp2)(Find(m, Inpl)))
Name (m (Ge t Empt y (m))). (2)

And (From Al Enter and Al Delete)
Vx. x#GetEmpty(m) 4 Name (De I ete (Enter (71, m, Inpl), Inp2)x)

Name(Enter(-1 m, Inpl W= m(x) (3)
Conjoining (2) and (3) gives UA2.

6.4.6.3 A Problem Case f or "Find", I
As shown by assertion UA1, the function "GetEmpty" finds the f Irst

available space to enter, and by assertion A3 f or GetEmpty, which is:

Vm. -FULL(m) 4 Name(m(GetEmpty(m)))

the "name part" of this space is ""'.

Now, by assertion A3 for the function "Find", Find(m, lnp), finds the

first element of the mailing list, x, that satisfies

Name(m(x)) = hd(Inp).

So

-FULL(m) zo Find(m, "") = GetEmpty(m).

This is simply a reflection of the fact that is used in the name

field to indicate an unused space. So ... should be disallowed as a valid

string, or "rubbish" may be printed on the screen.

119

6.4.7 Discussion

The restrictions on UA2 are that the mailing list must not be full and

that the item added to the mailing list must not already be a member of the

list. This reflects the implementation restrictions of ' the mailing list

program.

Specifically, the program cannot be expected to behave when the entire

space allocated to the array, which stores the elements of the list, is used

up. It also does not behave well when duplicate names are included in the

mailing list.

Now, no checks are included in the original program to detect these two

situations.

Also, the Null string, (""), is used to denote an empty entry in the

list, so it should not be considered to be a valid name for searching or

addition.

Adding checks to the program to detect and report on these problem cases

improves the robustness of the mailing list program.

6.4.8 The Modified Mailing List Program

The mailing list program has been modified to trap the errors uncovered

by the analysis conducted above.

MODULE Mlist; (* a simple mailing list program

that uses an array of RECORDS
(* Update 1991 Mark Harman *)

FROM InOut IMPORT Read, Write, WriteString, WriteLn,
WriteCard, ReadCard, ReadString, EOL;

FROM Strings IMPORT CompareStr;

CONST
LSIZE = 100;

TYPE
NameType = ARRAY [0.. 301 OF CHAR;
ADDR =RECORD

name: NameType;
street: ARRAY [0.. 301 OF CHAR;
city: ARRAY [0.. 301 OF CHAR;
state: ARRAY (0.. 31 OF CHAR;
zip: ARRAY [0.. 101 OF CHAR;

END;

120

VAR
mlist: ARRAY [O.. LSIZE] OF ADDR; (* array of addresses
choice: CARDINAL;

PROCEDURE Duplicate(s: NameType) : BOOLEAN;
returns true iff the name s already
exists in the mailing list *)

VAR f: INTEGER ;

BEGIN
FOR f: =0 TO LSIZE DO

IF CompareStr(s, mlist[f I. name)=O THEN RETURN TRUE END;
END;
RETURN FALSE

END Duplicate ;

PROCEDURE Gets(VAR a: ARRAY OF CHAR);
CONST

BS = 8; backspace

VAR
ch: CHAR;
hCARDINAL;

BEGIN
i: =O;
REPEAT

Read(ch);
Write(ch);
IF ORD(ch)=BS THEN i: =i-1; is backspace
ELSIF (ch0EOL) AND WHIGH(a)) THEN

afil: =ch;
!: =i+l;

END;
UNTIL (ch=EOL) OR (i=HIGH(a));
a[!]: =CHR(O); all strings and in 0

END Gets;

PROCEDURE Puts(s: ARRAY OF CHAR);
BEGIN

WriteString(s);
WriteLn;

END Puts;

121

PROCEDURE Menuo: CARDINAL;
VAR

ch: CARDINAL;
BEGIN

Puts(' 1. Enter an address');
PutsC 2. Delete an address');
Puts(' 3. Find an address');
PutsC 4. List all addresses');
PutsC 7. Quit');

REPEAT
WriteStr ing CEnter Choice: I;
ReadCard(ch);
Writel-n;

UNTIL (ch>=l) AND (ch<=7);
Writel-n;
RETURN ch;

END Menu;

PROCEDURE GetEmptyo: INTEGER; (* returns next empty
Location in list, -1 if full

VAR
i: CARDINAL;

BEGIN
FOR i: =O TO LSIZE DO

IF CompareStr(mlist[il. name, "")=O THEN
RETURN 1; is an empty location

END;
END;
RETURN -1; (* list full

END GetEmpty;

122

PROCEDURE Enter(i: INTEGER); (* enter a name into the list
VAR s: NameType
BEGIN

if i= -1 then f ind new slot; otherwise modify
existing entry

WriteString('Enter name:
REPEAT Gets(s) UNTIL (s[01 0 CHR(O))
IF Duplicate(s)

THEN
WriteString('Duplicate name, can not add it the the list')
WriteLn

ELSE
IF i=(-I) THEN i: =GetEmptyo; END;
IF RX-1)

THEN
mlist[il. name :=s
WriteString('Enter street:
Gets(mlist[il. street);
WriteString('Enter city: I;
Gets(mlist[i]. city);
WriteString CEnter state:
Gets (ml ist[i Lstate);
WriteString('Enter zip:
Gets(mlist[il. zip); WriteLn; WriteLn

ELSE
WriteString('Can not add this name, the mailing list is full')

END
END

END Enter;

PROCEDURE Display(ml: ADDR);
BEGIN

Puts(ml. name);
Puts (ml. street);
Puts(ml. city);
Puts(ml. state);
Puts(ml. zip);
Writel-n; WriteLn;

END Display;

PROCEDURE List; display the entire list
VAR

LCARDINAL;
BEGIN

FOR i: =O TO LSIZE DO
IF CompareStr(mlist[Mname, "'100 THEN

Display(mlist[II);
END

END
END List;

123

PROCEDURE Findo: INTEGER; (* return the index of a name
VAR

f CARDINAL;
s ARRAY [0.. 301 OF CHAR;

BEGIN
WriteString('Enter name to find:
REPEAT Gets(s) UNTIL (s[01 = CHR(O));

FOR f- =0 TO LSIZE DO
IF CompareStr(s, mlist[f I. name)=O THEN RETURN f END;

END;

RETURN -1; (* not found
END Find;

PROCEDURE Locate; (* display an address based
on the name f ield *)

VAR
i: INTEGER;

BEGIN
!: =Findo; (* find the name
IF RX-I) THEN Display(mlist[il)

ELSE WriteString(' Can not find this name
END

END Locate;

PROCEDURE Delete; (* remove an address based
on the name f ield *)

VAR
i: INTEGER;

BEGIN
i: =Findo; (* find the name
IF i<>(-l) THEN

mlist[il. name: = mark as empty
END;

END Delete;

PROCEDURE Init; (* initialize list
VAR

t: CARDINAL;
BEGIN

use a null string in name f ield to indicate an
empty RECORD *)

FOR t: =O TO LSIZE DO
mlist[t]. name: ="";

END;

END Init;

124

BEGIN
Init; prepare the list
REPEAT

choice: = Menuo;
CASE choice OF

1: Enter(-l) new entry
2: Delete,
3: Locate
4: List
5:
6:
7: Puts('program completed');

END;
UNTIL choice=7;

END Mlist.

m

6.5 The Program "Find"

"Find" is an algorithm invented by Hoare. In his paper "A proof of the

program FIND" [331, Hoare shows how a procedural program that implements this

algorithm could be constructed and proved simultaneously, using the Axiomatic
Method (described in chapter two). As such, the procedural program "FIND",

provides a good example for comparing the proof and manipulation
possibilities offered by functional modelling with those of the Axiomatic
Method.

By converting the manipulated functional model back into a procedural

program, it is possible to see how to remove the "goto" statement, at the

expense of one extra iteration of the main "while" loop.

The procedural program "FIND" is written in Algol 68, with comments
written in italics. It is a remarkable, compact and efficient algorithm.

begin
integer m, n;
m :=1; n: =N;
while m<n do

begin integer r, i, j, w;

r := AM; i :=m; j :=n;
while i <=jdo
begin whIleA[ij < rdo i

while r< A[jl do j :=j
if i <= j then
begin w := A[!]; Mij A[j]; A[j] w;

i+1; jj
end

end Encrease L and decrease J;
if f <= i then n :=i

else if 1 <= f then m
else go to L

end reduce mLddLe part;
L:
end FLnd

126

(* f is a constant, as is N
fun find(A) fi(A. 1, N)

fun fi(A, m, n) if m<n
then-
let (A', i, j) f2 (A, m, n, s(A, f in
if f <= j then fi (A'

, m, j)
else if i<f then, fiW, 1, n)

else A'
else A

fun f2(A, 1, j, r) if i <=
then
let P= f3(A, i, r) in
let j' = f4(A, j, r) in
if i, <= j,

then
let A' = u(u(A, il s(A, j')), j', s(A, iI)) in
f2(A', i'+l, j'-J, r)

else
(A, i', j')

else
(A, i, j)

fun f3(A, 1, r) = if s (A, 1) <r then f 3(A, 1 +1, r) else I
fun f4(A, j, r) = if r< s(A, j) then f4(A, j-l, r) else j

types

find : list int 4 list int
fi : (list int X int x int) -> list Int
f2: (list int x int Xi nt Xi nt) 11 st' 1 nt x int X int)
f3 : (list int x int x int) int
f4: (list int x int x int) int

6.5.1 Auxiliary Functions Used in the Model

The function "s" and "u" are the list selection an list update
functions.

127

6.5.2 The Proof

6. S. 2.1 Lemma 0

For the functions f3 and N, two very simply properties are stated,

which can been seen to hold from their predicates.

Lemma 0 (f3)

3x. x2: 1 A s(A, x)-er z>
f3(A, 1, r) = i' s. t. Vx. 1: sx<i". s(A, x) <r 'A s(A, i') 2: r

6.5.2.1.2 Lemma 0

3x. X--sj As (A, x): Sr 4

f4(A, J, r) = j' s. t. Vx. j<x: sj. s(A, x) >rA s(A, j') :sr

6.5.2.2 Lemma I

f2(A, X, X, s(A, x)) = (A, x+l, x-1)

Proof

xSx
f3(A. x, s(A, x)) :Fx (since not(s(A, x) < s(A, x))
f4(A, X, S(A, X)) =x (since not(s(A. x) < s(A, x))

So f2(A, x, x, s(A, x))
f2 (A' x+l, x-1)

where A' = u(u(A, x, s(A, x)), x, s(A, x))
but not(x+l-: s x-1) A u(u(A, x, s(A, x)), x, s(A. x)) =A

So f2(A, X, x, s(A, x)) = (A, x+l, x-1)

6.5.2.3 Lemma 2

m5fSn4f1 (A, m, n) =f i' (A, m, n)

where funfl' = ifm <=n
then
let (A, i, j) = f2(A, m, n, s(A, f)) in
if f <=j then fi'(A' m, j)

else if i <= f thenfi'(A, i, n)
else A'

else A

128

This lemma allows the function fi to be slightly altered (the predicate

"m < n" has been replaced by the relaxed predicate "m :s n").

Proof

The proof uses partial evaluation of the function fi.
First, note that m 's f :5n =o ((m=n) =o (m=n=f))

Recursive calls to fl preserve the relationship M: sf: sn,:
fi(A' , m, j) where m: sf :5j

and fi(A , i, n) where i : sf Sn

So, if m=n, then since m: sf: sn, the call to fi'(A, m, n) will
be fi' (A. f, f).

Substituting these values in the body of fi gives the
result as :

let (A' I, j) = f2(A, f j s(A, f)) in
if f<j then fi (A' ,f, i)

else if i <= f thenfi(A', I, f)
else A'

by lemma If2 (A, f, f, s (A, f (A, f+l, f-i
So fi ** (A, f, fA
So m --5 f :5nfi (A, m, nf i' (A, m, n)

Using Lemma 2 it is now possible to rewrite the model function f1 as

follows :

fun fi(A, m, n) = if m <= n
t hen
let (A', i, j) = f2(A, m, n, s(A, f)) in
iff<j then fi (A' , m, j) '

else if 1 <= f then fi(A', i, n)
else fi(A', i, j)

e Ise A;

6. S. 2.4 Lemma 3

fi(A, m, n) = fi"(A, m, n)

where fun fi "(A. m, n)
if m <= n

then
let (A', i, j) -, = f2(A, m, n, s(A, f)) in
if f <= j then fi"(A' m, j)

else if i <= f then fi"(A', I, n)
else fi"(A', I, j)

else A

129

This lemma allows fi to be replaced by f i", where f 1" has only one

condition leading to termination (instead of two).

Proof

The proof is by partial evaluation of V.

