
REFERENCE ONLY 

Multistage Neural Network Ensemble: 
Adaptive Combination of Ensemble 

Results 

SHUANG YANG 

Uhk3V M 
Ln9e: Mk ; tlRw. ý 

A thesis submitted in partial fulfillment of the requirements of London Metropolitan 

University for the degree of Doctor of Philosophy 

April 2003 

London Metropolitan University 

31 11340436 
11111111111111111111111111111111 lill III I 



Abstract 

In the past decade, more and more research has shown that ensembles of neural networks 
(sometimes referred to as committee machines or classifier ensembles) can be superior to 

single neural network models, in terms of the generalization performance they can 

achieve on the same datasets. Combining a set of neural network classifiers whose error 
distributions are diverse can lead to the generation of superior results than those achieved 
by any single classifier. Common combination strategies used to combine the results of 
individual ensemble members are simple averaging, weighted averaging, majorities 

voting and ranking. These are catalogued as static combination schemes, which require 

no prior training. One deficiency of such schemes is that weightings for the importance of 

the output of each ensemble member must be pre-chosen and then applied to produce the 

combination result. It appears attractive to make the combination process adaptive, so 
that no a-priori (and possibly incorrect) combination weightings need to be chosen. 
Therefore, a model is proposed where the procedure of combining ensemble classifiers is 

turned into the training of another neural network. In this thesis, we propose a novel 
trainable neural network ensemble combination schema: the multistage neural network 

ensemble (MNN). Two stages of neural network models are constructed. In the first 

stage, neural networks are used to generate the ensemble candidates. The second stage 

neural network model approximates a combination function based on the results 

generated from the ensemble members from the first stage. A sample of the data sets 
from the UCI Machine Learning Depository and human gene splice data sets were 

modeled using MNNs, and significant improvements were obtained by MNN in 

comparison with the performance of a majority voting scheme. The results suggest that 

the MNN approach can be used as an alternative ensemble combination method. 

i 



Statement of Objectives 

The objectives of this research were to develop and explore a novel and alternative 

approach to combining the results of an ensemble of neural networks: the Multistage 

Neural Network Ensemble, and demonstrate its improved performance when compared 

with the most frequently used ensemble combination method: Majority Voting. 

ii 



Acknowledgement 

The author would like to express the deep gratitude to supervisors Dr. Antony Brown and 
Professor Philip Picton for their dutiful supervisions, invaluable guidance and their 

constructive suggestions in improving the presentation of this thesis. 

Special thanks are due to Dr. B. Hudson for manipulating the splice data sets on the 

models developed in this study. 

Sincere love goes to my husband, Enrong, my son Adam and my daughter Victoria for 

their support and patience. 

Finally, this thesis is dedicated to my parents, who are always there to provide love and 

support. Without their encouragement, there would be no start of this study and the 

completion of this dissertation. 

iii 



Table of Contents 

Pale 

Abstract i 

Statement of Objectives ii 

Acknowledgement iii 

Table of Contents iv 

List of Tables vii 
List of Figures x 

Chapter One 

Introduction and Neural Network Ensembles Literature Review 

1.1 Introduction 1 

1.2 Neural Network Ensembles Literature Review 4 

1.3 The Motivation of Generating MNNs 23 

1.4 Scope of Thesis 25 

1.5 Conclusion 26 

Chapter Two 

Multistage Neural Network Ensemble 

2.1 The Model of Multistage Neural Network Ensemble 28 

2.2 Features of Multistage Neural Networks 32 

2.3 Conclusions 33 

iv 



Chapter Three 

Methodology for Creating, Training and Testing MNNs 

3.1 Introduction 34 

3.2 Structures of MNNs 34 

3.3 NN Algorithms and Programming Coding 40 

3.4 Data 41 

3.5 Experimental Procedures 45 

3.6 Comparison 59 

3.7 Conclusion 67 

Chapter Four 

Results and Comparisons 

4.1 Introduction 68 

4.2 Experimental Results from Combining Different Numbers 69 

of Ensemble Members 

4.3 Results of the Other Experiments using MNNs 85 

4.4 Comparison Results Regarding the Performance of MNNs 87 

4.5 Conclusion 97 

Chapter Five 

Analysis and Discussions 

5.1 Chapter Introduction 98 

5.2 Analysis of MNNs Performance 99 

5.3 Relationship between Performance of MNNs 112 

and its Ensemble Members' Diversity 

5.4 Discussion of Other Experiments 123 

5.5 Conclusions 124 

V 



Chapter Six 

Conclusions and Future Work 

6.1 Conclusions 125 

6.2 Suggestions for Future Work 126 

Bibliography 132 

Appendix A: Algorithm 1 141 

(Ensemblemembertrain. m) 

Appendix B: Algorithm 2 148 

(Ensembletrain3. m) 

Appendix C: 155 

Ensemble Members of Pima-Diabetes on Ten-Fold Cross-validation 
Test Results 

Appendix D: Publications (1) 157 

Multistage Neural Network Ensembles 

Appendix E: Publications (2) 165 

Multistage Neural Networks: Adaptive Combination of Ensemble Results 

vi 



LIST OF TABLES 

Table 3.1 Summary of UCI machine learning depository data sets 

Table 3.2 Summary of data partition of machine learning data sets 

Table 3.3 Summary of data partition of splice data 

Table 3.4 Settings of parameters in the first stage training 

Table 3.5 Breast-cancer-w ensemble members performance 

Table 3.6 The selection of ensemble members for breast-cancer-w 

Table 3.7 T testing samples parameters from MNNs and Majority 

Table 3.8 Summary of two-sample t test for comparing two 

populations means 

Table 3.9 Parameters for variance testing between MNNs and 

Majority Voting 

Table 3.10 Summary of two-sample test for comparing two population 

variances 

Table 4.1 Ensemble candidates' performances of machine learning data sets 

Table 4.2 Ensemble candidates' performances of splice data sets 

Table 4.3 Ensemble Members' structures 

Table 4.4 Performance of ensemble candidates on Breast-Cancer-W data set 

Table 4.5 The selection of ensemble members 

Table 4.6 Comparison of mean results between MNNs and majority voting 

on machine learning benchmarks, using ten-fold cross-validation 
(best results in bold) 

Table 4.7 Comparison of MNNs and Voting Performance on Splice Data 

(best results in bold) 

Table 4.8 Comparison between MNNs, single NN and C5 machine learning 

methods on splice junction data sets 

Paize 

43 

47 

47 

49 

53 

53 

63 

63 

64 

65 

70 

71 

72 

73 

76 

77 

78 

79 

vii 



Table 4.9 T test results showing acceptance or rejection of the 80 

null-hypothesis for different data sets 
Table 4.10 Variances of Ensembles Results for benchmark machine 83 

learning data sets 
Table 4.11 F test results on machine learning data sets 84 

Table 4.12 Ensemble results by using neural networks with a single layer in 85 

combination 
Table 4.13 Comparison between combining ensemble members' results 87 

Along with original source inputs and just combining ensemble 

members outputs 
Table 4.14 Performance of each of the five ensemble members on 93 

the breast-cancer-w data set used in the diversity experiments 
Table 4.15 Performance of each of the five ensemble members on 94 

the Pima-Diabetes data set used in the diversity experiments 
Table 4.16 Ensemble members Correlation coefficients for 94 

breast-cancer-w data set 
Table 4.17 Ensemble members Correlation coefficients for 95 

pima-diabetes data set 
Table 4.18 The performances of different diverse groups of 96 

ensemble members for the breast-cancer-w data set 

Table 4.19 The performances of different diverse groups of 96 

ensemble members for the pima-diabetes data set 

Table 5.1 Ensemble inputs and combiner outputs for MNNs and 103 

Majority Voting 

Table 5.2 Ensemble inputs and combiner outputs for majority voting 105 

Table 5.3 Ensemble members outputs and the corresponding 106 

wrong predictions made by majority voting, where shaded 

examples are all three ensemble members made the wrong 

predictions and majority voting's results were wrong as well 

VI" 



Table 5.4 The parameters of the MLP combiner 108 

Table 5.5 Ensemble outputs, hidden layer activation values and 109 

Table 5.6 

Table 5.7 

Table 5.8 

output activation for the four examples where MNN made the correct 

prediction whilst the majority voting combiner made the wrong decision 

10-fold cross validation results of ensemble members on 
Pima-Diabetes data set 
Diversity of pairs of ensemble members for Pima-Diabetes data set 
Diversity and accuracy of each ensemble group for 

Pima-Diabetes data set 

119 

120 

121 

ix 



LIST OF FIGURES 

Figure 1.1 A typical two layers of NN model 

Figure 1.2 Error contour plot 

Figure 1.3 A typical NN ensemble using five ensemble candidates 

Figure 1.4 AdaBoost with three weak learners 

Figure 1.5 An illustration of stacking 

Figure 2.1 The illustration of MNN 

Figure 3.1 NN Model from the first stage of the MNN 

Figure 3.2 The outline of second stage NN 

Figure 3.3 Using a single layer NN to combine ensemble members results 

Figure 3.4 Using original inputs and ensemble members results together 

as input of second stage NN 

Figure 3.5 Donor and acceptor junctions 

Figure 3.6 Data preparation procedure 

Figure 3.7 Using 10-fold cross-validation in the second stage 

training (1) - (2) 

Figure 3.8 Combination of ensemble members by using Majority Voting 

Figure 3.9 Combining groups with different ensemble members 
Figure 4.1 Performance of MNNs with increasing numbers 

of members (1) - (7) 

Figure 5.1 The signal flow of a second staged MNN 

Page 

1 

4 

6 

12 

21 

29 

35 

37 

38 

39 

44 

46 

56 

61 

65 

88 

100 

X 



Figure 5.2 Actual outputs of test data by three ensemble members 101 

in the first ten-fold cross validation experiments, 

together with their targets 

Figure 5.3 The 3-D graph of three ensemble members outputs 102 

on the whole input data of Pima-Diabetes 

Figure 5.4 Four cases of three ensemble members' outputs on which 104 

MNNs made right predictions while majority voting 

made wrong predictions 
Figure 5.5 Ensemble members outputs with the corresponding target values 107 

Figure 5.6 Decision boundary of the feature space dividing the four example 110 
inputs into two classes 

Figure 5.7 The decision boundary of the feature space for MLP combiner 111 

Figure 5.8 The ranges of three ensemble member's outputs, for data 113 

where the MNN combiner gave the correct outputs, whereas majority 

voting gave the incorrect outputs 
Figure 5.9 The ranges of five ensemble member's outputs, for data 114 

where the MNN combiner gave the correct output, whereas majority 

voting gave the incorrect output 
Figure 5.10 The ranges of nine ensemble member's outputs, for data 115 

where the MNN combiner gave the correct output, whereas majority 

voting gave the incorrect output 

Figure 5.11 The ranges of eleven ensemble members' outputs for data 116 

where the MNN combiner gave the correct output, whereas majority 

voting gave the incorrect output 

Figure 5.12 The ranges of thirteen ensemble members' outputs for data 117 

where the MNN combiner gave the correct output, whereas 

majority voting gave the incorrect output 

Figure 5.13 Relationship between size of ensembles and average diversity 121 

of ensemble groups 

xi 



Figure 5.14 Relationship between size of ensembles and average 122 

performance of each ensemble group 
Figure 6.1 MNN model using different part of data for training 127 

X11 



Chapter One 

Introduction and Neural Network Ensembles 
Literature Review 

1.1 Introduction 

Neural Networks (NNs) are a multidisciplinary technology that is developed from the 

study of the human brain's operation, which covers many subjects: neuroscience, 

computer science, statistics, mathematics and even physics. The designs of NN models 

(Referred to as classifiers in this thesis) are inspired by imitating biological nervous 

systems. Thus NNs can simulate some of the functions of the human brain by using 

certain of its basic structures. The basic structure of a NN is illustrated in Figure 1.1. 

Input layer Output layer 

> 

Output 

signal 

Figure 1.1 A typical two layered NN model 

I 



As shown in Figure 1.1, the above NN model has two layers. Each layer includes several 

neurons and these neurons are linked together via synaptic weights. A NN can be trained 

to perform a particular function by adjusting the weights between neurons, a procedure 

which is usually called the learning process. The significant feature of NNs is their ability 

to learn from input data and hence improve their performance. 

In fact, over the past fifty years, significant improvements have been made since the 

pioneering work of McCulloch and Pitts (1943), both in topologies and applications. It is 

a rapidly developing field, ranging from the single perceptron to more advanced and 

complex multilayer perceptrons, using the back-propagation algorithm (Rumelhart, 

Hinton and Williams, 1986), radial basis function networks (Broomhead and Lowe, 

1988), recurrent networks (Elman, 1990), support vector machines (Boser, Guyon and 

Vapnik, 1992) and many other NN algorithms. The applications of NNs have spread to 

the fields of pattern recognition, speech, identification, classification, vision and control 

systems. 

In conclusion, NNs have grown to be an interdisciplinary subject in their theory, 

construction and application. However, NNs are far from being an optimal, firmly 

established subject. There are several aspects that need to be improved. For example: 

9 Even the most powerful NN models still can not cope well when they are dealing 

with complex data sets containing some random errors or insufficient training data, 

for instance, some complex pattern recognition problems (Ho, 2001). Therefore, the 

generalization performance of NNs on those data sets may not be as good as 

expected. 

" The generalization of individual networks is not unique. In other words, the NN 

results are not stable. Different structures of NNs (such as different numbers of 

hidden layers, different numbers of hidden nodes and arbitrary initial conditions) all 

may result in different patterns of NN generalization. In particular, changes in the 

2 



training data set produce a significant change in the NN performance (Breiman, 

1996a). Sharkey (1999) referred to this as: error diversity and neural network 

ensembles built up on the basis of NN randomness are expected to produce better 

performance than any single NN. 

9 The major research on NNs was focussed on how to create a best NN model or a 

classifier. However the definition of a best classifier is ambiguous. Is the NN model 

that can generate the most accurate result on the test data the best one we are 

pursuing? As a test data set only represents a small portion of the original data, for 

most of the cases, a NN having stable performance with a high prediction rate is 

expected. Thus once the accuracy and reliability are counted as the two fundamental 

factors in improving the performance of NNs, we need to find a way to produce more 

reliable generalization on top of high accuracy. 

Generally, how to improve the performance of NNs is always the big issue in the research 

of this field. There are two ways in achieving this aim. The conventional methods are 

concentrated on developing more algorithms to optimize the current NN models. 
Alternatively, instead of just looking for the best classifier, looking for a combination of 

these best sets of classifiers has become an exciting topic from the beginning of 1990s. 

Since then the attempts at integrating a set of NN models to benefit from their diversity 

aroused more and more researchers' interests. These "networks of networks" are known 

as neural network ensembles. 

This chapter will review the main findings in the field of neural network ensembles in the 

following area. 

" The purpose and origin of neural network ensembles 

" Methods of constructing effective ensembles 

The final section of this chapter will address the research objectives of the study and 
describe the scope of the rest of thesis. 

3 



1.2 Neural Network Ensembles Literature Review 

1.2.1 The Motivation for Neural Network Ensembles 

Before the 1990s, most of the research in the NN area was focussed on the single NN 

models. However, the limitations on improving a single NN performance and 

randomness of a single NN result have hampered the development of better NNs. There 

are several questions raised that are worth investigating. For example, why does the same 

training data applied to different NNs or the same training data applied to the same NN 

with different initialisation result in different performance? What are the major factors 

affecting this difference? 

From a mathematical viewpoint, the function of a single NN is to minimise the gap 

between the target value and the prediction value. This kind of gap can be expressed 

quantitatively in mathematics, which is the error. The less error made, the better the NN 

model is. As it is stated above, the errors made by a group of single NNs on any one 

application are not always the same. Instead, the error minimum varies. Through further 

analysis, some errors just settle into local minimum instead of global minimum, where 

the error should be zero as shown in Figure 1.2. 

0 

-0.1 

-0.2 

-0.3 

-0.4 
Bias 

-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

-1 

TT-ý T 

Local Minimum 

Global Minimum 

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 
Weight 

Figure 1.2 Error contour plot 

0 

4 



As illustrated in figure 1.2, a single neuron's errors over a range of weight and bias values 
is plotted. The global error minimum is located in the centre of plot, and the stars 

represent three local error minimum respectively (Demuth and Beale, 1994). From the 

plot, it is clearly shown that a NN with different combination of weight and bias values 

can produce a different error. 

Moreover, it is hard to justify which NN error reaches the global minimum while the 

error rate is not zero. Since the number of different NN models and their potential 
initialisation are unlimited, the possible number of generated results of any training data 

set applied to those models is theoretically infinite. Based on the above thinking, the best 

performance is typically only the best one selected from a limited number of NNs, i. e. a 

single model with the best generalization to a test set. One interesting point is that for a 

classification case, other less accurate classifiers may not misclassify the misclassified 

patterns generated by the most accurate classifier (Sharkey, 1999). As the NNs are a 
flexible algorithm, a NN model starting from different initialisation condition minimises 

an error function over the training data and will produce different approximation 
functions after searching along the error surface. So there exist some differences among 

the errors made by different NNs. 

In short, it is obvious that just selecting the best classifiers according to their assessment 

performance is not always the optimal choice. More and more researchers realised that 

just selecting the best classifier will lead to losses of potentially valuable information 

contained by other less successful classifiers. The limitation of single NNs suggested a 
different approach to solving these problems by considering those discarded NN models 

whose performance are less accurate as potential candidates of new NN methods: Neural 

network ensembles. So the main motivation for developing neural network ensembles is 

to overcome the shortcomings of the single NN by combining different classifiers when a 

more reliable and accurate result can be produced. 

1.2.2 The Origin of Neural Network Ensembles 

There are several definitions of neural network ensembles. Sharkey (1999) stated: "The 

defining characteristic of an ensemble-based approach is that it involves combining a set 

5 



of nets, each of them accomplishes the same task. " Dietterich (2000) stated: "An 

ensemble of classifiers is a set of classifiers whose individual decisions are combined in 

some way (typically by weighted or unweighted voting) to classify new examples. " 

Though the descriptions on neural network ensembles are different, the core meaning is 

the same. In general, combining several neural network models constitutes the term 
"neural network ensembles". 

The concept of combining neural network models into ensembles can be traced back to 

the work of Nilsson (1965), however massive neural computing study started in the 
1990s. The idea of ensembles of NNs originated from using all the valuable information 

hidden in classifiers, of which each classifier can contribute to the improvement of 

generalization. The general ensemble classifiers' structure can be viewed in figure 1.3. 

Net 1II Net 211 Net 311 Net 411 Net 5 

/VEceTmininTraining 

Data 

Figure 1.3 A typical NN ensemble using five ensemble candidates 

6 

Ensemble 
output 



As shown in figure 1.3, Ensemble NNs create several different NN models (called 

ensemble candidates or ensemble classifiers). None of these ensemble candidates are the 

same. They may be different in input training data, initialisation or structure. After 

training, these ensemble candidates will be selected by some criteria, and their generated 

results will be combined by some method. The final combined result is called the 

ensemble NN generalization or ensemble output. 

However, it is well known that combining the same neural network models will produce 

no gain (Sharkey, 1999). The aim of neural network ensembles is to be able to produce 
better results than any single NN does on the same data set. So looking for those 

ensemble candidates that can generate better results after being combined was the first 

issue in this research area. Moreover, the concept of an effective ensemble classifier was 
introduced by Hansen and Salamon (1990), who stated: "A necessary and sufficient 

condition for an ensemble of classifiers to be more accurate than any of its individual 

members is if the classifiers are accurate and diverse. " An accurate classifier is one that is 

well trained and its performance is better than any randomly generated results on the 
input values. Two classifiers are diverse if they make different errors on the input values 
(Hansen and Salamon, 1990). 

In conclusion, accuracy and diversity are noticed to be two major factors in the 

improvement of the performance of neural network ensembles in their early stage. With 

the development of neural network ensembles, these two issues became the key parts in 

pursuing higher performance. Since then, based on the above theories, a considerable 

number of ensemble NN models and experiments have been carried out and more deep 

insight into theoretical explorations gave further strong proof that ensemble methods are 

useful approaches in terms of improving the performance of NN models. 

7 



1.2.3 Methods of Constructing Effective Neural Network Ensembles 

In order to find the factors that mainly decide the performance of an ensemble NN, we 

will look at the statistical analysis of a classifier error function in detail first. Bias- 

variance decomposition (Geman, Bienenstock and Doursat, 1992) of prediction error 

provides a clear picture of understanding prediction error. Let vector x denote the input 

training set and the corresponding target function is f (x) , the approximating function 

realised by the NN is F(x, w), where w is an NN weight parameter matrix applied to the 

)}" input. The model output is D. The training sample is denoted by 1'= {(xr, dr, 

The deviation of the squared distance (the following formulation applies to regression 

problems) between f (x) and F(x, r) can be written as: 

Lay(f(x), F(x, r))=B2(w)+V(w) (1.1) 

where BZ (w) (the bias) of the predictor refers to how the average of F(X, I') differs 

from the average of f (x) , and V (w) (the variance) measures the fluctuation of F(X, r) 

around its average value F(x, r). The bias and variance are defined respectively by: 

B(w) = Er [F(x, r)] - E[DI X= x] (1.2) 

V (w) = Er [(F(x, I') - Er [F(x, r)])2 ] (1.3) 

The above results are fundamentally important because they provide the mathematical 
basis for the trade-off between the bias and variance (Breiman, 1999) in order to 

minimise the error of a single classifier. Equation 1.1 makes it clear that we can either 

reduce the bias or variance to reduce the NN error. Unfortunately, it is found that for the 

individual NN concerned, the bias is reduced at the cost of a large variance. However, the 

variance can be reduced by an ensemble of NNs leaving the bias unchanged (Breiman, 

1997). These theoretical findings indicated a bright future for neural network ensemble 
development, and pointed the way to error reduction for NN systems. 

8 



Hansen and Salamon (1990) addressed the idea that if the average error after training is 

less than 50% and the members of the ensemble are independent in the production of 

their errors, the ensemble can achieve a generalization error that goes towards zero as the 

number of networks combined goes to infinity. However, in practise, such an experiment 

can never be accomplished as the requirement of an infinite number of NN models in the 

experiments can never be achieved. As Equation 1.1 pointed out, the direction in theory 

is that ensembles of NNs can easily reduce the variance with less cost from the bias. 

Since the early 1990s, the research on ensemble classifiers has been very active and 

several methods have been employed for creating ensembles. Neural network ensembles 

can be classified by their different functional stages and therefore ensembles can be 

divided into three components as follows (Sharkey, 1999), which is the method adopted 
in this thesis: 

" How to select diverse training data sets from the original source data. 

" How to create different neural network ensemble candidates. 
How to combine the ensemble results. 

1.2.2.1 Selecting Diverse Training Data Sets from the Original Source Data 

Due to the limitation of the number of training data samples available in most 

applications, some approaches have been used for selecting samples by varying the data 

subsets selected or perturbing training sets. Cross validation (Krogh & Vedelsby, 1995), 

bagging (Breiman, 1996a), boosting (Schapire, 1990), noise injection (Raviv & Intrator, 

1996) and input decimation (Tumer and Ghosh, 1996) are the most common techniques. 

" Cross validation (Krogh & Vedelsby, 1995) is a tool borrowed from statistics. For 

example, the available data set is randomly partitioned into m disjoint subsets. By 

selecting one of these subsets as a test data set, the remainders are rejoined as its 

corresponding training data set. For this case m numbers of overlapping training sets 

and m independent test sets are obtained. As each training set is different somehow, 

the error they generated after training is expected to fall in different local error 

9 



minimum and therefore lead to different results. Classifier performance is measured 

on the corresponding test data set. This approach (ideally) requires that the number of 

partitions is the same as the number of data instances. Practically, 10-fold and 20-fold 

cross validations are adopted (where m equals 10 and 20 respectively). 

The cross validation method offers an effective resample technique to obtain the 

different data sets by reducing data overlapping. In practice, when the source data set 
is small and different training sets are required, this approach is usually adopted, as is 

the case in our experiments. 

" Bagging (Bootstrap Aggregating) was the first widely used method of selecting 
learning sets for ensemble classifiers. The idea of bagging came from attempts to 

reduce the error variance, and bagging is one of the ways to achieve this. In 

Breiman's paper (Breiman, 1999), he found that perturbing the learning set a little 

generates a different predictor. Suppose there are T sets of training data W, 

represented by { W1, WZ .... �... W ,. }. Bootstrap approximation is used to create a new 

learning set of size N by taking N independent samples of instances with 

replacements from T. This method is especially useful when the training process faces 

data shortage. Though the generated training data may contain repetition or overlap, 

we can generate as many groups of data as we want. Suppose data set T,, TZ, T3, ... 
Tm each has size N of training data drawn from the original source data set is used as 

the illustration to demonstrate the bagging algorithm: 

Given: size of the source data W is T, size of new training data is N, number of new 

training data is m; 
1. Initialise t=1, iterate while t <= m. 

2. Initialise i=1, iterate while i <= N. 

Let Randrow = T*randO. 

If Randrow <= T 

let Tr (i,: ) = W(Randrow, : ); 

Else back to step 2; 

10 



3. Back to step 1. 

4. Output the final training data sets generated by bagging method: T,, T2, T3, ... 
Tm. 

The Bagging method is very efficient in constructing a reasonable size of training set 

while the original source data size is small due to the feature of its random sampling 

with replacement. We also used the Bagging method in our experiments when we 

encountered a small data set (see section 3.5.1). Therefore, Bagging is a useful data 

preparation method in neural network ensembles. But it must be noted that as the 
function of Bagging is supplying the training data to the ensemble classifiers, so the 

performance of Bagging is closely related to the choice of base classifiers. 

" Boosting was originated by Schapire (1990), and works by using filters to modify 
the training data and force the learning algorithm to focus on the harder to learn 

parts of the data. Schapire (1990) proved that accuracy and diversity were not 

equal key factors that influence ensemble classifiers' performance. He found that 
diversity has the main role in constructing ensemble NNs. The paper pointed out 
that strong and weak NN models are equivalent in terms of generalization. 
Schapire (1990) proved that no matter whether the learner is strong or weak 
(generalization just above 0.5), the final result is surprisingly equivalent. So the 

training emphasis is put on those training data where performance is poor and 

retrain them to get better and better results. Typically, the final combined 
hypothesis is a weighted vote of the weak hypotheses. Based on this, Freund and 
Schapire (1995) developed another type of boosting algorithm, termed the 

adaptive boosting algorithm (AdaBoost). This algorithm can actively pick training 
data according their probability. Those data whose predicted value is close to the 

target value are adjusted to low probability of selection, and those data that are 
hard examples have a higher probability of selection assigned. This procedure will 

give the hard examples more chance to be retrained and thus the overall accuracy 

can be better than a single NN. 

11 



(3) 

M training 
samples 

: 

First weak 
learner """": 

VF (2) 

Second weak 
learner 

(1) 

(3) 

Figure 1.4 

Third weak I 
learner 

AdaBoost with three weak learners 

Consider three weak learners, each with an error rate of less than 0.5. In Figure 

1.4, dotted lines (1) represent the first step, where the first weak learner takes the 

data from the source training data repetitively and trains. The result is that it will 

pass the data (of which about half is classified correctly and about half is 

misclassified) to the second weak learner (2). Then, the second weak learner will 
be trained on these data items. After the second trainer's training, the data from 

the source will be passed to the first and second weak learners. If there is 

learner t"""" 

12 



disagreement between the first and the second classifiers on the same input, that 

set of input data will be passed to the third learner (3). The third learner will be 

trained on these groups of data which are difficult to train on. The final result will 
be dependent on the output of the three learners. For a classification problem, we 

can use majority voting and for a regression problem the result with lowest error 

rate is selected. Boosting algorithms have been shown to be very effective in 

many experiments (Drucker, Cortes, Jackel, LeCun and Vapnik, 1996; Jackson 

and Craven, 1996; Freund and Schapire, 1996; Breiman, 1996b). 

The character of Boosting is that it requires a committee of weak classifiers to 
learn different features of the training data space and it forces the classifiers to 
learn on the very hard training data. So when the training data contains some 

noisy data, this method wastes too much attention on the data part which does not 

contribute much to the final results, therefore it is easy to understand why 
Boosting performs badly in domains containing noisy training data (Quinlan, 

1996). In addition, when the ensemble classifiers are strong, Boosting fails to 
deliver high performance (Schapire, 1999; Wickramaratna, Holden and Buxton, 

2001). So there is always an argument whether we want the ensembles be built on 
the weak classifiers instead of strong classifiers (Ho, 2001). The aim is to increase 

the performance beyond the high accuracy classifiers, but Boosting fails to do so 
in such circumstances. 

9 Noise injection was described by Raviv and Intrator (1996). Adding noise to the input 

during the training with ensemble averaging can effectively reduce the variance, since 
the injection of noise increases the independence among the different training sets 
derived from source data sets. The result of injecting noise is to push ensemble nets to 

different local error minimum so as to produce more diverse errors. However, 

caution must be taken when applying this method. Dietterich (2000) found that 

adding noise to the training data can cause over-fitting and some of the methods did 

not do as well as the experiments shown. 

