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Abstract 

This thesis shows how any Procedural Programming notation may 
be modelled by a purely Functional notation and discusses the 
applications and Implications of this modelling approach. 

Existing ad hoc modelling techniques are gathered together 
within a common framework. 

The thesis shows that these techniques break down when the 
state of computation for a procedural language Is not an 
environment mapping from identifiers to denotable values. 

A simple method for overcoming this difficulty is Introduced, 
demonstrating that models may be constructed for all procedural 
programming notations. 

The modelling approach allows the considerable body of 
functional reasoning techniques to be brought to bear In the 
analysis of procedural programs. 

The thesis Introduces a simple technique called "Abstraction 
Projection", with which the programmer may project a model onto a 
sub domain suitable for a particular analytic task. 

Abstraction Projection removes from the model all details 
irrelevant to the computation of values within this sub domain. 

The thesis also provides semantic definitions for the terms 
"Functional Language", "Procedural Language" and "Referential 
Transparency". 

Keywords : Functional Programming, Procedural Programming, Denotational 
Semantics, Program-Proving, Program-Transformation, Referential Transparency, 
Axiomatic Method, Functional Models, Abstraction Projection. 
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CHAPTER ONE INTRODUCTION 

Functional notations are considered superior to their procedural 

counterparts as a result of the rich algebraic properties that they enjoy. 
This thesis describes a complete strategy for modelling procedural 

programs by equivalent functional programs, thus allowing a procedural 

programmer to apply functional reasoning techniques to the analysis of their 

programs. 

1.1 Chapter Two: Procedural and Functional Notations 

Chapter two sets out the functional notation used in this thesis (a 

small subset of MU and briefly highlights the differences between the 

Procedural and Functional style. This chapter also describes, in outline, the 

essential semantic framework within which the modelling strategy is 

constructed. 

1.2 Chapter Three: The Modelling Approach 

The first author to describe a functional modelling technique was John 

McCarthy in [44,611. McCarthy ý was concerned with describing the semantics of 

programming languages, his work was subsequently incorporated into the 

Denotational Description technique [161. 

The first author to suggest that functional notation was an ideal 

notation with wýýIch'to investigate the 'properties I of procedural, programs was 

James Morris in [79,801. 

In [79,80,44,611 Morris and McCarthy describe several techniques for 

modelling various procedural programming constructs. 
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Together with well-known techniques, such as modelling loop constructs 
by tail recursion, there thus exists a set of as hoc approaches to modelling 

most common procedural programming constructs by functional equivalents. 
§3.2 describes these techniques and shows that they break down when the 

state of computation is not an environment mapping. That is, when the state 
is not a mapping from the identifiers of the language to denotable values. 

In §3.3 a simple technique for overcoming this difficulty is introduced. 

This technique involves the inclusion of extra identifiers with a consequent 
increase in the size of the denotable value space. 

The inclusion of these extra identifiers allows the implicit part of the 

state to be modelled (within the procedural notation) by the explicit part of 
the state (the environment mapping). 

Many authors, for example Stoy in [161, claim that the non-referential 
transparency of procedural languages is attributable to the presence of the 

assignment statement. §3.4 presents a brief polemic on the subject in which 
this claim is refuted. 

1.3 Chapter Four: Abstraction Projection 

The model for a procedural program includes in its result tuple all the 

semantic values computed by the program. 
For large programs this is unacceptable. 
Chapter four presents a simple technique called "Abstraction Projection" 

which allows the programmer to project a model onto a reduced domain. 
This means that several, distinct models may be produced for one 

original procedural program, each projected onto a different domain. 
Each of these models is a functional program that computes some part of 

the overall effect of the procedural program. All computation details which 
do not contribute to the computation of a model's result will be lost, thus 

providing the programmer with clarity by abstraction. 
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1.4 Chapter Five: Converting Models Back Into Procedural Notation 

Chapter five describes some techniques for converting procedural models 
back into functional notation. 

1.5 Chapter Six: Applications of Functional Modelling 

Chapter six describes- some applications of --the modelling approach. 
These are -many. and varied, since a model may be used to analyse and 

prove properties of any compile-time feature of a procedural program. , 
, Several programs from textbooks are, used to. demonstrate the following 

applications of modelling: 

Proof 

Specif ication-Recovery 

Error-Detection 

Ef f iciency Improvements 

Restructuring 

Language Conversion 

The examples are only small (the largest, is about five pages). However, 

the modelling techniques described in chapters three, four and f ive can all 
be automated allowing the strategy,, to be applied to programs of arbitrary 

size. 
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1.6 Chapter'Seven: Semantic Foundations 

Chapter seven investigates the semantic foundations of the modelling 

strategy. 
The advantage of a functional notation are to be found in its algebraic 

properties. Specif ically, many authors attribute a property called 
"Referential Transparency" to functional programming notations. However, 

authors disagree on what precisely constitutes "Referential Transparency". In 

§7.2 a definition of "Referential Transparency" is given. The implications of 
this definition are investigated in §7.3. 

§7.4 shows how a modelling strategy can be derived from and proved 

correct In terms of the semantic description of the programming language. 

In many languages it is not possible to substitute two pieces of syntax 

which have equivalent meanings. This observation highlights a discrepancy 

between the syntax of a language and its semantics. §7.5 introduces a 

property called "Algebraic Closure". "Algebraic Closure" is enjoyed by any 
language in which a piece of syntax can be substituted for any other piece of 
syntax with equivalent meaning. The definition of Algebraic Closure may be 

used in a generative mode, allowing a language to be rendered "Algebraically 
Closed", and thus ironing out the irritating discrepancy which denies a 
programmer complete algebraic freedom. 

The words "Functional Programming" and "Procedural Programming" have 
been used throughout this thesis (and, indeed, throughout the history of 
computing) without appeal to any definition of terms. This lack of rigor is 

addressed and rectified in §7.6 and §7.7. 
§7.6 presents a definition of "Functional Language". 
§7.7 presents a definition of "Procedural Language". 
Finally, §7.8 looks at the issue of representing the interleaving of 

events in functional language, demonstrating that this information is not 
captured by a stream-based program in the style of Henderson [301. 

1.7 Chapter Eight and Nine: Conclusions and Future Work 
Chapter eight summarises the contribution of this thesis and chapter 

nine briefly lists directions for future work. 
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CHAPTER TWO FUNCTIONAL AND PROCEDURAL LANGUAGES 

2.1 Introduction 

The chapter outlines the semantic issues which differentiate between 

procedural and functional languages. 

The functional language, ML, is introduced in §2.2 and the algebraic 

rules of manipulation which apply to functional programs are listed in §2.3. 

In §2.5 the Axiomatic method is briefly described and attention is drawn 

to the problems experienced by procedural-language programmers due to the 

algebraic inflexibility of procedural languages. 

2.2 The Functional Notation, ML 

There are many functional programming languages currently in use 
[41,51,52,20,39,371. All of these languages are semantically very similar. 
The language ML has been used in this thesis since it seems to be the most 

popular [531. 

Only a very small subset of the whole language ML is required for 

modelling purposes. This subset is described in appendix Al. The standard 

reference on the whole ML language is to be found in [411, however, it should 

not be necessary for the reader to consult this text in order to appreciate 

the functional modelling strategy described in this thesis. 

2.2.1 A Brief ML Tutorial 

What follows is a brief tutorial on the subset of ML used in this 

thesis. 

2.2.1.1 Expressions 

The basic forms of side-effect-free expressions permitted in all and any 

procedural notation are assumed to be available in the subset of ML used, 

together with the operators for forming new elements of these basic types 

from old ones. 
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2.2.1.2 Function Def inition 

In ML, a function definition is introduced with the keyword mf un". Thus: 

f un times xy=x 

describes the function which takes two parameters and, returns the result 

of multiplying them together. 

2.2-1.3 Function Application 

The application of a function to its arguments is written by 

juxtaposition. Thus the application of the function "times", to the two 

arguments 'T' and "T', would be written: -I 

times 23 

2.2.1.4 Tuples 

In addition to the basic types of the language, compounds of types may 

be formed by enclosing several elements (possibly of differing type) in 

parenthesis. The result is the formation of an object called a tuple: 

I (l, true, z') 
I 

The arity of a tuple is often prefixed to the beginning of the word 

tuple. For example the tuple just described is a "3-tuple". 

6 



2.2.1.5 Conditional Expressions 

In a functional language, the 'conditional is an expression. It is 

written (in MU: 

if E then E else E 
123 

Where E must be a boolean expression, and E and E may be any 
I' 2- 3 

expressions provided they have the same type. - 
The value of the conditional expression is E if the result of E is 

2 
true and E if it is f alse. 3 

2.2.1.6 Lists 

The following notation-As -used 
for lists: 

"hd" f or taking the head of a list and "tl" f or the tail. The list 

construction function "cons" may be written as an' infix operator It:: ". The 

empty list is written "nil", and the test for an empty list Is written 
"null". A list of specified length may also be constructed by enclosing its 

elements in square brackets. The "append" function perf orms list 

concatenation. 

2.2.1.7 Strong Typing 

The model functions used in this thesis 'make use of- untyped-lists. This 

is a generalisation of the'ML list (which is* typed). 

It is fortunate that the functional notation may be executed, but from 

the point of view of functional 'models, it is only the conciseness and 

"algebraic" nature of the notation that is important. 

The untyped lists used in I models can always 'be replaced by completely 

typ I ed versions with 'the introduction of some extra construction and selection 

functions for a "universal type". 
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2.2.1.8 Partial Application and Higher-Order Semantics 

Consider the function "add", defined below: 

f un add xy= x+y 
I 

X+Y 

This function takes two parameters and returns their sum. Using an ML 

interpreter, a console session might include the following (the machine's 

printing is shown in italics): 

fun add xy= x+y 
add : tnt int int 
add 23 5 
28 : tnt 
add I (add 2 3) 
6: tnt 

The machine responds to expressions by evaluating them. 

When the programmer enters a function definition, the machine responds 

by deducing the type of the function, in this case integer to (a function 

from) integer to integer. 

The type-inference aspect of ML is not an issue in this thesis and may 
be ignored. 

A common slogan associated with functional programs is that functions 

are "first class citizens" [321. This phrase is intended to convey the idea 

that a function can be treated in the same manner as integers, characters and 

other base-types. That is, functions may be the result of expressions and may 
be combined to, form new functions using various operators over functions. 

To achieve a paradigm for programming in which functions are treated in 

a similar manner to base types, functional languages allow their functions to 

be applied to fewer arguments than they actually require. 
The result of such a "partial" application is, itself, a function (which 

requires the rest of its arguments before it can be "fully" evaluated). In 

[321, Turner demonstrates the dramatic increases W program brevity that may 
be achieved using partial application. 
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A simple illustration is the partial application of the addition 
function defined above. The console session described above could be 

continued as follows: 

f un succ = add 1 
succ :_ Ent, -> Ent 

The first line shows the programmer defining the successor function by 

partially applying the function "add" to only one of its two arguments. 
The meaning of "add 1" can be viewed as the substitution of the 

expression, 1, for the argument, x, in the body of add, thus: 

I 
succ-y =---l+y -I 

Applying a function to none of its arguments and applying a function to 

all of its arguments are simply special cases of partial application. 

2.2.1.9 Higher-Order Functions 

Applying a function to none of its arguments simply yields the function 

itself. This is how higher-order semantics are achieved in functional 

notations. Namely, a function "g", may take -as its parameter a function. In 

order to supply a particular (named) function to "g", say 'T ", all that is 

required is to apply "f " to none of its parameters. 

For example, a very useful function, usually- called "map", is one which 

takes a function and a list and applies the function to each element in a 

list to give a new list. Consider the console session: 

f un map fL=1f nul IM then [I 
else Mead(l. )) :: (map f tall(L)) 

map : (alpha -ý-> beta)- I Lst(alpha) -> Itst(beta) 
fun listinc =map succ 

-I Is t Inc :I Lst (Ent) -> I ist(Lnt) 
Ii st i nc [12,3,4,51 
[ 2,3,4,5,61 :I ist(int) 
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2.2.1.10 Anonymous Functions 

Any function may be supplied as an argument to a higher-order function, 

not just named functions and their partial applications. 
_ 

This is achieved by having a notation for describing a function 

anonymously, using an expression which yields a function as its result. These 

functions are often called "Lambda Functions", in recognition of the fact 

that 'the Lambda notation provides just such a facility, and was the first 

"functional notation" [12,561. 

In ML, a lambda function whose formal parameters are xII... Vx n' 
and 

whose result Is given by the expression E, is written: 

fn x => E 

Thus the definition of the successor function can also be written: 

val succ = fn x => x+l 

2.2.1.11 Let Abstraction 

The values of expressions which are to be "stored" for later use can be 

achieved using the let abstraction clause: 

let val x=E in G 

This is an expression, the value of which is f ound by evaluating G with 

all occurrences of "x" replaced by "E". 

The let abstraction construct is thus merely syntactic sugar (641 for: 

Inx 
=> G) E 

--I 
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The let abstraction construct may also be used with a tuple of 
identif iers, xI..., x and a tuple-valued expression, E: 

let val (x ..., x )=E in G 
A 

The let abstraction construct can also be written as a "where" 

abstraction: 

I 
let val x=E in GG where x=EI 

2.2.1.12 Sequencing 

In a functional notation the only sequencing of expression-evaluation is 

that which is implicitly demanded by the data-dependency in the function-call 

hierarchy. 

In particular, there is no notion of the procedural statement sequence. 

2.2.1.13 Henderson's Lazy Streams 

Because the programmer has no ability to explicitly demand a certain 

execution sequence, representing Input and Output sequencing is a particular 

problem for a functional style. 
One solution to this problem, suggested by Henderson in [301, is to 

write a functional program as a function, 'T', from lists to lists. The 

result of "f" (a list) is the output, and the input (also a list) is provided 
to "f" as the value of its actual parameter., 

In this thesis, functional programs are used as models of procedural 

programs only in order to investigate properties of these programs. Input and 

output sequencing does not normally form part of such. investigations and so 
the problem of representing it does not normally arise. -- I 

In chapter three, a general modelling strategy is described. A modelling 

strategy can always be constructed from the semantics of the programming 
language to be modelled. This means that it is possible to model input and 

output sequencing in a perfectly natural way if it is described in the 

semantics of the language (see, for example §7.8). 
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2.3 The Fold/Unf old Transformation Rules 

There are well-established rules of algebraic manipulation for 

functional languages. These rules are collectively known as the "Fold/Unf old 

Methodology" [221. 

The rules allow new functions to be created and existing functions to be 

altered, whilst guaranteetng that the whole functional program will still 

compute the same result. These rules are used extensively throughout this 

thesis, and form one of the main motivations for the modelling approach. 

The six transformation rules are listed below. The notation E[a/bl 

represents the expression formed by substituting all occurrences of b in the 

expression E, by a. 

(1) Fold 

Let f(xl,..., xn) =E and g(xl,..., Xm) = E' be the equations of two 

f unctions f and g. 
If E' contains an expression E[tl/xl,..., tn/xnl where tl,..., tn are n 

terms, then E' can be written E'[f(tl,..., tn)/Ej. 

(2) Unf old 
Let f(xl,..., xn) =E and g(xl, ---, Xm) = E' be the equations of two 

functions f and g, where E' contains a function application f(al,..., an) 

(n': sn). The equation for g can be replaced by g(xl,..., xm) 

E'[A/f(al,..., an')] where A= E[ai/xij. 

(3) Instantiation 

Let f(xl,..., xn) = E, and let cl,..., cm be constants (m: sn), then some 
(or all) of the free variables (xl,..., xn) in E can be replaced by cl...., cm 
(assuming that the ci's have identical types to the xi's). In other words the 

equation for f can be replaced by f(xl,..., xn)[ci/xil = E[ci/xil. 

(4) Abstraction 

An expression E containing sub expressions Al,..., An can be replaced by 

the expression: let val ((pl,..., Wn) = (Al,..., An) in Ekpi/Ail. 

12 



Def inition 

A new function equation can be introduced providing the left hand side 

of the equation does not already exist in - the program. Thus either a 

completely new function is introduced, or the domain 'of an existing -function 
is extended. 

(6) Algebraic Laws 

The algebraic properties of the equation used in the' functional program 

can be exploited. Although this may seem , to be obvious, it is, in fact, a 

unique advantage of declarative programming over procedural programming. In a 

procedural program it is not even possible to replace the occurrence' of the 

expression el + e2 by the expression e2 + el, thus exploiting the law of 

commutativity of addition. This is because the semantics of the language does 

not guarantee that the symbol "+" has the same algebraic properties as the 

mathematical operator 'Y'. In particular side effects in the expression el 

may cause these properties to be denied. 

2.3.1 Partial Correctness 

The Fold/Unfold transformation rules are partially correct. That is, 

although programs produced by transformation are guaranteed not to produce a 

different result to their untransformed versions, there is no guarantee that 

the transformed functions will terminate. 

It is quite easy to see how the method can introduce non-termination 

into a terminating program: 

f un f (x) =x; 
f un f (x) =f (x) 

foldIng 

2.3.2 Completeness 

There are many equivalent sets of recursion equations which cannot be 

shown to be equal by transformation, however in these cases inductive proof 
techniques can be employed to demonstrate equivalence. In this sense an extra 

rule can be added to the six transformation rules above: 
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(7) Induction 

Let f(xl,..., xn) .=E. If there is an inductive proof that the' function 

9(xl,..., Xn) = E' is equivalent to f then the function f(xl,..., xn) E' can 

be introduced into the functional program. 

The inductive technique used in this thesis is called "structural 

induction" (It was introduced by Burstall in [231). Many other proof 

techniques exist (see, for example [50,57,60,61,85,861). , t- 
There has been considerable debate as to whether or not it is possible 

and/or- desirable to construct proofs for large-scale programs. The main 

arguments for either side of the debate can be found in [43,46,47,48,491. 
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2.4 Programming Language Semantics 

The unifying framework which binds all programming languages together is 

the "state of a computation". 

The next section describes the concept of the state of computation for 

procedural and functional languages. 

2.4.1 The State Of Computation 

The state of computation is an abstract representation of the physical 

configuration of the machine executing the program. 

The state is abstract in the sense that it need only describe those 

features of the machine's state which can effect the meaning of a program. 

The precise construction of the state therefore depends upon what the meaning 

of a program is. This is a choice made by the language designer. 

Considerable work- has been conducted on the meaning of programming 
languages, much of which has been seminal to the work reported in this 

thesis. References to some of the established results are summarised below: 

The origins of the state-concept can be found in [9,10,11 26,44,611. ' 

The mathematical aspects of semantics are described in [13,15,55,59,761. 

Programming Language Semantics are described in [16,36,57,821. 

Applications of and extensions to the basic theory can be found in 

[17,35,45,81,841. 

A semantic description of a program is- called a- "direct" semantics, if 

the meaning that it gives a program is a mapping from initial state to final 

state. This thesis is conerned with procedural programs for which a direct 

semantics can be defined. 

Functional language Semantics are characterised by expression evaluation 

within a (highly restricted) state called an "environment". 

In §7.6 and §7.7 these remarks are made completely precise. In the next 

section a more informal approach is taken, highlighting the essential 
difference between the procedural and functional' style and laying the 

conceptual foundations for the modelling strategy described in the next 

chapter. 
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2.4.2 The State Of A Procedural Program 

Each statement in a procedural program is described as a modification to 

the state in which it is executed. The meaning of an entire 

statement-sequence is simply the composition of the individual state-changes 

which describe each component statement. 

2.4.3 The Environment 

For any procedural language in which identifiers may be assigned values, 

the state will include an "environment". 

The environment is a function which maps identifiers (in the domain D 

to the values (in the domain V). The domain, 1, is the set of all identifiers 

in the syntax of the language. The domain, V, is the domain of all values 

which may be bound to these identifiers. V is termed the "denotable values" 

of the language [16). 

- The environment represents, in an abstract , manner, the values stored in 

the memory of the computer. 
For - example, an environment which represents the fact that 

identifier "x" is bound to 1, "y" to 2, and all the other variables 

unassigned could be written (in MU: 

fun Environment identifier = if identif ier 'Y' then 1 
else if identif ier "Y" then 2 
else unassigned 

Environment :14V; 

the 

are 

2.4.4 The Meaning "Unassigned" and Abstraction 
lfunassLgned" is simply a member of V, which describes the value of any 

and all variables which have not been assigned a value. 

. 
The use of "unassLgned" is an example of abstraction in the semantic 

description: Unassigned variables on a computer will be - bound to "rubbish 

values" (whatever happens to be in the machine's memory at the time). However 

these machine-dependant features are deliberately overlooked, all unassigned 
identifier names being mapped to the same value by the environment. The 

environment described here is thus sufficiently abstract that it can describe 

the state of execution upon any computing device (including a trained human 

with pen an paper). 
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2.4.5 The Meaning of a Statement Sequence 

The meaning (or abstract effect of computation) of the statement 

sequence: 

x: =1; y: =2 

can be described as a mapping f rom some initial environment, p, to a 

f inal environment, which adds to p the bindings f or 'Y' and "y" (overwriting 

any existing binding for these two identifiers in p) : 

fun Mp identif ler = if identif ier = 'x" then I 
else if identifier "y'! then. 2 
else p(identifier) 

m: (I -) V) 4 (1 4 V) 

2.4.6 The Implicit State 

There exist procedural language statements that create 
- changes other 

than to values in the store. For example, consider the statement: "Mode n", 

which alters the screen mode of the display device. 

Imagine a screen with four modes, numbered zero through to three. 

In order to describe the meaning of a program in this janguage, the 

state must now be extended from the environment I4V, to a cartesian product, 

the first component of which is the environment mapping and the second 

component of which is a number between zero and three, describing the 

screen-mode. 

Using this extended computation-state, the statement sequence:, 

Mode 2; Fred :=1 

will be described by the state mapping M, below: 

fun M (p, p) (fn z => if z="Fred" then 1 else p(z), 2) 

M: ((I4V) x int) 4 ((I4V) x int) 
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As more procedural features are considered, there is a consequent 
increase in the size of the state required to describe the language. 

For example, describing the ef f ect of input and output statements 

requires a description of the state of the corresponding devices. 

Describing aliasing of identifier names (two names for the same value) 

requires a more detailed description of the heap store. 

2.4.7 The State Of A Functional Language 

For a functional language, there are no statements; there are only 

expression constructs. The meaning of an expression is the value produced by 

expression-evaluation. This value may only depend upon the bindings for the 

free variables in the expression, and thus the state for a functional 

language is simply the environment mapping (14V), which defines the meaning 

of the free variables. 
As more expression constructs are considered the size of the value 

space, V, may increase, but the state Itself remains simply an environment 

mapping from U4V). 

2.4.8 Reasoning About Procedural Programs 

In §2.3, a powerful reasoning technique for functional programs was 
described. Using this technique, a programmer can regard their programs as 

algebraic expressions, performing simple meaning-preserving manipulations 
upon them. 

In procedural languages, it is possible to prove properties of programs 
using a technique called the "Axiomatic Method", but algebraic manipulation 
rules, where such rules exist, will be highly complicated as a consequence of 
the complexity of the computation-state. 
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2.5 The Axiomatic Method 
The proof technique most widely applied to procedural programs is- the 

Axiomatic Method. The technique is also called the "Weakest Precondition" 

method by Dijkstra in [43). 

Assertions, written in the Predicate"' Calculus, arý inserted in between 

the statements of a program. -The free variables in these assertions are 

simply the identifiers used in the program. This creates a connection between 

the values computed by the program and the truth-value of assertions-. 
Each statement of the programming language can be described as an 

assertion-mapping. The particular mapping for a statement defines the 

assertion which will hold after the statement has been executed, in terms of 
the assertion that held prior to its execution. ' 

This approach was first suggested . 
by Alan Turing in 1949 [41, but 

received little attention until 1967 when Floyd suggested the idea as a means 

of describing the semantics of a language[6]. (the idea was also put forward 

in 1966 by Peter Naur[51). 

In 1969, Hoare 
-was 

the first_ author to develop a calculus for program 

proving, using insertion of Predicate Calculus assertions. Hoare extended the 

approach to include most commonly used language features, creating what is 

now known as the "Axiomatic Method" [7,8,33,34,421., 

Consider a small subset of Pascal, the syntax of which is- described 

below: 

Syntax 

<Statement> skip x :=e Is' Si"; Sz : if e i-hen Si else' Sz 

whileb do Sod 
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The following rules may be used to modify assertions placed between 

statements: 

(1) Assignment Axiom 
lp[e/xl) x :=e Jp) I 

Composition, Rule 
jpý Si (qý A (q) S2 irl 

(pý Sl ; S2 (r) 

(3) Conditional Rule 

pAeS1 q) A (p A -e) S2 (q) 

pIife then S1eI se S2 (q) 

Whi le Loop Rule 

lp A e) S 4p) , 
Jpýwhileedo Sod (pA-e) 

I(S) Skip Axiom 

fp) skip (p) 

(6) Consequence Rule 

(p * p' A p' ýS (q' A (q' 4 q)) 
ipý S iq) 

2.5.1 An Example Proof Using the Axiomatic Method 

The following procedural program calculates the quotient and remainder 

produced by the division of two numbers. The input to the program is the two 

values "x" and "y" and the output is the quotient "a" and remainder "b" of 
it x" divided by "y". 

a0 
bx 
while b?: ydob : =b-y ; a: = a+ Iod 
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ý In - order to prove that the correct values reside in "a"' and "b" after 

execution, the assertion "ay+b=x A -b2: 0, A Vy" must be shown to hold. It 

is necessary to add the conjunction "b-4o A Vy" to ensure that the solution 
is not "degenerate", for instance,, without this qualifier "a=O, b=x", would 

satisfy "ay+b=x" without necessarily entailing that "a" is the quotient and 
"b" the remainder. -- I- 

Let the entire program be named S. An Axiomatic Proof, taken from [81, 

is presented below:. 

I jxýo A y2: 0ý S fay+b=x A O: sb<y) 

by the axiom of assignment 
40*y+x=x A xz: O) a :=0 (ay+x=x A xzto) (1) 

also by the axiom of assignment 

(ay+x=x A xýO) b :=x (ay+b=x A bztOý (2) 

combining (1) and (2) using the composition rule gives (3) 

io*y+x=x A xýW a : =-O; b :=x 4ay+b=xAba: OI 1 (3) 

by the consequence rule 

since xz: o A yýo =ý (O*y'+X=x A xaO') assertion (3ý can be rewritten 
(XaO A y2tO ýa0; bx4 ay+b=x A b?: O) (4) 

Now considering the body of the while loop 

by the axiom of assignment 

I (a+l)y+b-y=x Ab -y?: Ol b b-y J (a+ I)y+b=x A ba: O) (5) 

also by the axiom of assign ment : 
( (a+I)Y+b=x A b2tO )a: = a+l (ay+b=x A b2: 0) (6) 

As before, the composition rule allows (5) and (6) to be combined: 
j(a+I) y+b -y =xAb- y2tO) b: = b -y; a: =a +1 (ay+b=x A býO ý (7) 

by the consequence rule : 

since (ay+b=x A býo A b2: y) zo (a+l)y+b-y=x A b-y2tO 

assertion (7) can be rewritten : 
f ay+b=x A bý: O A b2ty ý b: = b-y; a: = a+1 f ay+b=x A b2tO) (8) 

(This is the while loop invariant) 
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The while loop -rule allows the invariant (s) to be combined with the 

while loop predicate "b2: y" giving (9), below: 

iay+b=x A b'aO) while bay do b: =b-y; a: =a+l od iay+b=x A O: sb<y) (9) 

FinallY combining (9) with (4) gives the required proof: 

(xao A yýo ý 

a: =0; b: =x; while b2: y do b: =b-y; a: =a+1 od 

4ay+b=x A Oib<yl 

2.6 Manipulation Of Procedural Programs 

Using the Axiomatic Method, the assertions written by the programmer in 

Predicate Calculus notation "sit on top of" the procedural notation. It is 

the assertion-notation that is manipulated and not the procedural notation in 

which the program is written. 
In a functional notation, the notation in which the program is written 

is also the notation in which manipulations are performed and proofs 

constructed. 
On reason why proof s using the Axiomatic Method become drawn-out, 

appears to be procedural notations' lack of "algebraic flexibility". 
A comparison of the Axiomatic Method and the Functional Modelling 

approach can be found in §6.5. 
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2.7 Summary 

This chapter has introduced the concept of functional and procedural 

programming styles. The chapter raises the following issues, which shall be 

taken up in the next chapter: 
Proof techniques exist for both procedural and functional notations. 
Proof techniques for functional notations use the functional notation 

itself. Programs written in a functional style can be manipulated 

algebraically using rules of transformation (the fold/unfold rules). 
The procedural proof technique (the Axiomatic Method) requires the 

introduction of extra notation (in the Predicate Calculus), in which the 

proof is constructed. 
Programs written in a procedural notation are algebraically 

inf lexible. Functional language semantics can be described using a state 

which only requires a mapping from identifiers to values. Such a state is 

called an environment. 
Procedural Language semantics require a state which includes many other 

components in addition to the environment. 
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CHAPTER THREE THE MODELLING STRATEGY 

3.1 Introduction 

This chapter introduces the functional modelling approach aý a means for 

analysing procedural programs. 

