
London Metropolitan University

Resilience of an embedded architecture
using hardware redundancy

by

Victor Castano

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE

Prof. Hassan Kazemian, Chair

FLSC, London Metropolitan University

Dr. Kai Goebel, External Examiner

Amherst, NASA

Dr Vassil Vassilev, Internal Examiner

FLSC, London Metropolitan University

London, UK
December 2014

ii

Abstract

In the last decade the dominance of the general computing systems market has

being replaced by embedded systems with billions of units manufactured every

year. Embedded systems appear in contexts where continuous operation is of

utmost importance and failure can be profound.

Nowadays, radiation poses a serious threat to the reliable operation of safety-

critical systems. Fault avoidance techniques, such as radiation hardening, have

been commonly used in space applications. However, these components are

expensive, lag behind commercial components with regards to performance and

do not provide 100% fault elimination. Without fault tolerant mechanisms, many

of these faults can become errors at the application or system level, which in

turn, can result in catastrophic failures.

In this work we study the concepts of fault tolerance and dependability and

extend these concepts providing our own definition of resilience. We analyse the

physics of radiation-induced faults, the damage mechanisms of particles and the

process that leads to computing failures. We provide extensive taxonomies of 1)

existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-

art electronics, analysing and comparing their characteristics. We propose a

detailed model of faults and provide a classification of the different types of

faults at various levels. We introduce an algorithm of fault tolerance and define

the system states and actions necessary to implement it. We introduce novel

hardware and system software techniques that provide a more efficient

combination of reliability, performance and power consumption than existing

techniques. We propose a new element of the system called syndrome that is the

core of a resilient architecture whose software and hardware can adapt to

reliable and unreliable environments. We implement a software simulator and

disassembler and introduce a	
 testing	
 framework	
 in	
 combination	
 with	
 ERA’s	

assembler and commercial hardware simulators.

!
!
!
!
!

!
!
!

Dedicated!to!my!parents

!

Acknowledgments

Special! thanks! to! my! advisor! and! mentor! Prof.! Igor! Schagaev! for! helping! me!

define! my! area! of! research! and,! more! importantly,! for! his! guidance! and!

persistence!during!this!process.!This!work!would!not!have!been!possible!without!

our! endless! discussions.! Without! doubt,! this! journey! has! been! the! greatest!

professional!challenge!of!my!career.!Likewise,!I!consider!myself!very!fortunate!to!

be!able!to!thank:!

• My! second! advisor! Dr.! Nicholas! Ioannides! for! his! support! and! helpful!

suggestions;!

• My! third! advisor! Dr.! Eugene! Zouev! for! his! helpful! comments! on! System!

Software! and! for! his!work! in! the!development! of! an! assembler! for!ERA’s!

architecture;!

• Dr.! Kai! Goebel,! deputy! area! lead! of! the! Discovery! and! Systems! Health!

Technology! Area! at! NASA! Ames! Research! Center! and! Dr.! Vassil! Vassilev,!

Senior! lecturer! and! researcher! at! London! Metropolitan! University! for!

investing! their! valuable! time! reading! this! work! and! for! their! valuable!

feedback!and!support!during!the!viva!process;!

• The! reviewers! that! approved! my! progression! and! gave! me! valuable!

feedback! during! the! research! meetings! including:! Dr.! Boris! Cogan,! Dr.!

Anoosh!Nabijou’s,!Dr.!Shahram!Salekzamankhani!and!Prof.!Mike!Brinson;!

• Dr.! Thomas! Kaeghi! for! his! previous! research! work! in! ERA’s! system!

software;!

• Alex! Petuhov,! for! his! active! participations! and! views! in! those! early!

brainstorming!sessions!with!Prof.!Schagaev;!

• Harry!Benetatos,! for!his! trust!and!support!and! for! taking!me!on!board! to!

teach!some!of!his!modules;!

• Robert! and! Sidney! Dourmashkin! for! their! constant! caring! advice! and!

encouraging!support;!

!

!
iv!

• Dr.!Anne!Delextrat,!Dr.!Daniel!Cohen!and!Dr.!Jo!Gills!for!their!friendship!and!

for!the!necessary!coffee!breaks;!

• Catherine! Lee,! for! her! honest! professional! advice! and! flexibility! when! I!

most!needed!it.!!!!

• My! parents,! Carolina! and! Fernando! for! their! unconditional! love! and! for!

being!always!there.!!

• My!partner!Alicia,!who!has!been!exceptionally!supportive!and!has!given!me!

the!freedom!to!work!without!objection;!

• My!good!friends!Miguel!Suarez,!Francisco!Hechavarría,!Freddy!de! la!Cruz,!

and!Kasra!Motamedi,!who!suffered!my!mood!in!so!many!occasions!

• Alex!and!Josephine!Mitrides!for!showing!me!what!hard!work!really!means!

This! research! was! supported! in! part! with! a! Vice>chancellor’s! Research!

Scholarship! awarded!by! the!Faculty!of! Life! Sciences! and!Computing! at! London!

Metropolitan!University.!!!

!

Contents
Abstract ... ii

Acknowledgments .. iii

Contents .. v

List of Figures ... xiii

List of Tables ... xix

List of Equations .. xxi

Nomenclature .. xxv

Introduction ... 1

1.1. Motivation ... 1

1.2. Scope and Contribution ... 7

1.3. Structure .. 9

Resilience .. 11

2.1. System failure lifecycle .. 12

2.2. Resilience: Attributes and measures ... 14

2.3. Reliability ... 16

2.3.1. Performance and Reliability ... 17

2.3.1.1. Power-reliability wall ... 17

2.3.1.2. Reliability within the vicious cycle ... 19

2.3.2. Reliability and unreliability functions ... 20

2.3.3. Probability density function .. 22

2.3.4. Failure rate function ... 23

2.3.5. Cumulative hazard function .. 24

2.3.6. Bathtub curve of failure rates ... 25

vi

2.3.7. Mean time between failures (MTBF) .. 27

2.3.8. Mean time to failure (MTTF) .. 29

2.3.9. Reliability prediction ... 30

2.3.9.1. Serial Reliability .. 31

2.3.9.2. Parallel reliability: Redundancy and fault tolerance 33

2.3.9.3. Mixed reliability: Serial and Parallel ... 35

2.4. Safety ... 37

2.5. Security .. 38

2.5.1. Integrity ... 38

2.5.2. Maintainability .. 38

2.5.2.1. Recoverability ... 39

2.5.2.2. Serviceability or Testability, T(t) .. 40

2.5.2.3. Coverage .. 41

2.5.3. Availability ... 43

2.5.3.1. Instantaneous or point availability, A(t) .. 45

2.5.3.2. Average uptime availability (or mean availability), A(t) 45

2.5.3.3. Limiting or Steady-state availability, A(∞) .. 46

2.5.3.4. Inherent availability, AI .. 46

2.5.3.5. Achieved availability, AA ... 47

2.5.3.6. Availability-recoverability-reliability relationship 47

2.6. Performability .. 48

2.7. Resilience ... 50

2.7.1. Requirements .. 52

2.7.2. Effectiveness of resilience .. 52

vii

2.8. Conclusion ... 54

Dealing with faults: redundancy ... 58

3.1. Handling faults: design strategies ... 59

3.2. Fault avoidance ... 60

3.3. Fault tolerance: using redundancy .. 62

3.3.1. Redundancy notation ... 65

3.3.2. Prognostics: Health management ... 67

3.4. Structural redundancy: HW(S)... 67

3.4.1. Static redundancy ... 69

3.4.1.1. Triple modular redundancy: HW(3S)+HW(δS) 69

3.4.1.2. Comparing the Reliability of Simplex and TMR with perfect voter
systems .. 71

3.4.1.2.1. Reliability of TMR with voting .. 73

3.4.1.3. N-modular redundancy: HW(nS)+HW(δS) ... 74

3.4.2. Dynamic redundancy .. 76

3.4.2.1. Dual modular redundancy: HW(2S)+HW(δS) 77

3.4.2.1.1. Redundant execution ... 78

3.4.2.2. Standby redundancy .. 78

3.4.2.3. Pair and spare .. 81

3.4.3. Hybrid redundancy ... 81

3.5. Information redundancy ... 84

3.5.1. Error Detection Codes: EDC .. 88

3.5.2. Error Correction Codes: ECC ... 89

3.5.2.1. SEC-DED: Hamming and Hsiao: HW(δI) ... 91

3.5.2.1.1. SEC-DEDlimitations and alternative techniques 92

viii

3.5.2.2. Complex codes ... 95

3.6. Time redundancy: HW(T) .. 97

3.6.1. Concurrent error detection: Basics of time redundancy 97

3.6.1.1. Self-duality ... 100

3.6.2. Alternating logic .. 101

3.6.3. Recomputing with shifted operands (RESO) .. 102

3.6.4. Recomputing with rotated operands (RERO) ... 105

3.6.5. Recomputing with swapped operands (RESWO)...................................... 106

3.6.6. Recomputing with comparison (REDWC) ... 106

3.7. Redundancy schemes comparison .. 107

3.8. Conclusion ... 108

Impact of Radiation on electronics of embedded systems 112

4.1. Introduction ... 112

4.2. Radiation and its effects on electronics .. 113

4.3. Damage mechanisms... 117

4.4. Radiation macro effects .. 118

4.5. Single event effects (SEE) .. 123

4.5.1. Physical mechanisms responsible for SEEs ... 124

4.5.1.1. Charge deposition .. 124

4.5.1.2. Charge transport and collection .. 131

4.5.1.3. Circuit level response ... 133

4.5.2. System level response .. 137

4.5.2.1. Single event upsets (SEUs): conventional upset mechanisms 137

4.5.2.1.1. Cell upsets .. 141

ix

4.5.2.2. Single event transient (SET): an emerging upset mechanism 143

4.5.2.3. Single event functional interrupt (SEFI) ... 147

4.5.2.4. Single event latchup (SEL) and other destructive effects 152

4.5.2.4.1. Single event latchup ... 152

4.5.2.4.2. Single event hard error (SHE or SEHR) or stuck bits 154

4.5.2.4.3. Single event snapback (SES or SESB) .. 155

4.5.2.4.4. Single event burnout (SEB or SEBO) .. 156

4.5.2.4.5. Single event gate rupture (SEGR) ... 157

4.5.2.4.6. Single event dielectric rupture (SEDR) ... 158

4.6. Conclusion ... 158

FT models ... 161

5.1. Models ... 162

5.2. Fault model .. 167

5.3. Classification of faults by origin ... 169

5.3.1. Level of abstraction and fault models .. 169

5.3.2. Cause of faults... 171

5.3.2.1. Specification mistakes .. 171

5.3.2.2. Defects ... 171

5.3.2.3. Operating environment ... 171

5.3.3. Phase of creation and occurrence of faults .. 173

5.3.4. Nature/dimension ... 173

5.3.5. System boundaries ... 173

5.3.6. Phenomenological cause .. 174

5.3.7. Capability/Objective/Intent .. 174

x

5.4. Classification of faults by manifestation ... 176

5.4.1. Response-timeliness ... 176

5.4.2. Consistency ... 178

5.4.3. Maintainability: detectability, diagnosability and recoverability 180

5.5. FT modelling .. 187

5.5.1. Trading P, R, E ... 188

5.5.2. GAFT: Generalized algorithm of fault tolerance syndrome support 190

5.5.3. System estates and actions to implement fault tolerance 194

5.6. Conclusion ... 197

Hardware Support for Resilience .. 199

6.1. ERA concept, system design and hardware elements 200

6.2. ERA hardware configuration ... 203

6.2.1. Active Zone ... 203

6.2.2. Passive Zone .. 208

6.2.3. Interfacing zone .. 209

6.3. ERA reconfigurability ... 209

6.3.1. T logic for memory management ... 212

6.3.2. T-Logic support of configurations in ERA .. 213

6.4. Syndrome .. 214

6.4.1. Syndrome use ... 214

6.4.2. Location access and way of operation of the syndrome 220

6.4.3. Syndrome: Passive Zone Configurations .. 223

6.4.3.1. 32 bit mode .. 224

6.4.3.2. 16-bit mode .. 225

xi

6.5. Graceful Degradation .. 225

6.5.1. Graceful Degradation – Markov analysis .. 227

6.6. Implementation constraints .. 230

6.6.1. Memory Addressing .. 230

6.6.2. Interfacing Zone: The syndrome as memory addressing controller 232

6.6.3. Access to the syndrome .. 233

6.7. System software support .. 234

6.7.1. Hardware checking process via SW .. 234

6.7.2. Software support for reconfiguration .. 239

6.7.3. Hardware condition monitor by system software 242

6.8. Programming Language for the Prototype ... 245

6.9. Conclusions .. 245

Implementation: Hardware Prototype, Simulation and Testing........................ 248

7.1. Instruction Execution .. 249

7.2. Instruction Set ... 252

7.3. ERA hardware prototype ... 256

7.3.1. Architectural Comparison ... 257

7.4. ERA testing and debugging .. 263

7.4.1. Testing of the board .. 263

7.4.2. Functional testing of the ERRIC processor .. 267

7.5. ERA’s assembler .. 271

7.6. ERA’s simulator: Dissimera .. 277

7.6.1. Architecture .. 277

7.6.2. Disassembler Log Sample ... 286

xii

7.7. Conclusion ... 287

Conclusion ... 289

8.1. Next steps .. 293

8.2. Personal contributions .. 294

References ... 296

Appendix .. 328

Appendix B

List of Figures

Figure 2-1. System failure lifecycle within a three universe model 12

Figure 2-2. Failure-fault transition between different levels of a system ... 13

Figure 2-3. A non-repairable system with two states .. 16

Figure 2-4. Growth in performance since the mid-1980's (Hennessy and

Patterson, 2006) ... 17

Figure 2-5. The Vicious Cycle and the evolution of computing systems.

1950-2005 .. 19

Figure 2-6. Reliability R(t) and Failure probability F(t) functions over time t

 .. 21

Figure 2-7. Representation of Reliability, Unreliability and the probability

density function .. 23

Figure 2-8. A bathtub curve of failure rates. During normal operation

period	
 the	
 failure	
 rate	
 λ	
 is	
 constant	
 and	
 faults	
 are	
 independent 26

Figure 2-9. Logic diagram of Serial reliability ... 31

Figure 2-10. Parallel reliability ... 34

Figure 2-11. Reliability of a combination of serial/parallel components

with a voter .. 36

Figure 2-12. A basic fail-safe system with three states 37

Figure 2-13. Preventive and corrective maintenance on a three state

repairable system .. 39

Figure 2-14. A repairable system with two states and corrective

maintenance .. 40

Figure 2-15. Four phases of fault handling and their coverage 42

Figure 2-16. Failure and repair cycle of a system ... 43

Figure 2-17. Relation between Time to failure (TTF), time between failures

(TBF) and time to repair (TTR) ... 44

Figure 2-18. Attributes and measures of resilience ... 50

xiv

Figure 3-1. Mechanisms to deal with faults within the fault-failure lifecycle

 .. 59

Figure 3-2. Redundancy types and their implementation (Schagaev, 2001)

 .. 64

Figure 3-3. Taxonomy of structural HW redundancy .. 68

Figure 3-4. Triple modular redundancy (TMR) with a voter 70

Figure 3-5. Comparative reliability of TMR and Simplex systems

(Ravishankar K. Iyer, 2003). .. 72

Figure 3-6. N-modular redundancy with a voter: M-out-of-N system 75

Figure 3-7. Redundancy applied on different levels of abstraction: (a) Three

logic gates in a TMR at the logic or gate level of abstraction; (b) Three

memory modules in a TMR configuration at the circuit abstraction level; (c)

Three microprocessors in a TMR configuration at the chip level 76

Figure 3-8. Dual modular redundant (DMR) structure 77

Figure 3-9. Simple standby sparing configuration ... 79

Figure 3-10. Multiple standby spares with n-to1 switch 79

Figure 3-11. Typical reconfiguration steps for backup sparing 79

Figure 3-12. Pair and spare configuration .. 81

Figure 3-13. Hybrid approach using TMR with spaces 82

Figure 3-14. A triple-duplex approach ... 83

Figure 3-15.Transient faults tolerant TRAM (Schagaev and Buhanova,

2001) .. 84

Figure 3-16. Coding-encoding process of a d-bit word into a c-bit word 85

Figure 3-17. Taxonomy of information redundancy coding techniques 87

Figure 3-18. Coding-encoding in a memory block with parity checking 88

Figure 3-19. Basic ECC memory scheme including calculation, checking and

correcting .. 90

xv

Figure 3-20. Memory interleaving of four 3-bit words with a 4 interleaving

distance (ID) .. 93

Figure 3-21. Taxonomy of time redundancy techniques 97

Figure 3-22. Transient fault detection mechanism based on redundant

execution ... 98

Figure 3-23. Transient and permanent fault detection mechanism based on

redundant execution ... 98

Figure 3-24. Time redundancy technique based on alternating logic........ 101

Figure 3-25. ALU concurrent error detection using recomputing with

shifted operands (RESO-k) ... 103

Figure 3-26. ALU concurrent error detection using recomputing with

rotated operands ... 105

Figure 4-1.Taxonomy of radiation effects in silicon based electronics 116

Figure 4-2. Atomic lattice displacement ... 117

Figure 4-3. Schematic of a MOS transistor .. 120

Figure 4-4. Schematic of the motion of electron holes in a silicon oxide .. 121

Figure 4-5. Electronic, nuclear and total stopping power of protons in

silicon, computed with PSTAR from NIST laboratory (Berger et al., 2005)

 ... 126

Figure 4-6. Electronic, nuclear and total stopping power of electrons in

silicon computed with ESTAR from NIST laboratory (Berger et al., 2005)

 ... 127

Figure 4-7. Bragg peaks: LET (MeV/cm2) of the standard components of a

16MeV/nucleon	
 cocktail	
 versus	
 depth	
 in	
 silicon	
 (μm)	
 (McMahan et al.,

2004) ... 128

Figure 4-8. Energetic particle strike and generation of electron hole pairs:

a) direct ionisation due to heavy strike; b) indirect ionisation due to proton

strike .. 129

Figure 4-9. Funnelling effect and charge collection mechanisms (Messenger

and Ash, 1992) ... 132

xvi

Figure 4-10. Funneling effect and charge collection mechanisms after a

particle strike on a p-n junction (Mavis, 2002) .. 133

Figure 4-11. Sensitive areas to SEU in a DRAM memory array (Bougerol et

al., 2008) ... 142

Figure 4-12. Traditional propagation of an SET in combinational logic ... 143

Figure 4-13. Effects of logical and electrical masking on a pipeline stage

(Ramanarayanan et al., 2009) .. 145

Figure 4-14. Latch window masking; temporal relationship of latching a

data SET as an error (Mavis and Eaton, 2002) .. 146

Figure 4-15. IRF 150 power MOSFET burnout: a) Optical view of burnout

area on the surface, b) Scanning electron microscope (SEM) sectional view

of a burnout area with 1000x magnification (Stassinopoulos et al., 1992)

 ... 156

Figure 4-16. SEGR as a result of the impact of a highly energetic particle.

Holes from the particle's track aggregate under the gate oxide increasing

the high field of the gate oxide to the dielectric breakdown point

(Allenspach et al., 1994) ... 157

Figure 5-1. New feature of an FT system: reliability ... 162

Figure 5-2. Fault tolerance model of a computer system 165

Figure 5-3. Input-response mechanism of a component C with single output

 ... 176

Figure 5-4. Input-response mechanism of a component C with replicated

output .. 178

Figure 5-5. Basic testing flow of a circuit under test (CUT) 181

Figure 5-6. Fault diagnosis and equivalent faults. (a) example of equivalent

faults. (b)Fault detection anddiagnosis vs vectors.. 182

Figure 5-7. Example of non-diagnostic detection equivalence 183

Figure 5-8. Dominance and equivalence relationships of circuit lines 184

Figure 5-9. Performance, reliability and power concerns on the design of

embedded systems ... 187

xvii

Figure 5-10. Reconfiguration purposes for fault tolerance 188

Figure 5-11. GAFT: Generalized algorithm of fault tolerance 190

Figure 5-12. System recovery time according the level of implementation of

checking and recovery schemes .. 192

Figure 5-13. System states sequence of actions for FT 194

Figure 6-1. System zones from a information processing point of view 201

Figure 6-2. Information processing in ERA .. 201

Figure 6-3. Architecture of the active zone of ERA .. 206

Figure 6-4.Check Generator and Checking Schemes .. 207

Figure 6-5. Algorithm of reliability configuration using T-LOGIC................ 211

Figure 6-6. Energy-wise algorithm of configuration using T-LOGIC 212

Figure 6-7.	
 Processor	
 structure	
 with	
 “separation	
 of	
 concerns” 215

Figure 6-8. Syndrome purposes ... 217

Figure 6-9. Syndrome for reconfigurable architecture 218

Figure 6-10. 32 bit degradation phases.. 226

Figure 6-11. 16 bit degradation phases.. 226

Figure 6-12. Markov model for the ERRIC memory system 229

Figure 6-13. Reduced Markov model for the ERRIC memory system 229

Figure 6-14.Theoretical memory configuration for reconfigurability 230

Figure 6-15. MMU and syndrome as memory controllers 231

Figure 6-16. Ensuring HW integrity through program test execution 234

Figure 6-17. Regular sequence of program execution with test of HW

integrity to detect permanent faults .. 235

Figure 6-18. Ensuring HW integrity through program test execution to

detect transient faults ... 236

xviii

Figure 6-19. Ensuring HW integrity through program test execution to

detect both transient and permanent faults ... 236

Figure 6-20. Tasks & tests combined ... 238

Figure 6-21. Hardware state diagram .. 243

Figure 7-1.	
 Simple	
 version	
 of	
 the	
 Prototype’s	
 Instruction	
 Execution	
 flow 249

Figure 7-2. Instruction Execution Flow (Extended version) 250

Figure 7-3. Instruction Format ... 252

Figure 7-4. ERA prototype board ... 256

Figure 7-5. Addressing modes of the x86 architecture 260

Figure 7-6. Simulation Results of Unit Test of the SUB instruction using

Quartus II Simulator .. 270

Figure 7-7. Flow of ERRIC testing (top) and flow of ERRIC testing with the

help of a disassembler ... 272

Figure 7-8. Design of the Interface of the current version of the simulator

 ... 278

Figure 7-9. Memory allocation of a program in ERA ... 279

Figure 7-10. Screenshot of the current version of Dissimera 281

Figure 7-11. Flow of ERRIC testing (top) and flow of ERRIC testing with the

help of a disassembler ... 282

Figure 7-12.	
 Caller	
 Graph	
 of	
 Dissimera’s	
 main	
 function	
 	
 1/2 284

Figure 7-13.	
 Caller	
 Graph	
 of	
 Dissimera’s	
 main function 2/3 285

List of Tables

Table 2-1. Reliability-Recoverability-Availability relationship 48

Table 3-1. Redundancy classifiers (Schagaev, 2001) .. 65

Table 3-2. Examples of notation of HW based redudancy 66

Table 3-3. Examples of notation of SW based redudancy 66

Table 3-4. ECC-TMR comparison ... 94

Table 3-5. EDC-ECC storage array overheads, based on (Slayman, 2005). ... 95

Table 3-6. Comparison structural-, time- based FT mechanisms 107

Table 4-1. Characteristics of radiation macroeffects 119

Table 4-2. Type of errors and how to fix them.. 134

Table 4-3. Classification of single event effects .. 136

Table 4-4. Long and short term radiation effects on different manufacturing

technologies - X1 - Except SOI ... 137

Table 4-5. Classification of SEFI ... 149

Table 4-6. Classification of SEL ... 153

Table 5-1. Typical examples of HW faults .. 163

Table 5-2. Classification of faults by origin .. 168

Table 5-3. Classification of faults by manifestation .. 175

Table 6-1. T-LOGIC rotation ... 210

Table 6-2. Possible system configurations using T-LOGIC 213

Table 6-3. 16bit addressing modes in RA ... 223

Table 6-4. 32 bit addressing modes in RA .. 224

Table 7-1. Explanation of instructions of current ISA 253

Table 7-2. CND operation flags ... 254

xx

Table 7-3.	
 Device’s	
 memory	
 map ... 257

Table 7-4. Comparison of Hardware architectures ... 258

Table 7-5. Supported Adressing Modes ... 260

Table 7-6. Offset Sizes Encoded in instructions .. 261

Table 7-7. Comparison of Selected Instuctions ... 262

Table 7-8. Test results of reading and writing functions of U5 and U7 SRAM

memory modules and their interconnecting elements 266

Table 7-9. Example of code trnsformed into assembly code by the

assembler ... 276

List of Equations

Equation 2.1. Surviving and failed components at time t 20

Equation 2.2 – Probability of survival of components at time t 21

Equation 2.3. Probability of failure of components at time t 21

Equation 2.4 – Reliability and Probability of failure of components at time t

 .. 21

Equation 2.5. Probability density function as a function of Unreliability 22

Equation 2.6. Probability density function as a function of Reliability 22

Equation 2.7. Probability of failure during the time range [0,t] 22

Equation 2.8 – Reliability during the time range [0,t] ... 22

Equation 2.9. Failure rate as failures vs components at time t 23

Equation 2.10. Failure rate as a function of reliability and probability

density .. 24

Equation 2.11. Average failure rate ... 24

Equation 2.12. Failure rate function as a function of reliability...................... 24

Equation 2.13. Integration of the failure rate from time 0 to t. 25

Equation 2.14. Reliability at time t with constant failure rate λ 25

Equation 2.15. Probability of failure per unit time (MTBF). 28

Equation 2.16 ... 28

Equation 2.17 ... 28

Equation 2.18. General expression of MTBF ... 28

Equation 2.19. MTBF for time independent failure distributions with

constant rate of failures ... 29

Equation 2.20. MTBF for time independent failure distributions with

constant rate of failures ... 29

xxii

Equation 2.21. Mean time to failure (MTTF) .. 29

Equation 2.22. Failure rate as the inverse of MTTF ... 29

Equation 2.23. MTBF as a function of MTTF, MTTD and MTTR 30

Equation 2.24. System reliability of a serial system .. 32

Equation 2.25. Failure rate of a serial system .. 32

Equation 2.26. Mission time function MT with threshold level r 32

Equation 2.27. Mission time function MT at a given time 32

Equation 2.28. Mission time function MT with constant failure rate 32

Equation 2.29. Mission time function MT for non-redundant systems with n

components .. 32

Equation 2.30. Mission time to failure of a system with constant failure rate

 .. 33

Equation 2.31. General reliability of a 1-out-of-3 parallel system 34

Equation 2.32. Reliability of a 1-out-of-3 parallel system with constant

failure rate .. 34

Equation 2.33. Mean time to failure of a 1-out-of-3 parallel system with

constant failure rate .. 34

Equation 2.34. General reliability of a 1-out of n parallel system with

constant failure rate .. 35

Equation 2.35. General reliability of a parallel section of a specific mixed

serial/parallel system .. 36

Equation 2.36. General reliability of a parallel section of a specific mixed

serial/parallel system .. 36

Equation 2.37. General reliability of a parallel section of a specific mixed

serial/parallel system .. 36

Equation 2.38. Availability as reliability and recoverability 37

Equation 2.39. Maintainability of a system ... 39

Equation 2.40. Recoverability of a system .. 40

xxiii

Equation 2.41. Mean time to repair (MTTR) and Mean time to detection

(MTTD) of a system ... 40

Equation 2.42. Mathematical definition of coverage ... 41

Equation 2.43. Coverage as a function of fault detection, diagnosis,

containment and recovery coverages ... 43

Equation 2.44. Mean time between failures with average failure and system

repair .. 44

Equation 2.45. Probability that the system has been functional since last

repair time for 0 ri < t. .. 45

Equation 2.46. Instantaneous or point availability of a repairable system 45

Equation 2.47. Average uptime availability of a repairable system 46

Equation 2.48. Average uptime availability of a repairable system 46

Equation 2.49. General availability as a function of uptime and downtime 46

Equation 2.50. Inherent availability as MTTF and MTBF 46

Equation 2.51. Achieved availability according to USA department of

defence ... 47

Equation 2.52. Availability as reliability and recoverability 48

Equation 2.53. Maintainability as a function of serviceability and

repairability ... 53

Equation 2.54. Security as a function of Integrity, availability and

maintainability ... 53

Equation 2.55. Evolvability as a function of adaptability and

reconfigurability .. 53

Equation 2.56. Availability as reliability and recoverability 53

Equation 3.1. Reliability of a simplex system ... 71

Equation 3.2. MTTF of a simplex system .. 71

Equation 3.3. Reliability of a TMR system with a perfect voter 71

Equation 3.4. MTTF of a TMR with a perfect voter ... 72

xxiv

Equation 3.5. Comparative reliability of TMR and Simplex systems

(Ravishankar K. Iyer, 2003) ... 72

Equation 3.6. Reliability of a TMR system with a non-perfect voter and

identical blocks ... 73

Equation 3.7. Reliability of an M-out-of-N system with perfect voter 75

Equation 3.8. Encoding-decoding relationship ... 99

Equation 3.9. Relationship among encoding, decoding and functional

computation ... 99

Equation 3.10. Property of self-duality ... 100

Equation 3.11. Property of self-duality ... 100

Equation 3.12. Complementary function .. 100

Equation 3.13. Complementary function and self-duality 100

Equation 4.1. Linear stopping power ... 125

Equation 4.2. Total stopping power for a charged particle 127

Equation 4.3. Linear energy transfer ... 128

Equation 4.4. Approximation of the glitch duration of a gate [83] 147

Nomenclature

ARQ Automatic repeat request

ASIC Application-specific integrated circuit

ATPG Test pattern generation tools

ASW Application software

BCH Bose-Chaudhuri-Hocquenghem

BEC Backward error correction

BICMOS Bipolar complementary metal oxide

 semiconductor

BIST Built-In-Self-Test

BPSG Boron-phosphor-silicate-glass

CCD Changed-coupled device

CED Concurrent error detection

CM Corrective maintenance

CMF Common-mode failure

CMOS Complementary metal oxide semiconductor

COTS Commercial off-the-shelf

CUT Circuit under test

CSP Cold standby spare

DDD Displacement damage dose

DEC/TED Double bit error correction and triple bit

 error detecting

DFT Design for testability

DMR Dual-modular redundancy

DRAM Dynamic random-access memory

DRE Detected recoverable error

DUE Detected unrecoverable error

DUT Device under test

DW Data word

ECC Error correcting codes

EDAC Error detection and correction codes

xxvi

EDC Error detecting codes

EEPROM Electrically erasable programmable read-only

memory

EPI Epitaxial substrate doping

FCR Fault containment region

FEC Forward error correction

FIT Failures in time

FM Fault model

FPGA Field-programmable gate array

FT Fault tolerant

GAFT Generalized algorithm of fault tolerance

GCR Galactic cosmic ray

GDS Gracefully degrading system

HARQ Hybrid automatic repeat request

HW Hardware

HSP Hot standby spare

ICV IDDQ checkable voter

IDDQ Quiescent power supply currents

IDE Integrated Development Environment

Iff If and only if

IR Information redundancy

LET Linear energy transfer

MBU Multiple-bit upset

MCU Multiple-cell upset

MTBF Mean time between failures

MTTD Mean time to detection

MTTF Mean time to failure

MTTR Mean time to repair/restore

MOS Metal oxide semiconductor

MOSFET Metal oxide silicon field effect transistor

MSB Most significant bit

NIEL Non-ionising energy loss

nMOS N-channel metal oxide semiconductor

xxvii

NMR N-modular redundancy

ORA Output response analyser

PCSE Power cycle soft errors

PDF Probability density function

PI Primary input

PKA Primary knock-on atom

PM Preventive maintenance

pMOS P-channel metal oxide semiconductor

PSF Pattern-sensitive fault

REDWC Recomputing with comparison

RERO Recomputing with rotated operands

RESO Recomputing with shifted operands

RESWO REDWC Recomputing with swapped

 operands

ROM Read-only memory

RF Register file

RS Reed-Solomon

RT Real-time

RTS Real-time systems

SAF Stuck-at fault

SBU Single bit upset

SDC Silent data corruption

SEC-DED Single error correction and double error

 detection

SEBO Single event burnout

SEDR Single event dielectric rupture

SEE Single event effect

SEFI Single event functional interrupt

SEFLU Single event fuse latch upset

SEGR Single event gate rupture

SEHE Single event hard error

SEL Single event latchup

SEMU Single event multiple upset

xxviii

SESB Single event snapback

SER Single event rate

SET Single event transient

SEU Single event upset

SOC System on a Chip

SOI Silicon on insulator

SOS Silicon on sapphire

SPF Single point of failure

SR Structural redundancy

SRAM Static random-access memory

SSW System software

SW Software

TID Total ionizing dose

TBF Time between failures

TTF Time to failure

TTR Time to repair

TMR Triple-modular redundancy

TMRV TMR system with non-perfect single voting

TR Time redundancy

UART Universal asynchronous receiver/transmitter

WSP Warm standby spares

1

Chapter 1

Introduction

1.1. Motivation

Embedded systems are ubiquitous nowadays, built into homes, offices, bridges,

medical instruments, cars, aeroplanes, and satellites and even into clothes. The

market size of such systems is already larger than the one for general purpose

computing. The majority of embedded systems are real-time systems (RTSs) and

most RTSs are embedded in a product.