13 



" Input decimation (Turner and Ghosh, 1996) is an important pre-processing technique, 

based on the theory of lowering correlation among classifiers. It focuses on reducing 

the dimensionality of a training set in order to reduce the correlation between 

classifiers. An average error rate E, ' d, ', of combined classifiers can be given by: 

E', ' 1+, 5(N-1) 
,, Id = E,, 

dd 
( 

Here, Egad is the sum of the error rates of all the classifiers and S is the parameter 

that represents the correlation among the N classifiers. In Equation 1.4, we can see 
that if the errors are independent, then the part S(N -1) is zero and the combined 

error is reduced by N. However, if each of the classifiers have high correlation 
(close to 1), then the average combined error is equal to the original errors and 
there is no gain in combining. Since the effect of each single input dimension on 

each output class of the classifier can be measured by their correlation, by pruning 
the input's dimensions that have the least effect on the output, one can train a 

classifier with partial inputs without compromising the overall performance. In 

experiments to avoid pruning too many inputs (which may lead to substantial 

reduction in discriminating power), we can use N classifiers (where N is the 

number of output classes). For each class, a subset of inputs with low correlation 
to that class can be removed. The resulting N classifiers will each have seen a 

slightly different feature set. 

Though input decimation will cut off the internal link among input dimensions 

where each single dimension may look irrelevant to the output classes, attention 

must be paid on its application. Since some of the input dimensions may have no 
direct effect on any output classes individually, they may affect the general 

performance through the link with other input dimensions. If these input elements 
interact with some other input elements, they may play important roles in 

14 



generating the final results. Therefore caution must be used in applying the input 

decimation method to ensembles of NNs to avoid over pruning. 

In summary, the above approaches can all make up the shortages of input signals for the 

purpose of generating diverse training data via different means. Cross-validation can 

generate the diverse training data by dividing the original source data into different 

subsets. Bagging is the most frequently used method in ensembles. One of the 

advantages of bagging is that each ensemble net can be trained independently (i. e. in 

parallel) compared with another popular approach (boosting). However, most 

experiments have shown that in the majority of cases boosting algorithms generated 
better results than bagging (Breiman, 1997; Drucker, Cortes, Jackel, LeCun and Vapnik, 

1996). The application of adaboosting also showed that it only gives good performance in 

low-noise cases (Dietterich, 2000). Since it puts too much weight on the misclassified 

sample, of which most of them are, noise data in the high-noise cases leads to over- 
fitting. The noise injection approach introduces the injection of noise data into the source 
data, where it not only reduces the variance of error but also increase the size of training 

data. This could be counted as another benefit of the noise injection method. However, as 

we addressed already, the application of this approach did not always help on improving 

the ensemble performance, sometimes even degrading the generalization (Dietterich, 

2000). Input decimation is useful on those data whose input dimension is large and 

where not all of them are relevant to the output classes. Despite successful empirical 

experiments on all above methods, further theoretical exploration and experiments are 

needed to prove their usage and compare their relative performance. 

1.2.2.2 Creating Different Ensemble Members 

a) How to create ensemble members 

Krogh and Vedelsby (1995) found the relation amongst ensemble nets outlined in 

equation (1.8) indicates how to combine ensemble members and improve their 

performance. They used the term ambiguity (called diversity here) to measure the 

15 



disagreement amongst the networks. If o is the ensemble output, and o(x) is output 

generated by each of the ensemble members, then the diversity term d, of network i on 

input x is defined as: 

di=[o, (x)- ö(z)]2 (1.5) 

The error squared of network i and of the ensemble are: 

e, (x) = [o, (x) - .f 
(x)] Z (1.6) 

e(x) = [ö(x) _f (X)]2 (1.7) 

Where f (x) is the target value of input x. The E, E, and Dj refer to the averages over 

the input distribution of e(x), E(x), d (x) respectively. Therefore the ensemble's error can 

be defined as: 

E=E-D 

where E=I:, wE,, D = E, wD, ,E is the weighted average of the individual 

network's output error and D is the weighted average of the diversity among members 

of the ensemble. 

The above equations show that an ensemble consisting of more accurate nets with much 
disagreement will be more likely to have good performance. Thus, how to generate the 

diversity within an ensemble is the key path to the creation of an effective ensemble. 
There are several methods for generating diversity, including: 

" Initialisation of different starting weights for each of the ensemble members. 

" Varying the architecture of nets, as those with different number of hidden units or 
different number of hidden layers might generate different results. 

" Using different training algorithms, such as the Back-propagation (Rumelhart, 

Hinton and Williams, 1986), Radial-Basis Function (Broomhead and Lowe, 1988), 

and Bayesian regression (MacKay , 1992) algorithms. 

16 



Though there are many ways of training them, the above approaches are not isolated and 

not necessarily independent. In fact most of the time they are employed together within 

one ensemble model. A common approach of creating ensemble NNs is to train a group 

of different single nets using the methods stated above and then use selection criteria 
(diversity and accuracy) to pick some of them to construct an ensemble model. Though 

there are many ways being offered to create the diverse NN models, the most significant 

approach among them is varying the initial conditions (Parmanto, Munro and Doyle, 

1996b). Therefore, we adopted this method in our experiments in order to make the 

ensemble training simply in the mean time without affecting the ensemble performance. 

b) The choices on number of ensemble members being created 

After training, each member of the ensemble has generated its own result. If the 
individual members of ensemble nets are diverse, disagreeing results for the same inputs 

are expected. Before combining these ensemble candidates, strategies on deciding the 

number of ensemble members being created must be proposed. These strategies are 

generally classified in two types: 

" Creating an exact number of ensemble members. 

" Overproducing ensemble candidates and then selecting a subset of these. 

For the first strategy, several ensemble approaches (Bagging, Boosting, etc. ) can be 

employed to generate the right number of diverse ensemble members needed for 

combining directly. Therefore, no selection procedure will be used, and all the members 

will be used in combination. The aim of the second strategy is to create a large set of 

ensemble candidates and then choose those most diverse nets to combine. This criteria of 

selecting ensemble nets is described by Partridge and Yates (1996), where some error 
diversity measures used to choose diverse ensemble nets are introduced. Since the first 

type of ensemble creation is based on the idea of creating diverse nets at the early stage 

of design, it is better than the second method in the authors' view in situations where 

access to powerful computing resources is restricted. This is because the second approach 

can not avoid occupying much computing time and storage used while creating a large 

17 



number of ensemble candidates, some of which are to be later discarded. However, 

access to powerful/distributed computing resources can make this approach more 

attractive. In our experiments, both the above schemas are adopted, although there was a 

preference for the first approach. We did not want to deliberately select ensemble 

members, as more ensemble candidates were available in some circumstances due to the 

feature of our experimental design. 

1.2.2.3 Combining Ensemble Results 

Once the ensemble candidates are selected, the last step is to combine these ensemble 

classifiers' results. The combination method can be classified into two categories: static 

combination and adaptive combination strategies. 

a) Static Combination 

Static combination means that the combination stage does not involve the original input 

data and requires no prior training. The combination of ensembles members is based on 

their generated results. Common static strategies used to combine these single nets' 

results and then produce the final output are Simple Averaging (Turner and Ghosh, 1995; 

Lincoln and Skrzypek, 1990), Weighted Averaging (Jacobs, 1995), Majority Voting 

(Hansen and Salamon, 1990) and Ranking (Ghoneim and Vijaya Kumar, 1995; Ho, Hull 

and Srihari, 1994). 

" Simple Averaging is the one of the most frequently used combination methods. After 

training the members of the ensemble, the final output can be obtained by averaging 

each output of the ensemble members. Some experiments have shown that simple 

averaging is an effective approach (Breiman, 1996b; Hansen and Salamon, 1990). It 

is more useful when the variance of ensemble members is different, in other words, 

the local minimum of ensemble nets are different. Different local minimum means 

that ensemble candidates are diverse. Thus averaging can reduce the ensemble 

variance. However, this method treats each ensemble member equally, i. e. it doesn't 

18 



stress those ensemble members who can make more contribution to the output 

generalization. If the variances of ensemble nets are very different, we shall not 

expect a better result by averaging, as we know that combining the same classifiers 

will produce no gain. 

" Weighted Averaging is where the final ensemble result is calculated based on 
individual ensemble member's performance and a weight attached to each individual 

member's output. For instance, if the gross weight is 1, each member of the ensemble 
is entitled to a portion of this gross weight according to their performance, or 
diversity. There are different methods of computing the classifier weights (Hashem 

and Schmeiser, 1993; Lincoln and Skrzypek, 1990; Merz and Pazzani, 1997). 

Although, weighted averaging provides more flexibility in terms of combination 

weights compared with simple averaging, the weights are actually assigned to a unit 

represented by a classifier, rather than a per data instance basis. In other word, the 

general performances of classifiers are the base on which weights are to be calculated. 
For example, a classifier that gains the largest portion of weights in a NN ensemble 

performs well only on the particular part of input data. The final ensemble result 

generated by the weighted averaging strategy can only show the effectiveness on that 

part of data and fails to reflect its advantage of the flexibility on the other part of the 
data. So it is clear that the flexibility offered by weighted averaging has its limitation. 

" Majority Voting is the most popular combination method for classification problems 
because of its easy implementation. Members of an ensemble net vote to decide the 

value of each output dimension. The result for which over half of the ensemble 

members agree is to be accepted as the final output of the ensemble (regardless of the 

diversity and accuracy of each net's generalization). Majority voting ignores the fact 

that some networks that lie in the minority sometimes do produce the correct results. 
At this stage of combination, it ignores the existence of diversity that is the 

motivation for ensembles. 

19 



" Ranking is where the members of ensemble are called low level classifiers (LLC) and 

they produce not only a single result but a list of choices ranked according to their 

likelihood. Then the high level classifier (HLC) chooses from this set of classes using 

additional information that is not usually available to or well represented in a single 
LLC. The difficulty of applying this approach is it requires the classifiers produce not 

only the outputs but also the rank scores along with the outputs. Few classifiers are 
designed to implement this function and it may be this reason that less research has 

been explored in this subject. 

There are several approaches that can be chosen while combining the ensemble members. 
However, there are no unique selection criteria on the usage of all the above combination 

methods. The choice mainly depends on the features of the particular application. For 

example, the nature of the application (classifier or regression), the size and quality of 

training data, the generated errors on the region of the input space, etc. Using the same 

combination method to apply to on the ensemble of a regression problem may generate 

good results. However, it may not work on a classification problem and vice versa. In 

addition, different classifiers will have an influence on the selection of which 

combination to use. Thus, empirical experiments so far can not find an optimal method 
for selection of the combination strategy. More theoretical development and experiments 

are needed to explore this field. 

b) Adaptive Combination Method 

One alternative to the static combination strategy, adaptive combination, means original 

input data are used again during the combination stage and a training procedure is 

introduced at the stage of combining. Stacking (Wolpert, 1992) is the earliest and typical 

approach in this type of combination. 

" Stacking: The feature of stacked generalization (or stacking) proposed by Wolpert is 

that the information supplied to the original generalizers comes from multiple 

partitioning of the original learning set, all of which split up that learning set into two 

20 



subsets. Every generalizer is trained on one part of the partition and the rest of the 

parts are used to generate the outputs of the original generalizers (these outputs will 
be used as second space generalizers inputs). Then the second space generalizers are 

trained with those original generalizer's outputs and the second space generalizer's 

output is treated as the correct prediction. In fact, stacked generalization works by 

combined classifiers with weights according to individual performance, to find a best 

combination of generalizers. Generally stacking uses two ideas, preparing data and 

ensemble combination. 

(xi y1) A The full training data set L 

L-(xi. yi) 

Gil IG2F- x1 

(gii. g2i. yi) 

G 

Figure 1.5 An illustration of stacking 

Stacking is shown in Figure 1.5, where firstly this uses the idea of cross validation to get 

the training data sets for generalizers. Secondly, it explores the way of using the second 

generalizers to combine the first generalizers. In figure 1.5, the training data (N instances) 

is separated into a single data set (x� y, ) and L -(x1, yi). It uses N-fold cross-validation 

21 



(N partitions), and (x,, y, ) just represents one of data partitions from L. The generalizers 

GI and G2 are trained on the data: L -(x,, y, ). After this cycle of training, x, is put into 

GI and G2, and their output is the prediction of y,: g� and 92, respectively. The data 

set (g,,, g21, y, ) will be used as one of the inputs of generalizer G. After all the partition 

has been trained in level 0, the generalizer G in level 1 starts training using the outputs of 
level 0. Any test data can be applied to G and level l's generalizers outputs are treated as 
final results. 

Stacking is a different type of combining approach compared with those static 

combination methods like simple averaging, ranking, majority weighting and so on. It 

introduced the general concept of using a dynamic model to perform the functionality of 

combination. 

Inspired by stacking, there were some attempts using adaptive combination for some 

specific applications. As early as 1993, some experiments were done in digit recognition 
(Lee and Srihari, 1993) by using a single layer network to combine ensemble classifiers. 
Unfortunately, these experiments did not show any performance gain compared with 

other combination strategies. It was claimed the failure was due to the very high accuracy 

of all the individual classifiers being combined. 

In 1995, Partridge and Griffith (1995) presented a selector-net approach. The selector-net 

was defined as a network, which used the outputs from a group of different trained nets 

as its input. The experiments based on this idea demonstrated that selector-net's 

performance was better than the populations of networks they were derived from. It 

clearly confirmed that this kind of ensemble method is better than individual NNs. But no 

further work has been done to compare the performance of this strategy with any other 

ensemble method. 

In 1997, Wesolkowski and Hassanein (1997) used a NN model as a combiner on a digital 

recognition application based on the classifiers generated by using the boosting approach. 

22 



It was found that this combination method outperformed non-adaptive approaches like 

majority voting. However, no clear picture could be seen whether the gain was due to the 

usage of an adaptive combination approach or due to the weak performance of majority 

voting. As usual, the recommended combination schema applied on Boosting is the 

weighted averaging instead of majority voting (Schapire, 1999). 

More recently, Kittler (1998) stated that: "It is possible to train the output classifier 

separately using the outputs of the input classifiers as new features". However he did not 
implement this idea. 

Very recently, Zeng and Martinez (2000) used a single NN as an approximator for voting 

classifiers. It was claimed that storage and computation could be saved, at the cost of a 
little less accuracy. However, here a NN was being used to approximate the behaviour of 

the ensemble, instead of using it as part of the ensemble components. 

Though several of the previous experiments mentioned above have used the idea of 

stacking on some applications, they either used it as one of the tools to apply on one 

specific case (e. g., Lee and Srihari, 1993; Wesolkowski and Hassanein, 1997 ) or just use 

it to simulate a well-established ensemble model such as Zeng and Martinez (2000). The 

research so far is limited by the very narrow range of the applications. For example, the 

NNs performances as an ensemble combiner were only reported on a few examples of 

digital recognition data (Lee and Srihari 1993; Wesolkowski and Hassanein, 1997). 

Therefore, applications to a wide range of data that can show consistent performance 

need to be explored in this research area. Moreover, the questions can be asked: "Is there 

any standard rule to construct an optimal neural network combiner in order to apply 

universally? ", and "How much potential extra overall generalization abilities can such 

kind of models demonstrate? " The lack of both theoretical analysis and extensive 

experimental support leaves this field with much space to explore. 

1.3 The Motivation of Generating MNNs 

23 



It is really necessary to focus in more detail on neural network ensembles using the idea 

of stacked generalization. Therefore, we propose to systematically investigate a novel 

two layer ensemble model: Multistage Neural Network Ensembles (MNNs) (Yang, 

Browne and Picton, 2002; Yang, Browne, Picton, Hudson and Whitley, 2002). By doing 

this, this thesis extends the idea of stacking and investigates the use of a single neural 

network model to combine the ensemble member's results. Detailed investigations on the 

model itself are presented. A wide variety of data sets were selected for the experiments. 
Our hypothesis is that by using another second-stage NN to combine the results of 

ensembles as an adaptive combiner, superior generalization performance can be 

demonstrated compared to when the most frequently used non-adaptive ensemble 

combination technique (majority voting) is used. This implies that our null hypothesis is 

that there is no performance difference between these adaptive and non-adaptive 

ensemble combination techniques. 

In summary, there are three motivations in generating a multistage ensemble approach. 
Firstly, the motivation to construct multistage ensembles stems from deficiencies inherent 

in current ensemble combination methods. With the exception of majority voting, other 

ensemble combination approaches all use weights assigning to the ensemble members 

while combining ensemble outputs. Thinking about the way that most ensembles use 

static combination, it leads us to think that using neural networks to generate the 

combining weights automatically may be better than assigning the weights manually. 

Secondly, once the outputs of neural network members are considered as the inputs of 

another neural network, it is very natural to employ neural network architectures to 

combine these. It appears attractive to make the combination process adaptive, so that no 

a-priori combination weightings need to be chosen. Thirdly, there has never been a 

thorough investigation done in exploring the creation of such an adaptive combination 

model, in monitoring the performance of such adaptive combination model, in comparing 

such model with other ensemble methods, and in analysing its performance into some 

depth. Therefore, a multistage ensemble model is proposed where the procedure of 

combining ensemble classifiers is turned into the training of another neural network 

model. 

24 



MNN models inherit some features of stacking. However there are some distinctions 

between two models. First, MNNs implement the idea of stacking and mainly emphasises 

on using NNs to construct two stages of ensemble models. Further, the way of 

manipulating data between two approaches is different. Stacking suggests using cross 

validation method to prepare the training data for the second stage. MNNs go even 

further and just uses the outputs of first staged training data as the inputs of second stage. 

This change means the training of two stages of ensembles can be separated to some 

extent. There is no need to take some special techniques such as the cross validation 

method to prepare the training data for the second staged training any more. Therefore 

the role of the combination function that the second staged MNNs plays emerges, and 

unlike stacking it is just a part of an ensemble model which has to be linked with the first 

stage training closely. Once the second stage MNNs is recognised as a combiner it 

makes MNNs more easily and widely applied and also leaves more flexibility for the 

first stage MNNs to select its own training style. So the MNNs method provides a 

convenient format to combine the ensembles. In addition, the author developed several 

models of MNNs. The comparisons among these models and also with other ensemble 

method, e. g. majority voting, were conducted. In particular, the combination functionality 

and the performance of this strategy were investigated in more depth in this thesis. The 

experiments showed that improved generalization could be gained by using MNNs. 

Besides the exploration on the structures of MNNs gave suggestions on how to construct 

such a simple and efficient model. 

1.4 Scope of Thesis 

A considerable amount of research effort has been spent to develop the model of MNNs 

and the details are reported in the rest of the thesis, which can be split into four parts. 

a) Chapter two outlines the model of MNNs and introduces the idea on how to construct 

such a model. 

25 



b) The methodology of MNNs and our experimental details on how to apply MNNs to a 

wide variety data are presented in chapter three. 

c) The experimental results of applying MNNs and some statistic comparison are 
demonstrated in chapter four. 

d) The working features of MNNs are analysed in chapter five. 

e) Finally, chapter six delivers the conclusions of the study and proposes the areas which 

need further research and investigation. 

1.5 Conclusion 

In this chapter, the history of neural network ensembles and its development has been 

introduced. The purpose of neural network ensembles is to improve the generalization 

ability and the reliability. This aim is achieved by various ensemble methods, through 

generating more diverse training data sets, more diverse net structures and more output 

error diversities. There are several approaches that have been used in neural network 

ensembles. These methods are classified into three groups by the functionality they 

perform. These three categories are: 

  Generating diverse training data sets from the original source data, including 

Bagging, Boosting, Noise Injection, Cross Validation and Input Decimation. 

" Creating different structures of neural network ensemble candidates, for example, 
initalising randomly, varying the inner structure of ensemble candidates and applying 
different neural network algorithms are the most common methods used. 

" Combining the ensemble results. Two types of ensembles combination were 
introduced: 

" Static combination, including simple averaging, weighted averaging, 

majority weighting and ranking. 

" Adaptive combination, where stacking is the typical method of this 

type of combination schema. 

Based on these techniques, some empirical experiments have been done and the results 

are encouraging. The experiments using ensemble methods mentioned in this chapter 

26 



demonstrated that these ensemble methods are effective ways compared with the 

conventional monolithic NNs. However, none of the above methods has been proved 

universal to all problems in practice, and exploration of new approaches is still very 

active. Among them, developing an adaptive combination strategy would appear to be a 
fruitful area for further research. The author has proposed a new dynamic ensemble 

combination approach called multistage NN. The structure of multistage ensembles and 

the implementation on improving the performance of this model are demonstrated in this 

thesis. The aim is to find a more general and effective way of combining neural network 

ensemble members. The experiments that were applied to a wide variety of data 

(including benchmark data from a machine learning data site and biology data from 

human gene bank) using multistage NNs imply that the model proposed can be used as a 

new combination method in neural network ensembles. 

27 



Chapter Two 

Multistage Neural Network Ensemble 

In chapter one a novel neural network ensemble was proposed: the Multistage Neural 

Network Ensemble (MNN). The model of the MNN is outlined and the features of this 

model are introduced in this chapter. 

2.1 The Model of Multistage Neural Network Ensemble 

Assume that we have a source data set S{ s1, s2,... s� } with its corresponding target data 

set T{t, , t2... t� 1. There are W number of NNs in the first stage represented as: 

NI, N2... NW . The data for each member in the first stage are labelled as Data, Data,, 

... Data, which are usually partitioned into three parts: test data, training data and 

validation data after a data preparation procedure. The NN in the second stage is 

represented as N. If using matrix 0 represents the inputs for the second stage and matrix 
T represents the associated target outputs, matrix 0 and vector T can be expressed as the 

following: 

Oll 012 """ Olw tl 

O_ 
021 022 ... °2w 

T= 
t2 

Onl On2 ... Onw In 

Where each column of matrix 0 stands for the vector which contains the output values of 

the corresponding NN in the first stage. The outline of a MNN model is illustrated as 
Figure 2.1. 

28 



Data 

Ni [Nj] UU First Stage 

N -------------------- Second Stage 

I Ensemble Output 

Figure 2.1 An illustration of MNN 

29 



As shown in figure 2.1, the structure of MNN generally includes three major components. 
The first part is the data, used for training, validation and testing. The second part is the 

set of ensemble candidate networks in the first stage and the third part is the NN model in 

the second stage, which serves as a combiner. 

The data for each NN's training in the first stage are usually different due to the fact that 

the training data set, validation data set and test data set for each NN are randomly picked 
from the source data. The purpose of using a different training data set for each NN in the 

first stage is to keep the error diversity between ensemble members as much as possible. 
There is an important observation on ensembles that the variance of the prediction can be 

reduced while keeping the bias unchanged (Turner and Ghosh, 1995,1996). The ability 

of ensembles to achieve this goal relies on the error correlation among the ensemble 

candidates. Different classifiers provide different generalizations by making different 

decision boundaries (Ghosh and Turner, 1994). Therefore, it is essential to make diverse 

ensemble candidates. Furthermore, earlier experiments (Parmanto, Munro and Doyle, 

1996b) prove that training ensemble members with different training sets is more 

effective in reducing the error correlation than using the same training sets. This general 

rule is followed in designing MNN model. As shown in figure 2.1 that Data, Data,,... 

Data. is used to represent the different data inputs for each ensemble candidates in the 

first stage. Thus the input feature space that each ensemble member works in is different 

and each ensemble member is expected to simulate a different approximation function to 

some extent. Once the first stage training is completed, the training data (again randomly 

picked from the source data) are injected into the first stage models and the subsequent 

generated outputs along with the corresponding target values are used as the inputs of the 

second staged NN. After being trained by the outputs of first stage ensemble members 

along with the associated target values, the outputs of second stage neural network model 

are taken as the final ensemble results. 

As noticed, no any particular ensemble techniques in preparing data for training in both 

stages of MNN is employed comparing with stacking approach. The normal procedures 

of preparing data in ensembles were followed in our experiments (details addressed in 

30 



chapter three). There are two purposes for doing so. Firstly, to simplify the training 

procedures in the first stage. For instance, as in the application of a cross validation 

method, the times of training for each model in the first level of stacking is equal to the 

size of training data . In contrast, only one time training is enough for each NNs in the 

first stage of MNN. Secondly, the second stage training does not rely closely on the first 

staged outputs. Therefore for each stage they can have more choices on selecting 

ensemble techniques. For example, the training of first stage ensemble candidates can be 

more flexible. We don't necessarily use one-fold cross validation in order to prepare the 

inputs for the second stage training. Furthermore, we can select whatever ensemble 

approach to use as long as it can be beneficial to create the diverse ensemble members. 

As the name of MNN implies, there can be several stages of NNs in this model. From 

figure 2.1, we can see that only two stages NNs are employed. Compared to other no 

prior training needed combination methods, like simple averaging, majority voting, we 

have the reason to believe that two stages of NNs, which can generate more precise 

weightings after training are powerful enough to accomplish the combination function. 

More over, to avoid complexity and much time consuming, just two stages of MNN were 

constructed in this thesis. The first stage of MNN includes several neural network 

models. The number of neural network models in the first stage can be varied from two to 

a large number. Only one NN is used in the second stage as adding one more NN in this 

stage means we need another stage to combine them and more stages means more 

training needed. The second staged NN can be clearly seen as a combiner to combine the 

first stage outputs. 

Due to the stochastic searching features of NNs, several techniques were used to create 
diverse ensemble candidates during the first stage training, such as random initial 

weightings, different subsamples of source input used as training data, randomly 
disturbing the sequential order of training data, and different structures of NNs. The 

performance of ensemble candidates trained under such a design can differ in a large 

amount (Ho, 2002), the aim of creating diversity among ensemble candidates can be 

achieved. 

31 



2.2 Features of Multistage Neural Networks 

MNN actually use the same type of models to apply to the data set twice. It is not the 

simple sum, but has a two-stage application. In the first stage, the models try to simulate 

the functionality of source data set. There are several NN models in this stage. In the 

second stage, the model tries to simulate the combination function based on the results 

generated by the first stage models. Only one NN model is used at the current stage. The 

features of using MNN as one of the ensemble techniques are: 

" For each ensemble candidates, the normal data preparation methods can be applied to 

them and ensemble candidates can be trained separately by using various neural 

network models and algorithms. The generalizations of these first stage NNs are 

expected to be as diverse as possible in order to get the best ensemble result. Because 

of this, the choices for the first stage NN training are very flexible and allow a wide 

range of network architectures and training algorithms. 

" The second stage of a single NN is used as an ensembles' combiner to apply different 

weights to those first stage ensemble members in order to approximate a best 

combination function. Due to the power of NNs, which adjust connection weights 

towards minimizing errors, there is a strong reason to believe that it can more 

accurately adjust the weightings to be assigned to ensemble members than manual 

methods. 

9 MNN can be widely used, both for classification and regression problem, unlike some 

other ensemble combination techniques, such as majority voting which can only be 

applied to classification problems. 

32 



2.3 Conclusions 

The author propose a standard ensemble model by using multistage neural networks in 

this thesis, where the adaptive properties of a second layer network are used to combine 

the outputs of the individual ensemble members. The model of MNN is illustrated and its 

structure is introduced. The design of such a model is based on the theory of diversity 

that exists among the ensemble classifiers and therefore several techniques that were used 

generating different ensemble classifiers of MNNs in the experiments were introduced. 

Moreover, the features of MNN models, which make it distinguished from other 

ensemble combination methods are discussed. 

There is an expectation that it can offer enhanced performance over a simple voting based 

combination method. The expected improvements on the generalization of ensembles 

rely on the neural network's ability to adaptively assign weights to those ensemble 

members automatically. 

33 



Chapter Three 

Methodology for Creating, Training and Testing MNNs 

3.1 Introduction 

In order to prove the effectiveness of MNNs, a wide variety of data on different MNN 

models was applied. Firstly, the structures of MNN models used in these experiments are 
described in section 3.2. Secondly, the NN algorithm and program coding used in my 

experiments are addressed in section 3.3 and experimental data applied to MNN models 

are introduced in section 3.4. Next, the experimental details based on the above models 

are presented in section 3.5. Finally the comparison procedures used when comparing the 

multistage combination strategy to the majority voting strategy are explained in section 
3.6. 

3.2 Structures of MNNs 

As mentioned in chapter two, two stages of NN models are used in MNNs. The function 

of each NN model in the first stage is to approximate the functionality of the original 

source data. The purpose of adopting a second stage model is to combine the outputs of 
first stage models. In the experiments, there were several types of NN architectures, 
designed and implemented to explore the ability of the multistage neural network 

combination schema. The NN models were presented in the form of stages. The NN 

structures used in the first stage training are described in the first part. Next, the second 

part emphasizes the organization of the second stage NN. Last, some trials employing 

other structures of MNNs are introduced in part three. As within this part only the 

structures of MNNs were discussed, correspondingly the experimental details using these 
kinds of models are reported in section 3.5. 

34 



I. NN Models in the First Stage 

Most classification cases in the real world are non-linear separable problems. Therefore 

NN models with one hidden layer, which are capable of approximating any continuous 

functional mapping (Bishop, 1995), were used in my experiments. In the first stage of 

MNNs, the standard Multi Layer Perceptrons (MLPs) with one hidden layer using the 

Back-Propagation algorithm (Rumelhart, Hinton and Williams, 1986) were employed. 

Justification for this is presented in section 3.3. As illustrated in Figure 3.1, the source 

nodes just receive information from the input signal; therefore, no computation is 

performed in that stage. The number of neurons in the hidden layer for each ensemble 

member was varied with the purpose of creating diversity among the ensemble members. 

The number of output neurons was set to one. 

""" Source Nodes 

""" Hidden Nodes 

Output Nodes 

Figure 3.1 NN Model from the first stage of the MNNs 

35 



In my experiments, nineteen ensemble candidates using the above NN models combined 

with the back-propagation algorithm and pre-processing data technique (section 3.5.1) 

were implemented in creating ensemble members. The selection of ensemble numbers 

was decided by the results of MNNs. The initial combination number started from three 

and was gradually increased to nineteen. The training details using the above basic 

structure of MLPs are addressed later in Section 3.5. 