A variety of techniques exist in print [79,80,44,611 and in ' the 

"folklore" of functional programming, that will allow procedural programming 

features to be compiled, into equivalent' functional programming features. 

In §3.2 these existing techniques are introduced in the common framework 

of a procedural language whose 'computation-state is simply identifiers to 

denotable values (14V). 

In §3.3 it is shown that the existing techniques break down when the 

state of computation 'contains extra components other than (I4V). A simple 

technique for overcoming this difficulty is introduced. 

§3.4 sets out a brief polemic concerning referential transparency and 

assignment. Specif ically It is argued that assignment is not a 

referential ly-ýopaque construct. 

3.2 Existing Techniques For Modelling 

In §3.2 the state of computation is assumed to 'b6 'so'leily' aii envir'onment 

mapping. ' In §3.3 this restriction is relaxed. 

3.2.1 What is a Functional Model? 

The meaning of a 'procedural program is a state mapping (this thesis is 

only concerned with programs for which a direct semantics is possible) 

The meaning of a procedural program, P, is thus a function which takes 

an initial state, S, and produces af inal state, S'. 

If this state is simply a mapping from the identifiers in the program, 

1, to some arbitrary value domain, V, then the program can be considered to 

be a prescription for modifying some number of the identifier bindings in S, 

in order to create S'. 
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Since a statement-sequence can only ever affect af tnite number of these 

bindings, it can be modelled by an expression which def ines a set of values. 
The values of the "affected variables". 

The final values of these affected variables will depend upon -the 
initial state, S, in which the statement sequence is executed. However, these 

final values will also only depend upon a finite number of the bindings (in 

S). 

Thus, for a statement sequence, def ined by a mapping (14V) 4 U-M, 

there exists af inite set of affected variables, and a finite set of values 
needed to compute the f inal value of these affected variables. 

The "needed values" are simply the initial bindings (in S) for some of 
the variables used in the statement sequence. 

A model f or such a statement-sequence is simply a function, which takes 

as its argument, a tuple of initial values for needed variables, and returns, 
as its result, a tuple of f inal values of affected variables. 

This section explores some standard techniques for modelling procedural 
programming constructs. 

These techniques only apply where the state of computation 
, 

is an 
environment mapping. 

3.2.2 Modelling Assignment 
The archetype of a procedural language is the assignment statement. 
It is possible to model assignment by let abstraction. All that is 

required, is to ensure that the scope of the let abstracted identifier, 

exists only up until any re-assignment to the variable.. That is, the scope of 
the, let abstraction must correspond to the extent [161 of the assignment. 
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A nice illustration of this approach (ana the benefits' thai"'a"ccrue from 

modelling) is given by the following example. 

Consider the sequence of assignments below: 

X 

The "needed variables" of this sequence of statements are -the 
identifiers "x" and 

The "affected variables" are also "x" and 
Thus the model is: 

. un f(x, y) = let val x=x+y in 
let val y=x-y. in 
let val x=x-y in (x y) 

This function can be manipulated (unfolding "x" and "y" in the result 

tuple) to remove the let abstractions: 

fun f(x, y) ((x+y)-((x+y)-y)), ((x+y) - y) 

Which can be manipulated (using simple arithmetic properties) to: 

fun f(x, y) (y, x) 

Thus, the effect of the three assignment statements is_ revealed: that, of 

swapping the contents of the variables 'Y' and "y". (However, the proof 

relied upon the laws of arithmetic, thus 'Y' and "y" contain numeric data). 

This swapping technique was used in the past when there, was a high premium on 

storage use. Nowadays, a programmer would be more likely to use the more 

familiar technique involving a temporary variable. One .. 
benefit of functional 

modelling, is that these two techniques could be proved equivalent (for 

numeric data), simply"by unfolding model functions. 
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3.2.3 Modelling Conditionals 

In providing functional models, there are often several choices as to 

the strategy used to model a particular statement. 

Of course, one model will be convertible to any other alternative, using 

functional reasoning. 
Here are two methods for modelling conditional statements using 

conditional expressions: 

3.2.3.1 Modelling Conditionals In Context 

A conditional may be modelled by appending the statement sequence after 

the conditional to the end of each of the statement-sequences for the "then" 

and "else" branches. Clearly, this strategy is inappropriate if a large 

amount of copying is required. 

if e then s1 else s2 endif; s3 

zo if e then s; s else ss endif 

.ý if e then e else e 

Where eI and e2 are the results of transforming s1; s3 and s2; s3 

respectively. 

3.2-3.2 Modelling Conditionals In Isolation 

Alternatively, by forming the tuple of all the variables affected by 

either the "then" and/or "else" branches, it is possible to form the Lh. s. 

of a let abstraction, defining the new values for the variables in terms of a 

conditional expression. 

if e then seI se s 12 
let val (x x-x (if e then eI else e2 

where x1... x are the affected variables of the statements sI and s 21, 
and eI and e2 are models for the statements s1 and s2 respectively. 
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3.2.3.3 An Example of a Model f or a Conditional Statement 

if x > 10 then a :=x else b 
, 

ýx 

Can be modelled by the let abstraction: 

let val (a, b) = if x >, 10 then (x, b) else (a, x) in 

Where the "... " is the model for the rest of the program after the 

conditional statement. 

3.2.4 Modelling Iteration 

Procedural languages typically provide several repetitive constructs. In 

each, a condition controls the repeated execution of a sequence of 

statements. It is well known that all these constructs can be converted into 

a while loop which, in turn, can be modelled by a recursive procedure: 

while b do sa procedure P 
begin 
if b 

then 
beg in 
s 
P 
end 

end 
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3.2. S Modelling Procedures 

In order to model a any procedure, it is necessary to collect together 

all the effects the procedure may have upon the values of variables. 

There are two types of variable affected by a procedure call: those 

passed as call-by-reference parameters and those global variables assigned a 

new value in the body of the procedure. The two can be both treated in the 

same manner by re-casting all global variable assignments within a procedure 
body to call-by-reference parameter assignments. 

For example, if 'Y' is a global variable then the procedure "p" 

procedure p; 
begin 
x :=e 
end 

can be recast: 

procedure p'( var x: integer 
begin 
x :=e 
end 

so long as calls to "p" are recast as calls to "p", with the global 

variable 'Y' passed as actual parameter. 

3.2. S. 1 Modelling Call-By-Ref erence Parameter Passing 

The approach adopted by Morris in [791 for modelling procedures with 

call-by-reference parameters is to use a function which returns the final 

values of the call-by-reference parameters in a tuple. 
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3.2.6 A Complete Example ., I 

All the above modelling techniques can be used together in modelling the 

procedure "locate", below: 

type SomeArray = array [ 1. . 1000 of integer 
procedure locate( A SomeArray 

Element integer 
var Location integer 
var Found integer 

var i integer 
begin 

i0 
while W=1000) and (A[ iI <>Element) do i+I 
if 10 1001 then begin 

Found := true; 
Location 
end 

else Found := false 
end 

The while loop, within the procedure "locate", is modelled (in the 

procedural notation) by the recursive procedure, "loop", below: 

procedure loop 
begin 

if i 1000 then 
if AM 0 Element then begin i :=i+1 

loop 
end 

end 

The conditional has to be nested in order to model the ef f ect of 

short-circuit evaluation of the booiean expression in the while loop. 
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The global variables affected by the procedure "loop" can be written as 

a Call-By-Ref erence parameter, giving: 

procedure loop( var i 
begin 

if i <= 1000 then 
if AM 

I end ; 

: integer ); 

0 Element then begin i :=i+I 
loop 

end 

procedure locate( A: SomeArray 
Element : integer 
var Location : integer 
var Found : integer 

var i integer 
begin 

i0 
loop(! ) 
if i <> 1001 then begin 

Found := true; 
Location 
end 

else Found := false 
end 

Using a strategy also employed by Morris in [791, it is' possible to 

model an array, using a function from array-indexes to values stored in the 

array. 

Thus the procedures "loop" and "locate", can be modelled in ML, by the 

functions "loop" and "locate": 

fun loop(A, i, Element) = 
if i <= 1000 then if AM 0 Element then loop(A, i+l. Element) 

else i 
else 1; 

fun locate(A, Element, Location) 
let vat i= loop (0) in 

if 10 1001 then (i, true) 
else (Location, false) 
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3.2.7 Modelling Aliasing 

It is possible to create an alias using call-by-reference parameter 

passing. An alias is a name for a value which already has a name. 

When a procedure, P, with two variable parameters is called "P(z, z)", 

then an alias is created: within the body of P, there will be two names for 

the global variable "z". 

For a procedure-call which creates an alias, the semantics will 

typically be written with a two-level store [161, and so will not be in the 

domain (14V). 

In §3.3 a general method is described, 
. which allows modelling of 

programs which exhibit such semantics. 

3.2.8 Modelling Goto Statements 

11 goto" statements can be modelled by breaking the procedural program up 

into sequences of statements which are not labelled, and modelling these as 

parameterless procedures. The "goto" statements, themselves, are modelled by 

a call to the corresponding procedure. 

This strategy is based on a method first used by McCarthy in (44,611. 

Consider the program below: 

x :=0 
n : =N 

Ll : if n=0 then goto L2 
xx+n 
nn -1 
goto LI ; 

L2 :x: =x 10 
Result x 
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The program consists of three blocks: the ý, two statements before "Ll", 

the four statements between "Ll" and "L2" and the f inal two statements. 

1 

Ll : if n=0 then goto L2 
xx+n 
nn -1 
goto Ll ; 

L2 :x :=x 10 I 
Result x 

Each block can be modelled by a procedure: 

procedure LO 
begin 

x0 
nN L2 

end 

procedure LI 
begin 

if n=0 then L2 else begin 
xx+n 
nn 
Ll 
end 

end 

procedure L2 
begin 

x :=x 10 
Result x 

end 

These parameterless procedures can be modelled by functions according to 
the strategy outlined earlier in §3.2. 
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In the model below, the function-, "'10% takes the initial value of "N" 

and returns the final value of the affected variables; 'Y', "n" and "Result": 

fun LOM =, Ll(O, N) ; 

fun- LI(x, n) =Af n=O then L2(x, n) else LI(x+n, n-1) 

fun L2(x) (x, n, x*10) 

3.2.9 Modelling Calculated Goto Statements 

If the label used by a goto statement may only be calculated at' the time 

the statement is executed then the statement is called a "calculated goto". 

Some procedural programs contain goto statements, which cause execution 

to jump into the body of a procedure. 

Programs which make use of either of these features may require a 

continuation-based semantics [16,451. Such programs can be modelled, but the 

strategies that may be used lead to models which effectively interpret the 

program that they model, and as such are not particularly well-suited to 

manipulation. 

3.2.10 Program Semantics verses Language Semantics 

An important feature of the modelling approach, is that it is concerned 

with individual programs and not languages. 

The semantics of a language has to be constructed in such a way as to 

prescribe a meaning for every program in the language. The denotation for a 

particular program (derived from Ahe semantics of the language) is thus 

defined over a, state which must account for the most semantically: intricate 

program. 

The semantics of, a particular program, may, however, ý only require a 
highly simple semantic description, even if it were -to be written, in a 
language which allows for highly intricate semantics. 

jbus, a language may require a continuation semantics due to the 

inclusion of calculated goto statements, but a program which does not use a 

calculated goto statement can still be described without recourse to 

continuation semantics. 
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3.3 The Implicit State: A Problem f or Existing Techniques 

Using the standard techniques described in §3.2, a model may be created 

f or any program which can be described by a mapping from (14V) to U4V). 

In order to model any language construct one simply has to consider the 

effect of the statement on the bindings in the environment. 

However, procedural language semantic-descriptions typically require a 

far larger state than simply (14V) in order to describe other effects of a" 

program's execution, such as changes to the input and output streams, the 

state of the heap store, the screen-mode and so on. 

In this thesis the term Implicit state is used to describe all those 

components of the state which are not in U4V). The 
'explicit 

state (or 

environment as Stoy calls it in [161 and elsewhere) is simply Ahe domain 

(14V). It is "explicit" in the sense that, for all its components, there 

exists an explicit piece_ of program syntax (the identifier), which is bound 

(by the environment mapping), to a semantic value. 

The requirement for an implicit state in a program's semantics, makes 

the modelling techniques described in §3.2 invalid, as the following example 

demonstrates: 

program P; 
var x integer 
begin 

x 
wr 1te 'He IIo, world') 

end. 

The model for this program (using, the techniques described in §3.2) 

would be simply the number 1, describing the value residing in the variable 
it x" after execution of the program and reflecting the change to the explicit 

state. 

Unfortunately, in addition to assigning 1 to "x", changing the expItcLt 

state, the program also affects the output device, which is 'part of the 

implIcLt state. This implicit effect is not modelled. 
Were there to be no assignment statements avall, then the program would 

cause no change to the explicit state and would thus have no modeL. 
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3.3.1 The Output List: An Implicit State 

The state, S, for the program, P above, is defined by Gordon, in [361, 

as: 

S= U4V) xV 

Where V is a sequence-, of - values drawn from' V. V is the implicit 

state, it represents the sequence of values on the output device. 

3.3.2 Modelling the Implicit State 

Clearly, the solution to modelling a program whose state is not in the 

domain G-M, is to alter the description of the state so Ahat it uses the 

domain (14V). 

This can be achieved in a very straight forward manner: 

A new, unused, identifier is introduced into the, procedural program. 

This new identifier is bound to the value of implicit state, thus"making it 

explicit. Where a program affects the implicit state, this can be modelled in 

the procedural notation as an assignment to the ' new identifier. Modelling 

implicit effects as explicit assignment statements is'simply modelling of one 

procedural program (with implicit effects) by another , (without implicit 

effects). 

Of course allowing the value of the implicit state to be' bound to an 

identifier, may lead to an extension of the (denotable) ' value; space, V. 

However, this appears to present no problems. 

In practice, it may be more convenient to introduce a separate 

identifier for each component of the implicit state. To illustrate the 

modelling of the implicit state, two examples of implicit-state semantics are 

now described: Input/Output and Heap-Store usage. 
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3.3.3 Modelling Input and Output I 

Given that input and output are defined as semantic operations upon 

lists (in a standard manner described by Gordon in 1361), then this implicit 

state, and the effects upon it can be modelled as follows: 

Two extra identifiers are introduced: "Input" and "Output", making 

explicit the input list and output list state-components. 
The affect of read and write statements upon the input list and output 

list will be (procedurally) modelled by assignments to "Input" and "Output" 

as follows: 

read(x) 
is procedurally modelled by 

x := hd(Input) ; Input := tl(Input) 

write(E) 
is procedurally modelled by 

Output := append(Output, [EI) 

Bef ore the program is executed, no output will have been produced, so 
the output list will initially be assigned a value "nil". 

Thus, a statement sequence consisting of read and write statements is 

modelled in the procedural notation by a sequence of assignment statements. 
The state will then be the domain (1-*V), which can be modelled in the 

functional notation by the standard techniques described in §3.2 
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3.3.4 An Example of Input/Output Modelling 

Consider the statements: 

read(x) ; write(x+l) 

These can be modelled procedurally, by the statement-sequence: 

Output nil 
x hd(Input) 
I nput tl(Input) 
Output append (Outputj x+1 

These statements can be modelled by a function from needed variables to 

affected variables in the manner described in §3.2: 

fun f (Input) (tl(Input), hd(Input)+l) 

3.3. S Modelling Interleaving of Input and Output 

Consider the two programs: 

program PI ; 
var x: integer 
begin 

read(x) write(l) 
end. 

program P2 

var x: integer 
begin 

write(l) ; read(x) 
end. 
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The models for these two programs are identical: 

I 
fun f (Input) = (tl(lnput), 1) ;I 

However, they do not behave identically when executed: execution of PI 

will not cause any output to appear if no input is received, whereas 

execution of P2 will always cause output, regardless of whether or not any 
input is ever received. 

3.3.6 The Semantics of the Program Def ines the Model 

The fact that the modelling approach used here does not represent the 

interleaving of input and output events is a direct consequence of the fact 

that the semantics of the language (as described in [361) does not describe 

the interleaving of input and output events. 
It is a matter of choice, when describing the semantics of a language, 

as to what features of a program's execution are significant enough to form 

part of the semantic description. In §7.8, a different semantic description 

for Input and Output is used to construct a modelling strategy. For this 

semantic description the interleaving of input and output events forms part 

of the state of a computation and, thus, interleaving Ls represented in the 

model. 

3.3.7 Programs Which Use the Heap 

The heap store is another example of an implicit state in Programming 
language semantics. 

Programs which use a heap may be described by a state which is formed 

from the cartesian product of three values: 

(I-4V) xAx (A-W) 

Where "A" is the domain of addresses and "A4V" is an abstract 
representation of the heap. The second component of the state, "A". records 
the address of the top of the heap. 
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The semantic domain, V, will now include an extra, value, Rubbtsh, the 

initial contents of the heap. 

3.3.7.2 Modelling the Heap Store 

In this, exposition, the domain of integers will be used for addresses. 

To model the heap, two identifiers are -introduced: 

"H", the heap function, a mapping from A->V 

and 

"hp", the variable which contains the, address of the top of the heap. 

Statements which affect the heap -are modelled, in Pascal by assignment to 

these two identifiers, thus making explicit the implicit heap, and top of 
heap. 

Of course, procedural languages do not usually allow f or assignment of 

function-valued expressions. However, there is no reason why they should not 
(see for example [27,371). For the purpose of modelling, it is possible to 

suppose that any procedural language contains any denotable value domain 

required by the introduction of the extra identifiers. 

3.3.7.3 Modelling Pointer Deref erence 

An address may be dereferenced, that is, the information stored at this 

address in the heap can be referred to, using the addre. ss. For the address, 

a, the value stored at a in the heap, is found by applying- the' heap function, 

H, to the address, a. 

Of course, the dereference of an address may, Uself, be an address, 
thus allowing the heap to contain values which refer to other parts of the 

heap. 

3.3.7.4 Modelling Address Values 

The "nil" pointer value will be assigned a "special" value, outside the 

source domain of H. For example, -1 could be used. 

In order to make models easier to read, nil, will be referred to by its 

symbolic name. 
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Deref erence of the value "nil" is an error. 
Demonstrating that the heap function is never applied to "nil", is thus 

a form of store-access integrity proof. 
In languages like "C" and assembly code, where address arithmetic is 

permitted, it will not always be possible to refer to addresses" symbolically. 
In particular, the store-access integrity proof will be that the heap 

function, H, is always applied to values x, such that 0 :5x :s hp. 

3.3.7. S Modelling Changes to the Heap 

An assignment statement may update the contents of the heap by 

dereferencing an address. 
The simplest example of this is the dereference of ,a pointer variable. 

For example: 

42 1 

This statement can be modelled procedurally by the (re)assignment to the 
heap f unction: 

H := fn x => if x=p then 42 else H(x) 
I 

That is, the new heap maps all addresses to the same values as the old 
heap, except for the address, p, which is mapped to 42. 
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3.3.7.6 An Example of Modelling: Aliasing ' 

Assignment of one pointer variable to another does not affect the heap 

itself, but it creates an alias as the following example shows- 

program SimplePointer ; 
var x, y: ^ integer ; 
begin 

new(x) new(y) 
x: =y 
X- := 42 ; 
wr it e(y^) 

end. 

get an address for pointers x and y 
x^ and y^ are now al lases 
implicitly assigns a value to y^ 

The call new(p) simply assigns to the pointer variable, "p", the value 
of the top of the heap and increments the 

, 
top of heap heap pointer. 

The single write instruction can be modelled by the introduction of an 

extra identifier, "Result", to store the value that appears on the screen. 

3.3.7.7 The Model for the "SimplePointer" Program 

The model for the program "SimplePo inter" is given below. The 

intermediate stage of writing assignment statements for Implicit state 

changes is omitted. 

The model is simply a sequence of definitions, modelling changes to the 

environment. 
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The model is given below: 

fun SimplePointer = 
let val hp =0 initial value of top of heap 

val H= fn z => Rubbtsh initial value of heap 

val x= hp 
val hp = hp +I models new(x) 

val y= hp 
val hp = hp +1 models new(y) 

val x=y x and y now identical 

val H= fn z => if z xthen42 else H(z ; (* models x-: =42 

val Result = H(Y) models write(y-) 
in 
(H, hp, x, y, Result) 

Unfolding "Result" gives: Result= 42. 

The aliasing of 'Y' and "y" is modelled by the fact that these two 

identif iers are bound to the same integer value. Thus, when the heap function 

is applied to either, the same value will be returned. 

3.3.7.8 Modelling A Self Referential Structure 

Used in a disciplined manner, pointers allow the programmer to def ine 

and use lists, trees and other Abstract Data Types. Indeed, using the 

modelling technique, the programmer can prove that an Abstract Data Type is 

correctly implemented (see, for example, §6.6). 
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Used in an undisciplined manner, however, the structures created can 
become circular, as this simple example demonstrates: 

program Money 
type 

string -11strec 
listrec record 

data : char 
rest : string 
end ; 

var Inf : string 
begin 

new( I nf 
Inf ^. data 
Inf^. rest Inf 

end. 

3.3.7.8.1 Modelling Record Structures 

Record structures can be modelled using the tuple type. 

The record type, "listrec", is modelled by a tuple, with selection of 

tuple-elements written using the symbolic names "data" and "rest", taken from 

the field names of the record. 

For a tuple, T, and an index, f, the notation '74T' represents an 

expression which indexes the fth element of the tuple, T. 

3.3.7.8.2 The Model f or the Program: "Money" 

The model for the program "Money" is as follows: 

fun Money- 
let val hp =0 

val H= fn z => Rubbtsh 
val Inf = hp 
val hp = hp +1 
val H= fn z => if z=Inf then CV, H(Inf), ýdata) else H(z) 
val H= fn z => if z=lnf then (H(Inf)4*rest. Inf) else H(z) in 

(H, hp, lnf) ; 
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Unfolding, "H" in the returned tuple, gives: 

H= fn z => if z=lnf then ('L', Inf) else Rubbish ; 

Unfolding H(Inf) gives: 

I H(Inf) = CV, Inf) ;I 

In chapter four a technique called "Projective Abstraction" is 
described. This technique makes it possible to create a model specific to a 
particular value, or set of values. This technique can be used to produce 

models specific to particular values, such as: 

I 
H(Inf) = CV, Inf) ;I 

It should be pointed out that the pleasing way 
self-referential structure such as H(Inf) "announces, itself" 

notation is possible, only because an address may be 

symbolically. 

in which a 
in the model 

referred to 

3.3.8 Proving a Model Strategy Correct 

Proving that a modelling strategy is correct (in terms of the semantics 

of the language) is a straight forward, but long-winded matter. 
A example demonstration of the construction of a simple modelling 

strategy and a proof of its correctness can be found in §7.4. 
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3.4 Assignment and Referential Transparency 

In literature concerning functional programming, there appears to be 

some confusion about precisely what' feature of procedural languages makes 

them non-referentially transparent (or referentially-opaque). 
Many authors claim that It is the statement that causes a 

language to be referentially-opaque. 
For example on'page six of [161 Stoy says: 

of In most programming languages referent !aI 

transparency appears to be destroyed. For -example, the 

fact that we have deduced x=6 would not imply that, we 

could, replace x by 6 everywhere within the scope of the 

declaration of x; if the program contains a statement 

like 

if x>y then x :=x-1 

the value of x is not independent of position 

af terwards it, even depend s upo nt he val ue ofy. " 

This view is slightly misguided. 

The statement used as an example by Stoy, can be modelled by af unction 

'T', which takes'the original values of the variables 'Y' and "y" and returns 

it if it the f inal values of X and y. 

run M, y) = let val x= if x>y then x-1 else x'ln (x, y) 

There are six occurrences of the identIf ter "x" in this string of 

characters. The 'first, third, f ourth and f if th occurrence of 'Y' ref er to one 

value, the second and sixth refer to 'a different value. A variable is a 

binding of an Identifier to a value. The above string thus contains one 

idýntif ier, "x", but two variables which use "x". Scope rules are used to 

distinguish between different variables which use the same identifier. 
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If an assignment statement such as the one described above is 

ref erentially-opaque, then the lambda calculus must also be 

ref erentially-opaque. However, this conclusion would clearly be -absurd: the 

Beta reduction rule distinguishes between different variables which happen to 

have the same identifier. It does this using a scope consideration embodied 
in the notion of bound and free variables[121. 

It is not the assigm-nent statement that denies a language the 

referential transparency property. It is the implEctt state. Changes to parts 

of this implicit state cannot be manipulated by substitution simply because 

there is no identifier for which a value may be substituted. 
It may be that changes to an implicit state are written using an 

assignment notation (for example, in the case of heap changes), however, 

other implicit-state changes are notated differently, for example, input and 

Output statements. 

3. S Summary 

This chapter collects together known functional modelling techniques 

under a common framework. 

Some of these techniques exist in print [44,61,79,801 and some are 

simply part of the "folklore" of programming. 

The framework used, is the semantics of the program, specifically the 

program's computation state. 

If this state is of the form identifiers to values, then the "known 

techniques" can be used to construct a model for a statement sequence. 
This model is a function, taking, as its argument, a tuple of the needed 

variables of th e statement-sequence, and returning as its result, the tuple 

of final values of the affected variables of the statement-sequence.. 
Unfortunately, the "known techniques" break down when the state of 

computation is not of the form identifiers to values. However, as shown in 

§3.3, this problem can be overcome by the introduction of extra identifiers. 

The chapter thus presents a strategy for modelling any procedural 

programming language feature. 

The chapter also introduces the concept of an implicit and explicit 

state and demonstrates that it is the latter that prevents a procedural 
language from being referentially transparent. 
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- CHAPTER FOUR PROJECTIVE ABSTRACTION 

4.1 Introduction 

A model is a function which returns -a tuple of values'. Each' value in 

this tuple is a semantic value computed by the procedural program being 

modelled. A semantic value 'is either a value bound to an identif ier used by 

the program or a value of a component of the implicit state (for which an 
identifier has been introduced according to the strategy described In chapter 

three). 

For any reasonably large program there will clearly be a large number of 

values in this result tuple, too many to make the model usef ul as a tool for 

analysis of the procedural program. 

This chapter introduces a very simple technique for analysis of 

functions which return tuples of values. The technique Is called "Projective 

Abstraction". 

In conjunction with the implicit-state modelling approach described 

earlier in chapter three, Projective Abstraction allows a programmer to 

create many distinct models of a single procedural program. Each model is 

specific to the analysis of a particular set of semantic values computed by 

the procedural program and "abstracts away" from all other details of the 

execution which do not contribute to the computation of this set of values. 

4.2 The Projective Abstraction Technique 

The Projective Abstraction Technique consists in simply omitting some of 

the values of a model function's result tuple. 

Thus, a function is projected onto a smaller target domain by 

restricting the result tuple. 

An important consequence of this projection is that the amount of 

computation required to produce the result tuple is also reduced. 

Specifically, an expression is only included in the projected function if it 

contributes to the evaluation of the restricted result tuple. 

Using the approach described in chapter three, a model function will 

contain an identifier for any and every semantic value change created by the 

execution of the program. 
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The Projective Abstraction Technique thus allows the programmer to 

choose some of these semantic values, and to produce a functional program 
which computes only the changes in these values arising from execution. 

The large body of work on functional reasoning techniques 
[2,20,23,40,50,601 can then be brought to bear in analysing the affect of the 

Procedural program upon the semantic values. 
Consider the example below: 

program TwoAssignments ; 
var x, y: Integer ; 
begin 

x := Ei ; 
y := E2 

end. 

The model for this program is simply a function: 

I M, Y) = (El, E2) 11 

If the programmer is interested in the f inal value of "x", then the 
projected model would be: 

Lf l( Ei 1- 
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4.3 Reduction in Needed Variables 

A further simplification that arises from projective abstraction is that 

the size of the needed variable tuple may be reduced. 

If the programmer decides to project the model onto "x", then the needed 

variable tuple tells the programmer what the final value of 'Y' depends upon. 

For example, if the needed variable tuple is empty, then "x" is a constant. 

The Projective Abstraction Technique allows a programmer to use similar 

kinds of analysis familiar from "run-time debugging", that is, the Inspection 

of the contents of a particular variable or variables. However, there are two 

crucial diff erences: 

(1) The analysis is performed at compile time and is thus a symbolic 

analysis, ranging over all possible executions of the program. 

(2) All values of semantic interest are available for inspection due to the 

modelling of the implicit state (with identifiers). 

The Projective Abstraction Technique is thus simple, but powerful. 

In the next few sections some applications of the technique are 

described: 

4.4 Henderson's Lazy Streams 

If the programmer projects the model onto the output list, then the 

model will be a stream-based program in the Henderson Lazy Stream style[301. 
Using stream-based models of this kind does not allow a programmer to 

investigate the tnterleaving of input and output events. 
However, this is often an advantage, as the programmer will want to 

ignore such details and focus on the functional relationship between Input 

and output. 
Should the programmer wish to investigate the interleaving of input and 

output then they could employ the modelling strategy described in §7.8. 
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4.5 New Programs From Old f 

Many programs compute several values within one part of the program. A 

programmer may wish to reuse only a part of a program to compute just one of 

these values. 
Consider f or example the program below: 

program ArrayProcessing-; 
var i, total, Biggest, Smallest : integer 

A: array [l.. 10001 of integer ; 

begin 
total 0; Biggest := A[11 ; Smallest : =A[l] 
for 11 to 1000 do 

begin 
total := total +A[i) 
if Mil > Biggest then Biggest A[ i 
if AM < Smallest then Smallest := A[i] 

end 
I end. 