The call fl"(A', i, j) only occurs if both f <= j and i <= f. With i

substituted for m and j for n, the recursive call fi"(A', I, j) = A', since

i>j.

Using Lemma 3 it is now possible to rewrite the model function fi as -
follows :

i(A, m, n = if m <=
t hen
let (A', i, j) = f2(A, m, n, s(A, f)) in
if f <=j then fi(A', m, j)

else if i <= f then fi(A', i, n)
else fi(A', i, i)

else A;

6.5.2. S Lemma 4

VijrA. lej Are (x, x= s(A, y) A1 :syejy ze
f2(A, i, j, r) = (A', il, j,)

s. t. Vxy. 1-: SX<i' A j<ye«j z> s(A', x) :sr :s s(A", y)
A Vx. x(1 z* s(A', x) = s(A, x)
A Vx. x>j>s (A', x) =s (A, x)

6.5.2.5.1 Explanation

Let L(n, m] denote all the elements of a list L from, but not including

n, up to, and including m.
Let Un, m) denote all the elements of a list L from, and including n, up

to, but excluding m.
Let L[n, m] denote all the elements of a list L from, and -including n, up

to, and including m.
Lemma 4 says : if re A[i, j] then f2 yields the tuple (A', i, j) where

L[i,! ') :5rs L(j', jl. The last two conjuncts of the implication dictate that
all other elements of the list outside [i, i') and (J'JI are unaffected.

130

Proof

(by Structural Induction on k=

base case

k=O 4(j=iA r=s (A, j))

sub sti tut 1 ng A, j, j and s(A, J) , as actual parameters, f or the
f orma I parameters A, i, j and r in f2 respect i ve I y.
gives :

if j <=j
then
' et V= f3(A, j, s(A, j)) in
let j' = f3(A, j, s(A, j)) in
if il <= j,

then
let A' = u(u(A, I', s(A, j')), j', s(A, I')) in

Now
f3(A, j, s(A, j)) =. f4(A, j, s(A, j)) =j (by substItution)
and u(u(, A, j, s(A, j)), j, s(A, j)) =A
so f2(A, j, j, s(A, j)) = f2(A, j+l, j-l) = (A, j+I, J-I)
Vxy. j: sx<j+l A j-l<y: 5j 4 s(A, x) :5 s(A, j) :5 s(A, y) is true

since it degenerates to s(A, j) :5 s(A, j) :5 s(A, j)
And s1 nce A' =A then Vx. x< i4s (A' , x) = s(A, x) and
Vx. x>j 4 s(A' x) = s(A, x) are clearly true.

inductive hypothesis

VijrA. j: sj Ar r= (x: x s(A, y) A i: sy: sj> x>
f 2(A, i, i, r) = (A' l', j')

s. t. Vxy. i: sx< i' A j'<y: sj => s(A« x) :sr :s s(A". y)
A Vx. x<i z* s (A'

, x) =s (A, x)
A Vx. X>j z* s(A', x) = s(A, x)

for j-i = k, kk0

call the assertion D.

show D for i-i = k+l :* k>O

Now, in the body Of f2:

i: sj is true since M
f3(A, i, r) & j" = f4(A, j, r)

There are two possibilities, call them "case 1" and "case 2" :

131

case I: Y- il =

j'-i' =k (j I=j A 11=i s (A, i) at rA s(A, j) :5r

(from the predIcate In f3 & f4)

so in this case f2(A, i, j. r) = f2(A', i+l, j-l, r)
where A' = u(u(A, i, s(A, j)), j, s(A, i))
Now, by the induction hypothesis
f2(A', i+l, j-l, r) = (A", p, q)

s. t. Vxy. i+l. -. sx<p A q<y-: sj-1 =; ý s(A", x) ýr -5 s(A", y)
A vx. x<i+l 4 s(A", x) = s(A', x)
A Vx. x>j-l 4 s(A", x) = s(A', x)

also s(A". j) = s(A, j) & s(A", j) = s(A, i)
so since s(A, j) .5r& s(A, i) 2:: r
then f2(A, i, j, r) = f2(A', i+l, j-l, r) = (A", p, q) s. t.

Vxy. isx<p A q<ysj =o s(A", x) srs s(A", y)
A Vx. x<i =o s(A". x) = s(A, x)
A Vx. x>j 4 s(A", x) = s(A, x)

case 2 -. j' -V<k

il-il <k

in which case either V> J' or

case 2.1 :P> j'
in which case f2(A, i, j, r) = (A, i', j'
Now r r= J x: x=s (A, y) A i: sy. -Sj
So f3(A, i, r) = i' s. t. Vx. isx<i' s(A, x) <rAs (A. Vr
and f4(A, j, r) = j' S-t- Vx. j'<X: sj. s(A, -x) >rA s(A, j') z: r

which, together with V> j' satisfies D.
(by lemma 0)

case S
in which case f2(A, i, j, r) = f2(A', i'+I, j'-I, r)
Now f2(A', i'+I, j'-I, r) = (A", p, q) s. t.

VXY. V+1: sx<p A q<y: sj'-I. s(A", x) :sr :5 s(A, Y) (by I h.)
A Vx. x<i'+l :* s(A', x) = s(A", x)
A Vx. x>j'-l 4 s(A', x) = s(A", x)

and from lemma 0 and the properties of u
s(A', i') =s (A, i) :sr&s (A' ,Ps (A, ir
and from lemma 0
Vx. 1: sx<i'. s(A, x)-sr & Vx. j'<xsj. s(A, x); -,, r Put t ing thes e together g ives f2 (A, i, j, r)= (A' p, q) s. t. II

Vxy . i: sx <p A q<x: sj. s(A' x) :5r :s s(A' y)
A Vx. x< 1 =ý s (A' x) = s(A, X)
A Vx. x>j 4 s(A', x) = s(A, x)

132

6.5.2.6 The Main Proof

For the purpose of the main proof the function fi shall be projected

onto A, m and n. This allows the values bound to m and n at termination, to

be used in an assertion about f t.

fun fi(A, m, n) = if m <= n
t hen
I et W, 1, j) =f 2(A, m, n, s(A, M in
if f <=j then fi(A, m, j)

else if 1 <= f.
-then'fi(Al,

i, n)
else fi(A', I, J)

else (A, m, n);

First prove : .1

m: sf :sn4f1 (A, m, n) = Win'., n') s. t.
Vxy. m: sx<m, A n'<y: sn. s(A', x) --s s(Al, f): 5s(A', y)Am>n

proof
(by structural induction on k= n-m, kýO)

base case : k=O 4 m=n=f

substituting m=n=f into the body of fl gives the result:

let (A'
, i,

j) =f z(A, f, f, s(A, f)
= (A, f+l, f-1) (by I amma 1)

Vxy. fs-x<f+l A f-l<ysf. s(A, x) :s s(A, f) : ss(A, y)
reduces to s(A, f) :5 s(A, f) S s(A, f)

inductive hypothesis

m : 5' f :sn zo f 'i (A, m, n) = W, m', n') s. t.
Vxy. m: sx<m' A n'<y: 5n. s(A', x) :5 s(A', f) --s s(A', y) Am>r

f or k= n-m

133

kz: O 4m :5n, subs ti tut i ng i nto the body off1 gives the result :

let (A', i, j) = f2(A, m, n, s(A, f)) in
1ff <= j then f1 (A' , m, j)

else if i<=f then fi (A' , i, n)
else fi(A' , ij)

In this proof, I et 0 be the fth eI ement in order in the array A.
There are three possible cases:

case 1: f<=i
f :5j means that s(A, f) :50, since there are at least as man

elements in A which are greater than or equal to 0 than to s(A. f)
So Lemma 4 in this case gives
Vx. j<x: sn. s(A, x) 2: 0

Now by the induct ion hypothesis
fi (A' , m, j)= (A", p, q) s. t.

Vxy. m: sx<p A q<y: sj. s(A". X) :5 s(A", f) S s(A". y) A p>q
zo Vxy. m: sx<p A q<y: sj. s(A", x) :s :s s(A", y) A p>q
Together with lemma 4 gives
fi (A'

, m, n)= (A' , p, q) s. t.
Vxy. ms x<p Aq<y: sn. s (A' , x) :s0 :s s(A , y) Ap>q

4Vxy. m: s x<p Aq<y: sn. s (A' , x) :ss (A' ,f) :ss (A', y) A p>q

case 2: I <= f
This follows a symmetrically similar argument to case

case 3: j<f<i
By lemma 4
f? (A, m, n, s(A, f)) (A', i, j) s. t.

Vxy. M: 4-x<i A j<y: snz* s(A', x) :S s(A, f): Ss(A', y)
Now j<f<i means that s(A, f): so and s(A, f)2-0, whichmeans
s(A, f)=0.
Lemma 4 alsomeans that s(A', f)=O=s(A, f) soLemma4means
fi(A, m, n) = fi(A', i, j) s. t.

i<f<iA Vxy. m: sx< iAj<y: sn 4s (A' , x) :5 s(A' ,f) :5s (A, y)

Now j<f <i 4 fl(L, i, j) = (L, i, j) so
f1(A, m, n) = (A'

,i, j) s. t.
Vxy. mix< iA j<y: sn 4 s(A' x) : r- s(A' ,f) :s s(A, y)A i>j

134

6.5.2.7 Tinally ---- ,, I

fi nd (A) (A, I, N) = (A' , m, n) s. t.

Vxy. I: sx<MA n<y:! N =ýs(A' , x) S s(A', f) : ss(A' , y) A m>n

Vxy. 1 : sx sf-, s y: 5 N s(A', x): s s(A', f): SS(A', y),

6.5.3 Using the Model Function to Alter the Procedural Program

Using Lemma 2 and 3 the "goto" statement within the main body of the

procedural program can be removed.

This is because the function fi has been manipulated as a result of

lemmas 1 and 2 and when converted back into a "while" loop (according to the

strategy described in chapter 5) the "goto" is no longer required (since the

function only has one exit point).

fi(A, m, n) if m <= n
t hen
let Wj, j) = f2(A, m, n, s(A, h) in'
if f <=j then fi(A', m, j) -

else if i <= f then NW, i, n)
else fi(A', W)

else A'

Converting this into a "while" loop form gives :
-., t 1ý IIý

while m <= n do
let (A', I, j) = f2(A, m. n, s(A, f))
if f <= j then n :=j

else if i <= f then m
else beginm: =!; n: =j end

Where, the "let W, ij) = f2(A, m, n, s(A, f))" 'can be replaced by

converting the function f2 back into a while loop. Since f2 has not been

manipulated -during the proof, it will correspond to the original Algol

"while" loop from which it was produced.

135

6.5.4 Comparing the Manipulations and Proof s with the Axiomatic Method

The Axiomatic Method was used by Hoare to construct and prove the

program Find in the programming language Algol. The Axiomatic method is the

main analysis and proof technique available to procedural programmers.

This section attempts to compare it with the functional modelling

strategy.

Manipulation of The Model

The principal difference between the modelling approach an the Axiomatic

approach is the difference between a functional and procedural notation.
The functional style Is rich in algebraic properties, allowing a

programmer to freely manipulate the structure of their program without
affecting the values that it computes.

The procedural notation, on the other hand, is far more rigid: algebraic
manipulation rules, where they exist, are far more involved due to changes to
the "implicit state. If a programmer wants to replace one statement-sequence
with an apparently equivalent statement-sequence then a proof may be

required, demonstrating that the two statement sequences are, indeed,

equivalent.

6.5.4.1 Substitution

The substitution of an expression for a variable with the consequent
removal of a let abstraction in the modelling technique is equivalent to the

use of the Assignment Axiom of the axiomatic method.

6.5.4.2 Partial Evaluation

Model functions can be partially evaluated, which in the Axiomatic
Method corresponds to replacing the procedural code with fresh- code. In this

situation, using the Axiomatic Method, a proof would be necessary to show
equivalence between the replacement code and the code that it replaces.

136

6.5.4.3 Projective Abstraction

Some values computed by a procedural program fragment may not be

returned by the corresponding model function, since 'they do not contribute

towards the evaluation of the tuple onto which the model Is projected.

, In the Axiomatic Method there is no such thing as Projective

Abstraction, all the identifiers assigned values in, the program can be

referred to in propositions inserted in between statements of the program.

6.5.5 Summary

In general, it appears that the Axiomatic Method is best suited to the

construction of correct programs, since, as Hoare shows, the program can be

constructed from the assertions in a reasonably intuitive manner.

The Functional Modelling technique seems more appropriate where a

program already exists, and requires analysis and proof. The Modelling

technique makes manipulation of the program easier. This is an advantage if

the programmer is not actually sure what properties of a program are

signif icant.

In such situations the ability to partially evaluate models, to project

their results onto sub domains and to use the Fold/Unfold transformation

rules and structural induction provides a very flexible and comprehensive

analytic tool.