II. Structure of the Second Stage MNNs 

The combinations of different ensemble members have been investigated by using the 

multistage neural network combination approach in my experiments. The structure of 
MNNs is a top-down style, thus the combination stage was after the completion of first 

stage training. As mentioned in part I, nineteen ensemble candidates were created in the 

first stage and therefore the maximum of ensemble members that could be combined in 

the second stage were nineteen. However in order to assess the performance of MNNs by 

combining different numbers of ensemble members, the experiments in the combination 

stage were done step by step. The numbers of combined ensemble members were all odd 

numbers in order that the performances generated by MNNs could be compared to 

majority voting, which prefers the odd number of ensemble members to avoid the half- 

wrong and half-right occasion. These numbers are three, five, seven, nine, eleven, 

thirteen, fifteen, seventeen and nineteen. The number of ensemble members was 

gradually increased starting from three and ended up at number nineteen where the 

improvement of MNNs performance on most of data sets could not be made by just 

increasing the number of ensemble members. 

A fully connected two layered backpropagation NN was used to combine the outputs of 

ensemble members as illustrated in Figure 3.2. There were two considerations while 

selecting the number of hidden neurons. First, the aim was to construct the second stage 

of MNNs as simply as possible. As the application of MNNs has to be on the basis of 

extra training for the second stage, so it is necessary to minimize such training cost. In 

addition, during the experiments, there was a found that the second stage NN was less 

36 



sensitive. Several combinations of learning parameter and number of hidden neurons 

could all reach to the same generalization. Based on above thoughts, two hidden neurons 

were adopted, after initial experimental testing showed that two hidden neurons were 

powerful enough to perform the combination function based on the data sets used in my 

experiments. (Further detail is presented in section 3.5). The results generated by the 

output net are counted as the final ensemble results. 

Second Stage NN 

Output 
Node 

Figure 3.2 The outline of second stage NN 

37 



III. Other experiments using different MNN models 

Apart from the NN models introduced in part I and part II, some other structures of 

MNNs were tried, which failed to deliver better results. However, the experimental 

details related to these trials were still presented and such failure may help us to construct 

the optimal MNN model in future work. The structures of the NN models used in these 

MNNs experiments are shown in Figure 3.3 and Figure 3.4. 

a) Combining Ensemble Results Using a One Layer NN 

Input Signal 

Second Layer 
Neural 
Network 

Source Nodes 

Output Nodes 

Figure 3.3 Using a single layer NN to combine ensemble members results 

38 

Ensemble Result 



As shown in Fig. 3.3, a single layer NN is applied as a second layer combiner. The input 

data are assigned to the source nodes and only the output net performs the combination 
function in generating the final ensemble results. As this kind of MNN is the simplest 

one, it would be the ideal model if it could implement the combination function. 

Unfortunately, my experiments using this MNN model failed and experimental details are 

reported in section 4.3. 

b) Combining Ensemble Members Results along with Original Input Code 

After using the outputs of ensemble members as the input of the second stage MNNs, 

there was a thought that the original input to the second stage MNNs along could be 

provided with the outputs of those ensemble members. The aim was to tell the combiner 

what part of the decision space it was in, as some ensemble members may give more 

reliable predictions in some areas of the space. The original input, which was used to 

generated these ensemble members outputs were concatenated with the corresponding 

ensemble members results. The joint parts are used as the input for the second layer 

neural networks training as illustrated in Figure 3.4. The results on this model was 

reported in section 4.3.2. 

In summary, different structures of neural network models were applied in the ensemble 

experiments. From single layer to two layers neural networks, that have various number 

of hidden neurons, have been constructed. The details of the experiments using different 

structures of MNNs presented in this section are described in section 3.5. Further, the 

comparison on the performance of these MNN models detailed in Chapter four will show 

the effectiveness of these models. 

39 



S 

Figure 3.4 Using original input and ensemble members results together as input of 

second stage NN 

3.3 NN Algorithms and Programming Coding 

The main concern in this thesis is whether MNNs can be used as one of ensemble 

combination techniques and furthermore is MNNs generalization better than majority 

voting or can it at least achieve the same performance level. For this purpose, any of the 

NN training algorithms can be used, as long as the ensemble members used for these two 

ensemble combination approaches are the same. Choosing a NN algorithm which can be 

easily applied and widely used is ideal, so three universal NN algorithms were 

considered: Radial-Basis function network (RBF) (Powell, 1985), Support Vector 

Machines (SVMs) (Boser, Guyon and Vapnik, 1992) and the Back-Propagation algorithm 

applied to MLPs (Rumelhart, Hinton and Williams, 1986). 

The RBF network requires sufficient data that represent all aspects of the problem being 

solved in order to generate an accurate performance (Callan, 1999). It is not my purpose 

in this thesis to investigate whether the information provided by the original input data is 

enough or not for training using such a NN model. Instead, the real concern is to explore 

the combination capability of MNNs. For this reason RBF networks was not selected in 

the experiments, which would cost much effort in training. 

40 



The support vector algorithm's running time is slower than a NN using Back-Propagation 

in achieving a similar generalization performance (Haykin, 1999). After considering this 

fact the Back-Propagation algorithm was selected. 

The Back-Propagation algorithm was formally proposed in 1986(Rumelhart, Hinton and 

Williams, 1986). It can be easily implemented and can be obtained from many NN 

software tools. As the Back-Propagation algorithm is the most frequently used algorithm 

in NNs, for the purpose of future testing and applications on MNNs, the Back- 

Propagation algorithm was used through the whole experiments. Programming code was 

implemented by using the Neural Network Toolbox and Aston Netlab software under 

Matlab Version 13.0 for Windows. 

3.4 Data 

There are two groups of data sets being employed in the experiments. All the data sets are 

two-classification problem except the iris data set, which is a three-classification 

problem. One group of data sets is benchmark data from the machine learning website. 
Another group of data is human DNA sequences (Thanaraj, 1999). Their details are 
described in the section 3.4.1 and section 3.4.2 respectively. The efforts in using a wide 

variety of data to apply to the multistage neural network models will prove the 

effectiveness of my novel ensemble models for a wide variety of applications. 
Furthermore, the application of the gene splice sites data to my MNN models attempts to 

extend the research in the gene prediction field by using ensemble methods. 

3.4.1 Machine Learning Data 

The UCI (ftp: //ftp. ics. uci. edu/pub/machine-learning-databases) maintains the 

international machine learning database repository, an archive of over 100 databases used 

specifically for evaluating machine learning algorithms. From there, five frequently used 

data sets were selected. The details of these data sets are described below. 

41 



  Wisconsin Breast Cancer Database 

This breast cancer databases was obtained from the University of Wisconsin. There are 

699 instances. Every instance includes clump thickness, uniformity of cell size, 

uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland 

chromatin, normal nucleoli and mitoses attributes, which are represented by 1 through 10. 

Each instance has one of 2 possible classes: benign or malignant represented by 0 and 1 

respectively. 

  BUPA liver disorders (Bupa-Liver) 

The source was from BUPA Medical Research Ltd. Each line in the BUPA data file 

constitutes the record of a single male individual. Attributes include mean corpuscular 

volume, alkaline phosphotase, alanine aminotransferase, aspartate aminotransferase, 

gamma-glutamyl transpeptidase, number of half-pint equivalents of alcoholic beverages, 

selector field used to split data into two sets: order or disorder represented by 1 or 2. 

  Johns Hopkins University Ionosphere database (Ionosphere) 

This is a binary classification task. All 34 predictor attributes are continuous. The 35th 

attribute is either "good" or "bad". "Good" radar returns are those showing evidence of 

some type of structure in the ionosphere which is defined 1. "Bad" returns are those that 

do not; their signals pass through the ionosphere, which is defined 0. 

  Iris Plants Database 

The data set contains 3 classes stand by 1,2 and 3. (Iris Setosa, Iris Versicolour, Iris 

Virginica) of 50 instances each, where each class refers to a type of iris plant. One class 

is linearly separable from the other 2; the latter are not linearly separable from each other. 

Attributes are sepal length in cm; sepal width in cm, petal length in cm, petal width in 

cm. Class Distribution is 33.3% for each of 3 classes. 

  Pima Indians Diabetes Database (Pima) 

Original owners: National Institute of Diabetes and Digestive and Kidney Diseases. All 

samples were taken from patients who are females with at least 21 years old of Pima 

42 



Indian heritage. Attributes are number of times pregnant, Plasma glucose concentration in 

a2 hours oral glucose tolerance test, Diastolic blood pressure (mm Hg), Triceps skin fold 

thickness (mm), 2-Hour serum insulin (mu U/ml), Body mass index (weight in kg/(height 

in m)2), Diabetes pedigree function, Age (years). Class value 1 (500 instances) is 

interpreted as "tested positive for diabetes" and class value 0 (268 instances) is 

interpreted as "tested negative for diabetes". 

It was noticed that there are some missing values in some of data sets and thus the 
instances that contain missing values have been removed from the source data. The 

summary of these data set introduced above is shown in Table 3.1. 

Data Number of Cases Number of Input 
features 

Number of Output 
features 

Breast-cancer -w 682 9 2 
Bu a-Liver 345 6 2 
Ionosphere 351 34 2 
Iris* 150 4 3 
Pima-Diabetes 768 8 2 

Notations: "- multi-class data set. 

Table 3.1 Summary of UCI machine learning depository data sets 

3.4.2 Human Eukaryotic DNA Sequence Data 

A splice data set from human DNA sequences (Thanaraj, 1999) was used for these 

experiments. Using computational tools to identify human gene structural elements (e. g. 

translation start/stop and splice sites) is one of two major parts in genome sequencing 

projects (another part involves using biological experiments). Furthermore, it is well 

recognized that pinpointing exactly the splice site signals in a DNA sequence plays a key 

role in prediction of gene structures. Several computational approaches (Thanaraj, 2000), 

such as discriminant function, single NNs, hidden Markov models and decision trees 

(Hudson, Whitley, Ford and Browne, 2002), have been employed, since predicting splice 
junction sites is crucial in finding gene coding. Using the splice data set in this thesis 

43 



explores the effectiveness of the multistage neural networks in the application of finding 

human gene sequences. 

Exon 1iI Intron 1I, Exon 2 Intron 2 

-20 ... -2 -1 +1+2 ... +20 
1 

Donor 

I _ýr 

-20... -2-1+1 ... +20 
1 

Acceptor 

Figure 3.5 Donor and Acceptor Junctions 

As shown in Figure 3.5, the splice site refers to the consensus dinucleotide sequences 

starting from GT and ending with AG. Here the observations of splice are nucleotides 

and each letter represents one type of nucleotides. Therefore GT and AG pairs with a 
DNA sequence are indications for splice junctions. Identifying the real splice sites can be 

split into identifying real donor (e. g. Exon-Intron) junctions and real acceptor (e. g. 

Intron-Exon) junctions. However, not all the sequences containing GT are marked as 

donor and also not all the sequences containing AG are marked as acceptor. To find the 

genuine donor and acceptor site from the mixture of real and non-functional junction sites 

is my task. 

There are 567 real donor sites along with 943 false donor sites and 637 real acceptors 

along with 468 false acceptors in the data set. These data set were processed by Thanaraj 

(1999) and are standard data sets used to compare the extensive research in this area, and 
have been placed on the European Bioinformatics Institute website for use by other 

researchers. The test data set was prepared by (Hudson, Whitley, Ford and Browne, 

2002) according to the information provided by Thanaraj (1999). 

44 



In my experiments, the nucleotide regions starting from position -6 and ending at position 
+3 (where donor signal GT is at position +1 and +2) in the donor junction were used; 

while for acceptor junctions, the nucleotide regions between position -11 to +1 (where the 

AG marker is at positions -2 and -1) were used. In experiments, the donor signal GT and 

acceptor signal AG were omitted (as these are invariant) and all the nucleotide nodes 

represented by letters were coded into binary categorical form. For example, T, C, A, and 
G were defined as: 

T--> (10 0 0) C-->(0 10 0) A->(001 0) G-*(0001) 

In general, two major types of data set were used in my experiments. One type is 

benchmark machine learning data sets. Another type is a standard bioinformatic data. The 

performances of all the data sets on MNNs are compared with other researchers' results in 

chapter four. 

3.5 Experimental Procedures 

3.5.1 Data Preparation 

The sequence of each source data set has been randomized first and the training data for 

each NN model are randomly picked from it, as randomizing the order of presentation of 

training samples tends to make the search in weight space stochastic over the NN 

training. Therefore, the different sequential training data makes it more likely different 

weight updating possible during the training (Haykin, 1999). Moreover, as the training 

data is designed to be randomly picked from the source input for each ensemble 

candidates, each such training data set can be counted as a subsample of the source input. 

The learning of classifiers on these subsamples that contain different features of source 

input can be different (Breiman, 1996a). As a result, diverse ensemble candidates can be 

created. The general procedure of preparing data is illustrated in Figure 3.6. 

45 



Getting training and test 
data set based on 
randomly selection 

Figure 3.6 Data preparation procedure 

As shown in figure 3.6, the sequences of each source data set were randomly distributed 

first in order to get the average distributive training and test data set. For each ensemble 

candidate, 4/5 of the source data were randomly taken for the purpose of training, and 1/5 

of the source data were taken randomly as the test data. To prevent over-fitting problems 

occurring, the training set was further partitioned into two disjoint subsets: training data 

set was used in training and validation data set was used to stop the training when the 

validation error rate started to increase instead of decreasing. The size of the validation 

data was about 1/3 of the data for training. The test data set was used to assess the 

performance of each of the ensemble candidates. All the ensemble candidates followed 

the above rule to get the data from the source data set. Therefore the size of training data, 

validation data and test data kept unchanged for each ensemble candidates. 

In my experiments, all the data have been partitioned into three subsets 

(training/validation/test) in the approximate ratio of 2: 1: 1 except the Iris data set, which 

46 

ZSource 
Data I 

k ciJumly distributed 



used the bagging method to generate the training, validation and test data due to the small 

size of source data. The size of each group for Iris data was the same. 

Data Number of 
Cases 

Number of 
training data 

Number of 
validation 

Data 

Number of 
test data 

Breast-cancer -w 682 400 150 132 
Bupa-Liver 345 150 95 100 
Ionosphere 351 200 75 76 

Iris* 150 150 150 75 
Pima-Diabetes 768 400 200 168 

Table 3.2 Summary of data partition of machine learning data sets 

All the above data in Table 3.2 did not contain duplicated values except the Iris data set, 

whose data sets were generated using the bagging (Breiman, 1996a), which is introduced 

in chapter one. For each ensemble candidate, the data procedures stated above were 
followed in generating the above number of group data for each data set. 

For the splice data set, as the size of data is larger than any of above data, an independent 

test data set was applied in the experiments. However, the rules selecting training and 

validation data set were still same as illustrated in figure 3.6 for ensemble members. 
Table 3.3 showed the detail of data partition for the splice data. 

Data Number of 
Cases 

Number of 
training data 

Number of 
validation data 

Number of 
test data 

Splice-Donor 2112 1010 500 602 
Splice-Acceptor 1555 805 300 450 

Table 3.3 Summary of data partition of splice data 

After completing the random selection of training, validation and test data (except splice 

sets, which has the independent test data already), all the training data was randomly 

47 



distributed again to distribute the data evenly. Then the data groups were ready for 

training. 

3.5.2 Training procedures 

3.5.2.1 Ensemble Candidates Training 

All the ensemble candidates were trained by the back-propagation algorithm using one 
hidden layer feedforward multilayer perceptrons (MLPs). As detailed in the data 

preparation section (3.5.1), training data, validation data and test data are taken randomly 
from the source, and prepared for training. Within each ensemble candidates training, the 
MLP was trained by the combination of changing the learning rate within a range along 

with changing the number of hidden neurons. Each such kind of NN model was trained 
20 times with random starting weight initialization. So the total number of training 

permutations of NN models for each ensemble candidate is: 

Total number of neural network model choices for each ensemble candidate = number of 

parameters changing * number of hidden neurons selection * number of random initial 

weight initializations 

The actual changing range of the learning rate is case dependent, and so is the number of 
hidden neurons. Very rough empirical training was done before these parameters could 
be set in a reasonable range for experimentation. The details of parameter settings are 
illustrated in table 3.4. 

48 



Data Learning Rate 
Range (X) 

Learning Rate 
Step Size (A, %) 

Range of 
Hidden 

Neurons 

Hidden 
Neurons Step 

Size 
Breast-cancer -w 0.1 -8 0.2 2 -10 1 
Bu pa-Liver 0.1 -1 0.1 2-10 1 
Ionosphere 0.2-3 0.3 3-8 1 
Iris* 0.1-1 0.1 2-10 1 
Pima-Diabetes 0.1 -3 0.1 2-10 1 
Splice-Acceptor 0.1 -1 0.1 2-10 1 
Splice-Donor 0.1 -1 0.1 2-10 1 

Table 3.4. Settings of parameters in the first stage training 

During the training the validation data set served as a monitor to check the progress of 

training after each 5 epochs. The training was stopped once the validation accuracy rate 
decreased and the best result achieved was saved. The test data set was then used to test 
its performance. The best result after iterations was saved. The NN model that produced 

such a result was treated as one of the ensemble candidates. Below, the experimental 

procedure is laid out as Algorithm 1, the Matlab code for which can be found in 

Appendix A. 

Algorithm 1: 

1. Distribute the sequences of source data and taking training data, validation data and 
test data in the ratio of 2: 1: 1 randomly into different subsets. 

2. Set up the basic structure of an ensemble neural network model (including the 

number of input and output neurons, number of training cycles, etc. ). 

3. Set up a loop for learning parameters: 

3.1 FOR (Ao : increment (AA): A) (%a ,% stand for the real value of learning 

rate, increment stands for the increasing units of each time. 

3.2 Setting up a loop for number of hidden neurons: FOR (number of hidden 

neurons = 1: increment: m). 
3.3 Setting up a loop: FOR (runtimes = 1: 1., q), running random 

initialization. 

49 



3.4 Training the ensemble candidate using the above initialization, 

learning parameter and number of hidden neurons from the above 
loops. 

After one cycle of training is finished: Apply the test data to the NN 

model, get the test results and save the NN model details, training 

results, validation results and test results into Ti, T2, T3, T4 files 

respectively; 

If runtimes == 1, save the current TI, 72, T3, T4 file as the best 

BI, B2, B3, and B4 file; otherwise Compare the validation results 

with the one from the best file B3. If error rate is still getting less, 

save the information from Ti, T2, T3, and T4 files into best files 

BI, B2, B3 and B4 separately; otherwise go to step 3.5. 

3.5 Back to step 3.3. If the number of random initializations reaches 1u, 
go to step 3.6. 

3.6 Back to step 3.2. If the number of hidden neurons is already 
increased to m, go to step 3.7. 

3.7 Back to step 3.1. If the value of learning parameters has been 4 then the whole 
loop's training is finished. 

4. Finish the first stage training of ensemble candidates. 

The training procedures of each of the NN ensemble candidates are illustrated above. 
Since the training data sets for each candidate are different, different generalization 

results are expected. Among these candidates, those models with high prediction rate and 

showing different error rate on the test data set will be selected as the ensemble members. 
The rule on selecting ensemble members are explained in next subsection. Based on well- 

trained NN ensemble members, another NN model (called the second stage NN) will be 

50 



applied as a combination mechanism to combine these ensemble members' result with 

the aim of producing final results. 

3.5.2.2 Selection of the Ensemble Members 

There are two main considerations while selecting ensemble members. One is how many 

ensemble members need to be created. Another one is how to select ensemble members 
from ensemble candidates. 

After the generation of ensemble members, experiments combining three, five, seven, 

nine, eleven, thirteen, fifteen, seventeen and nineteen ensemble members using MNNs 

and majority voting were explored. The reason that selecting odd numbers of ensemble 

members to be combined is related to using themajority voting method. As majority 

voting takes the majority of the most ensemble members with the same outputs as the 

final ensemble results, an odd numbers of ensemble members were used in experiments 

to avoid confusion when half of the ensemble members agree on one result while another 
half disagree (in a two classification problem). For instance, in figure 3.8, all the 

ensemble members outputs have to be either fall in the group marked as 1 whose value 

exceeds 0.5 or fall in group 0 whose value less or equal to 0.5. Here the threshold is set as 
0.5. As the number of ensemble members is odd, there is no chance that two groups have 

the same number of ensemble members. Therefore there must be a winner in this case. 
Several ensemble techniques were applied, like data pre-processing, randomly 
initialization combination weights and using different structures of NNs with different 

parameters to prevent the same ensemble candidates to be created. Thus the intention was 

to select the second ensemble members' selection strategy (section 1.2.2.2(b)), which is 

creating an exact number of ensemble members. The ensemble members in my 

experiments were actually created step by step according the ensemble performance. 

In my experiments, for each data set, though nineteen ensemble candidates were created, 

however these ensemble candidates were not created at the same time. Initially, only five 

ensemble members were generated. Three ensemble members were needed to be 

51 



selected from these five candidates. Those ensemble candidates whose generalization 

performances were good and diverse from others were chosen as the ensemble members. 
One should keep in mind that Accuracy and Diversity are two key factors to consider 

when choosing the best ones. Unfortunately there are no standard tools to be applied to 

select ensemble members, in the application two factors that affect the performance of 

ensembles can only be used as the general rule. The general rule stated above was applied 

while selecting the ensemble group containing three members. 

The other ensemble groups that include five, seven... nineteen members didn't go 

through the selection procedure as the size of ensemble groups was increased gradually 

according to the performance of MNNs. Thus two more ensemble candidates were 

created with the increment of the size of ensemble group each time. Under such 

circumstance, there was no choice to select. Moreover, the major reason for doing so is 

the diverse of ensemble candidates could be created during their training, which involved 

data pre-processing, different weight random initialization and different parameters' 

selection. Also it is more realistic to create the diverse ensemble candidates during their 

training instead of selecting them from a large number of candidates. The breast-cancer 

data set was used as an illustration to show how the ensemble members were selected in 

the experiments and how the diverse of ensemble candidates were created during their 

training. Table 3.5 lists the performance of each ensemble members and table 3.6 

presents the constitutuents of each ensemble group. 

52 



tf) 

411 

C' 
' N 

00 
M 00 \o 

~ ýG 
ö C 

V 0 N 00 00 
N ~ N 
O1 ý 

0 

C> C . 
~ n 

z C' 
N 

C 
N M M 

C' 

o V1 

N ' N M 

C\ Q\ 

- o 
cV - 'n 
o\ 

C' 

1-4 

Ü 

a1 0 0 

z z 

U 
U 
it 

I 
U 

yI 
Fr 

U 

E 
U 

. -r 

y 

U 
t. ' 
cd 
U 

w 
y 
cd 
U 

N 

V 

H 

o' 

.b r- 8 

M t 

. C: 

. -~ w r , 

aý 
.o I 

E 

I 
aý 

N 

Q 
en 
M 
fV 

M 

`ý 
A 

3 

U 

cý 
U 

£ 

116 
ri 
N 

H 

M 
N 



As the third ensemble candidate's performance is same as the first one, to avoid use of 

two identical members, it was discarded. The fifth ensemble candidate prediction rate is 

slightly better than the forth one, so the fifth one was selected as one of the members of 

group of three. The more details of these ensemble candidates that can further show that 

none of them are same can be found in table 4.4 in the next chapter. That's why all the 

ensemble members were adopted for the ensemble group whose size is bigger than five. 

Once the ensemble members are selected, the second stage MNNs training can be started 

based on the information provided by these ensemble members. 

3.5.2.3 Second Stage Training 

All the training data were injected into each of the ensemble members, and the 

corresponding results along with the target values were used as the input for the second 

stage training. The MLP in the second stage was trained by these inputs and the test data 

was applied to the MLP when training finished. The general procedures were similar as 

the first stage ensemble members training. However, there are some small differences 

because of the different functionality of the two stages. The purpose of generating the 

ensemble candidates was to create as much diversity amongst ensemble members as 

possible. So the emphasis was put on how to generate diversity among ensemble 

members in the first stage. In contrast, the second stage neural net performs the 

combination functions where more accurate results are expected. Hence, there are two 

noticeable differences between two stages training. First, to reflect the general 

performance of MNNs and due to the limitation of the small size of most data sets 

(except splice data set which had independent test data), a cross validation approach was 

used in the second stage training. In addition, the structures and parameters setting of 

MLPs in the two stages were different as well. In the first stage, structures and 

parameters of each ensemble candidate were selected automatically by Algorithm 1. 

Meanwhile in the second stage training, the structure and most of parameters of the NN 

model were fixed. The reason for using a fixed structure and MLP in the second stage 

was to make the combination procedure as simple as possible without affecting the 

54 



combination performance. More discussions about this point are stated later in this 

section. 

As 10-fold cross-validation were applied to most of the data set, the averaging of results 

based on 10-fold cross-validation were counted as the final ensemble results. The 

processing of second stage training using 10-fold cross-validation are illustrated in Figure 

3.7 and Figure 3.8. 

As illustrated in Figure 3.7, the whole source data set was divided equally into ten parts. 

The first part was used as the test data set and therefore was not involved into any second 

layer training at this stage. In the mean time, the other parts of the data (nine parts 

altogether) were injected into the selected ensemble members (e. g. three ensemble 

members were used in Fig. 3.7 (1)). Afterwards, the results that each ensemble member 

generated were concatenated together, combined with the corresponding target value as 

the input for the second layer neural network. Once the training of second stage MLP 

finished, the test data was applied and the result was saved. While completing the whole 

process as stated above, the next cycle would begin and this time the second part of data 

was used as the test data (see Fig. 3.7 (2)). The whole loop would finish till the test data 

set reached to the last part of source data. 

55 



O 
a 

E 
a) 

vý -c 
v 
N 

co wU 

ro 

ba 
o" V 

Lu 

CONý 

JJ 
ý 

Ca 

0 

b 

b 

I- Fý 

0 
ö 03 

aA 

C 

aý 04 

b 
0 
0 U 
N 

U 

r-+ 

C 
O 

cý 
b 

O 

U 
le 
w 

O 

bA 

r 
ri 
ý. 
on 

w 



Test Data 

77ý 
4 

Ensemble 
One 

Ensemble 
Two 

Ensemble 
Three 

Training and Validation Data 

Second Stage 
Ensemble Ensemhlc Input 10 Combiner 10 

Output 

Figure 3.7 Using 10-fold cross-validation in the second stage training (2) 

Figure 3.7 (2) shows that the second part of source data was used as the test data and the 

rest of the parts were used as a whole and injected into the ensemble members. 

For each cycle of cross-validation, the training procedure of the MLP in the second stage 

was the same as the training of ensemble candidates in the first stage. However, some 

settings of the MLP were fixed. For instance, just one MLP with one hidden layer was 

employed in the second stage. The number of neurons in the hidden layer was set to two 

and the learning rate was fix to 0.1. The reason of using these fixed setting was 

57 



demonstrated by extensive empirical experiments. In our initial experiments, the optimal 

numbers of hidden neurons and the learning rates were set to be picked up by the 

machine automatically within given ranges. After extensive simulations the optimal 

number of hidden neurons and learning rate were chosen as two and 0.1 respectively, and 

then used on all the data sets used in our experiments. Therefore, these setting were fixed 

and further training based on them was carried out. The training procedure of the second 

stage neural net is explained below as Algorithm 2, the Matlab code for which can be 

found in Appendix number B. 

Algorithm 2 

1) Distributing the whole source data randomly. 

2) Dividing the source data into ten parts equally. 

3) Setting up the basic structure of ensemble neural network model where learning rate 

was 0.1 and number of hidden neurons was 2 

4) Setting up loop For (datapart = 1: 1: 10), taking one part of data as test data and 

the rest of source data were split into training and validation data in the ratio of 
2: 1 randomly. 

5) Injecting the training data, validation data and test data into each ensemble 

member model respectively and the generated results by each ensemble members 

were combined together along with the corresponding target values as the input 

training, validation and test data for the second layer. 

6) Setting up a loop: FOR (runtimes = 1: 1: 1000) 
, running random 

initialization. Starting training by taking random initialization in above 
loops. 

7) After one cycle of training finish: Applying the test data into neural 

network model and getting the test results. If runtimes == 1, saving 

the net information, training results, validation results and test results 
into FN, FV, FU, FT files; Otherwise move to step 8. 

8) Saving the net information, training results, validation results and test 

results into N, V, U, T files separately and comparing the validation 

58 



results with the results in FUfiles. If better, updating FN, FV, FU, FT 

by N, V, U, T files; otherwise move to step 9. 

9) Taking the test results from file FT and adding it to file SUMTEST. While 

number of random initialization <1000, Back to step 6; Otherwise go to step 
10. 

10) Back to step 4 until datapart reaches 10; 

11) Finishing the second layer training and averaging the results saved in file SUMTEST. 

The above training procedures were applied to the second stage NN training, no matter 
how many ensemble members were going to be combined. The results generated by the 

MNNs were compared with the results generated by the simple majority voting 

combination method. 

3.6 Comparison 

In order to test the performance of MNNs, the most frequently used classification 

combination method, majority voting, was applied to combine the same ensemble 

members used by MNNs. The detail of using majority voting is described in Figure 3.9. 

In addition, the comparison of the MNNs performances by using different number of 

ensembles was conducted as well. The optimal number of ensemble members being 

combined for any particular case through these further experiments was expected to be 

found. Furthermore, for testing the effect of selecting different ensemble members, the 

comparison of MNNs performance was done by using different groups of ensemble 

members where the number of ensemble members was fixed to three. 