Separate programs can be created f or each value computer using 

Projective Abstraction. For example, choosing the final value of the 

identifier "Biggest" as the result of the model yields the following model: 

fun Biggest(A) = for(A, A(l), I) 
where fun f or(A, Biggest, 0= if i <= 1000 

then if A(i) > Biggest 
then for(A, A(i), i+l) 
else f or(A, Biggest, i+1) 

else Biggest ; 

Using the techniques described in chapter f ive it is possible to convert 

this model back into a procedural notation. 
However, it would be foolish to convert any model back into a procedural 

notation without first investigating the model a little. The whole point of 

modelling is to permit the use of functional analytic techniques. One such 

technique is partial evaluation, which can be conducted symbolically at 

compile-time. 
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4.5.1 Partial Evaluation and Efficiency Improvement 

Partially evaluating a functional program can result in an Improvement 

in the efficiency of the program. This benefit is demonstrated by partial 

evaluation of the model "Biggest". 

The call to "for" in the definition of Miggest" is partially evaluated, 

giving: 

for(A, A(l), l) = if 1 <= 1000 
then if AM > AM 

then for(A, A(l), 2) 
else for(A, A(l), 2) 

else A( 1) ; 

Clearly 

"I <= 1000" is "true" 

and 
"A(l) > AU)" is "false" 

Thus 

I for(A, A(l), l) = for(A, A(l), 2)1 

Using this identity, the model can be rewritten: 

fun Biggest(A) = for(A, A(l), 2) 
where fun for(A, Biggest, i) if I <= 1000 

then if -A(l) > Biggest 
then for(A, A(l), i+l) 
else for(A, Biggest,! +l) 

else Biggest ; 
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When converted back into the Pascal notation this leads to the program 
below: 

program Biggest ; 
var Biggest, i: integer 

A: array [1.. 10001 of integer 
begin 

Biggest := AM 
for i :=2 to 1000 do if Mil > Biggest then Biggest := A[il 

end. 

4.6 Values of Program Constants 

In the program "ArrayProcessing", projecting the model onto the final 

value of the identifier "i" gives the model: 

I 
val i= 1001 ;I 

This does not tell the programmer much about the program but then, since 
the techniques can be automated, it does not require any effort either. 

4.7 Heap Store Use 

The identifier "hp" is introduced to model the top of _ 
the heap. 

Projecting a model onto the value of "hp" will tell a programmer how much 
heap store is used. 

If the model yields a constant when projected onto this value, then it 

reveals that fact that there is no need for the heap. The heap storage 

strategy is only required when a programmer does not know how much store will 
be required. 
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4.9 Nothing New 

Of course, there is nothing, that a programmer can do using Projective 

Abstraction (or modelling --in general) that was , not, possible using the 

original procedural, program. The procedural program's text- is a, complete 
specification of the programs behaviour, and can be used to answer these 

sorts of question about the program's execution. 
A good programmer will be able to extract -the "Biggest" program from the 

"ArrayProcessing" program (§4.5) and will notice the efficiency improvement 

to be gained by omitting the first loop cycle. 

, 
The modelling approach offers two significant, enhancements, to such ad 

hoc" reasoning: I 

(1) All the reasoning , perf ormed using. the manipulation of the , model is 

guaranteed to be correct. That is, no manipulation can alter the values 

computed by the program. The programmer is thus, f ree to "play" with their 

program as if it were simply a piece. of algebra, ignoring the fact that it Is 

to be executed by a computer. This algebraic freedom is the principal 

advantage of a functional notation over a procedural notation (see, for 

example [80,901 and [21,18,321). The modelling technique allows, procedural 

programmers to avail themselves of this advantage. 

(2)1 The production. of , projected models may be performed entirely 
automatically by a CASE tool (or to put, it more prosaically, by a Compiler, 

albeit a compiler parameterised by the choice of Projection), 

In a small program, such as the array processing example above, it may 
well be that a programmer can see immediately how to alter a program to 

calculate only one value. However, the dependencies that have to be 

considered in order to do this become too intricate for programs of greater 
size and Projective Abstraction becomes a necessity. 
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4.10 Summary 

The technique of Projective Abstraction is very simple. 

A programmer simply omits some values from the result tuple of a 

function, thus simplifying the function by specialising its result. 

Together with the (equally simple) technique of introducing identifiers 

to model the implicit state described in -chapter three, the programmer can 

analyse, evaluate, manipulate and prove properties of any semantic value of 

interest. 

The functional modelling technique thus involves two abstractive filters 

which "filter out" irrelevant aspects of a program's execution, sharpening 

the analytic focus. 

The first of these filters is applied by the programming language 

designer, who chooses which aspects of all possible programs are to be 

, described in the semantic description of the programming language. 

The modelling strategy uses this semantic description when creating a 

model, and so any aspect of execution ignored in the semantics will be 

ignored in the model. 
The second abstractive filter is applied by the programmer, who chooses 

(by Projective Abstraction) those aspects of a particular program that are to 

be modelled. 

The technique of Projective Abstraction reduces the complexity of the 

model to that which is sufficient to compute the semantic values onto which 
it is projected. In small programs this complexity-reduction is of little 

consequence, but for large programs its benefit will be keenly felt-. 
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CHAPTER FIVE CONVERTING MODELS BACK INTO PROCEDURAL NOTATION 

5.1 Introduction 

In this chapter various strategies for converting functional models back 

into a procedural notation are discussed. 

Converting a model back into a procedural program is inherently a matter 
for the programmer, since the point of functional modelling is to reveal 
inadequacies in the original procedural - program. 

What constitutes an inadequacy depends upon the program, concerned, so a 

highly intelligent (i. e. human) strategy is required to produce an improved 

program from a model. 
Other techniques are discussed in the seminal work of John Darlington, 

which was originally aimed at compilation of functional programs Into 

efficient procedural counterparts [911. 

S. 2 Evolution of program transformation rules 
The techniques presented here are intended to be an ald to the 

programmer only. It may well be that using a semi-automated system, various 
heuristic rules will evolve and then become incorporated into automated parts 

of the system (see appendix A2). 

For example the method of goto removal set out in [881 and [891 are 

examples of such heuristic rules: if the model produced by a "goto program" 
is converted into "while" loops by the strategy outlined here, then the 

resulting program will be very much like that produced by the algorithm 
described in [891. 

5.3 Some Things which Will Not be Converted Back 

The strategy outlined here is directed at converting functions in 

iterative form and does not address the problem of 1/0 interleaving. 
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S-3.1 Iterative Form 

The model functions which can be converted back into a procedural 
notation, using the strategy outlined here, are those which are in iterative 
form [44,611. 

A function, f, is in iterative form if all calls to the function do not 
occur within calls to any other function. 

S. 3.2 Loss of 1/0 Sequencing Information 

As shown in chapter three, the information concerning the interleaving 

Of input and output events is lost when a procedural program is modelled, 

using a simple list-based input and output semantics. 
If a program, P, is manipulated to alter its structure and subsequently 

converted back into the procedural program, P', then P' will not necessarily 
interleave the input and output events in the same order as P. 

5.3.2.1 Keeping the 1/0 Information Means Restricting 'the Fold/Unfold Rules 

If the programmer wishes to maintain interleaving, information then the 

model should include a "trace" in its projection (see §7.8). 

5.4 Converting Functions in Iterative Form to Loop Constructs 

The strategy proceeds by performing manipulations to the model 
functions, rendering all models in a common form, from which, conversion to 
loop constructs becomes trivial. 
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5.4.1 - Maximal Substitution 

All let abstractions, "let val x= Ei in Ez", where Ei does not involve 

a call to a model function, are unfolded so that model functions all take the 

form: 

fW= if pW then E 

else if p2W then E 

else 

else E 

Where x is the tuple of identifiers which form the parameters to the 

function f, p are predicates on this tuple and E are expressions containing 

no conditional sub expressions. 

5.4.2 Unfolding of Functions 

The expressions EI will be one of four possible forms: 

An expression involving only base functions and members of R. 

An expression of the form g(x), where g is a model function. 

iii) An expression involving a model function which is not in iterative 

form. 

iv) The fourth possibility is "let val. (y) = g(z) in E", where y, and z 

are subsets of x, g is another model function and E is an expression in one 

of the forms D- iv). This fourth possible form, when converted into a 

procedural notation, leads to nested looping, it is discussed separately in 

§5.7. 
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As stated earlier, it is not possible, using this strategy, to convert 
functions which are not in iterative form, so case iii) is ignored. 

Expressions in form il) should be unfolded until either, a recursive call 
is encountered, or a call to a recursive function is encountered. That is, if 

an Expression, E, occurring in a function, f, is unfolded to produce 'a call 
to f (by definition in iterative form) or a call to a function g, where g is 

a recursive function, then E should not be unfolded any further. 

If the model contains mut ' ually recursive functions then the strategy 
that must be employed is less . elegant due to the introduction of extra 
variables. For this reason models containing mutual recursion are discussed 

separately in §5.8. 

5.4.3 The Fully Unfolded Model 

After unfolding, each model function, f(x), is in the form described in 
§5.4.3, where each EI is one in one of the following three f orms: 

An expression involving only base functions and members of 

il) A recursive call, f (e), where e is an expression involving only 
base functions and members of x. 

iii) A call to a function g, of the form g(e), where e is an expression 
involving only base functions and members of x-. 

5.4.4 The Terminating Condition f or a Model Function 

"Termination" occurs when an expression of the f orm 0 or iii) above is 

evaluated. 

In this discussion, the condition under which such a call is evaluated 
is called the "termination condition" of the function. 

That is, within a function, 'T', the condition under which any of the 
expressions Ei which contain no recursive calls to 'T', are evaluated. 

The "termination" condition of a model function is not, therefore. a 
condition under which the model program Uself, would terminate, but as will 
be seen, it Ls the condition under which the loop that models the function 
will terminate. 
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5.4.4.1 Examples 

Below are two functions together with their "terminating conditions": 

fun f(x, y) if x=ythenx 
else if x= (Y+I) then y-x 

else f(x-I, Y+I) 

'Me function, f, has "terminating condition", p(x, y): 

p(x, y) = (x=y) or (: i=y+l) 

fun h(x, y, z) 
if x0y then h(x-l, y+l, x+z) 

else if y=z then y 
else if X=z then h(x-l, y-l, z) 

else g(x, y, z) ; 

The function h has "terminating condition", p(x, y, z): 

p(x, y, z) not(x0y) and (y=z or (not(x=z)) 

In each case, the condition is produced, merely by examining the 

predicates in the conditionals, without regard to the value computed by the 
function. 

Of course, the terminating condition may, itself, be manipulated 

according to the rules of the predicate calculus. For example the second 

predicate, p, can be rewritten: 

I 
P(X, Y, Z) = x=Yl 
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5.4.5 Converting to an Unbounded Loop K., 

A recursive function, in iterative form, is converted into an unbounded 
loop. That is, it is converted, either into a "while" loop, or a "repeat" 

loop. 

A recursive function will be converted into a "while" loop if 
" 

it 

"terminates" without modifying any of its parameters. That is, if it returns 

a subset of its parameter tuple or passes some subset of its parameter tuple 

to another model function. 

A recursive function will be converted to a "repeat" loop if - it 

"terminates" with some modified subset of its parameter tuple. That is, if 
_ 

it 

returns an expression involving a subset of its- parameter tuple and some base 

functions, or passes such an expression to another model function. 

There is, of course, some choice that may be exerted, since a "repeat" 

loop with a body S, is equivalent to a "while" loop with S- executed once 
before entry. 

5.4.5.1 The Loop's Boolean Expression 

If a "repeat" loop is being produced then the boolean expression is 

simply the "terminating condition" of the model function. 

If a "while" loop is being produced then the boolean expression is the 

negation of the "terminating condition" for the model function. 
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5.4.5.2 The Loop's Body 

The nested conditional exprýession is converted to a nested conditional 

statement: 

if pi(x) then el 
else if p2(R) then e2 

else.. 
else en 

Is converted to: 

if pl(x) then Si 
else if p2(x) then S2 

else 
else Sn 

Except that those predicates that form part of the "terminating 

condition" need not be included. 

Each statement, Si, is produced by ý converting the expressions, , ei, , as 
follows:, 

5.4.6 Local States and Variables 

The parameters of a model function are the "local state" in which the 

function is evaluated. 

The parameter names of this local state will be -used as,, varlableý names 
in the procedural program. 

The body of the loop produced contains assignments toý'these variables. 

These assignments are formed by_- assigning, to each variable, the expression 

passed on recursive call to the function. 
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5.4.7 Input and Output 

Theý re-assignments to' the output list and input-list will be converted 
back into write and read statements. 

If input occurred in the part of the procedural program modelled by a 

model function, f, then f will include a parameter, "inp" (or some other name 
introduced according to the strategy set out . in chapter 3). If output 

occurred in that part of the procedural program, then f will include a formal 

parameter "out" in its parameter list. 

The parameters "inp" and "out" correspond to the input list and output 
list. (The situation where there are more than one output device can be dealt 

with naturally by extending the strategy outlined here). 

Obviously, names are significant in the model, so if conversion into a 

procedural notation is performed automattcalLy, a convention on names for 

devices must be followed (see §5.9). 

S. 4.7.1 Output 

Output is modelled by appending output' elements onto the output list. So 

to convert this back into the procedural notation, where ever the actual 
parameter "append(Out, L)" is passed for the formal parameter "Out" in a 
function call this will be converted to write(L'), where L' are the elements 
of the list L. 

5.4.7.2 Input 

Converting operations on the input list back into the procedural 

notation as read statements presents a some problems: 

The statement "read(x)" is modelled by "let val x= hd(InpY in let val 
Inp = tl(lnp) in 

Now, these two definitions may become "separated" in the model due to 

manipulation, but in converting a model into procedural notation expressions, 
involving "hd(ln*p)" and "tl(lnp)" must be converted to as. ingle "read" 

statement. 
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5.4.7.2.1 Introducing New Variables 

Normally (for example, in Pascal, C and Fortran) the read statement 

takes a variable parameter, in which the input is to be stored. The name' for 

this variable parameter will have to be "invented". 

5.4.7.2.2 Where to Locate the "read" Statements 

In order to discuss conversion of operations on the input list it is 

necessary to introduce two concepts: the "depth of input" In a' model function 

and the "amount of inputý, consumed", corresponding to the expressions 

"hd(Inp)" and "tl(lnp)" respectively. 

5.4.7.2.1 The Amount of Input Consumed 

The recursive call to a function will "pass an actual parameter for the 

formal parameter "Inp". The expression for this actual parameter represents 
"how much input is consumed on that call". 

5.4.7.2.2 The Depth of Input 

The selection of elements from the input list has a "depth", this is the 

highest index used to select an element from the input list. 

'Me value of the depth and the amount of input consumed In a particular 

model function are not necessarily identical. 

65 



5.4.7.2.3 Depth is the Same as Amount Consumed 

In most model functions the depth will be 
_ 

identical to the amount of 
input consumed. 

In such cases all the read. statements are to be put. LnsLde the loop at 
the appropriate point in the conditional statement structure. 

For example, the function f, below, the depth is identical to the amount 
of input consumed on each call: 

fun f(Inp, t) = if t>100 then t 
else f(tI(Inp), t+hd(Inp)) 

It will be converted into the "while" loop: 

while not(t>100) do 
begin 
read (x); 
t :=t+ 
end 

5.4.7.2.4 Depth is Smaller than Amount of Input Consumed 

If the depth is smaller than the amount consumed, then "dummy" read 

statements must be included to read the extra input. 

For example the function f, below, consumes 3 elements from the input 

list on each call, and has a depth of 1. 

fun f Onp, t) = 
if t>100 then t 

else. f(tI(tl(tl(Inp))), t+hd(lnp)) 
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It will be converted into the "while" loop: 

while not(t>100) do 
begin 
read (x) 
read(Dummy) 
read(Dummy) 
t :=t+x 
end 

5.4.7.2.5 The Depth is Greater than the Amount of Input Consumed 

If the depth is greater than the amount of input consumed then some 

input must be read before the loop is executed, and then at the end of the 

loop body these variables must be updated. 

For example consider the model function, f, below: 

fun f(Inp, t) 
if t>1 

then t 
else 
f (hd(Inp) +hd(tl(Inp))+hd(tl(tl(lnp))), tl(lnp)); 

In this function the depth is 3 but the amount of input consumed on each 

recursive call is 1. 

Two values must therefore be read before the loop is executed, and these 

variables must be updated at the end of the loop body. 

The "while" loop produced to model this procedure. 1s: 

read(Xi) 
read(Xz) 
while not(t>100) do 

begin 
read(X3) 
t X1 + X2 + X3 
X1 X2 
X2 X3 

end 
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This is a highly unlikely eventuality however. 

5.4.8 Example 

Consider the function, "S", below: 

fun S(Inp, N, M, t) = if N=M then t 
else let val t' = t+hd(Inp) in 

let val N' = N+l in 
S(tl(Inp), N', M, t') 

5.4.8.1 Unf olding 

First, the let abstractions are unfolded, to produce: 

run S(Inp, N, M, t) = if N=M then t 
else S(tl(lnp), N+1, M, t+hd(Inp)); 

Next, all function calls are unfolded until recursion is encountered. In 

this case, this means no unf olding, since the function call 
"S(tl(lnp), N+I, M, t+hd(Inp))" is already recursive. 

S. 4.8.2 The Loop-Body 

The conditional structure is 

if M=N then S1 else S2 

Where Si and S2 are produced according to the strategy outlined in 
§5.4.6. (This simply reduces to S2, since there is no need to test the 
terminating condition within the loop). 
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S. 4.8.3 Converting to a "while" Loop 

The function is converted into a "while" loop, since it returns "t" 

unaffected if its "termination condition" is satisfied. 

The "Termination condition" is "p(N, M) = N=M", so the "while" loop 

predicate is "not(N=M)". 

5.4.8.4 Input and Output 

Now, this function consumes one element of "Inp" on each call so tile 

expression "hd(Inp)" is converted to the read statement "read(x)" which is to 

be placed inside the loop, and where ever "hd(Inp)" occurs In an expression 

it is replaced by "x". 

5.4.8.5 Re-Introduction of Assignment 

The'body of the loop contains the assignments: 

t := t+x 

and 

N := N+l 

The "while" loop produced is thus: 

while not(N=M) do 
begin 
read(x) 
N N+1 
tt+x 
end 

5.5 Putting the Loops into a Statement Sequence 

All that is required to produce a complete procedural program, is to put 

the various "while" and "repeat" loops into a sequence, reflecting the call 

graph of the model. 

The model is a function fl, which may call a functions f2,..., fn, each 

of which may, themselves, call more functions. 
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The first "while" loop in the statement, sequence, is the one which was 

produced from fi. If there is only one other function, fz, called from fi, 

then the next loop in the statement sequence is that produced from f2. 

If there is more than one function, 4f2,..., fn), called from fi, then a 

conditional statement is the next statement in the procedural program 

produced. This conditional selects which loop is to be executed next from 

those produced from the functions 4f2,..., fn1. 

S. S. 1 Avoiding complexity 
A little consideration leads to the reallsation that for a large set of 

model functions, each of which calls several other model functions, , the 

procedural statement-sequence produced by this naive strategy will be long 

and complicated, involving many nested conditionals. The depth of conditional 
nesting being roughly proportional to the number of model -functions. 

This situation is clearly unacceptable; it arises from the fact that the 

procedural program produced according to this strategy makes no use of 
procedure-abstraction: the program produced will be one monolithic sequence 
of statements. 

The obvious way to subdivide this monolith is to make use of the 

procedural abstraction contained in the original procedural program. 
The model functions fall into three categories: Those whose names are 

introduced to model "goto" statements (i. e. those whose names are labels), 
those whose names are introduced to model loop constructs, and those which 
model procedures and functions in the original program, and use the original 
names. 

The last of these three are those model functions which correspond to 
procedures in the original program. These model functions can be converted 
into separate procedural programs, and each of -these programs can then be 

written as a procedure. The procedure will take as formal parameters, the 
needed variables of the statement sequence produced, and return (via variable 
parameters) the affected variables of the statement sequence produced. 
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S. 6 Automation 

All of these conversions can be carried out automatically. 'H'owever, ' it 

is doubtful whether a fully automated strategy would be desirable: The 

programmer's intuitions about the' model functions will provide valuable 

insights into what manipulations to perform, and what conversion strategy to 

use when converting back into a procedural notation. 

For example, the programmer may decide that some of the, model functions 

produced from loops or "goto" statements should be converted back into 

procedures, thus increasing the resulting procedural abstraction, and 

improving the readability (and reusability) of the resulting procedural 

program. 

What is highly desirable is a semi-automated "CASE tool", many parts of 

which would be fully automatic (for example production of the initial model 

f unctions, converting back according 
. 

to various pre-def ined strategies, 

f old/unfold rules in the functional notation, maximal substitution and so 

on). 

Such a tool would be used interactively by a programmer, who would 

analyse and manipulate a procedural program, producing proofs of program 

properties, correcting mistakes,, removing redundant computations and altering 

the program's structure to produce a better documented, more reliable, 

efficient, reusable and proven program. 

Some preliminary work has already been conducted on these lines (see 

appendix A2), -and work continues[741, but more time and resources are 

required. 

The strategy is not complicated, all examples could easily be performed 
by a programmer in a heuristic manner without reference to an algorithm of 

conversion. Automation would merely act to remove the "donkey work" involved 

in conversion of notations. 

5.7 Nested Loops 

The discussion so far has been concerned with model functions which 

contain no nested calls to functions. 
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A nested call, occurring within af unction f, is an expression ýE of the 

f orm below: 

let val W= g(x) in E' 
- -, - II 

Where E' is either of the four forms listed in §5.4.2. 

Such nested calls to functions produce procedural programs with nested 

loops. 

5.7.1 Example 

In this example the function "r" is used to strip leading spaces from a 

list, it terminates when the head of the list is not a character. 

fun f(Inp, out) 
if hd(Inp) 

then Out 
else 
if hd(Inp) 

then let val Inp' = r(t I( Inp)) 
in f(Inp', Out) 

else f(tl(lnp), append(Out, [hd(Inp)])) 

fun r(Inp) = if hd(Inp) then r(tl(Inp)) 
else tl(Inp) ; 

The function "r" is converted to the "repeat" loop: 

I 
repeat read(x) until x0''I 
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The f unction "f " is converted to the repeat loop: 

repeat 
read(y) 
if y= then repeat read(x) until x0 

else write(y) 
until y= 

For greater perspicuity, the programmer may elect to f orm a procedure 

out of such nested loops, particularly if the same model function is nested 
in several places. This will be another area where a "CASE tool" would need 
to be interactive, allowing the programmer to choose how a model is converted 
into a procedural program. 

5.8 Mutually-Recursive Model Functions 

In [891 the authors demonstrate that it is not possible to convert all 

procedural programs, which contain "goto" statements, into procedural 

programs, where the "goto" statements are replaced by "while" loops, without 

introducing extra variables. 

This is 'also obviously true for functional models. Those models which 

cannot be converted into "while" 'loop programs, 'without the introduction of 

extra variables, are precisely those model functions which are mutually 

recursive. 
Consider the two mutually recursive functions below: 

fun M 
..., x if p (x 

9 .,. ., x ) then EI- 

else if p2 (x 
1x 

then g(E 
2 

else f (E 

fun g(x xn if p3 (x 
I' xn then E4 

else if p (x xn then f (E 
5 

else g(E 6); 
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These two mutually recursive functions can be joined together into one 
function, "Both", by adding an extra parameter to "switch" between the two in 

the body if this new function: 

fun Both(xl,..., Xn switch) 

if switch 

then 
if p then E 

else if P2 (x 
1 '. .. 'x n 

then Both(E 
7" g") 

else Both(E 
3f 

if switch = "g" 

then 
if p (x 

'... 'x ) then E4 

else if p4 (x 
1,... 'x n) 

then Both(E 
5, 

f 

else BOWE 
6"' g") 

else (* invalid switch *) ; 

Now the call 'T (e 
I ..., e 

n 
Y' is equivalent to Both(e,,..., e 

n 
"f") and a 

call "g(e 
1en 

Y' is equivalent to Both(e 
I ..., e 

n"' 
g"). 

These are the onLy two calls to the function "Both" which are valid. 
Passing a value for "switch" other than "f" or "g" will not reflect any 

possible call in the original model program. 

However, the production of a function like "Both" is only intended to 

indicate a strategy for converting mutually recursive model functions into 

procedural notation; functions like "Both" will never actually be executed. 
The strategy can clearly be extended to cope with an arbitrary number of 

mutually recursive functions, all that is required is for "switch" to have as 

many possible values as there are pos 
Now the function "Both" can be 

to the strategy outlined in §5.4.5. 

mention the new variable "switch". 

Clearly, it would be possible 
recursive procedures, in which case 
introduced. 

sible mutually recursive calls. 

converted into a "while" loop according 
Of course, the "while" loop will also 

to convert the model into mutually 

no extra variables would need to be 
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5.9 Naming Conventions in the Model 

In converting operations on input and output lists, an assumption is 

made that the names used for input and output lists are "inp" and "Out" 

respectively. It has also been assumed that names of procedures will be 

maintained in the model. 

This presents no problems, and is only mentioned since it runs contrary 

to the normal experience that the choice of particular identifiers is 

unimportant and that consistent name changes may be performed in functional 

programs without changing meaning. 

The model functions are used to model procedural programs and so in 

addition to their "meaning" as recursion equations, model functions also have 

a "meaning" in terms of the program that they model. 
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CHAPTER SIX 

APPLICATIONS OF FUNCTIONAL MODELLING 



CHAPTER SIX APPLICATIONS OF FUNCTIONAL MODELLING 

1 6.1 Introduction 

Any aspect' of a procedural program which can be analysed, proved or 

altered will be an aspect to which the'' functional modelling technique may be 

applied. There are thus many applications of the modelling approach. 
Moreover, by simply projecting a model onto the desired "'problem domain" 

as described in chapter four, the programmer can "home in" on the particuiar 

aspect of interest an drop from the model any irrelevant details. 

This chapter demonstrates some of the wide variety of application areas 

for which the modelling strategy is suited. It seems that the larger a 

procedural program is, the more benefit will be gained from the abstractive 

features offered by the approach. However, only reasonably small' examples can 

be contained in this exposition (the largest program Is about five pages 
(§6.4)). 

Automation of the modelling techniques will allow the programmer to 

approach programs of unlimited size. 

6.1.1 A Brief Outline of the Examples Contained Here 

There are seven examples in this chapter. 

These are as follows: 

In §6.2 a Fortran program is modelled. The modeý Is manipulated and 

converted back into procedural notation. Several equivalent Pascal programs 

are produced and an equivalent Fortran IV program is produced with "goto" 

statements removed. 

In §6.3 a Fortran program is modelled. For this program the (English 

language) specification is known. The program is shown not to obey its 

specification and is corrected. Once again the model is converted back into 

several equivalent procedural programs (in Pascal). 
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In §6.4 a larger program is considered. This program is taken from a 

standard reference on the programming language Modula-Z [671. 

The program implements a simple data base. 

The modelling strategy is ideally suited to proving properties of, such 

programs. Many simple proofs, are constructed, demonstrating simple, properties 

of the Modula-2 program. These simple proofs are then used to construct a few 

more general assertions about the program. These general assertions can be 

treated as a specLfIcation for the behaviour of the Modula-2 program. 

The construction of proofs for the program reveals some shortcomings in 

the program design whereby certain input values could cause-Ahe program to 

misbehave. The procedural program is thus rewritten to take account of these 

problems, making it more robust. 

In §6.5 the Algol 68 program "FIND", first proved correct by Hoare in 

[331, is modelled. Since the program was constructed and proved in [331 using 

the Axiomatic Method, the program provides an opportunity to compare the 

relative merits of the Axiomatic Method and the Modelling strategy. The 

conclusion of this comparison is that modelling is better for analysis of 

existing programs, whilst the Axiomatic Method is ideally suited to the 

construction of correct programs. 

One of the lemmas used in the proof of the program "FIND" presented 
here, allows the program to be manipulated to remove its "goto" statement. 

In §6.6 an example of disciplined use of pointers is examined. A set of 
Pascal functions which implement a linked-list are modelled. 

A proof is then constructed, demonstrating that the ýPascal functions 

respect the list Abstract Data Type axioms. 

§6.7 turns attention to the programming language "C". This language 
contains many semantic subtleties which become transparent when modelled. 

Finally, §6.8 looks at the possibility for locating possible paths for 

parallel evaluation using the modelling strategy. 

The modelling strategy may well be applicable to other areas of analysis 
and proof. Some of these are described in chapter nine. 
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6.2 Goto Removal in Fortran IV 

In [431 Dijkstra argues against the use of the goto statement. 