137

6.6 Correctness Proof for Pascal List Data Type

It is possible to use the modelling technique to demonstrate that the
"linked-list" implementation of the list Abstract Data Type in Pascal is

correct, in the sense that it obeys the list axioms, and does not-produce any

extra side-effects. Such a proof allows the programmer to replace the heap
function and heap index with the normal "functional" list constructors and
selectors. This technique can be used for any Abstract Data Type which can be

captured by algebraic equalities.

138

6.6.1 The Pascal Program

Most Pascal textbooks contain, a definition of the recursive data type
"list". This data type is usually defined in terms of pointers which link

,
together - the elements of the list, with the empty list being represented by

the . "nil" pointer. The definitions may -differ -in minor, detail, but all follow

a very similar pattern. A typical implementation of lists Is given below:

program list
cons t

Empty = nil
type

list = -ListRec
listRec record

data : integer
next :I ist
end ;

begin
new(r esul t
resu I t-. dat a :. = x;
resu It^. next :=L
cons := result

end ;

function cons(x : integer ;L: list): List ; Ivar
re suit :I ist ;I

function head(L.
begin

head := L^. data
end ;

function tail(L
begin

tall L^. next
end ;

I ist) : integer -,

I ist) : list ;

function IsEmpty(L : list)': boolean
begin

IsEmpty :=L= Empty
end ;

139

6.6.2 The Model f or the Linked List

In the model a new name must be f ound for the functions "head", "tail"

and "cons", since these names are already used in the model for list

constructors. To avoid confusion, the transformed - function names
corresponding to the procedural program functions and constants shall be

pref ixed by a.
In this model a list is used to model the record structure of Pascal. u

and s are list update and select functions.

val aEmptY = -1 ;
fun acons(x , L, H, hp)

let val result = hp
val hp' = hp + 1
val H' y = if y result then u (H (result), data, x)

else Hy
val H" y if y result then u(H(result), next, L)

else H' y
in (result, H", hp' ;

Ifun othead(L, H) = s(H(L), data)
Ifun ottai 1 (L, H) = s(H(L), next)
ýun aIsEmpty(L) =L= -1

6.6.. 3 Manipulation of the Model

Manipulation simplifies this model to:

val aEmptY = -1 ;
fun acons(x, L, H, hp)

(hp,
fn y => if y=hp then u (u (H(hp), data, x), nextj L) else H(Y).
hp+1);

fun ahead(L, H) = s(H(L), data) ;
fun atal 1 (L, H) = s(H(L), next) ;
fun aIsEmpty(L) =L= -1 ;

140

6.6.4 The List ADT Axioms

The algebraic definition of a list data structure consists of six axioms

as f ollows:

i) IsEmpty(Empty) = true
li) Vx, L. IsEmpty(cons(x, L)) false
iii) Vx, L. head(cons(x, L)) =x
i V) Vx, L. tai1(cons (x, L))=L
v) head(empty) = error
vi) tail(empty) = error

6.6. S Heap and Heap-Pointer Axioms

The following axioms concerning the heap and heap-pointer have been

found useful in proving properties of models of pointer-based procedural

programs:

Al) hp 2: 0
The heap pointer is always non-negative.

A2) Vp. poLnter(p) 4p< hp
No pointer value is larger than, or equal to, the current
value of the heap pointer.

A3) hp =0 a* Vx. H(x) = Rubbish
When the heap pointer has a value of zero, no heap store
is allocated.

A4) p=q4 H(p) = H(q)
This axiom arises directly from the properties of
functions.

AS) s(u(T, f, x), f) =x

A6) Vx. x <0 =* H(x) = Rubbish

141

6.6.6 The Proofs

The proof that the procedural functions implement the list Abstract Data

Type relies upon showing that the model functions obey the list axioms.
The function occons returns a 3-tuple, the first element of which is the

list pointer and the other two are the heap and heap pointer. It is thus the

first value returned by acons which is the subject of the proof that the list

axioms are respected by the model functions.

In the proofs that f ollow, acons is thus projected onto the

Pointer-valued result of the procedural function "cons" which it models.

There is, however, the possibility that the model function acons

respects the list axioms but also produces some other effect upon the heap,

so a further proof is required demonstrating that the onLy eff ect of acons is

to produce the pointer value for the constructed list.

The whole proof consists of two parts: a demonstration that the model
functions respect the list axioms and a demonstration that this is all that

they do.

i) IsEmpty(Empty) true
is aAl sEmptyOx Empty) aEmpty

true

Proof of List Axiom i)

VL, x. otIsEmpty(acons (x, L) fa1 se
this becomes
let val (v, H' hp' acons(x, L, H, hp) in alsEmpty(v)
effectively projecting acons onto v

let val (v, H', hp') occons(x, L, H, hp) in ocIsEmpty(v)
let val (v, H' hp'

hp,
fn y => if y= hp

then u(u(H(hp), data, x), next, "L)
e Ise My)

hp+1)
in ocIsEmpty(v)

ocIsEmpty(hp)
false (by axiom Al)

Proof of List Axiom ii)

142

iii) VL, x. ahead (acons (x, L) x
this becomes
let val (v, H' hp' (xcons(x, L, H, hp) in cchead(v, H')
(projection of acons)

let val (v, H', hp' acons(x, L, H, hp) in ahead(v, H'
let val (v, H', hp')

(hp,
fn y => if -y = hp

then u(u(H(hp), data, x), next, L)
else H(y),

hP+l)
in ahead(v, H')

cchead(hp, f, n y => if y= hp
then u (u (H(hp) , data, x) , next, L)
else H(y))

s((fn y => if y= hp
then u (u (H(hp) , dat a, x) , next , L)
else H(y)) hp,

data)
s (u (u(H(hp) , dat a, x) , next , L) , dat a)

= X.

Proof of List Axiom iii)

143

iv) VL, x. (xtail((xcons(x, L)) =L
this becomes
let val (v, H', hp') = acons(x, L. H. hp) In atall(v, H')
(projectLon of acons)

let val (v, H', hp') = acons(x, L. H. hp) In atall(v, H')
let val (v, H', hp') =

(hp,
fn y => if y= hp

then u (u (H(hp), data, x). next. L)
else H(y).

hp+l)
in atall(v, H')

cctail(hp, fn y => if y= hp
then u(u(H(hp), data, x). next, L)
else H(y))

s((fn y => if y= hp
then u(u(H(hp), data. x) next, L)

else H(y)) hp,
next)

s (u (u(H(hp)
,

data, x) . next, L) , next)
L.

Proof of List Axiom iv)

Axioms v) and vi) are direct consequences of the pointer Axiom A6)

above (§6.6.5).

144

6.6.7 Proof of Freedom From Other Ef fects

To be satisfied with an implementation of an A. D. T, it is not enough

simply to prove that the functions defined satLsfy the algebraic description

of the A. D. T, it is also crucial to demonstrate that no other effects are

produced apart from those required to satisfy the axioms.
For example. a proof that a data structure and associated functions

implements a 'binary tree", that consists of a demonstration that some part

of the code satisfies the binary-tree axioms, does not preclude the

possibility that one of the functions also writes 20 asterisks to t7ie

printer.

6.6.8 A Proof of Freedom from Side-Eff ects for the Linked-List

In these model functions, it is only acons which returns values other

than those demanded by the list axioms. It returns a new heap and heap

pointer. It shall thus be necessary to demonstrate that only one new pointer
is allocated (the one for the list constructed by cons) and that no other

pointer values are affected when cons is executed.

The new heap pointer returned by acons is hp+l, so only one new pointer

can have been created.
To show that no other pointers have changed their value after execution

of "cons". It Is necessary to show that for all integers strictly less than

the value of the heap pointer passed to "acons", the heap function returned

contains identical mappings to that passed.

formally:

acons(x, L. H. hp) = (hp, H', hp+l) such that V! < hp. H'(i) = HM

The proof turns out to be trivial:

145

by def inition of "acons":

fn x => if x= hp

then uW (H (result), data, x), next. L)

else H(x)

ISO

Vi < hp. H' M= H(i).

6.6.9 Summary

The modelling strategy can be used to prove that an Abstract Data Type

is correctly implemented in a procedural program.
Such a proof arms the procedural programmer with axioms taken from the

A. D-T which may be asserted at the relevant points in their progr -

146

6.7 The "C" Programming Language

In the *C" programming language, side-effects within expressions are

commonplace.
For example consider the "C" expression:

1 (x =

This expression is "T1 + (P? -". where "pl. = 4" and "(p2 = x", but,

(assuming left-right expression evaluation) the- scope of the assignment "x =

4" Lncludes the right-hand-side of the overall addition, and so includes the

occurrence of "x" in *PZ = x".

The expression "(x=4) + (y=z)" is thus modelled by the let abstraction

list:

let val x=4
val (pi =4
val y=x
val (p2 =x in pl + V2

The resulting (assignment-free) expression can be manipulated by

substitution to an expression in terms of the original identifiers, thus

removing the extra variables T!, and making the expression and the let

abstractions Endependent. For the expression above this would give:

let val x=4;
val y=x in

8

147

6.7.1 (pi Are "Temporary Variables"

This process is similar to compilation of expressions, where the machine

code produced evaluates sub-expressions, and stores their value in a

temporary location. In this case the "temporary location" is the new

identifier introduced to denote the value of a sub-expression which contains

a side-effect. Indeed this identifier is truly temporary since if can

subsequently be "manipulated-out".

6.7.2 A Typical Loop in "C"

It is very common in the "C" programming language to find examples of

side-effects in the bodies of loops, a typical example is given below:

while ((c=getcharo)! =EOF) if (c=='. ') printf ("OUCH! ");

This loop is modelled by the function f below:

f un f (Input) = w(hd(Input I nput,
fun w(c, Input, Output) =

let vat c= hd(Input) in
if not(c=EOF)

then if c then w (c, tl (Input), append(Output. "OUCH! "))
else w(c, tl (Input), Output)

else (c, tI(Input) Output) ;

This model could now be converted in Pascal (according to the strategy

set out in chapter five, for example). The Pascal version would not make use

of the side-affecting features offered to the "C" programmer.
Alternatively, the program could also be converted back into a "C"

program, written in a style which avoids the use of the language's more
"subtle" f eatures.

148

6.7.3 Another Typical Example

This next example is taken from page 48 of the book "The C Programming

Language" by Kernighan and Ritchie 1631.

The modelling strategy is good for such programs since all the

subtleties and Implicit effects of a program are "brought out into the open".

The lines of the program are numbered in order that the program can be

discussed. The numbers are not part of the, program. itself.

/0 strcat: concatenates t to the end of s; s must be big enough
/0 1 */ void strcat(char st 1, char t[j)
/0 2 a/ I
/* 3 0/ int 1. j
/* 4 0/ i=j=0;
/* 5 S/ while Wil != '\O') /* f ind end of s
/0 6 */ i++;
/* 7 0/ while ((s[i++] = tlj++]) != '\O /* copy t

/0 9 0/

6.7.4 Explanation of the Program

Line number 4 contains a simple case of an assignment within an

expression. In general the expression could be far more involved. In this

case the line has the effect of assigning zero to both the variables "i" and
"j".

lines 5 and 6, simply advance the index "i" to the end of the string

S". In line 6. the increment of "i" acts as a statement, although the value
"i" is evaluated by the expression "! ++" the effect- of terminating the

expression with a semicolon Is to turn the expression into a statement.

On line 7, there is a while loop with no body. This may appear perverse

to a programmer unfamiliar with the "C" programming language: One might

expect the loop to have no observable effect if it has no body. However, in

"C", it is common to find loops that perform side-effects as a result of

evaluating their controlling expressions.

149

In the case of line 7. the loop's expression evaluates to the test -"is
t[jl equal to the character with code zero". In addition to evaluating this

boolean expression, the side effect is to assign the jth element of the array
"t" to the ith element of the array "s" and to Increase the values of "i" and
"j" by one.

Note that although "i" and "j" are Incremented, because the

side-affecting expression is written postfix, the evaluated result is "I" and
"j" and not "1+1" and "j+l". Also, the side-effects happen even when the loop

body is not executed (due to the predicate evaluating to false). This means

that the zero character that acts as a sentinel for the arrays will also be

copied.

As this simple example demonstrates, "a little bit of 'C' goes an

awfully long way" !