  Comparison with Majority Voting 

In my experiments, each part of the source data (equally divided into ten parts) was tested 

by using majority voting and MNNs. Thus, ten test results of these two ensemble 

methods were obtained for the whole data set. There might be substantially different 

performance over different parts of the data space, therefor averaging the sum of ten test 

59 



results was the desirable way in comparing the general performance of MNNs and 

majority voting. Equation number 3.1 below displayed shows how to calculate the means. 

n 
(3.1) 

n, 

In my experiments n equals to ten, the x, represents the result of each cross-validation 

and x stands for the value of means for each ensemble group. 

> Introduction to the experiments using Majority Voting 

The majority voting's working procedures in my experiments are illustrated in Figure 

3.8. As shown in Figure 3.8, the source data set was divided equally to 10 parts as 

previously done in second stage training. Each part was used as the test data, which 

was injected into well-trained ensemble members. The data in other parts was used as 

the training data. The results generated by each ensemble member would go to either 

of groups Suml or SumO, according to their real values. The loop continued until all 

the ensemble members' results were classified. Next, the sum of the number of 

ensemble members in the Sum 1 group was compared with the sum of the number of 

ensemble members in the SumO group. The one with the greater number was the 

winner, and its corresponding label was the final ensemble result of majority voting 

for this part of test data. 

60 



4- Source Data 

0 
4- Ensemble Members 

Next Ensemble 
Member Result 

Figure 3.8 Combination of ensemble members by using Majority Voting 

61 



  Comparison Using Statistical Tools 

To measure the significance of differences between the ensemble combination schema, 

which in MNNs and majority voting are not due simply to random variation in the 

experiments, two statistical methods were employed to interpret the results of two 

ensemble techniques. In order to investigate the average ensemble performance of MNNs 

and majority voting to find which is better, instead of testing the generalization of two 

ensemble methods separately, a one-tailed t test was used to compare the mean 

differences of ensemble results. To make sure the t test results are valid, the variances of 

ensemble results of MNNs and majority voting must be equal statistically. Thus one- 

tailed F test was used to compare two samples' variances. 

> Differences in Means 

All the results reported in chapter four were the means of the results based on 10-fold 

cross-validation. Also we know that the distribution of means for a small sample (sample 

size less than 30) is at distribution (Mendenhall and Ott, 1980), which means one can use 

the t test to compare the achievement of MNNs with the performance of majority voting. 
There are two types of t test. One is called two tailed t test, which is used to assess that 

two populations are different. Another is called one tailed t test, which is used to examine 

whose strength of means between two populations is strong or weak statistically. As all 

my results of MNNs are equal to or better than majority voting, therefore one tailed t test 

was used to prove that the performance of MNNs is significantly better than that of 

majority voting. The hypothesis of a one tailed t test and the formula used for the test is 

illustrated in table 3.8, where samples from two populations were taken: MNNs and 

majority voting. Table 3.7 lists the parameters used in t test. 

62 



Population 

MNN Majority Voting 
Population Mean A "z 

Samples from two y1 yz 
population 
Sample Size nin z 

Sample Mean 
Yi Yz 

Sample Variance s2 sz 12 

Table 3.7 T testing samples parameters from MNN and Majority Voting 

Null hypothesis (Ho ): A-p, =0 

Alternative hypothesis: A, - p2 >0 

Test statistic: t= y' y' 
where 

11 
- + S 
n, n2 

S= 
(n, -1)s, 

2 +(n, -1)s; where 
n, +n, -2 

2 
JYJ2-(IYI)2In, 

s, _ 
n, -1 

Rejection region: For a specified value of confidence value a, for freedom degree 
df = n, + nz -2 and a one tailed test: 

Reject Ho if t>t,, or t<- tQ 

Table 3.8 Summary of two-sample t test for comparing two populations means 

63 



Setting up a null hypothesis assuming MNNs make no difference to the performance 

compared with majority voting. However, if t falls in the region of rejection which was 

given in the table 3.8 as t> to or t<- to , rejecting the null hypothesis and accepting the 

alternative hypothesis that MNNs do make a significant improvement. 

¢ Difference in variances 

The investigation on the variances of the ensemble results was shown in table 4.10. Each 

result in the table was computed on averaging 10-fold cross validation results. Therefore, 

the variances of these ten 10-fold cross validation results were calculated to check 

whether the ensemble results for each group generated by MNNs produce more 

variability than majority voting, or vice versa. The reason using this test was to prove that 

the improved performance made by MNNs was not at the cost of increase of variability 

of the ensemble results. Here, a one tailed F statistical test with confidence value was set 

to 0.05. The corresponding parameters and testing procedures are presented in tables 3.9 

and 3.10. 

Population 
Population with large variance Population with small variance 

Population Variation 6] 6Z 

Sample Size n, n2 

Degrees of freedom v, = n, -1 v2 = n2 -1 

Sample Variance Sý s 

Table 3.9 Parameters for variance testing between MNNs and Majority Voting 

64 



Null hypothesis (Ho ): 72, = U22 

Alternative hypothesis: 621 > a22 

z 
Test statistic: F= s2 

S2 

Rejection region: For a given value of a, 

Reject Ho ifF> Fa 

Table 3.10 Summary of two-sample test for comparing two population variances 

2 

Note that in the formula F= Sz 
, s; is the larger of the two sample variances. After 

2 

checking the F table when usinga equals to 0.05, the rejection region was located, the 

area where value of F should greater than value 3.18. 

  Comparison of Performance Using Different Number of Ensemble Members 

As the performance MNNs was affected by the number of ensemble members being 

combined, the results of different groups of ensembles with 3,5,7,9,11,13,15,17,19 

ensemble members respectively were studied. The ensemble results of the above nine 

groups could reflect the trend on how number of ensemble members affecting the 

performance of MNNs in some degree. 

  Comparison of Performance When Selecting Different Ensemble Members 

The attempt in this experiment was to explore how much influence ensemble diversity 

would have on the ensemble results. Obviously the diversity among ensemble members 

of each group was not the same (providing that each of the ensemble members were not 

the same). Thus, the ensemble combination using MNNs would lead to different results. 
The experiment would show how much difference could be caused by employing 

different groups of ensemble members. There was an expectation that the results would 

65 



give a guide on selecting ensemble members when using MNNs, or other ensemble 

combination schemas in the future. As the ensemble diversity is directly tied to the 

amount of correlation among the classifiers (Turner and Ghosh, 1996; Breinman, 1996a), 

different diverse ensemble groups were used to discuss the influence of the diversity on 

the MNNs performance. The illustration of the process is shown below in Figure 3.9. 

semble Members Numbered as: One, Two, three, Four, Five 

Highly CoRelated Ruefagely Coffelaied (1) Avefagely Cofielated ý2ý More Diverse 

Figure 3.9 Combining groups with different ensemble members 

The comparison was conducted using five ensemble candidates. The diversity of each 

ensemble group was measured by averaging the correlation coefficients of each two 

members within the group. To save the time on computing, the smallest size of MNNs 

was used in the experiments, which only constituting three ensemble members. 

According to the average degree of diversity for each group, the selected four groups of 

ensembles each having three members were catalogued into highly correlated, average 

correlated (1), average correlated (2) and more diverse groups. Further experiments 

66 



based on the combinations of these ensemble candidates, which have different diversity 

features, were explored. 

3.7 Conclusion 

For the assessment of MNN models, the methodology of creating, training and testing 

ensembles was introduced in this chapter. The structures and settings of NN models, the 

data sets used in the experiments, the experimental procedures, were all described in 

detail. In order to compare the performance of MNNs with the most frequently used 

combination approach: majority voting, some statistic tools were borrowed to test the 

significant improvement made by MNNs. By applying these procedures, two types of 

data from different sources were compared, by using MNNs and majority voting. 

Meanwhile, to explore the strength of MNNs, comparisons on the ensemble results 

generated by combining different number of ensemble candidates and comparisons on the 

performance of MNNs by using different ensemble members within certain group were 

conducted as well. In summary, MNNs is an ensemble combination method, which is 

technically easy to be applied. Due to the features of the design of MNN models, the 

improved ensemble performance compared with majority voting is expected. 

67 



Chapter Four 

Results and Comparisons 

4.1 Introduction 

Chapter three described the experimental materials and procedures based on MNNs. In 

this chapter, the corresponding experimental ensemble results using MNNs technique are 

presented, and comparisons with the frequently used ensemble combination method of 

majority voting are provided. The significant improvements shown by using MNNs are 

proved using several statistical tools. 

Within this chapter, section 4.2 demonstrates the experimental results from combining 
three, five, seven, nine, eleven, thirteen, fifteen, seventeen and nineteen ensemble 

members in MNNs and the corresponding combining results from majority voting, on 
the machine learning data sets and human gene splice data set. Section 4.3 presents the 

other experimental results that were generated by the MNN models introduced in part III 

of section 3.2. Some comparisons are conducted in section 4.4, including getting the 

optimum number of combining ensemble members by applying MNNs (on some of the 
data sets) and obtaining different results by combining different group of ensemble 

members as stated in section 3.6 in chapter three. Later, some conclusions are drawn in 

section 4.5. Thus, this chapter is concerned with presenting the experimental results 

achieved by using MNNs. Analysis of the reasons behind these improvements is explored 
in chapter five. 

68 



4.2 Experimental Results from Combining Different Numbers of 
Ensemble Members 

Two types of data set were applied to MNNs and majority voting, including machine 
learning benchmarks and human gene splice data sets (detailed in section 3.4). Nineteen 

ensemble candidates were created independently, following the procedures described in 

section 3.5.2.1. As the test data set was randomly picked up for each ensemble member, 

to reflect the general performance of these single nets, all the source data was applied on 

testing these single NNs' performances instead of using its own test data (except the 

splice data set where independent data test data sets were available). Thus, the results 

shown in table 4.1 were those of these ensemble members on the whole source data. In 

contrast, the results shown in table 4.2 were based on independent test data. The 

structures and parameters of these NNs are reported in table 4.3. 

The results generated by MNNs and majority voting are shown in tables 4.6 and 4.7. In 

order to get the general view of performance of both ensemble combination approaches, 
ten-fold cross-validation was applied on ensembles; so all the results shown in these 

tables are the average of ten results rather than the result based on a single test data set. In 

fact, all the final ensemble results shown in this thesis were all based on the ten-fold 

cross-validation approach unless it is stated specifically to the contrary. 

4.2.1 Ensemble Members' Results 

In tables 4.1 and 4.2, all the results are presented as percentage of accurate prediction 

rates for each ensemble member. As stated in section 3.5.2.1, all the individual nets were 

created by various ensemble techniques to generate a selection of nets as diverse as 

possible. Though some of the percentage rates shown in the above tables were the same 

within one data set (for instance in Breast-cancer-w the first and the third ensemble 

members' results were same), their nets' initialization and structures were different, so 
both ensemble members were not actually the same NNs. 

69 



O 

MOO --ý 

O [- M- 00 
-r O, r- Oý C\ l- 

O kn t- O qlt 

vý ýn N- OO 
MM '/1 NO 
tý NO Oý O 

00 Oll r- O, \ O" 1- 

110 110 O 00 
O [- 00 

Cry [- - 00 00 
N- 01 l- O\ Oý 

p�4 O Gý [- O 00 
[NM o0 Oý 

O 

ýp ýO Oý ON 
z tý ONOM 

ýO N ýt ýO ^'n Q\ t- Qý Oý N 

ZNNO- 
ýo 00 -- ON 

ýO MM ýD 

M O, r- C>O 

N Oý Iý C1 G\. N 

--ýO MOM 
NO -e �O O 
rN ý/1 NM 

o 

Y' 
Zu 

cl 
cl 
an 

cl 

CCl 

O 

Cl 

440 

in 

ß 

cl 
cý 

.D 

H 

(D0 

Nt OO M 
-- I- Q\ [- 

N fV [- OM 
ýp '-" Vý 00 Vý 

00 ýO tN o0 Vý 
-- Oý N- cý Oý t- 

00 NOM 
00 00 N `O 

t- W) MN 00 N 
- Cý (- O*s C N- 

cC 

w 

U 

0 3 
aý 
z 

0) z 

OMOOM 
vý vý ON 
(ý MÖ clý Ö 
Oý 1ý CO N- 

r- r "o O t-- 
výNT oo00 

tf) ýD --Ö 00 

l- MOM 

M OO O 

cn kr) NMO [- 
lp 00 ý ýO M 
[- Cl) U') 1- N 

- O, ý 1- C1 ON C- 

N [ý OO M 
C\ 

OýMO ct 
't 00 

-- [ý N V') 00 -- 
"-- Qý 1- O*s Cý r 

Q maÄ °ý ä 

a) 



_N vý 
4 

00 Cý 

NN 
NO 
00 

01 00 DW'l \ 

kn 
In o0 
r- It 

00 00 

N 

U0 
r- [- 00 ca 

M 00 OM 
ýO 

ýO 00 O' 

O 

aý zM 01 

Cý 0 
I-w 00 01 
U 

z 
a) o 

0', 0' 

00 M 00 C' 

o ýn 
o 

00 
N 00 Oll 

N 

qt 00 

O 
,r 

ÜO 
QQ 
N 

UU 
7EL 
cn CA 

.J 

c3 
U_ 

ä 
w 0 
U 

w 

N 

"CJ 

cý 
U 
G) 
0 

0 
G) 

N 

MN 
MO 

c" 
0 

r- 00 
"C - 

00 00 ' 
-- 00 O*1 

Olý v') 
00 00 

[- 00 Iýt 
ý. -- 00 C\ 

0 

U 

110 

a) 

E 'O 00 
0 

CO 00 O\ 

06 4 
z r. 00 01 

zN 

ý00 C 

CN 
00 O 

M 00 V) 
00 01 

1- N 
IIR 

N 00 - 
-- 00 Q1 

Gý N 
OO 

00 (i 
00 01 

O 

O 
UO 

QQ 

UU co 

Q rf 

(V 

h 
r.. 

co 
b 

U_ 

C'L 

w 
0 

U 

I 

Cl 

"ý. y 
V 

Cl 

U 

W 

N 

Cl 
cý 



N 

ol\ 

C- C- -- -- 

I 00 --- I'D "t cl) 
0000000 

c-4 

OOÖOOO 

00 NC 00 K1 N- M 00 

., [- \O M C1 00 - 
-> MOO O- OO 

o> 

CD CD CD - 
ý, 0 

zcc-N b 

ID 
0 

z 
b 
C 

z 

0 
z 

a) z 

MNN 00 M 
NÖÖÖOÖ 

kn ,Z oo c, 4 r- N4 00 N 

MN Cl, O> Cý 
OO 

Zoo ý7 MM c'h M kr) 

NMNN 
ONO O\ OO 

N -- NNrM 'le ýO ý Oý ÖNOO 

(4 Zr KA MN 
M" 00 

NMNN r- z-t 
ýý NOOBOO 

_zýMMNKe) or 
3 N C o 
Ü 

cOy 
ý 
ý ý 

N 
ý 

ý 

ü 
O 
Ö 

Q 

a ^ 
CA 

u 
cn 

m = 2 0. 
., 
A 

cn 

r-+ 

ti 
L. 
U 

rU 

_U 

U 

w 

M 

. -r 

00 00 
-t MMO-OO 
OOOÖÖ 

00 OO O- OO 

c5 
cý O --ö 

OOö ö° 
00 

ctt 

-zv 'o ýr -M- o0 

b 
ýD N 

O V) 
z-- Ap 

o-- 
Öý 

N 

z 
00 

O-OO-0O 

-zNý-V l- '--O 

N 

01 NNM -: 

zýz- - 

-°°-°- 

OMMNN I- N C' 

N ý\ 000000 Z -Z 
Zr 0\O 

-e NIM 

N 

z aM 

C- ,OÖÖO-ÖO 
V] 

"-" 
z l- 

MNe- 

3 ö z 
U aý y O 
r j y 

Q 
U 

Q 
O 

Y ¢ 

Cd Ö N Cd U U 

as r- ° iz rý 
m ° r- ä v i rk 

G". 

M 

7) 
i 

H 



M 

O> OM cV NO Qý OOM (n 
vA O kn --OvýOO to "O 

O Vl -- 00 --- Uj . -- - 00 l- 
Oý, O> O> cý Olý cý Cl\ 

kn MMN Ol\ O 110 MOO 
kn OO (n OO ýn 

N 00 00 t- (ý 00 "-- "--ý lý 

cý NM "O O ýO MOM ýn 
OOOO ýn OM 

00 r- N r- - r- 00 ý--ý 00 r 
.+ a1 Oý ON OI ON ON O" C\ 

U (n O M Olý N "D lD \O M O ýO 
H '. D O v1 v --ý O O O ýn O O ý 

r- N -- 00 tf) I- [- I- 00 . - r 
0 l, C C' C (: C C C 

O 

cu V) M Q N Qý O \D M O M e 
ýO v) kn - v') O O V-ý O V-ý O 

U C' Oý Oý a1 OC 41 O\ C\ O\ 
ct2 

O 
u -t M M N N r1 �O M O O N 
U N vý Ire vý O Il ý O O N 

00 oÖ oÖ d' 00 N 00 --ý ^" \O 
00 Oý O' C Oý C C Oý 

U coo Oý O' Qý \C O M \O cý O (1q 
--- v) kn kn O O v») (D V) O ýG 

Z 
00 M 'O N C\ O rM \O O O --ý 

U If O -- v) O LA C C O N 
00 N Vfi _--. 00 N "-" -- N 

r cý Q, \ clý C1 cý 

N 

w 01 M 'D N ýD M M M O C 
C O C 'r 

r9 kr' 00 N N 00 N 00 00 . -- N 
O\ C\ C Q C> C cý 

00 M M N N O "O O O (n 
v' v' . - - O O O N 
00 00 ýt -- N - N 

cN O> Q> O> O*I cl 

03 
b 

H d 
U F 

ý 
C 

ß 
r- cv rn w) o r o0 0ý 

- Q 

v 

Fý 



trý 00 00 t 00 - -- 00 ct 
01 Qý 01 O\ Olý Olý 01 O, 

-MM %n Oý rM �O `O MO 
l- v1 v'i 110 kf) V_O OO 

pp cý 00 00 N Vi 00 r- r 00 --ý 

00 -O O', INN �O MMO 
CD kr) CD 

-1 Vý Nd Iý 00 00 --ý 

m °i ö 
Kr) 

- °i 
V') V) Kf) 'I--ß 

ö 
b vi lý oö kri oö 0ö 0ö 0ö 
'tee -- O', cý O, \ C' C O' O' O' O' 

U 
F, 

O 

w 
O 

00 00 00 't t/') . -. 1- 00 00 "--ý 
00 O\ (01) Ol, 01 01 

U 
cCS 
U 
C 
0 

N 
In 

Ö 
-C14 

kr) C> cn C) r) 
-- IR OnO -ý 

00 00 1- It (14 ý--ý [- 00 - 00 
00 Olý C1 Ol, Cý O*) Oll O*l 

NOM O\ NMMMMO 

M . --ý 00 'I 00 00 00 00 --ý 
- Oý Ol\ Ol\ Olý O> 01 

U c1 MrNNMMMMM 

bN 00 Op 00 00 00 OO 00 
Oý O, c Olý Qll 

U 

- 01 Qý 01 Qý Q1 Oý 01 Oý 

O cý o 

tr 
r Q 

Q 

v 

C 
I, 

Q 

r 

C. 

r 

kr 
r 
c 

C 

C 

d 

G) 

cý 
cl 
at 

'C 

V 

cl 

cl 
as 
O 

cl b 
cl U 

E 

kr 
O 

U 
cl 

ý° ý. aý a 

H 



Even when the structures and parameters were the same, the two ensemble members were 

not exactly same due to the different initialization conditions and different training data 

set. For example, also in Breast-cancer-w, the second and third ensemble member's 

number of hidden neurons and learning rate were all the same. However these two NNs 

were not the same as their prediction rates are different. Table 4.4, which gives the 

precise view of all NNs performance on the same input of breast-cancer-w data, would 

help us to understand the error diversity between them. The source breast-cancer-w data 

was equally divided into ten parts and each part of data was applied on all the ensemble 

candidates. The data in each cell of table 4.4 is the performance of each ensemble 

candidates on the corresponding part of source data as indicated in the first column. If the 

two ensemble members are identical, the performance of them should be same on each 

part of data set, in other word, each cell of the two ensemble members results should be 

same. Comparing the performance of these NNs on each part of data, one could find that 

none of these ensemble candidates are exactly same. Only based on the diversity offered 

by these ensemble candidates, better ensemble results can be generated. 

4.2.2 MNNs Combination Results Compared with Majority Voting Performance 

4.2.2.1 Selecting of Ensemble Members 

The ensemble members being combined for each group (there were nine ensemble groups 

including using three, five, seven, nine, eleven, thirteen, fifteen, seventeen and nineteen 

ensemble members) were selected from the nineteen single NNs whose performances are 

shown in table 4.1, according to the general rule of diversity and accuracy. Two factors 

needed to be considered while selecting the ensemble members. Not only those with 

highest accuracy were selected, but also those whose prediction rates and structures were 

different with others. However, there are no standard tools or arithmetic calculations that 

can help us to select the optimum ensemble members combination. Further explorations 

(section 4.4.2) were done to reveal the effect of different combinations of ensemble 

members on ensemble results. Those results indicated that just selecting the ensemble 

75 



members according to the general rule of accuracy and diversity as long as the ensemble 

members were created using different methods for pursuing maximum diversity among 

ensemble members was good enough to generate reasonable ensemble results. In the 

same way as the process of selecting ensemble members on breast-cancer-w data was 

illustrated in section 3.5.2.2, the ensemble groups for the rest of data sets were selected. 

The details of these selected ensemble members in each ensemble group on the rest of 

data sets are shown in table 4.5. 

Data The actual ensemble members for each groups of ensemble models 

3579 11 13 15 17 19 

Breast-cancer-w 1,2,5 1,2,3,4,5 1-7 1-9 1- 11 1- 13 1- 15 1- 17 1- 19 
Bupa-Liver 1,2,3 1,2,3,4,5 1-7 1-9 1- 11 1- 13 1- 15 1- 17 1- 19 
Ionosphere 2,3,4 1,2,3,4,5 1-7 1-9 1- 11 1- 13 1- 15 1- 17 1- 19 
Iris* 1,2,3 1,2,3,4,5 1-7 1-9 1-11 1-13 1-15 1-17 1-19 
Pima- Diabetes 2,3,4 1,2,3,4,5 1 -7 1 -9 1- 11 1- 13 1- 15 1- 17 1- 19 
Splice-Acceptor 1,4,5 1,2,3,4,5 1 -7 1 -9 1- 11 1- 13 1- 15 1- 17 1- 19 
Splice-Donor 1,2,3 1,2,3,4,5 1 -7 1 -9 1- 11 1- 13 1- 15 1- 17 1- 19 

Table 4.5 The selection of ensemble members 

4.2.2.2 Ensemble Results 

The ensemble results generated by using different ensemble members referred to in table 

4.5 are shown in tables 4.6 and 4.7. The data shown in each cell were calculated 

according to equation 3.1, which is addressed in section 3.6. 

76 



h C. 

t N r 
o oý ý 

h 
- N N v 

o oý N 

Oý Oý r 

M [ý ýC N 
~ r N vý 

C Oý N- 

N N r. r 

w 

N 

N 
V') ýlD M 

rS 
c" O*I t- 

(f) rq 
M 110 N 

Cr 

tu U 

Q ý 3 

i 

O 00 00 00 
00 °0 ri °` ON r [l- 

o0 00 cl-I 00 
00 00 r- ä rn CN N 

00 00 Ö 

Clý 00 C71, 00 Cl) r- N 

M 

T 00 C 00 C\ r N 

00 00 
N 

ON 
00 00 

clý r 
N 

n N 00 0 

00 

v c NV 

00 

all 
00 
aý N- n 

O oo ýc r 

O 00 00 
DT ý C 00 N- N 

7 A Z Z ' E 7 
2 

r> 

aý 

* 0 CID o o 

a) 

b 
4° 

00 
(ID 

c 

U 

-o 
b4 

cC 

U 

r- 

=Ö 
r 

Ö 
.ý 

tu 
C 

cd Z 
rA O 

Cl 
b 

30 

Gn 

O 

Q.. 

O 

H 



00 
r- 

n ö 
o o 00 

ö 
00 
0 0 00 C 

- Oý N N 
- oc O O 

0 kr) 
00 0 0 cl, 

--ý N N 

h 0 
o o 0 0 

M Cl) ON N N 
ý-- M O0 O O 

0l\ 00 kri N 
00 00 Oll ON 

r- 00 

4-ý 
00 00 G1 Cý 

00 C14 C14 

06 kn E 00 00 as 

IG O o0 
0 kr) 

00 00 clý 

ý rn 
M 

ON 
oo O O 
0 

00 0 0 

M M N 

00 00 ON 

V) to to 

C 

V U 
ý Q Q 

Q U U 

_U 
U 

cn CA 

b 
0 
iz 

a) 

a) 
10 

a) 

C/] 

0 
a) U 

112 a) 
a 
an 

0 

w 
0 
0 

a. 

0 U 

H 



Table 4.6 shows that the prediction rates of MNNs were better or equal to the 

corresponding performances of majority voting, on a wide variety of data sets. 

Therefore, it strongly indicated that MNN is a better combination schema than the most 

frequently used combination method of majority voting. 

In addition, table 4.7 shows the prediction rates of MNNs and majority voting on the 

same splice test data sets. The values also favor the same results: prediction rates of 

MNNs were better or equal to the corresponding performances of majority voting. Apart 

from comparing majority voting and MNNs, MNNs performances on splice test data 

were compared with the other machine learning methods. The data shown in table 4.8 is 

taken from Hudson, Whitley, Ford and Browne (2003) where exactly same splice test 

data sets were applied. From table 4.8, it can be observed that a dramatic improvement 

has been made using MNNs. 

Method Splice-Donor (%) Splice-Acceptor(%) 

C5 ruleset 93.7 86.9 

MLP 

MNNs 

92.3 83.9 

95.02 89.78 

Table 4.8 Comparison between MNNs, single NN and C5 machine learning methods 
on splice junction data sets 

In conclusion, the MNNs generalization compared with majority voting or other data 

mining techniques on a wide variety of data sets using different numbers of ensemble 

members was presented. The results have demonstrated that MNN ensemble methods 

have the potential to offer improved performance when compared with majority voting as 

an ensemble combination method. 

79 



4.2.3 Statistical Comparisons of MNNs versus Majority Voting 

It can be seen that most of the MNNs generalizations were better than the results obtained 

by majority voting (in the form of percentage accuracy). However, statistical tests were 

needed to investigate the differences between MNNs and majority voting's average 

results. Firstly, the T-test (or student's test) was used to test how significant the 

improvements were made using MNNs compared with majority voting. In addition, the 

standard deviation was calculated to monitor the variances of these means. 

4.2.3.1 Differences in Means 

The results shown in table 4.6 are actually the means of 10-fold cross-validation results 

using different ensemble members generated by the two ensemble methods. Hence the 

statistical test of a hypothesis was about the difference between MNNs and majority 

voting means. The sizes of two samples were all nine (results offered by ensemble groups 

with ensemble members three, five, seven, nine, eleven, thirteen, fifteen, seventeen and 

nineteen). The value of the test statistic t (a equals to 0.05 and 0.1 respectively) and 

corresponding test results for each data set are given in table 4.9. 

Values oft Testing results Testing results 
(a =0.05, t,, = 1.746) (a =0.1, tu = 1.337) 

Breast-cancer -w 2.3463 Reject Reject 
Bupa-liver 1.3701 Accept Reject 
Ionosphere 1.5461 Accept Reject 
Iris * 1.3484 Accept Reject 
Pima- diabetes 7.8351 Reject Reject 

Table 4.9 T test results showing acceptance or rejection of the null-hypothesis for 

different data sets 

An estimation for the generalization difference between MNNs and majority voting is 

shown in table 4.9. The first column lists the data sets involved in t testing. The second 

80 



column gives the computed value oft. The corresponding testing results indicate whether 

to accept or reject the null hypothesis corresponding to a value of a equals to 0.05 and a 

equals to 0.1 (which represent confidence values are 95% and 90% respectively) are 

shown in columns three and four respectively. It was clearly noticed that when a was 

0.05, two of the five data sets rejected the null hypothesis. There was sufficient evidence 

to support the result that MNNs made significant level of improvement compared with 

majority voting on these two data sets. Furthermore, all of the five data sets rejected the 

null hypothesis when a was 0.1. So there was strong evidence to suggest a dramatic 

improvement made by MNNs when the confidence value is 0.1, which means the chance 

of null hypothesis is rejected when it should be true is 10%. Based on the above t test 

results, it is claimed that MNNs can make some significant improvement on MNNs 

results when compared with majority voting with a reasonable error probability. 

4.2.3.2 Difference in Variances 

As stated that all the data shown in table 4.6 of machine learning data sets are computed 

on averaging ten-fold cross validation results. Thus, the test results obtained reflect a 

general and average performances of MNNs and majority voting. Based on these test 

results for each ensemble groups, the variances of each ensemble groups were the values 

in each cells shown in table 4.10 multiplied by unit 10-4. 

Furthermore, F is computed by using the larger variance divided by the small variance 

taken from the variances of MNNs and the corresponding majority voting provided in 

table 4.10, that applied the same number of ensemble members for each data set. 

The values of F for each such ensemble group are the figures in each cells presented in 

table 4.11 multiplied by unit 10-4. It is noticed that almost all the values of F except one 
in table 4.11 are less than 3.18, which means most of the values didn't fall in the rejection 

region. Therefore, there is enough evidence to accept the null hypothesis that the two 

populations were not different, i. e. MNNs and majority voting showed no difference in 

their performances variances. In addition, one exception (in the pima-diabetes data set 

81 



where the number of ensemble members was seven) that rejected the null hypothesis was 

checked. This was the one where MNNs obtained small variance when compared with 

majority voting. So, there is the reason to believe that in this case MNNs performance 

was more stable (showed less variance) than majority voting. 