In this example a Fortran IV program from [871 has been used to 

illustrate how manipulation of the functional model can lead to a more 

elegant program, in the sense of goto-removal 

After manipulation the model can' be converted back into a procedural 

notation in several ways. In this example the program is converted back into 

a "repeat loop" program in Pascal, a "for loop" program in Pascal and a "do 

loop" program in Fortran. 

The strategy used to convert back into the procedural notation is the 

one described in chapter five. 
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6.2.1 The Program 

The program is taken from page 145 of [871. 

I= 11 -1 1ý I "; - 6j J1 -1 
7 IF I. EQ. Il AND. J. EQ. Jl), GO TO 9 

IF 1. LT. I OR. I. GT. 8 OR. J. LT. 1 OR J. GT. 8) GO TO 9 
IF (BOARD(I, J). EQ. 0) WRITE(6,8) I, J 

8 FORMAT (2IS) 
9jj+1 

IF (J. LE. Jl+l) GOTO 7 
II+1 
IF (I. LE. Il+l) GOTO 6 

6. S. 2 The Model 

The model uses a function to model the array "Board" and the McCarthy 

strategy for modelling goto statements. The identifier "Out" which is a list 

modelling the output device 6, is the result onto which the model is 

projected. 
The program is modelled by the ML function f: 

fun f (Out, il , jl, Board) = f6 (Out, il-1 , il, jl, Board) ; 
fun f6 (Out, i, i l, jl, Board) = f7 (Out, i, jl-l, il, jl, Board); 

fun f7(Out,!, j, il, jl, Board) 
if (i=il) and (j=jl) 

then f9(Out, i, j, il, jl, Board) 
else if (i<l) or (i>8) or (j<l) or (j>S) 

then f9(Out, i, j, il, jl, Board) 
else if Board(i, j) =0 

then f9(append(Out, [i, j]), i, j, il, jl, Board) 
else f9(Out, i, j, il, ji) ; 

fun O(Out, i, j, il, jI Board) 
if (i + 1) <= (i 1+ 1) 

then f7(Out, i, j+l ,il, jl Board) 
else if H+l) <= (il+l) 

then f6(Out, i+l, j. i l, jl Board) 
else End(Out) ; 

so 



, 
6.5.3 Manipulation of the Model 

6.5.3.1 Initial Manipulation 

The parameters il. jl and Board are not altered in any of the model 

functions and so they can be treated as constants. The whole program Is then 

modelled by the call f(Out), and is a function from the original output list 

to the final output list resulting from executing the program. 

fun f (Out) =f 6(Out, i 1-1 ); 
fun WOut, i)=f 7(Out, i, jl-l) 

fun MOut, i, j) = 
if (i=il) and (j=jl) 

then MOut, i, j) 
else if (M) or (i>8) or (J<I) or (J>S) 

then f9 (Out, i, j) 

else if Board(i, j) =0 
then f9(append(Out, [l, j1), I, J) 

else MOut, i, j) ; 

fun f9(Out, i, J) = 
if (j+l) <= U1+1) 

then MOut, i, j+l 

else if (1+1) <= (11+1) 
then f6(Out,! +l, j) 
else End(Out) ; 

6.5.3.2 Unfold f6 

Note that f6(a, b) = f7(a, b, jl-l) so the calls to f6 can be replaced by 

the corresponding call to M 

6.5.3.3 Predicate Properties 

Trivially, the following identity for predicates holds: 

if p then e if p or q 
else if q then e then e 

else r else r 

Thus the first two calls to f9 in f7 may be "collected together" and 

guarded by a single predicate. 
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Finally, the predicates in f9 may be "cleaned up" using the (e4ually 

trivial) property of %=" that a+1 <= b+1 *a <= b. 

These manipulations further increase the "readability" of the model, and 
begin to unveil the algorithm that the model implements: 

fun f(Out) = f7(out, il-l, ji-1) ; 

fun MOut,!, j) = 
if ((i=il) and (j=jl)) or (iQ) or (DS) or (jQ) or (j>8) 

then f9(Out, i, j) 
else if Board(i, j) =0 

then f 9(append(Out, i, j i, j) 
else f9(Out, i, j) ; 

fun f9(Out, i, j if j<=jl then MOut, i, j+l 
else if i<=il 

then f7(Out, i+l, jl-l) 
else End(Out) ; 

6.5.3.4 Folding to Reduce the Number of Calls to f9 

The three calls io the function "f9" in, "f7" can be collected together 

by introducing a let abstraction to define the value of the first actual 

parameter in the call. 

fun f(Out) = f7(Out, 11-1, jl-l) 

fun f7(Out, i, i) 
let val Out' 

if ( i*i I or J*jl) and i2tl and i: sS and jatl and jýS and Board(i, j)=o 
then append(Out, E ij] ) 
else Out in 

f9 (out, I i, j) ; 

fun f9(Out, i, j) = if j<=jl then f7(Out, i, j+l 
else if i<=il 

then f7(Out, i+l, jl-l) 
else End(Out) ; 
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6.5.3.5 Finally 

Finally, by unfolding the one call to, the, function "f9" In the function 

"f7", the model is transformed into one recursive function. 

fun f (Out) = f7(Out, il-1 JI-1) 
ý; 

fun f7(Out, i, i) 
let val Out' 

if ( i#i I or j*jl) and iL-1 and 1: 58 and jýl and j: s8 and Board(i, j)=O 
then append(Out, ij]) 

else Out in 

if j<=jl then MOut' ,1 j+1 
else if i<=il 

then f7(Out., ' 1+1, jl-l),, 
else End(Out') 

fun End(Out) = Out 

6.5.4 Conversion of the Model Into Pascal 

The termination of the function f7 occurs only when "End" Is called. 

Deducing the predicate which has to be true in order for this function 

to be called, allows a recursive function like f7 to be converted, Into a 
"while" or "repeat" loop in the manner described In chapter 5. 

In this example the recursive function f7 corresponds to a repeat loop. 

6.5.4.1 The Termination Condition 

The termination condition for f7 is: 

I fun P(j, jl,!, il) = (j>jl) and (Dil) ; 

6.5.4.2 Re-Introducing Assignment 

A function in iterative form has a local state : 
the 'bindings of its 

parameters on call. Modification of these parameters is a direct analog of 

assignment. This is used in the transformation strategy to model assignment 

by let abstraction (see §3.2.2). Here, the correspondence Is used In reverse 

(let abstraction being converted into assignment). 
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6.5.4.3 A Pascal Program with a Repeat Loop 

A Pascal program which corresponds to the, model is: 

j := j1-1 
repeat 

if (( I=il) and (j=jl)) or'(i<l) or (IM or (j<l) or (j>S) 
then 
eIse if Board( i, j) =0 then wri te(i, j) 

if j<=jl then j := j+I 
else begin 1 := 1+1; j -. = j1-1 end 

until (j>jl) and (Dil) 

6.5.4.4 An Alternative Pascal Program 

Of course there are many procedural programs that correspond. to 

functional models just as there are many modelling strategies for a 

particular procedural construct. 

By manipulating the model further using functional reasoning, it is 

possible to use the strategy described in chapter- 5 to produce two nested 

repeat loops. 

This is achieved by introducing a new function, which is 'done using the 

following rule: 

fun f (x 
..., x )= 

lf p(x 
1 ... x) 

then f (g 
1(x1, ..., x 

n) 9 ... p9 (x 
10..., x )) 

else E 

can be re-written: 

fun f (x ... xn)= let val (x 
1 ... ,xn)= inner(x 

1 ..., x 
n) 

in E 

fun inner(x 
1,..., x )= 

lf p(x 
1 ..., x 

n) 
then inner(g 

1 
(xl,..., x 

n)""'gn(XIP..., x 
n» 

else (x ..., x ); 
1n 
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Thus 

fun f(Oui) f7(out, il-l, jl-j) 

fun f7(Out, i, j) 
let val Out' 

if I or j*jl) and i2: 1 and i. -58 and jL-1 and jý58 and Board(i, j)=O 
then append(Out, [ i, j 1) 
else Out in 

if j<=jl then f7(Out, ', i, j+l) 
else if ! <=il 

then f7(out, 1+1, jl-l) 
else End(Out') 

fun End(Out) Out 

can be written: 

fun f(Out) f7(Out, il-l, jl-l) 

fun f7(Out, i, j) 
let val Out' inner(Out,!, J) in 

if ! <=il 
then f7(Out',! +I, Jl-l) 
else End(Out') 

fun inner(Out, i, j) 
let val Out' = 

if(i*i1 or j*j1) and i and i: 58 and jz: l and j: 58 and Board(ij) =0 
then append(Out, [i, j]) 
else Out in 

if j<=jl then inner(Out' ,I , J+l) 
else Out' 

fun End(Out) Out 
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6.5.4.4.1 Converting This to Pascal Notation 

Converting this model function into the procedural notation gives rise 
to nested repeat loops (the same conversion strategy is used as that outlined 
In chapter 5, which was used to produce the-repeat loop in. §6.5.4.3): 

repeat 
j := jl-l; 

repeat 
if MOM or (j<>jl)) and (i>=l) and (i<=S) and (j>=l) and (j<=S) 

then if Board(ij) 0 then write( ij) 
:= j+1 

until j>jl 

i := i+1 
until M1 

6.5.4.4.2 Converting Repeat Loops to For Loops 

Given the statement sequence S and expressions El and E2, a repeat loop, 

of the f orm: 

j := El ; 
repeat S; j+1 until j>E2 

is equivalent to: 

I for j := El to E2+1 do SI 

Provided E2 2: El. 
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So the model function could also be converted to two nested, for loops as 

f ollows: 

for i := il-I to il+l do 
for j : =' jl-l to jl+l do 

if (Board(i, i) = 0) and 
(i<>il) and (j<>Jl) and 

(! >=l) and (i<=8) and (J>=I) and (J<=8) 
then write(i, 

_j) 
; 

I 

6.5.4.4.3 Converting Into a Fortran-IV Program 

It is -most likely that conversion of a model back into a 'procedural 

notation will mean converting the program back Into the same procedural 

notation from which it originated. In the case of this program the' Fortran 

"do" loop can be used, and in this case leads to af ar more elegant solution 

to the problem, the principal inelegance being the cumbersome notation f or 

boolean expressions in Fortran IV. 

The Original Program 

I= 11 -I 
6j= J1 -I 
7 IF (I. EQ. Il AND. J. EQ. Jl) GO TO 9 

1F(I. LT. 1. OR. 1. GT. 8. OR. - J. LT. I OR J. GT. 8) GO TO 9 
1F (BOARD ( 1, J EQ. 0) WRITE(6,8) 1, J 

8 FORMAT (215) 
9jj+I 

IF (J. LE. Jl+l) GO TO 7 
II+1 

-IF I. LE, 11+1) GO TO 6 

The Modified Program 

DO 10 1=11-1, Il+l 
DO 10 J=Jl-I, Jl+l 

10 IF (BOARD( I, J)=0 AND. MNE. Il OR. J. NE. Jl) AND. 
I. GE. 1 AND. I. LE. 8 AND. J. GE. 1 AND. J. LE. 8) 

WRITE(6,30) I, J 

30 FORMAT(2I5) 
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6.3 Language Conversion and Error - Analysis 

This example is also taken from McCracken's "guide to Fortran IV 

programming" [871. 

The example shows that analysis-can reveal errors in a program, and like 

§6.2 shows how the modelling strategy may be used to produce a more elegant. 

program (in the sense of goto removal). 

In this case the program is converted into an equivalent Pascal program. 
The program could be converted back into 'a later version of the Fortran 

programming language (Fortran 77, for example), since such later versions of 
Fortran contain a "while" loop construct. 

Of course, revealing the error in the program requires a priorL 
knowledge of the programmer's intent, and, as with the transformation to a 

structured" program, such analysis and manipulation may be carried out 

without using functional models. 

These examples merely serve to demonstrate the applicability of the 

modelling strategy to analysis, proof and manipulation. The technique clearly 

cannot reveal anything that is not already in the program text itself. 

6.3.1 The Fortran program 

The Fortran program, written in Fortran IV, is taken from page 145 of 
[871. 

It is supposed to perform the following task: 

"A rook is on square Il, Jl. If the path from there to 

12, J2 is unobstructed, set MOVE to TRUE., and FALSE. 

otherwise. (The square 12, J2 itself may or may not be 

occupied. ) Do this only if Il = 11 or J1 = J2; if neither of 
these is true, set LEGAL to FALSE.. " 

Page 81 of [871. 
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The program is as follows: 

IF (II. EQ, 12) GO TO 16 
'IF (J1 EQ'. J2) GO TO 17 
LEGALý= FALSE. ' 
GO T. 0 15 

16' 'J ='MINO(JI, J2) +1 
LIMIT = MAXO(Jl, J2) 
IF (LIMIT. EQ. J + 1) GO TO 18 

20 IF (BOARD( 11, J) NE. 0) GO TO 19 
IF CJ + I. EQ. LIMIT) GO TO 18 
jj+I 
GO TO 20 

17 1 MINO( 11,12) +1 
LIMIT = MAXO(I1,12) 
IF (LIMIT. EQ. I+ 1) Go To 18 

21 IF (BOARD( 1, Tl) NE. 0) GO TO 19 
IF (I + l. EQ. LIMIT) GO TO 18 
II+1 
GO TO 21 

18 MOVE = TRUE. 
GO TO 15 

19 MOVE = FALSE. 
15 
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6.3.2 The Model 

The model is projected onto the -f inal value of the vari; 
The original value of this variable is chosen to be 

be a possible f inal value of the model, , it will thus 

program may fail to assign a value to the variable. "Move". 

The program is modelled by calling 
f(undef, Il, i2, j1, j2, Board): 

3. ble "Move". 

undef. Should this 
be clear that the 

the function 

fun f (move, il, i2, jl, j2, Board) = 
if il = iZ then f16 ( il, 12, jl, j2, Board) 

eIseifj1 =jZ then f 17 (i1, i2, jl, j2, Board) 
else f15(move) ; 

fun f16( il, i2, jl , j2, Board) = 
let val j= min(jl, j2) +1 in 

let val limit = max(jl, j2) in 
if limit = j+1 then f18 

else fzo(il, j, Board) 

fun fzo(ll, J, Board) = 
if Board( iI, j) <> 0 

then f19 
else if j+1 = limit 

then fis 
else let val j= j+I in f 2o (il, j, Board); 

fun f17( il, 12, jl , j2, Board) = 
let val i =min(il, i2) +1 in 

let val limit = max(il, i2) in 
if limit = i+1 then fis 

else f2l(jl, i. Board) 

fun fzl(jl, i Board) = 
if Board( I, jI) <> 0 

then f19 
else if i+l = limit 

then f 18 
else let val i= i+l in f2l(jl, i, Board) 

fun f18 = fi5(true) 
fun fig = f15(false) 

_fun 
fi5 (move) = move 
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6.3.3 Manipulation 

It may be thought, on f irst inspection, that the model is In f act more 

complex than the original program! This would certainly - be a likely 

observation if the reader is familiar with Fortran notation and unfamiliar 

with ML notation. However, the model Is easy to mantpulate as will be shown. 

The modelling strategy could be viewed as automatically producing an, 

initially, longer program, but one with far simpler transformation rules. 

The following discussion is typical of an analysis session that might be 

conducted by a programmer investigating whether the program meets Is 

specif ication. 

6.3.3.1 First Manipulations 

The following manipulations are all fairly trivial and can, of course, 

be automated, so that the programmer may simply "press buttons" marked 
"remove constant parameters", "maximal substitute let abstractions" and 
"unfold functions For details of automated functional reasoning see 
[401. 

The identifiers "il", '12", "il", "j2" and "Board" are not changed in 

any model functions, and so can be treated as constants. 
Identif iers introduced by let abstraction and f unctions 'T 18" and 'T ig" 

are unfolded. 
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These manipulations lead to the following model: 

funf =if il=iZ then f16 
else if j I=j2 then f17 

else undef 

fun f16 = if min( j 1, j2) +2 max(i 1, i 2) 
then true 
e Ise f 2o(min(j I j2)+I, max (jl, j2) 

fun f 17 = if min( i 1,12) +2 = max( i 1, i 2) 
then true 
else fzi(min(il, i2)+I, maxHl, i2)) 

fun f2o(j, limit) = if Board( il, j) <> 0 
then false 
else if j+1 = limit then true 

else f2o(j+l, limit) 

fun fzi(i, limit) = if Board( i jl) <> 0 
then false 
else if i+1 = limit then true 

else fzi(i+l, limit) 
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6.3.3.2 Unfolding 

Next the function calls "f16" and 'T17" are unfolded in the function 
Iffit. 

fun f= if il=i2 then if min(jl, j2)+2 = max(jl, j2) 
then true 
else f2o(min(jl, j2)+l, max(jl, j2)) 

else if jl=j2 then if min(il, i2)+2 = max(11,12) 
then true 11 
else fzl(min( il, 12)+l, max(il, i2)) 

else undef ; 

fun f2o(j, limit) = if Board(il, j) 00 
then false 
else if j+1 = limit then true 

else fzo(J+I, Iimit) 

fun fzi(i, limit) = if Board(I, jI) 00 
then false 
else if i+1 limit then true 

else f2i(i+l, limit) 

6.3.4 Errors in the Program 

The specification does not say what the program should do to the 

variable "move" in the case where the move is "illegal" (that Is, not In a 

straigh -t horizontal or vertical line). 

It is clear from the model that in this situation, the model returns 

"undef", that is, the variable move is not assigned a value. ' 

Strictly speaking, this is not an error : it does not contradict the 

specification, however, it is not desirable to leave the value of this 

variable undefined. A suitable value would be "false". since a move cannot be 

made by a rook if it is not horizontal or vertical. 
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There is also an error in the program in the boolean expression' in-., "f". 

This does contradict, the specificatiom, 
The test: 

"if min(jl, j2)+2 max(jl', j2) 
then true" 

causes the value of "move" to be true even if there Ls an intervening, 

occupied, square on the board. 

The test should be: 

"if min(jl, j2)+l ='max(jl, j2) 
t hen true" 

This also applies to the test for the case where jl=j2. 

These observations lead to the model function, "f", 

is then possible to consider the conversion of the 

procedural programming notation. 

The corrected program is: 

being rewritten. It 

model back into a 

fun f= if ll=i2 then if min(jl, j2)+l = max(jl, j2) 
then true 
else f20(min(jl, j2)+l, max(jl, j2)) 

else if jl=j2 then if min(il, i2)+l = max(il, i2) 
then true 
e Ise f zi (min( i 1, i2)+I, max(il, i2) 

else false ; 

fun fzo(j, limit) = if Board(il, j) <> 0 
then false 
else if j+1 = limit then true 

else fzo(j+l, limit) 

fun fzi(i, limit) = if Board(i, jl) <> 0 
then false 
else if i+1 = limit then true 

else f2l(i+l, limit) 
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6.3.5 Conversion Back into a Procedural Notation 

The functions "f2o" and "f2i" 6an be converted into a' "while" loop 

according to the strategy described in chapter 5: 

6.3. S. 1 Termination condition 

The termination condition for the function 'T20" iS: 

Board(ii, j) 00 or J+I = limit 

Thus to convert this function into a "while" loop It Is be necessary to 

negate this condition to f orm the loop's boolean expression. 

not(Board(il, j) 00 or j+I = limit) 

not(Board(il, i) 0 0) and not(j+1 = limit) 

Board(il, j) =0 and j+1 0 limit 

The while loop produced is: 

while (Board(il, j) = 0) and (j+1 0 limit) do j J+I 
if Board(11, j) =0 then move := true else move false 

6.3.5.2 The model f unction f 21 

A very similar strategy leads to the following "while" loop for f2l: 

, while (Board(ijil) = 0) and (J+I, <> limit) do I := i+1 
if Board(i, il) =0 then move := trueelse move: = false 
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6.3.5.3 The Model Function f 

The model function 'T" is a conditional choice between these two "while" 

loops, leading to a procedural program: 

if i 1=i2 
then if min(jl, j2)+l = max(jl, j2) 

then move := true 
eIse 
begin 
jmin(j1, j2)+I 
limit := max(jl, j2) 
whi le (Board( il, j) 0) and (j+1 0 limit) 

do j: = j+1 ; 
if Board( 11, j0 then move true 

else move false 
end 

else if jl=j2 
then if min(ii, i2)+l = max(il, i2) 

then move := true 
else 
begin 
j min(il, i2)+l 
limit := max(il, 12) 

while (Board( i, jl) 0) and (j+l 0 limit) 
do i := i+l ; 

if Board(i, jl) =0 then move true 
else move false 

end 
elsemove false 

6.3.6 Different Manipulations Give Rise to a Different Procedural Programs 

A Pascal programmer would, of course, instantly notice the similarity 

between the two "while" loops produced, and seek to form one "while" loop 

that captured the effect of both. 

However, as this is an exposition of the modelling strategy, the s, ame 

approach will be taken in analysing'the functions "f2o" and "fzi", 'which will 

lead to one function, which can then be automatically converted into "While" 

loop. 
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The function "g" is introduced: 

Now I 

I 
f2o(j, limit) = g(! I, J, il, limit, 0,1) 

II 

and 

I 
f2l(i, limit) = gG, jl, limlt, jl, ljo) 

I 

Proof 
It is trivial to prove these identities in the functional notation: 

partial evaluation of g0lj, 11, limit, 0,1) gives: 

g(il, j, il, limit, 0,1) = 
if Board( i 1, j)00 

then false 
e lse if ( 11 +1 = 11) or 0+1 =I 1mit) 

then true 
else g( il, j+l, il, limit, O, 1) 

Now since il+I = il. =- false, this can be written: 

g(il, j, il, limit, 0,1) = 
if Board( i 1, j)00 

then false 
else if j+I = limit 

then true 
else g(il, j+l, il, limit, 0,1) 

fun g(i, j, llmiti, lImitj, addi, addj) 
if Board(i, j) 00 

then false 
else if (1+1 = limit! ) or (j+1 lImItj) 

then true ý-- 
eIseg(i+a dd i, j+addj, Ii mitl , Ilmitj, addi, addj) ;, 
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Clearly therefore this call to "g"' returns an identical value to the 
call "f21(j, liM1t)". 

A very similar argument shows that f20(j, IiMit) is equivalent, to 

goij, 11,11mit'O'l). 

Notice that the functional notation is ideally suited to the - 
introduction of functions in this manner. To achieve the same "certainty" in 

the procedural notation, the programmer might well find themselves embroiled 
in an proof using the Axiomatic method. 

In the functional notation all that is required is to partially evaluate 
the function for some particular choice of arguments. 

Using the new function "g" and the two identities for the calls to the 
function 'T20" and "fzi", the model can be equivalently written: 

fun f= if 1 1=12 
then If min (jl, j2) +1 = max(j 1J2 

then true 
else g( I l, min(jl j2) +1,1 1 max(jl, j2), O, 1) 

else if jl=j2 
then if min(il, 12)+1 = max(il, i2) 

then true 
else g(min(ii, i2)+l, jl, max( il, i2), jl, 1,0) 

else false ; 

fun g( I, j, I Imiti I imitj addi, addj) 
If Board(! ,j)<>0 

then false 
else if (i+1 = limiti) or (j+1 limitj) 

then true 
else g( i+addi, j+addj, limit! ,1 lmitj, addi. addj) 
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6.3.6.1 Conversion to the Procedural Notation 

Converting this version of the functional model into Pascal gives rise 
to a Pascal program with only one while loop. This Is the program that the 

Pasýal programmer might have produced having seen the program produced In 

§6.3.5.3, however, it should be stressed that this new Pascal program has 

been proved to be equivalent to the original program. 

i 6.3.6.1.1 Converting IIg" into a "while" Loop 

The termination condition f or the function "g" Is: 

(Board(i, j) 0 0) 'or R+1 = limiti) or Q+l = limitj) 

The loop produced is: 

whi Ie (Board(i, j)= 0) and (1+1 01 iml t1) and (J+I 0 limitj) 
do begin 1 i+addi ;jj+ addj end ; 

if Board(i, j) 0 then move true el se move false 

6.3.6.1.2 Functions Can be Used in Pascal 

Since the function "g" does not return a tuple but merely returns a 

boolean value, it is an ideal candidate to be converted back Into a Pascal 

function: 

function g(i, j, limiti, limitj, addi, addj : Integer) : Integer 
begin - 

whi Ie (Board(i, j 0) and (1 +1 01 imi t 1) and (J+ 10 11mitj) 
do begin i i+addI ;j :=j+ addj end ; 

if Board(i, j) 0 theng -. = true else g := 'false 
end ; 

Of course, there was, in f act, no need to convert the recursion equation 
for "g" into a "while" loop; Pascal call-semantics allows for recursion. 
However, many programmers would not be pleased to find goto statements 
removed, only to be replaced by recursive functions. 
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The whole Pascal program can be written as: 

auxiliary function definition 
function g( i, jI imit! , limitj, addi, addj: integer) : integer; 
beg in 

whi le (Board (i, j )=O) and i+l<>Iimitl ) and (j+l<>Iimitj) 
do begin i i+addi j :=j+ addj end ; -1 1, .' 

if Board(i, j) 0 then g: = trueelse g : =false 
end 

Main program 
if il=i2 

then if min(jl, j2)+l = max(jl, j2) 
then move := true 
eIse 

move := g(il, min(ji, j2)+l, il, max(jl, j2), 0,1) 
else if jl=j2 

then if min(il, i2)+l = max(il, i2) 
then move := true 
e1se 

move g(min(il, i2)+I, jl, max(il, i2), jl, 1,0) 
else move - false 

6.3.7 Concluding Remarks 

The two Pascal programs produced here should be equivalent. "Should", 

that is, if the fold/unfold manipulation rules have been followed correctly, 

and conversion back into procedural notation is free from error. 
However, it should be noted that the Pascal programs will not produce 

the same effect when executed as the Fortran program would. 
This is not simply because the program has been "corrected", 

_but 
because 

a variable, "legal", has been omitted in the choice of abstractive 
projection. 

Clearly, to obtain a program with identical behaviour, but differing 

structure, using functional models, it is necessary to choose all affected 
variables as the result onto which the model function is projected. 

In this case the programs produced guarantee to assign identical values 
to the variable "move". 
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The original program -and the final, Pascal version-produced by modelling 

are as follows: 
. 1, e, I 

IF (1 1. EQ. 12) GO TO 16 
IF (J1 EQ. J2) GO TO 17 
LEGAL FALSE. 
GO TO 15 

16 J MINO(JI, J2) +1 
LIMIT = MAXO(Jl, J2) 
IF (LIMIT. EQ. J + 1) GO TO IS 

20 1F (BOARD (II, J) . NE. 0) GO TO 19 
1F(, J +, 1. EQ. LIMIT) GO TO 18 
J, = j+I 
GO TO 20 

17 1= MINO(11, I2) +1 
LIMIT = MAXO(11,12) 
IF (LIMIT. EQ. 1 + 1) GO TO 18 

21 IF (BOARD(I, Jl) NE. 0) GO TO 19 
IF I+l. EQ. LIMIT)- GO TO 18 
11+1 
GO TO 21 

18 MOVE = TRUE. 
GO TO 15 

19 MOVE = FALSE. 
15 

Pascal version: 

(* auxiliary function definition *) 
function g( 11 imiti I imiti, addi, addj: integer) : Integer; 
beg in 

while (Board(i, j)=O) and (i+l<>Iimitl) and (J+I<>Iimitj) 
do begin I i+addi ;j :=j+ addj'end ; 

if Board(i, j) 0 then g := true else g := false 
end ; 

Main program 
if ll=i2 

then if min(jl, j2)+l = max(jl, j2) 
then move true 
eIse 

move g( i l, min( j 1, j2)+1,11, max( jl, j2), O, l 
else if jl=j2 

then if min( il, 12)+1 = max(11,12) 
then move := true 
eIse 

move g(min(il, i2)+l, jl, max(11,12), Jl, 1,0) 
else move := false 
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6.4 Proof Construction for a Modula-2 Program , 

In this example a program is modelled and properties of -the program -are 

proved. The analysis reveals some possible input values which might cause the 

program to crash. This possibility is removed leading to a more robust 

version of the program. 

The properties which are proved for the program are of quite a general 

character and could be used as a specificatton of the features offered and 
limits enforced by the robust version of the program. 

The program, which implements a mailing list, is taken from the book 

"Modula-2 Made Easy" [671. Models are given for each procedure in the 

program, and are used to analyse the properties of the program. 

From the proofs of properties for individual procedures it is possible 

to construct more general proofs about the properties of the program as a 

whole. These proofs are, called "Global Assertions", and refer to the 

compactness of storage used and the behaviour of the program when the list is 

full and/or contains duplicates. 