For decades, embedded RTSs are being used in fields where their correct

operation is vital to ensure the safety and security of the public and the

environment: from automotive systems and avionics to intensive health care and

industrial control as well as military operations and defence systems. These

systems are subject to time constraints and must guarantee a response within

specified timing bounds. The safety critical nature of RT embedded systems

employed in those fields demands the highest possible availability and reliability

of system operation.

The exponential growth of clock frequency and memory size has lead to

important achievements in the technological development of microprocessors.

2

Manufacturers of advanced silicon electronics have been able to create more

complex designs by periodically scaling down the technology, increasing the

transistor density. This growth is supported by the progressive miniaturization

of electronic components predicted by Moore’s	
 law	
 in	
 1965.	
 	

This phenomenon has also produced undesirable consequences that introduce

physical limitations to the law. Due to the area reduction of electronic

components to nanometre scales and due to the increase in clock frequencies

(ITRS, 2011), supply voltages have been reduced to keep power dissipation

manageable while thermal noise voltages have increased (Asanovic et al., 2006;

Kish, 2002).

For a long time, radiation effects have been a serious concern in aviation and

spacecraft electronics. As the dimensions and voltages of embedded systems are

reduced, their sensitivity to ionizing particles has considerably increased.

Energizing particles can produce a number of faults at the hardware level, not

only in contexts with harsh environmental conditions such as outer space but

also at sea level with regular conditions. Components with lower power and

noise margins are less reliable and therefore recent systems are more prone to

transient faults induced primarily by radiation (Baumann, 2002; R. C. Baumann,

2005; Seifert et al., 2002; Shivakumar et al., 2002). Transient faults do not cause

permanent damage in circuits but can affect system behaviour by corrupting

stored information or signal communication (Karnik and Hazucha, 2004; Mavis

and	
 Eaton,	
 2002;	
 “JEDEC	
 JESD89-3A,”	
 2007).

Besides the typical stress experiments in laboratories based on particle

bombarding, there is a considerable amount of evidence of radiation induced

malfunctions and catastrophic failures during operation in real life

environments. Radiation induced faults are frequent in space environments

(Adams and Gelman, 1984; Adams et al., 1982; Binder et al., 1975; Blake and

Mandel, 1986; Waskiewicz et al., 1986).	
 The	
 Saturn’s	
 Cassini	
 (Swift and Guertin,

2000), Deep Space 1 (Caldwell, 1998), Mars Odyssey (Eckert, 2001) and	
 Jupiter’s	

Galileo (Fieseler et al., 2002) are examples of missions that presented

3

malfunctions as a result of cosmic rays. The satellites X-ray Timing Explorer

(Poivey et al., 2004), Gravity Probe B (Owens et al., 2006), TOPEX/Poseidon

(Swift and John, 1997) and GRACE (Pritchard et al., 2002) have also reported

anomalies during operation.

Radiation Induced faults are also present to a lesser extent in atmospheric

(Taber and Normand, 1993) and terrestrial environments (Hauge et al., 1996;

Normand et al., 2010; Ziegler, 1996).

Due to the reasons stated above there is an increasing need to deal with faults.

There are two classes of mechanisms to deal with them: fault avoidance and fault

tolerance (FT) (Avizienis et al., 2004). Fault avoidance means developing

components/systems that are less likely to present faults while fault tolerance

techniques	
 focus	
 on	
 the	
 system’s	
 ability	
 to	
 tolerate	
 the	
 effects	
 of	
 these	
 faults.	

Fault-tolerance is defined as the ability to provide uninterrupted service,

conforming to the desired levels of reliability even in the presence of faults

(Avizienis et al., 2004). Applications of modern electronic systems require more

and more mechanisms to mitigate the effect of these faults (Nicolaidis, 2010).

Complete avoidance of faults in a system is practically impossible and hence a

balance of the two approaches is currently applied.

The research community mainly focuses on a) identifying all possible

mechanisms leading to accidents and b) on providing pre-planned defence

techniques against them. However, too little research effort has been employed

towards systems that can respond to deviations from desirable states.

The research is driven by observations of limitations from the evolution of

computer architectures, which have been motivated by technological and market

choices as well as physical limitations. These observations refer to performance

decrease, increase in power consumption/dissipation, reliability aspects,

parallelization challenges, design complexities, and hardware and software

inefficiencies. A brief explanation for each follows:

4

Performance deceleration: Transistor density and frequency have increased to

satisfy the immediate market demands. Therefore, more raw materials in the

form of transistors is available for system design. However, unjustified

complexity has been introduced in the current computer architectures. In recent

years, clock rates of commodity microprocessors have flattened and

performance of processor cores has slowed down (Asanovic et al., 2006; Hill,

2010).

Power consumption / dissipation: Scaling processor clock speed increases

power consumption (and consequently power dissipation) while the die size

remains the same. Therefore, the power/density ratio will keep increasing to the

point where no practical technique can dissipate the generated heat.

Reliability: Performance, heat and power consumption are not the only

concerns. Reliability of intra-chip communication is also affected by physical

constraints. Transistor scaling shortens wire distances, which improves

performance but also implies thinning of those wires. As wires become

narrower, in order to reduce the resistance per unit length they also become

taller. Media resistance limits the speed of electrons within. Tall wires within

close distance vary dependent timing characteristics at best and produce data

corruption at worst. In short, thinner wires increase delays and harm reliability.

Furthermore, as explained earlier, the same radiation fluxes that in the past had

no effect on electronics are now able to induce faults that affect the logic value of

current transistors with lower critical charge.

For these reasons, it is commonly believed by the research community that the

classic Hardware/Software uniprocessor model has reached the

power/performance wall (Asanovic et al., 2006; Hill, 2010).

Parallelization: The microprocessor industry approach is based on using the

billions of transistors (now available on a die) to a) replicate the off-the-shelf

core design multiple times and to b) increase the size of caches. Nevertheless,

effective programming of multi-core is not trivial and introduces multiple

5

challenges (Geer, 2007; Goth, 2009; Pankratius et al., 2009). As an attempt to

overcome the power wall, the computer science research community has

reincarnated parallel computing. Parallel computing and parallel programming

are not new; they have been a mainstay in high-performance since the early 50s

(Hill and Rajwar, 2001).

Complexity: The semiconductor industry, driven by economic reasons and time-

to-market needs, has introduced unjustified complexity in microprocessor

designs.

Software and Hardware Inefficiency: In terms of software, modular

programming (Turski and Wasserman, 1978; Wirth, 1983) and later object

oriented programming (Wirth, 1992, 1988) were introduced to maximize

performance and effectiveness of the human agent in the programming process.

To maximize performance of HW/SSW/ASW, several approaches of parallelism

using distributed, dataflow and cluster architectures were introduced in the late

50s. The Flynn diagram (Flynn, 1972) is still in use: SIMD (Single Instruction

Multiple Data), MIMD (Multiple Instruction Multiple Data) and MISD (Multiple

Instruction Single Data) are very well known architectures, each with their own

benefits and drawbacks. In the early 80s the VLIW (Very Long Instruction Word)

(Fisher, 1983) approach was also introduced. But since then, no significant new

architecture has been introduced.

To make the next step in the design of special systems for safety critical

applications we should analyse what is applicable from the well-developed

theory	
 and	
 design	
 of	
 fault	
 tolerant	
 systems	
 since	
 early	
 70’s,	
 in	
 particular	
 their	

reliability and resilience to electromagnetic impulses. In turn, the success of

future computer systems for safety critical applications will depend on trading-

off performance, reliability and power consumption.

The combination of the following two statements forms a framework for this

research. At first, we should analyse the technological achievements of modern

electronics in terms of performance. Finally, we should find ways to improve the

6

efficiency of current embedded systems in terms of performance, reliability and

power consumption.

7

1.2. Scope and Contribution

This work relates to techniques that improve the reliability of embedded

systems with regards to permanent and transient hardware faults induced by

radiation. However, these techniques are also efficient to mitigate the effect of

faults induced by other means. Note that software faults as the source of errors

are out of the scope of this thesis. This section briefly explains these

contributions.

The main goal of this research was to find efficient techniques and original

mechanisms to improve the reliability, performance and energy use of real time

systems in safety-critical applications. This includes the design, development and

analysis of a fault tolerant reconfigurable architecture in presence of radiation-

induced faults. Such architecture will be further used as a core element for

reconfigurable computers with key requirements for reliability, power

awareness, performance and scalability.

This research is an attempt to overcome known drawbacks of modern RTS. The

outcomes of such work can be summarized as follows:

x The traditional Reliability, Fault Tolerance and Dependability concepts and

definitions do not take into account the transient nature of some of the

faults induced by radiation. The result is a new concept of resilience that

takes into account the changing nature of environment and the different FT

contexts.

x We provide a systematic examination of the physical mechanisms that lead

to faults induced by radiation and the error process. The result is an

comprehensive taxonomy of radiation-induced effects in modern

microprocessor technologies;

8

x We develop a fault model that contains an extensive taxonomy of faults that

can assist in the serviceability and coverage attributes of fault tolerant and

resilient system designs.

x We introduce a novel combination of structural hardware elements at the

active, passive and interfacing zones. In combination with system software,

these hardware elements can improve the resilience of a system with a

better compromise in silicon area, reliability, power and performance that

known fault tolerant systems. We design and implement a hardware

prototype as a proof-of-concept.

x We develop a framework and testing scheme for the testing and debugging

of the hardware prototype. As part of the framework, we implement an

assembler for the hardware prototype together with a disassembler and

simulator tool.

The research is part of a joint research effort performed internationally (so-

called Evolving Reconfigurable Architecture (Schagaev et al., 2010). Theoretical

development and hardware testing of RA will provide the hardware prototype

platform for testing hardware reconfigurability.

9

1.3. Structure

This thesis is divided in seven chapters configured as:

x Chapter 1. Introduction: this first chapter summarizes the approach of this

doctoral thesis, describes its contribution to science and defines its general

structure.

x Chapter 2. Resilience: in this chapter we provide part of the theoretical

framework of reliability. We analyse the properties of classic dependability

and we describe our own view of the concept of resilience.

x Chapter 3. Dealing with faults - redundancy: this chapter provides a

complete review of state-of-the art techniques employed to deal with faults

and explores the different types of redundancy and fault tolerant

techniques.

x Chapter 4. Impact of radiation in electronics of embedded systems: This

chapter studies the physical mechanisms of radiation as the primary

phenomenon that causes faults in current computing systems. We also

analyse their effect on semiconductors at low, circuit and system levels.

x Chapter 5. Fault tolerance models: We analyse a model of hardware faults.

We introduce GAFT and define the different states and actions required to

implement fault tolerance.

x Chapter 6. Hardware support and System Software Support for Resilience:

This chapter details the hardware and system software elements of a novel

resilient architecture that can achieve various levels of performance,

reliability and energy consumption.

x Chapter 7. Implementation: Hardware Prototype, Simulation and Testing:

This chapter focuses on the development and testing of the hardware

prototype. Details of the design and development of a software simulator of

the hardware architecture are also provided.

x Chapter 8 summarizes and concludes this work.

Chapter 2

11

Chapter 2

Resilience

This chapter provides a background of necessary concepts in the field of fault

tolerance and resilience. First, we introduce the system failure lifecycle and

describe the main threats to resilience. Then, the concept of resilience and its

attributes and measures are reviewed. We explain our own view of the

performance and reliability problems that the microprocessor industry is

currently facing. The classic theory of reliability is presented and an explanation

is given on how the hardware components of an embedded system can be made

more resilient to hardware faults. We review the classic mathematical definition

of reliability and show how to calculate the reliability of a system depending on

the topology of its components. Other attributes of resilience including safety,

performability, integrity, maintainability and availability are also reviewed.

Finally, we extend the definition of resilience and apply it to the field of safety

critical computing.

12

2.1. System failure lifecycle

Correct service (Laprie, 1995) also named proper service (Laprie and Avizienis,

1986) is delivered by a system when the service implements the function as

specified. The fundamental threats to the correct service and to the resilience of

safety critical systems are faults, errors and failures that, in turn, can cause

catastrophic failures. Among these four terms there is a causal effect

relationship.

A failure, service failure or system failure is an event that takes place when the

delivered service deviates from proper service. Hence, a service failure implies a

transition of the system from proper service to an improper service, not

implementing the functions as specified by the functional specification of the

system. The downtime or period of delivery of improper service is also referred

to as service outage. The transition from improper service to proper service is

called service restoration, service recovery or repair.

Since a service is a sequence of the external states of a system, a service failure

takes place when one or more of its external states deviate(s) from the correct

service state. These deviations are errors. An error is a part of the system state

that is liable to lead to a subsequent failure. The hypothesized or adjudged cause

of such error is a fault.

Figure 2-1. System failure lifecycle within a three universe model

A fault is a weakness, blemish or shortcoming of a particular hardware

component or unit. An error is the manifestation of a fault, a deviation from

13

accuracy	
 or	
 correctness.	
 Finally,	
 if	
 the	
 error	
 leads	
 to	
 one	
 of	
 the	
 system’s	

functions being performed incorrectly then a failure has occurred.

Figure 2-1 graphically describes the well-known lifecycle of system failure within

a three universe model (Johnson, 1989) adapted from the four universal model

originally developed in (Avizienis, 1982). In the first universe, the physical one,

faults are generated due to various sources. Faults can activate errors within the

second universe, the informational one. Errors take place when some

information units become incorrect. In turn, errors could propagate the user

universe and lead to a failure. It is in this final universe, where the user can

witness the effects of faults and errors in the form of failures. One or more

failures could potentially cause a catastrophic failure in the case of safety critical

systems.

The arrows between the entities in Figure 2-1 correspond to latencies. Fault

latency (activation latency in Figure 2-1) is the time length between the

occurrence of a physical fault and the appearance of an error. Likewise, error

latency is the length of the propagation time that takes place between the

activation of the error and the manifestation of the failure.

Figure 2-2. Failure-fault transition between different levels of a
system

14

The term fault and failure is sometimes unclear in reliability literature. In this

thesis, the term fault is sometimes equivalent to failure. For instance, a system

fault can be the same as a component failure. Figure 2-2 shows the fault-failure

transition between a subsystem and a global subsystem. The fault-failure cycle

can be applied at different levels of abstraction within a system; consider a

transistor as a subsystem that is part of a more global system (e.g. memory cell):

the occurrence of incorrect functionality of the transistor during normal

operation (e.g. the effects of aging and stress) is a subsystem failure of such

component but may lead to, for instance, a logic fault (global system fault). This

logic fault will remain dormant unless is activated, producing an error, which is

likely to propagate and create other errors. If the correct service of that global

system is affected, a global system failure occurs. The same subsystem-system

transition can take place between the memory cell, the memory circuit that the

cell is part of, the microprocessor system that can be part of a multiprocessor,

etc.

2.2. Resilience: Attributes and measures

The word resilience (from the Latin origin resilire, to jump back, or to rebound) is

literally the tendency, ability, act or action of springing back, and thus the ability

of a body to recover its normal shape and size after being pushed or pulled out of

shape. That is, the ability to recover to normality after a disturbance, shock or

deviation from the intended state and go back to a pre-existing or acceptable or

desirable, state.

The meaning of resilience is different between authors. Hollnagel defines

resilience as (Hollnagel et al., 2012):

“The	
 intrinsic	
 ability	
 of	
 a	
 system	
 to	
 adjust	
 its	
 functioning	
 prior	
 to,	

during, or following changes and disturbances, so that it can sustain

required	
 operations	
 under	
 both	
 expected	
 and	
 unexpected	
 conditions”

15

The US Department of Defense (DoD) defines a resilient system as (Neches,

2012):

“A resilient system is trusted and effective out of the box in a wide range

of contexts, easily adapted to many others through reconfiguration or

replacement, with graceful and detectable degradation of function”

The Keck Institute for Space Studies has also made a big effort studying the

attributes of Resilience. During its study (Murray et al., 2013) numerous

definitions were proposed and discussed.

The term Resilient has been traditionally used essentially as a synonym of fault-

tolerant (Laprie, 2008). Before we discuss fault tolerance as a concept and

review the resilience concept, several other terms need to be defined.

One of them is Dependability, which is an integrative concept that encompasses

many other quantitative and qualitative attributes. Laprie (Laprie et al., 1992)

defines dependability as the “trustworthiness of a computer system such that

reliance can be justifiably placed on the service that it delivers”.

Dependability is the ability to deliver a service that can be trusted justifiably.

Laprie defines the service delivered by the system, as its behaviour as it is

perceptible by is user(s); a user is another system (physical or human) which

interacts	
 with	
 the	
 former.	
 Such	
 service	
 is	
 classified	
 as	
 “proper”	
 or	
 “correct”	
 if	
 it	
 is	

delivered	
 as	
 specified;	
 otherwise	
 it	
 is	
 considered	
 as	
 “improper”	
 or	
 “incorrect”

(Laprie and Avizienis, 1986).	
 Again,	
 the	
 “properness”	
 or	
 “correctness”	
 of	
 the	

system service depends on the viewpoint of the user.

The terms covered by dependability have been re-defined over the years

(Avizienis et al., 2004). We merge and organize the attributes or measures of

dependability and adapt them to the field of safety-critical applications. The

attributes of dependability are: reliability, safety, performability, and security. The

16

later encloses a subset of attributes including integrity, maintainability and

availability.

2.3. Reliability

The reliability measure is most often used to characterize systems in which

failures are unacceptable; therefore, it is suitable to the field of safety critical

systems.

Figure 2-3. A non-repairable system with two states

Figure 2-3 shows a non-repairable system with two possible states: a fully

functional start state (up) and a failed state (down), involving loss of

functionality, which can be reached after a transition due to failure.

There is no disagreement about the need for reliable systems but some vague

notion of reliability is not enough in safety-critical engineering. Reliability can be

defined as follows: Reliability R(t) is the probability that a system or component

will perform its intended function without failure over the entire interval [0,t]

under specified environmental and operating conditions. R(t) is a probability in

the sense of being a recurring event. The intended function, period of time and

stated conditions are all defined as system requirements when designing a real-

time system. Note that the following mathematical equations regarding

reliability are based on the classical theory of reliability of (Birolini, 2007) and

are not our original work.

17

2.3.1. Performance and Reliability

2.3.1.1. Power-reliability wall

Since the invention of the integrated circuit in 1958 each generation of

semiconductor technology has exponentially decreased the transistor price and

exponentially increased the transistor density per chip (Hutcheson, 2009).

This technological shrink model has led to the impressive level of technology and

hardware element density recently achieved (Nair, 2002) with processor

frequencies reaching up to 4.7 GHz (“Power	
 6	
 Specs:	
 IBM	
 Power6	

Microprocessor	
 and	
 IBM	
 System	
 	
 p	
 570,”	
 2007). The higher number of

transistors and the kilometres of wire operating at higher frequencies lead to

several Watt/cm2 on modern chips leading the peak energy consumption well

over 140W. Most of that energy becomes heat, rising operating temperatures.

The cost of the manufacturing process of smaller feature technologies is

increasing exponentially. Such cost is doubling every four years, which makes

smaller nanometre technologies and the continuation of this law no only a

technical challenge but an economic one.

Figure 2-4. Growth in performance since the mid-1980's (Hennessy

and Patterson, 2006)

18

Evidence of this phenomenon is the chart shown in Figure 2-4 that plots

performance gap between the processor and memory of the VAX 11/780

(measured by the SPECint benchmarks1). Subsequent to the mid-1980s,

processor performance growth averaged about 52% per year. Since 2002,

uniprocessor performance has slowed down to about 20% per year reaching the

power-reliability wall in 2006. On the other hand, memory has averaged a

constant performance increase of 9%.

Using	
 Moore’s	
 law	
 as	
 a	
 measure of progress has become misleading, as

improvements in transistor density no longer translate into performance and

energy efficiency. Starting around the 65nm technologies, transistor scaling no

longer delivers the performance and energy gains that drove the semiconductor

growth during the past decades (Dreslinski et al., 2010).

The Research community and the Industry believe that parallelism is the answer

to overcome the performance wall, however with different implementation

approaches. The industry has attempted to react by escalating the number of

processors introducing multi-core architectures and parallelism. Multiplying the

number of big, complex and power demanding existing cores, (which are part of

the problem) does not adequately solve any of the performance, reliability and

power awareness concerns (Asanovic et al., 2006).

1 SPECint benchmarks are a set of benchmarks design to test the integer processing performance
of modern CPU (http://www.spec.org/)

http://www.spec.org/

19

2.3.1.2. Reliability within the vicious cycle

What follows is an attempt to interpret the current performance and reliability

issues of the microprocessor industry. In this context, we use the term vicious

cycles: cycles as chains of events that reinforce themselves in a feedback loop.

The term vicious is used, as the results of such chains are detrimental.

The semiconductor industry driven by economic reasons and time-to-market

needs has introduced too much complexity in microprocessor designs. Figure 2-5

shows our interpretation of the reliability problem in current computing.

Figure 2-5. The Vicious Cycle and the evolution of computing
systems. 1950-2005

An efficient and logical design could have achieved better results in the long-

term. Instead, a brute force approach, increasing frequency, deeper pipelines and

cache levels (pipelines and cache levels provide slight performance at a high cost

of chip floor plan) has been employed (Asanovic et al., 2006).

20

Increased processor performance allows software companies to develop larger

and feature-richer software, which involves larger development teams.

Consequently, developers need higher-level languages and abstractions, which

are less efficient and generate slower programs. As a result faster processors are

needed, reinforcing this vicious cycle (Figure 2-5) and generating detrimental

results. Under this cycle, existing programs would run faster on the latest

generation of microprocessors.

Since 2005-2006, no considerable increase in functional hardware performance

has occurred. Existing programs need to be redeveloped to take advantage of the

new multi-core. Consequently, the vicious cycle does not apply anymore. The

power wall has dramatically slowed down the evolution of microprocessors in

terms of performance.

Clearly, technological developments have not been supported by a logical

evolution. There is an increasing need for unified hardware and software

technologies. Development of a new computing paradigm and its implementation

through the whole cycle of hardware, software and application design,

development and prototyping is required.

2.3.2. Reliability and unreliability functions

Let’s	
 suppose	
 we have a system with N identical components. We define S(t) as

the number of surviving components at time t and Q(t) as the number of failed

components up to time t. Therefore:

𝑆(𝑡) + 𝑄(𝑡) = 𝑁

Equation 2.1. Surviving and failed components at time t

The reliability R(t) is the proportion of components that continue to perform

without failure after being used for a period of time t. That is the probability of

survival of the components, given by:

21

𝑅(𝑡) =
𝑆(𝑡)
𝑁

Equation 2.2 – Probability of survival of components at time t

Unreliability or Cumulative failure distribution function is generally referred to as

the probability of failure. More specifically, unreliability F(t) is the conditional

probability that the system begins to perform incorrectly during the interval [t0,

t] given that the system was performing correctly at time t0 :

𝐹(𝑡) =
𝑄(𝑡)
𝑁

Equation 2.3. Probability of failure of components at time t

Based on Equation 2.1:

𝑅(𝑡) + 𝐹(𝑡) = 1

𝐹(𝑡) = 1 − 𝑅(𝑡)

Equation 2.4 – Reliability and Probability of failure of components
at time t

Figure 2-6. Reliability R(t) and Failure probability F(t) functions
over time t

22

Figure 2-6 shows a graph of the reliability and failure probabilities over time

with a constant failure rate. R(t) is a monotonically decreasing function that has

an initial value 1 whereas F(t), starting at 0, increases monotonically. The sum of

F(t) and R(t) at any given time is 1.

2.3.3. Probability density function

The derivative of F(t) is a probability distribution function (PDF) that defines the

probability of failures per unit time f(t) of a particular component that has been

used for a period of time t (Birolini, 2007). Based on this definition, the

probability density function is described as:

𝑓(𝑡) =
𝑑𝐹(𝑡)
𝑑𝑡

Equation 2.5. Probability density function as a function of
Unreliability

Using Equation 2.4:

𝑓(𝑡) =
𝑑[1 − 𝑅(𝑡)]

𝑑𝑡 = −
𝑑𝑅(𝑡)
𝑑𝑡

Equation 2.6. Probability density function as a function of
Reliability

Thus, the probability of a failure during the time range [0,t] is:

𝐹(𝑡) = න 𝑓(𝑡)𝑑𝑡
௧

଴

Equation 2.7. Probability of failure during the time range [0,t]

Using Equation 2.4:

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 − න 𝑓(𝑡)𝑑𝑡
௧

଴
= න 𝑓(𝑡)𝑑𝑡

ஶ

௧

Equation 2.8 – Reliability during the time range [0,t]

23

Figure 2-7. Representation of Reliability, Unreliability and the
probability density function

Figure 2-7 is a schematic that illustrates the relationship between the

unreliability or probability of failure (area in red), and probability of success

(area in blue) and the PDF. In this schematic only two mutually exclusive states

can occur: failure or success. F(t) and R(t) are the probability of these two states

and the sum of these two is always equal to 1.

2.3.4. Failure rate function

The failure rate function 𝜆(𝑡) (also known as momentary failure rate or hazard

function) describes the number of failures per unit of time versus the number of

components still operating at a time (surviving components) (Birolini, 2007):

𝜆(𝑡) =
1
𝑆(𝑡)

– 𝑑𝑄(𝑡)
𝑑𝑡

Equation 2.9. Failure rate as failures vs components at time t

Using Equation 2.3 and Equation 2.2:

𝜆(𝑡) =
1

𝑁 𝑅(𝑡)
𝑁 𝑑𝐹(𝑡)
𝑑𝑡

24

𝜆(𝑡) =
1

𝑅(𝑡)
𝑑𝐹(𝑡)
𝑑𝑡 =

𝑓(𝑡)
𝑅(𝑡)

Equation 2.10. Failure rate as a function of reliability and
probability density

The failure rate function is very accurate to express the reliability of

semiconductor components for long periods. However, calculating the failure

rate at a specific point of time within a short period is impractical. Consequently,

average failure rate, with longer time periods, is preferred:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 =
Total failures during a period

total operating time within a period

Equation 2.11. Average failure rate

The values of average failure rate can be expressed by % or ppm2. However, FIT3

it is more widely used as a unit for reliability.

2.3.5. Cumulative hazard function

Using Equation 2.4:

𝜆(𝑡) =
−1
𝑅(𝑡)

𝑑𝑅(𝑡)
𝑑𝑡

Equation 2.12. Failure rate function as a function of reliability

2 ppm	
 is	
 the	
 abbreviation	
 of	
 “parts	
 per	
 million”.	
 One	
 ppm	
 means	
 1	
 faulty	
 component	
 out	
 of	

1000000 components. Hence, an average failure rate of 10 ppm means that there are 100 faulty
components out of 1000000, or 1 component out of 100000.

3 FIT is a unit widely used to express failure rate. One FIT equals to one failure per billion (109)
hours (one failure in about 114,155 years), or 1ppm/1000h

25

This expression can be integrated from time 0 to time t giving the cumulative

hazard function H(t):

𝐻(𝑡) = න 𝜆(𝑡)𝑑𝑡
௧

଴
= −න

𝑑𝑅(𝑡)
𝑅(𝑡)

ோ(௧)

ଵ

Equation 2.13. Integration of the failure rate from time 0 to t.

The limits of the integration are obtained as follows:

x at time t=0, R(t)=1

x at time t by definition the reliability is R(t)

Given the assumption of a constant failure rate λ	
 of a component (typically in per

million hours or FIT):

𝜆𝑡 = −𝑙𝑜𝑔𝑅(𝑡)

−𝜆𝑡 = −𝑙𝑜𝑔𝑅(𝑡)

𝑅(𝑡) = 𝑒ିఒ௧

Equation 2.14. Reliability at time t with constant failure rate 𝛌 .

2.3.6. Bathtub curve of failure rates

The following section describes the classic Bathtub Curve used in reliability

engineering.	
 In	
 the	
 1950’s	
 the	
 Advisory	
 Group	
 for	
 the	
 Reliability	
 of	
 Electronic	

Equipment discovered this typical curve, which defines the failure rate of

electronic equipment.

A value can be assigned to the reliability of a system. For instance, a system may

have 97% reliability over a two-year mission, subject to a maximum vibration

Vmax, a humidity range [Hmin, Hmax] and temperature range [15oC, 30oC]. Although

the above definition is generally accepted, it is not a complete definition from the

starting to the end time of a safety-critical	
 system’s	
 life.	
 System reliability will be

different for different time periods. Therefore, more factors need to be

26

considered. For a correct service delivery in a specific period, the system must be

operating properly at the beginning of the observation period.

The operational age of the system is one of the factors that should be taken into

account. The above definition does not differentiate between:

x a new system,

x a system that has been operational for a substantial amount of time and

whose faults have already been corrected, and

x an old system with a long operational history and wear out issues

Figure 2-8. A bathtub curve of failure rates. During normal
operation	
 period	
 the	
 failure	
 rate	
 λ	
 is	
 constant	
 and	
 faults	
 are	

independent

Reliability distributions with decreasing, constant and increasing failure rate as a

function of time are illustrated in Figure 2-8 during period (a), (b) and (c)

respectively. The assumption made is that faults are independent and that the

failure	
 rate	
 (λ)	
 is	
 constant.	
 The	
 system	
 failure	
 rate	
 is	
 dependent	
 on	
 the	
 system’s	

lifetime constituting a function with a bathtub shape and three distinctive areas

or periods: an early failure period (a), a normal operating period (b) and a wear

27

out period (c). For failure rates higher than the constant failure rate (λ), the

chance of system failure becomes higher.

For a new system (case a) there is an early failure or infant period with a

decreasing but high failure rate due to latent manufacturing defects that escape

the initial testing of the product. As the products get into operation, these defects

surface quickly when the devices are stressed. Once the infant failures are

eliminated, this high failure rate rapidly decreases to an almost constant value

during the normal operating or grace period (case b). This long period represents

the useful life of the system where failures occasionally occur due to the sporadic

breakdown of weak components. It is highly desirable that this period of low

failure	
 rate	
 and	
 high	
 reliability	
 dominates	
 the	
 product’s	
 lifetime.

During the wear out or breakdown period (case c) the reverse situation takes

place. As the system gets older, the failure rate increases sharply due to age-

related wear out. Note that many devices that form part of the same system will

initiate this phase roughly at the same time. This could create an avalanche effect

that could critically decrease the overall reliability of the system.

After analysing the bathtub curve and the three periods of operation involved, it

is clear that the previous equations of reliability only suit the normal operating

period with a constant failure rate. This curve represents very well hardware

reliability due to aging and degradation but it is not suitable to software,

especially in the case of versioning and upgrades. The silicon failure mechanisms

will be further studied in Chapter 4.

2.3.7. Mean time between failures (MTBF)

Instead of a monotonic function of time reliability can also be expressed as a

numeric index. Mean time between failures (MTBF) is the average time that the

system will run between failures (Garland and Stainer, 2013). This measure is

convenient to compare the reliability of different repairable systems. MTBF can

be estimated by averaging the time between failures, including any additional

28

time required to repair the system and place it back to a functional state. The

equations in this section are obtained from (Birolini, 2007).

Being f(t) the probability of failure per unit time, MTBF can be described by:

𝑀𝑇𝐵𝐹 = න 𝑡𝑓(𝑡)𝑑𝑡
ஶ

଴

Equation 2.15. Probability of failure per unit time (MTBF).