6.7. S The Model

All of these subtleties are reflected in the model for 'streat" which is

given below:

fun strcat(s, t) =
let val I= wi (s, 0) in

let val s= w2(s, I, O, t) In s
where

fun wl(s, i) = if setect(s, i) 0 chr(O)
then wl(s. 1+1)
else I

and
fun w2(s, i. J. t)=I

if select(t, j) 0 chr(O)
then wZ (update(s, i, select (t. j)). I+I, J+I. t)
else update (s. i select (t, j)) ;

ISO

It is interesting, in passing, to note that, in their definition of, 'the

"C" language [631, Kernighan and Ritchie have this to say about the order of

evaluation of sub-expressions:

'rhe order of evaluation of expressions is undefined. In

particular the compiler considers itself free to compute

subexpressions in the order it believes most efficient, even if

the subexpressions involve side effects. The order in which side

effects take place is undef ined. Expressions involving a

commutative and associative operator (*, +, &, :, I may be

rearranged arbitrarily, even in the presence of parentheses; to

force a particular order of evaluation a temporary variable must
be used. " (page 185 of [631).

This appears to make the facility of including assignments in

expressions rather a matter of syntactic brevity as opposed to a way of

changing the meaning of an expression dynamically.

The point is, that in the "C" programming language, there are no

commutative or associative operators (because of the presence of

side-effects).
If the evaluation strategy of the code produced by a particular compiler

is known, however, then a modelling strategy can yield a program for which

these commutativity and associativity properties do hold, in all cases.

151

6.8 Parallel Execution Paths

Functions in a pure-functional notation are free from any effects other

than the evaluation of their result In terms of their arguments, and

therefore are considered ideally suited to parallel evaluation R].

Since a model is a pure-functional version of a procedural program It is

highly likely that the modelling approach will expose paths In the program

which will facilitate parallel execution of the program.

Consider the program below:

program P1 ;

type T array I- -10001 of Integer

var AT; I integer

procedure process
var j: ineteger

total : integer;
begin

total 0
for j1 to A[! 1 do total total + Ali)
Mij total

end ;

begin
for II to 1000 do process

end.

The array, "A", is modelled using a list of 1000 elements. The model for

this program, projected onto the array "A". is given below:

fun Pl(A) = fori(A, I)
fun fori(A, i) = if i <= 1000 then fori(process(A, i))

else A
fun process(A, I) = forj(A. 1.0, I) ;
fun forj(A, I total j) If j <= A(i)

then f orj(A, I update (A, l, total+A(l)). J+I)
else A;

fun update(A, i, v) = if 1=I then v:: tail(A)
else head(A):: update(tail(A), I-I, v)

152

Next some simple manipulation is performed upon this model:

The function "forf can be simplified, since:

f orj (A, i, total, j) =f orj' (A M, tota 1, j)
where fun f orj'(n, total, j) = if j<=n then forj(n, total+n, j+l)

else update (A,!, total) ;

The application of update can be distributed through the call to "forj"'

in the model, giving:

fun Pl(A) = for-I(A, I) ;
fun fori(A, I) if i <= 1000 then f ori (update (A, i, prOcess(A(M)

else A
fun process(n) forj(n, 0,1) ;
fun forj'(n. total, i) = if i <= n

then forj'(n, total+n, j+l)

else n;

The function "fori" can now be rewritten as a call to the function map

Map" Is an example of a function that is directly amenable to parallel

evaluation).

f un for i (A) = map(process, A)
where fun map(f. A) = if null(A) then H

else f(head(A)) map(f. tail(A))

153

6.8.1 Another Efficiency Improvement

Of course, the call: process(n, 0,1) evaluates to n as could be proved

by simple structural induction, so a further efficiency Improvement could be

achieved by putting:

I
fun fori(A) = map(fn z => z*z, A) ;I

Converting this manipulated model back into the procedural notation,

leads to a more efficient procedural program:

program PI ;
type t array 11. . 10001 of Integer
var AT;

I integer
begin

for I :=1 to 1000 do Ali] := Ali] 10 Ali]
end.

I

154

CHAPTER SEVEN

SEMANTIC FOUNDATIONS

CHAPTER SEVEN SEMANTIC FOUNDATIONS

7.1 Introduction
This chapter investigates the semantic foundations of this thesis.

§7.2 defines what it means for a syntactic substitution rule to be

valid, and goes on to define what it means for a programming language to be

referentially transparent.

§7.3 looks at a few simple example languages and describes their

substitution rules with respect to referential transparency.

§7.4 uses a non-referentially transparent language as an example of how

a modelling strategy can be constructed and proved-correct in terms of the

semantic description of the language.

In §7.5, an important property called "Algebraic Closure" is introduced.

This property demands that a language allow syntactic substitution of

all abstract syntactic constructs which have equivalent meaning. 'Me absence

of this property is characterised by irritating special cases in the

description of a programming language. These special cases may be generallsed

" out of existence" by application of the definition of "Algebraic Closure" in

a generative mode.
In §7.6, an attempt is made to define the semantic domains and mappings

that make a language "functional".

In §7.7. an attempt is made to define the semantic domains and mappings

that make a language "procedural".

§7.8 considers the interleaving of input and output events in procedural

programs and functional models and shows that the Henderson Lazy Stream

approach [301 is a form of projected model which does not represent

interleaving of input and output events.

155

7.2 Valid Substitution Rules and Referential Transparency

7.2.1 The Literature on Referential Transparency of Programming Languages

There are many (and differing) descriptions of referential transparency*

each of which usually gives a counter example, or mentions a feature of a

programming language which will lead to the language being considered

non-ref erentially transparent.

This section summarises the views put forward on the subject in various
books concerning functional programming (16,66,18,65,21,78,72,19,201.

These accounts fall into categories, according to which of the f our

statements below is mentioned in the account.

i) Languages with assignment statements are non-referentially

transparent (sometimes "non-ref erentially transparent" is also termed

if ref erentiallY opaque").

ii) Languages which allow global variables to be used by more than one

procedure/function are non-referentially transparent.

iii) Languages which do not respect algebraic laws, such as

commutativity of addition, are non-referentially transparent.

iv) A Language is referentially transparent if the meaning of whole

expressions can be inferred from the meanings of its component expressions
alone.

Of these four accounts, only the fourth def Ines ref erential
transparency, the others give properties which must necessarily be absent for

a language to be referentially transparent.

account D is mentioned in [781 (page 12), 1721 (page 3), [161

(page 6) and [781 (page 72).

account ii) is mentioned in [211 (page 11) and [661 (page 10).

account iii) is mentioned in [781 (page 71), [211 (page 11). [651

(page 7) and [181 (page 269).

account iv) is mentioned in [201 (page 3), [781 (page 72), [651

(page 7) and [181 (page 10).

156

The fact that the meaning of an expression must depend solely on the

meaning, of its sub expressions can be described by delimiting the allowable

substitutions that may be performed in the language.

Demanding that algebraic laws must be preserved depends upon the

definition of the -algebraic laws to be preserved. An algebraic law can also
be described by a substitution rule, so the specification of which algebraic
laws must be preserved will be treated hereinafter as a choice of valid

substitution rules.
On its own, the assignment statement does not alter the substitution

rules of a language any more than the let-abstraction of functional languages

does (this is demonstrated in chapter 3, §?), so account I) on its own must
be discarded as unreasonable.

It appears that when a programmer claims that a language Is

"referentially transparent" what they are asserting is that a particular set

of substitution rules are applicable to programs in the language.

Given the semantics of a language, one can thus investigate the truth of

such a claim.
If this "coalesced" version of what constitutes the property of

referential transparency is accurate, it would certainly account for the

differing perspectives placed upon "ref erential transparency" in the

literature; each author may have a slightly different set of substitution

rules in mind.

7.2.2 Valid Substitution Rules

The validity of a substitution rule depends upon the semantics of the

language. The definition of validity presented here is sufficiently general

to apply, not just to programming languages, but to languages in general.

Before the definition can be presented, it is necessary to briefly

clarify the terms of reference: the semantics of a language and the

substitution rules that may be applied to programs in the language.

Having done this the definition is obvious and trivial.

157

7.2.3 The Semantics Of A Programming Language

Using the Denotational Description technique [161, the meaning of -a
program is def ined by a function which maps each program of the language to

some "mathematical object". The phrase "mathematical, object" is intentionally

vague. It is up to the language designer to model the ef f ect of

program-execution by choosing a suitable semantic domain.

The choice of a semantic domain prescribes what type of questions a

programmer will be able to ask the language designer about the execution of

programs.

For example, if the meaning of a program is described solely in terms of
how many beeps a computer executing the program will make, then questions

about what values appear on the screen connected to the computer will clearly
be unanswerable.

If the semantics is described in terms only of the values stored in

program variables, i. e. an environment mapping, then it will not be -possible
to ask how long a program takes to execute, or in what order those values are

stored.

The choice of a suitable semantic domain in which to describe the

meaning of a program is thus a choice as to what attributes of a- program's

execution are to be modelled. This choice , represents an , important act of

abstraction on the part of the language designer.

Having chosen a domain for the meaning of a program, the designer

defines the meaning of the language as a mapping from the sentences of the

language into this semantic domain.

The domains chosen for the semantic description thus prescribe the kinds

of questions that can be answered by the description.

The particular mappings defined, dictate the answers to these questions.

158

7.2.4 Semantic Descriptions And Syntactic Equivalence

A semantic description of a language is a mapping from sentences of the

language into some semantic domain.

A semantic description of a language thus partitions the sentences of

the language into a set of syntactic equivalence classes. That is, those

sentences of a language that are mapped to the same semantic object will be

in the same equivalence class.

Given a sentence, Sl, and a sentence, S2, if S2 occurs in the same

equivalence class as Sl, then the sentence S2 my be used In place of the

sentence S1 without a change of meaning. That is, S2 may be substituted for

Si.

Clearly, in performing substitutions it would be desirable to f Ind a sub

string within a sentence that may be substituted f or, rather than replacing

an entire sentence with a different one.

A substitution rule is valid if it is meaning preserving. That is, If one

sentence can be transformed into another, by application of a substitution

rule, then both sentences must be assigned Identical values by the semantic

mapping.

7.2.5 An Example: Strings of Digits

Consider a language, D, which 'consists of all non-empty, finite strings

of digits.

In order to give a meaning to D it is f irst necessary to decide upon a

semantic domain.
Let the semantic domain be the integers, IN.

In semantic descriptions, members of IN will be written in bold typeface

to avoid confusion with members of D.

Now, in order to define the meaning of the language, it Is necessary to

def ine a mapping, 9, which assigns a member of N to each string in D.

159

7.2. S. 1 Notation For describing 9

Of course, in order to describe the mapping, Y, one has to use some f orm

of notation. Clearly the meaning of this notation is assumed to be

understood, otherwise no progress will be made towards the description of a

semantics f or the language, D.

This is an important issue, but it is not of concern here, since the

semantic function, 9, is of only of interest inasmuch as it defines

equivalence classes in the syntactic domain.

For the language, D, two different meaning functions will be defined: 9

and 9;

The members of D will be written using list notation, where "cons" and

"append" have their usual meaning, and where "A" denotes the empty list. The

members of IN will be constructed from the addition. function, which has its

usual mathematical meaning and is written with the infix symbol "+". "L" will

be used to denote arbitrary members of D and 'Y' will be used to denote

arbitrary digits.

7.2.5.2 A Meaning, 91, For D

The meaning is a function 9D4N

Let the mapping be that a member of D is mapped to its length,

Formally, the meaning of a string, d is the (unique) solution to the

following recursion equation, defined by cases below:

9;
1W=0

97
1

rcons(x, L)l =I+ 51
1

rLI

According to 91 the strings r12341, r21341, r99991 and rOO001 are all in

the same syntactic equivalence, class (because they all mean 4, that is, are

mapped to 4 by 97 In this particular equivalence class there are 10 4

dif f erent members.

In general, 51 defines an equivalence class for each N in N, containing
10 members of D.

It is possible, given Y to describe transformation rules which will

allow "substitution of equivalent sub stings". All that is required is to

verify that any substitution performed on a sentence is valid (with respect

to 97).

160

7.2.5.3 A Valid Substituti6n Rule, Sub , For D w. r. t. 9;

An example of, a valid substitution rule is that any digit may be

replaced by any other digit in any string.

7.2.5.4 An Invalid Substitution Rule, Sub
2,

For D w. r. t. 91

An example of an invalid substitution rule is that leading zeros In a

sentence may be removed.

7.2.6 A Different meaning function 92

Now, a different,, perhaps
'more

intuitively agreeable, meaning Is

ascribed to D. This meaning treats each member of -D as a numeral which is

mapped to the corresponding member of N.

9;
2

rcons(O, A)l 0

9;
2

rcons(l, A)l I

92 rcons(2, A)l 2

51
2

rcons(3, A)l 3

92 rcons(4, A)l 4

9;
2

rcons(5, A)l 5

92 rcons(6, A)l =6

,w2 rcons(7, A)l =7

92 rcons(8, A)l =8

9;
2

rcons(9, A)l =9
9;

2
rappend(L, cons(x, A))l 10 92 rLi +y rcons(x, A)l

7.2.6.1 An Invalid Substitution Rule, Sub For D w. r. t. 92

Any digit may be replaced by any other digit in a member of D.