82 



M 
00 

c i r1) M M 

Oý Z 
00 
- O r- 

(, q (M") 
M 00 "--" 

l- V'ý O r- IIM O "--ý r N M 
N Qý M M 

V1 M M M 
re) 

CD CD CD 
N N Oý M M 

N M M M 

(1q "0 O r- 
^-' vn v') `n O N N M 

ON --ý Oý M M 

kr) pý 110 M N M 

0M \O V ' 00 
N 

"O M O" O' 
ýp ^O vl 't 00 O N N ý' 

U 
cl 

Vn -- \p r N 00 M 
M 

M vi 
O (f) '. p 00 "' N l- 
N 

"-- Oý M M 

00 M 00 
- it 

O' 
p 

M 
M 

M 
1,0 le 

M p 

vý -- 

vi 

. -. 

N 
00 

00 
N 

N 
M 

M 00 N N 

Nv \D N M 00 "--ý 
'. O l N 

O 

U 

cC 

vý 00 - M 
>N N 00 N 

M M 
--ý M 

O M N vl N - M 
N N Oý c''ý 

M M 

MM 
e 

O llt N S 
M M 

00 lit 
O N ' N - N N N M 

o 0 > o > 
o . . o > 

> 
ý. a 

c 
a ä 

E 
Q Cý vI W ° is. b 

0 
v 
aý 

cl H 



IT 00 

M 00 O O N 
C14 Cl) Cý) ON Olý Cý N O N 
N O O 

01 M f- O O 
p 

"" O M N O kr) 

O 

N tr) O v7 O 

22 

O O O 
' 

p p 
O ýn ýO viý O 

O ^" M N O O O 

M lý Oý O M 
't rA 

O ^' N N M O O 

M N O N O 
N N M N N 

ON CA M 
Ü 

, _.., Cam! "-- "-r N 

cl 

c`'' 't W) It 110 
N 

00 
M N O 

-- 
tý 

r14 110 r14 ýc r- 
LZ. yý M M et 'n 

I-G M Oý M 

. --ý N N N N 

- 
M O O 

ýp [ý N O N 

N N - - - 

N N 

Cd 

m N p 23 C 

UD 

b 
on 

0) 

U 
c3 

O 

N 

0) 

w 

aý 

H 



4.3 Results of the Other Experiments using MNNs 

Apart from the experiments combining different number of ensemble members using a 

one hidden layer MLP, some other experiments using different inputs for the second 

stage combiner or using a different combiner (as mentioned in section 3.2) were carried 

out. 

4.3.1 Experimental Results Using a Single Layer Neural Network to Combine 

As described in part III in section 3.2, a single layer neural network without any hidden 

neurons was used in the second layer of ensembles as a combiner. The experiments were 

first tried on the splice data sets only, for the purpose of easy implementation on the data 

sets whose test data are independent. However the combination results were totally 

beyond the degree of acceptance, there was no point to apply such model on more data 

sets further. 

The learning rate was changed from 0.1 to 5 in the increment of 0.1 each training cycle. 

The experiments were repeated by combining three, five, seven, nine ensemble members 

each time initially where details of ensemble members for each group were listed in table 

4.4 respectively. The results on the test data sets are illustrated in table 4.12. As the initial 

trial already showed single layer neural networks were not capable of being a combiner in 

such occasion, therefore no more ensemble members were applied in such experiments. 

Data set Number of Ensemble Members being Combined 
3579 

Splice-Acceptor 52.67 52.67 52.67 52.67 

Splice-Donor 61.96 61.96 61.96 61.96 

Table 4.12 Ensemble results by using neural networks with a single layer in 

combination 

85 



It is interesting to see all the ensemble results for the same data set were the same, no 

matter how many ensemble members were being combined (as table 4.12 shows). These 

results suggested that the single layer neural network didn't perform well in the 

combination stage. Further analysis on the generated test data outputs showed that all the 

outputs generated by the single layer neural networks combiner were all classified as 1, 

and that explained why all the test prediction percentages were the same, even though the 

number of ensemble members being combined was different. In short, this kind of neural 

network was not powerful enough to perform the combination function. This is due to the 

single layer neural network's weak computation capability. 

4.3.2 Experimental Results on Combining Ensemble Members Results along with 

Original Inputs 

In part b of section 3.2, there was a discussion on the experiments on combining 

ensemble members along with the original inputs. These experiments were done on the 

splice data again for the purpose of easy application because of its independent test data 

sets. Unlike the other experiments described before, here the inputs for the second stage 
NNs were the ensemble members' results along with the original inputs that generated 
these ensemble results. With the complexity of inputs increased, the cost of training 
increased as well. Therefore only three ensemble members were combined initially and 

the number of ensemble members being combined was increased gradually. However, 

once found that the performances could not achieve the generalization of MNNs using 
just the outputs of ensemble members, such experiments were not carried out further. 

In the second stage, there was a fully connected MLP with two hidden neurons (more 

hidden neurons were tried, e. g., 10,20,30 and 50, but all failed to deliver better results), 

trained using the backpropagation algorithm. The learning rate was set to 0.1 and the 

training cycle was repeated 1000 times (with different initialization). The ensemble 

members selected for each group are shown in table 4.4. and the results on the test data 

sets are presented in table 4.13. 

86 



Data Number of Ensemble Members being Combined 
3579 

Original Just Original Just Original Just Original Just 
Input Output Input Output Input Output Input Output 

Splice-Acceptor 87.33 89.33 88.67 89.33 88.67 89.33 88.67 89.78 
Splice-Donor 93.69 94.52 94.52 95.02 95.02 95.02 94.68 95.02 

Table 4.13 Comparison between combining ensemble members' results along with 

original source inputs and just combining ensemble members outputs 

From the results shown in table 4.13, no improvements were made by adding more 

information in the inputs to the second stage NNs' training. Therefore, just the ensemble 

members results was used as the second stage inputs in the experiments. 

4.4 Comparison Results Regarding the Performance of MNNs 

In section 4.2 and section 4.3, the results generated by MNNs method were reported. 

Improvements have been observed compared to majority voting. In this section, further 

investigation on the potential of MNNs are conducted, and more comparisons are 

presented in order to explore the optimum MNN structures. 

4.4.1 Comparison of Performance Using Different Numbers of Ensemble Members 

The intention of using different number of ensemble members being combined was to 

find whether the number of ensemble numbers will effect the performance MNNs. 

Especially it would be ideally if one can find the optimal ensemble members. To give a 

clearer picture of MNNs performances, several figures were drawn according to the 

information supplied in tables 4.6 and 4.7. 

87 



Breast-Cancer-W 

97 82 

97.8 

97 78 

97 76 

Z 
Z 
2 

9774 
0 

u 
97.72 

0 
97.7 

a 

97.68 

97 66 

97.64 
02468 10 12 14 16 18 20 

Number of ensemble members 

Figure 4.1 Performance of MNNs with increasing numbers of members (1) 

Bupa-Liver 

- -- - -- - -- -------- ---- - 75.4 

75.2 

75 

74.8 

zr-. 
z 
2 74.6 

74.4 

ö 
74.2 

a 

74 

73.8 

73.6 

02468 10 12 14 16 18 20 

Number of ensemble members 

Figure 4.1 Performance of MNNs with increasing numbers of members (2) 

88 



Ionosphere 

97.6 

97.4 

97.2 

97 
z 
z 
2 96.8 
ö 

u u 96.6 

96.4 
IL 

96.2 

96 

95.8 

0 

Figure 4.1 Performance of MNNs with increasing numbers of members (3) 

Iris 

99.3 

99.2 

99.1 

99 

98.9 
z 

98.8 

98.7 

98.6 

98.5 

98.4 

98.3 

89 

2468 10 12 14 16 18 20 

Number of ensemble members 

02468 10 12 14 16 18 20 

Number of ensemble members 

Figure 4.1 Performance of MNNs with increasing numbers of members (4) 



Pima-Diabetes 

77 

76.5 

= 76 
Z 
f 
Ö 

" 
U 
C 

75.5 

75 

74.5 -ý 
0 2468 10 12 14 16 18 

Number of ensemble members 

Figure 4.1 Performance of MNNs with increasing numbers of members (5) 

Splice-Acceptor 

89.9 

89.8 

89.7 

89.6 

89.5 

89.4 
ö 

89.3 

0 m 89.2 
CL 

89.1 

89 

88.9 

88.8 
0 

90 

20 

2468 10 12 14 16 18 20 

Number of ensemble members 

Figure 4.1 Performance of MNNs with increasing numbers of members (6) 



Splice-Donor 

95.1 

95 

94.9 

z 

94.8 
ö 

u 

94.7 

m 

94.6 

94.5 

94.4 

Figure 4.1 Performance of MNNs with increasing numbers of members (7) 

Figures 4.1 (1)-(7) were drawn to reflect the trend of MNNs performance. The above 

diagrams have something in common, in that the performance lines start from low points 

and climbed gradually to one high point, then slip down afterwards. Therefore, there is a 

general trend that can be drawn, i. e. that for any particular case there is a peak 

performance that can be obtained by combining a certain number of ensemble members 

using the MNNs method. Though the number of ensemble members were not the same 

where the performance of the MNNs reached their peak, from the fig. 4.1(1)-(7) it is 

shown that there must be an optimum number of ensemble members existing which can 

give the best MNNs performance. Also notice that after the peak point, not all MNNs 

performance went down or remained unchanged. In figure 4.1 (5), the line picked up 

again, it indicated that MNNs performance reached another higher point. Therefore the 

91 

02468 10 12 14 16 18 20 

Number of ensemble members 



first peak point does not necessarily mean where the best MNNs performance is, instead 

there may be more peak point afterwards. So how to interpret this phenomenon? 

As the performances of ensembles lie in their ensemble members' diversity and accuracy 

as addressed in section 3.5.2.2, the optimum ensemble number of a MNNs may be 

related to the diversity among the ensemble members and their individual prediction 

rates. There are two sides on this issue. First, selecting different ensemble members will 

result in different ensemble generalizations when keeping the number of ensemble 

members constant. So the optimum number of ensemble members depends on the quality 

of the ensemble members and can be found within the certain number of ensemble 

candidates. The diagrams in Figure 4.1 all show the peak points, which gave us the full 

evidence. On the other hand, as the size of ensembles can be infinite, there may be 

always possible that optimum number of ensembles can never be found as long as keep 

increasing the number of ensemble candidates. Considering the interaction of diversity 

and accuracy, it is understood that these two factors result in the performance of MNNs 

going up and down. There is further discussion regarding this issue in chapter five. 

4.4.2 Comparison of Performance When Selecting Different Ensemble Members 

Diversity is the one factor that affects the performances of ensembles. Therefore, several 

methods were used for generating ensemble members in the experiments. It was found 

that after using these, the ensemble members were all different in the experiments. 

However, there must still be different diversity existing among the different ensemble 

groups created by combining different ensemble members whilst keeping the number of 

ensemble members unchanged. The purpose of this experiment was to find out how much 
diversity among ensemble members affects the ensemble results (even after all the 

ensemble members were generated in the way of pursuing as much diversity as possible 

among them). 

92 



Five ensemble members (the first five ensemble members and their prediction 

performances of ten -fold cross validation are presented in table 4.14 and table 4.15) were 

selected from those trained on the breast-cancer-w and pima-diabetes data. The 

correlation coefficients (denoted by p) of each pair of ensemble members were 

calculated. The quantity p can be computed by using formula below. 

S`' 
(4.1) 

s. rr S 

(11 of Y) 2 
(1 X)2 

Where s,,,. xy - and s,, = Ix `- 
nn 

Where n is the number of samples and x, y represents the each ten-fold cross validation 

results of the corresponding pair's ensemble group. 

Input data part Ensemble candidates performance on each part of 
input data (%) 

1 2 3 4 5 
1 91.18 95.59 91.18 91.18 88.24 
2 98.53 98.53 98.53 95.59 98.53 
3 98.53 97.06 97.06 95.59 98.53 

4 94.12 94.12 94.12 95.59 94.12 
5 94.12 97.06 95.59 97.06 94.12 

6 1.00 98.53 1.00 1.00 98.53 

7 97.06 97.06 98.53 98.53 97.06 

8 1.00 98.53 97.06 97.06 98.53 

9 1.00 98.53 1.00 95.59 1.00 

10 98.5 1.00 1.00 1.00 1.00 

Average 97.21 97.51 97.21 96.62 96.766 

Table 4.14 Performance of each of the five ensemble members on the breast-cancer-w 
data set used in the diversity experiments 

93 



Input data part Ensemble candidates performance on each part of 
input_data 

1 2 3 4 5 

64.47 67.11 68.42 65.79 60.53 
2 80.26 80.26 77.63 81.58 77.63 
3 67.11 68.42 72.37 69.74 67.11 
4 67.11 72.37 63.16 72.37 68.42 
5 71.05 72.37 69.74 69.74 69.74 
6 72.37 72.37 76.32 72.37 72.37 
7 78.95 82.89 81.58 84.21 80.26 
8 77.63 80.26 73.68 82.89 78.95 
9 75.00 75.00 73.68 72.37 71.05 
10 76.32 69.74 68.42 71.05 67.11 

Average 73.03 74.08 72.50 74.21 71.32 

Table 4.15 Performance of each of the five ensemble members on the pima-diabetes 
data set used in the diversity experiments. 

Ensemble 
members no. 

1 2 3 4 5 

1 1 0.9554 0.9614 0.9230 0.9839 
2 1 0.9490 0.9426 0.9523 
3 1 0.9487 0.9487 
4 1 0.9262 
5 1 

Table 4.16 Ensemble members Correlation coefficients for breast-cancer-w data set 

94 



Ensemble 

members 
no. 

1 2 3 4 5 

1 1 0.8744 0.7007 0.7986 0.8092 
2 1 0.6622 0.8550 0.7982 
3 1 0.7207 0.7207 
4 l 0.8098 
5 1 

Table 4.17 Ensemble members Correlation coefficients for pima-diabetes data set 

Tables 4.16 and 4.17 show the correlation coefficient between each pair of ensemble 

members for two data sets (half of each table is shaded because of duplicated values). 

The strength of the linear relationship between each two members can be determined by 

the value of the correlation. It was noticed that the values of the correlation coefficient in 

table 4.16 were quite high, due to the high accuracy of the prediction rates for the breast- 

cancer-w data set. In contrast, lower values of correlation coefficient were observed 

alongside the relatively lower prediction rates for the pima-diabetes data set. 

According to the values above, several groups of ensembles were organized. These were 

labeled as highly correlated, averagely correlated and more diverse (which reflected the 

different features of diversity existing within each group). Details are shown in tables 

4.18 and 4.19, where the means of correlation coefficients were computed by averaging 

the sum of correlation coefficients between any two members within each group. 

95 



Highly Averagely Averagely More Diverse 

Correlated Correlated Correlated 

Group Members 1,3,5 1,2,5 1,4,5 3,4,5 

Mean of correlation 0.9647 0.9639 0.9444 0.9412 

Majority Voting (%) 96.91 97.21 97.06 97.35 

MNN (%) 97.06 97.35 97.35 97.50 

Table 4.18 The performances of different diverse groups of ensemble members for 

the breast-cancer-w data set 

Highly Averagely Averagely More Diverse 

Correlated Correlated Correlated 

Group Members 1,2,4 3,4,5 2,3,4 2,3,5 

Mean of correlation 0.8427 0.7504 0.7460 0.7270 

Majority Voting (%) 74.34 72.89 74.47 73.55 

MNN (%) 74.34 75.39 75.13 75.53 

Table 4.19 The performances of different diverse groups of ensemble members for 

the pima-diabetes data set 

The results shown in the above two tables are all the average performances (based on the 

ten-fold cross validation method). From the performances shown in tables 4.18 and 4.19, 

it can be seen that diversity did affect the ensemble results. If comparing the results 
between highly correlated groups with those from more diverse groups, a larger 

difference can be observed. However, it is also interesting to see that not much gain can 
be observed when comparing averagely correlated groups with more diverse groups. As 

all the individual ensemble members were created by various ensemble methods as 

mentioned in section 3.5.2 in order to get the maximum diversity among them as 

possible. Therefore, there was not much space left (in terms of diversity) after combining 

these ensemble members. Also, it was noticed that the means of correlation coefficients 
between the averagely correlated groups and more diverse groups were not significant, so 

96 



it is easy to understand why little improvement can be made by using more diverse 

ensemble groups. 

4.5 Conclusion 

In this chapter, the ensemble results generated by MNNs were presented, along with the 

corresponding results generated by majority voting using ensemble groups consisting of 

the same ensemble members (on a wide variety of applications). Statistical analyses of 

these results were conducted to investigate the effectiveness of MNNs. Based on the 

above results, it can be concluded that the significant improvement can be made by 

MNNs in terms of ensemble generalization compared with the most frequently used 

combination method, majority voting. In addition, the explorative results with other 

experiments using different structures of MNNs presented in section 4.3 suggested that a 

single layer NN is not power enough to perform the combination function in MNNs. Also 

the use of original inputs along with the outputs of ensemble members as the inputs of 

second stage MNNs did not show any improvement compared with just using the MNNs' 

first stage outputs. Furthermore, some comparisons for the purpose of exploring the 

optimum MNNs structures showed that the diversity and accuracy of ensemble members 

play the key role in affecting the ensemble performance. 

From information provided in the above results presented in this chapter, further analysis 

are performed in chapter five. 

97 



Chapter Five 

Analysis and Discussions 

5.1 Chapter Introduction 

The model of MNNs was presented in chapter two and the experimental details of using 
MNNs were described in chapter three. Chapter four demonstrated the experimental 

results on a wide variety of applications, including machine learning benchmarks and 
human gene data sets. Using MNNs on some of the data sets showed that a significant 
improvement in ensemble generalization could be obtained using MNNs compared with 

majority voting. Thus, the explanation of some of the MNNs results in chapter four was 
delivered. However, it is necessary to look further into MNNs to gain a better 

understanding. In section 5.2, a detailed analysis of using MNNs using the pima-diabetes 
data set is conducted, on which the most significant improvement has been made. Next, a 

theoretical explanation of the observed trend of MNNs performances with increasing 

ensemble size is given in section 5.3. Furthermore, some analysis is performed on the 

other experimental results of chapter four in section 5.4. 

98 



5.2 Analysis of MNNs Performance 

When comparing the second stage of MNNs (combiner) with a single MLP, it was found 

that the most influential factor in the performance of the MNNs second stage with a 

single MLP is the origin of the source data for training. For a conventional MLP, the 

training data are usually from the real world or are created using mathematical tools. The 

training data for the second stage of MNNs are the output prediction data after being 

approximated by the first stage MLPs making up the ensemble. Consequently, the second 

stage of MNNs acts as a classifier, separating all input patterns (i. e. ensemble outputs) 
into two categories (for a two-classification problem). 

Figure 5.1 shows the m-2-1 signal flow graph of a single MLP, which was employed in 

the second stage combiner of MNNs in the experiments. The m outputs on the left 

represent the outputs from the corresponding ensemble members. Therefore, for the 

second stage of this model all the inputs are in m-dimensional form, regardless of what 

kinds of original input features are presented to the first stage of MNNs. The standard 

MLP used in the second stage of MNNs in the experiments has two hidden neurons 

(denoted by neuron 1 and 2 respectively) and one output neuron as shown in the figure. 

The synaptic weights of a neuron are denoted by w with the corresponding index. The 

activation function is represented by gyp(. ) and the hyperbolic tangent function is used by 

the hidden neurons. The output neuron uses the linear combination function. The 

corresponding bias for each neuron is labeled as b with the associated index. For 

convenience of analysis, the simplest MNN model using three ensemble members is used 

in the analysis (MNNs using five or more ensemble members all operate in the same 

way). Thus, the three dimensional inputs will be transformed into two dimensional 

patterns on the hidden units, and then transformed into a single dimensional output 

pattern through the output unit. 

99 



0 0 

-6 
0 

ýc 0 

ä i 

o aý o aý o aý 

ÖwÖ ÖwH ÖwZ 

O 

E C 
O 

a) 

O 

cd 

(Ij C 
O 

aý 
C 
C 
aý 

b 
b 
. r. 
x 

(ID 
aý 

b 
O 
C 

C 

b aý on 

0 U 

CC 
w 
O 

3 
0 

ýo 
.ý 
aý 

f I. -- 
I- 
vi 
aý 

on 
w 



5.2.1 Introduction to Data Used in the Analysis 

1.1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

CL 0.3 

0 
0.2 

0.1 

0 

-0.1 

-0. z 

-0.3 

-0.4 

As ten-fold cross-validation on the ensemble models of the pima-diabetes dataset was 

applied, there are ten models of MNNs. Due to the limitation of the size of this thesis, 

only the MNN model trained on the first part of the cross-validation data was used in the 

analysis. The outputs of three ensemble members (the second, third and fourth) used in 

the experiments, whose ensemble performance is shown in table 4.5, were used as the 

illustrative inputs for the second stage of MNNs. Their outputs, together with their 

associated target values are shown in Figure 5.2. 

R-R#-R-R-R R-R R JI-R A-R-A- A-, ( R !1- s. - 

1 

--7 

" 
" 

  

  F 

-il# +:: r-R- R-M##-M--R#####-A --p-.: ý7-M- A-R--R-R--#iH1- -RTR---A-: rT.: -. -I[-rt11#-R#-ATR,  -, F1R - 

10   20   30 40 160 60 70 8 

" 

Number of Cases 

" Ensemblel_   Ensemble2 Ensemble3 w target 

Figure 5.2 Actual outputs of test data by three ensemble members in the first ten-fold 

cross validation experiments, together with their targets 

101 



As shown in Figure 5.2, the outputs of ensemble members were mainly spread in the 

range between -0.3 and 0.8. Since three ensemble members were employed in the 

experiments, this is a three dimensional space problem if let each input represent a 

coordinate system for that space and the set of coordinates gives the position of the 

feature in that space (Picton, 2000). Therefore, there exists an approximation function 

within three-dimensional space to separate the ensemble members' input features (Callan, 

1999). Figure 5.3 shows these three ensembles outputs in the three dimensions on the 

whole input data. 

N 

0.6 
0 
a) 
a) 

0.4 
a) 

0.2 
E 

E0 
0) 
a) 

1 -0.5 
ensemble member two outputs ensemble member one outputs 

Figure 5.3 The 3-D graph of three ensemble members outputs on the whole input 

data of Pima-Diabetes 

102 



By using a MLP in the second stage of MNNs, the network transforms the three- 

dimensional input data or multiple dimensional inputs (when more ensemble members 

are used) into a two-dimensional space on its two hidden neurons. Then it is possible to 

draw a line to separate the input patterns. 

All four cases among the 76 test data on which MNNs made the correct prediction whilst 

on the contrary majority voting method made the wrong predictions were selected to 

demonstrate how the two ensemble methods (majority voting and MNNs) work on them. 

Figure 5.4 gives the three ensemble members' outputs with the data shown in the table 

5.1. 

Three Ensemble Members Outputs MNNs Final Majority Targets 
Results Voting Results 

0.4957 0.4888 0.4851 101 
0.4931 0.4450 0.4835 101 
0.5372 0.1004 0.5565 010 
0.4903 0.4620 0.5031 101 

Table 5.1 Ensemble inputs and combiner outputs for MNNs and Majority Voting 

103 



,., 

0.9 

0.8 

0.7 

0.6 N 

i 
0.5 

O 

0.4 

0.3 

0.2 

0.1 

Number of Cases 

f Ensemblel_" Ensemble2 Ensemble3 " Target 

Figure 5.4 Ensemble members outputs for the four cases on which MNNs made the 

correct predictions whilst majority voting made the wrong predictions 

5.2.2 Error Analysis on Majority Voting's Performance 

Table 5.2 shows how majority voting made the decision on the three ensemble members' 

outputs, which led to the wrong results whilst MNNs made the right predictions. 

104 

0" 
012345 



Three Ensemble Members Outputs Numbers of Final Majority Targets 
Agreed on Voting Results 

(1) (0) 

0.4957 0.4888 0.4851 0301 
0.4931 0.4450 0.4835 0301 
0.5372 0.1004 0.5565 2110 
0.4903 0.4620 0.5031 1201 

Table 5.2 Ensemble inputs and combiner outputs for majority voting 

All the inputs less than 0.5 were classified as 0 and all the inputs above or equal to 0.5 

were classified as 1. 

Table 5.3 lists those ensemble members' outputs where majority voting failed to make the 

right decision on the first part of cross validation test data, where the last four rows were 

the examples used in this section and in section 5.2.3. Figure 5.4 draw the range of 

ensemble members' output based on the table 5.3. 

The majority voting combination method has two flaws. One, obviously when most or all 

of the ensemble members make the wrong predictions, majority voting's results must be 

wrong as well. The cases shown in shading in table 5.3 are such examples. In addition, 

most wrong predictions were made by majority voting when the outputs of ensemble 

members fall in the region around the decision boundary (0.5). For instance, it appears 

that most of the ensemble members' outputs fell in the range between 0.3 and 0.7 in 

figure 5.5. In contrast, MNNs has the ability to classify some of these data by adjusting 

second stage MLP's weights. 

105 



Case Number Ensemble Members Out uts Majority Voting Targets 
One Two Three Results 

1 0.177666 0.058015 0.305598 0 1 
2 0.334568 0.294824 0.37087 0 1 
3 0.311472 0.38842 0.526464 0 
4 0.403095 0.380284 0.402525 0 1 
5 0.511222 0.554198 0.600046 1 0 
6 0.37995 0.445687 0.447429 0 1 
7 0.559735 0.498712 0.567454 I 0 
8 0.624964 0.467565 0.664626 1 0 
9 0.468205 0.514794 0.519233 1 0 
10 0.426681 0.431814 0.437934 0 1 
11 0.479817 0.435977 0.465674 0 1 
12 0.301383 0.253323 0.321276 0 1 
13 0.341823 0.373011 0.33353 0 1 
14 0.215304 0.16669 0.16581 0 1 
15 0.617164 0.526273 0.649589 1 0 
16 0.420793 0.376663 0.40254 0 1 
17 0.432602 0.475534 0.528901 0 1 
18 0.447123 0.454176 0.445611 0 1 
19 0.659796 0.597025 0.70814 1 0 
20 0.424679 0.38451 0.405593 0 1 
21 0.495685 0.488836 0.485098 0 1 
22 0.493125 0.445048 0.483544 0 1 

0.537216 0.10042 0.556505 1 0 

24 0.490276 0.461954 0.503087 0 1 

Table 5.3 Ensemble members outputs and the corresponding wrong 

predictions made by majority voting, where shaded examples are 

all three ensemble members made the wrong predictions and 

majority voting's results were wrong as well 

106 



1.1 ---- 

1 

0.9 

e 0.8 
d 

E 0.7 

0.6 " 
W r\ 
W 0.5 

0.4 

p 0.3 -ý i 

0.2 
º`1 

0.1 

0 
123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Number of Cases 

f Ensemble One Outputs   Ensemble Two Outputs Ensemble Three Outputs " Target Values 

Figure 5.5 Ensemble members outputs with the corresponding target values 

5.2.3 Analysis of the Performance of MNNs 

Firstly, the parameters of the MLP used as the second-stage combiner were checked. The 

weights and biases for the hidden neurons and the output neurons are shown in table 5.4. 

107 



Hidden layer wets and bias 
BW 

[1.8319,0.4704] -1.0521 0.4963 

-1.2147 - 0.7780 

- 0.5404 - 0.3172 

Output layer weis and bias 
BW 

[0.8952] 1.3444 [1.1345 

Table 5.4 The parameters of the MLP combiner 

In the experiments, the results for the neuron inputs neuron; and neuron of the hidden 

units i and j used the TANN activation function, and the final ensemble results were 

summed in the neuron input neuronk of output unit k used and put through a linear 

activation function: 

For the calculation of the activations of these two hidden neurons i and j 

[HiddenNeuronOutput, HiddenNeuronOutput, ]= tanh(z) where 

z =[HiddenNeuronInput][FirstLayerWeight] +[FirstLayerBias] 

0.49568483 0.48883647 0.48509806 
- 1.0521 0.4963 

0.49312517 0.44504833 0.48354448 
- 1.2147 - 0.7780 +[1.8319 0.4704] 

0.53721561 0.10042012 0.55650527 
- 0.5404 - 0.3172 

0.49027603 0.46195383 0.50308656 

(5.1) 

For the calculation of Neuronk: 

[NeuronOutPutk ]=[HiddenNeuronOutput; HiddenNeuronOutput, ][SecondLayerWeight] 

+[SecondLayerBias] 

108 



-1.3444 _ [HiddenNeuronOutput; HiddenNeuronOutput, ] 
[1.1345 

+ [0.8952] 

(5.2) 

Table 5.5 gave the data values for the four examples where MNNs made the correct 

prediction whilst majority voting made the wrong decision. 

Input HiddenNeuronOutput; HiddenNeuronOutput NeuronOutPutk 

0.4957 0.4888 0.4851 0.4256 0.1802 0.5275 
0.4931 0.4450 0.4835 0.4709 0.2122 0.5029 
0.5372 0.1004 0.5565 0.6879 0.4481 0.4788 
0.4903 0.4620 0.5031 0.4487 0.1923 0.5101 

Table 5.5 Ensemble outputs, hidden layer activation values and output activation for 

the four examples where MNN made the correct prediction whilst the 

majority voting combiner made the wrong decision 

The output of the MLP actually modeled a line since it has only two inputs (Callan, 

1999). 