Using Equation 2.6:

𝑀𝑇𝐵𝐹 = −න 𝑡
𝑑𝑅(𝑡)
𝑑𝑡

ஶ

଴

Equation 2.16

Integrating the above equations by parts we obtain:

𝑀𝑇𝐵𝐹 = −[𝑡𝑅(𝑡)]଴ஶ න 𝑅(𝑡)𝑑𝑡
ஶ

଴

Equation 2.17

For t = 0, R(t) = 0, hence t × R(t)=0. As t increases from 0, R(t) decreases. As t

tends to ∞, t×R(t) tends to zero. Therefore, the first term of the previous

equation is zero. For any kind of failure distribution with a failure rate λ as a

function of time, the general expression for MTBF can be described as:

𝑀𝑇𝐵𝐹 = න 𝑅(𝑡)𝑑𝑡
ஶ

଴

Equation 2.18. General expression of MTBF

The higher the MTBF is, the higher is the reliability of the system or component.

Moreover, for failure distributions independent of time with a constant rate,

MTBF is given by:

29

𝑀𝑇𝐵𝐹 = න 𝑒ିఒ௧𝑑𝑡
ஶ

଴

Equation 2.19. MTBF for time independent failure distributions
with constant rate of failures

𝑀𝑇𝐵𝐹 =
1
𝜆 ൣ𝑒

ିఒ௧𝑑𝑡൧
଴
ஶ =

1
𝑏

Equation 2.20. MTBF for time independent failure distributions
with constant rate of failures

Hence, MTBF of a system is reciprocal to its failure rate (given a constant failure

rate). MTBF will be expressed in hours if the constant rate is also expressed in

hours.

2.3.8. Mean time to failure (MTTF)

As described above, MTBF is a good measure of reliability for systems that can be

repaired. A similar single-parameter indicator of reliability for components that

cannot be repaired is the mean time to failure (MTTF). MTTF is the average time

until	
 the	
 first	
 system’s	
 failure.	
 Results of life testing can be used to calculate

MTTF by testing a set of N identical units until all of them have failed with the

time to the first failure of the individual units identified as t1,	
 t2,	
 t3,	
 …, tn. It can

be observed that MTTF is given by:

𝑀𝑇𝑇𝐹 =
1
𝜆෍𝑡௜

௡

௜ୀଵ

Equation 2.21. Mean time to failure (MTTF)

As before, the failure rate, if independent of time, can be calculated by:

𝜆 =
1

𝑀𝑇𝑇𝐹

Equation 2.22. Failure rate as the inverse of MTTF

30

MTBF and MTTF are sometime used interchangeably. Although the numerical

difference is small in many cases, both measures represent different concepts.

MTTF is related to MTBF but does not include the repair time (MTTR or mean

time to repair/restore) nor the detection time (MTTD or mean time to

detection):

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝐷 +𝑀𝑇𝑇𝑅

Equation 2.23. MTBF as a function of MTTF, MTTD and MTTR

MTTR is the average time required to repair a system whereas MTTD is the

average time required to detect a failure. In most applications, MTTR and MTTD

are just a small fraction of the total MTTF. Therefore, the approximation that

MTBF and MTTF are almost equal is sometimes fair. MTTR and MTTD are

difficult to estimate and can be determined by injecting faults into a system,

measuring the time required to repair it. Both measures will be further discussed

in the availability section.

2.3.9. Reliability prediction

In the case of design of hardware systems, there are two different known

theoretical methods to meet the above mentioned reliability requirements and

specifications:

x Fault avoidance: makes use of substantially higher reliability components

and substantially higher than expected lifetime. Birolini (Birolini, 2007)

introduced a comprehensive theoretical approach based on the application

of reliability engineering throughout the system to reach this goal.

x Fault tolerance: deliberately introduces redundancy in the system to

achieve continuous operation.

During the last 50 years there have been several attempts (Gnedenko et al., 1999;

Koren and Krishna, 2007; Kovalenko et al., 1997) to connect probability and

31

reliability. A brief review of the probabilistic theory of reliability for the analysis

of real objects and their features (fault tolerance) is presented below.

Reliability of systems can be estimated by partitioning those systems into more

elemental entities (e.g. subsystems or components) and then by assessing the

individual probability theory of these individual entities. The entities can be

interconnected in serial, parallel or both. Therefore reliability models are needed

to illustrate the functional relationship among the entities of the system and the

way in which a failure of each component would affect the overall reliability of

the system.

2.3.9.1. Serial Reliability

The mathematical equations in this section are based on the classic reliability of

(Birolini, 2007). In this model, the entities are connected in series. When

minimum design and costs are specified in the design requirements of a system,

a series system is the usual choice for designers. For the system to be

operational, all of the components or subsystems should be operational and

work correctly. Serial systems are inherently unreliable since the failure in one

of the elements would cause a stoppage of the overall system.

Figure 2-9. Logic diagram of Serial reliability

The reliability of a system without redundancy may be described with a

sequential reliability block diagram (see Figure 2-9). In this arrangement the

system reliability is the product of its individual component reliabilities,

assuming they are organized in serial (cumulative) structure. Note that for this

structure, if the reliability of each component is Ri, the total system reliability Rs

is given by:

32

𝑅௦(𝑡) =ෑ𝑅௜(𝑡)
௡

௜ୀଵ

= 𝑒𝑥𝑝ቌ−ቌ෍𝜆௝

௡

௝ୀଵ

ቍ 𝑡ቍ

Equation 2.24. System reliability of a serial system

And the failure rate of the system 𝜆௦ is given by:

𝜆௦ = 𝜆ଵ + 𝜆ଶ + 𝜆ଷ + … + 𝜆௡

Equation 2.25. Failure rate of a serial system

Furthermore, the Mission Time Function MT(r) gives the time at which system

reliability falls below the given threshold level r. The relationship between

reliability R(t) and mission time MT(r) is given by the definitions:

𝑅[𝑀்(𝑟)] = 𝑟

Equation 2.26. Mission time function MT with threshold level r

𝑀்[𝑅(𝑡)] = 𝑡

Equation 2.27. Mission time function MT at a given time

If	
 λ is constant then, using Equation 2.14:

𝑡 =
−𝑙𝑛(𝑟)
𝜆

𝑀்(𝑟) =
−𝑙𝑛(𝑟)
𝜆

Equation 2.28. Mission time function MT with constant failure rate

So for a non-redundant system with n components

𝑀்(𝑟) =
−𝑙𝑛(𝑟)
∑ 𝜆௜௡
௜ୀଵ

Equation 2.29. Mission time function MT for non-redundant systems
with n components

33

The failure rate of a sequential independent element system is equal to the sum

of the failure rates of its elements. In the case of a constant failure rate across all

elements, the MTTF of the whole system (MTTFS) can be calculated as follows:

𝑀𝑇𝑇𝐹ௌ = 1/𝜆௦

Equation 2.30. Mission time to failure of a system with constant
failure rate

Note that this equation highlights the fact that the reliability of a system is

directly impacted (in practice often dominated but not solely determined) by the

reliability of its least reliable component.

2.3.9.2. Parallel reliability: Redundancy and fault tolerance

In the previous model, no redundancy was taken into account to calculate the

system reliability. A second approach to achieve a required level of reliability is

the deliberate introduction of extra components into the system. The sole

purpose of introducing this redundancy artificially is to increase reliability.

However, there is	
 a	
 price	
 to	
 pay	
 for	
 such	
 improvement	
 in	
 the	
 system’s	
 reliability.

This approach assumes a deliberate introduction of redundancy in the system

and has been applied since the original work of Von Neumann (von Neumann,

1956) and Pierce (Pierce, 1965). Note that introducing redundancy involves

some additional components and complexity and it is therefore imperative that

the reliability benefit accruing from the redundancy scheme must far exceed the

decrease in reliability due to the actual implementation of the redundancy

mechanism itself.

The classic parallel generalization of the redundancy model (Birolini, 2007)

describes a system of n statistically identical elements in active redundancy,

where k element(s) is/are required to perform a function and the remaining n-k

are in reserve.

34

Figure 2-10. Parallel reliability

A function of the system is considered successful if during scheduled time k

element(s) of the system was/were available. As an example, in the case of a 1-

out-of-3 system (Figure 2-10), its function would be complete if at least one of

the elements was known to be working correctly. The second and third elements

are redundant and introduced only for reliability purposes when the first unit is

known to be faulty.

For the system of Figure 2-10 the reliability function is as follows:

𝑅(𝑡) = 𝑅ଵ(𝑡) + 𝑅ଶ(𝑡) + 𝑅ଷ(𝑡) − 𝑅ଵ(𝑡)𝑅ଶ(𝑡)𝑅ଷ(𝑡)

Equation 2.31. General reliability of a 1-out-of-3 parallel system

Assuming that the elements are identical, work or fail independently of each

other and have constant failure rate 𝑅ଵ(𝑡) = 𝑅ଶ(𝑡) = 𝑒ିఒ௧ , then by

substitution:

𝑅(𝑡) = 3𝑒ିఒ௧ − 𝑒ିଷఒ௧

Equation 2.32. Reliability of a 1-out-of-3 parallel system with
constant failure rate

𝑀𝑇𝑇𝐹௦ =
3
𝜆 − ൬

1
3൰ 𝜆 =

8
3𝜆

Equation 2.33. Mean time to failure of a 1-out-of-3 parallel system
with constant failure rate

Therefore the apparent working time of the redundant system is increased.

35

In the general case where n redundant elements are introduced as spares to

provide successful completion	
 of	
 an	
 element’s	
 function	
 with	
 the	
 same	

assumptions as above, the overall system reliability is given by:

𝑅(𝑡) = 1 − ൫1 − 𝑒ିఒ௧൯௡

Equation 2.34. General reliability of a 1-out of n parallel system
with constant failure rate

In the above equation n is the number of modules, 𝑒ିఒ௧is the reliability of the

original system and it is assumed that:

x There is a fault-free mechanism to detect and report failure of the active

module,

x There is a fault free switching mechanism to replace the active module in

case of detected failure, and

x All modules have equal reliability

Thus, there is no doubt that redundancy even for this classic case could improve

reliability of the system considerably. Note that the redundant components do

not necessarily need to be identical, but could also correspond to additional

hardware with different reliabilities used to detect and treat transient faults.

2.3.9.3. Mixed reliability: Serial and Parallel

In practice, systems are usually made of a combination of serial and parallel

components. More complex math applies to the reliability of these mixed

arrangements. This type of arrangement is frequently used in systems where a

specific part is particularly prone to failure. Figure 2-11 depicts an example of M

of N system, whose elements may or may not have constant rates, and has a

voter that counts for the serial reliability element.

36

Figure 2-11. Reliability of a combination of serial/parallel
components with a voter

Assuming that only 1 out of N parallel components needs to operate, the

reliability of the parallel section of the system is defined by:

𝑅(𝑡) = 1 − ൣ൫1 − 𝑅ଵ(𝑡)൯൫1 − 𝑅ଶ(𝑡)൯൫1 − 𝑅ଷ(𝑡)൯൧

Equation 2.35. General reliability of a parallel section of a specific
mixed serial/parallel system

𝑅ଵିଷ(𝑡) = 1 − ෑ(1 − 𝑅௜(𝑡))
௡

௜ୀଵ

Equation 2.36. General reliability of a parallel section of a specific
mixed serial/parallel system

The total reliability of the mixed serial/parallel system shown in Figure 2-11 is

specified by:

𝑅(𝑡) = 𝑅ଵିଷ(𝑡)𝑅ସ(𝑡)

Equation 2.37. General reliability of a parallel section of a specific
mixed serial/parallel system

Therefore, a relatively reliable voter would dominate the reliability of a

redundant system.

37

2.4. Safety

In safety-critical systems, safety describes the absence of catastrophic failures for

users and the environment when a failure takes place. A system that can be

repaired after failure presents a minimum of two states: functional and failed.

Some other systems are able to have extra states even under faulty conditions.

An example of such system, depicted in Figure 2-12, has the possibility of

transiting to a safe state, in a manner that does not cause any harm.

Figure 2-12. A basic fail-safe system with three states

Safety is a measure of the fail-safe capability of a system and it is defined as the

probability that a system will either perform its function correctly or will

discontinue its operation in a safe way (Laplante and Ovaska, 2011).

Quantitatively, safety is the probability that the system will not fail in the interval

[0,t] in such a manner as to cause unacceptable damage to other systems or

compromise the safety of any people associated with the system.

The safety function can be described by:

𝑆(𝑡) = 𝑃௙௨௡௖௧௜௢௡௔௟(𝑡) + 𝑃௦௔௙௘ି௠௢ௗ௘(𝑡)

Equation 2.38. Availability as reliability and recoverability

Safety is directly dependent on “risk”,	
 as the probability of loss associated to a

particular failure. In turn, risk is a function of the probability of failures and their

severity on the system. A system can be unreliable, have low availability and yet

be safe. A system is safe if it functions correctly or if in case of failure it can

remain in a safe state.

38

2.5. Security

Contrary to (Avizienis et al., 2004) that adds confidentiality as one of the

attributes of security, we consider Security as a property that can be defined by

three attributes: integrity, maintainability and availability. For a resilient system

in	
 the	
 field	
 of	
 RTS’s, confidentiality is not an essential attribute.

2.5.1. Integrity

The attribute of Integrity is inward-looking and is related to the capability of a

system to protect computational resources and data under severe circumstances.

Integrity can be defined as the absence of improper system state alterations. As

suggested by (Storey, 1996) two types of integrity can be defined:

x System integrity: the ability of a system to detect faults during operation

and to inform to a human operator.

x Data integrity: the ability of a system to prevent damage in data and

possibly to correct errors that occur as a consequence of faults.

2.5.2. Maintainability

Based on the definition of (McGraw-Hill concise encyclopedia of engineering,

2005), Qualitatively, we define maintainability as the ease and rapidity in which,

following a failure, a repairable system can be restored to a specified operational

condition. Quantitatively, we define maintainability as the probability M(t) that a

failed system will restore to a normal operable state specified within a given time

frame t.

The restoration process involves the location of the problem, the

reparation\recovery of the system bringing it back to a normal operational

condition. Maintainability has two main components, serviceability and

recoverability that should by carefully analysed in the implementation of self-

repairing systems:

39

𝑀(𝑡) = 𝑓൫𝑆(𝑡), 𝑅𝐶(𝑡)൯

Equation 2.39. Maintainability of a system

Maintainability characteristics are determined by the system design of

maintenance procedures, such preventive (PM) and corrective maintenance (CM)

procedures. These two procedures apply to the serviceability and recoverability

components and determine the length of repair times (Bodsberg and Hokstad,

1995; Dhillon, 2006). PM is the set of activities performed on a system before the

occurrence of failure in order to prevent any degradation in its operating

condition. PM aim to reduce the probability of failure at predetermined intervals

or along with prescribed criteria. CM is the remedial set of activities performed

on a system in order to recover an item to its fully functional condition. CM is

usually unplanned that requires urgent attention

Figure 2-13. Preventive and corrective maintenance on a three state
repairable system

Figure 2-13 shows PM and CM mechanisms on a three-state repairable system.

Note that not all maintenance leads to downtime of the three-state system.

Whilst running PM and remedial CM prevent and correct failures during normal

operation, shutdown PC and CM take place during non-functional states.

2.5.2.1. Recoverability

Once the problem has been identified and located by the testing mechanisms, CM

can be carried out to complete the necessary repairs. Consider a repairable

40

system with two states: a fully functional and a failed one (as in Figure 2-3);

however, in this case the failed state can be abandoned after successful CM,

transiting back to a fully functional state (as in Figure 2-14).

Figure 2-14. A repairable system with two states and corrective
maintenance

Recoverability RC(t) may be defined as the ease of restoring the service after

failure. It can be modelled as:

𝑅𝐶(𝑡) = 1 − 𝑒ିஜ௧

Equation 2.40. Recoverability of a system

where µμ is the repair rate or average number of repairs that can be performed

per time unit, the key aspects of recoverability, MTTR and MTTD, are given by:

𝑀𝑇𝑇𝐷 +𝑀𝑇𝑇𝑅 =
1
µμ

Equation 2.41. Mean time to repair (MTTR) and Mean time to
detection (MTTD) of a system

Note that good testing would affect recoverability to a degree.

MTTR will be further discussed below in the availability section.

2.5.2.2. Serviceability or Testability, T(t)

Testability T(t) is the ease in which servicing and inspections can be conducted in

order to identify the characteristics of a system; it is the ability to check certain

attributes within a system. Measures of testability allow the system to assess the

41

ease of performing tests. Ideally, in order to improve testability the tests can be

automated and implemented as an integral part of the system. These techniques

can be used for error detection and error correction within the system. Since

most of the time, testability is often used to determine the source of the problem,

one way to improve the maintainability of the system significantly is the use of

automatic diagnosis.

Testability relates to reliability since it allows detection and correction of errors

that would, otherwise become failures, thus improving the overall reliability of

the system. Testability is clearly connected with recoverability due to the

importance of minimizing the time to locate and identify specific problems.

Two properties/measures closely associated with testability, controllability and

observability (Franklin and Saluja, 1995, p. 199; Goldstein, 1979). Observability

relates to the probability of “observing”, via output measurements, the state of a

system. Controllability instead is associated to the ease of forcing parts of the

system into desired states by using appropriate control signals. Design for

testability techniques (DFT) (Alanen and Ungar, 2011; Karimi and Lombardi,

2002; Landis, 1989; Mathew and Saab, 1993), can be used in order to increase

observability and controllability of systems.

2.5.2.3. Coverage

Mathematically, fault coverage C is the conditional probability that, given de

existence of a fault in the operational system, the system is able to recover, and

continue information processing with no permanent loss of essential information

(Bouricius et al., 1969) i.e.:

𝐶 = Pr [𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑠 | 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑠]

Equation 2.42. Mathematical definition of coverage

Fault coverage is a good measure of maintainability and, specifically of the

system’s	
 ability	
 to	
 detect, locate, diagnose, contain and recover from the

42

presence of a fault. Several types of fault coverage can be distinguished,

depending on whether the designer is concerned with fault detection, diagnosis,

containment or recovery (Kaufman and Johnson, 2001). In Figure 2-15, we

extend the phases of fault handling by (Dugan and Trivedi, 1989), showing the

relationship among the steps of recovery and their coverage.

Figure 2-15. Four phases of fault handling and their coverage

Fault detection coverage Cd measures	
 the	
 system’s	
 ability	
 to	
 detect	
 fault.	
 Fault

diagnosis coverage 4Cl is	
 a	
 measure	
 of	
 the	
 system’s	
 ability	
 to	
 locate and

determine the type of fault. Fault containment/isolation coverage Cc is a measure

of	
 the	
 system’s	
 ability	
 to	
 contain	
 faults	
 within a predefined boundary (fault

containment region or FCR). For instance, fault that occurs in a subsystem can be

detected, located, and its effects can be prevented from propagating to other

subsystems.

Finally,	
 the	
 general	
 term	
 “coverage”	
 or	
 “fault coverage”	
 is	
 often	
 used	
 to	
 refer	
 to	

fault recovery coverage,	
 which	
 measures	
 the	
 system’s	
 ability	
 to	
 recover	
 from	

faults and maintain correct operation. Recovery may involve modifying the

structure to remove the faulty component (reconfiguration) including graceful

degradation. The fault coverage C for the system is given by:

4 Fault diagnosis involves both the location (fault location) and determination of the fault type
(fault determination)

43

𝐶 = 𝐶ௗ × 𝐶௟ × 𝐶௖ × 𝐶௥

Equation 2.43. Coverage as a function of fault detection, diagnosis,
containment and recovery coverages

Clearly, high fault recovery coverage requires high fault detection, diagnosis and

containment coverage.

2.5.3. Availability

A simple definition for availability of a repairable5 system is “Readiness	
 for	

correct	
 service” (Avizienis et al., 2004). This measure is suitable for applications

in which continuous performance is not essential but where it would be costly to

have long downtimes. Availability is strongly dependent on how frequently the

system becomes non-operational (reliability) and how quickly it can be repaired

(maintainability) (see Figure 2-14).

Figure 2-16. Failure and repair cycle of a system

5 The concept of availability is applicable to repairable systems. Availability of a non-repairable
system would be the equivalent to reliability.

44

As defined in the MTBF equation (Equation 2.23) the mean time between failures

of a system can be defined as a combination of MTTF, MTTR and MTTD. Figure

2-16 illustrates the variations of the state (functional-failed) of a repairable

system. The time of operation of such systems is discontinuous. From time 0 to

time X1 the system is continuously available and therefore has an internal

availability of 1. After the first failure at time x1 internal availability keeps

decreasing until the detection and recovery mechanisms complete the repair at

time r1, returning to the original functional state. The system will fail again at

time x2 after a certain time of operation [r1 – x2], get repaired at time r2, and this

process will reiterate. Assuming that Xi is an average of system failure and i an

average of system repair, for i>1:

𝑀𝑇𝐵𝐹 = ෍(𝑋௜ − 𝑋(𝑖 − 1))
௡

௞ୀଵ

Equation 2.44. Mean time between failures with average failure and
system repair

The relation between time to failure, time between failures and time to repair is

displayed in Figure 2-17 above.

Figure 2-17. Relation between Time to failure (TTF), time between
failures (TBF) and time to repair (TTR)

There are various availability measures that can be classified differently

depending on the time interval preferred or the downtimes used.

45

2.5.3.1. Instantaneous or point availability, A(t)

Instantaneous or point availability A(t) is the probability that the system will be

operational at a random time t (Barlow and Proschan, 1975). It describes the on-

demand probability of proper service. It is equivalent to reliability when there is

no repair. While internal availability is based on an interval time, instantaneous

availability is based on a specific instant of time. At any given time t, the system

will be functional if one of the following conditions is met (Elsayed, 1996):

x The system was functional from 0 to t (it never failed by time t). The

probability of this happening is R(t) (Equation 2.14).

x The system has been functional since the last repair time ri (see Figure

2-16) when 0 < ri < t. This has a probability of:

න 𝑅(𝑡 − 𝑟௜)𝑚(𝑟௜)𝑑𝑟௜
௧

଴

Equation 2.45. Probability that the system has been functional since
last repair time for 0 ri < t.

x With m(ri) being the renewal density function of the system.

The instantaneous availability of the system is the sum of these two

probabilities:

𝐴(𝑡) = 𝑅(𝑡) + න 𝑅(𝑡 − 𝑟௜)𝑚(𝑟௜)𝑑𝑟௜
௧

଴

Equation 2.46. Instantaneous or point availability of a repairable
system

2.5.3.2. Average uptime availability (or mean availability), 𝑨(𝒕)

The average uptime availability or mean availability 𝑨(𝒕) (Lie et al., 1977) is the

proportion of time during a time period [0-t] that the system is functional and is

given by:

46

𝐴(𝑡) =
1
𝑡 න 𝐴(𝑟௜)𝑑𝑟௜

௧

଴

Equation 2.47. Average uptime availability of a repairable system

This type of measure is suitable to systems with periodical downtime for

maintenance/repairing.

2.5.3.3. Limiting or Steady-state availability,	
 A(∞)

The limiting or steady state availability (Applebaum, 1965) of the system A(∞) is

the limit of the availability function as time t tends to infinity:

𝐴(∞) = 𝑙𝑖𝑚
௧→ஶ

𝐴(𝑡)

Equation 2.48. Average uptime availability of a repairable system

2.5.3.4. Inherent availability, AI

In its simplest form, availability A can be mathematically generalised as:

𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

Equation 2.49. General availability as a function of uptime and
downtime

During the design phase of a FT system, Inherent availability AI is a useful

measure (Valstar, 1965). AI defines the availability of a system only in regard to

effective functional time (uptime) and downtime due to corrective maintenance

(CM). It can be calculated using estimated parameters (MTTF, MTTD and MTTR)

as:

𝐴ூ =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝐷 +𝑀𝑇𝑇𝑅 =
𝑀𝑇𝑇𝐹
𝑀𝑇𝐵𝐹

Equation 2.50. Inherent availability as MTTF and MTBF

Hence, if MTTF or MTBF are long compared to MTTR and MTTD then the

system’s	
 availability	
 will	
 be	
 high.	
 Likewise,	
 if	
 MTTR and MTTD are short then the

47

system’s	
 availability	
 will	
 also be high. As reliability decreases (e.g. low MTTF),

better recoverability will be needed (lower MTTR/MTTD) to achieve the same

availability.

2.5.3.5. Achieved availability, AA

AI is a good parameter to measure systems under ideal conditions where

downtime due to preventive maintenance (PM) is overlooked. Achieved

availability AA is similar to inherent availability with the exception that

downtimes due to PM tasks are also included (Conlon et al., 1982). In can be

defined as:

𝐴஺ =
𝑂𝑇

𝑂𝑇 + 𝑇𝐶𝑀 + 𝑇𝑃𝑀

Equation 2.51. Achieved availability according to USA department
of defence

Where OT is the total operating time, TCM is the total corrective maintenance

time and TPM the total time spent during preventive maintenance actions.

2.5.3.6. Availability-recoverability-reliability relationship

At first glance, it might seem that a highly available system would also have high

reliability. Nonetheless this in not always the case, a system can be highly

available yet suffer from frequent periods of non-operation as long as the length

of	
 the	
 downtime	
 is	
 extremely	
 short.	
 Let’s	
 explore	
 further	
 the	
 relationship	

between availability and reliability. Reliability represents the probability of

systems and components to perform its intended function for a desired period of

time [0,t] under specified environmental and operating conditions. However,

reliability in itself does not take into account any repair actions. Reliability does

not reflect how long the recovery of a component/system will need in order to

take it back to a working condition. Availability reflects not only how often a

system fails but how often it can be repaired (it accounts for repair actions).

Thus, it is a function of reliability, recoverability and thus testability.

48

𝐴(𝑡) = 𝑓(𝑅(𝑡),𝑀(𝑡))

Equation 2.52. Availability as reliability and recoverability

Table 2-1. Reliability-Recoverability-Availability relationship

Reliability Recoverability Availability

Constant Constant Constant

Constant Decreases Decreases

Constant Increases Increases

Decreases Constant Decreases

Increases Constant Increases

Table 2-1 above, presents the relationship between reliability, recoverability and

availability. As shown by the table, once again, high reliability does not necessary

imply high availability. Availability decreases as time to repair increases. Even an

unreliable system could present high availability if MTTR is low.

2.6. Performability

The all-or-none nature of operation implicit in classic reliability and availability

models does not measure in detail systems that can operate with different

capability levels (e.g. multiprocessor systems). Consequently, another key

attribute of resilience, performability and its measure, mean computation before

failure (MCBF) can be employed. MCBF is described as the expected amount of

computation available on the system before its first failure, given an initial state

(Beaudry, 1978).

In qualitative terms, we define performability as the ability of a system or

component to accomplish its designated functions within specified constraints such

as speed, accuracy or memory usage. It is the measure of the likelihood that some

subset of the functions of the system or component is performed correctly

during a certain time interval. Quantitatively, Performability P(L,t) has been

49

defined as “the	
 probability	
 that	
 the	
 component’s	
 or	
 system’s	
 performance	
 will	
 be	
 at	

or above some level L at the instant of time t” (Fortes and Raghavendra, 1985).

After the occurrence of faults and errors, certain systems have the ability to

continue to perform correctly, however with a diminished level of performance.

This ability or feature is called Graceful degradation, or fail-soft operation

(Gountanis and Viss, 1966), and it is the ability of a system (gracefully degrading

system or GDS), upon failure of one or more of its component units, to continue

the processing of tasks at the expense of decreasing its performance level. The

performability of a GDS P(L,t) at time t depends on the amount of available

resources and their computational capability provided.

Note that performability differs from reliability in that reliability measures the

likelihood that all functions are performed properly, whereas performability

measures the likelihood that some subset of the functions is performed properly.

Nevertheless, these two concepts are related since a GDS with a low rate of

failure (high reliability) will have most of its resources computational capability

available and therefore performability of the system will be close to its ideal

value.

50

2.7. Resilience

Historically, the term resilience has had multiple meanings in various fields. As a

property it has different connotations. In social psychology resilience is about

elasticity, spirit, resource and good mood. On the other hand, in material science

resilience involves not only elasticity but robustness. In computer science it has

been identified as a synonym for fault tolerance. In this thesis we extend the

concept of resilience for safety critical applications. First we start by selecting the

material science connotations. Hence, our definition of resilience includes both

attributes: robustness and elasticity.

Figure 2-18. Attributes and measures of resilience

Figure 2-18 illustrates the different attributes and measures of resilience. The

term robustness involves the use of static techniques such the use of very

reliable materials or the use of rigid and pre-design approaches of fault

tolerance. A robust system can deliver correct service in conditions beyond the

normal domain of operation without fundamental changes to the original system.

This is more an aim that an objective. Total reliability to unforeseen faults other

than the normal domain of operation is not feasible.

On the other hand, we interpret elasticity as the ability to spring back without

losing the intrinsic properties of the material. Applied to resilience, we

51

understand elasticity as the ability to evolve, to successfully accommodate

changes (evolvability). An evolvable system may perform changes to the system,

decreasing its level of performance or reliability for a specific time range 1) to

compensate for faults or 2) during exceptional circumstances (graceful

degradation).

More specifically, we consider that a resilient system must have the ability to be

adaptable, understanding adaptability as the ability to evolve while executing.

Therefore, adaptability is a subset of evolvability and requires the ability to

anticipate to changes prior to the occurrence of the resulting damage.

Therefore a resilient architecture must include different mechanisms to acquire

both attributes: a) static pre-design fault tolerant techniques (robust) and b)

dynamic techniques (elastic) that may be achieved with the ability to reconfigure

elements of the system (reconfiguration).

52

2.7.1. Requirements

The main aim required to implement a resilient architecture for safety critical

applications is the “ability	
 to	
 deliver	
 correct service adapting to disturbance,

disruption	
 and	
 change	
 within	
 specified	
 time	
 constraints”.

The above aim can be subdivided into more specific objectives, as follows:

x Continuity of service (reliability);

x Readiness for usage (availability);

x Non-occurrence of catastrophic consequences (safety);

x Non-occurrence of incorrect system alterations (integrity);

x Ability to undergo corrective maintenance and recovery with maximum

coverage of faults (testability and recoverability)

x Ability to perform in the presence of faults (performability)

x Ability to decrease the level of performance for a specific time range in

order to compensate for hardware faults (graceful degradation)

x Ability to regain operational status via reconfiguration in the presence of

faults (recoverability via reconfiguration)

x Ability to accommodate changes (evolvability)

x Ability to anticipate to changes (adaptability)

2.7.2. Effectiveness of resilience

We consider the following attributes: reliability R(t), security SC(t), integrity I(t),

maintainability M(t), testability T(t), recoverability RC(t), availability A(t), safety

S(t), performability P(L,t), robustness RB(t), evolvability E(t), adaptability AD(t)

and reconfigurability RC().

53

Maintainability is a function of serviceability and repairability:

𝑀(𝑡) = 𝑓(𝑇(𝑡), 𝑅𝑃(𝑡))

Equation 2.53. Maintainability as a function of serviceability and
repairability

Security is a function of integrity, availability and maintainability:

𝑆𝐶(𝑡) = 𝑓൫𝐼(𝑡), 𝐴(𝑡),𝑀(𝑇(𝑡), 𝑅𝑃(𝑡))൯

Equation 2.54. Security as a function of Integrity, availability and
maintainability

Evolvability is a function of adaptability and reconfigurability:

𝐸(𝑡) = 𝑓(𝐴𝐷(𝑡), 𝑅𝐶(𝑡))

Equation 2.55. Evolvability as a function of adaptability and
reconfigurability

Therefore resilience RES(t) will be a function of all these attributes:

𝑅𝐸𝑆(𝑡) = 𝑓 ቌ
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦, 𝑡𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦,

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑠𝑎𝑓𝑒𝑡𝑦, 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦,
 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠, 𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

ቍ

Equation 2.56. Availability as reliability and recoverability

With all these attributes the following systems would benefit from the

implementation of effective resilience.

x Safety-life critical: e.g. aircraft and nuclear reactor control. life support

systems

x Business critical

x Reliable critical: e.g. telephone switching-, traffic light control-,

automotive control (ABS, fuel injection) systems

x Mission critical and long life systems: e.g. manned and unmanned space

borne, satellites and other systems in inaccessible locations

x Non-stop systems that demand high availability

54

Resilience is not a simple and single concept, rather, it possesses different

components or key attributes. Taking into consideration all these attributes, our

definition of resilience is as follows:

 “A	
 resilient	
 system	
 is	
 a	
 system	
 that	
 over	
 a	
 specified	
 time interval, under specified

environmental and operating conditions, is ready to perform its intended function,

guaranteeing the absence of improper system alterations, having the ability to

anticipate and accommodate changes while executing, and the ability to conduct

servicing and inspections so that in case of failure quick restoration to a specified

working condition must be achieved, or otherwise discontinue of the operation in a

safe way is provided”

2.8. Conclusion

This chapter explains the concept of resilience that encompasses important

attributes and measures that will be used during the thesis. Such concepts have

been reviewed and combined to define our concept of resilience.