7.2.6.2 A Valid Substitution Rule, Sub
2,

For D w. r. t. 92

Leading "0" characters may be deleted.

161

7.2.7 Referential Transparency

In order to decide whether or not a set of substitution rules are valid

one has to consult the semantic mapping.

Referential transparency appears to be the property that all "normal

algebraic" substitution rules are valid.

Whether or not a language exhibits the property of referential
transparency will thus be expressed "with respect to the semantics of the

language and a set of substitution rules".

7.2.8 Another Example

Clearly, one could define the semantics in such aI way as to allow any

set of substitution rules to be valid. Consider a language made up of a

sequence of assignments of the form "light := on" or "light := off". In

B-N. F, this is :

E on : off
S Light -. = E; S ', A

7.2.8.1 A Semantic Description of the Language

Any sequence ending in "Light := on" shall be mapped to 1, and any other

sequence shall be mapped to 0.

7.2.8.2 Substitution Rules

Now, given thts meaning, the substitution rule "all but the last

assignment to the variable 'Light' may be deleted" is valid, however, the

substitution rule "the order of assignments may be swapped around" is
invalid.

162

7.2.8.3 Referential Transparency Again

So if a programmer expects to be able to delete all but the - last

assignment, then the programmer will' conclude that 'the language is

referentially transparent. However, a programmer who expects to be able to

rearrange the order of the assignments will describe the language as

non-referentially transparent.

Clearly the decision as to whether a language is referentially

transparent or not depends upon what substitution rules thý programmer

expects the language to permit.

7.2.9- Altering the Semantics to Fit the Substitution Rules

It is clearly possible to make any substitution rule' valid by an

appropriate choice of semantics. For example, the number of occurrences of

the sub string "Light := on" could be defined to be the meaning of a

sentence. Using this definition of meaning, the rule "the order of

assignments may be swapped around" is valid, but the rule "all but the last

assignment to the variable 'Light' May be deleted"'is invalid.

In this example there is no problem with a language designer deciding

upon the semantics of the language, and so the issue as to whether or not the

language is referentially transparent becomes a matter of choice.

For programming notations however, it is not 'possible to simply decide

what -the semantics of a language should be; the semantic mapping Is

restricted to those mappings "which ' correspond to realisable and desirable

implementations. Such is the case with functional languages.

7.3 ' Functional Languages and Referential Transparency

In this section various functional-'style languages are described.

Each is given a syntactic definition using B. N. F and a semantic

definition using the Denotational Method.

Starting with an incredibly simple language, ' 'the discussion proceeds by

"the addition of various features to the language.

163

Af ter each addition the discussion, focuses on the substitution rules

which are enjoyed by the language. The substitutions sought are those which

render the language referentially transparent in respect of the normal

algebraic laws of substitution (e. g. commutativity, associativity and, the

substitution of values for identifiers).

7.3.1 An Extremely Simple Functional Language

The functional language below contains only one syntactic formation rule

to form an expression from an addition symbol and two numerals.

Syntax

D+D
12

7.3.1.2 Semantics

The meaning of a program written in this language is given by the

semantic function G.

0: E->N

o rD
I+D1=9

rD 1 +9 rD 1

9, is the semantic function described in V. 2.6, D is the syntactic
domain of non-empty, finite strings of digits (defined in §7.2.5) and "+" is

the normal mathematical addition function over natural numbers IN XN4 IN.

Although exceedingly simple, the semantic function C does split up the
language into an infinite number of sets of equivalent sentences, each of

which contains an infinite number of sentences of the language.

7.3.1.3 Substitution Rules

Clearly, Sub
2,

the substitution rule defined in §7.2.6.2, , which allows
leading zeros to be deleted from numerals, is valid (due to the use of 92).

Also, the commutative property of addition is enjoyed by programs in E,

since VD D
2*

C rD +D1= 6rD +D1.

164

Thus, it can be said that T is referentially 'transparent w ith respect
to 9 and with respect to all the normal algebraic equalities that one would

expect to find within the syntax of E".

7.3.2 Non Termination

The issue of non-termination of programs and the meaning of "undefined"

which is given to such programs, severely complicates semantic discussions.

In order to avoid complexity, the issue of termination is addressed now,

and then subsequently ignored.

A syntactic construct, nt, is introduced which, when executed, causes

non-termination to occur. After the issue has been briefly Investigated, ' the

construct which causes non-termination is removed.

Such an explicit means of creating non-termination is obviously

unrealistic, but it is perfectly adequate for illustrative purposes.

7.3.2.1 Syntax
VD: nt

EV+V
12

7.3.2.2 Semantics

The semantic domain of the language must now include the undefined

element L (in [571 this is called W. This domain is called [N
I

to distinguish

it from the set of natural numbers N.

Since jL is included as an argument to the addition function used In the

semantic description, it now becomes necessary to describe the result of

"-L+n", "n+. L" and "1. +j. " for natural numbers, n.

To begin with is chosen to be strict in both arguments, that is,

-L+n" = vvn+. Lov = lt. L+. L" L.

165

The semantic consequence of this choice for the meaning of E, is as
f ollows:

19 :E4NI
g rDl =9 rDl

2
0 rntl =L
erv +v 1= erv I+ erv I

1212

As can readily be verified, the language still respects commutativity of

addition, in particular :0 rnt + DI a6 rD + ntl a0 rnt + ntl S0 rntl.

However, if all binary functions are defined to be strict in both their

arguments (or in either of their arguments for that matter), then some
algebraic identities will not be valid.

Consider, for example, the introduction of a multiplication operator
inýo the language E:

7.3.2.3 Syntax

VDI nt
EV+V2: vv2

7.3.2.4 Semantics

IN

OrDl= 9 rDl

0 rntl

orv +v i= orv i+ orv i
122

orv *v i= orv i* orv i
1212

7.3.2.5 The Semantics of *

Now the issue of the strictness (or otherwise) of the multiplication
function becomes paramount if the language is to be referentially transparent

with respect to algebraic properties of multiplication.

166

If "*" is defined, like 'Y', to be strict, then cro*ntl 5 Crnt*Ol a
Ornt*ntl a Crntl. But, if one argument- to multiplication is zero and the

other is some unknown natural number, it is still possible'to decide that the

result is zero.
A strict multiplication function is therefore, not suitable.
Instead a semantics is required where Ahe multiplication of two

arguments is defined to be zero if either argument is zero.
This is a case of defining the desired substitution rules and then

atte mpting to construct an implementation whose semantics respects these

, substitution - rules (c. f. §7-2-9). As stated earlier (in §7.2.9), this is not

always possible since some desirable semantics, are unimplementable (or so
inefficient as to be impractical).

7.3.2.6 Evaluation Strategies

The issue is thus: "is it possible to provide an implementation of the

language which allows the correct (i. e. algebraic) Interpretation to be

placed upon the multiplication operator? "

Fortunately the answer is "yes":

The processor, when evaluating the multiplication operator, ' alternately

performs one "evaluation step" of one argument to the operator and then the

other, and halts with result zero if ý either argument evaluates to zero after

a particular evaluation step.

If either argument is rntl then the evaluation step has no effect' and
the processor performs an evaluation step for the other argument.

Clearly then, if both arguments are rntl, then the computation of the

expression fails to terminate. If, however, either argument evaluates 'to zero

then computation immediately halts.

For such an implementation the semantics of "" will be as follows

vxeN
I*

O*x x*O =0 and

1*1 1 and

Vn, meN, n, m: *O. n*m is normal multiplication of natural numbers.

167

The languages Hope[511, ML[411,, Miranda[521 and many others define ". *"

to be strict, so these languages cannot be - said to be completely

referentially transparent with respect to normal algebraic properties. This

can cause problems when using the structural induction proof technique since

it will be possible to show f(x)*O =0 for all recursion equations, f. This

is not true, since the recursion equation, f. may not terminate.

7.3.2.7 Impossible Substitutions

The theory of computability dictates that certain substitution rules

will be unrealisable (for example, being able to substitute "true" or "false"

for expressions involving equality of functions will not be possible in all

cases).

7.3.3 A Functional Language Nith Identifiers

The ability to write non-terminating programs is now abandoned, so that

attention can be f ocused upon other issues.

The language E, described earlier in §7.3.1, is extended by allowing a

program to refer to identifiers.

Although identifiers are allowed in the language, at this stage no

mechanism has been included to Und values to identifiers; the identifiers

effectively stand for constants, the particular value of which is defined by

the state in which the program is evaluated.

7.3.3.1 Syntax

VI', D

EV1+V2

Programs are expressions which are evaluated in a state, a-, which maps
identifiers in 1, to expressible values in N.

168

7.3.3.2 Semantics

0 :, E -> (1 4 IN) 4 IN

c rv +v itr = erv
1
Ic. + erv

2
la.

erji, rii
9 rD1 9; rD1

2

7.3.3.3' Substitution Rules

Clearly the language described in §7.3.1 is a subset of E both

syntactically and semantically. All the substitution rules described in

§7.3.1.3 apply to E. Also the commutative property of addition extends to

arguments which are identifiers.

Once again, it is possible to say that E is referentially transparent

with respect to 9 and with respect to all the normal algebraic properties.

7.3.4 A Functional Language with Inadequate Syntax

The next example language shows how consideration of substitution rules

of a language can reveal shortcomings in the language definition.

The language described above in §7.3.3 is extended further, to include

syntax for bLndLng values to identifiers, thus changing the environment In

which a program is evaluated as the evaluatton proceeds.

However, as will be seen, some of the algebraic substitutions that one

would expect to find are not permitted (simply because the syntax Is not rich

enough). This issue is discussed further in §7.5.

7.3.4.1 Syntax

I: D

V+V
12

let val I=E in F: E

169

7.3.4.2 Semantics I

The meaning of a program F, is described by the semantic function Y.

6: E --> Q4 N) --> IN
9; :F -> (1 4 N) --) IN

6 rv +vI (r = orv I a. + erv
2
la.

g rp (r , rji
9 rDl a- Y' rDl

9: rlet val I=E in Fl a- =9 rFl (cr[C rEl cr / rp

7.3.4.3 Some Example Programs

Pi a rlet val li =5 in

let val 12 =6 in

I, + 12,

P2 m riet val 11 =5+6 in

let val Iz =7 in

11 + IZI

7.3.4.4 Substitution Rules

Expressions bound to identifiers by let abstractions may often be

substituted into the expressions in which they are used.

For example :-
0 Pi =0 r5 + 61 r1lI = 11

Thus Pt can be replaced by, amongst others, r5 + 61 or r1ji.

e p2 =s ril + 71 =e risi.

Thus P2 can be replaced by, amongst others, r1l + 71 or rigi.

However, although one would expect to be able to substitute r5 + 61 for
ri, i in P2, one cannot since r5 +6+ IzI is not a member of the syntactic

class F. Thus the language is not referentially transparent with respect to

normal algebraic substitution rules because the syntax does not allow such

substitutions.

170

7.3.4.5 The Beta Reduction Rule il

The language F, is sufficiently rich to begin a discussion of evaluation

of expressions in F into a "normal f orm". That is, F, can be regarded as a

term in a term-rewriting system. The normal forms of the system are those

members of D with no leading zeros.

- As the examples above show, rewriting an expression In F until a' normal

form is reached is analogous to the application of the 13-reduction rule of

the Lambda Calculus [121.

7.3.4.6 , Inverse of Semantic Functions I

In order to discuss the term-rewriting properties of the language FP' It

will be necessary to use the inverse, AC of a semantic function, At.

Of course the inverse of a semantic function, in general, produces a set

of sentences drawn from a syntactic domain. When the notation hC 1 (x) Is used

in the description of substitution rules, it stands for an arbitrary member

of this set.
For example 5; _ 1 (3) r3l, ,

r031, r0031,
2

Therefore, a valid substitution rule is Vrdlr: D. rdl is substitutable for

Y_ I (Y rdl
22

That is, for a string of digits, rdl
,

9;
?

maps rdl to a natural number,

which in turn, may be mapped by 9- 1 to the set of all other strings of digits
2

which, are mapped to the same natural number by 9
2'

Another is vreiEE,, ' given a state, aE(I--)1N), rel Is substitutable 'for

9: _ 1 (Crela-). This example of a "semantic inverse" is used later.
2

The g-reduction rule depends upon the notion of a "free variable":

7.3.4.7 Free Variables

The definition of free variables is the natural one [12).

free(I, F) denotes the fact that the variable, 1, is free In the

expression, F. The definition of free is:

- free(I, F)'* I does not occur in the left hand side of a rlet val

171

7.3.4.8 The Beta Reduction Rule R
13

free(rxl, F) =, riet val x=E in Fl E rF1 [rE1 / rxl 1

7.3.4.9 The Alpha Reduction Rule R
OC

oc :
free(rxl F) -, rlet val x=E in Fl a Flet val y=E inl rFl [ry; l / rxl I

Ra and R9 are syntactic substitution rules, so it is possible to check

if they are valid. That is, is the language referentially transparent with

respect to (9, Ra) and (9, R 13
The answer is that R

(X
is valid, but R

13'
is invalid because, for example

P2 is rlet val 12 =7 in 5+6+ 121

Instead, the similar rule R, below is valid.
R is similar to the A-Calculus 13-reduction rule and to R but is

complicated by the involvement of the meaning of an expression.
R allows for an identifier to be replaced by a numeral which has the

same meaning as the expression bound to the identifier in 'the let

abstraction.
The rule can only be expressed in terms of the state of an identifier

since the meanLng of an expression involves the state.