102 



6.4.1 The Program 

MODULE Mlist; (* a simple mailing list program 

that uses an array of RECORDS 

FROM InOut IMPORT Read, Write, WriteString, WriteLn, 
WriteCard, ReadCard, ReadString,. EOL; 

FROM Strings IMPORT CompareStr; 

CONST 
LSIZE = 100; 

TYPE 
ADDR =RECORD 

name: ARRAY [0.. 301 OF CHAR; 
street: ARRAY [0.. 301 OF CHAR; 
city: ARRAY [0.. 301 OF CHAR; 
state: ARRAY [0.. 31 OF CHAR; 
zip: ARRAY [0.. 101 OF CHAR; 

END; 

VAR 
mlist: ARRAY [O.. LSIZE] OF ADDR; array of addresses-, 
choice: CARDINAL; 

PROCEDURE Gets(VAR a: ARRAY OF CHAR); 
CONST 

BS = S; backspace 

VAR 
ch: CHAR; 
LCARDINAL; 

BEGIN 
!: =O; 
REPEAT 

Read(ch); 
Write(ch); 
IF ORD(ch)=BS THEN i: =i-1; is backspace 
ELSIF (ch0EOL) AND WHIGH(a)) THEN 

a[il: =ch; 
!: =i+l; L END; 

UNTIL (ch=EOL) OR (i=HIGH(a)); 
a[! ]: =CHR(O); all strings and in 0 

END Gets; 
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PROCEDURE Puts(s: ARRAY OF CHAR); 
BEGIN 

WriteString(s); 
WriteLn; 

END Puts; 

PROCEDURE Menuo: CARDINAL; 
VAR 

ch: CARDINAL; 
BEGIN 

Puts(' 1. Enter an address'); 
Puts(' 2. Delete an address'); 
Puts(' 3. Find an address'); 
Puts(' 4. List all addresses'); 
Puts(' 7. Quit'); 

REPEAT 
WriteString CEnter Choice: I; 
ReadCard(ch); 
Writel-n; 

UNTIL (ch>=l) AND (ch<=7); 
Writel-n; 
RETURN ch; 

END Menu; 

PROCEDURE GetEmptyo: INTEGER; (* returns next empty 
Location in list, -1 if full 

VAR 
i: CARDINAL; 

BEGIN 
FOR i: =0 TO LSIZE DO 

IF CompareStr(mlist[ il. name, "")=O THEN 
RETURN i; is an empty location 

END; 
END; 
RETURN -1; (* list full 

END GetEmpty; 

i 
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PROCEDURE Enter(i: INTEGER); enter a name into the list 0) 
BEGIN 

if i= -1 then f ind new slot; otherwise modify 
existing entry 

IF i=(-I) THEN !: =GetEmptyo; END; 
IF RX-1) THEN 

WriteString('Enter name: 
Gets (mlist[ i bname); 
WriteString('Enter street: 
Gets (mlist[ 1 bstreet); 
WriteString('Enter city: 
Gets(mlist[ il. city); 
WriteString('Enter state: 
Gets(mlist[i]. state); 
WriteString('Enter zip: 
Gets (mlist[ i Lzip); WriteLn; WriteLn; 

END 
END Enter; 

PROCEDURE Display(ml: ADDR); 
BEGIN 

Puts(ml. name); 
Puts(ml. street); 
Puts(ml. city); 
Puts(ml. state); 
Puts(ml. zip); 
Writel-n; Writel-n; 

END Display; 

PROCEDURE List; display the entire list 
VAR 

i: CARDINAL; 
BEGIN 

FOR i: =O TO LSIZE DO 
IF CompareStr(mlist[ i Lname, "100 THEN 

Display(mlist[il); 
END 

END 
END List; 

PROCEDURE Findo: INTEGER; (* return the index of a name 
VAR 

f: CARDINAL; 
s: ARRAY [0.. 301 OF CHAR; 

BEGIN 
WriteString (Enter name to find: 
Gets(s); 
FOR f: =O TO LSIZE DO 

IF CompareStr(s, mlist[f I. name)=O THEN RETURN f END; 
END; 
RETURN -1; (* not found 

END Find; 
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PROCEDURE Locate; (*display an address based 
on the name f ield 

VAR 
i: INTEGER; 

BEGIN 
i: =Findo; (* find the name 
IF i0(-I) THEN Display(mlist[il); END; 

END Locate; 

PROCEDURE Delete; (* remove an address based 

on the name f ield 
VAR 

I: INTEGER; 

BEGIN 
i: =Findo; (* find the name 
IF RX-I) THEN 

mlist[ il. name: =""; (* mark as empty 
END; 

END Delete; 

PROCEDURE Init; (* initialize list 
VAR 

t: CARDINAL; 
BEGIN 

use a null string in name f ield to indicate an 
empty RECORD *) 

FOR t: =0 TO LSIZE DO 
mlist[tl. name: =.... 

END; 

END Init; 

BEGIN 
Init; prepare the list 
REPEAT 

choice: = Menuo; 
CASE choice OF 

1: Enter(-I) new entry 
2: Delete 
3: Locate 
4: List 
5: 
6: 
7: Puts('program, completed'); 

END; 
UNTIL choice=7; 

END Mlist. 
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6.4.2 Auxiliary Functions 

Some auxiliary functions are introduced to model access to 'data 

structures. 
The particular choices made here have 'little impact upon the model 

produced and the kind of proofs that are constructed. 
A tuple is used to model the record structure, and a list to model the 

array structure. 
Two list access functions are used: s, the list selection function, and 

Update, the list update function. 

fun s( i L) if 1=1 then hd(L) else s(I-1, tl(L)) 

fun Update(L, i, e) = 

if i=1 then [e] else hd(L):: Update(tl(L), I-I, e) 

Axiom Al For Update : 

VL, e. Vi>O. i*x z* ( s(Update(L, x, e), I) = s(L, j) A 

s(Update(L, x, e), x) =e) 

fun PeelOff(Inp) = (s(I, Inp), s(2, Inp), s(3, lnp), 

s(4, Inp), s(5, I np)); 

f un Name (ATup I e) = ATup I eJ, I; 

fun Street(ATuple) = ATuple', ý2 

fun Ctty(ATuple) = ATuple,, ý3 

fun State(ATuple) = ATuple-ý4 

fun Zip(ATuple) = ATuple, ý5 ; 

Where J, is the infix tuple-selection function. 

6.4.3 The Model 

In the model some substitution has'been performed, and input of strings 

is assumed to be correct. It is only the storage and -retrieval of entries 

into the mailing list that are analysed, thus the model is projected onto the 

value of the mailing list's global array structure, "mlist". 
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fun GetEmptY(m) = 
let f un f( resul t, m, p) 

if p> LSIZE 
then result 
else if not (Def i ned(m( p 

then p 
else f( resul t, m, p+l) 

in 
f(-l, m, O) 

fun Enter( i, m, Inp) = 
let val I if ! =-I then GetEmpty(m) 

else 1 in 
If I' *- -1 then Update(m, i' PeelOff(Inp)) 

else m; 

fun List(m) = 
let fun f(p, m, L) 

if p> LSIZE 
then L 
else if Defined (m(p) 

then f(p+1, m, L< > [m(pM 
else f (P+l, m, L) 

in 
f (O, m, [I); 

fun Find (m, I np )= 
let fun g(m, f s, result) 

if f> LSIZE 
then result 
else if s= Name(m(f)) 

then g(m, LSIZE+l, s, f) 
else g(m, f+1 ,s result)_, 

in 
g(m, O, hd(Inp), -I) 

fun Locate (m, I np) = 
let val i= Find(m, Inp) in 

if i* -1 then m( i) 
else void 

fun Delete(m, Inp) = 
let val i= Find(m, Inp) in 

if i# -1 
then Update(m, 1, ("", Street (m) CLty(m), State(m), ZLp(m))) 
else m; - 

The Model for the Mailing List Program 
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6.4.4 Assertions About Model Functions 

Def ined(x) -ý Name(x) 

FULL(m) a- Vx. O: sx: SLSIZE. Defined(m(x)) 

GetEmpty 

Al Vm. FULL(m) =o GetEmpty(m) 

A2 Vm. -1 :s GetEmpty(m) :5 LSIZE 

A3 Vm. -FULL(m) 4 Name(m(GetEmpty(m))) = fill 

Enter 

Al -FULL(m) 4 Vx. x#GetEmpty(m). Enter(-I, m, Inp)(x) = m(x) A 

Enter(-I, m, Inp)(GetEmpty(m)) = PeelOff(Inp) 

A2 FULL(m) 4 Enter(-l, m, lnp) =m 

List 

Al Vx. 0 :5x :s LSIZE. Defined(m(x)) =o m(x) rz List(m) 

Find 

Al 3x. (o :sx-. s LSIZE A Name(m(x)) = MUD 

0s Find(m, i) :s LSIZE A Name(m(Find(m, i))) = hd(l) 

A2 -3x. Name(m(x)) = hd(Inp) 4 Find(m, lnp) 

A3 -3y. O: sy<Find(m, l) A Name(m(x)) = hd(D 

Locate 

Al Find(m, Inp) -1 4 Locate(m, Inp) = m(Find(m, lnp)) 

A2 Find(m, lnp) -1 =o Locate(m, Inp) = void 

Delete 

Al 0 :5 Find(m, lnp) :5 LSIZE 4 

Vx. x*Find(m, lnp). Delete (m, Inp) W m(x) A 

Name (Delete(m, Inp) (Find(m, Inp))) = 

A2 Find(m, lnp) = -1 4 Delete(m, lnp) =m 
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6.4.5 Proofs for the assertions on Model Functions 
In this section proof s are given for the assertions about model 

functions. Most of the proofs follow by very simple inductive arguments, or 
directly from other assertions, which have already been proved. In all cases 

the inductive proof strategy used is structural induction. 
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6.4.5.1 GetEmpty 

fun GetEmpty(m) = 
let fun f (result, m, p) 

if p> LSIZE 
then result 
else if not(Defined(m(p))) 

then p 
else f(result, m, p+l) 

in 
f(-l, m, O) 

Al : FULL(m) * GetEmpty(m) 

show FULL(m) 4f (r, m, p) =r so f (-l, m, O) -1 
induction on 1 =LSIZE- p 
base case i<0 

1<0 -ý p> LSIZE 4f (r, m, p) =r 
induct i ve step i 2t -1 

assume f (r, m, p) r. 
show f (r, m, p-1 =r 

f (r m, p-1) =f (r m, p) (FULL(m) 4 Narne(rn(P-M 

=r (Inductive Hypothesis) 

A2 : -1 :5 GetEmpty(m) -5 LSIZE: 

show r<p: SLSIZE 4r :5 f(r, m, p) : 5LSIZE 
so -1 : S-f(-I, m, O) :5 LSIZE 

induct ion on i= LSIZE -p 
base case i<0 

i<04p> LS IZE 4f(r, m, p) =r 
inductive step i ý: -1 

assume r :s f(r, m, p) :5 LSIZE 

show r :sf (r 
, m, P-1) :5 LS IZE 

f (r 
, m, p-1) has two cases : 

etther -Def ined (m(p- 1 )) 4f (r, m, p-1) = p-l 
in which case i -a 04p: s LSIZE4 p-l < LSIZE 

or Defined(m(p-1)) -ý f(r, m, p-1) f(r, m, p) 
in which case the assertion is proved by Ind. Hyp. 
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FA -3. 
-FULL(m) 4 Name (m(GetEmpty (m))) 

show 3x. (m(x) Ap :sx :s LSIZE) =* Name(m(f(r, m, p))) 
so - FUL L (m) 4 Name (m(f (- 1, m. 0) ))= "" 
indu cti on on i=x-p where m(x) Ap :sx :5 LSIZE 
base case i=0 

i=0 :*x=pf (r, m, ppx 
induct i ve step i0 

assume Name(m(f (r, m, p 
s how Name (m (f (r, m, p-1 

f(r, m, p-1) has two cases 
either -Defined(m(p-1)) zo f(r, m, p-1) =p-1 

or Defined(m(p-1)) z* f(r, m, p) Und. Hyp. 

6.4.5.2 Enter 

fun Enter(i, m, lnp) = 
let val P= if 1=-1 then GetEmpty(m) 

else 1 in 
if 1' * -1 then Update (m, V, PeelOf f (Inp)) 

else m; 

Substituting -1 for i in the definition of Enter gives : 

fun Enter(-I, m, lnp) = let val V= GetEmpty(m) in 
if V# -1 then Upda te(m, V, Peet Off Unp)) 

else m 

Al -FULL(m) 4 Vx. x: *GetEmpty(m). Ent er(-l, m, Inp) W= m(x) A 

Enter (-l, m, Inp) (GetEmpty(m)) = PeelOff (Inp) 

By maximal substitution in Enter and the axiom Al. of update 

A2 FULL(m) 4 Enter(-l, m, lnp) -- Mý 

FULL(m) co GetEmpty(m) = -1 by A1f or GetEmpty 

-* Enter(-I, m, Inp) =M by maxImal substitutlon 
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6.4.5.3 List 

fun, List (m) = 
let fun f (p. m, L) 

if p> LSIZE 
then L 
else if Defined(m(p)) 

then f(p+l, m, L<>[m(p)]) 
else f(p+l, m, L) 

in 
f (0, M, ID ; 

Al : Vx. O: sx: 5LSIZE A Defined(m(x)) z* m(x) e List(m', 

LEMMA Vp. p: SLS'IZE =o Li 0f (p, m, L2) f(P, M, Li 0 L2) 

proof 
induction on i LS IZE -p 
base case i= -1 

i= -1 4p= LSIZE + 1 
f (p, m, Li <> L2) = Li 0 L2 
Ll <>f (p, m, Lz) = Ll 0 L2 

inductive step 
assume f(p, m, Ll 0L 2) Li 0 f(p, m, L2) 

show f(p-l, m, Ll 0 Lz) = Li 0 f(p-l, m, L2) 
f (p-l, m, Li 0 Lz ) has two cases 

etther Def I ned(m(p-1 )) 
f (p- 1 m, Ll <> L2 f (p, m, (Li 0 Lz) 0[ m(p)]) 

f (p, m, Ll 0 (L2 0 [m(p)])) 
Ll 0 f(p, m, L2 0 [m(p)]) 

Ll <> f(p-l, m, L2), = Ll, 0 f(p, m, L2 0 [M(P)I) 

or -Def ined(m(p-1)) 
f(p-l, m, Ll <> L2) = f(p, m, Li 0 L2) 

= Ll 0 f(p, m, Lz) 
Li<>f (p- I, m. L2'), = Li <> f(p, m, L2) 
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Using the lemma the proof of Al for List can proceed. 

Al : Vx. O: sx. -sLS IZE A Def ined(m(x)) =o, m(x) e List(m) 
to do this show Vx. p: 5x: SLSIZE A Def ined(m(x)) 4 m(x)r=f(p. m, L) 
which means f(0m, [I) sat i sf ies Al 
induction on i LSIZE -p 
base case i= 

Vx. p: sx: SLSIZE A Defined(m(x)) 4 m(x) e f(p, m, L) vacuously 
sat isfi ed. 

inductive step iý -1 
assume Vx. p: sx: sLSIZE A Def ined(m(x) m(x) ef (p, m, L) 
show Vx. p-l: sx: SLSIZE A Defined(m(x)) zo, m(x) e f(p-l, m, L) 

f(p-l, m, L) has two cases 
eLther Def ined(m(p-1)) 
f(p-l, m, L) = f(p, m, L <> [m(p-1) I 

=L <> [m(p-1)] 0f (p, m, l 1) by Lemma 
so Vx. p: sx: sLSIZE A Defined(m(x)) =o, m(x)rzf (p-l, m, L) by Ind . Hyp. 
and Def ined(m(p-1)) and m(p-1) ef (p-l, m, L) 
so Vx. p-1: sx: sL SI ZE ADefined (m(x) ) =* In Wef (p-1 

, m, L) 

or -Def ined (m(p-1 )) 
f(p-l, m, L) = f(p, m, L) 

so Vx. p -sx: -cLS I ZE A Def i ned (m(x)) 4 m( x) ef ( p- l, m, L) by Ind. Hyp. 
and -De fi ned (m( p-1)) and m(p-1) Vf( p- 1, In, L) 
so Vx- p-1: sx: sLS I zE A Def ined (m(x)) =o m(x) em f (p-1 , m, L) 

6.4.5.4 Find 

fun Find(m. Inp) = 
let fun g(m, f, s, result) 

if f> LSIZE 
then result 
else if s= Name(m(f)) 

then g(m, LSIZE+l, s, f) 
else g(m, f+l, s, result) 

in 
g(m, O, hd(Inp), -l) 

Al : 3x. (0 :sx :s LSIZE A Name(m(x» = hd(1» -> 
0 :s Find(m, i) -5 LSIZE A 

Name(m(Find(m, i») = hd(i) 
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to do t his show 3x-. (O: sx: sLSI ZE A Name(m(x) )=sAO: sf: sx), 4- 
O: sg(m, f, s, r ): sLS I ZE A Name (m(g(m, f, s, r) s 

induct 1 on on i= x-f where O: sx: sLSIZE A Name(m(x)) s 
base case i=0 

g(m, f s, r) = g(m, LS lZE+l 
, s, f) =f=x 

induct i ve step i 2: 0 
i>040 :5f<x :5 LSIZE 
assume g(m, f, s, r) satisfies Al 
show g(m, f-l, s, r ) satisfies Al 

g(m, f-I, s, r) has two cases 
either s Name(m(f-1)) =0 g(m, f -1 , s, r) 

g(m, LSIZE+l, s, f-1) 
f-1 (f-l satisfies Al) 

or s Name(m(f-M =og(m, f-ls, r) =g(m, f, s, r) 
(which satisfies Al by the Induction Hypothesis) 

A2 : -3x. Name(m(x)) = hd(Inp)'zo Find(m, lnp) = -1 

to do this show -3x. Name(m(x)) =s4 g(m, f, s, r) =r 
induct i on -on 1= LS IZE -f 
base' ca'se i<0 

i<0 =o f> LSIZE zo g(m, f, s, r) =r 
inductive step 1 ý-l 

-1 =* f :s LSIZE 
assume g(m, f, s, r) =r 
show g(m, f-l, s, r) =r 

-3x. Nam e Wx) s =* g (m, f -1, s, r) = g(m, f, s, r) =r 
(by In ductlon Hypothesis) 

I 
A3 -3y. O: sy<Find(m, l) A Name(m(x)) = hd(l)] 
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Show 3y. O: sy: s F ind (m, 1)A Name (m(x)) = hd(i) 
Name(m(x)) = Find(m, i) 

let k be the index of the f irst element that equals the element to 
be f ound : 
O: sk: sLSIZE. m(k) = hd( Inp) A 

Fi nd (m. I np) =kA 
( Vy. Os y<k. m(y ) *h d(I np)) 

show f :5k zo g(m, f, hd(Inp), r) =k 
induction on i= k-f, i ý: 0 
base case i=0 
i=O =ý k=f 

k=f 4 m(f hd( Inp) 
k: sLS IZE g (m, f, hd (I np) , r) 

g (m, LS IZE+ I, hd (inp) , k) 

inductive step 1? --0 
assume g(m, f, hd(Inp), r) =k 
show g(m, f-l, hd(Inp), r) k 
i? --O =o O: sfsksLSIZE 

-o g(m, f-l, hd(Inp), r) 
if hd( Inp) = Name(m(f then g(m, LSIZE+l, hd(Inp), r) 

else g(m, f, hd(Inp), r) 
since Vy. O: sy<k. m(y)#hd(Inp) 

g(m, f -1, hd( I np ) r) = g(m, f, hd(Inp) r) =k 

6.4.5.5 Locate 

fun Locate(m, Inp) = 
let val i= Find(m, Inp) in 

if i# -1 then m(i) 
else void 

Al Find(m. Inp) 
-* -1 4 Locate(m, lnp) = m(Find(m. Inp)) 

By maximal substitution in Locate and substitution of true 
for Find(m, Inp) * -1. 

I 
A2 Find(m, lnp) = -1 :* Locate(m, lnp) = void 

I 

By maximal substitution in Locate and substitution of false 
for Find(m, Inp) # -1. 
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6.4.5.6 Delete 

fun Delete(m, lnp) = 
let val i= Find(m, Inp) in 

if i* -I 
then Update(m, i, (" ", Street (m), CI ty (m), State (m)Ztp (m))) 

else m; 

Al 0 :sF1 nd(m, I np) :5 LS IZE -o 
Vx. x*Find(m, Inp). Delete(m, lnp)(x) m(x) A 

Name(Delete(m, lnp)(Find(m, Inp))) = 

O: sFind(m, Inp): 5LSlZE .4 
Del ete(m, i. ( "" Street (m), C I ty(m), State(m), ZIp(m))) 

by substItution 
Vx. x*Find(m, Imp). Del ete(m, Inp)(x) = m(x) 

A Name (De 1 et e (m, I np) (F 1 nd (m, In p))) = 11 " 
by axtom Al for Update 

[A 
2 Find(m, Inp) = -1 4 Delete(m, lnp) =mI 

By maximal substitution in Delete. 

6.4.6 Higher-Level Proof s 

The proofs constructed so far concern the properties of individual 

routines that are used to implement the mailing list program. These proven 

assertions can be used to construct proof s of a general character about the 

mailing list as a whole. 

Some examples of such "Universal Assertions" are described below: 
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6.4.6.1 UAI: Compaction 

UA1 asserts that the entries in the mailing list are stored 

contiguously. This is proved by showing that the free-space allocation 
function "GetEmpty" always returns the ftrst free space in the mailing list. 

Of course, Delete will leave a "gap" in the mailing list, however, the 

assertion UAI guarantees that this space will be used up before any of the 
block of free space at the end of the mailing list array is used. 

UAl : (VmVx. 0: 5x<GetEmpty(m) 4 Defined(Name(m(x)))) A 

-Def ined (Name (m(GetEmpty(m)))) 

The proof f or the second half of this conjunction comes from assertion 
A3 for GetEmpty for all non-fuLL mailing lists. The case where the mailing 
list is full is vacuously satisf led by assertion Al of GetEmpty. 

(Vx. O: sx<-l. P(x) is a tautology). 

In order to show the f irst half of the conjunction of UAl it is 

sufficient to show that Lf there is another "least, undefined element" then 

it is one and the same as that returned by GetEmpty. 

Assume 3x. x: sk A X2: 0 A -Defined(Name(m(x))) A 
(Vy. y<x A y; --O =ý Defined(Name(m(y)))) 

where k= GetEmpty(m) 

Show (1)4x= k. 
To do this show O: sp: sx 4 f(r, m, p) =x 

Induction on i=x-p 

base case i=0 
i=04x=p 
Now (x :sk :s LSIZE) 4pS LSIZE (Al of GetEmpty and-AM' 
and from (1) -Defined(Name(m(x))) =o -Defined(Name(m(p))) 

-Defined (Name (m(p)) )4f (r, m, p) =p=x. 

indu cti ve step 
as s ume : O: sp+ 1: sx f (r, m, p+ Ix 
show : f(r, m, p) x 
P+ I :Sx =0 p<x 
so fr om (1) f(r, m, pf (r, m, p+ 1x by the induct ion hypothesis. 
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6.4.6.2 UA2: Delete is the Inverse of Enter 

This assertion -shows that deleting an element from a mailing list to 

which it has been added leaves the mailing list unaltered. 
The assertion is onLy true given certain provisos which will be 

discussed after the proof has been described. 

UA2 : -3x. (Name(m(x)) = hd(Inpi) A hd(Inpl) = hd(Inp2) A -Full(m) 

:* Del ete(Enter(-l, m, Inpi), Inp2) = m(x)) (2) 

let s hd(Inpl) hd(Inp2). 
let Find( Enter (-1 m, Inpl Inpl k 
(by Al for Find and (2)) 

-3x. Name(m(x)) =sA Name (Enter (-I, m, I npl)k) =s 
(and by Al for Enter) 

Name (Enter (- I, m, I npl) (Ge tEmpty(m))) = Name(PeelOff(Inpl)) =s 
so Flnd(Enter(-1, m, Inp1), lnpl) =k =GetEmpty(m) 

Now (by Al. for Delete) 
Name (Delete (Ent er (-I, m, I np 1 ), Inp2)(Find(m, Inpl))) 
Name (m (Ge t Empt y (m) )). (2) 

And (From Al Enter and Al Delete) 
Vx. x#GetEmpty(m) 4 Name (De I ete (Enter (71, m, Inpl), Inp2)x) 

Name(Enter(-1 m, Inpl W= m(x) (3) 
Conjoining (2) and (3) gives UA2. 

6.4.6.3 A Problem Case f or "Find", I 
As shown by assertion UA1, the function "GetEmpty" finds the f Irst 

available space to enter, and by assertion A3 f or GetEmpty, which is: 

Vm. -FULL(m) 4 Name(m(GetEmpty(m))) 

the "name part" of this space is ""'. 

Now, by assertion A3 for the function "Find", Find(m, lnp), finds the 

first element of the mailing list, x, that satisfies 

Name(m(x)) = hd(Inp). 

So 

-FULL(m) zo Find(m, "") = GetEmpty(m). 

This is simply a reflection of the fact that .... is used in the name 

field to indicate an unused space. So ... should be disallowed as a valid 

string, or "rubbish" may be printed on the screen. 
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6.4.7 Discussion 

The restrictions on UA2 are that the mailing list must not be full and 

that the item added to the mailing list must not already be a member of the 

list. This reflects the implementation restrictions of ' the mailing list 

program. 

Specifically, the program cannot be expected to behave when the entire 

space allocated to the array, which stores the elements of the list, is used 

up. It also does not behave well when duplicate names are included in the 

mailing list. 

Now, no checks are included in the original program to detect these two 

situations. 

Also, the Null string, (""), is used to denote an empty entry in the 

list, so it should not be considered to be a valid name for searching or 

addition. 

Adding checks to the program to detect and report on these problem cases 

improves the robustness of the mailing list program. 

6.4.8 The Modified Mailing List Program 

The mailing list program has been modified to trap the errors uncovered 

by the analysis conducted above. 

MODULE Mlist; (* a simple mailing list program 

that uses an array of RECORDS 
(* Update 1991 Mark Harman *) 

FROM InOut IMPORT Read, Write, WriteString, WriteLn, 
WriteCard, ReadCard, ReadString, EOL; 

FROM Strings IMPORT CompareStr; 

CONST 
LSIZE = 100; 

TYPE 
NameType = ARRAY [0.. 301 OF CHAR; 
ADDR =RECORD 

name: NameType; 
street: ARRAY [0.. 301 OF CHAR; 
city: ARRAY [0.. 301 OF CHAR; 
state: ARRAY (0.. 31 OF CHAR; 
zip: ARRAY [0.. 101 OF CHAR; 

END; 
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VAR 
mlist: ARRAY [O.. LSIZE] OF ADDR; (* array of addresses 
choice: CARDINAL; 

PROCEDURE Duplicate(s: NameType) : BOOLEAN; 
returns true iff the name s already 
exists in the mailing list *) 

VAR f: INTEGER ; 

BEGIN 
FOR f: =0 TO LSIZE DO 

IF CompareStr(s, mlist[f I. name)=O THEN RETURN TRUE END; 
END; 
RETURN FALSE 

END Duplicate ; 

PROCEDURE Gets(VAR a: ARRAY OF CHAR); 
CONST 

BS = 8; backspace 

VAR 
ch: CHAR; 
hCARDINAL; 

BEGIN 
i: =O; 
REPEAT 

Read(ch); 
Write(ch); 
IF ORD(ch)=BS THEN i: =i-1; is backspace 
ELSIF (ch0EOL) AND WHIGH(a)) THEN 

afil: =ch; 
!: =i+l; 

END; 
UNTIL (ch=EOL) OR (i=HIGH(a)); 
a[! ]: =CHR(O); all strings and in 0 

END Gets; 

PROCEDURE Puts(s: ARRAY OF CHAR); 
BEGIN 

WriteString(s); 
WriteLn; 

END Puts; 
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PROCEDURE Menuo: CARDINAL; 
VAR 

ch: CARDINAL; 
BEGIN 

Puts(' 1. Enter an address'); 
PutsC 2. Delete an address'); 
Puts(' 3. Find an address'); 
PutsC 4. List all addresses'); 
PutsC 7. Quit'); 

REPEAT 
WriteStr ing CEnter Choice: I; 
ReadCard(ch); 
Writel-n; 

UNTIL (ch>=l) AND (ch<=7); 
Writel-n; 
RETURN ch; 

END Menu; 

PROCEDURE GetEmptyo: INTEGER; (* returns next empty 
Location in list, -1 if full 

VAR 
i: CARDINAL; 

BEGIN 
FOR i: =O TO LSIZE DO 

IF CompareStr(mlist[ il. name, "")=O THEN 
RETURN 1; is an empty location 

END; 
END; 
RETURN -1; (* list full 

END GetEmpty; 
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PROCEDURE Enter(i: INTEGER); (* enter a name into the list 
VAR s: NameType 
BEGIN 

if i= -1 then f ind new slot; otherwise modify 
existing entry 

WriteString('Enter name: 
REPEAT Gets(s) UNTIL (s[01 0 CHR(O)) 
IF Duplicate(s) 

THEN 
WriteString('Duplicate name, can not add it the the list') 
WriteLn 

ELSE 
IF i=(-I) THEN i: =GetEmptyo; END; 
IF RX-1) 

THEN 
mlist[il. name :=s 
WriteString('Enter street: 
Gets(mlist[ il. street); 
WriteString('Enter city: I; 
Gets(mlist[i]. city); 
WriteString CEnter state: 
Gets (ml ist[ i Lstate); 
WriteString('Enter zip: 
Gets(mlist[il. zip); WriteLn; WriteLn 

ELSE 
WriteString('Can not add this name, the mailing list is full') 

END 
END 

END Enter; 

PROCEDURE Display(ml: ADDR); 
BEGIN 

Puts(ml. name); 
Puts (ml. street); 
Puts(ml. city); 
Puts(ml. state); 
Puts(ml. zip); 
Writel-n; WriteLn; 

END Display; 

PROCEDURE List; display the entire list 
VAR 

LCARDINAL; 
BEGIN 

FOR i: =O TO LSIZE DO 
IF CompareStr(mlist[ Mname, "'100 THEN 

Display(mlist[II); 
END 

END 
END List; 
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PROCEDURE Findo: INTEGER; (* return the index of a name 
VAR 

f CARDINAL; 
s ARRAY [0.. 301 OF CHAR; 

BEGIN 
WriteString('Enter name to find: 
REPEAT Gets(s) UNTIL (s[01 = CHR(O)); 

FOR f- =0 TO LSIZE DO 
IF CompareStr(s, mlist[f I. name)=O THEN RETURN f END; 

END; 

RETURN -1; (* not found 
END Find; 

PROCEDURE Locate; (* display an address based 
on the name f ield *) 

VAR 
i: INTEGER; 

BEGIN 
!: =Findo; (* find the name 
IF RX-I) THEN Display(mlist[il) 

ELSE WriteString(' Can not find this name 
END 

END Locate; 

PROCEDURE Delete; (* remove an address based 
on the name f ield *) 

VAR 
i: INTEGER; 

BEGIN 
i: =Findo; (* find the name 
IF i<>(-l) THEN 

mlist[il. name: = .... mark as empty 
END; 

END Delete; 

PROCEDURE Init; (* initialize list 
VAR 

t: CARDINAL; 
BEGIN 

use a null string in name f ield to indicate an 
empty RECORD *) 

FOR t: =O TO LSIZE DO 
mlist[t]. name: =""; 

END; 

END Init; 
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BEGIN 
Init; prepare the list 
REPEAT 

choice: = Menuo; 
CASE choice OF 

1: Enter(-l) new entry 
2: Delete, 
3: Locate 
4: List 
5: 
6: 
7: Puts('program completed'); 

END; 
UNTIL choice=7; 

END Mlist. 
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6.5 The Program "Find" 

"Find" is an algorithm invented by Hoare. In his paper "A proof of the 

program FIND" [331, Hoare shows how a procedural program that implements this 

algorithm could be constructed and proved simultaneously, using the Axiomatic 
Method (described in chapter two). As such, the procedural program "FIND", 

provides a good example for comparing the proof and manipulation 
possibilities offered by functional modelling with those of the Axiomatic 
Method. 