Safety critical systems must provide correct service at all times by trying to avoid

the occurrence of any catastrophic failure. Different techniques can be employed

to increase reliability by avoiding/preventing hardware faults from becoming

errors that may lead to failures and catastrophic failures.

We introduce the concept of vicious cycle that explains the reasons behind the

performance and reliability problems that the microprocessor industry is

currently facing. The increase of transistor density, operating frequencies and

architectural complexity is drastically decreasing the reliability of newer

systems. There is, therefore, a need for implementing mechanisms that can deal

with the upcoming fault rates.

The mathematical background for classical reliability has been reviewed

together with the basic definitions for reliability evaluation. For constant failure

rate, independent of time, the exponential distribution is the most suitable for

55

the reliability analysis of the useful time of systems. The age of a system should

be taken into account when analysing reliability. Three different periods with

different reliability distributions have been explained by reviewing the bathtub

curve, which represents very well the effect that aging and degradation have on

HW reliability.

In addition, it is also shown how to estimate the reliability of serial, parallel and

mixed components. The failure rate of a serial system is equal to the sum of the

failure rates of its individual elements. Therefore the more components a serial

system has the higher the probability of system failure. The reliability of a

system is often dominated by the reliability of its least reliable component. By

deliberately and carefully introducing extra components into a system, overall

reliability can be increased as long as the reliability benefit accruing from the

redundancy scheme exceeds the decrease in reliability due to the actual

implementation of the redundancy mechanisms itself.

We extend the classical definition of resilience and apply it to the field of safety

critical computing. Moreover, we quantify the key attributes that a resilient

system must have, exploring the relationships among these quantitative

measures. The attributes of safety and performability are explained. The concept

of security is described, including its attributes: integrity, availability, testability

and recoverability. The mathematical background and the basic definitions for

system availability are also developed. We show how the availability of FT

systems can be estimated using different methods and measures.

Finally, the main aim and objectives required to implement a resilient

architecture for safety critical applications are defined. A resilient system, over a

specified time interval, under specified environmental and operating conditions

(performability), “must be ready” (in terms of availability) to perform its

intended function (reliability), guaranteeing the absence of improper system

alterations (integrity). It must have the ability to conduct servicing and

inspections (testability) so that in case of failure quick restoration to a specified

working condition must be achieved (maintainability) can be provided or can

56

discontinue its operation in a safe way (safety). Furthermore, a resilient system

must have the ability to anticipate changes and evolve (evolvability) while

executing (adaptability), successfully accommodating changes by reconfiguring

elements of the system if necessary (reconfiguration).

57

Chapter 3

58

Chapter 3

Dealing with faults: redundancy

This chapter provides a survey of state-of-the art design strategies to handle

faults with special stress on redundancy-based techniques. Section one presents

an overview of fault avoidance design strategies. Section two provides a survey

of fault tolerance techniques. The notion of redundancy and its different types

are presented and a notation, which may be used to describe the different types

of redundancy, is introduced. The concepts, capabilities and applications of the

different techniques based on structural (SR), information (IR) and time

redundancy (TR) are compared and discussed.

59

3.1. Handling faults: design strategies

In order to increase the reliability of safety-critical systems so that correct

service can be delivered, techniques need to be developed to prevent or reduce

the appearance of faults that could cause catastrophic failures. Depending on the

phase of the development cycle and the level of abstraction at which the faults

are tackled, two different design strategies can be adopted: fault avoidance and

fault tolerance.

Fault avoidance strategies can be used at device level during design time. Typical

in mainstream applications, in order to reduce the number of failures, this

approach focuses on preventing the occurrence of faults. Since a failure is the

consequence of an error propagating, and an error is the consequence of a fault,

eliminating faults would maximize reliability. Examples of this are silicon on

insulator (SOI) and hardened memory cells. These techniques have drawbacks in

terms of cost, speed of operation and chip area.

At execution or run time and at different levels of abstraction, fault tolerant

strategies can be implemented.

Figure 3-1. Mechanisms to deal with faults within the fault-failure
lifecycle

Following the failure lifecycle and its different phases already described in

Section 2.1, Figure 3-1 adds the different mechanisms to deal with faults within

60

the fault generation, error activation and failure propagation phases.

Additionally, Figure 3-1 serves as a summary of the chapter introducing the fault

avoidance and fault tolerance techniques and their phase of interaction within

the failure lifecycle.

Focusing on the source of faults, fault avoidance mechanisms attempt to prevent

faults from occurring in the first place. Once a fault has been generated it can be

prevented from activating an error using static fault tolerant techniques such as

masking. Alternately, errors can be detected and recovered using dynamic fault

tolerance techniques. Therefore, either we prevent the faults from taking place

(fault avoidance) or we deal with them using fault tolerance techniques.

3.2. Fault avoidance

Nowadays, mainstream systems employ fault avoidance design strategies in

order to achieve their projected failure rates. Manufacturing companies perform

assessments of sources and weaknesses that could lead to potential failures.

Based on the assessments, preventive measures are taken to ensure that the

overall reliability target is not compromised. Additionally, fault avoidance

strategies may include technology and design mitigation techniques that

implicate modifications of conventional manufacturing processes. These

techniques involve the use of specific materials, the modification of the doping

profiles of devices and substrates and the optimization of deposition processes

for insulators.

Technology mitigation techniques consist of IC process variations by either

improving the manufacturing process or by improving the materials used.

Improving materials: implicates the selection of specific materials with better

characteristics, e.g.:

x Boron has been used extensively as a p-type dopant in silicon and has also

been used in Boron-Phosphor-Silicate-Glass (BPSG) dielectric layers. For

61

BPSG-based semiconductor processes, BPSG can, in fact, be the

predominant source of transient errors (Baumann, 2001). The removal of

B-10 Boron isotopes in BPSG has been proven effective in the reduction of

transient errors (Baumann et al., 1995).

x Lead-free materials can reduce the effect of alpha particles (May, 1979)

(extensive information on alpha particle effects is provided in Chapter 4).

x Implanting of elements such as Al, As, Fl, P, and Si into oxides improves the

resilience to Total Ionizing dose effects (TID). (Kato et al., 1989; Mrstik et

al., 2000; Nishioka et al., 1989).

Improving the manufacturing process is based on changing the charge collection

and charge sharing capabilities of the devices:

x Substrate techniques: e.g. using epitaxial substrate doping (EPI layer charge

reduction)(Puchner et al., 2006), wells (single well, twin well and triple

well processes) (Pellish et al., 2006; Puchner et al., 2006; Roche and Gasiot,

2005), buried layers (Roche and Gasiot, 2005) and dry thermal oxidation

(Hughes and Benedetto, 2003)

x Non-capacitance techniques: e.g. increasing the node coupling capacitance

between storage nodes and memory, or using a DRAM capacitor on top of

the memory cell (Geppert, 2004)

x Using alternative insulating substrates; e.g. the use of Silicon on Insulator

(SOI) or Silicon on Sapphire (SOS) (J. R. Schwank, 2003) would mitigate

significantly the transient faults due to radiation (described in Chapter 4).

Whilst technology mitigation techniques are based at the process level, design

mitigation techniques operate on the layout level. An example of this type of

technique is the use of enclosed layout transistors. Furthermore, to prevent the

effects of radiation memory cells can be hardened with the use of contact and

guard rings.

62

The effect of silicon failure mechanisms, such as radiation induced transient

faults and wear-out defects, is proportional to the clock speed, supply voltage,

temperature, etc. Therefore, to ensure system reliability safety margins are

inserted into clock speed, operating temperature and supply voltage margins. If

the system failure rates resulting from the use of fault avoidance strategies fall

within the specified reliability targets, the use of redundancy techniques is not

justified. However, this is not the case for safety-critical systems.

Despite all the testing, verification techniques and technology improvement,

hardware components will eventually fail. The fault avoidance approach will not

be panacea and will be insufficient if:

x Failure rate and MTTR are unacceptable or

x the system is inaccessible for repair and maintenance actions

Therefore, fault avoidance techniques are only part of the solution for real time

safety critical domains. Complete removal of faults via fault avoidance is not

possible; above all, it has drawbacks in terms of cost of manufacturing the

elements required, speed of operation and increased chip area.

3.3. Fault tolerance: using redundancy

The key ingredient of fault tolerance is redundancy. Redundancy is defined as

the addition of information, resources or time beyond what is needed for correct

system operation (Latchoumy et al., 2011). Fault tolerant techniques rely on

redundancy that may include a combination of additional elements of hardware

and/or software to detect and/or recover from faults. These components are

63

called redundant since they are not required in a perfect system6. Artificially built-

in or protective redundancy is a system property that we define as the

incorporation of extra components (transistors at a low level) in the design of a

system so that its function is not impaired in the event of a failure. Redundancy

may arise by design (artificially built-in redundancy) or as a natural by-product

of design (natural redundancy). Natural redundancy is usually unexploited whilst

artificially built-in redundancy has been deliberately introduced. In this thesis,

when the term redundancy (or redundant) is used it is meant to have the

artificial connotation instead of the natural one.

When a system does not provide the minimum reliability required, extra

redundancy, not strictly necessary for the normal functioning of the system can

be added in order to increase the probability of normal functioning. Notice that

the term redundant does not mean identical functionality; it just denotes that it

performs the same job. In this sense, heterogeneous hardware performing the

same work can also provide redundancy.

Fault tolerance assumes actions such as fault detection, location of the faulty

component, recovery, and if necessary, reconfiguration of the system. Fault

detection is the process of determining the presence of faults and the time of

occurrence. Fault location is to exactly locate the reason/origin of the fault. The

system must be dynamically restored as though it is ‘as	
 good	
 as	
 new’ in

operational terms, except for the fact that some of the redundancy has been used

up and this may limit the possibilities for future repairs.

6 A perfect system is a system with a theoretical 100% reliability. A perfect system is usually
assumed to model extra reliable systems.

64

Figure 3-2. Redundancy types and their implementation (Schagaev,
2001)

Many different attempts to classify redundancy have been made (Avizienis,

1971; Carter and Bouricius, 1971; Schagaev, 1989, 2001). This thesis follows the

approach proposed by (Schagaev, 2001) to classify redundancy. Figure 3-2

shows the different types of redundancy (at the top of the figure) and the way it

can be implemented (at the bottom of the figure). In general, three types of

redundancy exist: structural (S), involving multiplication of components,

information (I), involving multiplication of information, and time redundancy

(T), involving multiplication of functions in time. These can be implemented in

hardware and software. This thesis focuses on the hardware aspect of

redundancy and fault tolerance.

Redundancy comes with a cost. Information and structural redundancies require

additional hardware components, extra power and perhaps extra area and

shielding. Time redundancy requires faster processing to achieve the same

performance, which in turn requires extra hardware and power.

65

3.3.1. Redundancy notation

Existing implementations of system redundancy use at least one of these three

redundancy types, usually more than one and can be implemented in hardware

(HW()), software (SW()) or a combination of both (HW(); SW()). As an example,

hardware based information redundancy is abbreviated as HW(I). Additional

quantifiers are used together with the redundancy type to further specify the

used redundancy as shown below in Table 3-1:

Table 3-1. Redundancy classifiers (Schagaev, 2001)

Quantifier Example Description

 SW(I)
No quantifier means general, not further specified
redundancy. SW(I) for instance just indicates general software
information redundancy

δ SW(δI) Additional used software based redundancy

Number HW(2S)

The number indicates duplication (2), triplication (3), etc. of a
system if used as a prefix for the redundancy type. The
original system and the copies are identical. n instead of a
discreet number is used to mark repetition until success in
case of time redundancy

indices HW(S1, S2) Indices are used to mark a duplicated system
implementation/hardware components

Note that the current notation does not include the implementation level.

HW(2S) only indicates duplication, but not whether the whole system is

duplicated or it is just parts of that system, such as, for example, duplicated

memory.

Table 3-2 and Table 3-3 present some concrete examples of notation of

hardware and software based redundancy. Any type of redundancy (hardware

and software) needs additional structural redundancy for its implementation.

66

Table 3-2. Examples of notation of HW based redudancy

Redundancy
type Description

HW(2S) Structural (material) redundancy of hardware such as
duplicated memory system

HW(S1, S2) A duplicated FT computer system with principally non
identical parts

HW(δI) Redundant information bit, for example an additional parity
bit per data word in HW memory for error detection

HW(nT) Special HW to delay execution (like in a timing diagram) to
avoid transient faults

HW(δT) Special HW to delay execution to avoid transient faults

Table 3-3. Examples of notation of SW based redudancy

Redundancy
type Description

SW(2S) Structural (material) redundancy of hardware such as
duplicated memory system

SW(S1, S2) A duplicated FT computer system with principally non
identical parts

SW(δI) Redundant information bit, for example an additional parity
bit per data word in HW memory for error detection

For instance, instruction repetition HW(nT) needs additional hardware registers

to store the internal state to be able to perform instruction rollback. We refer to

this as supportive redundancy and we define it as the redundancy needed for the

implementation of the main redundancy technique. For the sake of simplicity, we

usually omit this supportive redundancy. In cases where it is not clear whether

an applied redundancy type is supportive or not, more than one redundancy type

can be used. An example of this is the case of software based and hardware

checks that are performed during idle time of the system: SW(δS,δT).

67

3.3.2. Prognostics: Health management

An important contribution to the increase of system reliability is the use of

Prognostics, defined by the International Organisation for Standardization as

(ISO, 2004):

"… the estimation of time to failure and risk for one or more existing

and future failure modes"

This concept can be applied to real-time critical systems with active redundancy

and fault reporting. Prognostics Health Management, also referred to as

Condition-Based Maintenance (CBM), are strategies that recommend

maintenance decisions based on information collected via condition monitoring

(Jardine et al., 2006). These capabilities have been integrated in many safety-

critical systems from unmanned vehicles, to aircraft, to power generation plants,

etc. (DeCastro et al., 2011; Zhang et al., 2011)

In contrast with Planned Scheduled Maintenance (PM) where maintenance is

carried out upon pre-defined schedule, CBM is performed only when it is

triggered upon specific asset conditions.

CBM strategy consists of three major steps: data acquisition, data processing and

maintenance decision-making. During the data acquisition phase the condition of

the equipment is monitored to detect developing issues. The data processing

phase involves diagnosis; this phase attempts to isolate the root of the cause.

Finally, the maintenance decision-making phase where a corrective plan is

developed and applied based on the data obtained from the previous step.

3.4. Structural redundancy: HW(S)

Structural hardware redundancy involves the multiplication of independent

hardware components and execution of the same computation over such

68

components at the same time. Errors are exposed by checking/comparing the

results of the independent executions.

In terms of granularity, redundancy in general, and not only hardware

redundancy, can be applied on different abstraction levels. From bottom up we

can distinguish between finer-grained: transistor level, gate or logic level, and

between coarser-grained designs: circuit level, function level, system level,

microcode level and chip level of abstraction. Therefore, redundant components

can be as simple as transistors or logic gates but also as complex as processors or

even larger entities.

Figure 3-3. Taxonomy of structural HW redundancy

Figure 3-3 displays a taxonomy of the different hardware techniques based on

structural redundancy. Two different architectures of redundancy can be

distinguished: Parallel redundancy with redundant components running

concurrently and Standby redundancy with a spare component being activated

upon failure of an active component.

Furthermore, these extra resources can be used passively (passive redundancy),

actively (active redundancy) or combined. In systems with active redundancy, all

redundant components are in operation, sharing the load with the normal

components. This implies that both, regular and redundant components, age

69

together. Passive components are not fully energized and start normal operation

only when normal components fail. Passive components can be further broken

down into two types: warm and cold standby. Warm standby components remain

partially energized until becoming active and tend to deteriorate with time,

hence, having lower failure rate than the regular components. Cold standby

components are kept in reserve and they only become energized when put into

use. These types of components have a zero failure rate, meaning they do not fail

when they are in standby mode. Whilst passive components are switched off

completely, standby components are partially activated. Standby redundancy is

usually applied when the start time of the component is unacceptably long.

3.4.1. Static redundancy

Static redundancy, also called masking redundancy, implements error mitigation.

The term static relates to the fact that redundancy is built into the system

structure. Fault tolerant techniques based on this type of redundancy (static fault

tolerance) transparently remove errors on detection. The most common form of

hardware redundancy is Triple modular redundancy (TMR) (von Neumann,

1956) and its generalization N-modular redundancy (NMR). Note that Dual

modular redundancy (DMR) (DMR is further explained in Section 3.4.2.1) is not

considered static redundancy since the mismatch can take place but recovery is

not possible.

3.4.1.1. Triple modular redundancy: HW(3S)+HW(δS)

A basic TMR system (two-out-of-three) is a fault tolerant form of NMR that

consists of three fully redundant and active components or modules working in

parallel with equivalent functionality (Johnson, 1989; von Neumann, 1956).

70

Figure 3-4. Triple modular redundancy (TMR) with a voter

Figure 3-4 above presents an example of a TMR system with a voter. The three

components perform a process based on individual inputs whose results are in

turn processed by a voting system to produce a single output. The voting is based

on majority; if any of the three components has a fault, the other two systems can

mask the fault. It is assumed that two out of three modules must deliver correct

results. Therefore, TMR is capable of masking a single error.

Generally, a majority voting mechanism should:

x Guarantee a majority vote on the input data to the voter

x Determine the faulty block

In order to guarantee the majority vote, loosely synchronized systems require

synchronization of the inputs to the voter.

A specific example of this technique is the Boeing TMR 777 primary flight

computer (Yeh, 1996), which has triple redundancy for all hardware including

computing system, communication paths, electrical and hydraulic power.

71

3.4.1.2. Comparing the Reliability of Simplex and TMR with perfect

voter7 systems

A simplex system is a system with a single component. The reliability of a

simplex system is given by:

𝑅௦௜௠௣௟௘௫ = 𝑒ିఒ௧

Equation 3.1. Reliability of a simplex system

where λ	
 is the failure rate for the single component; the MTTF of a simplex

system can be expressed as:

𝑀𝑇𝑇𝐹௦௜௠௣௟௘௫ = න𝑒ିఒ௧ =
1
𝜆

Equation 3.2. MTTF of a simplex system

A TMR system such the one in Figure 3 includes three blocks, two of which are

required for the system to provide correct service. The reliability of a TMR

system with a perfect voter is given by:

𝑅்ெோ = 𝑅௠ଷ + ൬
3
2൰𝑅௠

ଶ (1 − 𝑅௠)

𝑅்ெோ = 𝑒ିଷఒ௧ + ൬
3
2൰ 𝑒

ିଶఒ௧(1 − 𝑒ିఒ௧)

𝑅்ெோ = 3𝑒ିଶఒ௧

Equation 3.3. Reliability of a TMR system with a perfect voter

7 A perfect voter is a voter with a theoretical 100% reliability. A perfect voter is usually assumed
to model extra reliable voters.

72

and therefore:

𝑀𝑇𝑇𝐹்ெோ =
3
2𝜆 −

2
3𝜆 =

5
6𝜆

𝑀𝑇𝑇𝐹௦௜௠௣௟௘௫ > 𝑀𝑇𝑇𝐹்ெோ

Equation 3.4. MTTF of a TMR with a perfect voter

Figure 3-5. Comparative reliability of TMR and Simplex systems
(Ravishankar K. Iyer, 2003).

Figure 3-5 shows how TMR has higher reliability than Simplex for short missions

(t<t0). Note that:

𝑅்ெோ(𝑡) ≥ 𝑅(𝑡) 0 ≤ 𝑡 ≤ 𝑡଴

𝑅்ெோ(𝑡) ≤ 𝑅(𝑡) 𝑡଴ ≤ 𝑡 ≤ ∞

Equation 3.5. Comparative reliability of TMR and Simplex systems
(Ravishankar K. Iyer, 2003)

Where:

𝑡଴ =
𝑙𝑛 2
𝜆 ≈

0.7
𝜆

73

TMR is very useful in aircraft applications offering high reliability for short

missions. (Ravishankar K. Iyer, 2003) shows that TMR is not suitable for long

safety-critical missions (t>t0) because paradoxically, after the first failure, the two

remaining components compete to fail. Higher reliability can be achieved

extending TMR to N-Modular Redundancy. Therefore, a blind use of redundancy

can lead to seemingly paradoxical results.

3.4.1.2.1. Reliability of TMR with voting

The previous expression of reliability of TMR assumes that the voter is perfect,

i.e. the voter is 100% reliable.

The reliability of a generic TMR system with non-perfect single voting (TMRV)

and identical blocks is given by:

𝑅்ெோ௏ = 𝑅௏ ቆ𝑅௠ଷ + ቀ32ቁ𝑅௠
ଷ (1 − 𝑅௠)ቇ

Equation 3.6. Reliability of a TMR system with a non-perfect voter
and identical blocks

where Rv is the reliability of the voter mechanism and Rm is the reliability of the

block. In terms of reliability, the voter becomes the weak part of this

configuration. The voter is a single point of failure (SPF); if the voter fails then the

complete system will potentially fail. This can be tackled following different

alternatives:

x By increasing the reliability of the voter using fault avoidance techniques

x By triplicating the voter and connecting the module outputs to all three

voters (Johnson, 1989) so that individual voting failures can be corrected

by the extra voting process

x By implementing online self-testing for the voting circuitry (Cazeaux et al.,

2004; Metra et al., 1997)

74

x Using an IDDQ checkable voters (ICVs) (Bogliolo et al., 2000): under fault-free

conditions, ICVs work as traditional CMOS voters; however, they cause

quiescent supply currents (IDDQs)8 in the presence of maskable stuck-at

faults (see Section 5.3.1). Faults can be detected using IDDQ testing, by

monitoring IDDQs (Williams et al., 1996)

A basic TMR system does not support common-mode failures (CMFs9) (Lala and

Harper, 1994). CMFs are the result of failures affecting more than one

component, usually due to a common cause, which may be due to design-faults

or operational ones resulting from external (such as radiation or

electromigration) or internal causes. For instance, a radiation source causing

multiple event upsets (Reed et al., 1997) can potentially lead to the failure of

more than one component in a TMR system.

3.4.1.3. N-modular redundancy: HW(nS)+HW(δS)

The generalized version of TMR is NMR where N stands for the number of

redundant modules. The main advantage of using N modules as opposed to only

three is that often more faults can be tolerated. For instance, a 5MR system

contains 5 replicated modules including a majority voting arrangement. The

voter allows the system to deliver correct service in case of as many as two

module faults.

8 Quiescent current is the current consumed by a circuit when no load is present. Fault-free CMOS
devices have very quiescent currents when they are in a quiescent state. Faults that cause high
quiescent currents can be detected if the quiescent current is significantly higher that that of a
fault-free circuit (Williams et al., 1996)

9 Multiple faults can be either independent (attributed to different causes) or related (attributed to
a common cause. Both can lead to similar errors (e.g. errors that cannot be distinguished by the
detection mechanisms being used) (Avizienis and Kelly, 1984). The failures triggered by similar
errors are called CMF

75

Figure 3-6. N-modular redundancy with a voter: M-out-of-N system

Figure 3-6 depicts a generic N-modular redundant system with a voter. The

redundancy of this system can be defined as HW(nS)+HW(δS) using the previous

notation. NMR works similarly to TMR but this type of structure is able to detect

[(𝑁 − 1)] / 2 errors in different processing modules. Besides TMR, 5- and 7-

modular redundancies are the most common structures and are capable of

detecting two and three errors respectively.

M-out-of-N systems are a type of NMR. The reliability of a generic M-out-of-N

system assuming that it has a perfect voter and M out of N modules need to

function is expressed by:

𝑅ெே = ෍ ቀ𝑁𝑖 ቁ
ேିெ

௜ୀ଴

𝑅௠ேି௜ (1 − 𝑅௠)௜

Equation 3.7. Reliability of an M-out-of-N system with perfect voter

Note than NMR systems offer higher reliability than TMR but at a much higher

cost. Undoubtedly, for practical applications there must be some limit on the

amount of redundancy that can be employed.

76

Figure 3-7. Redundancy applied on different levels of abstraction:
(a) Three logic gates in a TMR at the logic or gate level of
abstraction; (b) Three memory modules in a TMR configuration at
the circuit abstraction level; (c) Three microprocessors in a TMR
configuration at the chip level

TMR and NMR could be applied on different levels of abstraction by triplicating

logic gates, single memory cells, memory modules or complete microprocessors.

Figure 3-7 displays how TMR can be applied on logic (a), circuit (b) and chip level

(c).

TMR and NMR are typically employed in aerospace applications where the cost of

failure is particularly high. However, the higher reliability of these systems

involves more than 200% increase in redundancy. Such an example is the NASA

Space Shuttle onboard system, which is based on four computers with a majority

voter (Sklaroff, 1976).

3.4.2. Dynamic redundancy

To reduce the extensive space, energy and performance requirements of TMR

and NMR systems, numerous approaches have been developed. These

approaches are usually based in dynamic redundancy, which implements error

processing. This type of redundancy is similar to static redundancy with the

main difference being the voter logic is replaced with a switch that is controlled

by an error detection block. At least one of the modules is working as the main

module, whereas the rest of the modules or replicas can either be working in

77

parallel (e.g. DMR with comparison) or can be turned off and used as spares

(stand-by redundancy).

To avoid failures, after a fault has been detected, the system must be

reconfigured. Detection, reconfiguration and recovery are required in order to

prevent error propagation. Some examples of this type of redundancy are: pair

and spare, duplex systems (DMR with comparison), backup sparing techniques

etc.

3.4.2.1. Dual modular redundancy: HW(2S)+HW(δS)

By duplicating two components and adding a comparison structure, Dual

modular redundancy (DMR), or duplex, are common systems to detect errors

(von Neumann, 1956). DMR uses two fully redundant units working in parallel

and has been widely used in low level circuit implementations where a signal is

duplicated as an input to two redundant and independent logic gates and it is

transparently checked for errors.

Figure 3-8. Dual modular redundant (DMR) structure

Figure 3-8 depicts a DMR structure with a checker component. The checker logic

compares the output of block 1 and block 2. In the case of normal execution with

no error, both blocks would produce the same output and a result would be

delivered. On the other hand, in case of a mismatch between the two outputs of

the blocks, the output of the checker would produce an error signal and no result

will be given. Therefore, in its simplest version, as the checker logic is unable to

identify the incorrect unit, DMR through output comparison will only provide

error detection and will not provide error recovery capabilities on its own.

78

Additional mechanisms will be needed to provide error recovery so that if one of

the units experiences an error, the surviving/correct unit can continue

execution. Upon successful repair/recovery DMR is fully restored.

3.4.2.1.1. Redundant execution

A widespread and simple implementation of coarse-grained DMR is lock-

stepping, or lock-step execution (Buckle and Highleyman, 2003; McEvoy, 1981;

Sherman, 2003). Here, the processor pipeline is duplicated and the clock is

shared, comparing each instruction result before committing the results. This

type of error detection is considered to perform at the macro-level since it is

applied at the microprocessor’s scope.

Lock-stepping is widely used in a number of commercial processor designs and

can both detect and correct certain errors; e.g. IBM G5 (Slegel et al., 1999) and

Compaq Himalaya (Wood, 1999). Redundant threads are executed in multiple

processors and every instruction result is compared. No instruction can be

committed until its identical pair has also been completed and verified, hence

involving considerable overhead.

3.4.2.2. Standby redundancy

Standby redundancy, standby replacement, or standby sparing, is a well-known

fault tolerant design technique used as a failover mechanism (Avizienis, 1976).

In this case some units are online and operational and one or more backup units

serve as standby units.

79

Figure 3-9. Simple standby sparing configuration

Figure 3-10. Multiple standby spares with n-to1 switch

Figure 3-9 and Figure 3-10 present simple and multiple standby configurations.

When a fault is detected in an online/active unit, a standby unit replaces the

affected unit by using the selector (Figure 3-9) or by using the 3-to-1-switch

(Figure 3-10).

Figure 3-11. Typical reconfiguration steps for backup sparing

There are three common forms of standby redundancy: hot, warm and cold. The

type of application plays a key role in selecting the type of standby spare units.

Figure 3-11 graphically describes the typical reconfiguration steps for hot, cold

80

and warm backup spares. When a spare unit is to be switched over, the selected

spare is powered up and gets ready to become active. The reconfiguration

process whereby a standby spare unit becomes operational is composed of:

x Switching on the power and the bus connections

x Powering up of the unit

x Running the Built-In-Self-Test10 (BIST): Extensive testing is usually done

after powering up to avoid replacing a faulty module with a faulty module

before starting normal operation, e.g. memory tests of a spare module

x Loading programs and data

x Initializing the software if needed

Hot standby spares (HSP) operate in synchrony with the operational units and

are ready to take over whenever a fault is detected. HSP units reduce the mean

time to recovery (MTTR) and therefore their use is suitable for applications that

require short recovery time, that is, applications where the disruption of

processing must be minimized.

Cold standby spares (CSP) remain unpowered and thus do not operate or

consume any power until they need to replace an active unit. Since the restarting

of the units is required, the use of CSP is best suited to remote operations where

power is hard to come by, e.g. satellites and sensor systems. CSP units are also

suitable for applications where short lapses in operation are acceptable and state

data is not critical. In addition, CSP are likely to have a lower failure rate than

operational modules. However, the startup delay required to switchover to a

spare module is high since power up, BIST and initialization are needed. In

10 Built-In-Self-Tests (BISTs) are one of the common methods of testing circuits. BIST is a DFT
technique that takes place on the same substrate as the device under test (DUT) within the
system allowing them to perform self-testing (Stroud, 2002).

81

particular, the time necessary for BIST depends upon the fault coverage and the

complexity of the unit/module.

Warm standby spares (WSP) consist of a trade-off between the high power

consumption of CSP and the long recovery time of HSP. WSP units have time

dependent behaviour. Before and after replacing an operational unit, WSP

present different failure distributions.

The advantage of standby sparing for a system with n identical units is that a

certain level of fault tolerance can be provided with k<n spare modules.

3.4.2.3. Pair and spare

The pair and spare configurations are a combination of DMR with comparison

and extra spare techniques.

Figure 3-12. Pair and spare configuration

Figure 3-12 depicts a pair and spare configuration where two units are always

online and compared to each other, with any of the n spares being able to replace

either of the operational units.

3.4.3. Hybrid redundancy

By mixing fault masking, detection location and recovery, the advantages of

static and dynamic redundancy can be combined (Johnson, 1989). Hybrid

82

approaches use Fault masking to prevent erroneous results from being activated.

Fault detection, location and recovery are also employed in hybrid techniques to

improve fault tolerance by removing errors.

Figure 3-13. Hybrid approach using TMR with spaces
(Johnson, 1989)

A general approach is to back up the replicated modules with spares, e.g. a TMR

configuration with a fault/disagreement detector, a voter and a reconfiguration

unit (see Figure 3-13). In such a system, the triplicated operational modules are

backed up with an additional pool of spares that can replace faulty modules

(TMR with spares). The system will work as a basic TMR configuration until the

disagreement detector determines that a faulty module exists. One alternative

approach towards fault detection is to feed the output of the majority voter back

to the faulty detection unit whose job is to compare the output of the voter with

the individual outputs of each operational module. Any disagreement with a

specific	
 module’s	
 output	
 would	
 indicate	
 that	
 the	
 module	
 should	
 be	
 labelled as

faulty and therefore replaced by a spare unit. The reliability of the basic TMR

system is retained as long as the pool of spares is not exhausted. Note that voting

only occurs among the operational modules in the TMR core, masking faults and

making sure that continuous correct service is delivered.

83

Figure 3-14. A triple-duplex approach

A variation to NMR with spares is the triple-duplex approach depicted in Figure

3-14 that combines duplication with comparison and TMR. The use of passive

redundancy in the form of TMR allows potential faults to be masked and

continuous correct service to be provided for a maximum of two faulty modules.