R- free(I, F) , grlet val I=E in Flcr = 6(rFl[g
21

(c rFi rp

The rule, R, is a rule which effectively says "if the programmer knows

what value an expression in E evaluates to, then any numeral which evaluates
to this value may be substituted for I in F".

This example shows that, for purely syntactic reasoning to be

achievable, the syntax of the language has to be rich enough to cater for aU

algebraic identities. If this is not the case, then substitution rules will,

of necessity, appeal to the semantic definition of the language.

In §7.5 a property called "Algebraic Closure" is defined. Languages

which posses this attribute will have a sufficiently rich syntax for all

expressions with an equivalent meaning to be substituted for one another.

172

7.3.4.10 Altering the Language to Allow a Syntactic Beta Reduction Ru'le

If the syntax of the language is enriched to include an arbitrary number

of addition operators within an expression, then the rule R
13

becomes valid:

7.3.4.10.1 Syntax

E :: = I: D', E+E let val I=E in E

7.3.4.10.2 Semantics

0: EU -* N) 4 IN

o rji ,, rji

o rDi , y, rDl

grE +E IT = CrE lo- + CrE IT
1212

C rlet val I=E1 in E2 'a' = GrE
21

(T[o rE i, / r1i])

In this language, not only do the Ra and R 13 rules hold as valid

substitution rules but the associativity law of addition holds.

This section concludes the preliminary investigation of the consequences

of particular semantic descriptions of functional languages upon the

substitution rules that these languages enjoy.
For more involved languages the substitution rules will be richer and

more numerous, however, analysis may proceed in exactly the manner.

7.4 The Modelling strategy and the Implicit State

The pure functional language just described in §7.3.4 is now "corrupted"

by the addition of syntax which, when executed causes output to occur. The

corrupted language is called "Cor" for reference.

"Cor", is modelled by a language called "Mod" (the programs of which,

when executed, do not cause output to occur).

The modelling strategy is described by definition of a function, 7,

which maps syntactic elements of the class, F (programs of "Cor"), to E'

(programs of "Mod").

The syntactic mapping, 7, is then proved to be meaning-preserving thus

proving that the modelling strategy is correct.

173

7.4.1 The Language "Cor"

7.4.1.1 . Syntax

VDI

EE+EV'. let val I=E in E

FE print val I=E in F

7.4.1.2 Semantics

The function, 9, describes the meaning of the syntactic class, F, in

terms of a mapping which includes not only the bindings for identifiers but

the output produced thus far by execution of the program.,

The semantics of a program in the language is described by a mapping At.

Some new semantic functions are required to describe Cor: "0" for

appending two lists and the distfix functions "[....... I" and "(.......
)" for

constructing lists and tuples respectively. These functions have their normal

mathematical properties.

VU4 N) 4 IN

EU4 N) 4 IN
M4 N) x Ust N) Mx Ust N)

U4 IN) --> (IN xL Ist IN)

rDl 9 rDl
2

rii rii

0 ýE +E OrE
I
icr + crE

21 (r
6 rVI cr =V rVI a-
6 rlet val I=EI in E1 (r = 19 rE i (T[C rE i (r / r1i

y rEi (cr, 2) = (o rEi a., 2)
9 rprint val I=E in Fl (a-, 2) =9 rFl V

where T' = a. [c rEi a. r1i

and V= Y- 0[6 rEl a- I

At FFI a- =Y rFl (cr, [1)

174

7.4.2 The Model Notation, "Mod"

"Mod" is the language described in §7.3.4, with the addition of 2-tuples

and lists.

7.4.2.1 Syntax

vD: I

<mt>

<LE> <mt> '. E' <LE>

E' E' + E' V: let val I= E' in Ef
112

E' E0 E' <LE> (E'
2 2) 1

7.4.2.2 Semantics

The semantics of "Mod" are described by the meaning function C'.

Note, V is the meaning function for the syntactic class V, described

earlier in §7.4.1.2.

Ev =N+1 ist Ev + (Ev X Ev)

9, : E' -> (I --> Ev) --> Ev

, g, rE' + El 0' rE'l a' + S' rE'l
1212

0, rv, v rv, c.

c, rlet val I E' in E'l T=g, rE'l ((r[O' rEl (r 1221
C' rE' 0 E'l C' rE'l a- 0 0' rE'l a- 1212
c, r(E' E' P 0' rE'l (r, 6' rEl

212

, g, r[E E' 11 9' rEl a...... 0' rE'l
nn

7.4.3 The Model Function 5'

The language "Cor" is modelled, using the language "Mod", by the

syntactic function 9.

0' maps members of F to members of E'.

Y is def ined by cases of the syntactic structure of Fý

175

uses two auxiliary functions 5" and 9'" to translate elements of F 'and

elements of E respectively.

5" :E -* E'

5' :F4
5 : F-*E'

7"(D) D

7"M I

9'"(E +E -7"(E + T' (E

9'"(let val IE in E)= let val I= 7"(E) in 51"(E

5" (print val I=E in F) = let val output = output 0 [7"(E)l in

let val I= 51"M in
V (F)

5" (E) = (Y"(E), output)

5'(F) = let val output =U in 5" (F)

7.4.4 Examples

A couple of examples help to demonstrate the strategy employed by 9', and

the advantage of using it.

7.4.4.1 Example I

In this example, the sentence to be modelled is:

rlet val x=2+4 in

let val y=x+2 in

X+Y,

In this f irst example, the program causes no output to be produced, when

executed. Thus its model is very simple.

176

'The resulting model is built up from the applications of 7" and 5", to

demonstrate the method used by the function 5' (this will be useful for the

reader who wishes to verify the proof in §7.4.5).

The function T' maps syntax from F which is for med solely by the

syntactic formation rule E. Such sy ntax does not cause any output and Is

mapped to identical syntax in E'.

T'Oet val x=2+4 in let val x =2+4 in
let val y=x+2 in let val y= x+2 in

X+Y) X+y

The function . 7' ref lects the f act that the f inal
- result of a program,

must include the value of the output list created by execution, In addition
to the result of evaluation of the expression in "Cor".

Thus

5" (let val x=2+4 in Met val x=2+4 In
let val y=x+2 in let valy=x+ 21n

X+Y) X+Y), output)

The function Y, calls the auxiliary function, V, to perform the

modelling of the various expression constructs of F, all that is then

required, is for Y to model the fact that, initially, the output is empty.

Thus

7(let val x=2+4 in let val output In
let val y =, x +2 in Met val x= 2+4 In

X+Y let val y =xt2 In
X+Y). output)

7.4.4.1.1 Substitution

There are no substitution rules in "Cor" that allow the programmer to

infer anything about the output of a program. Of course, the programmer can

use extra-linguistic reasoning, such as "the program contains no 'prints' and

so creates no output".

In "Mod" however, the Output is explIcItLy mentioned (as a list).

Nothing is "special" about this list, so the normal substitution rules of the

language apply.

177

I i, ji tc1i. �&�

That is, reasoning about output can be conducted withLn the Language

Uself.

In this case the model can be manipulated to:

(14 JI)

This tells the programmer that there is no output and that the program

evaluates to 14.

Of course, in this simple example there is little difference between the

manipulation of the program to reveal facts about 1/0 and the

extra-linguistic reasoning that could be used with the language "Cor".

However, for programs which exhibit more complicated output behaviour, the

ability to manipulate a program according to its syntactic rules will be a

considerable advantage.

7.4.4.2 Example 2

The sentence to be modelled is:

rprint val x=2+4 in

print val y=x+2 in

X+Y: l

This example is identical to the last, except that the values of 'Y' and
fly" are printed out as they are evaluated.

Only those elements of the program which are drawn from the syntax class
E are modelled by Y". The following three expressions are the elements of the

sentence which are drawn from the syntactic class E.

J"(x+Y) X+y
T'(2 + 4) 2+4
9"" (X + 2) x+2

178

The function Y' models the side-affecting constructs (i. e. those in the

syntactic class F).

V (print val x= 2+4 in let val output = output <> [2+41 in
print val y= x+Z in let val x= 2+4 in

X+Y) let val output = output 0 [x+21 in
let val y= x+2 in

(X+Y, output)

The function, 9, merely includes the initial definition for the Initial

value of the output list:

let Val output in
9(print Val x= 2+4 in let Val output output <> [2+41 in

print Val y x+2 in let Val x= 2+4 in
X+Y) let Val output = output 0 [x+21 In

let Val y= x+2 in
(X+Y, output)

This example clearly illustrates that the "cost" of making the Implicit

parts of the state explicit (i. e. as expressible values): Namely, it makes
for larger programs. However, the benefits of the approach far outweigh the
initial disadvantage of a textually longer program.

Besides, the complexities of the model and the modelled programs are
identical: they are both mapped to the same semantic value. The model program
actually evaluates to a syntactic representation of this semantic value,

whereas the original program does not.
This accounts for and justifies the extra notation in ihe model.

7.4.4.2.1 Substitution

Once again, with the language "Cor", extra-linguistic reasoning could be

used to discuss the output of the program.

In the model, however, the "normal form" is:

(14, [6,81)

This tells the programmer that the "Cor" program evaluates to 14, and

produces as output a six followed by an eight.

179

7.4.5 Correctness Proof For the Model Function 9

In this section a proof is presented that the model algorithm embodied
in 5, correctly models programs in "Cor". This is done by showing that the

meaning of any program, rfl, drawn from the domain F, is identical to the

meaning of the model r7(f)1.

Such a proof guarantees the correctness of the modelling strategy with

respect to the meaning of the language being modelled.
Formally:

V Ffl C: F. A rfl = 0' Fflf P

(provided rfl does not mention the identif ler routputl

The proof consists of two lemmas which prove the relevant property for

the modelling algorithms Y" and 9", and a main proof which uses these lemmas

to justify the initial let abstraction (rlet val output = [11 in ...
The modelling algorithm, 7, is only valid, of course, if the program to

be modelled does not mention the identifier routputI, since this -identifier
is introduced to model the output list. This is not a matter for concern,

since the model strategy could be parameterLsed by the name of an (unused)
identifier, from which the model would then be constructed. This has not been

done here since it clouds the proof, and is, in any case, equivalent to the

assumption that routputl is an unused identifier.

Notation

To make the proof s easier to read, a notational shorthand is introduced

for a kind of restriction operator, F, on states:

vx., # ,. x

will be written:

a., ril = a.

180

Lemma I

if a-' r routputl = cr

and rel does not mention routputl

then C' rg"Wla-' = grela-

where rel r= E

This lemma cannot be proved by appealing to the fact that 7" is

syntactLcally the identity function, because this is no guarantee that 91" is

semantEcally the identity function. It is the proof of lemma, I ' that gives

this semantic guarantee.

The proof is by simple induction on the syniactic cases for rel, which

also form the case s in the definition of Y".

Proof of Lemma I

Two Bases Cases for rel:

1) rel =- rdl E D, in which case

0 rdl =V rdl = 0' rdl = 0' FOI " (d)l

2) rel a ril e 1, in which case
o rii =v rii = o, rii = g, r. 7,, (i)i

Induction Hypothesis:

a., r routput, = a.
and re

II and re
2

do not mention routputl

and 6' r. 7" (e)I a-' re a- 12
and 9' rOr"(e)I C., g re a-

Where re I and re I are arbitrary members of E.
12

181

Two Inductive Cases for rei:

1) rei = re +e1 in which case
Ere +e la-

12
re I a- +g re I cr 12

g, r(y-(e W(r' + cr(y,, (e
1W (r'

g, r(g-(e
1+e2W

2)

(by definitlon of C)

(from Induction Hypothesis)

(by definition of G").

rel a rlet val I=e in eI in which case 12
g rlet val I=e in eI a-

12
= Ore i (, [g r, i, / r1i])

=g re I ((r[O" r7m(e)I (r" / rIl

= e, ry-(e
2)I

(a-'[C' rJ"' (e p a.,

= e, rlet val I= 51"(e) in 5"' (e P (r'

Lemma 2

Lf cr, routput, =2

and a-' r routputl = cr

and rfl does not mention routputl

then y rfi (a., y) = S' F9" (f)I cr'

where rfl r. F

(by def InItIon of 9)

(from Induction hypothesis)

(from Induction hypothesis)

(by definition of 0**).