As the weights and bias for the output neuron k was already known in table 5.4, the 

following equations were given to calculate the weighted sum for the input of Neuron k: 

OutPutNeuron 
F =HiddenNeuronOutput; (1.3444)+ 

HiddenNeuronOutput ,*1.1345+0.8952 (5.3) 

Further the value of output neuron k was classified at the point 0.5, therefore the 

separating line could be obtained by setting OutPutNeuron k equals to 0.5: 

HiddenNeuronOutput, *(-1.3444)+HiddenNeuronOutput / *1.1345+0.8952 = 0.5 

(5.4) 

Where the separating line has the equation: 

109 



HiddenNeuronOutput /= (1.3444/1.1345) HiddenNeuronOutput; +(0.5-0.8952)/1.1345 

(5.5) 

Which equals: 

HiddenNeuronOutput ,=1.185015HiddenNeuronOutput, - 0.34835 (5.6) 

Based on equation 5.6, one could clearly see that the relationship between 

HiddenNeuronOutput; and HiddenNeuronOutput, is linear. Therefore the feature 

positions dominated by these two coordinates were linearly separable. The weights and 

biases that are shown in equations 5.3,5.4 and 5.5 for the MLP of MNNs actually 

determine the separating line. Figure 5.6 shows how a line can separate the feature space 

with HiddenNeuronOutput, and HiddenNeuronOutput I being the two axes. 

1.2 

1 

0.8 

0.6 

3 CL 
0.4 

0 
; 
Z 

0.2 

I 
0 

-0.2 

-0.4 

-0.6 
HiddenNeuronOutput, 

Figure 5.6 Decision boundary of the feature space dividing the four example inputs 

into two classes 

110 



Figure 5.6 showed the separating line divided the input space of the output neuron into 

two parts. The line was drawn based on equation 5.6 where the X axis represents 

HiddenNeuronOutput, and the Y axis represents HiddenNeuronOutput 
,. 

The space 

above the line is taken as 1, and the part below the line is taken as 0. Any inputs from 

Neuron, and Neuron would fall into the area either above the line or underneath. It can be 

seen that the activation function of Neuronk (the output unit) classified the two feature 

spaces into two parts according to the information provided by two inputs (i. e. the hidden 

neurons' outputs). 

According to equation 5.6, Figure 5.7 shows how the decision boundary divided the 76 

test data for this problem into two classes. For comparison, the corresponding target 

values are also shown. 

:T 3 a 
0 
c 0 
00 a z 
c w 
v 
x 

HiddenNeuronOutput' 

" distributions of the data samples 
the corresponding target value of the data samples 

division line of the second layer net 

Figure 5.7 The decision boundary of the feature space for MLP combiner 

111 



Similar to Figure 5.6, all the 76 test data feature positions calculated by the activation 
function of hidden units are shown in figure 5.7. For comparison, the corresponding 
target values were drawn on this figure as well. One part that plays an important role 
during networks training is the quality of the training data (Callan, 1999). The 

representation of the training data must reflect the whole features of the problem. 
Therefore, though some data in this case were not correctly classified, it wasn't clear that 

this failure was due to a limitation of MNNs or was because of the quality of the source 
data. As each ensemble method is related to the quality of ensemble members' 

performances to a certain degree, so it is not difficult to understand that MNNs method 

can only work well on some part of data sets. 

In this section, the MNNs with three ensemble members was used as an illustration to 

demonstrate how MNNs classified data. As the structures of MLP for different ensemble 

groups used in the experiments were the same. Therefore, all these MLPs worked in the 

same way though the number of input patterns was different. Regardless of how many 
dimensions the inputs have, they were all transformed into two-dimensional patterns by 

the two hidden neurons. 

5.3 Relationship between Performance of MNN and its Ensemble 
Members' Diversity 

It has been noticed that there is a trend regarding the performance of MNNs in chapter 
four. The generalization of MNNs moved up and down on all the data sets whilst 
increasing the numbers of ensemble members steadily. It was interested to know reasons 

that could result in this trend. To discuss this question, figures 5.8,5.9 and 5.10 were 

created based on the test results of pima-diabetes' 10-fold cross validation and provided 

the corresponding data in Appendix C. Each of these figures displays the ensemble 

outputs for data where the MNN combiner produced the correct outputs, but majority 

voting was wrong. 

112 



0.6 

0.5 

0.4 

d 

0.3 
a 

0 

0.2 

0.1 

0 
12345678910111213 14 1516 

Number of Cases 

Ensemble member one --Ensemble member two Ensemble member three 

Figure 5.8 The ranges of three ensemble member's outputs, for data where the MNN 

combiner gave the correct outputs, whereas majority voting gave the 

incorrect outputs 

113 



0.8 

0.7 

0.6 

0.5 

. 

I:: 

0.2 

0.1 

0 

Ensemble member one -; Ensemble member two Ensemble member three 
Ensemble member four -*- Ensemble member five 

Figure 5.9 The ranges of five ensemble member's outputs, for data where the MNN 

combiner gave the correct output, whereas majority voting gave the 

incorrect output 

114 

123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233343536 

Number of cases 



4 

0.9 

0.8 

0.7 
di 

0.6 

0.5 

0.4, ii 

O 0.3 

0.2 

0.1 

0 
CD M co 0) 04 ~ C) M cc 0) 04 0NNNMM rl- 

LO 
LO 

U) 
00 

Number of Cases 

Member1 -; Member2 Member3 - Member4 - Member5 -"- Member6 --- Member? 
Member8 - Member9 

Figure 5.10 The ranges of nine ensemble member's outputs, for data where the MNN 

combiner gave the correct output, whereas majority voting gave the 

incorrect output 

From figures 5.8,5.9 and 5.10, increased ranges of ensemble members outputs can be 

observed as the number of MLPs in the ensemble increases. In figure 5.8, the ranges were 
between 0.4 - 0.6 (with just one exception). In figure 5.9, the ranges increased to between 

0.3 and 0.7. In figure 5.10, most of ranges fell between 0.2 and 0.8 (with very few 

exceptions). The number of cases continued to increase (from 36 to 59), but the steps of 

increasing could be seen slow down. The ranges of eleven and thirteen ensemble 

members are illustrated in figures 5.11 and 5.12. 

115 



0.9 

06 

07 

0.6 

n 
0.5 

0.4 

0.3 

0.2 

0.1 

-M ember one --i Member two Member three - Member four 

-rr--Member five -41--M ember six -M ember seven -M ember eight 

-Member Nine Member ten Member eleven 

Figure 5.11 The ranges of eleven ensemble members' outputs for data where 

the MNN combiner gave the correct output, whereas majority 

voting gave the incorrect output 

116 

tý Nr Oý Mr Oý ýN 
C14 N 

ON' 
N t")N) 

It") M1mNr0 
ýýýýNN týl ýdddddh 

Number of Cases 



1 .2 

1 

0.8 

0.6 

> 

0.4 

0.2 

0 

-0.2 
Number of Cases 

Member one -Member two Member three ----Member four -+-Member five 

-+-Member six -Member seven -Member eight -Member nine Member ten 
Member eleven Member twelve Member thirteen 

Figure 5.12 The ranges of thirteen ensemble members' outputs for data where 

the MNN combiner gave the correct output, whereas majority 

voting gave the incorrect output 

An interesting thing to see is that there is not so large a jump observed when moving 

from figure 5.10 to figure 5.11. Noticing that in figure 5.11 and figure 5.12, the ranges of 

data where the MNN made the correct prediction whilst majority voting was wrong were 

still spread mainly in the range between 0.2 and 0.8. However, the number of cases 

dropped compared with the MNNs using nine ensemble members. 

From figures 5.8 to 5.12, it is observed that in the ranges of the ensemble members' 

outputs from 0.2 to 0.8, MNNs worked better than majority voting. Still it has to be 

admitted that MNNs' abilities were not powerful enough to solve some of the extremely 

difficult data. So that resulted in the further question: why MNNs performances stopped 

at some point? 

117 



The importance of the diversity among the ensemble members and ensemble members' 

accuracy has been stressed throughout the thesis. For an ensemble model diversity is a 
big issue directly related to the ensemble performance (as stated in chapter one). 
Therefore for the second staged ensemble model, one of the extents of MNNs 

performance depends on the amounts of correlation among the errors of these ensemble 

members' outputs and their accuracy to some degree. Another factor that needs to be 

considered which effects the MNNs' performance is the number of ensemble members 

that are combined in the second stage of MNNs as proved in section 4.4.1. To illustrate 

the relationships among the size of ensembles, ensemble diversity and ensemble 

members' accuracy, the pima-diabetes data was used once more to demonstrate these 

interactions. 

Firstly, in table 5.6, results on each part of the ten-fold cross validation test data are 

presented for all the nineteen ensemble members used in the experiments. Then, the 

correlation coefficients, which represent the diversity of each pair of ensemble members, 

are calculated according to equation 4.1. The results of diversity between each pair of 

ensemble members are listed in table 5.7. Next, the average diversity and average 

accuracy of each ensemble groups and results were computed, which are reported in table 

5.8. Finally, the relationships between ensemble diversity, accuracy with the size of 

ensembles were drawn in figures 5.13 and 5.14 based on the data from table 5.8. 

118 



ýIJ 00 OO ýO N O, 
S 

V1 N V1 -M7 00 vl 00 
Io 00 1-o rn oo r .c ööö0ö0öö0ö 

N 
fV '0 MMON ul ý0 M 

c oo rnrr 00 00 rn 
OOOOOOOOOO 

N 'D IN- V1 00 -0r C' 7-O 10 NNM- 
M 00 00 nVONn 

'o N 'o 'o rr o0 0o n 'o ö0öö0ööööö 

-Mnf vl 8N 
""'ý NPr 00 - V1 00 

ýn r ýö n ýo ýo rrr ýo 
CD öö00ööö0ö 

r .ov oo ra vl N fv 
00 0, 

'ý O Q` Oý MNN 00 
00 0orr oo rrn 

oo0ööö0ööö 

NrK '0 0Mr -MOMn C' 00 nMfV C' 

,o o0 00 Io Ilo rrr lIo öö00ö0öö0ö 

M ý-° ä ö'0 ö 
vO0 

Mön 
^ý M 00 nM ýD O` 

10 r 10 
rrr oö n r- �e öööööööööö 

NM ýf -r 'O NMpMýe, 
4 

r ^' 00 
0 

O' O' NO '0 
NON 

'. o ronn oo rNnr 
ööööööMOöö 

e 00 vý r14 C, 
ý ~00Oe r- OO '0 0' 

MM 

)ono 'o rrr 
00 nN 

aOOOOOOOOOO 

UQ 'D MrPn 00 V1 O Vl - 
rD MnM 1D O, CO 

.z2NN 
rli '0 

e- 
rq 1) 

h 
°r° r ;ZG 

G C> ÖÖÖoÖoÖÖo 

F+ ho 
öNrve 00 ö '0 N 

h Yl O1 00 00 M . --" n Vl 

'o r 1.9 'o 'o Itý rrn .o 
10 

ödö00Oöööö 

oo r, 4 C. 0 00 NM-O '0 
S- 

'O r 

ý, ý 
Oý NnM 00 M Vl rM O' 

ýn n ýo r ýo nrGr ýo 
[Ll ö (D 0ö0ööööö 

0O 0 «$1 N 00 O' M 
nO Q' MrN 00 NM 

,oro)oc oo nn 'o 
OOOOOOOOOO 

MnNO ýD OV 
M 'O 00 C' 'f -' rr ý/1 
oro ý0 or N'0 r 

CD oööööOOöö 

CD ýO oc 
rMN 

O' O 
Onn o0 0' NO 00 r 
'o ro 'o 'o r oo rro 
ööööööo0öö 

o' 00 arv r- o0 rv 
r- r- n r- ýe 00 1) 
V1 - O, r, 4 Q, NNNO 
'o 0ö 'o r .on o0 09 nn 
öööööööööö 

(v'ý NMr ýO fV 00 00 00 N 

, er 00 
NfVM 

O' '0 -MM 000 

�o Nr 'o or 00 rr 'o ö0öööö0ö0ö 

NNMýM 
00 

NOn 

rO 00 NNNNO V'1 O` 

ýo 00 ýo rný o0 0o r ýo ööööö0öööö 

-VN O_ M O' IO OM 
o00 0 'o rnNnrN 

O0OOOOOOOO 

cl H 

Clý 

ö 
r 
A. 

C-NM 
'It r ý, O r- 00 Oý 



ý 
O - - 

't r 
Cp 

v 
C ýö 

C 
ýC 

ýr r Nv - o 
r 

0o 
W 
Oý 

Vl 
r 

M 
Cý a 

C' 
r 

M 
C' 

C' 
wý 

C' 
r 

N 
oo 

!f 
'C 

00 
ýf 

M 
o: o: 

r 
o0 

r 
00 

'7 
0ý C7-. 

C O C 0 C C 0 ö C o C C o O C C O o 

co r 
N 00 

N 
It 

00 
00 

r 
00 

-- 
V1 

'C 
'C 

C 
r 

r 
(N 

N 
00 

ý/1 
O 

ýf 
M 

'o 
ul 

00 N 
n 

C 
'7 

K 
C' 

T- K M r 10 10 O fV C` 00 O N C` H - o 
00 0' r rn a r O' .C r oo r v, 0° 

. 
00 

. 
0' 

. 
oo 

. 
rn 

. 0 . o . O . o . O o . O Cl 0 0 . o O O o o O O 

r V M O 00 00 f 
r- 
00 

rq 
V ý 

14D 
O` 

rA 
r 10 fV - 

N 
0o c 

M 
oo 

ýr 
a 

00 
a 

C 
r c 

c-i 
n 

C' 
ýC 

N 
c ýC 

r 
ýn 

(N 
a 

Vt 
o0 

00 
0o 

V1 
r 

C, 0 C, C) C) 0 0 C> C) (D CD 0 0 C, Cl 0 

C' O - ý C` 
V V 

4 O 0 'C 
C' 

O 
V1 
00 

N 
.G 

N 
00 r O C 

1 
N C' 

1 
O' 

M 
M N 

ý M 
00 C' V1 

r 00 T r 00 00 r r 00 'C 'C N 00 00 00 

O O O O O O O O O O O O O O Cl 

Lo s 
fl v 

0 r " N 
0° V 

" O 
'C o C' 

00 
00 0° 

eý 
ýO 000 

q r 
000 00 

- 
'C 

_ C' ý C' 

O O O O O O O O O O O O O O 

I O, 
00 

N 
0o 

Lo r 
r 

O 
O 

00 
C' 

O 
r - C' 

O' 
' 

O' 
O' 10 

<f 
r 
r 

C' 
r 

ý 10 r ` °r N N f ä 
C' 0 0 o o r 0° v i C' 

Cl ö ö C C C 0 0 0 0 ö ö ö 

am (y) o 00 "D v n v ° ° ä c-i rn Cl 
M 

oo 
N 
"t 
a 

C 
' 

'C 
, 

- a C, 
C' 

.C 
- M 

00 
N 

10 
N 

r 
't 

oo 
M 

'C 
N 

'r 
E O O O O C O O C O O O O 

C14 
v V) 0 V' 

N 
M 

ý 
vl 
r 

P 
r4 

l 
ý 

O 
-It 1) 

0 1 
O O ' 

fV 
N 

a) K r llý In N 'C C 
O O C O O O C O O O O 

E 
r M r- a, 00 00 N 
v i ýC - V - 

ý 

moo' 
r 

rr rl v 

4-ý 
0 C: ) 2 ý IT 'o 00 2 ý: 00 , 9 
N N 

ý ý 
0 P N N v M 

y � r o0 0° 0 o p 

C* O O O O O O O O O 

F °M° ý- K ö 
(N 

C 
a) ' r 0 r r 

v . p, 
r 

, 
IC 

0 0 

3 0 0 ý o CD 0 0 1= 

00 C N 
00 v v M R D r 

C C C C C C C 

r C o' oo t o0 

O O 

N 

O O 

C' 

O 

00 

O 

V. / Vt 
00 

Q' 
N 

N 
V1 

N 
C 

v r r o r 
C C C C C 

-° 
c ä r° 

ono 
ä N ä 

C ö C C 

110 ý 
N 
0 P 

0° 

O O 

M N 
00 O 
'C r 

N $ 
N oc 
C 

s. iagwaw N M gt ln (D I-- 00 0) 0 ý N Cr) It LC) (O N- 0) 

cl 4- cl b 
CA 4' 
a) 

cl 
E 

c21 
c 

E 

E 

w 

cl 

0 

h 
ýi 
1) 

H 

C) N 



Average Ensemble Groups_ 
3579 11 13 15 17 19 

Diversity 78.30 81.87 80.88 73.44 72.94 71.27 74.13 75.51 77.56 

Accuracy 73.60 73.03 71.96 71.49 71.55 71.75 71.85 71.80 72.09 

Table 5.8 Diversity and accuracy of each ensemble group for Pima-Diabetes data set 

84 

82 

80 

78 

76 

74 

72 

Figure 5.13 Relationship between size of ensembles and average diversity of ensemble 

groups 

121 

70 I1 
0123456789 10 11 12 13 14 15 16 17 18 19 20 

Number of Ensemble Members 

Ensemble Diversity 



74 

73.5 

cý 73 

c 
m 
I- m a 72.5 
c 
0 
U 
Im 
°-' 72 CL 

71.5 

71 

Figure 5.14 Relationship between size of ensembles and average performance of each 

ensemble group 

Figures 5.13 and 5.14 have something in common. Both figures start from high point then 

slip down and pick up again steadily. From Figure 5.13, note that ensemble diversity 

researches the lowest level which represents the high diversity as the number of ensemble 

members is thirteen. However, at this point, MNNs did not make a peak performance. In 

figure 5.14, the relatively high average accuracy with the increased size of ensembles 

occurrs at the point where the number of ensemble members is nineteen. However, in 

figure 5.13, the corresponding diversity at that point is quite high. Still the best 

generalization of MNNs were obtained when the number of ensemble members is 

nineteen. 

122 

0123456789 10 11 12 13 14 15 16 17 18 19 20 

Number of Ensemble Members 

---Accuracy of Ensemble Member 



From the above observation, it is found that there is conflict between increasing the 

number of ensemble members and decreasing the correlation among them at some point. 
In the meantime, the performance of MNNs is partly related to the performance of its 

ensemble members. However the relationships among these factors were also noticed: 

number of ensemble members, ensemble diversity and accuracy are complex which is 

difficult to reveal their actual interactions in quantity. The interactions of these links 

result in different performances of MNNs. The issue of how much effect diversity, 

accuracy and the number of ensemble members have on the generalization of ensembles 
is a really big issue in the research of ensembles. 

5.4 Discussion of Other Experiments 

5.4.1 Why does a single layer network not work well as a combiner? 

A single layered MLP can only implement a linearly separable problem and most two 

binary input applications are linearly separable (Picton, 2000). Once classifying multi- 
dimensional inputs with more than two dimensions, a hyperplane in the pattern space is 

needed to separate the classes (Picton, 2000 and Callan, 1999). When returned to the 

experiments, it was known that the smallest number of inputs for a second staged MLP 

was three. Therefore the classification difficulties were well beyond the capability of a 

single layered MLP and accordingly such an MNNs model could not produce good 

ensemble performances. 

5.4.2 Why does having the original inputs (as extra inputs to the combiner) not 

help? 

The output results of ensemble members along with the original inputs used as the inputs 

for the second stage MNNs did not show improvement in ensemble accuracy. There are 

two possible reasons that may lead to such results. Firstly, the knowledge contained in 

123 



this second stage MNNs training sets could not supply more information to be learned 

than just using ensemble members outputs. Secondly, the second staged MNNs could not 

exhaust more information from the training sets limited by the power of MLP in the 

second stage. As reported in section 4.3.2, several more complex MLP modelswere 

served as second stage combiners trained on such inputs and none of them achieved 
better results than just using inputs from ensemble members outputs. Therefore its more 
likely that the first reason result in no improvement can be made. 

5.5 Conclusions 

Through the analysis discussed in chapter five, it was found that the reason for MNNs 

achieving a better performance lies within the differences between the kinds of decision 

surfaces a second staged network can model when compared to those decision surfaces 

that can be produced by majority voting. Moreover, how diversity among ensemble 

members affected the performance of MNNs was analyzed. The interactions between 

ensemble members and their diversity were demonstrated. One can hope that all of these 

analyses will help us to understand the working mechanism of MNNs and improve the 

performance of MNNs further in future work. 

124 



Chapter Six 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, a novel ensemble model was proposed originated on the concept of 

adaptive combination. 

Firstly, the author has demonstrated a model of multistage ensembles, where the adaptive 

properties of a second stage network are used to combine the outputs of the individual 

ensemble members. The recommended structures of MNNs are two stages, of which a 

one two-layered MLP with a certain number of (two in the experiments) hidden neurons 
is used in the second stage. The concept of MNNs was first introduced and a model of 
MNNs was first explicitly constructed. 

Secondly, an implementation of MNNs on various data was described by the author, such 

as several machine learning data sets and the human-gene splice data sets. The 

comparisons between MNNs with the most frequently used ensemble method, majority 

voting, were conducted. In the experiments, MNNs showed significant improvement over 

majority voting using a confidence level of 0.05 on some of data sets and on all machine 
learning data sets at a confidence level of 0.1. The fact has been established that MNNs 

is an effective method of improving ensemble generalization. 

Thirdly, the author found the performances of MNNs are related mainly to the diversity 

among ensemble members, accuracy of ensemble members and the number of ensemble 

members. Therefore, the best MNNs ensemble performance can be obtained at some 

125 



combination point of these factors. The successful identification of the main factors that 

affect MNNs performance provide guidelines for constructing and implementing MNNs 

in future applications. 

Finally, through analysis the author found that MNNs achieve better performance 
because of the difference between the kinds of decision surfaces a second staged network 

can model when compared to those decision surfaces that can be produced by majority 

voting. Such analysis results allow us to apply more effective NNs in the second stage 

MNNs when solving different problems and result in better performance in future work. 

In summary, the author's major contributions in this thesis are: an alternative ensemble 

combination method: explorations regarding creating, training and testing this MNNs 

were conducted. Recommendations based on the experiments can be made for setting up 

an optimum MNNs model. 

There is an expectation that MNNs can be tested and improved through further 

experiments and applications, especially in the quickly developing area of bioinformatics. 

The successful results on splice data sets indicate that it is well worth doing more 

explorations using this novel method in the human genome project. 

6.2 Suggestions for Future Work 

Being a novel model of ensemble methods, MNNs can be developed and implemented 

further in many ways. Some suggestions for future work on MNNs explorations are 

provided. The recommendation includes the following aspects. 

a) Data 

As mentioned before, some relatively small data sets were applied on the MNN models. 
Due to the limitation of the size of data set, the data used in the second stage MNNs were 

126 



N, LN2 ... 

[NW] 

----- First Stage 

(09 Y) 

[N] 

1 
------------------- Second Stage 

Figure 6.1 MNN model using different part of data for training 

127 



overlapped with the data in the first stage training. Therefore it may affect the 

enhancement of MNNs performance. Here, another MNN model which uses a different 

part of the data for training is presented. 

The difference between figure 6.1 and the standard model presented in figure 2.1 is the 

data part taken from the source data for two-stage training. In figure 6.1, the source data 

is split into two parts: Data I for the use of the first stage training, Data II for the second 

stage training. There is no any overlap between these two parts of the data, thus the data 

which will be used in the second stage training does not go through any procedures of the 

first stage training. Under such circumstances, the second stage training should not be 

affected by the first stage training and should reflect the features contained in the source 
data more naturally. However only a large data set can be implemented using this model. 

b) Creating Ensemble Members 

There is a deficiency of standard and effective criteria on how to create ensemble MNNs. 

Though the diversity among ensemble members has one of the key roles in constructing 

an ensemble, in many situations this factor could not be measured using available 

techniques. In addition, the exploration on creating diverse ensemble members is 

inadequate. Current methods only provide the choices for creating diverse ensemble 

members, but no standard procedures and measurements can be followed. Exploration 

in this field will not only be of benefit to the MNNs technique, but has universal 

application to ensemble research. 

c) Options of Second Stage MNNs 

The choices of parameters for the second stage MNNs, such as number of units in hidden 

layers and learning rate are arbitrary set by trial and error. Therefore the question of the 

optimal parameters settings for the second stage MLP still remains. Though the number 

128 



of hidden neurons in the second stage of MNNs may vary in different applications, my 

experiences recommended that the simple structures of the MLP are good enough to 

implement the combination function. However further development and implementation 

of other NN models or other activation combination functions in the second stage MNNs 

can be explored. For example, Radial-Basis Function networks (RBF) (Powell, 1985) and 

support vector machines (Boser, Guyon and Vapnik, 1992) can all be options used in the 

second stage. In addition, the choice of MLP architecture for the second stage combiner 

should be investigated. For instance, the implementation of more hidden units and other 

activation combination functions, such as softmax and the logistic function can be 

investigated and compared with the MLP model used in this thesis. 

d) More Stages Ensembles 

An MLP with one hidden layer was applied in the second stage MNNs. On top of that, 

another MLP may be added as the third stage MNNs. Since MNNs derives its name in 

the fact that multiple stages can be applied, therefore more stages can be created. 
However, with the increase of the number of stages, the complexity of this kind of model 

must be considered. 

The training of second staged MNNs did cost more time compared with other 

conventional methods whose combination procedures do not require prior training. But 

with the help of current high-speed computers, the time taken for training the combiner 

can be almost ignored. For instance, it only took a few minutes for the training of the 

second stage of the MNNs on each of the data sets used in the experiments. However it 

must be pointed out that being an adaptive combination method, the cost on training of 

second stage MNNs did exist. Therefore there is the question, how many stages is 

optimum? It may depend on the nature of source data or depend on the power of the 

model used as combiner. Whatever it will be, one criteria is always correct that if the 

increase of a model's complexity does not improve the performance compared with the 

simple model, then it is not worth exploring such a model. On the other hand, if the 

increase of a model's complexity does improve the performance, then is it worth adopting 

129 



such a model, which requires more cost? So the balance between complexity and 
improvement gained by using MNNs needs to be well considered in the future research. 

e) Application on Other Machine Learning Method 

The idea of multistage ensembles is not only limited to the field of NN ensembles. It can 
be expanded to the area of other machine learning approaches, such as decision trees, 

genetic algorithms or similarity measure approaches (and so on). Furthermore, the 

implementation of multistage ensembles is not only limited to one method, but also can 
be applied to several different types of machine learning approaches. The application on 

mixing different machine learning approaches within one ensemble using the idea of 
MNNs is an attractive topic. 

f) Analysis 

Theoretical exploration, especially mathematical justification for the approximation of 
MNNs will offer the potential for creating more effective models. 

g) Applications 

A wide range of applications on large scale, real-world data sets are needed to be 

explored to make MNNs a really useful ensemble method, especially the practical 

applications for MNNs in pattern recognition and bioinformatics research areas. 

The MNNs model is just one of many possible explorations on methods for developing 

ensemble ANNs. The major concern in the research of ensembles is to find an effective 

and standard way to create and organize an ensemble ANN model. In order to be adopted 
in practice, some systematic design methodology for ensemble NNs must be proposed. 

130 



There is still a long way to go until formal methods for specifying ensemble NNs to 

optimize their application in the real world are developed. 

131 



Bibliography 

Bishop, C. M. (1995) Neural Networks for Pattern Recognition, ISBN 0 19 853849 9, 

Oxford University Press Inc, New York, 116. 

Boser, B., Guyon, I. and Vapnik, V. N. (1992) A Training Algorithm for Optimal Margin 

Classifiers, Fifth Annual Workshop on Computational Learning Theory, San Mateo, CA: 

Morgan Kaufmann, 144-152. 

Breiman, L. (1996a) Bagging Predictors, Machine Learning, 26(2), 123-140. 

Breiman, L. (1996b) Bias, Variance, and Arcing Classifiers, Technical Report 460, 

Statistics Department, University of California at Berkeley. 

Breiman, L. (1997) Prediction Games and Arcing Classifiers, Technical Report 504, 

Statistics Department, University of California at Berkeley. 

Breiman, L. (1999) Combining Predictors, In Combining Artificial Neural Nets-Ensemble 

and Modular Multi-Net Systems, Springer-Verlag, A. J. C. Sharkey (Ed. ), 31-50. 

Broomhead, D. S. and Lowe, D. (1988) Multivariable Functional Interpolation and 

Adaptive Networks, Complex Systems, 2,321-355. 

Callan, R. (1999) The Essence of Neural Networks, Prentice Hall Europe ISBN 0-13- 

908732-X, 27. 

Demuth, H. and Beale, M. (1994) Neural Network Toolbox, The Math Works Inc., 4-15. 

132 



Dietterich, T. G. (2000) Ensemble Methods in Machine Learning, Lecture notes in 

computer science: Proceedings of MCS 2000, Kittler, J. and Roli, F. (Eds. ), ISBN 

185233004X 1857,1-15. 

Drucker, H., Schapire, R. and Simard, P. (1993) Boosting Performance in Neural 

Networks, International Journal of Pattern Recognition and Artificial Intelligence, 7(4), 

705-719. 

Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y. and Vapnik, V. (1996) Boosting and 

Other Ensemble Methods, Advances in Neural Information Processing Systems, 8,479- 

485. 

Elman, J. L. (1990) Finding Structure in Time, Cognitive Science, 14,179-211. 

Freund, Y. and Schapire, R. E. (1995) A Decision-Theoretic Generalization of On-line 

Learning and an Application to Boosting, In Computational Learning Theory: Second 

European Conference, Euro COLT '9S : Springer-Verlag, 23-37. 