The use of DMR with comparison allows faults to be detected and faulty modules

to be removed from the voting process and replaced by spares.

These options are simple but far more expensive in terms or real estate of the

chip than traditional static techniques. Besides, as seen in section 3.4.1.2.1, the

reliability of TMR depends mostly on that of the voters. Hence, if a fault takes

place within a voter, an incorrect majority vote may be given to the output and

propagated throughout the system thus compromising the correctness of the

system’s	
 service.	
 In	
 order	
 to	
 avoid	
 such	
 unreliability,	
 voters	
 can	
 be	
 designed	
 to	

be capable of testing themselves online with regards to their own internal faults

(Cazeaux et al., 2004; Metra et al., 1997, p. 97).

84

An extra form of hybrid scheme that allows error detection and correction thus

improving the reliability of a memory system is depicted in Figure 3-15:

Figure 3-15.Transient faults tolerant TRAM (Schagaev and
Buhanova, 2001)

Any reading and writing operation is followed by a content check of a specific

address in all three blocks. In case of a mismatch among these a majority voting

takes place whose result is then rewritten (via control unit) to the inputs of all

elements using the same address.

3.5. Information redundancy

Information redundancy involves the addition of new information to existing

information, often in compressed form i.e. using more bits than needed. The

most common form of information redundancy is coding (see Figure 3-16).

Coding theory in hardware and software fault tolerance goes back a very long

way and was initially motivated by the need to mitigate errors in information

transmission (Shannon, 1948).

85

Figure 3-16. Coding-encoding process of a d-bit word into a c-bit
word

Coding consists of adding check bits to the data allowing 1) the verification of

data correctness and/or 2) the correction of erroneous data. Therefore, with

coding an original piece of meaningful information, or d-bit data word, is

encoded obtaining a c-bit code word, where c>d (see Figure 3-16). Because of

these extra bits not all 2c possible binary combinations are valid code words.

Therefore, a code should be selected so that any potential error would transform

the codeword, after decoding, into an invalid code word (non-codeword).

An important property of coding is separability. Two main approaches are

possible:

x Separable or systematic codes: the code word is formed by adding extra

information (check bits) to the original data. A separable code has

separable fields for data and check bits. Decoding this type of code is

simple and consists of selecting the data bits and disregarding the check

bits.

x Non-separable or non-systematic codes: data and check bits are integrated

together requiring some extra processing and therefore incurring

additional delays and overheads.

86

Important parameters for codes are:

x The number of erroneous bits that can be detected

x The number of those that can be corrected

x The number of additional bits that are required

x The time needed to encode

x The decoding time

Information redundancy techniques make use of detection-based codes (EDC) or

correction based (ECC) codes. Figure 3-17 presents a taxonomy of coding

techniques.

Examples of some of these techniques include:

x Error detection and correction codes for cross-checking the contents of

main memory, register files and cache,

x Cross-checking of run-time control flow using signatures and

x Algorithm based checksums for cross checking of the data values generated

In general, information redundancy involves some space and computational

overheads, thus requiring extra circuitry and is thus more commonly

implemented in memory structures instead of in processor datapaths.

87

Figure 3-17. Taxonomy of information redundancy coding techniques

88

3.5.1. Error Detection Codes: EDC

Error detection codes have the ability to expose error(s) in a given data word

based on the encoding-decoding principles discussed in Section 3.5, In general,

error detecting codes (EDC) present less overhead than error correcting codes

(ECC) since they do not have correction capabilities.

Figure 3-18. Coding-encoding in a memory block with parity checking

The simplest EDC are parity codes, which involve the addition of extra bits or

parity bits. Figure 3-18 depicts a basic scheme of memory with parity checking.

Before storing a word in the memory block a parity generator computes the

parity bits based on the bits of the input data word (DW). A parity bit is an extra

bit added to a group of source bits (DWs) in order to ensure that the outcome or

coded word has an even (in the case of even parity) or odd (in case of odd parity)

number of bits set to 1. When a memory block is read, the parity checker

compares the computed and the stored parity bits, setting the error signal

consequently. If both, computed and stored parity bits, match then the error

signal would indicate a correct output; otherwise the error signal would indicate

that the retrieved DW is incorrect. Note that for n bits of data there are 2n

possible DWs. Adding one parity bit would allow 2n+1 possible DWs. Among these

possible DWs there are
ଶ೙శభ

ଶ
 possible DWs with an odd number of 1s and

ଶ೙శభ

ଶ
 possible DWs with an even number of 1s. In the case of odd parity, only the

DWs with an odd number of 1s are valid code words (CWs). In the presence of a

89

single bit flip (error) an odd parity CW would change into an even parity CW and

therefore the parity checker will detect the error. Nonetheless, it will not know

which bit has been flipped. This simple configuration can be used to detect single

or any odd number of errors in the retrieved DW. However, an even number of

flipped bits would make the parity bit of the CW appear to be correct although

the data is incorrect. With single parity, double errors and even number of errors

would remain undetected.

3.5.2. Error Correction Codes: ECC

More powerful codes than parity codes can be created by adding more check bits

to the original data. The size of the data to be protected will determine the

number of check bits needed. Using this basic principle, error correction codes

have the ability to detect errors and reconstruct the original error-free data.

These can generally be realized in three different manners (see Figure 3-17):

x Backward Error Correction (BEC) sometimes referred to as Automatic

repeat request (ARQ): combines an error detection technique (error

detection encoding prior to transmission) with retransmission request of

erroneous data. BEC requires simpler decoding infrastructure than FEC but

frequent retransmissions would significantly compromise performance in

high data rate transmissions.

x Forward Error Correction (FEC) or Channel Coding: With this approach,

errors are both detected	
 and	
 corrected	
 at	
 the	
 receiver’s	
 end.	
 Thus,	
 it	

involves error-correcting encoding prior to transmission without

retransmission of the original information. FEC requires more complex

decoding infrastructure than BEC but it is suitable for high data rate

applications.

x Hybrid automatic repeat request (HARQ): BEC and FEC are combined. e.g.: a

scheme where minor errors are corrected without retransmission (FEC)

and major errors are corrected via retransmission (BEC).

90

Figure 3-19. Basic ECC memory scheme including calculation,
checking and correcting

An overview of popular FEC schemes employed in fault tolerant design of

embedded systems follows. Figure 3-19 shows a basic ECC memory scheme that

applies to any of the following codes including calculation, checking and

correcting logic. When data is written into the data row specified by the address

signals, the ECC encoding logic generates the parity checks (as specified by the

code) and introduces them into the ECC part of the memory. When the DW is

read from the memory the parity bits would allow missing data to be

reconstructed in the case of an error being detected.

91

3.5.2.1. SEC-DED11: Hamming and Hsiao: HW(δI)

The most common ECCs are based on Hamming (Hamming, 1950) or Hsiao

(Hsiao, 1970). These two separable code families introduce the concept of

overlapping parity by which every data bit has a part in adjusting the value of

several parity bits. These codes can correct single bit errors in a given word, can

detect double bit errors, are relatively fast decoding and have moderate

redundancy.

Hamming codes are a family of perfect codes12 that generalize the original

Hamming(7,4)-code (Hamming, 1950). A minimum distance d means that it

takes d bit changes to move from one valid codeword to the other. Extended

Hamming code sometimes generalized as SEC-DED (single error correction and

double error detection), is an example of this type of code. In SEC-DED, an extra

parity bit is added achieving a distance of four instead of the three (as in the

original Hamming). The extra parity bit allows the decoder to distinguish

between two possible situations:

x When at most one bit flip has occurred and

x When two bit flips have taken place

In contrast with Hamming(7,4), SEC-DED provides single-bit-error correction

and simultaneous double-bit-error detection.

Compared to Hamming codes, Hsiao codes (Hsiao, 1970) provide improvements

in speed, reliability and calculation cost as well as checking and correcting logic.

11 SEC-DED: Single error correction and double error detection

12 A Hamming code is perfect in the sense that it can achieve the highest possible rate for codes
with a given block length and minimum distance of three (Moon, 2005)

92

However, in situations that demand higher reliability requirements than those

provided by SEC-DED, more complex codes are required.

3.5.2.1.1. SEC-DED limitations and alternative techniques

The main limitation of SEC-DED codes is that triple-bit errors may not only

remain undetected but it may also be miscorrected as if they were single-bit-

errors (Hsiao, 1970). The probability of this type of miscorrection for 32bit data

words is around 60% or more.

Multiple errors are usually taking place in adjacent memory locations, therefore

increasing the chances of having multiple bit errors in a given word (Bentoutou

and Djaifri, 2008; Boatella et al., 2009). These are called burst errors13, errors

that	
 are	
 highly	
 correlated.	
 If	
 a	
 specific	
 memory	
 cell	
 has	
 an	
 error,	
 it’s	
 likely	
 that	

adjacent cells may also be corrupted by the same event that triggered the error

in the first place. Theses are sometimes referred to as spatial multi-bit errors

(Mukherjee et al., 2004). In contrast, temporal multi-bit errors are errors that

take place when two different cells of the same word are affected by different

events (Mukherjee et al., 2004).

An important risk for SEC-DED schemes is that if a specific memory word is not

accessed for a long period of time, the chance of accumulating errors increases

(temporal multi-bit errors). One method to avoid these is the use of memory

scrubbing (Mukherjee et al., 2004; Saleh et al., 1990; Weaver et al., 2004) , by

which every memory location is read periodically. This may be implemented by

having a hardware controller that, during idle periods, reads every memory

location searching for errors and correcting any single error found during the

13 Also called cluster of errors

93

process, thus reducing the chance of detected (DRE14 and DUE15) and undetected

errors (e.g. SDC16). Scrubbing does, however, impose additional SW and/or HW

overheads depending on the implementation. In current architectures with high

memory bandwidths, HW scrubbing is preferred due to its lower timing

overhead. In combination with SEC, scrubbing is effective against single-bit- and

temporal multi-bit errors but not against spatial multi-bit errors.

Figure 3-20. Memory interleaving of four 3-bit words with a 4
interleaving distance (ID)

To avoid this problem of spatial multi-bit errors, memory interleaving (Haraszti,

2000; Reviriego et al., 2010, 2007) is commonly used in conjunction with ECC

ensuring that cells that are physically closely located belong to different logic

14 A DRE is a detected recoverable error, a benign type of error since recovery of the normal
operation by fault tolerant techniques is possible (Kadayif et al., 2010; Weaver et al., 2004)

15 A DUE is a detected unrecoverable error. DUE take place when fault tolerant techniques are
able to discover and/or report an error, from which recovery is not possible (Kadayif et al., 2010;
Weaver et al., 2004)

16 SDC stands for Silent data corruption. A SDC take place when an error is undetected and causes
data corruption (SDC). In this case, the corrupted data could go unnoticed making this type of
error benign, or could result in a visible error and/or catastrophic failure such as crashing a
computer system (Constantinescu et al., 2008; Kadayif et al., 2010; Weaver et al., 2004)

94

words. That is, cells that belong to the same logical word are physically apart.

Figure 3-20 illustrates an example of memory interleaving in a four 3-bit

memory word. This type of memory distributes logical data into a non-

continuous arrangement. More columns than the number of bits of a single word

are added, and the corresponding columns for each word are interleaved. In this

way, burst errors are distributed over a number of words each suffering only one

single bit error. Any 4-bit-upset affecting adjacent memory cells would cause four

single bit errors in separate words, which can be easily corrected by SEC-DEC.

A shortcoming of interleaving is that high interleaving distances (ID) involve

more complex designs and thus higher area and latency overheads (Baeg et al.,

2009; Reviriego et al., 2010). Ideally the ID should be selected as the maximum

expected MCU size so that all upsets in a burst error would occur in different

logical words.

Table 3-4. ECC-TMR comparison

Characteristic Hamming (SEC-DED) TMR RS (DEC-TED) BCH (DEC-TED)

Area

Small overhead to
implement
Varies depending on
the number of bits (7-
32%)

Extra 200% plus the
voting and correcting
logic
Number of voters is
proportional to the
number of units

Varies depending
on the number of
bits (13-75%)

Varies depending on
the number of bits
(13-75%)

Performance

It can be affected by
the coder-decoder
functions
Proportionally
dependent on
number of bits to be
corrected

High performance.
Voter is the only
source of delay, hence
almost constant delay

Lower
performance than
BCH and much
lower compared to
Hamming and TMR

Higher performance
than RS but much
lower than
Hamming or TMR

Error
Correction

Limited capabilities:
it corrects only one
single incorrect bit
per word.

Corrects up to n
errors in an n-bit
word as long as the
errors are located in a
distinct position/unit.

Can handle
multiple errors;
Efficient for
correlated errors
(e.g. burst)

Can handle multiple
errors; Efficient for
uncorrelated errors
(e.g. random errors)

Implementation Binary based
Simple to implement Simple to implement

Symbol based
Complex to decode
and implement

Binary based
Complex but simpler
to decode and
implement than RS

95

3.5.2.2. Complex codes

EDAC implementations based on Hamming codes are the easiest to implement

but only provide single error correction (Hentschke et al., 2002). There are

alternatives to SEC-DED like Bose-Chaudhuri-Hocquenghem (BCH) (Bose and

Ray-Chaudhuri, 1960) and Reed-Solomon (RS) codes (Reed and Solomon, 1960)

based on finite-field arithmetic that can correct multiple faults.

Table 3-4 shows a comparison of the main error correction techniques in

memories. BCH codes are able to correct a given number of bits at any position

whereas RS codes group the bits in blocks in order to correct them. RS based

codes provide a more robust error correction capability but uses a large amount

of system resources17. The RS decoding process has several stages to get the

location of the error and correct it. Implementations of RS codes can be found in

(Neuberger et al., 2005, 2003). Although the RS algorithm can be simplified

(Neuberger et al., 2003) the main disadvantage of these two codes is having

complex and iterative algorithms.

Table 3-5. EDC-ECC storage array overheads, based on (Slayman,
2005).

17 DEC-TED implementations are expensive from both area-penalty and computational-
complexity points of view

96

As with hamming based SEC-DED, more complex codes can be implemented

based on RS and BCH algorithms. Some examples are SNC-DND18 (Chen and

Hsiao, 1984) and DEC-TED19 codes (Lin and Costello, 1983). Table 3-5 is an

overhead comparison of various EDAC schemes: Single parity EDC, Hamming

SEC-DED, SNC-DND and DEC-TED. Note that the calculation of overheads is just

the number of check bits divided by the number of data bits and does not include

the extra overheads (e.g. I/O and checkers). Complex errors increase the

overhead rapidly as correction capability is increased (Kim et al., 2007). For any

given technique, as the data size increases, the relative overhead of a given

scheme decreases (Table 3-5).

In addition to the area penalty, as the correction capability increases, timing

overheads also increase. Results on 64kb SRAM developed in 90nm processes

show that the implementation of a DEC-TED encoder involves a latency penalty

of 80% to 85% as compared to SEC-DED (Naseer et al., 2006).

Schemes based on information redundancy can also be applied on different

levels. For instance parity codes can be applied to registers, cache and internal

memory whereas SEC-DED can be implemented in external memory, etc. As all

these are more complex codes than SEC-DED let alone single parity codes they

produce higher overheads as the correction capability increases (Kim et al.,

2007) and are thus not suitable for areas of real-time systems that demand high

possessing performance.

18 SNC-DND: single nibble error correcting, double nibble error detecting

19 DEC-TED: double bit error correcting, triple bit error detecting

97

3.6. Time redundancy: HW(T)

Figure 3-21 shows a list of the most relevant techniques based on time

redundancy, which are fully described in Sections 3.6.2, 3.6.3, 3.6.4, 3.6.5 and

3.6.6.

Figure 3-21. Taxonomy of time redundancy techniques

3.6.1. Concurrent error detection: Basics of time redundancy

The main problem with the space and information redundancy types reviewed is

the penalty imposed in the form of extra hardware. At the expense of using

additional time, FT techniques based on time redundancy (TR) aim to reduce the

amount of hardware required for the implementation. Time redundancy

techniques involve the re-execution of code using the same piece of hardware

and comparing the two execution results to determine if a fault has occurred.

This approach was commonly used in the past and is effective in detecting errors

resulting from transient faults.

98

Figure 3-22. Transient fault detection mechanism based on
redundant execution

Figure 3-22 shows the basic transient fault detection mechanism based on re-

execution. With this technique two or more different computations are

performed at different times t0, t0+∆t, and t0+n∆t given n>1. The result of a given

computation is stored in the corresponding register and then compared to the

results obtained from the previous computation(s). If the re-execution is

performed twice and a disagreement exists, then transient errors can be

detected. This type of technique was used in the past, but on its own, and did not

provide protection against errors due to permanent faults. However, the

executions can be performed again to check if the discrepancy remains or not.

This is useful in order to distinguish between permanent and transient faults. If

after re-execution the fault disappears, it is assumed to be transient. The

hardware resource affected by a transient fault is still usable. On the other hand,

if after re-execution the problem persists, the fault is assumed to be permanent

and reconfiguration of the specific hardware resource is necessary.

Figure 3-23. Transient and permanent fault detection mechanism
based on redundant execution

99

Modern FT techniques based on time redundancy can detect permanent faults as

shown in Figure 3-23. In this case, during the first computation, the results

obtained are simply stored in a register. Then, prior to the next computation(s) a

specific type of encoding is performed on the operands. After the relevant

computation(s) take(s) place on the encoded operands, the results of all

computations are then decoded and compared.

Given that x is the input data, E(x) is the data decoding, F(x) is the functional

computation, F(E(x)) is the functional computation of the decoding data and

D(E(f(x))) is the decoding of the encoded data after computation, and assuming

that the functional block is free of permanent faults and assuming that:

∀ 𝑥 𝐷൫𝐸(𝑥)൯ = 𝑥

Equation 3.8. Encoding-decoding relationship

Then, the following relation can be stated:

∀ 𝑥 𝐷 ቀ𝐹൫𝐸(𝑥)൯ቁ = 𝐹(𝑥)

Equation 3.9. Relationship among encoding, decoding and
functional computation

If the decoder and the encoding process are carefully selected so that a failure in

x would affect F(x) differently than it would affect F(E(x) then if ∆t>0 the

comparison mechanism would produce an error signal.

The main problem with time redundancy	
 techniques	
 is	
 that	
 if	
 the	
 system’s	
 data	
 is	

corrupted by a transient or permanent fault, it will be difficult to repeat a given

computation. The critical part of these techniques is assuring that the data is

correct and identical before each one of the redundant computations take place.

The leading concurrent error detection (CED) techniques based on time

redundancy are alternating logic (Reynolds and Metze, 1978), recomputing with

shifted operands (RESO) (Patel and Fung, 1982), recomputing with rotated

operands (RERO) (Li and Swartzlander, 1992), recomputing with swapped

operands (RESWO) (Hana and Johnson, 1986) and recomputing with comparison

100

(REDWC) (Johnson et al., 1988). All these techniques work as specified in Figure

3-23. The main difference among them is the type of encoding and decoding

used.

3.6.1.1. Self-duality

Self-duality is a property required for	
 certain	
 circuit’s	
 functions	
 in order to

implement specific error detection techniques based on time redundancy. A

function is said to be self-dual if it satisfies the property:

 ∀ 𝑥 𝑓൫𝑥ଵ_, 𝑥ଶ_, … , 𝑥ଷ_൯ = 𝑓_(𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ)

Equation 3.10. Property of self-duality

Where x1, x2, x3,	
 …,	
 xn is the set of inputs to the circuit, x1_, x2_,...,xn_ the set of

complemented inputs, f() the output and f_() the complemented output.

By letting C be a function that complements each bit of a given vector:

∀ 𝑥 𝐶൫𝑥ଵ_, 𝑥ଶ_, … , 𝑥ଷ_൯ = (𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ)

Equation 3.11. Property of self-duality

It becomes clear that:

𝐶ିଵ = 𝐶

𝐶ିଵ ቀ𝑓൫𝑐(𝑥)൯ቁ = 𝑓(𝑥)

Equation 3.12. Complementary function

Resulting in:

𝐶൫𝑓(𝑥)൯ = 𝑓൫𝐶(𝑥)൯

Equation 3.13. Complementary function and self-duality

There are several problems that must be considered when designing a fault

tolerant technique using time redundancy. A function C that satisfies the

101

previous property must firstly be determined. Finding a C may not guarantee the

desired level of error detection since different circuit implementations based on

different C can have different coverage. Complexity is also an important issue. In

the case where the hardware required to implement the coding and decoding

functions based on C and C-1 is similar to that of implementing f(x), then

structural redundancy becomes the more effective choice. In short, the aim of a

cost effective design should be finding a function C that provides a good trade-off

between high coverage and low complexity.

3.6.2. Alternating logic

An example of encoding/decoding function is the complementation operation

used in alternating logic (Reynolds and Metze, 1978) and successfully applied to

permanent fault detection of data transmission and digital systems.

Figure 3-24. Time redundancy technique based on alternating logic

As shown in Figure 3-24, the data computed at time t0 is then complemented and

transmitted at time t0+∆t. In the case of a stuck line (either at 0 or at 1) the two

computations will generate data that are not complement of each other and

therefore the error signal will become enabled after comparison. In the case of

102

Figure 3-24, the last communication line is stuck at 120 and therefore

complement and data would both become 1, which is not an alternate output and

therefore a fault is detected. In order to implement error detection in this coding

the circuit function must have the property of self-duality otherwise extra input

bits would be required. For certain circuits 100% area overhead may be required

for certain error detection circuits in addition to time redundancy (Carter and

Schneider, 1968; Johnson et al., 1988; Woodard and Metze, 1978).

The key for fault detection is to determine that at least one input vector exists for

which the fault will not result in alternated outputs. Although any single stuck-at

fault can be detected by this technique, extra redundancy and hardware

modifications are required to create self-dual functions from non-self-dual ones.

Any non-self-dual function of x variables can be converted into an x +1 variable

function that is self-dual and can thus be implemented with an alternating logic

circuit.

3.6.3. Recomputing with shifted operands (RESO)

Recomputing with shifted operands is a logic level concurrent error detection

technique based on time redundancy developed by Patel and Fung (Patel and

Fung, 1982). RESO can be applied to certain problems in which shifting the

inputs forms a complementing function that produces a known relationship in

the outputs. It has been originally used for arithmetic and logic units. The error

detection capability of RESO depends on the number of shift operations. The

generalized version is RESO-k and it refers to shifting by k bits.

20 A stuck-at fault is a particular fault model used to represent a manufacturing defect within an
integrated circuit. Depending on the effect of the fault, a suck-at fault can be stuck either at a
logical value of 0 (stuck-at 0) or 1 (stuck-at 1)

103

Figure 3-25. ALU concurrent error detection using recomputing
with shifted operands (RESO-k)

Figure 3-25 shows a schematic of a concurrent error detection mechanism on an

ALU using RESO. The operands a and b undergo a normal ALU operation 𝑓(𝑎, 𝑏)

during the first computation at time t0 and the result is stored in a register.

During the second computation at time t0+∆t, before entering the ALU the

operands are shifted left by k bits and the result of the ALU operation is right

shifted and finally compared to the ones previously stored in the register. In such

operations, left and right shifting can also be denoted as E(x) and D(x) (or E1(x)).

Therefore, if the equivalent notation for the recomputation is 𝐸ିଵൣ𝑓൫𝐸(𝑎, 𝑏)൯൧ it

should be equal to the first computation 𝑓(𝑎, 𝑏). If the results are identical the

output of the computation will be 𝑓(𝑎, 𝑏). However, if there is a discrepancy an

error signal will be generated.

When an n-bit operand is shifted left by k-bit(s), its leftmost k bit(s) move out

and the right most k-bit(s) become zero. This may lead to an incorrect result of

𝑓(𝑎, 𝑏) since k essential bit(s) are removed whenever shifted left. As with

104

alternating logic, extra redundancy is needed as an (𝑛 + 𝑘) shifters need to be

implemented. Furthermore, a bigger (𝑛 + 𝑘) bits length ALU is needed and

therefore the recomputation takes (𝑛 + 𝑘) bit operations rather than the original

n-bit ones. Furthermore, a totally self-checking equality checker is required for

the comparison process and error signalling. Additionally, parity codes can also

be used to detect error in the shifter logic.

Note that the fault coverage capability of RESO depends on the number of shifts.

RESO-1 can detect all single bit-slice errors in an ALU for all bitwise operations,

including AND, OR, NOT, NOR and XOR. As k becomes larger, an increase of space

and time complexity is entailed which in turn increase the probability of error.

Consider an ALU with an n-bit shifter and a RERO-2 implementation and an

operand a equal to 11010. After the 11010 is being shifted left by two bits, it will

have the two MSBs shifted out, thus becoming 01000. As a consequence, the

result of the calculation 𝑓(𝑎, 𝑏) will probably be incorrect.

If the shifter is replaced by an (𝑛 + 𝑘)-bit shifter with k=2 in this particular case

(RESO-2), then the operand a after the shifting operation will be equal to

1101000, thus keeping the MSBs and ensuring the correct result 𝑓(𝑎, 𝑏). Note

that during the first computation k-zero MSBs are added to each of the operands.

This is one way of detecting errors using RESO. Alternatively, as before, during

the first computation at time t0, the operands a and b undergo a normal ALU

operation 𝑓(𝑎, 𝑏) but the results are now left-shifted before being stored in the

register. In the second computation at time t0+∆t, the operands are also left-

shifted by k bits, but in this new way, the results are directly compared with the

ones in the register (there is not right-shifting performed on the operands).

The penalty paid for implementing RESO is that every component must be

extended to accommodate the shifting. For instance, to implement RESO-1 on a

32bit ALU the main system and the shifters are required to be 33 bits whereas

the storage registers and the equality checker must be 34 bits.

105

3.6.4. Recomputing with rotated operands (RERO)

Recomputing with rotated operands (Li and Swartzlander, 1992) is another

technique designed to overcome the limitations of RESO. RERO-k has similar time

redundancy characteristics to RESO but with different structural redundancy

demands.

Figure 3-26. ALU concurrent error detection using recomputing
with rotated operands

Figure 3-26 displays an ALU with RERO-k based concurrent error detection.

RESO-k requires an (𝑛 + 𝑘)-bit rotator and an (𝑛 + 𝑘)-bit ALU whilst RERO-k

only requires an (𝑛 + 1)-bit rotator and an (𝑛 + 1)-bit ALU.

During the first computation, the (𝑛 + 1) bit rotators do not rotate the operands,

thus the input and output of the rotators is identical. Both operands undergo a

regular ALU operation whose result is stored in a register. During the second

computations, the first two rotators perform a k-bit(s) right-rotation of the input

operands before they enter the ALU. Next, the result is rotated left and compared

106

to the previous result from the first computation. If the results are identical the

output of the computation will be 𝑓(𝑎, 𝑏). However if there is a discrepancy an

error signal will be generated.

With regards to error coverage, a RERO-k implementation with an n-bit ALU can

detect:

x (k mode n) consecutive errors for bit-wise logical operations.

x (k-1) consecutive errors in a ripple carry adder for arithmetic operations.

3.6.5. Recomputing with swapped operands (RESWO)

Recomputing with swapped operands (Hana and Johnson, 1986) is an extension of

the RESO technique that tries to detect errors by alternating the position of the

operands. RESWO implementation is very intuitive but with limited applications

such as addition, multiplication and Boolean functions but not division or

subtraction operations.

The first computation at time t0 is performed on unmodified operands. During

recomputation, at time t0+∆t, the operands are first split into two halves, upper

and lower, then swapped before calculation and finally swapped back after it.

The logic for implementing RESWO has been shown to be less complex and less

expensive than in RESO, in particular when the complexity of individual modules

is high (Shedletsky, 1978).

3.6.6. Recomputing with comparison (REDWC)

Recomputing with comparison (Johnson et al., 1988) uses a combination of both

hardware and time redundancy. The operands a and b of an n-bit operation are

split into two halves and computed by two virtually divided devices (𝑛/2-bit

size) twice. In a first time slot, the least significant 𝑛/2-bits (lower halves) of the

operands and their duplicates are carried out and then their results compared.

Upon completion, in a second time slot, the same operation is repeated for most

107

significant 𝑛/2-bits (the upper halves) of the operands. As long as the separate

halves do not become faulty in the same way and at the same time, REDWC can

detect all single faults.

3.7. Redundancy schemes comparison

In general, the addition of correction capabilities to a mechanism involves extra

area and/or time overheads. Table 3-6 compares timing, area overheads and

capabilities of structural- and time- based FT mechanisms.

Table 3-6. Comparison structural-, time- based FT mechanisms

Scheme Space
redundancy

Time
Redundancy

Detection (D) and
correction (C)

Time redundancy based

Alternating logic ≈0%- 100% >100% D

RESO ≈0%- 93%% >100% D

RESO ≈0%- 93% >200% DC

RERO ≈0%- 93% >100% D

RESWO ≈0%- 77% 0-100% D

REDWC ≈0%- 90% 0-100% D

Structural redundancy based

DWC >100% ≈0%-17% D

TMR >202% ≈0%-17% DC

TMR with
triplicated voter >208% ≈0%-17% DC

Information redundancy based

Single Parity 1-6% ≈0%-10% D

SEC-DED 7-32% 10%-129% DC

SNC-DND 13-75% - DC

DEC-TED 13-69% 22%-200% DC

108

TR techniques involve low area overheads at the cost of extra timing. Note that

some of these techniques, such as RESO, can provide correction capabilities by

performing more than two computations. In contrast, at the cost of area

penalties, SR techniques can provide detection and correction with very little

timing overheads.

Error detection codes, such as parity coding involve low complexity and low

overheads but have limited detection abilities and are not able to detect multi-bit

errors. Although information redundancy schemes can be feasible to correct

single and double errors in high-capacity memories (Paul et al., 2011), for n>2, n-

bit correction circuitry demands considerable area, energy and timing

overheads, especially in low capacity memories. For instance, in an 8-bit ECC

scheme integrated to a 64kb SRAM the area overhead can be more than 80%

(Kim et al., 2007). Application of Hamming SEC-DED codes to 16M-bit DRAM

chips has a 10% access time penalty on a to 16M-bit DRAM (Arimoto et al., 1990;

Furutani et al., 1989). For an experimental 1M-bit DRAM cache, applying a SEC-

DED code imposes up to 15% access time overhead (Asakura et al., 1990)

The area penalty is even greater in register files (RFs); experimental results for

SEC applied to a 64-bit 32-word RF using 90nm standard cell ASIC technology

(Naseer et al., 2006) incurs a 22% area penalty and a 129% increase in read

access time. TMR applied to the same type of registers incurs a 204% area

penalty but increases the read access time by only 17%. Therefore, for sensitive

ASIC applications that demand low-latency, TMR is more suitable.

3.8. Conclusion

The use of fault avoidance techniques does not guarantee complete removal of

faults, having many drawbacks in terms of cost, speed of operation and chip area.

System testing and verification techniques can never be exhaustive enough to

remove all potential faults and their causes.

109

Structural redundancy techniques, such as DWC for single error detection and

TMR for single error correction, are very popular. However, both techniques

entail high area and power overheads and may not be suitable in embedded

applications where power consumption is an important issue.

CED techniques based on EDC, such as parity coding, involve lower area

overheads than structural redundancy techniques but have limited detection

abilities and cannot correct errors or efficiently detect multi-bit errors. ECC and

physical interleaving incur large area overheads for multi-bit errors. Identifying

the time interval for scrubbing can be tricky.

In terms of time redundancy, the aim of a cost effective design should be finding

a function C that provides a good trade-off between high coverage and low

complexity. If the hardware required to implement the coding and decoding

functions is similar to that of implementing f(x) then structural redundancy

techniques are more effective. Time redundancy cannot be used in every

application due to the additional time required. For instance, certain long-life

critical systems used in space applications can tolerate additional time much

easier than additional space or power requirements whereas real-time safety

critical systems used in avionics cannot afford any additional performance

penalty. Apart from time, extra hardware in the form of shifters, registers,

comparators and extra bits are needed in ALUs. Moreover, fault coverage is not

provided for shifters, rotators and comparators unless they are implemented

with self-checking capabilities. However, if time is available TR techniques do

offer an opportunity to minimize the additional hardware required as compared

to structural redundancy.