This lemma asserts that provided the model, rg'(fll, is evaluated in an
appropriate state, then the model will be correct. An appropriate state is

one where all identifier bindings other than routputl have identical values
to those in the state of the modelled program, a-, and where the binding for

the identifier routputl is the value of the output list, 2, for the modelled
program (i. e. the output produced "so far").

The lemma also requires that the identifier routputl is not mentioned in

the program rfl.

The proof is by induction on the syntactic cases for rfl, which also
form the cases in the definition of Y'.

182

Proof of Lemma 2

Base Case for Ffl:

rfl a rel r= E, in which case

(, g, routputl)

r(j,,, (e), output)l iT'

rg' (e)l a-'

(by lemma I and deflnltlon of lemma 2)

(by deflnltlon of lemma 2)

(by deflnltlon of 01)

(by deflnltlon of 71)

Induction Hypothesis:

a., routput, = Y-

and a., rroutputl, = a-

and rfl does not mention routputl

and 9 rfl = 0' r-P (f)I

Where rfl r. F.

Required to Show:

Y rprint val I=e in fl (a-, 2) = c, rg,, (print val I=e in f)I a-'

Where rel is an arbitrary member of the syntactic domain E.

LHS =9 rfl (cr[C re-1 a, / rji], y <> [c rel al)
(by definitlon of 3%) 1

RHS = c, riet val output = output 0 [9"(e)] in

let val I= T'(e) in J" (f)I a-'
(by deflnltlon of 9")

g, ry, (f)i /rli, g, r.,, tp,, t <> /r.,, tp,, ti

(by definition of 0")

183

NOW (by lemma I and Induction hypothesis and definition of

0' rJ'"(01 a-** = Orel a-

and e, routput <> [Y"(011 a-'

g, routputi,, <>

209r. 1 .1

so

RHS = 0' r7' V)I a-"

where a" = (a" [0 rel a, rIl
,20

16 rel 0* / routPutl

NOW a-" routputl Y. 0[Orel a- (by def InItion of 0"

and a" r routputl a[0 rel a- / rji (since rIl r- routputl

and T does not mention routputl (by definition of lenuna 2)

so

RHS = 9; rfi ((r[c rei a, / rji i, yo [c rei cl)

(by Induction hypothesis)

= LHS as required.

Main Proof

The main proof uses Lemma 2 to establish:

At rfi = c, ry (f)i provided Ffl does not mention routputl.

That is, the meaning of a program in rfI is identical to the meaning of
its model r5(f)l provided rfI does not mention routputI..

184

Proof

LHS = ; Vr. Y-rfl((r; [D- (by defInItIon of M)

RHS = c, rlet val output H in Y'(f)l (by deflnltlon of 7)

where cr' routputi (by'defInItIon of 9")

NOW all rroutput, = a. (by deflnltlon of Cr")

and a, ' routputl =H (by defInItIon of 0'

and ý rfl does not mention routputl (by deflnltton) '

so

RHS 9 rfl (a-, 2) (by Lemma 2)

LHS as required.

185

! 7-, -, ", -7

7.5 Algebraic Closure

The language described in §7.3.4 demonstrated that it is sometimes not

possible to substitute a value that "one would expect to substitute" simply

because the syntax of the language is not rich enough to permit such a

substitution.

Given a semantic description of the language, It seems that what makes a

substitution reasonable is this: "Any two pieces of syntax which have

equivalent meaning should be substitutable".

Some care is required in this definition however. As Stoy points out

(page f ive of [161) it would not be reasonable to substitute "6" for "1+5" in

"21+57".

As this example demonstrates, the parser actually does play some part in

the description of the semantics of the language. In semantic descriptions it

is normal to assume that sentences in the language have "already" been parsed

(according to a grammar), into an abstract syntax.

Now, for any particular abstract syntax, there may be many ways of

parsing a particular sentence into this abstract syntactic structure.

This is precisely the part played by the parser in the definition of the

mapping f rom sentences of the language to their meaning.

In this discus. sion, and throughout the literature on Semantics, it is

assumed that the mapping from sentences of the language to abstract syntax is

not contentious. If elucidation is required, then a grammar will be

necessary, in addition to the abstract syntax.

Thus, in the discussion of substitution rules, it is the abstract

syntactic classes that will be substituted for, in abstract syntactic

expressions, rather than concrete syntactic sub strings within concrete

syntactic strings.

7.5.1 A Definition of Algebraic Closure

For a semantic function, 9, mapping elements of a syntactic class, E,

into a semantic domain, S, the set VO, shall denote the set of possible

semantic values produced by 6. That is VO =46 I-el : rel eE).

186

CHAPTER EiGHT

CONCLUSIONS

CHAPTER EIGHT CONCLUSIONS

Compared to procedural notations, functional notations are rich In

algebraic properties and enjoy a variety of flexible proof techniques.

Chapter two briefly sets out the differences between the procedural and
functional styles of programming.

There are several techniques in print [44,61,79,801 and In the

"folklore" of computer programming, which allow a programmer to convert a

procedural programming construct into a functional notation.
This thesis shows that these techniques are only valid when the state of

computation is simply an environment mapping from Identifiers in a program's

syntax to the semantic values which it computes.
The thesis makes a distinction between the explicit state (the

environment mapping) and the implicit state (every other state-component).
Chapter three describes a general method for modelling the Implicit

state -with an explicit state. Chapter three thus unifies the existing, ad
hoc, techniques for modelling and extends the application area of these

techniques to include any and every procedural program.

In chapter four a simple technique called "Abstraction Projection" Is

introduced. This technique allows a programmer to produce many distinct model
ftinctions for one procedural program. Each model is projected onto a small

set 'of the semantic values. The technique gives a programmer the ability to
focus on a particular aspect of computation and "abstract away" from all
other details of computation which are irrelevant.

Chapter five presents some strategies for converting functional models

back into a procedural notation.

The Functional Modelling Approach thus allows a procedural programmer to

use functional programs to analyse any semantic value computed by any

procedural program.

209

Functional programs are ideal for analysis due to their rich algebraic

properties and since Projection Abstraction allows any semantic value to be

the result of a model, the strategy can be applied to a wide variety of

application areas. Some of the possible applications of the strategy are

demonstrated and discussed in chapter six. Specifically these are:

Structural alteration (reverse engineering)

Error-detection and removal

Ef f iciency improvement
Specification generation and proof construction
Language conversion -

Many other application areas may. be discovered in the future. Some of
these are briefly described in chapter nine: I

Complexity analysis

Compile-time Garbage collection

Parallel execution path analysis (chapter six contains an example)

The application areas of the modelling strategy clearly include any f orm.

of compile-time analysis that may be performed upon a procedural program.

The semantic foundations of this thesis rest upon the notion of
"Referential Transparency" and the algebraic treatment of programs. The first

six chapters also implicitly assume a definition of what exactly. constitutes
of procedural programming" and "functional programming".

Chapter seven discusses these semantic assumptions, turning them from

assumptions into formal definitions.

The essential contributions are:

A formal definition of "Functional Programming Language".

A formal definition of "Procedural Programming Language".

A formal definition of "Valid Substitution Rule", in the context of

which a discussion of "Referential Transparency" is presented. .-
A formal definition of a new concept: "Algebraic Closure", which

can be used to "iron out" substitutive "special cases" in a programming
language.

210

CHAPTER NINE

FUTURE WORK

CHAPTER NINE FUTURE WORK

9.1 Modelling Strategies

Chapter seven shows how a programmer could use the semantic description

of a procedural programming language to construct a modelling strategy for

the language and to prove this strategy correct with respect to the semantic

description.

Sadly, there are no semantic descriptions available for commonly used

procedural languages such as C and Pascal. I
One task for future work is to describe a semantics for such programming

languages and to construct and prove modelling strategies for them.

9.2 CASE Tools for Reverse Engineering

Many of the techniques described in this thesis, such as model

production and Projection Abstraction may be performed automatically.

Implementation of these automatable techniques would create a powerful

and flexible CASE tool for the analysis and manipulation of procedural

programs.

9.3 'Application Areas

There are many application areas of this work which have not yet been

fully examined. Some of these are listed below:

9.3.1 Compile-Time Garbage Collection

By choosing the heap and heap pointer as the semantic domain onto which

a model is projected, a programmer will be able to analyse the way In which

the heap store is allocated, used and disposed of.

This analysis may lead to improvements in the use of store in a similar

manner to those described"by Darlington in [911.

211

9.3.2 Parallel Execution Paths

Functional languages are deemed amenable to parallel evaluation [1,581.

As such, the modelling strategy may be used to expose the paths

available within the program which can be executed in parallel.

A simple example of this possibility is described in chapter six (§6.7).

9.3.3 Homogenisation of Data Structures

One, analysis that has not been performed in the examples contained in

chapter six, is that of homogenisation of data structuring.,

Large programs which are badly designed, often have - no organised

approach to the storage of data.

With the automation of modelling techniques will come the ability to

analyse the underlying data structures demanded by a program, and ought to

lead to the creation of a set of techniques for-homogenisation of the storage

requirements of a program.

9.4 Semantic Foundations

It is surprising that terminology such as "functional language".

of procedural language" and the like are used so freely, when such terms are so

ill defined.

This lack of definition is all the more surprising when one considers
the vast body of work on semantics of programming language which could be

used to resolve the inadequacy.

Chapter seven attempts a formal definition of the notion of "functional"

and "procedural" programming, but more work is required to complete such
def initions.

A similar approach -could also be used in the definition of other

undefined terms in common parlance, such as "Object Oriented Programming",

"Low Level language", "More/Less Expressive" and so on. -
The are many advantages of a formal semantic approach to the def inition

of these terms (over and above the certainty that such definitions would

produce).

212

For example, a language which meets the requirements set out In the

definition of the term "functional", will also be the subject of any theorems

that can be derived from these requirements. Thus a formal semantic
definition of "functional" offers similar benefits to the formal description

of an "Abstract Data Type". One could speak of an "Abstract Linguistic Type".

Theorems would be constructed in terms of the abstract linguistic definition

and will be applicable to all programs which satisfy the definition.

9.5 Language Design

It seems, from the work presented in chapter three, that many procedural

languages only lack algebraic properties of substitution because of the

implicit state. Perhaps it might be possible to define a language which Is as

efficient as any procedural language, but which does not sacrifice algebraic

flexibility in order to achieve this efficiency.

213

APPENDix Al

SUBSET OF ML USED IN THIS THESIS

Al The SubSet Of ML Used

This appendix describes the subset of ML used in modelling. The notation

used is Extended Backus Naur Form. The syntax described here is a very small

subset of the total ML syntax. Once a model has been created In ML, of

course, then manipulation can be used to produce a modified model, which may

use any (possibly larger set) of the ML syntax.

A syntax description of the entire ML language can be found in [411.

A brief tutorial on the subset of ML used here for modelling is given In

§2.2.

The subset of ML used depends upon the expression syntax, E, of the

procedural language.

<ML>
<def initions>
<def inition>
<Exp>

<f ormals>
<actuals>
<Empty>
<f ormaD
<actuaD
<B uiI t-in>
<d ec1 arat ions>
<d ec1 arat ion>

<declarations> <def in! t ions>
<definition> : <definition> <definitions>
fun <identifier> Wormals>) <Exp>
<E> :
if <E> then <Exp> else <Exp>
let val <ident ifier> = <E> In <Exp>
let fun <identifier>(<formals>

<Exp> in <Exp>
<identif ier> (<actuals>
let val Wormals>) =

<identif ierMactuals>) in <Exp>
<Built-in> (<actuals>)
<Empty> <formaD , <formals>
<Empty> <actual> , <actuals>

<Identifier>
<E>
cons : empty : Null 1' Head : Tai 1: Append
<Empty> : <declaration>; <declarations>
val <identifier> = <E>

APPENDix A2

IMPLEMENTATION

A2 Implementation

In order to make any firm conclusions about the suitability of the

modelling technique for analysing and altering the structure of large

programs it will be necessary to implement a "CASE tool" which will embody

the modelling strategy, and will also provide various "standard" manipulation

techniques.

Such a tool could also contain various strategies like those outlined In

chapters three, four and five.

It is envisaged that as the system is used, extra heuristic strategies

for analysis and manipulation will be added to the system's repertoire.

A small prototype program has been implemented on the SUN Microsystems

which converts Fortran IV into ML, according to the strategy outlined In

chapter three.

The program is written in compiled Hope [511.

However, much more work is needed to Implement a more general system

which will treat all procedural languages in a unified manner, and which has

manipulation and converting back strategies.