By converting the manipulated functional model back into a procedural 

program, it is possible to see how to remove the "goto" statement, at the 

expense of one extra iteration of the main "while" loop. 

The procedural program "FIND" is written in Algol 68, with comments 
written in italics. It is a remarkable, compact and efficient algorithm. 

begin 
integer m, n; 
m :=1; n: =N; 
while m<n do 

begin integer r, i, j, w; 

r := AM; i :=m; j :=n; 
while i <=jdo 
begin whIleA[ij < rdo i 

while r< A[jl do j :=j 
if i <= j then 
begin w := A[! ]; Mij A[j]; A[j] w; 

i+1; jj 
end 

end Encrease L and decrease J; 
if f <= i then n :=i 

else if 1 <= f then m 
else go to L 

end reduce mLddLe part; 
L: 
end FLnd 
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(* f is a constant, as is N 
fun find(A) fi(A. 1, N) 

fun fi(A, m, n) if m<n 
then- 
let (A', i, j) f2 (A, m, n, s(A, f in 
if f <= j then fi (A' 

, m, j) 
else if i<f then, fiW, 1, n) 

else A' 
else A 

fun f2(A, 1, j, r) if i <= 
then 
let P= f3(A, i, r) in 
let j' = f4(A, j, r) in 
if i, <= j, 

then 
let A' = u(u(A, il s(A, j')), j', s(A, iI)) in 
f2(A', i'+l, j'-J, r) 

else 
(A, i', j') 

else 
(A, i, j) 

fun f3(A, 1, r) = if s (A, 1) <r then f 3(A, 1 +1, r) else I 
fun f4(A, j, r) = if r< s(A, j) then f4(A, j-l, r) else j 

types 

find : list int 4 list int 
fi : (list int X int x int) -> list Int 
f2: (list int x int Xi nt Xi nt) 11 st' 1 nt x int X int) 
f3 : (list int x int x int) int 
f4: (list int x int x int) int 

6.5.1 Auxiliary Functions Used in the Model 

The function "s" and "u" are the list selection an list update 
functions. 
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6.5.2 The Proof 

6. S. 2.1 Lemma 0 

For the functions f3 and N, two very simply properties are stated, 

which can been seen to hold from their predicates. 

Lemma 0 (f3) 

3x. x2: 1 A s(A, x)-er z> 
f3(A, 1, r) = i' s. t. Vx. 1: sx<i". s(A, x) <r 'A s(A, i') 2: r 

6.5.2.1.2 Lemma 0 

3x. X--sj As (A, x): Sr 4 

f4(A, J, r) = j' s. t. Vx. j<x: sj. s(A, x) >rA s(A, j') :sr 

6.5.2.2 Lemma I 

f2(A, X, X, s(A, x)) = (A, x+l, x-1) 

Proof 

xSx 
f3(A. x, s(A, x)) :Fx (since not(s(A, x) < s(A, x)) 
f4(A, X, S(A, X)) =x (since not(s(A. x) < s(A, x)) 

So f2(A, x, x, s(A, x)) 
f2 (A' x+l, x-1) 

where A' = u(u(A, x, s(A, x)), x, s(A, x)) 
but not(x+l-: s x-1) A u(u(A, x, s(A, x)), x, s(A. x)) =A 

So f2(A, X, x, s(A, x)) = (A, x+l, x-1) 

6.5.2.3 Lemma 2 

m5fSn4f1 (A, m, n) =f i' (A, m, n) 

where funfl' = ifm <=n 
then 
let (A, i, j) = f2(A, m, n, s(A, f)) in 
if f <=j then fi'(A' m, j) 

else if i <= f thenfi'(A, i, n) 
else A' 

else A 
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This lemma allows the function fi to be slightly altered (the predicate 

"m < n" has been replaced by the relaxed predicate "m :s n"). 

Proof 

The proof uses partial evaluation of the function fi. 
First, note that m 's f :5n =o ( (m=n) =o (m=n=f) ) 

Recursive calls to fl preserve the relationship M: sf: sn,: 
fi(A' , m, j) where m: sf :5j 

and fi(A , i, n) where i : sf Sn 

So, if m=n, then since m: sf: sn, the call to fi'(A, m, n) will 
be fi' (A. f, f). 

Substituting these values in the body of fi gives the 
result as : 

let (A' I, j) = f2(A, f j s(A, f)) in 
if f<j then fi (A' ,f, i) 

else if i <= f thenfi(A', I, f) 
else A' 

by lemma If2 (A, f, f, s (A, f (A, f+l, f-i 
So fi ** ( A, f, fA 
So m --5 f :5nfi (A, m, nf i' (A, m, n) 

Using Lemma 2 it is now possible to rewrite the model function f1 as 

follows : 

fun fi(A, m, n) = if m <= n 
t hen 
let (A', i, j) = f2(A, m, n, s(A, f)) in 
iff<j then fi (A' , m, j) ' 

else if 1 <= f then fi(A', i, n) 
else fi(A', i, j) 

e Ise A; 

6. S. 2.4 Lemma 3 

fi(A, m, n) = fi"(A, m, n) 

where fun fi "(A. m, n) 
if m <= n 

then 
let (A', i, j) -, = f2(A, m, n, s(A, f)) in 
if f <= j then fi"(A' m, j) 

else if i <= f then fi"(A', I, n) 
else fi"(A', I, j) 

else A 
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This lemma allows fi to be replaced by f i", where f 1" has only one 

condition leading to termination (instead of two). 

Proof 

The proof is by partial evaluation of V. 

The call fl"(A', i, j) only occurs if both f <= j and i <= f. With i 

substituted for m and j for n, the recursive call fi"(A', I, j) = A', since 

i>j. 

Using Lemma 3 it is now possible to rewrite the model function fi as - 
follows : 

i(A, m, n = if m <= 
t hen 
let (A', i, j) = f2(A, m, n, s(A, f)) in 
if f <=j then fi(A', m, j) 

else if i <= f then fi(A', i, n) 
else fi(A', i, i) 

else A; 

6.5.2. S Lemma 4 

VijrA. lej Are (x, x= s(A, y) A1 :syejy ze 
f2(A, i, j, r) = (A', il, j, ) 

s. t. Vxy. 1-: SX<i' A j<ye«j z> s(A', x) :sr :s s(A", y) 
A Vx. x(1 z* s(A', x) = s(A, x) 
A Vx. x>j>s (A', x) =s (A, x) 

6.5.2.5.1 Explanation 

Let L(n, m] denote all the elements of a list L from, but not including 

n, up to, and including m. 
Let Un, m) denote all the elements of a list L from, and including n, up 

to, but excluding m. 
Let L[n, m] denote all the elements of a list L from, and -including n, up 

to, and including m. 
Lemma 4 says : if re A[i, j] then f2 yields the tuple (A', i, j) where 

L[i,! ') :5rs L(j', jl. The last two conjuncts of the implication dictate that 
all other elements of the list outside [i, i') and (J'JI are unaffected. 
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Proof 

(by Structural Induction on k= 

base case 

k=O 4(j=iA r=s (A, j) ) 

sub sti tut 1 ng A, j, j and s(A, J) , as actual parameters, f or the 
f orma I parameters A, i, j and r in f2 respect i ve I y. 
gives : 

if j <=j 
then 
' et V= f3(A, j, s(A, j)) in 
let j' = f3(A, j, s(A, j)) in 
if il <= j, 

then 
let A' = u(u(A, I', s(A, j')), j', s(A, I')) in 

Now 
f3(A, j, s(A, j)) =. f4(A, j, s(A, j)) =j (by substItution) 
and u(u(, A, j, s(A, j)), j, s(A, j)) =A 
so f2(A, j, j, s(A, j)) = f2(A, j+l, j-l) = (A, j+I, J-I) 
Vxy. j: sx<j+l A j-l<y: 5j 4 s(A, x) :5 s(A, j) :5 s(A, y) is true 

since it degenerates to s(A, j) :5 s(A, j) :5 s(A, j) 
And s1 nce A' =A then Vx. x< i4s (A' , x) = s(A, x) and 
Vx. x>j 4 s(A' x) = s(A, x) are clearly true. 

inductive hypothesis 

VijrA. j: sj Ar r= (x: x s(A, y) A i: sy: sj> x> 
f 2(A, i, i, r) = (A' l', j') 

s. t. Vxy. i: sx< i' A j'<y: sj => s(A« x) :sr :s s(A". y) 
A Vx. x<i z* s (A' 

, x) =s (A, x) 
A Vx. X>j z* s(A', x) = s(A, x) 

for j-i = k, kk0 

call the assertion D. 

show D for i-i = k+l :* k>O 

Now, in the body Of f2: 

i: sj is true since M 
f3(A, i, r) & j" = f4(A, j, r) 

There are two possibilities, call them "case 1" and "case 2" : 
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case I: Y- il = 

j'-i' =k (j I=j A 11=i s (A, i) at rA s(A, j) :5r 

(from the predIcate In f3 & f4) 

so in this case f2(A, i, j. r) = f2(A', i+l, j-l, r) 
where A' = u(u(A, i, s(A, j)), j, s(A, i)) 
Now, by the induction hypothesis 
f2(A', i+l, j-l, r) = (A", p, q) 

s. t. Vxy. i+l. -. sx<p A q<y-: sj-1 =; ý s(A", x) ýr -5 s(A", y) 
A vx. x<i+l 4 s(A", x) = s(A', x) 
A Vx. x>j-l 4 s(A", x) = s(A', x) 

also s(A". j) = s(A, j) & s(A", j) = s(A, i) 
so since s(A, j) .5r& s(A, i) 2:: r 
then f2(A, i, j, r) = f2(A', i+l, j-l, r) = (A", p, q) s. t. 

Vxy. isx<p A q<ysj =o s(A", x) srs s(A", y) 
A Vx. x<i =o s(A". x) = s(A, x) 
A Vx. x>j 4 s(A", x) = s(A, x) 

case 2 -. j' -V<k 

il-il <k 

in which case either V> J' or 

case 2.1 :P> j' 
in which case f2(A, i, j, r) = (A, i', j' 
Now r r= J x: x=s (A, y) A i: sy. -Sj 
So f3(A, i, r) = i' s. t. Vx. isx<i' s(A, x) <rAs (A. Vr 
and f4(A, j, r) = j' S-t- Vx. j'<X: sj. s(A, -x) >rA s(A, j') z: r 

which, together with V> j' satisfies D. 
(by lemma 0) 

case S 
in which case f2(A, i, j, r) = f2(A', i'+I, j'-I, r) 
Now f2(A', i'+I, j'-I, r) = (A", p, q) s. t. 

VXY. V+1: sx<p A q<y: sj'-I. s(A", x) :sr :5 s(A, Y) (by I h. ) 
A Vx. x<i'+l :* s(A', x) = s(A", x) 
A Vx. x>j'-l 4 s(A', x) = s(A", x) 

and from lemma 0 and the properties of u 
s(A', i') =s (A, i) :sr&s (A' ,Ps (A, ir 
and from lemma 0 
Vx. 1: sx<i'. s(A, x)-sr & Vx. j'<xsj. s(A, x); -,, r Put t ing thes e together g ives f2 (A, i, j, r)= (A' p, q) s. t. II 

Vxy . i: sx <p A q<x: sj. s(A' x) :5r :s s(A' y) 
A Vx. x< 1 =ý s (A' x) = s(A, X) 
A Vx. x>j 4 s(A', x) = s(A, x) 
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6.5.2.6 The Main Proof 

For the purpose of the main proof the function fi shall be projected 

onto A, m and n. This allows the values bound to m and n at termination, to 

be used in an assertion about f t. 

fun fi(A, m, n) = if m <= n 
t hen 
I et W, 1, j) =f 2(A, m, n, s(A, M in 
if f <=j then fi(A, m, j) 

else if 1 <= f. 
-then'fi(Al, 

i, n) 
else fi(A', I, J) 

else (A, m, n); 

First prove : .1 

m: sf :sn4f1 (A, m, n) = Win'., n') s. t. 
Vxy. m: sx<m, A n'<y: sn. s(A', x) --s s(Al, f): 5s(A', y)Am>n 

proof 
(by structural induction on k= n-m, kýO) 

base case : k=O 4 m=n=f 

substituting m=n=f into the body of fl gives the result: 

let (A' 
, i, 

j) =f z(A, f, f, s(A, f) 
= (A, f+l, f-1) (by I amma 1) 

Vxy. fs-x<f+l A f-l<ysf. s(A, x) :s s(A, f) : ss(A, y) 
reduces to s(A, f) :5 s(A, f) S s(A, f) 

inductive hypothesis 

m : 5' f :sn zo f 'i (A, m, n) = W, m', n') s. t. 
Vxy. m: sx<m' A n'<y: 5n. s(A', x) :5 s(A', f) --s s(A', y) Am>r 

f or k= n-m 
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kz: O 4m :5n, subs ti tut i ng i nto the body off1 gives the result : 

let (A', i, j) = f2(A, m, n, s(A, f)) in 
1ff <= j then f1 (A' , m, j) 

else if i<=f then fi (A' , i, n) 
else fi(A' , ij) 

In this proof, I et 0 be the fth eI ement in order in the array A. 
There are three possible cases: 

case 1: f<=i 
f :5j means that s(A, f) :50, since there are at least as man 

elements in A which are greater than or equal to 0 than to s(A. f) 
So Lemma 4 in this case gives 
Vx. j<x: sn. s(A, x) 2: 0 

Now by the induct ion hypothesis 
fi (A' , m, j)= (A", p, q) s. t. 

Vxy. m: sx<p A q<y: sj. s(A". X) :5 s(A", f) S s(A". y) A p>q 
zo Vxy. m: sx<p A q<y: sj. s(A", x) :s :s s(A", y) A p>q 
Together with lemma 4 gives 
fi (A' 

, m, n)= (A' , p, q) s. t. 
Vxy. ms x<p Aq<y: sn. s (A' , x) :s0 :s s(A , y) Ap>q 

4Vxy. m: s x<p Aq<y: sn. s (A' , x) :ss (A' ,f) :ss (A', y) A p>q 

case 2: I <= f 
This follows a symmetrically similar argument to case 

case 3: j<f<i 
By lemma 4 
f? (A, m, n, s(A, f)) (A', i, j) s. t. 

Vxy. M: 4-x<i A j<y: snz* s(A', x) :S s(A, f): Ss(A', y) 
Now j<f<i means that s(A, f): so and s(A, f)2-0, whichmeans 
s(A, f)=0. 
Lemma 4 alsomeans that s(A', f)=O=s(A, f) soLemma4means 
fi(A, m, n) = fi(A', i, j) s. t. 

i<f<iA Vxy. m: sx< iAj<y: sn 4s (A' , x) :5 s(A' ,f) :5s (A, y) 

Now j<f <i 4 fl(L, i, j) = (L, i, j) so 
f1(A, m, n) = (A' 

,i, j) s. t. 
Vxy. mix< iA j<y: sn 4 s(A' x) : r- s(A' ,f) :s s(A, y )A i>j 
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6.5.2.7 Tinally ---- ,, I 

fi nd (A) (A, I, N) = (A' , m, n) s. t. 

Vxy. I: sx<MA n<y:! N =ýs(A' , x) S s(A', f) : ss(A' , y) A m>n 

Vxy. 1 : sx sf-, s y: 5 N s(A', x): s s(A', f): SS(A', y), 

6.5.3 Using the Model Function to Alter the Procedural Program 

Using Lemma 2 and 3 the "goto" statement within the main body of the 

procedural program can be removed. 

This is because the function fi has been manipulated as a result of 

lemmas 1 and 2 and when converted back into a "while" loop (according to the 

strategy described in chapter 5) the "goto" is no longer required (since the 

function only has one exit point). 

fi(A, m, n) if m <= n 
t hen 
let Wj, j) = f2(A, m, n, s(A, h) in' 
if f <=j then fi(A', m, j) - 

else if i <= f then NW, i, n) 
else fi(A', W) 

else A' 

Converting this into a "while" loop form gives : 
-., t 1ý IIý 

while m <= n do 
let (A', I, j) = f2(A, m. n, s(A, f)) 
if f <= j then n :=j 

else if i <= f then m 
else beginm: =!; n: =j end 

Where, the "let W, ij) = f2(A, m, n, s(A, f))" 'can be replaced by 

converting the function f2 back into a while loop. Since f2 has not been 

manipulated -during the proof, it will correspond to the original Algol 

"while" loop from which it was produced. 
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6.5.4 Comparing the Manipulations and Proof s with the Axiomatic Method 

The Axiomatic Method was used by Hoare to construct and prove the 

program Find in the programming language Algol. The Axiomatic method is the 

main analysis and proof technique available to procedural programmers. 

This section attempts to compare it with the functional modelling 

strategy. 

Manipulation of The Model 

The principal difference between the modelling approach an the Axiomatic 

approach is the difference between a functional and procedural notation. 
The functional style Is rich in algebraic properties, allowing a 

programmer to freely manipulate the structure of their program without 
affecting the values that it computes. 

The procedural notation, on the other hand, is far more rigid: algebraic 
manipulation rules, where they exist, are far more involved due to changes to 
the "implicit state. If a programmer wants to replace one statement-sequence 
with an apparently equivalent statement-sequence then a proof may be 

required, demonstrating that the two statement sequences are, indeed, 

equivalent. 

6.5.4.1 Substitution 

The substitution of an expression for a variable with the consequent 
removal of a let abstraction in the modelling technique is equivalent to the 

use of the Assignment Axiom of the axiomatic method. 

6.5.4.2 Partial Evaluation 

Model functions can be partially evaluated, which in the Axiomatic 
Method corresponds to replacing the procedural code with fresh- code. In this 

situation, using the Axiomatic Method, a proof would be necessary to show 
equivalence between the replacement code and the code that it replaces. 
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6.5.4.3 Projective Abstraction 

Some values computed by a procedural program fragment may not be 

returned by the corresponding model function, since 'they do not contribute 

towards the evaluation of the tuple onto which the model Is projected. 

, In the Axiomatic Method there is no such thing as Projective 

Abstraction, all the identifiers assigned values in, the program can be 

referred to in propositions inserted in between statements of the program. 

6.5.5 Summary 

In general, it appears that the Axiomatic Method is best suited to the 

construction of correct programs, since, as Hoare shows, the program can be 

constructed from the assertions in a reasonably intuitive manner. 

The Functional Modelling technique seems more appropriate where a 

program already exists, and requires analysis and proof. The Modelling 

technique makes manipulation of the program easier. This is an advantage if 

the programmer is not actually sure what properties of a program are 

signif icant. 

In such situations the ability to partially evaluate models, to project 

their results onto sub domains and to use the Fold/Unfold transformation 

rules and structural induction provides a very flexible and comprehensive 

analytic tool. 
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6.6 Correctness Proof for Pascal List Data Type 

It is possible to use the modelling technique to demonstrate that the 
"linked-list" implementation of the list Abstract Data Type in Pascal is 

correct, in the sense that it obeys the list axioms, and does not-produce any 

extra side-effects. Such a proof allows the programmer to replace the heap 
function and heap index with the normal "functional" list constructors and 
selectors. This technique can be used for any Abstract Data Type which can be 

captured by algebraic equalities. 
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6.6.1 The Pascal Program 

Most Pascal textbooks contain, a definition of the recursive data type 
"list". This data type is usually defined in terms of pointers which link 

, 
together - the elements of the list, with the empty list being represented by 

the . "nil" pointer. The definitions may -differ -in minor, detail, but all follow 

a very similar pattern. A typical implementation of lists Is given below: 

program list 
cons t 

Empty = nil 
type 

list = -ListRec 
listRec record 

data : integer 
next :I ist 
end ; 

begin 
new( r esul t 
resu I t-. dat a :. = x; 
resu It^. next :=L 
cons := result 

end ; 

function cons(x : integer ;L: list ): List ; Ivar 
re suit :I ist ;I 

function head(L. 
begin 

head := L^. data 
end ; 

function tail(L 
begin 

tall L^. next 
end ; 

I ist) : integer -, 

I ist) : list ; 

function IsEmpty(L : list)': boolean 
begin 

IsEmpty :=L= Empty 
end ; 
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6.6.2 The Model f or the Linked List 

In the model a new name must be f ound for the functions "head", "tail" 

and "cons", since these names are already used in the model for list 

constructors. To avoid confusion, the transformed - function names 
corresponding to the procedural program functions and constants shall be 

pref ixed by a. 
In this model a list is used to model the record structure of Pascal. u 

and s are list update and select functions. 

val aEmptY = -1 ; 
fun acons(x , L, H, hp) 

let val result = hp 
val hp' = hp + 1 
val H' y = if y result then u (H (result), data, x) 

else Hy 
val H" y if y result then u(H(result), next, L) 

else H' y 
in (result, H", hp' ; 

Ifun othead(L, H) = s(H(L), data) 
Ifun ottai 1 (L, H) = s(H(L), next) 
ýun aIsEmpty(L) =L= -1 

6.6.. 3 Manipulation of the Model 

Manipulation simplifies this model to: 

val aEmptY = -1 ; 
fun acons(x, L, H, hp) 

(hp, 
fn y => if y=hp then u (u (H(hp), data, x), nextj L) else H(Y). 
hp+1 ); 

fun ahead(L, H) = s(H(L), data) ; 
fun atal 1 (L, H) = s(H(L), next) ; 
fun aIsEmpty(L) =L= -1 ; 

140 



6.6.4 The List ADT Axioms 

The algebraic definition of a list data structure consists of six axioms 

as f ollows: 

i) IsEmpty(Empty) = true 
li) Vx, L. IsEmpty(cons(x, L)) false 
iii) Vx, L. head(cons(x, L)) =x 
i V) Vx, L. tai1( cons (x, L) )=L 
v) head(empty) = error 
vi) tail(empty) = error 

6.6. S Heap and Heap-Pointer Axioms 

The following axioms concerning the heap and heap-pointer have been 

found useful in proving properties of models of pointer-based procedural 

programs: 

Al) hp 2: 0 
The heap pointer is always non-negative. 

A2) Vp. poLnter(p) 4p< hp 
No pointer value is larger than, or equal to, the current 
value of the heap pointer. 

A3) hp =0 a* Vx. H(x) = Rubbish 
When the heap pointer has a value of zero, no heap store 
is allocated. 

A4) p=q4 H(p) = H(q) 
This axiom arises directly from the properties of 
functions. 

AS) s(u(T, f, x), f) =x 

A6) Vx. x <0 =* H(x) = Rubbish 
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6.6.6 The Proofs 

The proof that the procedural functions implement the list Abstract Data 

Type relies upon showing that the model functions obey the list axioms. 
The function occons returns a 3-tuple, the first element of which is the 

list pointer and the other two are the heap and heap pointer. It is thus the 

first value returned by acons which is the subject of the proof that the list 

axioms are respected by the model functions. 

In the proofs that f ollow, acons is thus projected onto the 

Pointer-valued result of the procedural function "cons" which it models. 

There is, however, the possibility that the model function acons 

respects the list axioms but also produces some other effect upon the heap, 

so a further proof is required demonstrating that the onLy eff ect of acons is 

to produce the pointer value for the constructed list. 

The whole proof consists of two parts: a demonstration that the model 
functions respect the list axioms and a demonstration that this is all that 

they do. 

i) IsEmpty(Empty) true 
is aAl sEmptyOx Empty) aEmpty 

true 

Proof of List Axiom i) 

VL, x. otIsEmpty(acons (x, L) fa1 se 
this becomes 
let val ( v, H' hp' acons(x, L, H, hp) in alsEmpty(v) 
effectively projecting acons onto v 

let val (v, H', hp') occons(x, L, H, hp) in ocIsEmpty(v) 
let val ( v, H' hp' 

hp, 
fn y => if y= hp 

then u(u(H(hp), data, x), next, "L) 
e Ise My) 

hp+1) 
in ocIsEmpty(v) 

ocIsEmpty(hp) 
false (by axiom Al) 

Proof of List Axiom ii) 
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iii) VL, x. ahead (acons (x, L) x 
this becomes 
let val (v, H' hp' (xcons(x, L, H, hp) in cchead(v, H') 
(projection of acons) 

let val (v, H', hp' acons(x, L, H, hp) in ahead(v, H' 
let val (v, H', hp') 

(hp, 
fn y => if -y = hp 

then u(u(H(hp), data, x), next, L) 
else H(y), 

hP+l) 
in ahead(v, H' ) 

cchead(hp, f, n y => if y= hp 
then u (u (H(hp) , data, x) , next, L) 
else H(y) ) 

s((fn y => if y= hp 
then u (u (H(hp) , dat a, x) , next , L) 
else H(y)) hp, 

data) 
s (u (u(H(hp) , dat a, x) , next , L) , dat a) 

= X. 

Proof of List Axiom iii) 
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iv) VL, x. (xtail((xcons(x, L)) =L 
this becomes 
let val (v, H', hp') = acons(x, L. H. hp) In atall(v, H') 
(projectLon of acons) 

let val (v, H', hp') = acons(x, L. H. hp) In atall(v, H') 
let val (v, H', hp') = 

(hp, 
fn y => if y= hp 

then u (u (H(hp), data, x). next. L) 
else H(y). 

hp+l) 
in atall(v, H') 

cctail(hp, fn y => if y= hp 
then u(u(H(hp), data, x). next, L) 
else H(y)) 

s((fn y => if y= hp 
then u(u(H(hp), data. x) next, L) 

else H(y)) hp, 
next) 

s (u (u(H(hp) 
, 

data, x) . next, L) , next) 
L. 

Proof of List Axiom iv) 

Axioms v) and vi) are direct consequences of the pointer Axiom A6) 

above (§6.6.5). 
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6.6.7 Proof of Freedom From Other Ef fects 

To be satisfied with an implementation of an A. D. T, it is not enough 

simply to prove that the functions defined satLsfy the algebraic description 

of the A. D. T, it is also crucial to demonstrate that no other effects are 

produced apart from those required to satisfy the axioms. 
For example. a proof that a data structure and associated functions 

implements a 'binary tree", that consists of a demonstration that some part 

of the code satisfies the binary-tree axioms, does not preclude the 

possibility that one of the functions also writes 20 asterisks to t7ie 

printer. 

6.6.8 A Proof of Freedom from Side-Eff ects for the Linked-List 

In these model functions, it is only acons which returns values other 

than those demanded by the list axioms. It returns a new heap and heap 

pointer. It shall thus be necessary to demonstrate that only one new pointer 
is allocated (the one for the list constructed by cons) and that no other 

pointer values are affected when cons is executed. 

The new heap pointer returned by acons is hp+l, so only one new pointer 

can have been created. 
To show that no other pointers have changed their value after execution 

of "cons". It Is necessary to show that for all integers strictly less than 

the value of the heap pointer passed to "acons", the heap function returned 

contains identical mappings to that passed. 

formally: 

acons(x, L. H. hp) = (hp, H', hp+l) such that V! < hp. H'(i) = HM 

The proof turns out to be trivial: 
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by def inition of "acons": 

fn x => if x= hp 

then uW (H (result), data, x), next. L) 

else H(x) 

ISO 

Vi < hp. H' M= H( i ). 