When it comes to implementing FT, the selection of particular types of

redundancy greatly depends upon the application. Therefore to select a specific

set of redundancy techniques for implementation we should examine a) the

different requirements of the particular application and b) the techniques that

are more suitable for such requirements. Likewise, not only the type of

redundancy	
 technique	
 is	
 important,	
 but	
 where	
 and	
 at	
 which	
 level	
 it’s	
 applied; for

110

instance, applying TMR at the gate, register or circuit level would have a different

fault coverage, time, structural and power consumption trade-off.

111

Chapter 4

112

Chapter 4

Impact of Radiation on electronics of
embedded systems

Exposure to radiation of electronic devices can lead to catastrophic system

failures in embedded systems, significantly affecting their reliability. Therefore,

prior to the design of a resilient architecture, several factors shall be considered

in the earliest phases of the system design. The physics of radiation-induced

faults, the study of the error process and the sources of error are discussed. The

phenomenon that causes faults at the physical level is reviewed. This chapter

presents a review of unwanted effects in semiconductor devices caused by high-

energy particles focusing on standard electronic materials: silicon and its oxide.

We learn that the number of faults, and in particular the ones due to radiation

are expected to increase significantly.

4.1. Introduction

To develop efficient fault tolerant systems, designers need to be aware of the

impact of permanent and transient faults. Hardware faults are a major concern

in silicon based electronic components such as SRAM, DRAM, microprocessors

113

and FPGA. These devices have a well-documented history of faults mainly caused

by high-energy nuclear particles.

In the cases of safety-critical systems, aerospace and health monitoring systems,

maximum reliability can be achieved assuming susceptibility of those systems to

faults produced by various internal (e.g., interconnect coupling noise) and

external reasons (e.g., cosmic and solar radiation). The traditional reliability

analyses of these systems assume failure rates of permanent faults. A typical

failure rate for permanent faults due to hard reliability mechanisms such as gate

oxide breakdown or metal electromigration is generally between 1 and 50 FITS.

So far, design and reliability engineers are discounting the effect of transient

faults. Moreover, advances in semiconductor technology have been gradually

increasing performance. Aggressive scaling of transistor sizes has driven these

remarkable improvements in computational performance. However, the density

of modern silicon chips makes them vulnerable to particles of lower energy

causing transient faults and, as a consequence, catastrophic failures

(Constantinescu, 2003; Hazucha and Svensson, 2000; Hazucha et al., 2003).

Without mitigation mechanisms the error rates due to these transient faults can

easily exceed 50,000 FITS per chip.

4.2. Radiation and its effects on electronics

The	
 term	
 “radiation”	
 is	
 commonly	
 used	
 to	
 describe	
 a	
 process	
 in	
 which	
 energy	

travels through a medium, or space, ultimately to be absorbed by another body.

Radiation can generally be divided into ionising and non-ionising radiation

depending on its ability to ionise matter. Non-ionizing radiation does not usually

carry enough energy to produce changes to electronic circuitry. Non-ionising

radiation can move atoms in a molecule around or cause them to vibrate but

does not carry enough energy to ionise atoms or molecules, and as such is not a

concern. Non-ionising radiation comes in the form of visible and infrared light,

radio- and micro- waves and thermal.

114

 Ionising radiation has enough energy to directly or indirectly remove electrons

from atoms or molecules, thus causing the formation of ions. It includes highly

energetic protons, alpha particles, heavy ions, galactic cosmic rays and others.

Even though neutrons are not ionizing particles their collision with nuclei

produces ionizing radiation and therefore are also included in this classification.

As manufacturing technologies evolve, the effects of ionising radiation are

becoming a primary concern. Semiconductor devices are sensitive to ionising

radiation in the space environment, high altitudes and sea levels. There are

different radiation damage mechanisms affecting electronics including atomic

"lattice displacements and ionisation damage. Such mechanisms induce different

types of failures such Total Ionising Dose (TID), Single Event Effects (SEEs) and

Displacement Damage Dose (DDD).

Resulting particles from distinct radiation sources affect diverse electronic

technologies in a variety of ways. Due to the reduction in size of the transistors

and the reduction in critical charge of logic circuits, the natural resilience of

previous technologies to information corruption is decreasing (Baumann, 2002;

R. C. Baumann, 2005; Seifert et al., 2002; Shivakumar et al., 2002). Collision of

energetic particles with sensitive regions of the semiconductor can alter stored

information, potentially leading to logic errors.

Transient faults (Breuer, 1973), the predominant faults in modern technologies,

can be caused by environmental conditions like temperature, pressure, humidity,

voltage, power supply, vibrations, fluctuations and electromagnetic interferences

due to crosstalk between long parallel lines in a die. However, ionising particles

are the major source of this type of fault. Transient errors in electronic devices

due to ionising radiation in the space environment are well known (Adams and

Gelman, 1984; Adams et al., 1982; Binder et al., 1975; Blake and Mandel, 1986;

Waskiewicz et al., 1986) as is the impact of such radiation on application-specific

electronics such as commercial (Dyer et al., 1990; Johansson et al., 1998; Olsen et

al., 1993) and military (Taber and Normand, 1993) avionics, nuclear exposed

environments (Mahout et al., 2000; Marshall, 1963), medical instrumentation

115

(Bradley and Normand, 1998), and other sea level domains (Hauge et al., 1996;

Ziegler, 1996).

116

Figure 4-1.Taxonomy of radiation effects in silicon based electronics

117

4.3. Damage mechanisms

The two fundamental damage mechanisms (Claeys and Simoen, 2002) to

electronic elements due to radiation are atomic lattice displacements and

ionisation damages.

Atomic lattice displacement occurs when an energetic particle undergoes a

nuclear collision with one or more atoms of the electronic device, changing its

original position (see Figure 4-2 below) and thus the analog properties of the

semiconductor junctions, potentially worsening in the long term the properties

of the material and creating lasting damage. In silicon, an impacted atom can

become displaced if it is part of the crystalline structure and the incident particle

is capable of inducing a minimum energy (displacement threshold energy) of

around 20eV (Miller et al., 1994).

Figure 4-2. Atomic lattice displacement

The	
 displaced	
 atom	
 is	
 referred	
 to	
 as	
 “primary knock-on atom”	
 (PKA)	
 and	
 its	
 new	

non-lattice	
 position	
 is	
 called	
 “interstitial”	
 while	
 its	
 absence	
 from	
 its	
 original	

lattice	
 position	
 is	
 named	
 “vacancy”.	
 Normally,	
 the	
 simplest	
 configuration	
 is	
 a	

vacancy and an adjacent interstitial generated as a result of a low energy particle

hitting	
 the	
 material,	
 a	
 combination	
 referred	
 to	
 as	
 “Frenkel pair”.	
 However, in

most cases the displaced atom has enough energy to knock out a neighbouring

118

atom	
 creating	
 a	
 more	
 complex	
 configuration	
 called	
 “cluster”,	
 altering	
 the	

properties of the bulk semiconductor material. In silicon, vacancies and clusters

are of unstable nature and tend to be filled by near atoms leading to more stable

defects.	
 In	
 general,	
 this	
 migration	
 leads	
 to	
 the	
 most	
 typical	
 process,	
 called	
 “defect

reordering”	
 or	
 “forward annealing”	
 reducing	
 the	
 amount	
 of	
 damage	
 and	
 its	

effectiveness. Yet, in some cases, depending on the time, temperature and nature

of	
 the	
 device,	
 “reverse	
 annealing”	
 can	
 take	
 place,	
 resulting	
 in	
 more	
 efficient	

defects.

Ionisation damage is primarily induced by charged particles usually leading to

transient effects causing temporary variation of the functionality of the system.

Since no permanent damage is induced in the electronic circuit, this type of error

is called soft error. Ionisation damage may also lead to small degradation and

permanent errors, also called hard errors. A key factor in the damage process is

the critical charge, or Qcrit, which is the smallest amount of charge that can cause

a change of value in a cell. The effects provoked by the above damage

mechanisms can vary depending on the type or combination of types of

radiation, radiation flux, total dose, critical charge of the device and

manufacturing technology. These factors make modelling of faults difficult and

time consuming.

4.4. Radiation macro effects

Three major macro effect categories may be used to classify the resultant effects:

Total Ionising Dose (TID), Displacement Damage Dose (DDD) and Single Event

Effects (SEE). As far as the type of degradation that these macro effects have, TID

and DDD are considered as long term cumulative and SEE as short term. Table

4-1 summarizes the characteristics of these radiation macro effects.

119

Table 4-1. Characteristics of radiation macroeffects

Radiation
Effect

Type of
degradation

Source
Damage
Mechanism

Microeffects
Counter measures - Mitigation
Techniques

Sensitive
Technologies

Temperature
dependency

Total Ionizing
Dose (TID)

Long-term
cumulative

Trapped protons,
trapped electrons and
solar event protons

Ionizing
damage

Small energy
transfers
deposited
uniformly and
delivered over a
long time.

-Partial mitigation: Additional
shielding is only effective in
particular technologies and
environments
Robust electronic design. High drive
currents. High noise immunity, large
gain margins, etc.
Cold redundancy using spares. Not
suitable for all technologies.

Power MOS,
CMOS, NMOS,
PMOS, SOI, SOS,
Bipolar, BiCMOS

YES

Displacement
Damage Dose
(DDD) - Bulk
damage

Long-term
cumulative

Trapped and solar
protons and neutrons

Atomic Lattice
Displacement
damage

Accumulation of
small energy
transfers to
atomic nuclei
(Coulomb,
nuclear
interactions).

-Shielding is not only ineffective, but
it is also the root of the problem Bipolar, BiCMOS NO

Single Event
Effects (SEE) Short-term

GCRs, particles from
solar events, trapped
protons, and
secondary neutrons

Ionizing
damage

Sudden large
energy transfers
at the 'wrong
place and time'.

-Additional shielding is NOT effective.
- Ensure systems are not sensitive to
transient effects.
- Fault tolerant design techniques.
- Error Detection and Correction for
critical circuits.
- System Autonomous re-boot.

Power MOS,
CMOS, NMOS,
PMOS, Bipolar,
SOI. SOS,
BiCMOS

YES

120

Total Ionising Dose is a measure of the cumulative effects of the prolonged

exposure to ionising radiation. In the context of silicon devices, it is also called

surface damage. MOS and bipolar electronic technologies are affected by TID and

once the material is damaged, it will not return to its original state (Felix et al.,

2007). In today's devices, the formerly used bipolar transistors have been almost

completely replaced by the MOSFETs (Metal Oxide Silicon Field Effect

Transistors).

Figure 4-3. Schematic of a MOS transistor

The schematic of a typical MOS transistor is shown in Figure 4-3. Its basic

architecture is based on an N-(P-) doped silicon substrate and two highly P-(N-)

doped contacts, the source and the drain. The channel between the source and

the drain is covered by the gate oxide. This thin silicon dioxide (SiO2) insulating

layer is situated under the gate electrode and can attract charge carriers into the

channel region. If no voltage is applied at the gate electrode, no current can flow

between drain and source. By regularly applying low voltages at the gate, the

current between drain and source is regularly switched on and off.

121

Figure 4-4. Schematic of the motion of electron holes in a silicon
oxide

When a highly energetic particle strikes the semiconductor material, as shown in

Figure 4-4, electron hole pairs are generated but disappear quickly due to the

low resistance of the gate and the substrate. However, in the oxide, and due to

their different mobility, electrons rapidly move either to the gate or to the

channel whereas the holes slowly bounce from site to site until they become

trapped21 by defects near the silicon oxide interface. Some of these holes may be

trapped for a long time resulting in a positive charge in the oxide that can affect

the characteristics of the transistor and generate shifts in its operating threshold.

These voltage shifts are the most common form of radiation damage in MOS

technology and can persist from hours to years.

21 In MOS structures oxide traps are defects in the SiO2 layer, interface traps are defects at the
Si/SiO2 interface and border traps are defects near the interface (Fleetwood et al., 2008)

122

TID effects can lead to degradation within the electrical circuit (threshold shifts),

decreased functionality, switching speed, device current, increased device

leakage (higher power consumption) and even functional failures. The primary

sources of TID are trapped protons and electrons, and solar protons (Barth et al.,

2004).

Modern submicron electronics offer relative relief to these effects in the way of

natural radiation hardening (Pouponnot, 2005; Velazco et al., 2007). Current

gate oxides are around 100 times thinner than the approximately 100nm oxide

layers employed in the early 1990s. Modern gate oxides are around 1nm thick,

which allow electrons to tunnel through the potential barrier at the silicon oxide

interface, neutralizing the trapped holes. Since there is not enough trapped

charge, transistor threshold shifts cannot be generated.

Circuit level radiation hardening techniques, i.e. changes in the geometry of

transistors, have been used to mitigate TID effects but such techniques are

expensive. Furthermore, TID effects might be partially reduced with the use of

shielding material that absorbs most electrons and low energy protons.

However, the amount of shielding is inversely proportional to its effectiveness in

stopping the protons with higher energy (Dyer et al., 1996). TID is considered a

severe problem (Claeys and Simoen, 2002) during the lifetime of satellites.

Displacement	
 Damage	
 Dose	
 (DDD)	
 or	
 “Bulk”	
 damage (Barth et al., 2004; Yu

Qingkui et al., 2005), occurs when high energy particles dislodge or displace

atoms from the semiconductor lattice due to its long time exposure to non

ionising energy loss (NIEL). DDD results in a similar long-term cumulative

degradation to that caused by TID. The damage mechanism is the result of

collisions with atoms, which become displaced from the lattice creating

interstitials and vacancies. Consequently, DDD is an effect of concern for all

semiconductor bulk based devices such as bipolar devices (BJT circuits and

diodes), BiCMOS, electro optic sensors (CCDs, photo diodes, phototransistors),

silicon detectors and solar cells, whereas CMOS is almost insensitive to it.

123

DDD accumulation primarily occurs when the semiconductor material is exposed

to neutrons, trapped protons and solar protons over time. Likewise, secondary

radiation produced in shielding materials can cause DDD effects. The overall

effect of DDD in semiconductors is alteration in the minority carrier lifetimes,

which results in lower currents between the collector and the emitter and

therefore reduced transistor gain. An extended review of literature related to

this type of damage can be found on (Srour et al., 2003).

4.5. Single event effects (SEE)

The term Single Event (SE) is used to lay emphasis on the fact that the effect is

caused by an individual particle interacting with the material. In current

semiconductor technologies single event effects represent a much larger

problem than the combination of all long-term cumulative effects.

SEEs are induced by the strike of a single energetic particle (ion, proton, electron,

neutron, etc.) in sensitive regions of the material. The particle travels through

the semiconductor material leaving an ionised track behind depositing sufficient

energy to cause an effect on a localized area of the electronic device. Both TID

and SEE take place as a result of ionising radiation; however, whilst the former is

a long term effect that changes the electrical properties of the device, SEEs are

the result of an instantaneous perturbation.

Neutron and alpha	
 (α)	
 particles	
 are	
 the	
 most	
 common	
 sources	
 of	
 SEEs	
 in	

terrestrial environments whilst cosmic rays and heavy ions are most responsible

for space applications. SEEs affect many different types of electronic devices and

technologies resulting in data corruption, high current conditions and transient

disturbances. If not handled well, unwanted functional interruptions and

catastrophic failures could take place.

124

4.5.1. Physical mechanisms responsible for SEEs

In	
 the	
 “technological	
 shrink	
 model”	
 of	
 sensitivity	
 to	
 upsets (Baumann, 2002;

Seifert et al., 2002; Shivakumar et al., 2002) the detailed physical mechanisms

responsible for SEE are identified in four consecutive steps (Dodd and

Massengill, 2003; Wirth et al., 2008) taking place before an SEE occurrence:

x Prior charge deposition by the incident particle striking the semiconductor,

x Transport of the released charge into the device,

x Charge collection by the different sensitive regions,

x Circuit response.

4.5.1.1. Charge deposition

Ionising radiation can release charge in the semiconductor in different

ways. SEEs can occur through the impact of the incident particles themselves

(e.g., direct ionisation from galactic cosmic rays (GCRs) or solar particles). SEEs

can also occur as a result of secondary particles generated via inelastic or elastic

nuclear reactions (Howe et al., 2005; Reed et al., 2006; Warren et al., 2005) and

Coulombic (Rutherford or inelastic Coulomb) scattering (Wrobel et al., 2006)

between the incident particles and the stationary targets in the struck material

(indirect ionisation).

An incident particle can experience a number of interactions before its kinetic

energy is expended. In every interaction the path of the particle can be altered

and can lose some of the kinetic energy. To measure the energy transferred to

the material the terms Linear Stopping Power and Linear Energy Transfer (LET)

can be used. Equation 4.1 describes the rate at which a particle loses energy

while moving through an absorber. The incremental energy (dE) may be

expressed in units of MeV while the path length (dx) may be expressed in units of

cm.

125

𝑆(𝐸) = −
𝑑𝐸
𝑑𝑥

Equation 4.1. Linear stopping power

From these interactions, two types of stopping power can be distinguished

(ECSS, 2007; Podgorsak, 2009):

x Nuclear stopping power (also called radiation stopping power) resulting

from energy loss per unit path length due to inelastic Coulomb interactions

between the charge particle and the nuclei of the absorber. Only light

particles, such as electrons and positrons, experience significant energy

loss via nuclear stopping power. For heavier charged particles, such as

protons	
 and	
 α	
 particles,	
 this	
 type	
 of	
 loss	
 is	
 insignificant.

x Electronic stopping power (also called ionisation or collision stopping

power) resulting from inelastic Coulomb interactions between the charge

particle and orbital electrons of the absorber. Electronic stopping power

describes the energy lost due to direct ionisation. Unlike nuclear stopping

power, heavy and light particles experience this type of interaction that

results energy transfer from the incident particle to the orbital electrons

via excitation and ionisation (ECSS, 2007).

126

Figure 4-5. Electronic, nuclear and total stopping power of protons
in silicon, computed with PSTAR from NIST laboratory (Berger et

al., 2005)

The electronic, nuclear and total stopping energy of different particles are

presented in Figure 4-5 (for protons) and Figure 4-6 (for electrons). Figure 4-5

shows that at all energies the electronic stopping power of protons dominates

and that the nuclear stopping power is insignificant. Figure 4-6 shows that the

nuclear stopping power of electrons dominates at higher energies.

127

Figure 4-6. Electronic, nuclear and total stopping power of electrons
in silicon computed with ESTAR from NIST laboratory (Berger et al.,

2005)

The total stopping power (S(E)tot) for a charged particle with Ek energy passing

through an absorber of atomic number Z is in general the sum of nuclear

stopping power and electronic stopping power as shown in Equation 4.2

(Podgorsak, 2009):

𝑆(𝐸)௧௢௧ = 𝑆(𝐸)௡௨௖௟௘௔௥ + 𝑆(𝐸)௘௟௘௖௧௥௢௡௜௖

Equation 4.2. Total stopping power for a charged particle

Charge deposition is often characterized by mass stopping power, instead of

Linear stopping power. Mass stopping power is defined as the Linear Energy

Transfer (LET) (not equal to Linear Stopping Power, but approximated) and can

be obtained by dividing S(E) (expressed in MeV/cm) by the density of the

material p (expressed in mg/cm3). Nearly independent of the density of the

material, LET (Equation 4.3) describes the linear rate of energy transfer to the

material as the energetic particle traverses the absorber.

128

𝐿𝐸𝑇 =
1
𝑝
𝑑𝐸
𝑑𝑥

Equation 4.3. Linear energy transfer

The LET of an incident ion and thus the density of ionisation, typically increase to

a maximum immediately before the particle comes to rest. This peak, the Bragg

peak, occurs due to the increasing cross section as the particle loses energy.

Figure 4-7. Bragg peaks: LET (MeV/cm2) of the standard
components of a 16MeV/nucleon cocktail versus depth in silicon

(μm)	
 (McMahan et al., 2004)

Incident particles can cause different nuclear reactions depending not only on

the striking energy but also on the target mat erial. Figure 4-7 shows a plot of

the LET of the standard components of a 16MeV/nucleon cocktail as a function of

depth in silicon. The LET of a given ion is dependent on its energy and the target

material, and therefore is an important parameter to quantify the sensitivity of

electronic devices. Theoretical and experimental values of LET for most ions in

different materials have been published (Northcliffe and Schilling, 1970). In

addition, stopping power for different particles can be calculated using the TRIM

code (Ziegler et al., 2010), and the ESRAR, ASTAR and PSTAR programs (Berger

et al., 2005).

129

The LET can	
 be	
 converted	
 into	
 charge	
 per	
 unit	
 length	
 (fC/μm	
 or	
 pC/μm).	
 This	
 is	

more suitable to situations that take into account the physical dimensions of the

device and the charge stored at the critical nodes. For example, in silicon based

technologies a particle with a LET of 97 MeV-cm2/mg corresponds to a charge

deposition	
 of	
 approx.	
 1	
 pC/μm.

Figure 4-8. Energetic particle strike and generation of electron hole
pairs: a) direct ionisation due to heavy strike; b) indirect ionisation

due to proton strike

In passing through a semiconductor material, high energetic particles (direct

ionisation Figure 4-8a) can deposit energy in the absorber through a one step

process involving Coulomb interactions with the electrostatic field electrons in

the target atom (Podgorsak, 2009). The energy introduced allows bound

electrons to leave their atoms, releasing free electron hole pairs and converting

their energy into charge (part b of Figure 4-8b). The particle rests in the

semiconductor material once almost all its energy is lost. The formation of an

electron hole requires an average energy of 3.6eV. The energy lost due to direct

ionisation can be referred as the electronic stopping power.

The	
 total	
 path	
 length	
 or	
 total	
 distance	
 travelled	
 is	
 referred	
 as	
 particle’s	
 range	
 and	

is highly dependent on the type of particle, its initial energy and the properties of

the semiconductor material.

130

At sea level, direct ionisation is the main charge deposition mechanism for

upsets caused by heavy ions and alpha particles, emitted due to the

contaminants in packaging materials. Traditionally, since protons and neutrons

are lighter, the charge released by them is not enough to produce upsets via

direct ionisation.

As suggested in 1997 the technological shrink model would soon be affected by

direct ionisation of low energy particles (Duzellier et al., 1997). Recent

experimental evidence (Heidel et al., 2008) of 65nm SOI SRAM sensitivity to

direct ionisation from protons supported the latter suggestion with results that

the low energy proton for the 65nm technology is different to those from

previous generations.

However, the most significant upset rates due to light particles are caused via

indirect ionisation mechanisms. In fact,	
 in	
 today’s	
 semiconductor	
 technology,	

high-energy neutrons derived from cosmic rays are the primary contributor to

soft error rates at sea level.

In those mechanisms, the highly energetic particles (protons or neutrons) do not

directly interact with the material. The three indirect ionisation mechanisms are:

x Inelastic nuclear reactions that take place when the incident particle hits a

target nucleus causing fragmentation and ejection of secondary particles;

x Elastic nuclear reactions that take place when the incident particle

transfers some of its energy to a target nucleus that recoils (Figure 4-8)

with extra energy transferred from the incident particle;

x Coulombic scattering, similar to elastic nuclear reactions, takes place when

the incident particle gets close to a target nucleus that recoils due to

Coulomb force with less momentum and smaller angle than with elastic

nuclear reactions.

Among these three mechanisms, inelastic nuclear reactions have the higher

probability of depositing larger amounts of charge, and hence are the most

131

significant indirect mechanism in the formation of SEE. If an inelastic nuclear

reaction takes place, a collision with a target nucleus leads to the emission of

reaction products that can, in turn, deposit energy via direct ionisation.

Those resulting particles are much heavier than the incident particle, which

involves higher charge deposition that may result in a SEE. Since the incident

particles do not directly interact with the semiconductor material, the number of

counts or neutrons per cm2 is used to measure the effect rather than the LET.

4.5.1.2. Charge transport and collection

Subsequent to the charge deposition, the released carriers are transported and

collected by the semiconductor elementary structures. The transport of the

charge is based on three main mechanisms (Dodd, 2005):

x Charge collection by drift: The charge can drift in regions with an electric

field. Reverse biased semiconductor p-n junctions are usually the most

sensitive regions. If the ionised track affects one of those junctions, the high

electrical field present in the region can collect the incident charge, which

can result in significant transient currents. This is a fast mechanism in the

order of 100ps.

x Charge collection by diffusion: the charge may diffuse in neutral zones

(bulk of the device), leading to considerable transient currents. This is a

slow mechanism in the order of nanoseconds.

x Recombination: The charge can recombine with free carriers in the lattice.

132

Figure 4-9. Funnelling effect and charge collection mechanisms
(Messenger and Ash, 1992)

As Figure 4-9 illustrates	
 the	
 charge	
 collection	
 can	
 be	
 extended	
 via	
 “field	

funnelling” (Chang-Ming Hsieh et al., 1983; Hsieh et al., 1981). If a high field

region, such as the depletion region of a p-n junction, is traversed by a column of

electron holes, the associated electric field can be disturbed, spreading down

along	
 the	
 particle’s	
 track	
 deep	
 into	
 the	
 substrate,	
 consequently	
 reducing	
 the	
 net	

charge in the depletion region.

Three different areas within the track can be distinguished: 1) the initial

depletion region, 2) the funnel region, and 3) the bulk region.

Within the external depletion region, positive potential areas attract the

electrons and negative potential areas attract the holes. Rapid collection by drift

will take place in the funnel region whilst the diffusion mechanisms will slowly

collect the charge of the residual carriers in the bulk region. The	
 “funnelling	

effect”	
 is	
 effective	
 in	
 the	
 range	
 of	
 a	
 few	
 nanoseconds.	
 The	
 generated	
 carrier	

density in the vicinity of the junction becomes similar to the substrate doping

133

concentration, and the electrical field is then re-established back to its original

position (Figure 4-10). Therefore, field funnelling and consequently charge

collection are highly dependent on the substrate doping concentration.

Figure 4-10. Funneling effect and charge collection mechanisms
after a particle strike on a p-n junction (Mavis, 2002)

4.5.1.3. Circuit level response

The collected charge transported in the device induces parasitic transient

currents, which turn could induce disturbances in the external

circuits. Depending on a) the collected charge, b) the intensity of the resultant

current transient, c) the details of the circuit application and d) the area affected,

the excess of charge can be manifested as one of many types of SEE (or a

combination of them).

Semiconductor devices experience SEEs in two major forms: in the form of

destructive effects, which result in permanent degradation or even destruction of

the device affecting functionality, and in the form of non-destructive effects,

causing no permanent damage. Table 4-2 presents different type of errors, their

nature, characteristics and a solution to eliminate their effect.

134

Table 4-2. Type of errors and how to fix them

Type of error Characteristics Nature Fix

Soft

Transient
soft

Functionality in place
Incorrect logical value Non-destructive Reading or writing

Firm,
Static soft

Functionality in place
Incorrect logical value
Reading does not fix it

Non-destructive Writing

Pseudo-hard Functionality lost
No permanent damage Non-destructive

Power-off cycle or
Reducing the power
supply voltage below
the holding voltage

Hard
Functionality lost
Physical-permanent
damage

Destructive Replacement of HW

Soft errors are of temporal nature and imply that the physical functionality of the

circuit is not affected even though its temporal integrity is. Soft errors have been

defined (“JEDEC JESD89-3A,”	
 2007) as “an	
 erroneous	
 output	
 signal	
 from	
 a	
 latch	
 or	

memory cell that can be corrected by performing one or more normal functions of

the	
 device	
 containing	
 the	
 latch	
 or	
 memory	
 cell”.

Typical examples of this are undesired changes of logic value in sequential logic

and undesired analog pulses that temporarily change the output of

combinational logic. Soft errors can be further categorized into transient and

static errors (Mavis and Eaton, 2002).

Transient soft errors are “soft	
 errors	
 that	
 can	
 be	
 corrected	
 by	
 repeated	
 reading	

without	
 rewriting	
 and	
 without	
 the	
 removal	
 of	
 power” (“JEDEC	
 JESD89-3A,”	
 2007).

On the other hand, static soft errors, or firm errors, are those that cannot be

corrected by repeated reading but can be corrected by rewriting without the

removal of power, resulting in a completely functional memory (Caywood and

Prickett, 1983).

When a soft error has occurred, it could result in a detected recoverable error

(DRE), detected unrecoverable error (DUE) or silent data corruption (SDC)

(Kadayif et al., 2010; Weaver et al., 2004). If fault tolerant techniques are

implemented a soft error could potentially be recovered, either by hardware or

software. This is a DRE, a more benign type of error, since recovery of the normal

135

operation is possible. DUE take place when the same fault tolerant techniques

are able to discover and/or report an error, from which recovery is not possible.

A SDC take place when an error is undetected and causes data corruption (SDC)

(Constantinescu et al., 2008). In this case, the corrupted data could go unnoticed

making this type of error benign, or could result in a visible error and/or

catastrophic failure such as crashing a computer system.

Hard errors, or Permanent errors, lead to loss of device functionality but, in

contrast with transient soft and firm errors, the functionality of the device is

permanently damaged. Repeated reading, writing or re-powering is not effective

in recovering from this type of errors. In general, hard error effects can only be

corrected via maintenance action, involving replacement of components.

A further categorization between hard and soft errors is pseudo hard errors,

sometimes referred to as power cycle soft errors (PCSE) (“JEDEC	
 JESD89-3A,”	

2007). These take place as a result of the ionising radiation from a particle strike,

when the functionality of the device is lost but the device is not permanently

damaged. Unlike soft errors, pseudo hard errors cannot be corrected by

repetitive readings or writings. Instead, they can be corrected by removing the

power from the device. Examples of this are non-destructive latchup and firm

errors in FPGA where the area affected by the particle strike is the control path

(Edwards et al., 2004). Although the data may not be corrupted, the device

functionality is compromised. SRAM based FPGA devices are subject to this type

of	
 error	
 if	
 the	
 “gate	
 array”	
 configuration	
 in	
 SRAM	
 is	
 corrupted.	
 These	
 systems	

contain	
 the	
 “gate	
 array”	
 configuration	
 area	
 within	
 ROM,	
 which	
 is	
 loaded	
 into	
 the	

SRAM during power up. Recovery can be achieved via repowering and

reinitialization.

A classification of SEEs is presented in Table 4-3. The numerous types of SEE can

be categorized depending on the type of degradation, recoverability and

technologies susceptibility. Long- and short- term radiation effects on different

manufacturing technologies are presented in Table 4-4.

136

Table 4-3. Classification of single event effects

Acronym Name
Type of
error

Affected technology

SET Single event transients Transient
soft

Combinatorial logic, operational
amplifiers, analogic and mixed
signal circuits

SEU Single event upset Static soft RAM, PLC - Sequential logic

SBU Single bit upset Static soft RAM, PLC - Sequential logic
MCU Multiple Cell Upset Static soft RAM, PLC - Sequential logic
MBU Multiple Bit Upset Static soft RAM, PLC - Sequential logic

SEL Single event latchup
(microlatchups)

Pseudo-
hard CMOS, CPUs, PLC

SEFI Single event functional
interrupts

Pseudo-
hard

Complex devices with built-in
state or control sections

Logic SEFI
Address error, recoverable
bust error, temporary block
error

Pseudo-
hard

Complex devices with built-in
state or control sections

Soft SEFI Resettable single event
functional Interrupt Static soft Complex devices with built-in

state or control sections

Hard SEFI Reboot or Permanent single
event functional interrupt

Pseudo-
hard

Complex devices with built-in
state or control sections

SEL Single event latchup Hard CMOS, BiCMOS

Destructive
SEL

Address error, recoverable
bust error, temporary block
error

Hard CMOS, BiCMOS

Non-
destructive
SEL

Resettable single event
functional Interrupt

Pseudo-
hard CMOS, BiCMOS

Micro-latchup Reboot or Permanent single
event functional interrupt

Pseudo-
hard CMOS, BiCMOS

SEHE or SHE or
SEHR Single event hard error Hard Memories and latches in logic

devices

SESB or SES Single event snapback Pseudo-
hard Power MOS, SOI

SEBO or SEB Single event burnout Hard Power MOS and bipolar

SEGR Single event gate rupture Hard Power MOSFETS, Flash memory

SEDR Single event dielectric
rupture or micro-damages Hard Non-volatile nMOS structures,

FPGA (antifuse), linear devices

137

Table 4-4. Long and short term radiation effects on different
manufacturing technologies - X1 - Except SOI

Technology Function SET SEU SEFI SEHE SEL SESB SEBO SEGR SEDR TID DDD

CMOS, SOI

SRAM

x

x x1 x

x

DRAM/
SDRAM

x x x x1 x

x

EEPROM/
Flash
EEPROM

x x x

x1

x x x

Μcontroller
/μP x x x x x1

x

FPGA x x x

x1 x

x x x

Power MOS

x x

x

Bipolar x x

x x

x x

4.5.2. System level response

Many different acronyms are used to describe the numerous SEEs in digital

integrated	
 circuits.	
 Also	
 called	
 “reversible	
 errors”,	
 non-destructive effects can be

classified as SET, SEU, MBU, MCU, and SEFI.