Work towards this goal has been undertaken [741, but more time and

resources are required.

REFERENCES

1. J. Darlington, M. D. Cripps, A. J. Field, P. G. Harrison & M. J. Reeve
"The Design and Implementation of ALICE :A Graph-reduction machine".

Data flow and Reduction Architectures. ed Thakker. IEEE Press 1987.

2. J. Darlington & R. M. Burstall : "A Transformation System for Developing
Recursive Programs".

Journal of the ACM 24(l), 44-67.1977.

3. C. A. R Hoare : "An Axiomatic Basis for Computer Programming".
Communications of the ACM 12,576-580.1969.

4. A. M. Turing : "Checking a Large Routine".
Conference on High-Speed Automatic Calculating Machines, Cambridge,

1949.

5. P. Naur : "Proof of Programs by General Snap-Shots".
BIT 6,310-316.1966.

6. R. W. Floyd : "Assigning Meanings to Programs".
Proceedings of Symposia in Applied Mathematics 19,19-32.1967.

7. C. A. R. Hoare, E. W. Dijkstra & O. J. Dahl : "Structured Programming".
Academic Press, New York. 1972.

S. K. R. Apt : "Ten Years of Hoare's Logic".
Communications of the ACM 3,4,431-483.1981.

9. P. J. Landin : "A Formal Description of Algol 60".
Formal Language Description Languages, ed T. B. Steel, North-Holland

Publishing, 1966.

10. J. Mc Carthy : "A Formal Description of a Subset of Algol 60".
Formal Language Description Languages, ed T. B. Steel, North-Holland

Publishing, 1966.

11. C. Strachey : "Towards a Formal Semantics".
Formal Language Description Languages, ed T. B.

ISteel,
North-Holland

Publishing, 1966.

12. A. Church : "The Calculi of Lambda Conversion".
Annals of Mathematical Study 6. Princeton University Press, 1941.

13. D. Scott : "Outline of a Mathematical Theory of Computation".
Proceedings of the fourth Princeton Conference on Information Sciences

and Systems. Princeton 1970.

14. D. Scott & C. Strachey : "Toward a Mathematical Semantics for Computer
Programs".

Technical Monograph PRG 6. Oxford University Programming Research Group.
1971.

15. D. Scott : "Data Types as Lattices".
SIAM Journal of Computing 5,1976.

16. J. E. Stoy : "Denotational Semantics : The Scott-Strachey Approach to
Programming Language Theory".

MIT Press, 1977.

17. S. Abramski & C. J. Hankin : "Abstract Interpretation of Declarative
Languages".

Ellis-Horwood, 1987.

18. C. Reade : "Elements of Functional Programming".
Addison-Wesley, 1989.

19. C. Hankin, H. Glaser & G. Till : "Principals of Functional Programming".
Prentice-Hall, 1984.

20. J. Darlington, D. Turner & P. Henderson (eds) : "Functional Programming
Applications and Implementations".

Cambridge University Press, 1982.

21. P. G. Harrison & A. J. Field : "Functional Programming".
Adison-WesleY, 1988.

22. J. Darlington : "Program Transformation".
in [201.

2.3. R. M. Burstall "Proving Properties of Programs Using Structural
Induction".

The Computer Journal 12,41-48,1969.

24. S. Eisenbach & C. Sadler : "Why Functional Programming? ".
in [781

25. D. Friedman and D. Wise : "CONS Should Not Evaluate its Arguments".
In "Automata, Languages and Programming", Edinburgh University Press,

1976.

26. P. J. Landin : "A Correspondence Between Algol-60 and Church's Lambda
Calculus", Communications of the ACM, 8,3

27. M. Harman & S. Danicic : "SOLI :A First Prototype Statistically
Oriented Language".

Internal Publication of the School of Computer Science, North London
Polytechnic, December 1991. (#2).

28. C. A. R. Hoare : "Communicating Sequential Processes".
Prentice Hall, 1985.

29. D. Bull, I Morrey &J Pugh : "Software Engineering :A Programming
Approach".

Pentice-Hall, 1987.

30. P. Henderson : "Purely Functional Operating Systems".
in [201.

31. M. Attkinson : "Reverse Engineering".
Internal Publication of the School of Computer Science, North London

Polytechnic, 1990. M)

32. D. A. Turner "Recursion Equations as a Programming Language".
in [201.

33. C. A. R. Hoare "A Proof of the Program FIND".
Communications of the ACM 14,1,1971.

34. C. A. R. Hoare : "Procedures and Parameters : An Axiomatic Approach".
Lecture Notes in Mathematics, vol. 188, Springer Verlag, NY, 1971.

35. J. E. Stoy : "Mathematical Aspects of Computer Programs"
in [20).

36. M. J. C. Gordon : "The Denotational Description of Programming Languages,
An Introduction".

Springer-Verlag, 1979.

37. M. Harman & S. Danicic "Programming Languages for Statistical
Computation".

CompStat Conference on Computational Statistics 1990. Proceedings
Physica Verlag, Berlin, 1990.

38. B. Gilchrist & A. Scallan : "Funigirls :A Prototype Functional Language
for the Analysis of Generalized Linear Models".

Compstat Conference on Computational Statistics, 1988.
Proceedings Physica Verlag, Berlin, 1988.

39. H Abelson & GJ Sussman : "Structure and Implementation of Computer
Programs".

MIT Press, 1985.

40. J. Darlington, P. Harrison. H. Khoshnevisan, L. McLaughlin, N. Perry, H.
Pull, M. Reeve, K. Sephton, L. While & H. Wright : "A Functional Programming
Environment Supporting Execution, Partial Evaluation and Transformation".

Parle Conference on Parallel Computation 1989.

41. A Wikstrom : "Functional Programming Using Standard ML".
Prentice Hall Series in Computer Science, 1987.

42. C. A. R. Hoare & N. Wirth : "An Axiomatic Definition of the Programming
Language PASCAL".

Acta Informatica, Vol 2, p335-355,1973.

43. E. W. Dijkstra : "A Discipline of Programming".
Prentice-Hall, 1976.

44. J. MC Carthy : "Towards a Mathematical Theory of Computation".
Proceedings of the International Foundations of Information Processing

Congress, Munich, Germany, C. M Poppelworth (ed). 1962.

45. C. Strachey & C. Wadsworth : "Continuations :A Mathematical Semantics
for Handling Full Jumps".

Technical Report, PRG-11, Oxford University Computer Lab., Programming
Research Group, 1974.

46. R. DeMillo, R. Lipton &A Perlis : "Social Processes and Proofs of
Theorems and Programs".

Communications of the ACM Vol. 22, No. 5.1979.

47. R Mathews "The Chip With a Sting In its Tail".
New Scientist, 13th. July 1991. No. 1777.

48. J. Fetzer : "Program Proving : The Very Idea".
Communications of the ACM Vol. 31, No. 9.1988.

49. K. Gi5del : "Uber Formal Unentscheidbare Sdtze der PrIncipla Mathematica
und Verwandter System I".

Monatstschefte Math. Phys. 38, pl73-98.1931.
English Translation In : "The Undecidable", Raven New York. M. Davis

(ed). 1965. -

50. J. Vuillemin : "Proof Techniques for Recursive Programs".
Ph. D. Thesis, Computer Science Dept. Stanford, California.

51. R. M. Burstall, D. B. M ac Queen & D. T. Sanella : "HOPE : an Experimental
Applicative Language".

Internal Report, Dept. of Computer Science. University of Edinburgh.
1980.

52. D. A. Turner : "An Overview of Miranda". SIGPLAN Notices 21,158-166.
1986.

53. D. A. Harrison : "Report of use of Functional Languages".
Usenet comp. lang. functional (D. A. Harrison@uk. ac. newcastle).

54.1. Moor "Realistic Functional Programming".
in [781.

55. D. Scott : "Models for Various Type-Free Calculi".
Proceedings of the Fourth International Conference on Logic, Methodology

and the Philosophy of Science, Bucharest, P. Suppes et al (eds). North
Holland, Amsterdam. p157-187.1973.

56. H. P. Barandregt : "The Lambda Calculus : Its Syntax and Semantics"
North Holland Studies in Logic and Foundations of Mathemat ics, vol 103.

North Holland, Amsterdam. 1984.

57. Z. Manna : "Mathematical Theory of Computation".
McGraw-Hill 1974.

58. M. Cripps, T. Field & M. Reeve : "An Introduction to ALICE :A
Multiprocessor Graph-Reduction Machine".

in [781.

59. S. C. Kleene : "Introduction to Mathematics".
Van Norstrand, N. Y. 1950.

60. Z. Manna, S. Ness & J. Vuillemin : "Inductive Methods for Proving
Properties of Programs".

Communications of the ACM Vol. 16, No. 8.1973.

61. J. McCarthy : "A Basis f or a Mathematical Theory of Computation".
in "Computer Programming and Formal Systems". P. Brafford & D.

Hirschuerg (eds). North Holland.

62. N. Wirth : "Algorithms + Data Structures = Programs".
Prentice-Hall, New Jersey. 1976.

63. B. Kernighan & D. M. Ritchie : "The C Programming Language".
Prentice Hall, Software Series, 1978 (Reprinted Second Edition 1988).

64. P. J. Landin : `rbe Next 700 Programming Languages".
Communications of the A. C. M. 9, ppl57-164.1966.

65. M. C. Henson : "Elements of Functional Languages".
Blackwell, 1987.

66. B. J. MacLennan : "Functional Programming : Practice and Theory".
Addison Wesley, 1990.

67. H Shildt : "Modula-2 Made Easy"
Osbourne McGraw-Hill.

68. R. L. While : "Behavioural Aspects of Term Rewriting Systems".
Ph. D Thesis. Functional Programming Research Group. Imperial College.

1987.

69. W. Stoye : "Message-Based Functional Operating Systems".
Science of Computer Programming, vol 6, No 3.291-311.

70. S Abramski : "Reasoning About Concurrent Systems".
in "Distributed Computing System Programme". I. E. E. Digital Electronics

& Computing, Series 5. D. Duce(ed), 1984.

71. N Perry : "Hope*C :A Continuation extension for Hope
Internal Report of the Imperial College Functional Programming Research

Group. ref IC/FPR/LANG/2.5.1/21.1987.

72. R. Bailey : "Functional Programming with Hope".
Ellis-Horwood, 1990.

73. D. E. Knuth : "The Art of Computer Programming".
Addison-Wesley, 1968. (page 353).

74. G. Karakitsos : "From MLT to SAM".
Internal Publication of the School of Computing, North London

Polytechnic. (#4).

75. Conference on "Formal Semantics of Programming Languages", September
14th - 16th, 1970.

Proceedings ed. R. Rustin, Prentice-Hall, New Jersey.

76. D. Scott : "Lattice Theory, Data Types and Semantics".
p65 of [751.

77. E. W. Dijkstra : "Go To Statement Considered Harmful".
Communications of the ACM, 11,3. Page 147.1968.

78. S. Eisenbach (ed.) : "Functional Programming : Languages, Tools and
Architectures".

Ellis Horwood, 1987.

79. J. H. Morris : "Real Programming in Functional Languages".
in [201.

80. J. H. Morris, Jr. : "A Correctness Proof Using Recursively Defined
Functions".

in [751.

81. C. Strachey : "Varieties of Programming Languages".
Oxford University Technical Report : PRG-10. Oxford Uni. Computer Lab.,

Programming Research Group, 1972.

82. D. Scott : "Logic and Programming Languages".
Communications of the ACM, 20,9,1977.

83. T. B. Steel (ed) : "Formal Language Description Languages".
North-Holland Publishing, Amsterdam, 1966.

84. A. Blikle &A Tarlecki : "Naive Denotational Semantics".
Conference on Foundations of Information Processing, 1983.
Proceedings published by North-Holland publishing, R Mason (ed.).

85. J. M. Cadiou : "Recursive Definitions of Partial Functions and their
Computations".

Ph. D. Thesis, Computer Science Dept., Stanford University, California.

86. J. H. Morris : "Lambda Calculus Models of Programming Languages".
Ph. D. Thesis. Project MAC, Technical Report TR-57. MIT, Cambridge,

Mass.

87. D. McCracken : "A Guide to Fortran IV Programming".
Wiley, New York, 1965.

88. C. Bohm & G. Jacopini : "Flow Diagrams, Turing Machines and Languages
with only Two Formation Rules".

Communications of the ACM, 9,5,1966.

89. E. Ashcroft & Z. Manna : "The Translation of 'goto' Programs Into
*while' Programs".

Proceedings of the IFIP Congress. North-Holland, Amsterdam, 1971.

90. J. Backus : "Can Programming be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs.

Communications of the ACM, 21,8.1978.

91 J. Darlington & R. M. Burstall : "A System Which Automatically Improves
Programs". Acta Informatica 6,41-60.1976.