Freund, Y. and Schapire, R. E. (1996) Experiments with a New Boosting Algorithm, 

Machine Learning: Proceedings of the Thirteenth International Conference, 148-156. 

Geman, S., Bienenstock, E. and Doursat, R. (1992) Neural Networks and the 

Bias/Variance Dilemma, Neural Computation, 4,1-58. 

Ghoneim, K. and Kumar Vijaya B V. K. (1995) Learning Ranks with Neural Networks, 

In Applications and Science of Artificial Neural Networks, Proceedings of the SPIE, 

2492,446-464. 

Ghosh, J. and Turner, K. (1994) Structural Adaptation and Generalization in Supervised 

Feedforward Networks, Journal of Artificial Neural Networks, 1,1-55. 

133 



Hansen, L. and Salamon, P. (1990) Neural Network Ensembles, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 12,993-1001. 

Hashem, S. and Schmeiser, B. (1993) Approximating a Function and Its Derivatives 

using MSE-Optimal Linear Combinations of Trained Feedforward Neural Networks, 

Proceedings of the Joint Conference on Neural Networks, New Jersey, 87,617-620. 

Haykin, S. (1999) Neural Networks-A Comprehensive Foundation: Prentice-Hall, Inc. 

ISBN 0-13-908385-5,156-203. 

Ho, T. K., Hull, J. J., and Srihari, S. N. (1994) Decision Combination in Multiple 

Classifier Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

16(1), 66-76. 

Ho, T. K. (2001) Data Complexity Analysis for Classifier Combination, Multiple 

classifier systems: Second International Workshop 2001, Cambridge, Kittler, J. and Roli, 

F (Eds. ), ISBN 3-540-42284-6 53-67. 

Ho, T. K. (2002) Multiple Classifier Combination: Lessons and Next Steps, Hybrid 

Methods in Pattern Recognition, Kandel, A. and Bunde, H. (Eds. ), World Scientific, 171- 

198. 

Houle, G. F., Aragon, D. B., Smith, R. W., Shridhar, M. and Kimura, D. (1998) A 

Multilayered Corroboration-based Check Reader. Document Analysis Systems II, World 

Scientific. Hull, J. J. and Taylor, S. L. (Eds. ), 495-546. 

Hudson, B., Whitley, D., Ford, M. G. and Browne, A. (2003) Biological Data Mining: 

High Fidelity Rule Extraction from Trained Neural Networks, Proceedings of the 12th 

European Symposium on Quantitative Structure Activity Relationships, Ford, M. G. and 

Livingstone, D. (Eds. ), Bournemouth, UK (in press). 

134 



Jackson, J. C. and Craven, M. W. (1996) Learning Sparse Perceptrons, In Advances in 

Neural Information Processing Systems, 8,654-660. 

Jacobs, R. A. (1995) Methods for Combining Experts' Probability Assessments, Neural 

Computation, 7,867-888. 

Kittler, J. (1998) Combining Classifiers: A Theoretical Framework, Pattern Analysis and 

Applications, 1,18-27. 

Kreinovich, V. Y. (1991) Arbitrary Nonlinearity is Sufficient to Represent all Functions 

by Neural Networks: A Theorem, Neural Networks, 4(3), 381-383. 

Krogh, A. and Vedelsby, J. (1995) Neural Network Ensembles, Cross Validation and 

Active Learning, Advances in Neural Information Processing Systems: MIT press, 

Tesauro, G., Touretzky, D. S. and Leen, T. K. (Eds. ), 7,231-238. 

Lee, D. S., Srihari, S. N. (1993) Handprinted Digit Recognition: A Comparison of 
Algorithms. Proc. Third International Workshop On Frontiers In Handwriting 

Recognition, Buffalo, USA, 153-162. 

Lincoln, W. and Skrzypek, J. (1990) Synergy of Clustering Multiple Back Propagation 

Networks, Advances in Neural Information Processing Systems-2: Morgan Kaufmann, 

Touretzky, D. (Ed. ), 650-657. 

Liu, y. and Yao, X. (1997) Negatively Correlated Neural Networks Can Produce Best 

Ensembles, Australian Journal of Intelligent Information Processing Systems, 4(3/4), 

176-185. 

MacKay, D. J. C. (1992) The Evidence Framework Applied to Classification Problems, 

Neural Computation, 4(5), 720-736. 

135 



Maclin, R. and Opitz, D. (1997) An Empirical Evaluation of Bagging and Boosting, 

Proceedings of the Fourteenth National Conference on Artificial Intelligence, 546-551. 

McCulloch, W. S. and Pitts, W. (1943) A Logical Calculus of the Ideas Immanent in 

Nervous Activity, Bulletin of Mathematical Biophysics, 5,115-133. 

Mendenhall, W and Ott, L. (1980) Understanding Statistics, California: Wadsworth, 

ISBN 0-87872-241-6.219-220. 

Merz, C. J. and Pazzani, M. J. (1997) Combining Neural Network Regression Estimates 

with Regularized Linear Weights, Advances in Neural Information Processing Systems9, 

Mozer, M. C., Jordan, M. I. and Petsche, T. (Eds. ), MIT Press, 564-570. 

Nilsson, N. J. (1965) Learning Machines: Foundations of Trainable Pattern-Classifying 

Systems, New York: McGraw-Hill. 

Oza, N. C. and Turner, K. (2001) Input Decimation Ensembles: Decorrelation through 

Dimensionality Reduction, Proceedings of the Second International Workshop on 

Multiple Classifier Systems, Cambridge, U. K., Lecture Notes in Computer Science 2096, 

Heidelberg, Springer, ISBN 3-540-42284-6,238-247. 

Parmanto, B., Munro, P. W. and Doyle, H. R. (1996a) Improving Committee Diagnosis 

with Resampling Techniques, Advances in Neural Information Processing Systems8, 

Cambridge, MA: MIT press, Mozer, M. and Hasselmo, M. (Eds. ). 

Parmanto, B., Munro, P. W. and Doyle, H. R. (1996b) Reducing Variance of Committee 

Prediction with Resampling Techniques, Connection Science, 8,405-425. 

Partridge, D. and Griffith, N. (1995) Strategies for Improving Neural Net Generalisation 

Neural Computing and Applications, 3,27-37. 

136 



Partridge, D. and Yates, W. B. (1996) Engineering Multiversion Neural-net Systems, 

Neural Computation, 8,869-893. 

Perrone, M. P. and Cooper, L. N. (1993) Learning From What's Been Learned: 

Supervised Learning In Multi-neural Networks Systems, Proceedings of the World 

Congress on Neural Networks III, INNS Press, 354-357. 

Picton, P. (2000) Neural Networks (Second Edition), Palgrave: New York, ISBN: 0-333- 

80287-X, 32-37. 

Powell, M. J. D. (1985) Radial Basis Functions for Multivariable Interpolation: A 

Review, IMA Conference on Algorithms for the Approximation of Functions and Data, 

RMCS, Shrivenham, England, 143-167. 

Quinlan, J. R. (1996) Bagging, Boosting and C4.5, Proceedings of the 13 ̀h National 

Conference on Artificial Intelligence, MIT Press, 725-729. 

Raviv, Y. and Intrator, N. (1996) Bootstrapping with Noise: An Effective Regularization 

Technique, Connection Science, 8(3&4), 355-372. 

Rolff, F., Raudys, S. and Marcialis, G. L. (2002) An Experimental Comparison of Fixed 

and Trained Rules for Crisp Classifiers Outputs, Proceedings of the Third International 

Workshop on Multiple Classifier Systems, Cagliari, Italy, Lecture Notes in Computer 

Science 2364, Heidelberg, Springer, ISBN 3-540-431818-1,232-241. 

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning Representations of 

Back-propagation Errors, Nature (London), 323,533-536. 

Schapire, R. E. (1990) The Strength of Weak Leamability, Machine Learning, 5,197- 

227. 

137 



Schapire, R. E. (1999) A Brief Introduction to Boosting, 16`h International Joint 
Conference on Artificial Intelligence, Dean, T. (Ed. ), Morgan Kaufmann, 1401-1406. 

Schwenk, H. and Bengio, Y. (1997) Adaboosting Neural Networks, Application to Online 

Character Recognition, 1327,967-972. 

Sharkey, A. J. C. (1999) Multi-Net Systems, Combining Artificial Neural Nets-Ensemble 

and Modular Multi-Net Systems: Springer-Verlag, A. J. C. Sharkey (Ed. ), 1-30. 

Sharkey, A. J. C., Sharkey, N. E. and Chandroth, G. 0. (1996) Neural Nets and Diversity, 

Neural Computing and Applications, 4,218-227. 

Sharkey, A. J. C. (2002) Types of Multinet System, Proceedings of the Third 

International Workshop on Multiple Classifier Systems, Cagliari, Italy, Lecture Notes in 

Computer Science 2364, Heidelberg, Springer, ISBN 3-540-431818-1,108-117. 

Thanaraj, T. A. (1999) A Clean Data Set of EST-Confirmed Splice Sites from Homo 

Sapiens and Standards for Clean-up Procedures, Nucleic Acids Res., 27(13), 2627-2637. 

Thanaraj, T. A. (2000) Positional Characterisation of False Positives From 

Computational Prediction of Human Splice Sites, Nucleic Acids Research, 28 (3), 744- 

754. 

Turner, K. and Ghosh, J. (1995) Order Statistics Combiners of Neural Classifiers, In 

Proceedings of the World Congress on Neural Networks, Washington D. C.: INNS press, 
31-34. 

Turner, K. and Ghosh, J. (1996) Error Correlation and Error Reduction in Ensemble 

classifiers, Connection Science. Special Issue on Combining Artificial Neural Ensemble 

Approaches, 8(3&4), 385-404. 

138 



Wesolkowski, S and Hassanein, K. (1997) Comparative Study of Combination Schemes for 

An Ensemble of Digit Recognition Neural, Proceedings of IEEE International Conference 

on Systems, Man And Cybernetics, 3534-3539. 

White, H. (1990) Connectionist Nonparametric Regression: Multilayer Feedforward 

Networks Can Learn Arbitrary Mappings, Neural Networks, 3(5), 535-549. 

Wickramaratna, J. , Holden, S. and Buxton, B. (2001) Performance Degradation in 

Boosting, Proceedings of the Second International Workshop on Multiple Classifier 

Systems, Cambridge, UK, Lecture Notes in Computer Science 2096, Heidelberg, 

Springer, ISBN 3-540-42284-6,11-21. 

Wolpert, D. H. (1992) Stacked Generalization, Neural Networks, 5,241-259. 

Yang, S., Browne, A. and Picton P. D. (2002) Multistage Neural Network Ensembles, 

Proceedings of the Third International Workshop on Multiple Classifier Systems, 

Cagliari, Italy, Lecture Notes in Computer Science 2364, Heidelberg, Springer, ISBN 3- 

540-431818-1,91-97. 

Yang, S., Browne A., Picton, P. D., Hudson B. D. and Whitley, D. (2002) Multistage 

Neural Networks: Adaptive Combination of Ensemble Results, The Proceedings of the 

Fourth International Conference on Recent Advances in Soß Computing, Nottingham, U. K. 

ISBN 1-84233-0764,55-60. 

Yang, S., Browne A., Picton, P. D. (2003) Multistage Neural Network Ensemble: 

Adaptive Combination of Ensemble Results, Applications and Science in Soft Computing, 

Springer-Verlag, (In press). 

139 



Zeng, X., Martinez, T. R. (2000) Using a Neural Network to Approximate an Ensemble 

of Classifiers, Neural Processing Letters, 12,225-237. 

140 



Appendix A: Algorithm 1 

(Ensemblemembertrain. m) 

%pima data sets include 768 instances and 8 attributes with two classes choice 
%create ncandidate number of ensemble members 

ncandidate=5 

for (ensemblenum=1: ncandidate) 

if ensemblenum==l 

randdata; 

randtraindata; 

cd 1; 

else if ensemblenum==2 

cd ..; 
randdata; 

randtraindata; 

cd 2; 

else if ensemblenum==3 

cd ..; 

randdata; 

randtraindata; 

cd 3; 

else if ensemblenum==4 

cd ..; 
randdata; 

randtraindata; 

cd 4; 

else if ensemblenum=-5 

cd ..; 
randdata; 

randtraindata; 

cd 5; 

end 

141 



end 

end 

end 

load c: \matlab6pl\work\pima-indian\filedata. dat; 

load c: \matlab6pl\work\pima-indian\validdata. dat; 

load c: \matlab6pl\work\pima-indian\testdata. dat; 

datafile-filedata; 

(row, coil-size(dataflie); 

trainnum-row; 

(validrow, validcol]-size(validdata); 

validnum=validrow; 
(testrow, testcol]-size(testdata); 

testnum=testrow; 

Y-(datafile(:, col))'; 

ma=max(Y); % maximum value of output class 

mi=min(Y); % minumal value of output class 

traindata=datafile; %data used for training including validation data 

vadata-validdata; % data used for validation 
tedata-testdata; % data used for testing 

traininput-datafile(:, l: col-1); 

traintarget=datafile(:, col); 

vainput-vadata(:, l: col-1); 

vatarget-vadata(:, col); 

testinput=tedata(:, l: col-1); 

testtarget-tedata(:, col); 

firstrun=0; 

J-1; 

M-0; 

n=0; 

total=0; 

nout-0; %1 output parameters 

ndata-row-1; % number of input instances 

142 



OPTIONS"zeros(1,18); 

OPTIONS(1)"1; %provides display error values 

OPTIONS(14)-5; %number of training cycles 

nin-col-2; % number of input parameters 

testpercentage -0; 

algorithm"'QUASINEW'; 

for (A=0.1: 0.1: 3) 

alpha-A; 

for (B=2: 1: 10) 

nhidden=B; 
J-1; 

M-0; 

%TRAIN THE MODEL FOR SOME EPOCHS TILL BEST RESULT IS GENERATED 

while(j<"20) 

NET-mlp(nin+l, nhidden, 1, 'linear', alpha); 

n=1; 

% control the training cycle until the best result obtained 

while( n. -1 ) 

m=m+l; 

[NET, OPTIONS] = netopt(NET, OPTIONS, traininput, traintarget, algorithm); 

%The generated result after training 

trainper=0; 

vaper=0; 

testper=0; 

% generating training result 

TOUT - MLPFWD(NET, traininput); 

VAOUT=MLPFWD(NET, vainput); 

%let the output decimal belong to its nearest integer 

for i=l: trainnum 

TOUT(i, 1)-round(TOUT(i, 1)); 

if TOUT(i, 1)>=ma 

143 



TOUT(i, 1)=ma; 

end 

if TOUT(i, 1)<mi 

TOUT(i, 1)-mi; 

end 

if TOUT(i, l)--traintarget(i, l) 

trainper-trainper+l; 

end 

end 

innertrainper-trainper/trainnum; 

for i. l: validnum 

VAOUT(i, l)-round(VAOUT(i, l)); 

if VAOUT(i, l)>-ma 

VAOUT(i, 1)-ma; 

end 

if VAOUT(i, 1)<mi 

VAOUT(i, 1)=mi; 

end 

if VAOUT(i, l). -vatarget(i, 1) 

vaper. vaper+l; 

end 

end 
innervaper-vaper/validnum; 

if m==l %save the firist inter cycle result 

save ftrainper. dat innertrainper -ascii 

save fvaper. dat innervaper -ascii; 

save fnet. net NET; 

else load ftrainper. dat; %load the previous best cycle result 
load fvaper. dat; 

%compare this cycle with the best cycle result 
if innertrainper>ftrainper & innervaper>fvaper 

save ftrainper. dat innertrainper -ascii; 

save fnet. net NET; 

save fvaper. dat innervaper -ascii; 

144 



else n=0; 

end 

end %finish the jth training cycle 

% compare this jth cycle result with the previous j-1 best one we got so far 

load ftrainper. dat; 

load fvaper. dat; 

testper=0; 

load fnet. net NET -mat; 
TESTOUT - MLPFWD(NET, testinput); 

for i-l: testnum 

TESTOUT(i, l)=round(TESTOUT(i, l)); 

if TESTOUT(i, l)>-ma 

TESTOUT(i, l)=ma; 

end 

if TESTOUT(i, 1)<mi 

TESTOUT(i, 1)=mi; 

end 

if TESTOUT(i, l)==testtarget(i, l) 

testper-testper+l; 

end 

end 

testpercentage=testper/testnum; 

if j--1 %save the first result of each external while 1100(j)lcycle 

save temptrainper. dat ftrainper -ascii; 

save tempvaper. dat fvaper -ascii; 

save temptestper. dat testpercentage -ascii; 

end 

if firstrun--O %record the first external training cycle result 

save testpercen. dat testpercentage -ascii; 

save trainper. dat ftrainper -ascii 
save vaper. dat fvaper -ascii; 

save finalnet. net NET; 

firstrun-1; 

145 



else 
load trainper. dat; 

load vaper. dat; 

load testpercen. dat; 

load temptrainper. dat; 

load tempvaper. dat; 

load temptestper. dat; 

if testpercentage>-testpercen % save the best result of whole loop 

if ftrainper>"trainper I fvaper>-vaper 

save testpercen. dat testpercentage -ascii; 

save finalnet. net NET ; 

save trainper. dat ftrainper -ascii 

save vaper. dat fvaper -ascii; 

end 

end 
%compare the jth result with the previous best result within inner while loop 

if fvaper>temptrainper 
if fvaper>tempvaper 

save temptrainper. dat ftrainper -ascii; 
save tempvaper. dat fvaper -ascii; 
save temptestper. dat testpercentage -ascii; 

end 

end 

end 

end %end the internal loop 

j-i+i 
m-0; 

end % end the while external loop 

% just run the result 
% save the best result of this running 
load temptrainper. dat 

load tempvaper. dat; 

load temptestper. dat; 

curroutput-[nhidden alpha temptrainper tempvaper temptestper]; 

146 



if total--O 

outputl-zeros(10,6); 

outputl-curroutput; 

total-1; 

save outputl. dat -ascii; 

else load outputl. dat; 

outputl-(outputl; curroutput]; 

end 

save outputl. dat outputl -ascii; 

end 

end 

end % end the all the ensemble members training 

147 



Appendix B: Algorithm 2 

(Ensembletrain3. m) 

%load the source input data 

load firsttraindata. dat; 

%distrubute the data 

randdata; 

% ten-fold cross validation is applied 

for( num=1: 1: 10) %loop 1 

fulltraindata=firsttraindata; 

thistestdata=fulltraindata(((num-l)*76+1): ((num-l)*76+76),: ); 

fulltraindata(((num-l)*76+1): ((num-l)*76+76),: )=[]; 

thistraindata=fulltraindata; 

save temptraindata. dat thistraindata -ascii; 

randtraindata; 

load crosstraindata. dat; 

load crossvaliddata. dat; 

%read the data file 

datafile=crosstraindata; 

(row, col]=size(datafile); 

Y=(datafile(:, col))'; 

ma=max(Y); % maximum value of output class 

mi=min(Y); % minumal value of output class 

traindata=datafile ; 

vadata=crossvaliddata; 

testdata=thistestdata; 

trainnum=row; 

(validrow, validcol]=size(crossvaliddata); 

validnum=validrow; 

[testrow, testcol]=size(thistestdata); 

testnum=testrow; 

148 



%prepare the training input and output data sets 

traininput=traindata(:, l: col-1); 

traintarget=traindata(:, col); 

vainput=vadata(:, 1: col-1); 

vatarget=vadata(:, col); 

testinput=testdata(:, l: col-1); 

testtarget=testdata(:, col); 

% execute the trained three ensemble members nets and get their 

%OUtpUtB. 

load c: \matlab6pl\work\pima-indian\2\finalnet. net NET -mat; 

netlinput=MLPFWD(NET, traininput); 

netlvainput=MLPFWD(NET, vainput); 

netltestinput=MLPFWD(NET, testinput); 

load c: \matlab6pl\work\pima-indian\3\finalnet. net NET -mat; 

net2input=MLPFWD(NET, traininput); 

net2vainput=MLPFWD(NET, vainput); 

net2testinput=MLPFWD(NET, testinput); 

load c: \matlab6pl\work\pima-indian\4\finalnet. net NET -mat; 

net3input-MLPFWD(NET, traininput); 

net3vainput=MLPFWD(NET, vainput); 

net3testinput=MLPFWD(NET, testinput); 

% combine the above three nets outputs as the new network model %inputs 

entraininput=[netlinput net2input net3input 

entraintarget=traintarget; 

envainput=[netlvainput net2vainput net3vainput]; 

envatarget=vatarget; 

entestinput=[netitestinput net2testinput net3testinput 1; 

entesttarget=testtarget; 

n=1; 

149 



M-1; 

first-1; 

nout-0; %1 output parameters 

ndata-row-1; % number of input instances 

nin-2; %number of input instances 

OPTIONS=zeros(1,18); 

OPTIONS(1)=1; %provides display error values 

OPTIONS(14)=5; %number of training cycles 

algorithm='QUASINEW'; 

% try different alpha value and different number of hidden neurons 

%combinations. each NN model will try j numbers of random 

%initialization and each initialization will run till reaching the 

%best result. 

for( alpha=0.1) %loop 2 

for(nhidden=2) %loop 3 

trainper=0; 

vaper=0; 

testper=O; 

votetestper=O; 
J-1; 

%TRAIN THE MODEL FOR SOME EPOCHS TILL BEST RESULT IS GENERATED 

while(j<=1000) %loop 4 

n=1; 

NET=mlp(nin+l, nhidden, 1, 'linear', alpha); %initialization 

% control the inner training cycle until the best result obtained 

while( n==1) %loop 5 

[NET, OPTIONS] = netopt(NET, OPTIONS, entraininput, entraintarget, 

algorithm); 

150 



%The generated result after training 

trainper=0; 

vaper-0; 

testper=O; 

TOUT =mlpfwd(NET, entraininput); % generating training result 

VAOUT=mlpfwd(NET, envainput); 

%let the output decimal belong to its nearest integer 

for i=1: trainnum 

TOUT(i, 1)=round(TOUT(i, 1)); 

if TOUT (i, 1) >-ma 

TOUT(i, 1)=ma; 

end 

if TOUT(i, l)<=mi 

TOUT(i, 1)=mi; 

end 

if TOUT(i, l)==entraintarget(i, 1) 

trainper=trainper+l; 

end 

end 

%generating validation result 

for ial: validnum 
VAOUT(i, 1)=round(VAOUT(i, 1)); 

if VAOUT(i, 1)>=ma 

VAOUT(i, 1)=ma; 

end 
if VAOUT(i, 1)<=mi 

VAOUT(i, 1)=mi; 

end 

if VAOUT(i, 1)==envatarget(i, 1) 

vaper=vaper+l; 

151 



end 

end 

trainper=trainper/trainnum; 

validper=vaper/validnum; 

if first==1 

save tempvalidper. dat validper -ascii; 

save tempnet. net NET 

first=O; 

else load tempvalidper. dat; 

if validper<=tempvalidper 

n=0; 

else if m>=30 %prevent the dead loop 

n=0; 

else if validper>tempvalidper 

save tempnet. net NET; 

end 

end 

end 

end 

m=m+1; 

end %end loop 5 

j=j+l; 

end %end loop 4 

end %end loop 3 

end %end loop 2 

load tempnet. net NET -mat; 

switch (num) 

case 1 

save newmnn3netl. net NET; 

case 2 

152 



save newmnn3net2. net NET; 

case 3 

save newmnn3net3. net NET; 

case 4 

save newmnn3net4. net NET; 

case 5 

save newmnn3net5. net NET; 

case 6 

save newmnn3net6. net NET; 

case 7 

save newmnn3net7. net NET; 

case 8 

save newmnn3net8. net NET; 

case 9 

save newmnn3net9. net NET; 

case 10 

save newmnn3net10. net NET; 

end 

load tempnet. net NET -mat; 
TESTOUT =mlpfwd(NET, entestinput); 

for i=l: testnum 

TESTOUT(i, l)=round(TESTOUT(i, l)); 

if TESTOUT(i, l)>=ma 

TESTOUT(i, 1)=ma; 

end 

if TESTOUT(i, 1)<=mi 

TESTOUT(i, 1)=mi; 

end 

if TESTOUT(i, l)==entesttarget(i, 1) 

testper=testper+l; 

end 

end 

testpercentage=testper/testnum; 

153 



if num==1 

save ensem3crosstest. dat testpercentage -ascii; 

else load ensem3crosstest. dat; 

en3cross=[ensem3crosstest; testpercentage]; 

save ensem3crosstest. dat en3cross -ascii; 

end 

end % end loop 1 

test results 

test3crossresult; 

display('The whole programme: newensemtrain3. m has finished running! '); 

154 



kr) 

C) 
x 

i 0) 

a 
a Q 

i 0 

m 

G 

10 

UL 

0 
4) 

C6 
E 

  

C 

Cl) 

Cl) 
C) 

Cl) 
a) 
F. -m 

CO M I- O) N- 00 IC) IC) If) r- 
(0 Ce) I- M (D M N- O 
N- ti 

(0 
ti ti N- O _ 

f- (O s- 
O O O O O O O O O ~ 

O 

- 
00 

10 
ý 

O 't N 
0 

N 00 10 
CD 

Co 
(0 

0) 
f 

10 
CO 

Co 
O 

O 10 
10 
O 

0) 
CD 
O 

0 0 
10 
O 

OD 
CO 
Ö 

CO 
N- 
O 

N- 
O 

N- 
O 

ý 
(D 
Ö 

C) 

O 

YI- I- OD N CO 10 CO t I1- 

00 
N 

IO 

CO 
NN - 

CO 

(0 
CO 

e 

C 
OD 
0 

(O 
CO 

I, - 
O (0 

CO 
ti 

N- 

CÖ 

d 

O O O O O O O O O 

U 

03 

w 

y 

C) 

C) 

N 

G) 

G3. ß 

- M M (0 C) If) I- (0 IC) 
00 (0 IC) N OD M M r 00 

N- O C) M f- N CO N ce) (0 
CD I, - (0 IC) Co (0 CO Iý N- (0 00 

9 O O O O O O O O O O 
O 

(0 N N le O) If) M IC) N- Q) 
N I e 0 

CI) CO 
00 

Q) IC) 
T- N- ti 

0 CO 
CO N- CO (0 Cý N- N- CO 

(P 
ß) 

O O O O O O O O O 
O 

M CO - N f- CD IC) IC) N- 
It) CO e- N- M N 0) O 
O N- N- 00 a) N O CO '- I- M 
CD N- CO (0 (0 N- 00 N- N- M r-- ~ c; O O O O O O O O 

O 

O) CO - N- N- r O) N- I0 
N- if) N- CO N- CO (N CO M O 

(N i- 
(0 00 (0 

ti 
(0 

ti CO 
00 I- 'e 

~ O O O O O O O O O O 
O 

N CY) r- (D INt C, 4 00 OD OD C, 4 LO 
(0 M -r- 00 

N M 
C) 

(DD 
i- 

(V) 
M CO N- 

CD N- N- (D (0 N- 00 1- N- (0 0 
O O O O O O O O O O 

TI» (0 N I` N- N- (» CD lf) e O) 
T- N 't M M C') 00 N N- N- 1- 
r- C) 0 O 

00 
(0 ti ti N- 

CO O CO O CO 
qt 

~ ö ö d d ö ö ö ö 
0 

I- (D i i- I) N- If) C') IC) N N 
_ r- 

O N- N- 
i- 

N CO N CO 
Ö 

3 
00 (0 (0 IN r, - I` r-_ O N M 

~ O O O O O O O O O 
O 

w y) OU cd to 



114D 

r) 

0 

O) O) (M LC) LO CO r LO LO N CO 
1- 00 f- O O (0 N (7) r, -- lqt OD 

C( O GGD C(O _ N- _ N- 
N- 

00D 
N O (0 M 

, O O O O O O O O O 
O 

0) (0 00 f- f- LC) 00 Cr) N- (0 
N- N (0 M M N- N It) (D M N 
Lf) 0 0 00 C(0 0 0 ti 

ti ti 
0 0 00 

ti 

O O O O O O Ö O O 
O 

(0 It) N r If) 00 e- (O N- r N 
TI- d) '- O (0 N N M M 

00 rl- _ 0 
C0 

r- 
(0 (0 I- 

ti c 
0 0 

ti 
CO 

N 

O O O O O O O O O O 
O 

U 

W 

it 
N 

U 

N 

ýNr 

N 

Z 
W 

Tl- M d' 1- - lf) IC) U) N N 
N (0 0 0 Cl) f- O O I` 't M 
0) rl- _ C%4 CY) r- _ _ n N- CO N- ( 

O O I CD N- CO O 
~ O O O O O O O O O 
0 

N- co IRt IT O N- O) U) N N q' 
Ö M N N O M 

0)) 0)) C (0 C D IR: r 
CO 00 co CD N- N- 00 N- N- N- It 

~ O O O O O O O O O O 
O 

co (0 (0 T-- It N C) CO N- - N 
(N i- f- qt (D (0 M N- N 

M O M N- O) 00 N- M N Q) LO 
(D 00 CO CO CO CO N- N- N- CD O 
O O O O O O O O O Ö 

O 

(0 Lf) LO 00 LO 00 N LO qt 0) 

Cr) 00 N- i- M i- . - to . - (3) M 
(D N- CD N- N- N- 00 N- N- (0 04 
Ö O O O O O O O O Ö 

O 

N M qt i- N- CO N CO If) M i- 
(0 N- (N M N CO N- CO N 

CO 

W 
N- co Y/ 1_ W 1_ 1 

O 

1- M 
1A_ O O O O O O O O O 
O 

O 
ý ~ M CO M 

Tl- qt lU) OD C O 
co 

O 

W 
^ 

W 
N 

O 
A 
1_ 

A N- 
/A _ 

N- 

O O O O O O O O 
O 

aUio OU «Y 
L= m- NMe kr) e r- 00 Gý -y 

ävýQ Q 

U 



Appendix D: Publications (1) 

Multistage Neural Network Ensembles 

Yang, S., Browne, A. and Picton P. D. 