6.6.9 Summary 

The modelling strategy can be used to prove that an Abstract Data Type 

is correctly implemented in a procedural program. 
Such a proof arms the procedural programmer with axioms taken from the 

A. D-T which may be asserted at the relevant points in their progr - 
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6.7 The "C" Programming Language 

In the *C" programming language, side-effects within expressions are 

commonplace. 
For example consider the "C" expression: 

1 (x = 

This expression is "T1 + (P? -". where "pl. = 4" and "(p2 = x", but, 

(assuming left-right expression evaluation) the- scope of the assignment "x = 

4" Lncludes the right-hand-side of the overall addition, and so includes the 

occurrence of "x" in *PZ = x". 

The expression "(x=4) + (y=z)" is thus modelled by the let abstraction 

list: 

let val x=4 
val (pi =4 
val y=x 
val (p2 =x in pl + V2 

The resulting (assignment-free) expression can be manipulated by 

substitution to an expression in terms of the original identifiers, thus 

removing the extra variables T!, and making the expression and the let 

abstractions Endependent. For the expression above this would give: 

let val x=4; 
val y=x in 

8 
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6.7.1 (pi Are "Temporary Variables" 

This process is similar to compilation of expressions, where the machine 

code produced evaluates sub-expressions, and stores their value in a 

temporary location. In this case the "temporary location" is the new 

identifier introduced to denote the value of a sub-expression which contains 

a side-effect. Indeed this identifier is truly temporary since if can 

subsequently be "manipulated-out". 

6.7.2 A Typical Loop in "C" 

It is very common in the "C" programming language to find examples of 

side-effects in the bodies of loops, a typical example is given below: 

while ( (c=getcharo)! =EOF) if (c=='. ') printf ("OUCH! "); 

This loop is modelled by the function f below: 

f un f (Input) = w(hd(Input I nput, 
fun w(c, Input, Output) = 

let vat c= hd(Input) in 
if not(c=EOF) 

then if c then w (c, tl (Input), append(Output. "OUCH! ")) 
else w(c, tl (Input), Output) 

else (c, tI( Input) Output) ; 

This model could now be converted in Pascal (according to the strategy 

set out in chapter five, for example). The Pascal version would not make use 

of the side-affecting features offered to the "C" programmer. 
Alternatively, the program could also be converted back into a "C" 

program, written in a style which avoids the use of the language's more 
"subtle" f eatures. 
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6.7.3 Another Typical Example 

This next example is taken from page 48 of the book "The C Programming 

Language" by Kernighan and Ritchie 1631. 

The modelling strategy is good for such programs since all the 

subtleties and Implicit effects of a program are "brought out into the open". 

The lines of the program are numbered in order that the program can be 

discussed. The numbers are not part of the, program. itself. 

/0 strcat: concatenates t to the end of s; s must be big enough 
/0 1 */ void strcat(char st 1, char t[j) 
/0 2 a/ I 
/* 3 0/ int 1. j 
/* 4 0/ i=j=0; 
/* 5 S/ while Wil != '\O') /* f ind end of s 
/0 6 */ i++; 
/* 7 0/ while ( (s[i++] = tlj++]) != '\O /* copy t 

/0 9 0/ 

6.7.4 Explanation of the Program 

Line number 4 contains a simple case of an assignment within an 

expression. In general the expression could be far more involved. In this 

case the line has the effect of assigning zero to both the variables "i" and 
"j". 

lines 5 and 6, simply advance the index "i" to the end of the string 

S". In line 6. the increment of "i" acts as a statement, although the value 
"i" is evaluated by the expression "! ++" the effect- of terminating the 

expression with a semicolon Is to turn the expression into a statement. 

On line 7, there is a while loop with no body. This may appear perverse 

to a programmer unfamiliar with the "C" programming language: One might 

expect the loop to have no observable effect if it has no body. However, in 

"C", it is common to find loops that perform side-effects as a result of 

evaluating their controlling expressions. 

149 



In the case of line 7. the loop's expression evaluates to the test -"is 
t[jl equal to the character with code zero". In addition to evaluating this 

boolean expression, the side effect is to assign the jth element of the array 
"t" to the ith element of the array "s" and to Increase the values of "i" and 
"j" by one. 

Note that although "i" and "j" are Incremented, because the 

side-affecting expression is written postfix, the evaluated result is "I" and 
"j" and not "1+1" and "j+l". Also, the side-effects happen even when the loop 

body is not executed (due to the predicate evaluating to false). This means 

that the zero character that acts as a sentinel for the arrays will also be 

copied. 

As this simple example demonstrates, "a little bit of 'C' goes an 

awfully long way" ! 

6.7. S The Model 

All of these subtleties are reflected in the model for 'streat" which is 

given below: 

fun strcat(s, t) = 
let val I= wi (s, 0) in 

let val s= w2(s, I, O, t) In s 
where 

fun wl(s, i) = if setect(s, i) 0 chr(O) 
then wl(s. 1+1) 
else I 

and 
fun w2(s, i. J. t)=I 

if select(t, j) 0 chr(O) 
then wZ (update( s, i, select (t. j)). I+I, J+I. t) 
else update (s. i select (t, j)) ; 
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It is interesting, in passing, to note that, in their definition of, 'the 

"C" language [631, Kernighan and Ritchie have this to say about the order of 

evaluation of sub-expressions: 

'rhe order of evaluation of expressions is undefined. In 

particular the compiler considers itself free to compute 

subexpressions in the order it believes most efficient, even if 

the subexpressions involve side effects. The order in which side 

effects take place is undef ined. Expressions involving a 

commutative and associative operator (*, +, &, :, I may be 

rearranged arbitrarily, even in the presence of parentheses; to 

force a particular order of evaluation a temporary variable must 
be used. " (page 185 of [631). 

This appears to make the facility of including assignments in 

expressions rather a matter of syntactic brevity as opposed to a way of 

changing the meaning of an expression dynamically. 

The point is, that in the "C" programming language, there are no 

commutative or associative operators (because of the presence of 

side-effects). 
If the evaluation strategy of the code produced by a particular compiler 

is known, however, then a modelling strategy can yield a program for which 

these commutativity and associativity properties do hold, in all cases. 
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6.8 Parallel Execution Paths 

Functions in a pure-functional notation are free from any effects other 

than the evaluation of their result In terms of their arguments, and 

therefore are considered ideally suited to parallel evaluation R]. 

Since a model is a pure-functional version of a procedural program It is 

highly likely that the modelling approach will expose paths In the program 

which will facilitate parallel execution of the program. 

Consider the program below: 

program P1 ; 

type T array I- -10001 of Integer 

var AT; I integer 

procedure process 
var j: ineteger 

total : integer; 
begin 

total 0 
for j1 to A[! 1 do total total + Ali) 
Mij total 

end ; 

begin 
for II to 1000 do process 

end. 

The array, "A", is modelled using a list of 1000 elements. The model for 

this program, projected onto the array "A". is given below: 

fun Pl(A) = fori(A, I) 
fun fori(A, i) = if i <= 1000 then fori(process(A, i)) 

else A 
fun process(A, I) = forj(A. 1.0, I) ; 
fun forj(A, I total j) If j <= A(i) 

then f orj(A, I update (A, l, total+A(l)). J+I) 
else A; 

fun update(A, i, v) = if 1=I then v:: tail(A) 
else head(A):: update(tail(A), I-I, v) 
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Next some simple manipulation is performed upon this model: 

The function "forf can be simplified, since: 

f orj (A, i, total, j) =f orj' (A M, tota 1, j) 
where fun f orj'(n, total, j) = if j<=n then forj(n, total+n, j+l) 

else update (A,!, total) ; 

The application of update can be distributed through the call to "forj"' 

in the model, giving: 

fun Pl(A) = for-I(A, I) ; 
fun fori(A, I) if i <= 1000 then f ori (update (A, i, prOcess(A(M) 

else A 
fun process(n) forj(n, 0,1) ; 
fun forj'(n. total, i) = if i <= n 

then forj'(n, total+n, j+l) 

else n; 

The function "fori" can now be rewritten as a call to the function map 

Map" Is an example of a function that is directly amenable to parallel 

evaluation). 

f un for i (A) = map(process, A) 
where fun map(f. A) = if null(A) then H 

else f(head(A)) map(f. tail(A)) 
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6.8.1 Another Efficiency Improvement 

Of course, the call: process(n, 0,1) evaluates to n as could be proved 

by simple structural induction, so a further efficiency Improvement could be 

achieved by putting: 

I 
fun fori(A) = map(fn z => z*z, A) ;I 

Converting this manipulated model back into the procedural notation, 

leads to a more efficient procedural program: 

program PI ; 
type t array 11. . 10001 of Integer 
var AT; 

I integer 
begin 

for I :=1 to 1000 do Ali] := Ali] 10 Ali] 
end. 

I 
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CHAPTER SEVEN SEMANTIC FOUNDATIONS 

7.1 Introduction 
This chapter investigates the semantic foundations of this thesis. 

§7.2 defines what it means for a syntactic substitution rule to be 

valid, and goes on to define what it means for a programming language to be 

referentially transparent. 

§7.3 looks at a few simple example languages and describes their 

substitution rules with respect to referential transparency. 

§7.4 uses a non-referentially transparent language as an example of how 

a modelling strategy can be constructed and proved-correct in terms of the 

semantic description of the language. 

In §7.5, an important property called "Algebraic Closure" is introduced. 

This property demands that a language allow syntactic substitution of 

all abstract syntactic constructs which have equivalent meaning. 'Me absence 

of this property is characterised by irritating special cases in the 

description of a programming language. These special cases may be generallsed 

" out of existence" by application of the definition of "Algebraic Closure" in 

a generative mode. 
In §7.6, an attempt is made to define the semantic domains and mappings 

that make a language "functional". 

In §7.7. an attempt is made to define the semantic domains and mappings 

that make a language "procedural". 

§7.8 considers the interleaving of input and output events in procedural 

programs and functional models and shows that the Henderson Lazy Stream 

approach [301 is a form of projected model which does not represent 

interleaving of input and output events. 
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7.2 Valid Substitution Rules and Referential Transparency 

7.2.1 The Literature on Referential Transparency of Programming Languages 

There are many (and differing) descriptions of referential transparency* 

each of which usually gives a counter example, or mentions a feature of a 

programming language which will lead to the language being considered 

non-ref erentially transparent. 

This section summarises the views put forward on the subject in various 
books concerning functional programming (16,66,18,65,21,78,72,19,201. 

These accounts fall into categories, according to which of the f our 

statements below is mentioned in the account. 

i) Languages with assignment statements are non-referentially 

transparent (sometimes "non-ref erentially transparent" is also termed 

if ref erentiallY opaque"). 

ii) Languages which allow global variables to be used by more than one 

procedure/function are non-referentially transparent. 

iii) Languages which do not respect algebraic laws, such as 

commutativity of addition, are non-referentially transparent. 

iv) A Language is referentially transparent if the meaning of whole 

expressions can be inferred from the meanings of its component expressions 
alone. 

Of these four accounts, only the fourth def Ines ref erential 
transparency, the others give properties which must necessarily be absent for 

a language to be referentially transparent. 

account D is mentioned in [781 (page 12), 1721 (page 3), [161 

(page 6) and [781 (page 72). 

account ii) is mentioned in [211 (page 11) and [661 (page 10). 

account iii) is mentioned in [781 (page 71), [211 (page 11). [651 

(page 7) and [181 (page 269). 

account iv) is mentioned in [201 (page 3), [781 (page 72), [651 

(page 7) and [181 (page 10). 
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The fact that the meaning of an expression must depend solely on the 

meaning, of its sub expressions can be described by delimiting the allowable 

substitutions that may be performed in the language. 

Demanding that algebraic laws must be preserved depends upon the 

definition of the -algebraic laws to be preserved. An algebraic law can also 
be described by a substitution rule, so the specification of which algebraic 
laws must be preserved will be treated hereinafter as a choice of valid 

substitution rules. 
On its own, the assignment statement does not alter the substitution 

rules of a language any more than the let-abstraction of functional languages 

does (this is demonstrated in chapter 3, §? ), so account I) on its own must 
be discarded as unreasonable. 

It appears that when a programmer claims that a language Is 

"referentially transparent" what they are asserting is that a particular set 

of substitution rules are applicable to programs in the language. 

Given the semantics of a language, one can thus investigate the truth of 

such a claim. 
If this "coalesced" version of what constitutes the property of 

referential transparency is accurate, it would certainly account for the 

differing perspectives placed upon "ref erential transparency" in the 

literature; each author may have a slightly different set of substitution 

rules in mind. 

7.2.2 Valid Substitution Rules 

The validity of a substitution rule depends upon the semantics of the 

language. The definition of validity presented here is sufficiently general 

to apply, not just to programming languages, but to languages in general. 

Before the definition can be presented, it is necessary to briefly 

clarify the terms of reference: the semantics of a language and the 

substitution rules that may be applied to programs in the language. 

Having done this the definition is obvious and trivial. 
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7.2.3 The Semantics Of A Programming Language 

Using the Denotational Description technique [161, the meaning of -a 
program is def ined by a function which maps each program of the language to 

some "mathematical object". The phrase "mathematical, object" is intentionally 

vague. It is up to the language designer to model the ef f ect of 

program-execution by choosing a suitable semantic domain. 

The choice of a semantic domain prescribes what type of questions a 

programmer will be able to ask the language designer about the execution of 

programs. 

For example, if the meaning of a program is described solely in terms of 
how many beeps a computer executing the program will make, then questions 

about what values appear on the screen connected to the computer will clearly 
be unanswerable. 

If the semantics is described in terms only of the values stored in 

program variables, i. e. an environment mapping, then it will not be -possible 
to ask how long a program takes to execute, or in what order those values are 

stored. 

The choice of a suitable semantic domain in which to describe the 

meaning of a program is thus a choice as to what attributes of a- program's 

execution are to be modelled. This choice , represents an , important act of 

abstraction on the part of the language designer. 

Having chosen a domain for the meaning of a program, the designer 

defines the meaning of the language as a mapping from the sentences of the 

language into this semantic domain. 

The domains chosen for the semantic description thus prescribe the kinds 

of questions that can be answered by the description. 

The particular mappings defined, dictate the answers to these questions. 
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7.2.4 Semantic Descriptions And Syntactic Equivalence 

A semantic description of a language is a mapping from sentences of the 

language into some semantic domain. 

A semantic description of a language thus partitions the sentences of 

the language into a set of syntactic equivalence classes. That is, those 

sentences of a language that are mapped to the same semantic object will be 

in the same equivalence class. 

Given a sentence, Sl, and a sentence, S2, if S2 occurs in the same 

equivalence class as Sl, then the sentence S2 my be used In place of the 

sentence S1 without a change of meaning. That is, S2 may be substituted for 

Si. 

Clearly, in performing substitutions it would be desirable to f Ind a sub 

string within a sentence that may be substituted f or, rather than replacing 

an entire sentence with a different one. 

A substitution rule is valid if it is meaning preserving. That is, If one 

sentence can be transformed into another, by application of a substitution 

rule, then both sentences must be assigned Identical values by the semantic 

mapping. 

7.2.5 An Example: Strings of Digits 

Consider a language, D, which 'consists of all non-empty, finite strings 

of digits. 

In order to give a meaning to D it is f irst necessary to decide upon a 

semantic domain. 
Let the semantic domain be the integers, IN. 

In semantic descriptions, members of IN will be written in bold typeface 

to avoid confusion with members of D. 

Now, in order to define the meaning of the language, it Is necessary to 

def ine a mapping, 9, which assigns a member of N to each string in D. 
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7.2. S. 1 Notation For describing 9 

Of course, in order to describe the mapping, Y, one has to use some f orm 

of notation. Clearly the meaning of this notation is assumed to be 

understood, otherwise no progress will be made towards the description of a 

semantics f or the language, D. 

This is an important issue, but it is not of concern here, since the 

semantic function, 9, is of only of interest inasmuch as it defines 

equivalence classes in the syntactic domain. 

For the language, D, two different meaning functions will be defined: 9 

and 9; 

The members of D will be written using list notation, where "cons" and 

"append" have their usual meaning, and where "A" denotes the empty list. The 

members of IN will be constructed from the addition. function, which has its 

usual mathematical meaning and is written with the infix symbol "+". "L" will 

be used to denote arbitrary members of D and 'Y' will be used to denote 

arbitrary digits. 

7.2.5.2 A Meaning, 91, For D 

The meaning is a function 9D4N 

Let the mapping be that a member of D is mapped to its length, 

Formally, the meaning of a string, d is the (unique) solution to the 

following recursion equation, defined by cases below: 

9; 
1W=0 

97 
1 

rcons(x, L)l =I+ 51 
1 

rLI 

According to 91 the strings r12341, r21341, r99991 and rOO001 are all in 

the same syntactic equivalence, class (because they all mean 4, that is, are 

mapped to 4 by 97 In this particular equivalence class there are 10 4 

dif f erent members. 

In general, 51 defines an equivalence class for each N in N, containing 
10 members of D. 

It is possible, given Y to describe transformation rules which will 

allow "substitution of equivalent sub stings". All that is required is to 

verify that any substitution performed on a sentence is valid (with respect 

to 97 ). 
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7.2.5.3 A Valid Substituti6n Rule, Sub , For D w. r. t. 9; 

An example of, a valid substitution rule is that any digit may be 

replaced by any other digit in any string. 

7.2.5.4 An Invalid Substitution Rule, Sub 
2, 

For D w. r. t. 91 

An example of an invalid substitution rule is that leading zeros In a 

sentence may be removed. 

7.2.6 A Different meaning function 92 

Now, a different,, perhaps 
'more 

intuitively agreeable, meaning Is 

ascribed to D. This meaning treats each member of -D as a numeral which is 

mapped to the corresponding member of N. 

9; 
2 

rcons(O, A)l 0 

9; 
2 

rcons(l, A)l I 

92 rcons(2, A)l 2 

51 
2 

rcons(3, A)l 3 

92 rcons(4, A)l 4 

9; 
2 

rcons(5, A)l 5 

92 rcons(6, A)l =6 

,w2 rcons(7, A)l =7 

92 rcons(8, A)l =8 

9; 
2 

rcons(9, A)l =9 
9; 

2 
rappend(L, cons(x, A))l 10 92 rLi +y rcons(x, A)l 

7.2.6.1 An Invalid Substitution Rule, Sub For D w. r. t. 92 

Any digit may be replaced by any other digit in a member of D. 

7.2.6.2 A Valid Substitution Rule, Sub 
2, 

For D w. r. t. 92 

Leading "0" characters may be deleted. 
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7.2.7 Referential Transparency 

In order to decide whether or not a set of substitution rules are valid 

one has to consult the semantic mapping. 

Referential transparency appears to be the property that all "normal 

algebraic" substitution rules are valid. 

Whether or not a language exhibits the property of referential 
transparency will thus be expressed "with respect to the semantics of the 

language and a set of substitution rules". 

7.2.8 Another Example 

Clearly, one could define the semantics in such aI way as to allow any 

set of substitution rules to be valid. Consider a language made up of a 

sequence of assignments of the form "light := on" or "light := off". In 

B-N. F, this is : 

E on : off 
S Light -. = E; S ', A 

7.2.8.1 A Semantic Description of the Language 

Any sequence ending in "Light := on" shall be mapped to 1, and any other 

sequence shall be mapped to 0. 

7.2.8.2 Substitution Rules 

Now, given thts meaning, the substitution rule "all but the last 

assignment to the variable 'Light' may be deleted" is valid, however, the 

substitution rule "the order of assignments may be swapped around" is 
invalid. 
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7.2.8.3 Referential Transparency Again 

So if a programmer expects to be able to delete all but the - last 

assignment, then the programmer will' conclude that 'the language is 

referentially transparent. However, a programmer who expects to be able to 

rearrange the order of the assignments will describe the language as 

non-referentially transparent. 

Clearly the decision as to whether a language is referentially 

transparent or not depends upon what substitution rules thý programmer 

expects the language to permit. 

7.2.9- Altering the Semantics to Fit the Substitution Rules 

It is clearly possible to make any substitution rule' valid by an 

appropriate choice of semantics. For example, the number of occurrences of 

the sub string "Light := on" could be defined to be the meaning of a 

sentence. Using this definition of meaning, the rule "the order of 

assignments may be swapped around" is valid, but the rule "all but the last 

assignment to the variable 'Light' May be deleted"'is invalid. 

In this example there is no problem with a language designer deciding 

upon the semantics of the language, and so the issue as to whether or not the 

language is referentially transparent becomes a matter of choice. 

For programming notations however, it is not 'possible to simply decide 

what -the semantics of a language should be; the semantic mapping Is 

restricted to those mappings "which ' correspond to realisable and desirable 

implementations. Such is the case with functional languages. 

7.3 ' Functional Languages and Referential Transparency 

In this section various functional-'style languages are described. 

Each is given a syntactic definition using B. N. F and a semantic 

definition using the Denotational Method. 

Starting with an incredibly simple language, ' 'the discussion proceeds by 

"the addition of various features to the language. 
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Af ter each addition the discussion, focuses on the substitution rules 

which are enjoyed by the language. The substitutions sought are those which 

render the language referentially transparent in respect of the normal 

algebraic laws of substitution (e. g. commutativity, associativity and, the 

substitution of values for identifiers). 

7.3.1 An Extremely Simple Functional Language 

The functional language below contains only one syntactic formation rule 

to form an expression from an addition symbol and two numerals. 

Syntax 

D+D 
12 

7.3.1.2 Semantics 

The meaning of a program written in this language is given by the 

semantic function G. 

0: E->N 

o rD 
I+D1=9 

rD 1 +9 rD 1 

9, is the semantic function described in V. 2.6, D is the syntactic 
domain of non-empty, finite strings of digits (defined in §7.2.5) and "+" is 

the normal mathematical addition function over natural numbers IN XN4 IN. 

Although exceedingly simple, the semantic function C does split up the 
language into an infinite number of sets of equivalent sentences, each of 

which contains an infinite number of sentences of the language. 

7.3.1.3 Substitution Rules 

Clearly, Sub 
2, 

the substitution rule defined in §7.2.6.2, , which allows 
leading zeros to be deleted from numerals, is valid (due to the use of 92). 

Also, the commutative property of addition is enjoyed by programs in E, 

since VD D 
2* 

C rD +D1= 6rD +D1. 
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Thus, it can be said that T is referentially 'transparent w ith respect 
to 9 and with respect to all the normal algebraic equalities that one would 

expect to find within the syntax of E". 

7.3.2 Non Termination 

The issue of non-termination of programs and the meaning of "undefined" 

which is given to such programs, severely complicates semantic discussions. 

In order to avoid complexity, the issue of termination is addressed now, 

and then subsequently ignored. 

A syntactic construct, nt, is introduced which, when executed, causes 

non-termination to occur. After the issue has been briefly Investigated, ' the 

construct which causes non-termination is removed. 

Such an explicit means of creating non-termination is obviously 

unrealistic, but it is perfectly adequate for illustrative purposes. 

7.3.2.1 Syntax 
VD: nt 

EV+V 
12 

7.3.2.2 Semantics 

The semantic domain of the language must now include the undefined 

element L (in [571 this is called W. This domain is called [N 
I 

to distinguish 

it from the set of natural numbers N. 

Since jL is included as an argument to the addition function used In the 

semantic description, it now becomes necessary to describe the result of 

"-L+n", "n+. L" and "1. +j. " for natural numbers, n. 

To begin with is chosen to be strict in both arguments, that is, 

-L+n" = vvn+. Lov = lt. L+. L" L. 
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The semantic consequence of this choice for the meaning of E, is as 
f ollows: 

19 :E4NI 
g rDl =9 rDl 

2 
0 rntl =L 
erv +v 1= erv I+ erv I 

1212 

As can readily be verified, the language still respects commutativity of 

addition, in particular :0 rnt + DI a6 rD + ntl a0 rnt + ntl S0 rntl. 

However, if all binary functions are defined to be strict in both their 

arguments (or in either of their arguments for that matter), then some 
algebraic identities will not be valid. 

Consider, for example, the introduction of a multiplication operator 
inýo the language E: 

7.3.2.3 Syntax 

VDI nt 
EV+V2: vv2 

7.3.2.4 Semantics 

IN 

OrDl= 9 rDl 

0 rntl 

orv +v i= orv i+ orv i 
122 

orv *v i= orv i* orv i 
1212 

7.3.2.5 The Semantics of * 

Now the issue of the strictness (or otherwise) of the multiplication 
function becomes paramount if the language is to be referentially transparent 

with respect to algebraic properties of multiplication. 
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If "*" is defined, like 'Y', to be strict, then cro*ntl 5 Crnt*Ol a 
Ornt*ntl a Crntl. But, if one argument- to multiplication is zero and the 

other is some unknown natural number, it is still possible'to decide that the 

result is zero. 
A strict multiplication function is therefore, not suitable. 
Instead a semantics is required where Ahe multiplication of two 

arguments is defined to be zero if either argument is zero. 
This is a case of defining the desired substitution rules and then 

atte mpting to construct an implementation whose semantics respects these 

, substitution - rules (c. f. §7-2-9). As stated earlier (in §7.2.9), this is not 

always possible since some desirable semantics, are unimplementable (or so 
inefficient as to be impractical). 

7.3.2.6 Evaluation Strategies 

The issue is thus: "is it possible to provide an implementation of the 

language which allows the correct (i. e. algebraic) Interpretation to be 

placed upon the multiplication operator? " 

Fortunately the answer is "yes": 

The processor, when evaluating the multiplication operator, ' alternately 

performs one "evaluation step" of one argument to the operator and then the 

other, and halts with result zero if ý either argument evaluates to zero after 

a particular evaluation step. 

If either argument is rntl then the evaluation step has no effect' and 
the processor performs an evaluation step for the other argument. 

Clearly then, if both arguments are rntl, then the computation of the 

expression fails to terminate. If, however, either argument evaluates 'to zero 

then computation immediately halts. 

For such an implementation the semantics of "" will be as follows 

vxeN 
I* 

O*x x*O =0 and 

1*1 1 and 

Vn, meN, n, m: *O. n*m is normal multiplication of natural numbers. 
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The languages Hope[511, ML[411,, Miranda[521 and many others define ". *" 

to be strict, so these languages cannot be - said to be completely 

referentially transparent with respect to normal algebraic properties. This 

can cause problems when using the structural induction proof technique since 

it will be possible to show f(x)*O =0 for all recursion equations, f. This 

is not true, since the recursion equation, f. may not terminate. 

7.3.2.7 Impossible Substitutions 

The theory of computability dictates that certain substitution rules 

will be unrealisable (for example, being able to substitute "true" or "false" 

for expressions involving equality of functions will not be possible in all 

cases). 

7.3.3 A Functional Language Nith Identifiers 

The ability to write non-terminating programs is now abandoned, so that 

attention can be f ocused upon other issues. 

The language E, described earlier in §7.3.1, is extended by allowing a 

program to refer to identifiers. 

Although identifiers are allowed in the language, at this stage no 

mechanism has been included to Und values to identifiers; the identifiers 

effectively stand for constants, the particular value of which is defined by 

the state in which the program is evaluated. 

7.3.3.1 Syntax 

VI', D 

EV1+V2 

Programs are expressions which are evaluated in a state, a-, which maps 
identifiers in 1, to expressible values in N. 
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7.3.3.2 Semantics 

0 :, E -> (1 4 IN) 4 IN 

c rv +v itr = erv 
1 
Ic. + erv 

2 
la. 

erji, rii 
9 rD1 9; rD1 

2 

7.3.3.3' Substitution Rules 

Clearly the language described in §7.3.1 is a subset of E both 

syntactically and semantically. All the substitution rules described in 

§7.3.1.3 apply to E. Also the commutative property of addition extends to 

arguments which are identifiers. 

Once again, it is possible to say that E is referentially transparent 

with respect to 9 and with respect to all the normal algebraic properties. 

7.3.4 A Functional Language with Inadequate Syntax 

The next example language shows how consideration of substitution rules 

of a language can reveal shortcomings in the language definition. 

The language described above in §7.3.3 is extended further, to include 

syntax for bLndLng values to identifiers, thus changing the environment In 

which a program is evaluated as the evaluatton proceeds. 

However, as will be seen, some of the algebraic substitutions that one 

would expect to find are not permitted (simply because the syntax Is not rich 

enough). This issue is discussed further in §7.5. 

7.3.4.1 Syntax 

I: D 

V+V 
12 

let val I=E in F: E 
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7.3.4.2 Semantics I 

The meaning of a program F, is described by the semantic function Y. 

6: E --> Q4 N) --> IN 
9; :F -> (1 4 N) --) IN 

6 rv +vI (r = orv I a. + erv 
2 
la. 

g rp (r , rji 
9 rDl a- Y' rDl 

9: rlet val I=E in Fl a- =9 rFl (cr[C rEl cr / rp 

7.3.4.3 Some Example Programs 

Pi a rlet val li =5 in 

let val 12 =6 in 

I, + 12, 

P2 m riet val 11 =5+6 in 

let val Iz =7 in 

11 + IZI 

7.3.4.4 Substitution Rules 

Expressions bound to identifiers by let abstractions may often be 

substituted into the expressions in which they are used. 