4.5.2.1. Single event upsets (SEUs): conventional upset mechanisms

SEUs are a particular type of SEE that take place when a single energetic particle

strike causes a charge disturbance, large enough to directly modify the logic state

of a sequential element, such as a register, latch, flip-flop or a memory cell. It is

by far the most common effect affecting all kinds of memory devices, including

SRAM, DRAM, FLASH memories, microprocessor registers, DSPs, FPGAs, logic

138

programmable state machines and other similar. SEUs can be categorized as

static soft errors since the device functionality is not permanently affected (soft),

and cannot be corrected by repetitive reading (static) but only through the

rewriting of new data (R. C.	
 Baumann,	
 2005;	
 “JEDEC	
 JESD89-3A,”	
 2007).

Between 1954 and 1957, there were reports of anomalies in electronic

equipment during above ground nuclear bomb tests. Since these anomalies were

random, and not related to any permanent hardware fault, these were attributed

to	
 electronic	
 noise	
 from	
 the	
 bomb’s	
 electromagnetic	
 shock	
 wave.	
 Even	
 though	

the	
 actual	
 term	
 “Single	
 event	
 upset”	
 was	
 first	
 adopted	
 in	
 1979 (Guenzer et al.,

1979), SEUs were, in fact, predicted in 1962 (Wallmark and Marcus, 1962) when

it was forecasted that terrestrial cosmic rays would lead to the eventual

occurrence of upsets in microelectronics. Moreover, it was anticipated that this

kind of upset would limit the volume of semiconductor devices to a minimum of

about 10 µm per side.

Evidence of a small rate of cosmic ray induced upsets in bipolar J-K flip-flops in

the space environment (Binder et al., 1975) was presented in 1975 confirming

the earlier predictions. Four anomalies were found in the analysis of 17 years of

satellite operation. It was suggested that 100MeV heavy ions in the solar wind

striking the electronics might be responsible. During the early years of

computing there have been many reported cases of electronic anomalies, whose

source was unknown at the time. As an example, in 1976, the Cray1

supercomputer at Los Alamos presented an average of 25 memory parity soft

errors per month. It was not until 2010 that a study was published, attributing

the cause of these anomalies to high-energy neutrons from the cosmic ray

background (Normand et al., 2010).

As integration density of DRAM increased to 64k, a significant SEU rate, mainly

caused by alpha particle contaminants in package materials was found in

terrestrial environments. The first evidence of SEUs at sea level in computer

electronics was reported by May and Woods from Intel Corporation in 1978.

139

Eventually, May and Woods attributed the anomalies to alpha particle from

impurities in the packaging modules (May and Woods, 1979).

SEUs at sea level and aircraft altitudes due to cosmic radiation were first

predicted (Ziegler and Lanford, 1979) in 1979 by Ziegler and Lanford from IBM

Corporation. In 1984 SEU appearances due to cosmic radiation were reported for

the first time (Ziegler and Puchner, 2004). The use of low alpha activity materials

(May, 1979) mitigated the soft error rate due to this radiation from impurities,

leaving	
 cosmic	
 ray	
 as	
 the	
 primary	
 factor	
 of	
 “single	
 event	
 rate”	
 (SER)	
 (Pickel and

Blandford, 1978), which is the amount of single events pet unit of time.

However, the increased use of large-scale integration (LSI) technology decreased

the volume of the sensitive elements, which implied a corresponding reduction

of the critical charge and the number of ion pairs needed to induce a soft error.

The resultant SER raise was attributed to a new source, protons from solar

events and trapped protons in the Van Allen belts (Wyatt et al., 1979).

The 1980s where characterized by extensive research and development of SEU

hardened electronics (Desko et al., 1990; Rockett, 1988; Weaver et al., 1987) and

research on the fundamental SEU mechanisms, mostly on memory circuitry

(Adams and Gelman, 1984; Blake and Mandel, 1986), since SEUs in

combinational logic were rare (May et al., 1984). In 1984 SEUs induced by

atmospheric neutrons were predicted in avionics for the first time (Silberberg et

al., 1984).

During the 1990s, the prediction of atmospheric neutron induced SEU in avionics

was rigorously demonstrated to occur during flight (Taber and Normand, 1992).

Furthermore, the concern for SEU increased due to manufacturers reducing the

number of SEU hardened components which led to an increased interest for

commercially available off-the-shelf (COTS) components, even in space

environments (Shirvani and McCluskey, 1998; Underwood, 1998).

140

Due to its high operating voltages, early SRAM cells were very robust, but with

technology scaling, in the last decades, SEUs have become more of a concern,

posing a major challenge for the design of memories. SEU susceptibility increases

exponentially as voltage decreases and, in contrast, decreases quadratically as

feature size decreases. Measurements of neutron accelerated induced upsets in

0.25µm, 0.18µm, 0.13µm and 90nm SRAM showed a SER/bit increase of 8% per

generation. The SER of a 90nm SRAM increased of a by 18% for a 10% reduction

in voltage (Hazucha et al., 2003). In contrast, more recent results in technology

nodes ranging from 250nm through 28nm have shown that the SEU rate per bit

has been declining up to the 65nm node (Dixit and Wood, 2011). However, this

long term trend has been reversed with results for 40nm SRAM presenting 30%

higher bit SER than the previous 65nm technology (Dixit and Wood, 2011). Note

that the results provided are based on bit SER. Nonetheless, for every generation

the complexity and the number of bits per unit area are increasing and so is the

System SER. Recent predictions using Monte-Carlo simulator CORIMS on neutron

induced soft errors in SRAMS show that system SER will increase x7 from 130nm

to 22nm technology (Ibe et al., 2010).

Embedded DRAM has been widely used in System on Chip (SOC) systems thanks

to its density and high performance. At the same technology node, the size of an

embedded DRAM bit cell is a quarter of the size of an embedded SRAM cell. With

scaling, the voltage reduction has also reduced Qcrit. However, by replacing 2D

capacitors (very efficient at collecting radiation charge due to its high area

junctions) for 3D capacitors, the collection efficiency has decreased considerably,

hence increasing Qcrit. The Qcrit increase due to junction volume scaling is more

significant than the Qcrit decrease due to voltage scaling. Because of these, the

DRAM bit SER has decreased to around 4x to 5x per generation (R. Baumann,

2005). Then again, the DRAM system SER has remained roughly constant over

many generations. In contrast with SRAM, whose SEU susceptibility has

increased over the years, the problematic earlier DRAM based on planar cells has

evolved to become one of the most robust devices.

141

4.5.2.1.1. Cell upsets

A cell upset takes place if the deposited charge is greater or equal than the

critical charge of the cell, changing its original logical value. These could be single

bit upsets (SBUs), multi cell upsets (MCUs) or multiple bit upsets (MBUs).

Single bit upsets (SBUs) are single upsets in a memory cell caused by a single

event, i.e. one event producing a single bit error, and are very common on

SRAMs.

A single particle can energize two or more memory cells, as shown by (Reed et

al., 1997). Multi cell upsets (MCUs), first reported in SRAMs exposed to the harsh

space radiation environment (Blake and Mandel, 1986), are multiple bit upsets

for one event regardless of the location of the multiple bits, i.e. an FPGA where

one routing bit gets an impact from a high energetic particle affecting several

memory positions. Hence, MCUs involve both types of upsets, the ones that can

be corrected by EDC/ECC as well as those that cannot. Traditionally, MCUs have

represented a small fraction of the total number of observed SEU (0-5%) (Maiz

et al., 2003). However, in the case of FPGA, high linear energy transfer (LET)

heavy ion induced radiation experiments indicate that as geometries shrink the

MCU probability significantly increases, accounting for up to 35% of the upsets

induced (Quinn et al., 2005). As for SRAM devices, it has been predicted that: 1)

the MCU ratio will increase x7 from 130nm down to 22nm; 2) the MCU maximum

size (MxN bits rectangular area including failed bits) will exceed as many as

1Mbits in the extreme case; and 3) for 22nm process the maximum bit

multiplicity will exceed as many as 100bit (Ibe et al., 2010)

Multiple bit upsets (MBUs) also referred to as single word multiple bit upset

(SMUs) (Koga et al., 1993a, 1993b) are a subset of MCUs. And MBU is a multiple

bit upset for one event that affects several bits in the same word. This type of

deviation cannot be corrected by EDC/ECC. However, it is possible to partially

avoid MBUs by using specific layout design of memory cells.

142

In contrast to cells, bit line upsets are only upset susceptible during a short

period of time, the pre-charge period specific from read cycle states. However,

susceptibility is dependent on the core cycle frequency. Therefore, bit line upset

rates are becoming more important (Schindlbeck, 2005) since recent

technologies make use of shorter core cycles, which in turn involve higher

susceptibility to upset.

Figure 4-11 shows the sensitive areas that are susceptible to cell and bit line

upset. NMOS drains of transistors connected to capacitors are sensitive zones to

cell upset. In contrast, the sensitive zones to bit line upsets are the NMOS drains

of transistors connected to bit lines (Bougerol et al., 2008).

Figure 4-11. Sensitive areas to SEU in a DRAM memory array
(Bougerol et al., 2008)

143

Historically, the occurrence of MCU was attributed to the collection of charges

generated by a nuclear spallation reaction as a result of the impact between a

secondary ion and the device. As sensitive devices shrink, neighbouring cells

present closer physical proximity, increasing the number of cells that can be

affected by the impact of a single particle. Nonetheless, novel MCUs are being

reported	
 such	
 as	
 “charge	
 sharing	
 among	
 neighbour	
 nodes” (Amusan et al., 2006;

Eishi Ibe et al., 2006).

4.5.2.2. Single event transient (SET): an emerging upset mechanism

Without the peripheral logic that interconnects them, sequential logic including

embedded SRAM and DRAM would be useless. In general, the scientific

community is mostly concerned with the effects of SEUs on sequential logic even

though combinational logic is not immune to radiation as single event transients

do occur here as well (Baumann, 2002; Buchner et al., 1997; Xiaowei Zhu et al.,

2005). However, confusion seems to exist in the literature regarding the

terminology used for single event transients. In analog circuits, a SET has also

been	
 referred	
 to	
 as	
 “analog	
 single	
 event	
 upset”	
 (Ecoffet et al., 1994). In digital

circuits, a transient that causes an incorrect state in the data output of a logic

gate	
 has	
 been	
 referred	
 to	
 as	
 “digital	
 single	
 event	
 upset”	
 (Reed et al., 1996).

Figure 4-12. Traditional propagation of an SET in combinational
logic

144

Earlier publications often incorporate both phenomena, SET and SEU, together

as SEU, perhaps because the effects of an SET can potentially be propagated

down the logic line and change the state of a sequential logic element. In this

case, the effects are identical to the effects produced by an SEU as shown in

Figure 4-12. It is also possible that more than on logic element change their state.

This is known as a single event multiple upset or SEMU and should not be

confused with MBU/MCU.

In contrast with SEUs, SETs were at the time not considered a serious threat to

the reliability of semiconductors.

For the purposes of this article, the following definition will apply to the term

SET: Single Event Transients (SETs) are analog transient pulses resulting from a

single ionising particle, that are large or big enough to momentarily change the

output of non latched elements, such as combinational logic, clock line and global

control lines to an incorrect logic value. The duration of such pulse is in the order

of 100ps (Pouponnot, 2005).

As seen previously in section 5.1.2, different semiconductor technologies show

different charge collection and transport mechanisms that lead to different

pulses. Depending on the device technology, circuit topology, impact location,

particle energy device supply voltage and output load, the resultant SET would

have unique characteristics in terms of amplitude, waveform, polarity, duration,

etc. Pulses can vary from tenths of picoseconds to tenths of microseconds. The

effects of a SET can further be propagated along the logical path, and potentially

be latched into one or more flip-flop, latch or register at a distant location from

the original charge collection area. Yet, there has not been too much interest in

protecting combinational logic since this type of logic has a natural tendency to

mask these transient faults. There are inherent masking mechanisms that

mitigate the propagation of the glitches, preventing the latch from taking place.

These three mechanisms, that can provide a certain level of natural resistance to

soft errors, are logical masking, electrical masking, and latch-window masking

(Shivakumar et al., 2002; Wirth et al., 2008).

145

Figure 4-13. Effects of logical and electrical masking on a pipeline
stage (Ramanarayanan et al., 2009)

Logical masking takes place when the particle strikes a portion of the

combinational logic that, regardless of its output, has no effect on the output of

the subsequent gate Figure 4-13. The result of the subsequent gate is solely

determined by its other input values. For instance, the output of a NAND gate

with	
 an	
 input	
 A	
 equals	
 to	
 ‘1’	
 and	
 an	
 input	
 B	
 equals	
 to	
 ‘0’	
 would	
 not	
 be	
 affected by

a	
 glitch	
 on	
 the	
 A	
 input	
 since	
 regardless	
 of	
 the	
 value	
 that	
 A	
 has,	
 the	
 gate’s	
 output	

would	
 be	
 ‘1’.

Electrical masking occurs when, as the signal propagates, due to the electrical

properties of the subsequent logic gates, the pulse suffers from attenuation to a

point that it is not of sufficient magnitude to upset any downstream state

element (Figure 4-13).

146

Figure 4-14. Latch window masking; temporal relationship of
latching a data SET as an error (Mavis and Eaton, 2002)

Latch window masking, also called timing windows masking, occurs when the

undesired pulse reaches a latch at the wrong time of the clock transition (Cha et

al., 1993). That is, the pulse does not satisfy the compulsory setup and hold time

of the flip-flop. The transient will get latched if the pulse reaches the latch within

the	
 “window	
 of	
 vulnerability”	
 (Figure 4-14), hence causing data corruption.

In terms of upset tolerance of single gates, there are two characteristics of

interest: glitch generation and glitch propagation (Dhillon et al., 2005). The

shape	
 and	
 the	
 magnitude	
 of	
 the	
 voltage	
 glitch	
 generated	
 at	
 the	
 gate’s	
 output	
 are	

determined by the glitch generation characteristics. The voltage magnitude of

the glitch depends on the total capacitance of the node while the duration of the

glitch	
 depends	
 on	
 the	
 gate’s	
 delay.	
 Faster	
 gates	
 lead	
 to	
 wider	
 glitches	
 and	

therefore better generation characteristics.

Alternatively, the glitch propagation characteristics of a logic gate determine the

glitch attenuation as it passes through the gate. Assuming a linear ramp at the

output of a gate, where d is the gate propagation delay and wi is the glitch

duration at the gate input, the glitch duration of the gate w0 can be approximated

using Equation 4.4 (Dhillon et al., 2005) as:

147

𝑤଴ = 0 𝑖𝑓 𝑑 > 𝑤௜

𝑤଴ = 2(𝑤௜ − 𝑑) 𝑖𝑓 2𝑑 > 𝑤௜ > 𝑑

𝑤଴ = 𝑤௜ 𝑖𝑓 𝑤௜ > 2𝑑

Equation 4.4. Approximation of the glitch duration of a gate [83]

According to Equation 4, slower gates will induce more attenuation on glitches

than faster gates. Therefore, fast gates have better glitch propagation

characteristics. An increase in the gates capacitance would increase the delay of

the gate, which in turn, would reduce the glitch propagation characteristics. SETs

affecting the clock logic or the reset trees can lead to much larger problems (see

Single event functional interrupts section).

In the past, these masking effects are some of the reasons why SETs have not

been a dominant contributor in the overall SER. In addition, designers have not

been significantly concerned about errors in microprocessor logic because the

number of flops on microprocessors was much fewer than the number of

memory cells. Since flop protection techniques are more difficult to implement

than memory protection mechanisms such as parity or ECC, from 90nm

downwards, flop SEU rates are higher than SRAM SEU rates.

SETs are particularly worrisome in safety-critical applications whose memory

has been protected to decrease SEU rates. In this type of systems, SET rates can

be the dominant reliability failure mechanism.

4.5.2.3. Single event functional interrupt (SEFI)

SEFI represent the most disruptive version of non-destructive SEE. Although

this type of anomaly was previously predicted for space environments (Koga et

al., 1985), the term single event functional interrupt (SEFI) was first mentioned

in 1996 (“EIA/JEDEC	
 STANDARD, Test Procedures for the Measurement of

Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation”	

148

1996). SEFI is defined as all non-destructive failure modes that lead to the

malfunction (or interruption of normal operation) of a part or the totality of the

device (Bougerol et al., 2008). This definition is in contrast with certain authors

that define SEFI as the cause of a higher error rate than expected due to

uniformly distributed upsets (Crain et al., 1999; LaBel et al., 1996).

The causes and effects of SEFIs vary from the type of component and the

technology used. In general, SEFIs are linked to an upset (SET or SEU) in a

control area that configures a specific function, and leads to the loss of that

function. In contrast to SEUs and SETs that may or may not affect the operation

of the device, every single type of SEFI leads to a direct malfunction. Figure 4-12

shows an SET affecting combinational logic, not affected by the logical and

electrical masking mechanisms (as in Figure 4-13), that propagates to a register

in a control area within the latch window (as in Figure 4-14). If the register

affected is being used by a vital part of the system software, a SEFI could take

place.

149

Table 4-5. Classification of SEFI

Name Also called Typical Effect
Recovery
procedure

Technology
affected

Examples

Logic
SEFI

Address error,
recoverable bust
error, temporary
block error

Reading/writing of the
wrong row, column; 512-
8k addresses in errors

Rewriting of
the right
value

Complex memories
such SDRAM

Fuse latch upsets
(SEFLUs)

Soft SEFI Resettable SEFI Functionality loss of up
to a full memory bank

Refresh
cycles

FPGA,
microprocessors,
complex memories

Stuck block
errors

Hard
SEFI

Permanent SEFI,
Reboot SEFI

Complete loss of
functionality

Complete
power cycle
of the device

FPGA,
microprocessors,
complex memories

Events that
induce data and
functionality loss
that cannot be
recovered

150

As microcircuits become more complex they also become more susceptible to

SEFIs; among those: SDRAMs (Harboe-Sorensen et al., 2007) with complex

internal architecture (such as state machine), FLASH memories (Irom and

Nguyen, 2007; Nguyen et al., 1999; Oldham et al., 2008), FPGA (Czajkowski et al.,

2006) and microprocessors (Czajkowski et al., 2005). Dependent on cause,

consequences and recovery procedures, SEFIs can be classified as logic, soft or

hard (see Table 4-5).

Logic SEFIs (Bougerol et al., 2008): with regards to memories, it is also called

“address	
 error”,	
 “recoverable	
 burst	
 error”	
 (R. Ladbury et al., 2006) or

“temporary	
 block	
 error”	
 and	
 mainly	
 includes	
 row	
 and	
 column	
 errors.	
 The upset

of a row or column register leads to the reading or writing of the wrong

row/column. This type of SEFI typically causes between X and 8k addresses in

errors where X is the number of addresses per row/column (Bougerol et al.,

2008). Rewriting of the right values is used as to recover functionality (Schagaev

and Buhanova, 2001).

Examples	
 of	
 logic	
 SEFIs	
 are	
 “fuse	
 latch	
 upsets”	
 also	
 called	
 SEFLUs (Bougerol et

al., 2011, 2010) that lead to the wrong addressing of a whole row/column.

Manufacturers are experiencing an increasing number of defective cells,

therefore adding spare cells and exposing them to reliability tests. If during those

tests, a cell is found defective, fuse latches are used to disable the particular

row/column. Typical signatures of fuse latch upsets are multiples of X addresses

where X is the number of addresses belonging to a column/row.

Soft	
 SEFIs	
 also	
 called	
 “Resettable	
 SEFIs”	
 (Bougerol et al., 2008; Lawrence, 2007)

are due to upsets in the device configuration area and usually induce the

functionality loss of several thousands of addresses up to a full memory bank.

Reconfiguration of the device with a mode register set command can be used as a

recovery procedure of the functionality (but not the data). Examples of this are

“block	
 SEFIs”	
 also	
 called	
 “stuck	
 block	
 errors”,	
 observed	
 in	
 the	
 IBM	
 Luna-ES rev C

during heavy ion testing (“NASNGSFC	
 Landsat-7 Project Office, Private

Communication,”	
 1995) where an entire row of 1024 addresses was stuck to a

151

specific value. Since simple writing was not sufficient, device refresh cycles were

used to clear the problem. SEUs in selected areas of an FPGA such the JTAG bit

serial configuration port can lead to inability of reconfiguration.

Hard SEFIs (Bougerol et al., 2010; Harboe-Sorensen et al., 2007), also called

Reboot SEFIs (Bougerol et al., 2008),	
 “permanent	
 SEFIs”	
 (Slayman, 2005),	
 “non	

resettable	
 errors”	
 (Lawrence, 2007, p. 512) or	
 “persistent	
 non	
 recoverable	

errors”	
 (R. Ladbury et al., 2006) can be induced by different phenomena and lead

to the complete loss of memory functionality. Possible causes of this type of

catastrophic SEFI are upsets in the internal state machine, counter registers or

activation of special modes. An example of this is an SEU in one of the power on

reset registers that can lead to the removal of the entire configuration area.

Complete power cycle of the device is compulsory as a recovery procedure.

Fortunately, the probability of SEFI is low compared to other types of SEEs

(Slayman, 2005). The reasons for that are:

x The ratio of the periphery logic area to memory array area is very low;

x The critical charge for logic gates is usually higher than for SRAM cells.

x The most part of the periphery logic is combinational, and therefore less

susceptible to upsets due to the three inherent masking mechanisms.

SEFIs can also be classified as high current SEFIs if they involve a certain

increase in current (Koga et al., 2001a, 2001b).

In addition to SEFIs in complex memories, the energetic particles can also strike

other circuits such that the error detection and correction mechanisms affect the

functioning of the whole circuit. In FPGAs, SEFIs can cause the device to stop

from functioning normally and therefore require a power reset in order to

resume normal operations. In microprocessors, SEFIs can induce upsets in the

program counter, illegal branching and jumps to undefined states.

152

4.5.2.4. Single event latchup (SEL) and other destructive effects

Also	
 called	
 “hard	
 errors”	
 or	
 “non	
 reversible	
 errors”,	
 “single event destructive

effects”	
 are	
 events	
 that	
 momentarily	
 or	
 permanently	
 change	
 the	
 state	
 of	
 a	
 device	

or cell/node affecting their functionality. Destructive effects are persistent even

after a reset or reconfiguration and a replacement of components may be

required.

4.5.2.4.1. Single event latchup

A latchup is an unintended and potentially catastrophic state that affects CMOS

devices, characterized by excessive current flow between a power supply and its

ground rail.

It can take place due to the interaction between parasitic structures, usually an

npn- and a pnp- bipolar transistor. A low resistance path develops between

ground and power supply of the device and remains after the triggering event

has been removed. Once triggered, a latchup can amplify currents to a point

where the device fails as a result of thermal overstress. This electrically induced

effect typically occurs in improperly design circuits. However, it was

demonstrated (Leavy and Poll, 1969) that a latchup could also be induced via

ionising radiation (SEL), including high-energy protons, alpha particles, cosmic

rays and heavy ions. The difference between a conventional latchup (electrical)

and a single event latchup (SEL) is that latter phenomenon is triggered by an

energetic particle instead of an electrical overvoltage.

153

A classification of different SEL is shown in Table 4-6:

Table 4-6. Classification of SEL

Name Type of error Nature Recovery procedure

Traditional or
destructive SEL Hard High current Replacement of components

Non-destructive
SEL Pseudo-hard Low current System restart

Microlatchup Pseudo-hard Localized, high
current

Reducing the power supply
voltage below the holding
voltage or reset

 Parasitic transistors of CMOS devices can be triggered by the strike of high-

energy protons, alpha particles, neutrons and heavy ions. An SEL may occur if

enough energy, critical charge, is deposited by a given particle within a

microscopic region of the device, regardless of the total flux. High currents can

lead to metal traces to vaporize, bond wires to fuse open and silicon regions can

be melted due to thermal runaway. Hence, the latched condition may potentially

destroy the device, affect other surrounding devices and destroy the power

supply (traditional or destructive SEL). In certain cases after one or several SEL

can make the device more susceptible to future SEUs.

Both high current and low current SELs can occur (K. LaBel et al., 1992). Modern

devices may have many different latchup paths, making characterization of those

latchup states a challenging task. In some cases, events resulting in localized high

current (microlatchups) can remain functional. In order to restore the device to a

normal operation, these effects can be tolerated by reducing the power supply

voltage below the holding voltage e.g. power off-on reset (PCSE).

Additionally, latent damages have been observed in several types of CMOS

devices after non-destructive latchup events (Becker et al., 2002). Becker defines

154

latent damages as “structural	
 damages	
 that	
 cause	
 no	
 electrically	
 observable	

parametric or catastrophic device failure, but can be detected by surface analysis

using optical or scanning	
 electron	
 microscopy”. These type of permanent

structural damages are a potential reliability hazard since the interconnect

cross-sections in the damaged area may be reduced by one or two orders of

magnitude.

Sometimes the SELs are not localized affecting the entire device, but the current

may not be high enough to destroy the device (non-destructive SEL). Therefore,

SELs are not invariably destructive and can also be categorized as pseudo hard

errors.

Temperature is an important factor in SEL susceptibility. Higher temperatures

involve a cross section increment and reduction of SEL threshold (Johnston et al.,

1991).

SELs can be mitigated through internal fabrication process modification. Silicon

on insulator (SOI), silicon on sapphire (SOS) and the use of epitaxial substrates

are immune to this type of effects (Miller and Mullin, 1991). However, those are

very expensive and their availability normally limited to mission critical systems

in space environments (Pouponnot, 2005). Additionally, different layout

techniques, like guard drains and guard rings, are often used in CMOS processes.

Alternatively, SEL can be circumvented externally through the use of current

sensing, watchdogs, etc. Internal methods are trying to keep the event from

occurring. With external mechanisms, the event still occurs, but there should be a

recovery strategy to deal with them.

4.5.2.4.2. Single event hard error (SHE or SEHR) or stuck bits

Since the mid-1980s certain SRAM devices, when exposed to heavy ions,

experienced semi-permanent stored bit patterns or stuck bits with no

implication of total dose effects. This form of damage was not reported until

1991 (Koga et al., 1991) and	
 was	
 later	
 studied	
 and	
 renamed	
 as	
 “single	
 hard	

155

error”	
 (SHE)	
 (Dufour et al., 1992). SHE is an unalterable change of state of a

memory element associated with semi-permanent damage due to high-localized

dose deposition from a single ion track. This type of effect affects memories

(SRAM, DRAM, Flash) and latches in logic devices rendering the cell

unprogrammable (Dufour et al., 1992).

The cell may have an indeterminate value, also appearing as a permanent fault at

the system level. SHEs are considered semi-permanent since some of the stuck

bits tend to disappear (in some cases after a day (Duzellier et al., 1993)).

4.5.2.4.3. Single event snapback (SES or SESB)

This type of effect induce high currents in most cases and is particularly difficult

to differentiate from high current SELs (Beitman, 1988; Koga and Kolasinski,

1989). While SESBs can take place in technologies immune to SEL, it does not

require a four-region structure to arise. In this context, snapback has been

confirmed to be particularly susceptible to SOI structures because of their

internal design (Dodd et al., 2000).

With regards to SESB and NMOS technology, the parasitic NPN bipolar transistor

that exists between the drain and the source amplifies the avalanche current

resulting from the impact of an ionising particle. The transistor then opens and

remains open.

Like SEL, SESB is also considered a potentially catastrophic event since it can

lead to device destruction if not corrected within a short time of occurrence. The

main differences between SEL and SESB lie in the amplitude of the current

increase, their temperature dependence and recovery conditions. First, unlike

destructive SEL, it is often possible to restore normal operation and bring the

device out of the high current mode by changing the gate voltage without

shutting off the power supply. Secondly, the amplitude of the current increase is

much lower for SESB due to its localized nature. Finally, contrary to SEL, SESB is

156

weakly dependent on temperature (Johnston, 1996). These facts can be used to

distinguish between SESB and SEL mechanisms.

4.5.2.4.4. Single event burnout (SEB or SEBO)

SEBO typically occurs in power metal oxide semiconductor field-effect

transistors (power MOSFETs) and bipolar transistors since these devices contain

parasitic bipolar transistors between the drain and the source (Hohl and

Galloway, 1987; Waskiewicz et al., 1986). SEBO creates a permanent short

between a source and a drain and involves high currents and localized

overheating. If the device is not provided with current limitation capabilities, and

the drain-source voltage exceeds the local breakdown voltage of the transistor,

the SEBO can lead to the destruction of the device by melting of the silicon in the

affected region (Stassinopoulos et al., 1992)(see Figure 4-15).

Figure 4-15. IRF 150 power MOSFET burnout: a) Optical view of
burnout area on the surface, b) Scanning electron microscope

(SEM) sectional view of a burnout area with 1000x magnification
(Stassinopoulos et al., 1992)

SEBO has occurred in low voltage devices, however devices with high voltages

are more prone to this type of error.

With regards to temperature, it has been shown (Johnson et al., 1992) that

higher temperatures decrease the SEBO susceptibility. The probability of SEBO

157

occurrence is low, but apart from the selection of immune device technology,

there are no mitigation techniques.

4.5.2.4.5. Single event gate rupture (SEGR)

It was first observed in non-volatile memories in 1980 (Pickel and Blandford,

1980) and later identified and confirmed in 1984 (Blandford et al., 1984). In

1987 was reported in power MOSFETs (Fischer, 1987) but due to the scaling of

CMOS technology SEGR has become a concern in low voltage circuits (Silvestri et

al., 2009). This type of single event is often observed with SEB in power

MOSFETs. SEGR is triggered by a single ionising particle in a high field region of a

gate oxide, creating a localized gate rupture in such area (Sexton et al., 1997).

This rupture manifests as a permanent conducting path between the gate and the

drain (gate rupture – see Figure 4-16). As a result, the electrical performance is

compromised and the functionality of the device may be affected.

Figure 4-16. SEGR as a result of the impact of a highly energetic
particle. Holes from the particle's track aggregate under the gate
oxide increasing the high field of the gate oxide to the dielectric

breakdown point (Allenspach et al., 1994)

158

Flash memories (Oldham et al., 2006) and non-volatile SRAM are SEGR

susceptible during a write or clear operation due to the large voltage applied to

the memory elements. SEGR is not typical of avionics and ground equipment.

Like SEBO, the probability of occurrence is low, but should be taken into account

in the component selection process.

In order to mitigate SEGR, voltage derating and limiting the available energy to a

device can be employed.

4.5.2.4.6. Single event dielectric rupture (SEDR)

Also	
 called	
 “micro	
 damages”,	
 SEDR	
 was	
 encountered	
 during	
 heavy	
 ion	
 SEE	

testing of antifuse FPGA (Katz et al., 1994) and eventually identified as ion

induced rupture of antifuses. Similar to the SEGRs observed in power MOSFETs,

SEDRs affect non-volatile NMOS devices and non-volatile FPGAs (Katz et al.,

1997; Swift and Katz, 1996). SEDRs are triggered by a single ionising particle,

and lead to the formation of a conducting path in a high field region of a

dielectric.

4.6. Conclusion

This chapter presents the long-term cumulative and short-term effects of

radiation in embedded systems. First, we present an overview of the

fundamental damage mechanisms and, resulting from such mechanisms we

introduce the major macro effects. Secondly, we focus on the short-term

degradation induced by ionizing particles, namely single event effects. Thirdly,

we describe the physical mechanisms that are responsible for SEE including

charge deposition, charge transport, charge collection, to finally fully describe

the different circuit responses. As a result, an extensive taxonomy of SEE has

been produced, describing their nature, type of degradation, susceptibility, fault

rate trends and recoverability.