Proceedings of the Third International Workshop on Multiple Classifier Systems, 

Cagliari, Italy, Lecture Notes in Computer Science 2364, Heidelberg, Springer, ISBN 3- 

540-431818-1,91-97,2002. 

157 



Multistage Neural Network Ensembles 

Shuang Yang', Antony J3rownel and Philip D. Picton2 

'School of Computing, Information Systems and Mathematics, London Guildhall 
University, London EC3N 1JY, UK 

Email: syang@lgu. ac. uk 
Tel: (+44) 0207 320 1705, Fax: (+44) 0207 320 1707 

2School of Technology and Design, University College Northampton, Northampton 
NN2 6JD, UK 

Abstract. Neural network ensembles (some times referred to as com- 
mittees or classifier ensembles) are effective techniques to improve the 
generalization of a neural network system. Combining a set of neural net- 
work classifiers whose error distributions are diverse can lead to generat- 
ing more accurate results than any single network. Combination strate- 
gies commonly used in ensembles include simple averaging, weighted av- 
eraging, majority voting and ranking. However, each method has its lim- 
itations, dependent either on the application areas it is suited to, or 
due to its effectiveness. This paper proposes a new ensembles combina- 
tion scheme called multistage neural network ensembles. Experimental 
investigations based on multistage neural network ensembles are pre- 
sented, and the benefit of using this approach as an additional combina- 
tion method in ensembles is demonstrated. 

1 Introduction 

Combining the outputs of diverse classifiers can lead to an improved result [1, 
2]. Common ensemble combination strategies include simple averaging [8,9], 
weighted averaging [10], majority voting [11], and ranking [12,13). 

There are no unique criteria on the usage of all the above combination meth- 
ods. The choice mainly depends on the nature of the application the ensemble 
is being used for, the size and quality of training data, or generated errors on 
different regions of the input space. One combination method applied on the 
ensemble of a regression problem may generate good results, but may not work 
on a classification problem and vice versa. In addition, different classifiers will 
have an influence on the selection of the appropriate combination method. How- 

ever, empirical experiments reported to date cannot find an optimal method 
for selecting the combination strategy to be used. More theoretical development 

and experiments are needed to explore in this field. The ensemble combination 
technique most related to the work reported in this paper is stacking, as the 
new model outlined here inherits some ideas from stacking and develops them 
further. In this paper, we will propose a new model for ensemble combination 
method based on another neural network layer. 



1.1 Stacking 

Stacking [6] covers two areas of ensemble construction: preparing data and en- 
semble combination. Generally, stacking deals with two issues. Firstly, it uses 
the idea of cross-validation to select training data for ensemble members. Sec- 
ondly, it explores the notion of using the second level generalizers to combine the 
results of the first level generalizers (ensemble members). A feature of stacked 
generalization is that the information supplied to the first-level ensemble mem- 
bers comes from multiple partitioning of the original dataset, which divides that 
dataset into two subsets. Every ensemble member is trained by one part of the 
partitions, and the rest of parts are used to generate the outputs of the ensemble 
members (to be used as the second space generalizers (i. e. combiners) inputs). 
Then the second level generalizers are trained with the original ensembles out- 
puts and the second level generalizers output is treated as the correct guess. In 
fact, stacked generalization works by combined classifiers with weights accord- 
ing to individual classifier performance, to find a best combination of ensemble 
outputs. Based on the idea of the combining method of stacking, we propose a 
new type of ensemble neural network model called multistage ensemble neural 
networks. 

2 Multistage neural network ensembles 

Inspired by stacking, some researchers have realized that it is possible to con- 
struct a new combination method using a similar idea. 

As early as 1993, some experiments were done in digit recognition [14] by us- 
ing a single layer network to combine ensemble classifiers. Unfortunately, these 
experiments did not show any performance gain compared with other combina- 
tion strategies. It was claimed the failure was due to the very high accuracy of 
all the classifiers being combined. 

In 1995, Partridge and Griffith presented a selector-net approach [5]. The 
selector-net was defined as a network which used the outputs from a group of 
different trained nets as its input. The experiments based on this idea delivered 
that selector-net's performance was better than the populations of networks they 
were derived from. It clearly confirmed that this kind of ensemble method is bet- 
ter than individual neural networks. But no further exploitation has been done 
to compare the performance of this strategy with any other ensemble method. 

More recently, Kittler [15] stated that: "it is possible to train the output 
classifier separately using the outputs of the input classifiers as new features". 

Very recently, Zeng (7] used a single neural network as an approximator for a 
voting classifiers. It was claimed that storage and computation could be saved, 
at the cost of a little less accuracy. However, it is noticed here a neural network 
being used to approximate the behavior of the ensemble, instead of using it as 
part of the ensemble components. 

This paper extends the idea of stacking and investigates the use of a single 
neural network model as a combiner to combine the ensemble members results. 



The experimental results demonstrate that it is an improved approach which 
achieves the better generalisation performance of neural network ensembles. The 
major improvement of this combination method is it offers an alternative neural 
network ensemble model, which is proved effective after the generalisation im- 
provement obtained, compared with majority voting. 

First layer NNs 

-- - Second layer NNs 

Fig. 1. An illustration of a multistage ensemble neural network. 

The experiments on multistage neural network ensembles is based on a well 
trained group of diverse single neural networks (so called ensemble candidates). 
A single neural network is trained to combine these well trained neural nets 
results by concatenating their outputs together as its input. The reason of em- 
ploying another neural networks to combine ensemble candidates is relying on 
neural networks capability. A neural network can be trained to prerform complex 
functions by asjusting the connection weights. Except majority voting, other ap- 
proaches all adopt weights while combining. If so, why not use neural networks 
to assign weights to those ensemble members automatically instead of employ- 
ing some traditional mathematical method manually? The advantage of a neural 
network is its ability to automatically adjust the connection weights. Therefore, 

Ensemble Output 



Table 1. Summary of UCI machine learning depository data sets, where'*' signifies a 
multi-class data set. 

Data Set No. of Cases No. of Input features No. of Output features 
Breast-cancer-w 682 9 2 

Bupa-Liver 345 6 2 
Glass* 214 9 6 

Ionosphere 351 34 2 
Iris* 150 4 3 

Pima-Diabetes 768 8 2 

it is very natural to think of using a neural network to combine ensemble results. 
An illustration of the multistage neural network model described here is shown 
in Figure 1. 

In Figure 1, suppose there is a source data set S{sl, 82, ... s,, } and its corre- 
sponding target data set T{ti, t2i ... tit} , which are partitioned into two parts: test 
data and training data. The training data usually will be preprocessed by vari- 
ous methods in order to generate diverse results before they being applied to the 
first layer's neural network models: N1, N2, ... N,,,. The preprocessing methods on 
the training data set include distributing sequences randomly, noise injection, 
bagging, boosting or other methods. After training, the test data set will be 

applied to these ensemble candidates to access their performance. Afterwards, 
the whole training data set will be applied and each first layer neural networks' 
corresponding results (ni, n2, ... n,,, ) are used as the second layer neural network 
model's inputs. The second layer neural networks, was trained by using the first 
layers generated results on the whole training data as inputs combined with their 
target data set. Advantages of multistage ensemble neural networks include: 

- Multistage ensemble neural networks can be applied to both classification 
and regression problems. 

- For each ensemble candidate, normal data preparation methods can be ap- 
plied to them, and ensemble candidates can be trained separately by using 
various different neural network models and algorithms. 

- Generalization of these first layer neural networks when using this model can 
be tuned to be as diverse as possible, so the choices for the first layer neural 
network training are very flexible and allow a wide range of selections. 

3 Experiments 

To investigate the performance of multistage ensembles, six classification data 

sets are taken from UCI Machine Learning Depository to construct experimental 
datasets. Details of these data sets are listed in Table 1, where datasets marked 
with `*' are multi-class datasets. 



4 Experiments 

4.1 Data preparation 

For each ensemble candidates' training, each data set was randomly partitioned 
into three parts: training, validation and test data. The sequences of training data 
were randomly distributed before they were applied to the neural networks model 
(i. e., steps were taken to prepare the most diverse data among ensemble members 
for training). There were no overlapping data instances inside the training data 
sets. For most of the data sets listed in Table 1, this approach was effective in 
generating diverse training data sets. The exception to this were the Glass and 
Iris data set, where the bagging [3] method was applied, due to source data's 
small size. 

4.2 Experimental procedures 

Five single hidden layer neural networks trained by the backpropagation al- 
gorithm were generated as ensemble candidates for each ensemble. These five 
candidates were constructed with different sequences of training data, different 
neural network structures (numbers of hidden neurons) and different initializa- 
tion. Each neural network model was trained 20 times with random initialization 
of starting weights. The number of hidden neurons is changed from one to the 
number of inputs of each data set (time considerations prevented the exploration 
of networks with hidden layers larger than this). During training, the validation 
data set was used to prevent overfitting. As the experiments in this paper is con- 
centrated on comparing the performance of two ensemble combination methods. 
To make the things simpliest, the test data set is applied to the ensemble can- 
didates after their training. Those ensemble candidates with best generalisation 
performance were kept. Majority voting and multistage neural networks then 
applied to these same ensemble members to generate the combination results. 

After the training of the first layer's ensemble candidates, the whole source 
data is randomly disturbed again. 10-fold cross-validation [41 is applied to the 
second layer's neural network training in order to estimate the average perfor- 
mance. First the training data is injected into the ensemble members and their 
outputs are concatenated together with the corresponding target values as the 
input of the second layer's neural network. The training procedure and parameter 
setting for a neural network combiner are the same as an ensemble candidate's 
training. 

The result of the majority voting applied to 3 and 5 ensemble members are 
then compared with the performance of multistage neural networks by averaging 
over 10-fold cross-validation. 

5 Results 

Table 2 shows the results for these different combination strategies when combin- 
ing the best three ensemble candidates and all five ensemble candidates. In this 



Table 2. Percentage correct performance on test set of voting versus multistage net- 
works on UCI datasets. Sl.. S5 signify single networks, where each '#' indicates one of 
the three ensemble members selected for three-member combination. VI and V5 signify 
combination by voting with three and five ensemble members respectively, whilst M3 
and M5 signify combination by multistage neural network with three and five ensemble 
members respectively. 

Data Si S2 S3 S4 S5 V3 M3 V5 M5 
Breast-cancer-w 97.73# 98.48# 95.45 96.21 96.97# 97.21 97.35 97.35 97.5 

Bupa-Liver 75.0# 78.0# 77.0¢ 77.0 78.0 72.65 73.82 73.53 73.82 
Glass 42.19 46.88# 50.0# 45.31# 45.31 58.17 58.50 54.29 54.76 

Ionosphere 85.53 94.74# 93.42# 86.84# 86.84 96.0 96.29 96.0 96.29 
Iris 93.33# 92.0# 94.67# 90.67 90.67 97.60 98.0 97.6 98.0 

Pima-Diabetes 72.02 73.81#, 72.02#, 75.60#. 69.64 74.47 75.13 73.95 74.61 

table, the actual ensemble candidates selected for ensembles of three networks 
are marked with `#'. 

From these results, it can be seen that multistage neural networks always 
perform better than majority voting based on the same ensemble members, 
regardless the number of ensemble members used in combination is 3 or 5. 

6 Conclusions 

This paper has demonstrated that, on a wide range of datasets (including simple 
categorization and multiple categorization), multistage neural network ensembles 
offer improved performance when compared with majority voting as an ensem- 
ble combination method. The experimental results clearly show that statistic 
improvement can be made by using this new ensemble model on this range data 
of sets, when compared with another widely used ensemble technique such as 
majority voting. Currently, experiments are being carried out to investigate the 
exact theoretical reason for this performance improvement offered by multistage 
neural networks. The reason probably lies within differences between the kinds 
of decision surfaces a second layer network can model when compared to those 
decision surfaces that can be produced by majority voting. However, a clearer 
analysis and description of this area needs to be developed. In the future the 
intention is to develop and implement further experiments to investigate if the 
performance of multistage neural networks can be enhanced by using more en- 
semble members in the first layer, choice of training, validation and test datasets, 
and choice of neural network for the second layer combiner. It may be that these 
factors interact, and will allow this research to push the performance of such 
ensembles even further. 



References 

1. Turner, K., Ghosh, J.: Error correlation and error reduction in ensemble classi- 
fiers. Connection Science: Special Issue on Combining Artificial Neural Ensemble 
Approaches, 8(3&4), 385-404,1999. 

2. Sharkey, A. J. C., Sharkey, N. E., Chandroth, G. 0.: Neural nets and diversity. 
Neural Computing and Applications, 4,218-227,1996. 

3. Breiman, L.: Bagging predictors. Machine learning, 24 123-140,1996. 
4. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, and Ac- 

tive Learning. Advances in Neural Information Processing Systems, 7, MIT press, 
Editors: Tesauro, G., Touretzky, D. S. and Leen, T. K. pp. 231-238,1995. 

5. Partridge, D., Griffith, N. : Strategies for Improving Neural Net Generalisation. 
Neural Computing and Applications, 3,27-37,1995. 

6. Wolpert, D. H.: Stacked generalization. Neural Networks, 5,241-259,1992. 
7. Zeng, X., Martinez, T. R.: Using a Neural Network to Approximate an Ensemble 

of Classifiers. Neural Processing Letters, 12,225-237,2000. 
8. Turner, K., Ghosh, J.: Order statistics combiners of neural classifiers. In Proceed- 

ings of the World Congress on Neural Network, INNS press, Washington DC, 31-34, 
1995. 

9. Lincoln, W., Skrzypek, J.: Synergy of clustering multiple back propagation net- 
works. Advances in Neural Information Processing Systems-2, Touretzky, D., (ed. ), 
Morgan Kaufmann, 650-657,1990. 

10. Jacobs, R. A.: Methods for combining experts' probability assessments. Neural 
Computation, 7,867-888,1995. 

11. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Analysis 
and Machine Intell, 993-1001,1990. 

12. Al-Ghoneim, K., Kumar Vijaya B. V. K.: Learning ranks with neural networks. In 
Applications and Science of Artificial Neural Networks: Proceedings of the SPIE, 
2492,446-464,1995. 

13. Ho, T. K., Hull, J. J., Srihari, S. N.: Decision combination in multiple classifier 
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1), 
66-76,1994. 

14. Lee, D. S., Srihari, S. N.: Handprinted Digit Recognition: A Comparison of Al- 
gorithms. Pre-Proc. 3RD International Workshop On Frontiers In Handwriting 
Recognition, Buffalo, USA, 153-162,1993. 

15. Kittler, J.: Combining Classifiers: A Theoretical Framework. Pattern Analysis and 
Applications, 1,18-27,1998. 



Appendix E: Publications (2) 

Multistage Neural Networks: Adaptive Combination of Ensemble 
Results 

Yang, S., Browne A., Picton, P. D., Hudson B. D. and Whitley, D. 

The Proceedings of fourth International Conference on Recent Advances in Soft Computing, 

Nottingham, U. K. ISBN 1-84233-0764,55-60,2002. 

165 



Multistage Neural Networks: Adaptive Combination of 
Ensemble Results 

Shuang Yang', Antony Browne', Philip Picton 2 

'School of Computing 
London Metropolitan University 

London EC3N IJY, UK 
E-mail: (syang(a Igu. ac. uk) 

z School of Technology and Design 
University College Northampton, Northampton NN2,6JD, UK 

Brian D. Hudson 3 and David Whitley 3 

3 Centre for Molecular Design 
University of Portsmouth, Portsmouth PO 1 2DY, UK 

Abstract. In the past decade, more and more research has shown that ensembles of neural 
networks (some times referred to as committee machines or classifier ensembles) can be superior 
to single neural network models, in terms of the generalization performance they can achieve on 
the same datasets. In this paper, we propose a novel trainable neural network ensemble 
combination schema: multistage neural network ensembles. Two stages of neural network models 
are constructed. In the first stage, neural networks are used to generate the ensemble candidates. 
The second stage neural network model approximates a combination function based on the 
results generated by the ensemble members from the first stage. A sample of the data sets from 
UCI Machine Learning Depository and a human Gene data set are modeled using multistage 
neural networks and a comparison of the performance between multistage neural networks and a 
majority voting scheme is conducted. 

Keywords: neural network ensemble, combination strategy, multistage ensembles. 

1. Introduction 

It is well known that combining a set of neural network classifiers whose error distributions are 
diverse can lead to the generation of superior results than those achieved by any single classifier. 
The most common combination strategies used to combine the results of individual ensemble 
members are simple averaging [10,13], weighted averaging [6], majority voting [3] and ranking 
[2,4]. These are catalogued as fixed combination schemes, which require no prior training. One 
deficiency of such schemes feature is that weightings for the importance of the output of each 
ensemble member must be pre-chosen and then applied to produce the combination result. 

There is a trend to explore trainable combination methods which aim to find the optimal weights 
to be combined [7,9,11,15,16]. In this paper, we propose a new model for ensemble combination, 
based on another neural network layer, called multistage neural network ensembles. Unlike the 
conventional combination schema, the weights assigned to ensemble members will be generated 

166 



automatically by another neural network layer. The new model outlined here inherits some ideas 
from stacking [14] and develops them further. 

2. Multistage Neural Networks 

It appears attractive to make the combination process adaptive, so that no a-priori (and possibly 
incorrect) combination weightings need to be chosen. Therefore, a model is proposed where the 
procedure of combining ensemble classifiers is turned into the training of another neural network 
model. The structure of the multistage neural network ensembles is shown in Figure 1. 

4 First layer NNs 

Second layer NNs 

Figure 1. Illustration of multistage ensemble neural networks 

Referring to figure 1, suppose there is a source data set S{s1, s2,... s�} with its corresponding 
target data set T{t, 9 t2.. 1m } are partitioned into three parts: test data, training data and validation 
data. The training data usually are pre-processed by various methods in order to generate diverse 
results before they are applied to the first layer's neural network models: N1 , N2 ... Nw . The pre- 
processing methods on training data set include distributing sample presentation sequences 
randomly, noise injection, bagging, boosting or other methods. After training, the test data set are 
applied to these ensemble candidates to access their performance. Afterwards the whole training 
data is applied and each first layer neural networks' corresponding results (n,, n2... nw) are used 
as the second layer neural network model's inputs. The second layer neural networks is trained by 
using the first layers generated results on the whole training data as inputs combined with their 

167 

Ensemble Output I 



target data set. 

The advantages of multistage ensemble neural networks are: 

" For each ensemble candidate, the normal data preparation methods can be applied and 
ensemble candidates will be trained separately by using various different neural network 
models and algorithms. The generalization of these first layer neural networks are expected to 
be as diverse as possible in order to get the best ensemble result. Because of this, the choices 
for the first layer neural network training are very flexible and allow a wide range of 
selections. 

" The second layer of a single neural network is used as an ensembles' combiner to adaptively 
apply different weights to those first layer ensemble members in order to approximate a best 

combination function. There is a strong reason to believe that it can more accurately adjusting 
the weights which are assigned to ensemble members than manual methods. 

" Multistage ensemble neural networks can be applied to both classification and regression 
problem, unlike some other ensemble combination techniques. 

3. Experimental Results 

Five classification data sets taken from UCI Machine Learning Depository 
(http"//www ics uci. edu/mlearii/MLRepository.. html) and a splice data set from human DNA 

sequences [5,12] were used for these experiments. Since predicting splice junction sites is crucial 
in finding gene coding. The attempt using splice data set in this paper would explore the 
effectiveness of the multistage neural networks in the application of finding human gene 
sequences. The details of these data sets are listed in Table 1. 

Table 1. Summary of the data sets 

Data Number of 
Cases 

Number of Input features Number of Output features 

Breast-cancer -w 682 9 2 
Bu pa-Liver 345 6 2 
Ionosphere 351 34 2 
Iris* 150 4 3 
Pima-Diabetes 768 8 2 
Splice-Acceptor 1555 10 2 

Notations: ' - multi-class data set. 

For each ensemble candidates' training, each data set was randomly partitioned into three parts: 
training, validation and test data. The sequences of training data were randomly distributed before 

they were applied to the neural networks model (i. e., steps were taken to prepare the most diverse 
data among ensemble members for training). There were no overlapping data instances inside the 
training data sets. For most of the data sets listed in Table 1, this approach was effective in 

generating diverse training data sets. The exception to this was Iris data set, where the bagging [1] 

method was applied, due to the source data's small size. 

Nine single hidden layer neural networks trained by the backpropagation algorithm were 
generated as ensemble candidates for each ensemble. These nine candidates were constructed 
with different sequences of training data, different neural network structures (numbers of hidden 

168 



neurons) and different initialization. Each neural network model was trained 20 times with 
random initialization of starting weights. The number of hidden neurons was changed from two to 
the number of inputs of each data set (time considerations prevented the exploration of networks 
with hidden layers larger than this). During training, the validation data set was used to prevent 
overfitting. As the experiments in this paper was concentrated on comparing the performance of 
two ensemble combination methods, to make the things simpler, the test data set was applied to 
the ensemble candidates after their training. Those ensemble candidates with the best 
generalization performance were kept. Majority voting and multistage neural networks were then 
applied to these same ensemble members to generate the combination results. These nine single 
neural network's average performances of each data set (except Splice-Acceptor data whose 
performance was scaled on its own independent test data set) on the test data, which were 
generated from ten-fold cross validation approach are illustrated in table 2. 

Table 2. Ensemble candidates performance 

Data Single Neural Networks Performance 
1 2 3 4 5 6 7 8 9 

Breast -cancer-w 97.21 97.50 97.21 96.62 96.76 97.06 97.35 97.06 97.50 
Bupa-Liver 72.06 72.65 71.76 73.82 72.06 72.94 71.76 72.35 72.65 
Ionosphere 95.43 94.86 95.14 93.14 94.29 93.71 94.86 90.57 92.57 
Iris * 97.60 96.80 98.4 96.00 96.00 98.00 98.40 99.20 97.60 
Pima- Diabetes 73.03 74.08 72.50 74.21 71.32 69.87 68.68 70.00 69.74 
Splice-Acceptor 88.44 88.00 88.44 87.11 89.33 87.33 86.00 87.56 88.22 

After the training of the first layer's ensemble candidates, the whole source data was randomly 
distributed again. Ten-fold cross-validation [8] was applied to the second layer's neural network 
training in order to estimate the average performance. The exceptional case was the Splice- 
Acceptor data set. For this data set, there were independent 1105 instances of training data and 
450 instances of test data respectively. Hence it was not necessary to use any cross-validation 
approach. The procedure of the second layer of neural network model training is: First, the 
training data was injected into the ensemble members and their outputs were concatenated 
together with the corresponding target values as the input of the second layer's neural network. 
Second, The parameters of the second layer neural network model were chosen to be fixed: 
learning rate was 0.1 and the number of hidden neurons was two. These parameter settings were 
based on the empirical observation of a large number of training runs. It was noticed that the 
changing of parameters setting didn't effect the final combination result much, based on the 
experiments using the above datasets. In most of cases the best parameters combination was: 
learning rate of 0.1 and two hidden neurons. However the initialization does contribute strongly 
to the final result. Therefore, the second layer neural network model was trained 1000 times with 
random initialization of starting weights. 

The result of the majority voting applied to three, five and nine ensemble members were then 
compared with the performance of multistage neural networks by averaging over ten-fold cross- 
validation. In Table 4, all the results shown for the voting and multistage neural network are 
based on the same ensemble members for each group. The details for each combination group can 
be seen in Table 3. The figures present the average performance of the two ensemble combination 
methods except the Splice-Acceptor data set who has independent test data were shown in Table 
4. 

169 



Table 3. The selection of ensemble members 

Data Th actual ensemble members for each groups of ensemble 
models 
3 5 9 

Breast-cancer -w 1,2,5 1,2,3,4,5 1,2,3,4,5,6,7,8,9 
Bupa-Liver 1,2,3 1,2,3,4,5 1,2,3,4,5,6,7,8,9 
Ionosphere 2.3.4 1,2,3,4,5 1,2,3,4,5,6,7,8,9 
Iris * 1,2,3 1,2,3,4,5 1,2,3,4,5,6,7,8,9 
Pima- Diabetes 2,3,4 1,2,3,4,5 1,2,3,4,5,6,7,8,9 
Splice-Acceptor 4,5,7 2,3,4,5,7 1,2,3,4,5,6,7,8,9 

Table 4. Ensemble performance comparison between multistage neural networks and majority 
voting 

Data Voting Accuracy (%) Multistage Neural Networks Accuracy 
3 5 9 3 5 9 

Breast-cancer -w 97.21 97.35 97.65 97.35 97.5 97.8 
Bupa-Liver 72.65 73.53 73.82 73.82 74.12 74.41 
Ionosphere 96.0 96.0 95.72 96.0 96.29 96.57 
Iris * 98.8 97.6 98.8 98.8 98.8 99.2 
Pima- Diabetes 74.47 73.95 73.42 75.13 75.53 76.58 
Splice-Acceptor 89.11 88.89 88.67 89.33 89.33 89.78 

From these results, it can be seen that multistage neural networks always perform better than 
majority voting based on the same ensemble members, regardless the number of ensemble 
members used in combination was three, five or nine. The results have demonstrated that, on a 
wide range of data sets (including simple categorization and multiple categorization), multistage 
neural network ensembles offer improved performance when compared with majority voting as 
an ensemble combination method. 

The intention of using different number of ensemble members being combined was to find 
whether the ensemble numbers will effect the performance of multistage neural networks. The 
current experimental results show that the multistage approach generalization improved steadily 
while the number of ensemble numbers was increased. 

4. Conclusion 

This paper has demonstrated that multistage ensembles, where the adaptive properties of a second 
layer network are used to combine the outputs of the individual ensemble members, offer 
enhanced performance over a simple voting based combination method. Currently, experiments 
are being carried out to investigate the exact theoretical reason for this performance improvement. 
The reason probably lies within differences between the kinds of decision surfaces a second layer 
network can model when compared to those decision surfaces that can be produced by majority 

170 



voting. However, a clearer analysis and description of this area needs to be developed. In future, 
the effect of the choice of training, validation and test data sets, and choice of neural network 
architecture for the second layer combiner will be investigated. It may be that these factors 
interact, and will allow this research to push the performance of such ensembles even further. 

References 

[1] L. Breiman (1996). Bagging predictors, Machine learning, vol. 26(2), pages 123-140. 
[2] K. Ghoneim and B. V. K. Vijaya (1995). Learning ranks with neural networks, 

Applications and Science of Artificial Neural Networks: Proceedings of the SPIE, vol. 
2492, pages 446-464. 

[3] L. Hansen and P. Salamon (1990). Neural network ensembles. IEEE Trans. on Pattern 
Analysis and Machine Intelligence, vol. 12, pages 993-1001. 

[4] T. K. Ho, J. J. Hull and S. N. Srihari (1994). Decision combination in multiple classifier 
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16(1), 
pages 66-76. 

[5] B. Hudson, D. Whitley and A. Browne (2002). Biological data mining: high fidelity rule 
extraction from trained neural networks. Proceddings of the Fourteenth European 
Symposium on Quantitative Structure-Activity Relationships, Bournemouth, UK (in press). 

[6] R. A. Jacobs (1995). Methods for combining experts' probability assessments. Neural 
Computation, vol. 7, pages 867-888. 

[7] J. Kittler (1998). Combining Classifiers: A Theoretical Framework. Pattern Analysis & 
Application, vol. 1, pages 18-27. 

[8] A. Krogh and J. Vedelsby (1995). Neural Network Ensembles, Cross Validation, and 
Active Learning. Advances in Neural Information Processing Systems, MIT press, G. 
Tesauro, D. S. Touretzky and T. K. Lee (eds. ), vol. 7, pages 231-238. 

[9] D. S. Lee and S. N. Srihari (1993). Handprinted Digit Recognition: A Comparison of 
Algorithms. Pre-Proc. 3RD International Workshop On Frontiers In Handwriting 
Recognition, Buffalo, USA. pages 153-162. 

[10] W. Lincoln and J. Skrzypek (1990). Synergy of clustering multiple back propagation 
networks. Advances in Neural Information Processing Systems-2, Morgan Kaufmann, D. 
Touretzky (ed. ), pages 650-657. 

[11] D. Partridge and N. Griffith (1995). Strategies for Improving Neural Net Generalisation. 
Neural Computing and Applications, vol. 3, pages 27-37. 

[12] T. A. Thanaraj (1999). A clean data set of EST-confirmed splice sites from Homo sapiens 
and standards for clean-up procedures. Nucleic Acids Res., vol. 27(13), pages 2627-2637. 

[13] K. Turner and J. Ghosh (1995). Order statistics combiners of neural classifiers. 
Proceedings of the World Congress on Neural Networks, Washington D. C.: INNS press, 
pages 31-34. 

[14] D. H. Wolpert (1992). Stacked generalization. Neural Networks, vol. 5, pages 241-259. 
[15] S. Yang, A. Browne and P. D. Picton (2002) Multistage neural network ensembles. 

Lecture Notes in Computer Science: Proceedings of the Third International Workshop on 
Multiple Classifier Systems, Cagliari, Italy, Heidelberg, Springer., vol. 2364, Pages 91- 
97. 

[16] X. Zeng and T. R. Martinez (2000). Using a Neural Network to Approximate an Ensemble 
of Classifiers. Neural Processing Letters, vol. 12, pages 225-237. 

171 