For example :- 
0 Pi =0 r5 + 61 r1lI = 11 

Thus Pt can be replaced by, amongst others, r5 + 61 or r1ji. 

e p2 =s ril + 71 =e risi. 

Thus P2 can be replaced by, amongst others, r1l + 71 or rigi. 

However, although one would expect to be able to substitute r5 + 61 for 
ri, i in P2, one cannot since r5 +6+ IzI is not a member of the syntactic 

class F. Thus the language is not referentially transparent with respect to 

normal algebraic substitution rules because the syntax does not allow such 

substitutions. 
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7.3.4.5 The Beta Reduction Rule il 

The language F, is sufficiently rich to begin a discussion of evaluation 

of expressions in F into a "normal f orm". That is, F, can be regarded as a 

term in a term-rewriting system. The normal forms of the system are those 

members of D with no leading zeros. 

- As the examples above show, rewriting an expression In F until a' normal 

form is reached is analogous to the application of the 13-reduction rule of 

the Lambda Calculus [121. 

7.3.4.6 , Inverse of Semantic Functions I 

In order to discuss the term-rewriting properties of the language FP' It 

will be necessary to use the inverse, AC of a semantic function, At. 

Of course the inverse of a semantic function, in general, produces a set 

of sentences drawn from a syntactic domain. When the notation hC 1 (x) Is used 

in the description of substitution rules, it stands for an arbitrary member 

of this set. 
For example 5; _ 1 (3) r3l, , 

r031, r0031, 
2 

Therefore, a valid substitution rule is Vrdlr: D. rdl is substitutable for 

Y_ I (Y rdl 
22 

That is, for a string of digits, rdl 
, 

9; 
? 

maps rdl to a natural number, 

which in turn, may be mapped by 9- 1 to the set of all other strings of digits 
2 

which, are mapped to the same natural number by 9 
2' 

Another is vreiEE,, ' given a state, aE(I--)1N), rel Is substitutable 'for 

9: _ 1 (Crela-). This example of a "semantic inverse" is used later. 
2 

The g-reduction rule depends upon the notion of a "free variable": 

7.3.4.7 Free Variables 

The definition of free variables is the natural one [12). 

free(I, F) denotes the fact that the variable, 1, is free In the 

expression, F. The definition of free is: 

- free(I, F)'* I does not occur in the left hand side of a rlet val 
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7.3.4.8 The Beta Reduction Rule R 
13 

free(rxl, F) =, riet val x=E in Fl E rF1 [ rE1 / rxl 1 

7.3.4.9 The Alpha Reduction Rule R 
OC 

oc : 
free( rxl F) -, rlet val x=E in Fl a Flet val y=E inl rFl [ ry; l / rxl I 

Ra and R9 are syntactic substitution rules, so it is possible to check 

if they are valid. That is, is the language referentially transparent with 

respect to (9, Ra) and (9, R 13 
The answer is that R 

(X 
is valid, but R 

13' 
is invalid because, for example 

P2 is rlet val 12 =7 in 5+6+ 121 

Instead, the similar rule R, below is valid. 
R is similar to the A-Calculus 13-reduction rule and to R but is 

complicated by the involvement of the meaning of an expression. 
R allows for an identifier to be replaced by a numeral which has the 

same meaning as the expression bound to the identifier in 'the let 

abstraction. 
The rule can only be expressed in terms of the state of an identifier 

since the meanLng of an expression involves the state. 

R- free(I, F) , grlet val I=E in Flcr = 6(rFl[g 
21 

(c rFi rp 

The rule, R, is a rule which effectively says "if the programmer knows 

what value an expression in E evaluates to, then any numeral which evaluates 
to this value may be substituted for I in F". 

This example shows that, for purely syntactic reasoning to be 

achievable, the syntax of the language has to be rich enough to cater for aU 

algebraic identities. If this is not the case, then substitution rules will, 

of necessity, appeal to the semantic definition of the language. 

In §7.5 a property called "Algebraic Closure" is defined. Languages 

which posses this attribute will have a sufficiently rich syntax for all 

expressions with an equivalent meaning to be substituted for one another. 
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7.3.4.10 Altering the Language to Allow a Syntactic Beta Reduction Ru'le 

If the syntax of the language is enriched to include an arbitrary number 

of addition operators within an expression, then the rule R 
13 

becomes valid: 

7.3.4.10.1 Syntax 

E :: = I: D', E+E let val I=E in E 

7.3.4.10.2 Semantics 

0: EU -* N) 4 IN 

o rji ,, rji 

o rDi , y, rDl 

grE +E IT = CrE lo- + CrE IT 
1212 

C rlet val I=E1 in E2 'a' = GrE 
21 

(T[o rE i, / r1i ]) 

In this language, not only do the Ra and R 13 rules hold as valid 

substitution rules but the associativity law of addition holds. 

This section concludes the preliminary investigation of the consequences 

of particular semantic descriptions of functional languages upon the 

substitution rules that these languages enjoy. 
For more involved languages the substitution rules will be richer and 

more numerous, however, analysis may proceed in exactly the manner. 

7.4 The Modelling strategy and the Implicit State 

The pure functional language just described in §7.3.4 is now "corrupted" 

by the addition of syntax which, when executed causes output to occur. The 

corrupted language is called "Cor" for reference. 

"Cor", is modelled by a language called "Mod" (the programs of which, 

when executed, do not cause output to occur). 

The modelling strategy is described by definition of a function, 7, 

which maps syntactic elements of the class, F (programs of "Cor"), to E' 

(programs of "Mod"). 

The syntactic mapping, 7, is then proved to be meaning-preserving thus 

proving that the modelling strategy is correct. 
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7.4.1 The Language "Cor" 

7.4.1.1 . Syntax 

VDI 

EE+EV'. let val I=E in E 

FE print val I=E in F 

7.4.1.2 Semantics 

The function, 9, describes the meaning of the syntactic class, F, in 

terms of a mapping which includes not only the bindings for identifiers but 

the output produced thus far by execution of the program., 

The semantics of a program in the language is described by a mapping At. 

Some new semantic functions are required to describe Cor: "0" for 

appending two lists and the distfix functions "[ ....... I" and "( ....... 
)" for 

constructing lists and tuples respectively. These functions have their normal 

mathematical properties. 

VU4 N) 4 IN 

EU4 N) 4 IN 
M4 N) x Ust N) Mx Ust N) 

U4 IN) --> (IN xL Ist IN) 

rDl 9 rDl 
2 

rii rii 

0 ýE +E OrE 
I 
icr + crE 

21 (r 
6 rVI cr =V rVI a- 
6 rlet val I=EI in E1 (r = 19 rE i (T[C rE i (r / r1i 

y rEi (cr, 2) = (o rEi a., 2) 
9 rprint val I=E in Fl (a-, 2) =9 rFl V 

where T' = a. [ c rEi a. r1i 

and V= Y- 0[6 rEl a- I 

At FFI a- =Y rFl (cr, [ 1) 
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7.4.2 The Model Notation, "Mod" 

"Mod" is the language described in §7.3.4, with the addition of 2-tuples 

and lists. 

7.4.2.1 Syntax 

vD: I 

<mt> 

<LE> <mt> '. E' <LE> 

E' E' + E' V: let val I= E' in Ef 
112 

E' E0 E' <LE> (E' 
2 2) 1 

7.4.2.2 Semantics 

The semantics of "Mod" are described by the meaning function C'. 

Note, V is the meaning function for the syntactic class V, described 

earlier in §7.4.1.2. 

Ev =N+1 ist Ev + (Ev X Ev) 

9, : E' -> (I --> Ev) --> Ev 

, g, rE' + El 0' rE'l a' + S' rE'l 
1212 

0, rv, v rv, c. 

c, rlet val I E' in E'l T=g, rE'l ((r[O' rEl (r 1221 
C' rE' 0 E'l C' rE'l a- 0 0' rE'l a- 1212 
c, r(E' E' P 0' rE'l (r, 6' rEl 

212 

, g, r[E . ..... E' 11 9' rEl a...... 0' rE'l 
nn 

7.4.3 The Model Function 5' 

The language "Cor" is modelled, using the language "Mod", by the 

syntactic function 9. 

0' maps members of F to members of E'. 

Y is def ined by cases of the syntactic structure of Fý 
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uses two auxiliary functions 5" and 9'" to translate elements of F 'and 

elements of E respectively. 

5" :E -* E' 

5' :F4 
5 : F-*E' 

7"(D) D 

7"M I 

9'"(E +E -7"(E + T' (E 

9'"(let val IE in E)= let val I= 7"(E ) in 51"(E 

5" (print val I=E in F) = let val output = output 0 [7"(E)l in 

let val I= 51"M in 
V (F) 

5" (E) = (Y"(E), output) 

5'(F) = let val output =U in 5" (F) 

7.4.4 Examples 

A couple of examples help to demonstrate the strategy employed by 9', and 

the advantage of using it. 

7.4.4.1 Example I 

In this example, the sentence to be modelled is: 

rlet val x=2+4 in 

let val y=x+2 in 

X+Y, 

In this f irst example, the program causes no output to be produced, when 

executed. Thus its model is very simple. 
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'The resulting model is built up from the applications of 7" and 5", to 

demonstrate the method used by the function 5' (this will be useful for the 

reader who wishes to verify the proof in §7.4.5). 

The function T' maps syntax from F which is for med solely by the 

syntactic formation rule E. Such sy ntax does not cause any output and Is 

mapped to identical syntax in E'. 

T'Oet val x=2+4 in let val x =2+4 in 
let val y=x+2 in let val y= x+2 in 

X+Y ) X+y 

The function . 7' ref lects the f act that the f inal 
- result of a program, 

must include the value of the output list created by execution, In addition 
to the result of evaluation of the expression in "Cor". 

Thus 

5" (let val x=2+4 in Met val x=2+4 In 
let val y=x+2 in let valy=x+ 21n 

X+Y ) X+Y), output) 

The function Y, calls the auxiliary function, V, to perform the 

modelling of the various expression constructs of F, all that is then 

required, is for Y to model the fact that, initially, the output is empty. 

Thus 

7(let val x=2+4 in let val output In 
let val y =, x +2 in Met val x= 2+4 In 

X+Y let val y =xt2 In 
X+Y). output) 

7.4.4.1.1 Substitution 

There are no substitution rules in "Cor" that allow the programmer to 

infer anything about the output of a program. Of course, the programmer can 

use extra-linguistic reasoning, such as "the program contains no 'prints' and 

so creates no output". 

In "Mod" however, the Output is explIcItLy mentioned (as a list). 

Nothing is "special" about this list, so the normal substitution rules of the 

language apply. 
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That is, reasoning about output can be conducted withLn the Language 

Uself. 

In this case the model can be manipulated to: 

(14 JI) 

This tells the programmer that there is no output and that the program 

evaluates to 14. 

Of course, in this simple example there is little difference between the 

manipulation of the program to reveal facts about 1/0 and the 

extra-linguistic reasoning that could be used with the language "Cor". 

However, for programs which exhibit more complicated output behaviour, the 

ability to manipulate a program according to its syntactic rules will be a 

considerable advantage. 

7.4.4.2 Example 2 

The sentence to be modelled is: 

rprint val x=2+4 in 

print val y=x+2 in 

X+Y: l 

This example is identical to the last, except that the values of 'Y' and 
fly" are printed out as they are evaluated. 

Only those elements of the program which are drawn from the syntax class 
E are modelled by Y". The following three expressions are the elements of the 

sentence which are drawn from the syntactic class E. 

J"(x+Y) X+y 
T'(2 + 4) 2+4 
9"" (X + 2) x+2 
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The function Y' models the side-affecting constructs (i. e. those in the 

syntactic class F). 

V (print val x= 2+4 in let val output = output <> [2+41 in 
print val y= x+Z in let val x= 2+4 in 

X+Y) let val output = output 0 [x+21 in 
let val y= x+2 in 

(X+Y, output) 

The function, 9, merely includes the initial definition for the Initial 

value of the output list: 

let Val output in 
9(print Val x= 2+4 in let Val output output <> [2+41 in 

print Val y x+2 in let Val x= 2+4 in 
X+Y) let Val output = output 0 [x+21 In 

let Val y= x+2 in 
(X+Y, output) 

This example clearly illustrates that the "cost" of making the Implicit 

parts of the state explicit (i. e. as expressible values): Namely, it makes 
for larger programs. However, the benefits of the approach far outweigh the 
initial disadvantage of a textually longer program. 

Besides, the complexities of the model and the modelled programs are 
identical: they are both mapped to the same semantic value. The model program 
actually evaluates to a syntactic representation of this semantic value, 

whereas the original program does not. 
This accounts for and justifies the extra notation in ihe model. 

7.4.4.2.1 Substitution 

Once again, with the language "Cor", extra-linguistic reasoning could be 

used to discuss the output of the program. 

In the model, however, the "normal form" is: 

(14, [6,81) 

This tells the programmer that the "Cor" program evaluates to 14, and 

produces as output a six followed by an eight. 
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7.4.5 Correctness Proof For the Model Function 9 

In this section a proof is presented that the model algorithm embodied 
in 5, correctly models programs in "Cor". This is done by showing that the 

meaning of any program, rfl, drawn from the domain F, is identical to the 

meaning of the model r7(f)1. 

Such a proof guarantees the correctness of the modelling strategy with 

respect to the meaning of the language being modelled. 
Formally: 

V Ffl C: F. A rfl = 0' Fflf P 

(provided rfl does not mention the identif ler routputl 

The proof consists of two lemmas which prove the relevant property for 

the modelling algorithms Y" and 9", and a main proof which uses these lemmas 

to justify the initial let abstraction (rlet val output = [11 in ... 
The modelling algorithm, 7, is only valid, of course, if the program to 

be modelled does not mention the identifier routputI, since this -identifier 
is introduced to model the output list. This is not a matter for concern, 

since the model strategy could be parameterLsed by the name of an (unused) 
identifier, from which the model would then be constructed. This has not been 

done here since it clouds the proof, and is, in any case, equivalent to the 

assumption that routputl is an unused identifier. 

Notation 

To make the proof s easier to read, a notational shorthand is introduced 

for a kind of restriction operator, F, on states: 

vx., # ,. x 

will be written: 

a., ril = a. 
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Lemma I 

if a-' r routputl = cr 

and rel does not mention routputl 

then C' rg"Wla-' = grela- 

where rel r= E 

This lemma cannot be proved by appealing to the fact that 7" is 

syntactLcally the identity function, because this is no guarantee that 91" is 

semantEcally the identity function. It is the proof of lemma, I ' that gives 

this semantic guarantee. 

The proof is by simple induction on the syniactic cases for rel, which 

also form the case s in the definition of Y". 

Proof of Lemma I 

Two Bases Cases for rel: 

1) rel =- rdl E D, in which case 

0 rdl =V rdl = 0' rdl = 0' FOI " (d)l 

2) rel a ril e 1, in which case 
o rii =v rii = o, rii = g, r. 7,, (i)i 

Induction Hypothesis: 

a., r routput, = a. 
and re 

II and re 
2 

do not mention routputl 

and 6' r. 7" (e )I a-' re a- 12 
and 9' rOr"(e )I C., g re a- 

Where re I and re I are arbitrary members of E. 
12 
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Two Inductive Cases for rei: 

1) rei = re +e1 in which case 
Ere +e la- 

12 
re I a- +g re I cr 12 

g, r(y-(e W(r' + cr(y,, (e 
1W (r' 

g, r(g-(e 
1+e2W 

2) 

(by definitlon of C) 

(from Induction Hypothesis) 

(by definition of G"). 

rel a rlet val I=e in eI in which case 12 
g rlet val I=e in eI a- 

12 
= Ore i (, [g r, i, / r1i ]) 

=g re I ((r[O" r7m(e )I (r" / rIl 

= e, ry-(e 
2)I 

(a-'[ C' rJ"' (e p a., 

= e, rlet val I= 51"(e ) in 5"' (e P (r' 

Lemma 2 

Lf cr, routput, =2 

and a-' r routputl = cr 

and rfl does not mention routputl 

then y rfi (a., y) = S' F9" (f )I cr' 

where rfl r. F 

(by def InItIon of 9) 

(from Induction hypothesis) 

(from Induction hypothesis) 

(by definition of 0**). 

This lemma asserts that provided the model, rg'(fll, is evaluated in an 
appropriate state, then the model will be correct. An appropriate state is 

one where all identifier bindings other than routputl have identical values 
to those in the state of the modelled program, a-, and where the binding for 

the identifier routputl is the value of the output list, 2, for the modelled 
program (i. e. the output produced "so far"). 

The lemma also requires that the identifier routputl is not mentioned in 

the program rfl. 

The proof is by induction on the syntactic cases for rfl, which also 
form the cases in the definition of Y'. 
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Proof of Lemma 2 

Base Case for Ffl: 

rfl a rel r= E, in which case 

(, g, routputl) 

r(j,,, (e), output)l iT' 

rg' (e)l a-' 

(by lemma I and deflnltlon of lemma 2) 

(by deflnltlon of lemma 2) 

(by deflnltlon of 01) 

(by deflnltlon of 71) 

Induction Hypothesis: 

a., routput, = Y- 

and a., rroutputl, = a- 

and rfl does not mention routputl 

and 9 rfl = 0' r-P (f )I 

Where rfl r. F. 

Required to Show: 

Y rprint val I=e in fl (a-, 2) = c, rg,, (print val I=e in f )I a-' 

Where rel is an arbitrary member of the syntactic domain E. 

LHS =9 rfl (cr[C re-1 a, / rji ], y <> [c rel al) 
(by definitlon of 3%) 1 

RHS = c, riet val output = output 0 [9"(e)] in 

let val I= T'(e) in J" (f )I a-' 
(by deflnltlon of 9") 

g, ry, (f)i /rli, g, r.,, tp,, t <> /r.,, tp,, ti 

(by definition of 0") 

183 



NOW (by lemma I and Induction hypothesis and definition of 

0' rJ'"(01 a-** = Orel a- 

and e, routput <> [Y"(011 a-' 

g, routputi,, <> 

209r. 1 .1 

so 

RHS = 0' r7' V )I a-" 

where a" = (a" [0 rel a, rIl 
,20 

16 rel 0* / routPutl 

NOW a-" routputl Y. 0[ Orel a- (by def InItion of 0" 

and a" r routputl a[ 0 rel a- / rji (since rIl r- routputl 

and T does not mention routputl (by definition of lenuna 2) 

so 

RHS = 9; rfi ((r[c rei a, / rji i, yo [c rei cl) 

(by Induction hypothesis) 

= LHS as required. 

Main Proof 

The main proof uses Lemma 2 to establish: 

At rfi = c, ry (f )i provided Ffl does not mention routputl. 

That is, the meaning of a program in rfI is identical to the meaning of 
its model r5(f)l provided rfI does not mention routputI.. 
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Proof 

LHS = ; Vr. Y-rfl((r; [D- (by defInItIon of M) 

RHS = c, rlet val output H in Y'(f)l (by deflnltlon of 7) 

where cr' routputi (by'defInItIon of 9") 

NOW all rroutput, = a. (by deflnltlon of Cr") 

and a, ' routputl =H (by defInItIon of 0' 

and ý rfl does not mention routputl (by deflnltton) ' 

so 

RHS 9 rfl (a-, 2) (by Lemma 2) 

LHS as required. 
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7.5 Algebraic Closure 

The language described in §7.3.4 demonstrated that it is sometimes not 

possible to substitute a value that "one would expect to substitute" simply 

because the syntax of the language is not rich enough to permit such a 

substitution. 

Given a semantic description of the language, It seems that what makes a 

substitution reasonable is this: "Any two pieces of syntax which have 

equivalent meaning should be substitutable". 

Some care is required in this definition however. As Stoy points out 

(page f ive of [161) it would not be reasonable to substitute "6" for "1+5" in 

"21+57". 

As this example demonstrates, the parser actually does play some part in 

the description of the semantics of the language. In semantic descriptions it 

is normal to assume that sentences in the language have "already" been parsed 

(according to a grammar), into an abstract syntax. 

Now, for any particular abstract syntax, there may be many ways of 

parsing a particular sentence into this abstract syntactic structure. 

This is precisely the part played by the parser in the definition of the 

mapping f rom sentences of the language to their meaning. 

In this discus. sion, and throughout the literature on Semantics, it is 

assumed that the mapping from sentences of the language to abstract syntax is 

not contentious. If elucidation is required, then a grammar will be 

necessary, in addition to the abstract syntax. 

Thus, in the discussion of substitution rules, it is the abstract 

syntactic classes that will be substituted for, in abstract syntactic 

expressions, rather than concrete syntactic sub strings within concrete 

syntactic strings. 

7.5.1 A Definition of Algebraic Closure 

For a semantic function, 9, mapping elements of a syntactic class, E, 

into a semantic domain, S, the set VO, shall denote the set of possible 

semantic values produced by 6. That is VO =46 I-el : rel eE). 
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CHAPTER EIGHT CONCLUSIONS 

Compared to procedural notations, functional notations are rich In 

algebraic properties and enjoy a variety of flexible proof techniques. 

Chapter two briefly sets out the differences between the procedural and 
functional styles of programming. 

There are several techniques in print [44,61,79,801 and In the 

"folklore" of computer programming, which allow a programmer to convert a 

procedural programming construct into a functional notation. 
This thesis shows that these techniques are only valid when the state of 

computation is simply an environment mapping from Identifiers in a program's 

syntax to the semantic values which it computes. 
The thesis makes a distinction between the explicit state (the 

environment mapping) and the implicit state (every other state-component). 
Chapter three describes a general method for modelling the Implicit 

state -with an explicit state. Chapter three thus unifies the existing, ad 
hoc, techniques for modelling and extends the application area of these 

techniques to include any and every procedural program. 

In chapter four a simple technique called "Abstraction Projection" Is 

introduced. This technique allows a programmer to produce many distinct model 
ftinctions for one procedural program. Each model is projected onto a small 

set 'of the semantic values. The technique gives a programmer the ability to 
focus on a particular aspect of computation and "abstract away" from all 
other details of computation which are irrelevant. 

Chapter five presents some strategies for converting functional models 

back into a procedural notation. 

The Functional Modelling Approach thus allows a procedural programmer to 

use functional programs to analyse any semantic value computed by any 

procedural program. 

209 



Functional programs are ideal for analysis due to their rich algebraic 

properties and since Projection Abstraction allows any semantic value to be 

the result of a model, the strategy can be applied to a wide variety of 

application areas. Some of the possible applications of the strategy are 

demonstrated and discussed in chapter six. Specifically these are: 

Structural alteration (reverse engineering) 

Error-detection and removal 

Ef f iciency improvement 
Specification generation and proof construction 
Language conversion - 

Many other application areas may. be discovered in the future. Some of 
these are briefly described in chapter nine: I 

Complexity analysis 

Compile-time Garbage collection 

Parallel execution path analysis (chapter six contains an example) 

The application areas of the modelling strategy clearly include any f orm. 

of compile-time analysis that may be performed upon a procedural program. 

The semantic foundations of this thesis rest upon the notion of 
"Referential Transparency" and the algebraic treatment of programs. The first 

six chapters also implicitly assume a definition of what exactly. constitutes 
of procedural programming" and "functional programming". 

Chapter seven discusses these semantic assumptions, turning them from 

assumptions into formal definitions. 

The essential contributions are: 

A formal definition of "Functional Programming Language". 

A formal definition of "Procedural Programming Language". 

A formal definition of "Valid Substitution Rule", in the context of 

which a discussion of "Referential Transparency" is presented. .- 
A formal definition of a new concept: "Algebraic Closure", which 

can be used to "iron out" substitutive "special cases" in a programming 
language. 

210 



CHAPTER NINE 

FUTURE WORK 



CHAPTER NINE FUTURE WORK 

9.1 Modelling Strategies 

Chapter seven shows how a programmer could use the semantic description 

of a procedural programming language to construct a modelling strategy for 

the language and to prove this strategy correct with respect to the semantic 

description. 

Sadly, there are no semantic descriptions available for commonly used 

procedural languages such as C and Pascal. I 
One task for future work is to describe a semantics for such programming 

languages and to construct and prove modelling strategies for them. 

9.2 CASE Tools for Reverse Engineering 

Many of the techniques described in this thesis, such as model 

production and Projection Abstraction may be performed automatically. 

Implementation of these automatable techniques would create a powerful 

and flexible CASE tool for the analysis and manipulation of procedural 

programs. 

9.3 'Application Areas 

There are many application areas of this work which have not yet been 

fully examined. Some of these are listed below: 

9.3.1 Compile-Time Garbage Collection 

By choosing the heap and heap pointer as the semantic domain onto which 

a model is projected, a programmer will be able to analyse the way In which 

the heap store is allocated, used and disposed of. 

This analysis may lead to improvements in the use of store in a similar 

manner to those described"by Darlington in [911. 
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9.3.2 Parallel Execution Paths 

Functional languages are deemed amenable to parallel evaluation [1,581. 

As such, the modelling strategy may be used to expose the paths 

available within the program which can be executed in parallel. 

A simple example of this possibility is described in chapter six (§6.7). 

9.3.3 Homogenisation of Data Structures 

One, analysis that has not been performed in the examples contained in 

chapter six, is that of homogenisation of data structuring., 

Large programs which are badly designed, often have - no organised 

approach to the storage of data. 

With the automation of modelling techniques will come the ability to 

analyse the underlying data structures demanded by a program, and ought to 

lead to the creation of a set of techniques for-homogenisation of the storage 

requirements of a program. 

9.4 Semantic Foundations 

It is surprising that terminology such as "functional language". 

of procedural language" and the like are used so freely, when such terms are so 

ill defined. 

This lack of definition is all the more surprising when one considers 
the vast body of work on semantics of programming language which could be 

used to resolve the inadequacy. 

Chapter seven attempts a formal definition of the notion of "functional" 

and "procedural" programming, but more work is required to complete such 
def initions. 

A similar approach -could also be used in the definition of other 

undefined terms in common parlance, such as "Object Oriented Programming", 

"Low Level language", "More/Less Expressive" and so on. - 
The are many advantages of a formal semantic approach to the def inition 

of these terms (over and above the certainty that such definitions would 

produce). 
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For example, a language which meets the requirements set out In the 

definition of the term "functional", will also be the subject of any theorems 

that can be derived from these requirements. Thus a formal semantic 
definition of "functional" offers similar benefits to the formal description 

of an "Abstract Data Type". One could speak of an "Abstract Linguistic Type". 

Theorems would be constructed in terms of the abstract linguistic definition 

and will be applicable to all programs which satisfy the definition. 

9.5 Language Design 

It seems, from the work presented in chapter three, that many procedural 

languages only lack algebraic properties of substitution because of the 

implicit state. Perhaps it might be possible to define a language which Is as 

efficient as any procedural language, but which does not sacrifice algebraic 

flexibility in order to achieve this efficiency. 
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Al The SubSet Of ML Used 

This appendix describes the subset of ML used in modelling. The notation 

used is Extended Backus Naur Form. The syntax described here is a very small 

subset of the total ML syntax. Once a model has been created In ML, of 

course, then manipulation can be used to produce a modified model, which may 

use any (possibly larger set) of the ML syntax. 

A syntax description of the entire ML language can be found in [411. 

A brief tutorial on the subset of ML used here for modelling is given In 

§2.2. 

The subset of ML used depends upon the expression syntax, E, of the 

procedural language. 

<ML> 
<def initions> 
<def inition> 
<Exp> 

<f ormals> 
<actuals> 
<Empty> 
<f ormaD 
<actuaD 
<B uiI t-in> 
<d ec1 arat ions> 
<d ec1 arat ion> 

<declarations> <def in! t ions> 
<definition> : <definition> <definitions> 
fun <identifier> Wormals>) <Exp> 
<E> : 
if <E> then <Exp> else <Exp> 
let val <ident ifier> = <E> In <Exp> 
let fun <identifier>( <formals> 

<Exp> in <Exp> 
<identif ier> ( <actuals> 
let val Wormals>) = 

<identif ierMactuals>) in <Exp> 
<Built-in> ( <actuals> ) 
<Empty> <formaD , <formals> 
<Empty> <actual> , <actuals> 

<Identifier> 
<E> 
cons : empty : Null 1' Head : Tai 1: Append 
<Empty> : <declaration>; <declarations> 
val <identifier> = <E> 
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A2 Implementation 

In order to make any firm conclusions about the suitability of the 

modelling technique for analysing and altering the structure of large 

programs it will be necessary to implement a "CASE tool" which will embody 

the modelling strategy, and will also provide various "standard" manipulation 

techniques. 

Such a tool could also contain various strategies like those outlined In 

chapters three, four and five. 

It is envisaged that as the system is used, extra heuristic strategies 

for analysis and manipulation will be added to the system's repertoire. 

A small prototype program has been implemented on the SUN Microsystems 

which converts Fortran IV into ML, according to the strategy outlined In 

chapter three. 

The program is written in compiled Hope [511. 

However, much more work is needed to Implement a more general system 

which will treat all procedural languages in a unified manner, and which has 

manipulation and converting back strategies. 

Work towards this goal has been undertaken [741, but more time and 

resources are required. 
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