159

Radiation can have a major impact on all kind of embedded microelectronics

potentially leading to catastrophic failures. As we move to denser semiconductor

technologies at lower voltages, system SER will continue to rise and in particular

the contribution of single event upsets, single event transients, multi-cell upsets

and single event functional interrupts will increase. Error correcting codes are

not efficient when dealing with certain multi-bit faults and errors in combination

logic. In the case of safety-critical embedded systems, more efforts need to be

directed towards research on mitigation techniques for the recent and future

undesired effects.

160

Chapter 5

161

Chapter 5

FT models

162

5.1. Models

We define M as the known model of a system that performs a given function F.

Let’s	
 imagine	
 a	
 new	
 feature	
 of	
 extreme	
 reliability	
 in	
 that	
 model.	
 In	
 order	
 to	

express the existence of this new feature, the predicates P and Q are introduced

to determine the state of the model. P and Q also defined the direction of the time

arrow (see Figure 5-1).

Figure 5-1. New feature of an FT system: reliability

To analyse methods for achieving a required level of reliability with performance

and power consumption constraints, we offer a combination of the following

three models:

x The model of the system Ms

x The model of the faults Mfault that a RT FT system will be exposed to

x The model of fault tolerance MFT or the new structure that implements FT

As shown in Figure 5-1, Ms, Mfault and MFT are mutually dependent models. Notice

that in this approach development and manufacturing costs of a solution are not

considered.

Mfault is a description of all faults that a system must tolerate. In binary logic a

typical permanent fault can manifest as "stuck at zero" or "stuck at one".

163

Table 5-1. Typical examples of HW faults

Type of fault Description Impact

Byzantine
The behaviour of a component that
gives conflicting values to other
components

The entire system is affected

Subsystem fault A temporary or permanent incorrect
behaviour of a subsystem The entire system is affected

Open fault Resistance on either a line or a block
due to a bad connection

The value associated to the line or the
block is modified

Bridging fault Signals S1 and S2 are connected
unintentionally

The value associated to the line or the
block is modified to a different value

Stuck-at fault The result value is fixed to 0 or 1 The result value is stuck to 0 or 1

Bit-flip fault A state switch from 0 to 1, or vice
versa, when it should not The result changes its original value

Table 5-1 shows typical examples of HW faults. Hidden faults, also called Latent

faults are behavioural faults that exist in the hardware over a long period of time,

e.g.: Byzantine faults22 and fail-stop23 faults. Both types complicate the design of

FT; all described faults should be tolerated within a limited and specified period

of time. This period actually determines the availability of the system. Fault types

differ by their impact, as well as the way they are handled.

Thus, the fault model has its own hierarchy, including single-bit, element,

behavioural and subsystem faults. One has to accept that the fault type is varying

and some action hierarchy to tolerate them is also required. A detailed fault

model is further developed and discussed in Sections 5.2, 5.3 and 5.4.

22 Byzantine faults occur when a faulty system continues to operate, producing incorrect results
sometimes giving the impression that they are working correctly. Dealing with this type of fault is
difficult

23 Fail-stop (also known as fail-silent) faults take place when a faulty unit stops functioning
producing no bad output. It either produces not output or produces correct results that clearly
indicate that the unit has failed.

164

Fault encapsulation approaches can help to handle faults: due to deliberate

design solutions it is possible to ensure that severe faults in the system do not

escalate and remain simpler to handle; therefore making the fault handling

practically possible to implement.

RT FT system applications assume long operational life; however, fault-handling

schemes are needed much more often towards the end of the device lifecycle.

The appropriate techniques for tolerating faults of various types are presented

on Table 5-1. As discussed in Section 3.6.1 to tolerate transient faults, time

redundancy in hardware (e.g. instruction re-execution) might be effectively used

and implemented. System software support is also needed, as the hardware

cannot cover all possible faults.

Faults, occurring at the bit level (stuck zero, stuck one and similar) should be

efficiently handled ASAP (as soon as possible) and ALAP (as local as possible), i.e.

at the same or nearest level. The term "level" in our case means the level in the

hardware hierarchy on which the fault should be handled. For instance, when a

"stuck-at zero" permanent fault has occurred in the register file (RF) with no

corrective schemes available, the whole RF has to be replaced, if no other

possible reconfigurations were predefined. In turn, when only one RF is

integrated in the chip and no other reconfigurations are defined then the whole

chip has to be replaced, etc. Pursuing these two principles allows limiting the

fault spreading and its impact to a higher level either in the chip or the system as

a whole.

To tolerate bit-flip faults, hardware and system software information

redundancies might be used, as well as hardware structural support. In this

sense parity checking in registers, supported and implemented concurrently by

hardware, is described as HW(δI). HW(δS) and HW(δT) are needed as supportive

redundancies, HW(δS) describing the additional parity line and comparison logic,

and HW(δT) describing the additional time needed to update the parity line and

executing the comparison. Nonetheless, the main type of redundancy used in this

approach is information.

165

An exact characterization of the distribution of faults for computer systems is

extremely difficult due to the number of different factors that determine faults,

such temperature, vibration, radiation exposure etc. Besides, discriminating

between transient and permanent faults is difficult. The transient-permanent

fault ratio varies from 10 to more than 1000 depending on the technology,

manufacturing scale, operating conditions, etc. In the case of memories a typical

value of hard error rates is in the order of 10-100 FIT whereas for soft errors it

can vary between 1000 and more than 5000. The upper bound belongs to

aerospace and aviation, principally due to faults induced by alpha particles.

Figure 5-2. Fault tolerance model of a computer system

Figure 5-2 is a combination of Figure 3-2 and Figure 5-1 and presents various

faults in the system and various possible solutions. Mfault illustrates the fact that

the fault types are not separated. For example, Byzantine faults of the system

might be "stuck at zero" faults of the hardware that were spread throughout the

system. The latency of faults becomes crucial in determining the reliability of the

system. Consequently different faults require different actions and mechanisms

to tolerate them.

166

The system model of Figure 5-2 has overlapped SSW and HW ellipses to

represent the duality of the system: hardware and system software. Both of them

must be involved in the implementation of fault tolerance and real time features.

The overlapped HW and SSW ellipses indicate that HW and SSW functions might

be applied to tolerate specific types of hardware faults. Other fault types might

also be tolerated by HW or SSW only. Mft is "a conceptual deliverer" of reliability

for the RT FT system. It has to be effective during the whole operational lifetime

of the computer itself. As hardware degrades over time, the fault tolerance

mechanisms are more likely to be used towards the end of the lifecycle. FT

systems are designed with the assumption that new types of faults do not appear

during the operational lifetime of the system, i.e. the system must be designed to

be fault tolerant for the set of faults and their types known at design time. All

these solutions require careful analysis due to their impact on the system

reliability.

In contrast to the usual assumption in reliability modelling, one has to assume

that a fault might exist in the system over an arbitrary long period of time (latent

fault) and its detection and elimination is not possible "at once". Consequently

we accept that FT is a process, and discuss it in the following sections. Using

Dijkstra's approach (Dijkstra, 1965) of defining a function as a process described

by its algorithm, we consider FT as a function that is also described and

implemented by an algorithm.

There are several options to achieve fault tolerance assuming the use of HW and

SSW by using various types of redundancy mentioned above. However, the use of

certain redundancy types might cause system performance degradation which is

especially true for software measures (Kulkarni et al., 1987; Oh et al., 2002a).

Further analysis of performance/reliability degradation should be taken into

account.

The introduced system redundancy might be used in a way to tolerate only

certain fault types, thus degrading fault coverage, keeping performance at

acceptable levels. Software based redundancy might preserve the same type of

167

fault coverage but with more time redundancy - delays (recovery time degrades,

availability degrades). Alternatively, the fault coverage might not preserve the

same level, thus the system degrades in terms of reliability.

We assume that regardless of the accuracy of the model, new faults can appear in

the system and for some of those our system may not be able to detect, diagnose

or recover.

5.2. Fault model

It is unfeasible to describe all possible faults that may occur in a system. In order

to make the evaluation of faults possible, they are assumed to behave according

to some fault model. A fault model (FM) is as a way of summarising many fault

descriptions at once (Dunn, 1991). Often it is desirable to discuss many different

faults at the same time and to describe their common characteristics. Fault

models are used to represent in a simple form the consequence of complex

physical mechanisms that lead to faults. In the case of electronic systems, the

modelling of faults can be implemented at two different levels: at the level of

hardware components that implement a system (e.g. memory subsystems,

register banks, ALU) or at the system level, which is directly related with the

information that the system manipulates (e.g. instructions and data program).

The simplest FM is to consider the logic gate as a single unit with a constant

failure rate, instead of considering different failure rates for the individual

transistors that form the unit. As in 4.5.1, analysing the physics of faults to the

atomic and molecular level would provide a clear understanding of the failure

mechanisms. Such understanding is very helpful in the development of fault

models. Primarily based on the work of (Avizienis et al., 2004), we further extend

the classification of faults depending on the way they are originated or

manifested.

168

Table 5-2. Classification of faults by origin

Level of abstraction

Structural faults

Transistor level
(component faults)

Stuck-open or stuck-off
Stuck-short or stuck-on

Gate level (interconnect
faults)

Stuck-at (Armstrong, 1966; Galey et al., 1961): s-a-0, s-a-1
Timing delay (Smith, 1985): path-delay (PDF) and gate-delay (GDF) faults
Bridging (Mei, 1974)

Functional faults
Pattern sensitive faults
(PSF) (Hayes, 1975)

Passive PSF
Active PSF
Static PSF

Coupling faults (CF)

Phase of creation of occurrence
(Landwehr et al., 1994)

Development faults e.g. specification faults, implementation and manufacturing faults

Operational faults e.g. aging faults
e.g. alpha particle hits

System boundaries
(Avizienis et al., 2004)

Internal e.g. design and implementation faults
External e.g. radiation, temperature changes, power surges from external power supply

Phenomenological cause
Natural (Jennings, 1990)
Human-made (Hugue and Purtilo, 2002)

Capability/objective/intent
(Brocklehurst et al., 1994)

Malicious Deliberate

Non-malicious Accidental
Incompetence

Nature
(Avizienis et al., 2004)

Hardware Cell	
 errors,	
 combinational	
 logic	
 errors	
 …
Software Branch	
 errors,	
 missing	
 instructions,	
 missing	
 pointers	
 …

Cause

Specification mistakes

Defects
Implementation mistakes e.g. Pentium FDIV bug (Coe et al., 1995; Price, 1995)

Manufacturing defects Global defects or Gross area defects (Koren and Koren, 1998)
Spot defects (Koren and Singh, 1990)

Operating environment – External
disturbances

Thermal stress
Heat
Electro-migration EM
Voltage drop

Noise

Electrical
overstress

Hot carrier injection HCI (DAHC, CHE, SHE, SGHE)
Negative Bias temperature instability (NBTI)
Latchup

Induced charging
Oxide Breakdown

Radiation
See Table 4-1, Table 4-2, Table 4-3, Table 4-4,
Table 4-5, Table 4-6

EMP

169

5.3. Classification of faults by origin

Faults can be classified differently depending on attributes related to their origin,

including their cause, the level at which they take place, the phase of creation,

nature, system boundaries, phenomenological causes and intention. Table 5-2

shows a number of faults classified by their origin attributes.

5.3.1. Level of abstraction and fault models

Hardware defects can be the source of physical faults. In order to simplify the

fault analysis process Logical faults can be used to model the manifestation of

physical faults on the behaviour of a system. They can be subdivided into

structural faults, which are related to structural models and modify the

interconnection among components, and functional faults, which are related to

functional models and change the functions of components and circuits.

Component faults are a type of structural faults, which can be applied at the

transistor level. Some of these are:

x stuck-open or stuck-off: a transistor is always off and not controllable by

gate input

x stuck-short or stuck on: a transistor is always on and not controllable by

gate input

Another type of structural faults, interconnect faults, can be applied at the gate

level. Among these:

x stuck-at faults (SAF): single or multiple lines have a constant value of 0 (s-

a-0 faults) or 1 (s-a-1 faults) regardless of the value of the other signals in

the circuit (Armstrong, 1966; Galey et al., 1961)

x timing or delay faults: certain defects due to manufacturing or external

reasons do not change the logic function of components, but can cause

timing violations; faults due to propagation delays along a path (path-

170

delay faults, PDF) or gate (transition or gate delay fault, GDF) (Smith,

1985), exceeding the limits required for correct operation

x bridging faults (BFs): two or more distinct lines are shorted (Mei, 1974)

usually due to particles or shorted metal lines. Depending on the value the

bridging could be AND bridging (also referred to as 0-dominant), OR

bridging (also referred to as 1-dominant) or Indeterminate Bridging. It is

obvious that the probability of BF’s occurring increases with 1) shorter

distances between metal lines due to the use of shrinking technology and

2) the use of long parallel lines (Tehranipoor et al., 2012).

Different types of functional faults that can be applied at the functional level are:

x pattern sensitive faults (PSFs): where a fault signal depends on the signal

values of nearby components (Hayes, 1975); typical in DRAM, there are

three types of PSFs due to changes in the neighbourhood pattern:

o Passive PSF: the value of a cell remains

o Active PSF: the value of a cell changes

o Static PSF: the value of a cell is being forced to a particular state

(0/1)

x coupling faults (CF): A subset of SPF, represent a specific pattern

sensitivity between two memory cells (Nair et al., 1978); Two memory

cells Cj and Cj are coupled if a transition from X to Y in one cell, say Ci,

changes the state of the other cell, given that:

𝑋 ∈ {0,1} 𝑎𝑛𝑑 𝑋 = 𝐴

o Idempotent coupling faults: a transition 0 → 1, or 1 → 0 in Ci forces

the contents of Cj to a specific value 𝑋 ∈ {0,1}

o Inversion coupling faults: a transition 0 → 1, or 1 → 0 in Ci forces

an inversion 0 → 1, or 1 → 0 of Cj.

171

5.3.2. Cause of faults

5.3.2.1. Specification mistakes

Specification mistakes, which take place during the planning and design phases,

can be the source of faults (specification faults), including incorrect timing, power

and environmental requirements. The effect of certain specification faults may

be corrected via fault masking.

5.3.2.2. Defects

A hardware defect in electronics is the unintended difference between the

implementation and the intended design. Implementation mistakes, such as the

Pentium FDIV bug (Coe et al., 1995; Price, 1995), are a type of defects.

Conversely, imperfections in the fabrication process of state of the art VLSI

technologies result in manufacturing defects, whose severity increases

proportionally with the size and density of the chip.

Manufacturing defects are largely dependent on the specific technology and

layout, and include processing and material defects such: dust particles on the

chip, conducting layer defects (shorts and opens), oxide defects, scratches and

gate oxide pinholes, defects caused by either extra or missing material (Koren

and Koren, 1998). Manufacturing defects can be classified as global defects (or

gross area defects), affecting large areas of a wafer and so can be easily detected

during manufacturing, or as spot defects, which are random, affecting areas

comparable to the single device size, and therefore more difficult to be detected

(Koren and Singh, 1990).

5.3.2.3. Operating environment

Correct functioning of digital systems is based on the assumption that electrical

and timing transistor parameters will remain bounded to certain margins

(usually ±15%). These margin tolerance specified at initial manufacturing can be

violated during operating time due to shifts induced by external disturbances.

172

These mechanisms can produce systematic degradation overtime or abrupt

failures of basic components. Transistors can be degraded due to electrical

overstress and radiation whereas oxide-breakdown, electrostatic discharge and

ionizing radiation are usually the cause of abrupt failures.

Hot carrier injection (HCI) has been one of the most common electrical overstress

aging mechanism, adversely affecting both nMOS and pMOS transistors. It occurs

when a charge carrier, an electron or a hole, gain enough kinetic energy to break

an interface state. Different mechanisms can be responsible for HCI including

substrate hot electrons (SHE) (Ning and Yu, 1974), channel hot electrons (CHE)

(Cottrell et al., 1979), drain avalanche hot carriers (DAHC) (Takeda et al., 1983)

and secondarily generated hot electrons (SGHE) (Matsunaga et al., 1980)

Negative Bias temperature instability (NBTI) (Schroder and Babcock, 2003) is

also a critical reliability concern for pMOS transistors (not so much for nMOS)

and has been a persistent issue for generations below 130nm (Schroder at. All,

2003, Alam, 2007). Interface traps are generated during negative bias conditions

(𝑉௚௦ = − 𝑉ௗௗ). Higher temperatures seem worsen NBTI, producing larger

voltage, which if maintained over long periods (NBTI exhibits logarithmic

dependence on time), may significantly increase delays (Kumar, 2006, Kaczer,

2005).

Another example of electrical-overstress mechanism is the latchup described in

Section 4.5.2.4.1, which can also be triggered electrically (Gregory and Shafer,

1973).

As described in Sections 4.2, 4.3 and 4.4, non-ionizing radiation can be the cause

of DDD while TID effects can be induced by ionizing radiation. Other degradation

mechanisms can affect interconnection logic, e.g. electromigration (EM).

In contrast with the previous long-term degradation mechanisms, the effect of

noise can produce abrupt failures. Examples of these are faults induced by the

173

effects of noise including oxide breakdown, electrostatic discharge (ESD) and

ionizing radiation.

Oxide Breakdown is the destruction of an oxide layer of a semiconductor device,

e.g. time dependent dielectric breakdown (TDDB), early-life dielectric breakdown

(ELDB), and EOS/ESD-induced dielectric breakdown.

The Ionizing radiation mechanisms and the faults related to it have already been

discussed in Section 4.5

5.3.3. Phase of creation and occurrence of faults

Faults that take place during the manufacturing phase are development faults in

contrast with operational faults that take place during the service delivery of the

operation phase (Landwehr et al., 1994), e.g. faults due to radiation as in Chapter

4.

5.3.4. Nature/dimension

According to their nature faults can be categorised as hardware (such as

combinational and sequential logic defects due to aging, radiation, etc.) or

software (branch errors, missing instructions and pointers, etc.). The scope of

this thesis focuses exclusively on hardware faults and their effects.

5.3.5. System boundaries

With respect to the system boundaries, faults can also be classified as internal

(originate inside the system boundary) or external (originate outside the system

boundary). Internal faults are those that arise from within a system, often due to

design flaws. These are usually repeatable for a given set of inputs in the system.

In addition, they can also be the result of implementation faults, which if random,

are difficult to repeat. External faults are those that originate from outside the

system, propagating into the system. These are normally the result of

interference cause by the physical environment including environmental faults

174

(e.g. radiation, temperature changes), accidental damage from an external

system (e.g. power surges from an external power supply), etc.

5.3.6. Phenomenological cause

The key components of embedded systems have an inherent susceptibility to

Natural (Jennings, 1990) and human-made (Hugue and Purtilo, 2002) faults.

Natural faults are generally random in nature and are caused by natural

phenomena, without human participation. These are normally a consequence of

environmental overstress. Human-made faults are the result of human action,

including design and interaction faults (operational misuses), and are usually

due to mistakes in the design, implementation, or use of systems.

5.3.7. Capability/Objective/Intent

Following the previous classification, human-made faults can either be

deliberately harmful (malicious faults) or can be triggered without purpose and

awareness (non-malicious faults) (Brocklehurst et al., 1994). Accidental faults are

due to mistakes and bad decisions as long as they are not made deliberately;

these include interaction, design and implementation faults. It is obvious that all

natural faults have no intention and therefore are accidental. Incompetence faults

are faults due to mistakes or bad decisions that were the result of the lack of

professional competence.

175

Table 5-3. Classification of faults by manifestation

Response-timeliness
(Qian, 2008)

Omission faults
Commission faults

Dimension
Hardware
Software
System

Activation reproducibility
(Avizienis et al., 2004)

Solid
Elusive E.g. pattern sensitive faults (effects of temperature, delay in timing due to parasitic capacitance)

Extent
Local
Global

Persistence/duration
Permanent Easiest to diagnose; Once the component fails it will never work correctly again

Temporary Transient
Intermittent

Value
Determinate
Indeterminate

Plurality
Single
Multiple

Correlation
Independent
Related

Damage
(see Table 4-2)

Soft Transient-soft
Static-soft

Hard
Pseudo-Hard

Status
Dormant
Active

Prospect
(Laprie, 2008)

Foreseen
Unforeseen
Foreseeable

Seriousness

Benign

Malicious
(Meyer and Pradhan, 1991)

Symmetric Omissive
Transmissive

Asymmetric (Thambidurai and Park, 1988) Transmissive (Byzantine)
Strictly Omissive (Azadmanesh and Kieckhafer, 2000)

Detectability
(Pomeranz and Reddy, 1993)

Detectable Recoverable DRE (Kadayif et al., 2010; Weaver et al., 2004).

Undetectable Operationally redundant
Unrecoverable can lead to DUE and SDC (Kadayif et al., 2010; Weaver et al., 2004).

Partially detectable Under certain conditions, can be detectable and irredundant. Can lead to can lead to DUE and SDC
Diagnosability
Containability
Recoverability

176

5.4. Classification of faults by manifestation

Apart from their origin, faults can be classified based on attributes related to

their manifestation, including their response, dimension, reproducibility, extent,

persistence, value, detectability, etc. Table 5-3 shows a number of faults

classified by their manifestation attributes.

5.4.1. Response-timeliness

Let a component C (see Figure 5-3) receive a nonempty input sequence

(𝑉௜ ≠ 𝑛𝑢𝑙𝑙), consistent with the specification, at time Ti. For Vi , the response Vj at

time Tj is correct iff:

x 𝑉௝ = 𝑊௝ at time Tj, where Wj is the expected value according with the

specification and

x 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡 , where Td is the minimum delay time of the component,

△t is unpredictable delay time such that 0 ≤ △ 𝑡 ≤ 𝑇௠௔௫ , given that Tmax is

the maximum unpredictable delay of C

Figure 5-3. Input-response mechanism of a component C with single
output

Using the previous definition of correct response by (Qian, 2008), there can be

four ways with regards to timeliness and expected value, by which a response

can deviate from the specification, which leads to the following classification of

faults: omission, timing, timely and commission faults:

177

Omission faults involve the absence of actions when these should be performed.

A fault that causes a component C not to respond to a nonempty input sequence

(𝑉௜ ≠ 𝑛𝑢𝑙𝑙) is an omission fault. The potential resulting failure would be an

omission failure, whose response would have the following properties:

x 𝑉௝ = 𝑛𝑢𝑙𝑙 , 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡 and

x 𝑉௝ = 𝑊௝ , 𝑇௝ = ∞

A timing fault is a fault that causes a component C to respond with the expected

value Wj to a nonempty input sequence (𝑉௜ ≠ 𝑛𝑢𝑙𝑙) either too early or too late.

The corresponding failure would be a timing failure. Using the previous

mathematical notation:

x 𝑉௝ = 𝑊௝ , either 𝑇௝ < 𝑇௜ + 𝑇ௗ or 𝑇௝ > 𝑇௜ + 𝑇ௗ + 𝑇௠௔௫

A timely fault is a fault that causes a component C to respond to a nonempty

input sequence (𝑉௜ ≠ 𝑛𝑢𝑙𝑙), within the specified time interval, but with a wrong

value. The corresponding failure would be a timely failure:

x 𝑉௝ ≠ 𝑊௝ , 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡

Therefore, an omission fault is also timely fault with a null value produced on

time.

A commission fault of a component C is any violation from its specified behaviour,

with the following properties:

x 𝑉௝ ≠ 𝑊௝ , 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡 or

x 𝑉௝ ≠ 𝑊௝ , 𝑇௝ ≠ 𝑇௜ + 𝑇ௗ +△ 𝑡 or

x 𝑉௝ = 𝑊௝ , 𝑇௝ ≠ 𝑇௜ + 𝑇ௗ +△ 𝑡

Consequently, a commission fault is a subset of all other three types of faults.

178

5.4.2. Consistency

Before classifying faults with respect to consistency, the definition of correct

response was extended by (Qian, 2008). Qian’s	
 definition	
 and	
 fault	
 classification	

are suitable for systems that are required to produce replicated responses for a

given input sequence. Examples of such systems are:

x TMR (Johnson, 1989; von Neumann, 1956) systems (see 3.4.1.1), a non-

faulty component is required to send its output to three other components

or

x A non-faulty component, which is part of some Byzantine agreement

protocol, is required to send its output to other components

Figure 5-4. Input-response mechanism of a component C with
replicated output

Figure 5-4 shows the response mechanism of a non-faulty component C with

multiple r identical outputs, as a result of receiving an input sequence Vi at time

Ti. The resulting outputs are defined as:

x 𝑉௝ = ൛𝑉௝ଵ, 𝑉௝ଶ, 𝑉௝ଷ, … , 𝑉௝௥ൟ , where 𝑉௝௞, 1 ≤ 𝑘 ≤ 𝑟 , are r outputs

x 𝑇௝ = ൛𝑇௝ଵ, 𝑇௝ଶ, 𝑇௝ଷ, … , 𝑇௝௥ൟ , where 𝑉௝௞, 1 ≤ 𝑘 ≤ 𝑟 , is produced at time 𝑇௝௞

179

For a component C, with an input sequence 𝑉௜, received at time Ti, its replicated

response is correct (correct replicated response) iff:

x 𝑉௝ = 𝑊௝ , were Wj is the expected vector of replicated outputs; and

x 𝑇௝௞ = 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡 for all k , 1 ≤ 𝑘 ≤ 𝑟

Therefore in a correct replicated response all individual responses must have the

correct values “on time” (according to the specification),	
 but	
 not	
 necessarily	
 “at

the same time”.	
 For instance, responses with same values, which take place at

different times, nevertheless within the specified interval, would be part of a

correct replicated response. Such interval is the skew interval and it is the period

within which all individual responses are produced. It is defined as ห𝑇௝ଵ − 𝑇௝௞ห.

For any two outputs:

x ห𝑇௝ଵ − 𝑇௝௞ห ≤ 𝑇௠௔௫ for all 1,k, 1≤ 1, 𝑘 ≤ 𝑟

For replicated-response systems, two types of faults can be considered. A

consistent fault takes place when individual responses of a component deviate

from the specification in an identical manner whereas inconsistent faults are the

ones that cause any other breach of the specification.

An incorrect replicated response is a consistent fault iff:

x 𝑉௝ଵ = 𝑉௝௞ , and ห𝑇௝ଵ − 𝑇௝௞ห ≤ 𝑇௠௔௫ for all 1,k, 1≤ 1, 𝑘 ≤ 𝑟

Note that a consistent fault causes a component to produce identical values (not

necessarily correct values) within the skew interval, although	
 “not	
 on	
 time”. A

few examples of consistent faults are faults with the following properties are:

x some outputs being on time and the rest are produced early with correct

values

x some outputs being late and having correct values but the rest are correct

x all outputs having identically incorrect values

180

An inconsistent fault is an incorrect replicated response iff its individual

responses do not satisfy the consistent failure conditions explained above. A

byzantine fault (the behaviour of a component that gives conflicting values to

other components) is a type of inconsistent fault.

5.4.3. Maintainability: detectability, diagnosability and

recoverability

Fault detection, diagnosis and recovery are required to ensure resilience. Testing

and diagnosis may be online, offline or a combination of both (Kaegi-Trachsel et

al., 2009). Online testing and diagnosis are performed concurrently with system

operation whilst offline methods require that the system or subsystem is taken

out of service for a specific time. Often, online testing is used for detection while

offline diagnosis locates and identifies the fault(s). As soon as the

system/subsystem is repaired, offline testing can be used to verify that the repair

was successful before placing it back to normal operation.

Test vectors are used by automatic test pattern generation tools (ATPG)

(Agrawal and Chakradhar, 1995; Roy et al., 1988) to attempt the detection of all

or most modelled fault groups. A test vector is a string of n logical values (0,1, or

irrelevant X) that are applied to the N corresponding primary inputs (PI) of a

circuit, at the same time frame, in order to detect one or more faults (Roy et al.,

1988). The specification of a test vector should have two components: the input

to be applied and the expected fault-free output (e.g. t=I/O=0010/11). A fault will

be detected if the output under fault is different than the expected output. If a

series of test vectors are applied in a specific order, the term test sequence is

used, otherwise it is a test set (Roy et al., 1988). The term test pattern is often

used to refer to any of these three terms.

181

Figure 5-5. Basic testing flow of a circuit under test (CUT)

The testing process involves test pattern generation (ATPG), test pattern

application in the CUT and output evaluation by an output response analyser

(ORA) (Stroud, 2002). Figure 5-5 shows the basic testing flow of a circuit, whose

output response after processing a test pattern is compared to the expected

pattern (fault-free response pattern that a non-faulty circuit would exhibit). The

quality of testing will depend on its fault coverage (defined in Section 2.5.2.3)

and speed.

Following (Abramovici et al., 1994), let x be a random input vector, and Z(x) the

function of a circuit under test A with an input x. A fault f would transform A into

a new circuit Af with function Zf(x). Let be T a test set T= {𝑡ଵ , 𝑡ଶ, 𝑡ଷ … 𝑡௡} formed

by n ti test vectors where ti ≥	
 1. In Figure 5-5, the CUT A is tested by applying T

and comparing the output response Zf(ti) with the expected pattern Z(ti). A fault

is detected if the output response is different than the expected pattern:

𝑍(𝑥) ≠ 𝑍௙(𝑥)

182

With regards to fault diagnosis, a test is said to distinguish two faults f1 and f2

(distinguishable/diagnosable faults) if the output response of the faults are

different from each other:

𝑍௙ଵ(𝑡) ≠ 𝑍௙ଶ(𝑡)

Conversely, two faults are functionally equivalent if all tests that detect f1 also

detect f2:

𝑓ଵ ∼ 𝑓ଶ 𝑖𝑓𝑓 𝑍௙ଵ(𝑡) = 𝑍௙ଶ(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

Functional equivalence can be easily analysed for logic gates. An example of

equivalent faults is shown in Figure 5-6a. There is not an existing test that can

distinguish between the s-a-0 faults occurring in the input and output of the AND.

The same applies for all s-a-1 faults that occur in an OR gate.

Figure 5-6. Fault diagnosis and equivalent faults. (a) example of
equivalent faults. (b)Fault detection anddiagnosis vs vectors

Figure 5-6b shows six faults, two of each class A, B and C, in a CUT. Note that

detection, diagnosis together with containment and recovery are some of the

goals of testing (as specified in Section 2.5.2.3).

For fault detection at least one vector is needed (fault detection provides only

whether the circuit is free of faults or not).

183

For fault diagnosis at least one vector that produces different responses for

every fault class (fault diagnosis aims to determine time, location and type of the

detected fault) is needed.

Figure 5-7. Example of non-diagnostic detection equivalence

For combinational circuits with multiple outputs, two types of equivalence can

be differentiated (Sandireddy and Agrawal, 2005):

x Diagnostic equivalence: two faults are f1 and f2 are diagnostically equivalent

iff the functions of the two faulty circuits are identical at each output

x Detection equivalence: two faults are f1 and f2 are detection equivalent iff all

tests that detect f1 also detect f2, not necessarily with the same output

Figure 5-7 shows an example circuit with two single s-a-0 faults in the input c

and output Y lines. Both are detection equivalent faults but are not diagnostically

equivalent.

A fault f2 dominates f1 (𝑓ଶ > 𝑓ଵ) if the test set for f1 (T1) is a subset of the test for f2

(T2). All tests pattern of f1 would detect f2. Therefore, f1 implies f2 and including f1

in the fault list would be sufficient.

If two faults dominate each other then they are equivalent:

𝑓ଵ ∼ 𝑓ଶ 𝑖𝑓𝑓 𝑓ଵ > 𝑓ଶ 𝑎𝑛𝑑 𝑓ଶ > 𝑓ଵ

184

ATPG tools generate test patterns that target possible physical faults according

to the fault model (Agrawal and Chakradhar, 1995; Roy et al., 1988). An increase

in the complexity of circuits involves bigger fault dictionaries and patterns,

slowing down the ATPG process. The implementation of quick detection and

diagnostic mechanisms can improve the effectiveness of resilience. One way of

creating compact sets a is fault collapsing, which is the process of reducing the

number of faults by using redundancy, equivalence and dominance relationships

among faults is called fault collapsing (Abramovici and Breuer, 1979). To lessen

the burden of test generation, two main types of fault collapsing are used:

x Fault equivalence collapsing: uses the notion of fault equivalence to remove

most of the equivalent faults from the pattern. Faults of a logic circuit can

be divided into N disjoint equivalence subsets Si, where all faults within a

subset are mutually equivalent. A fault set Si is collapsed if it contains one

fault from each equivalence subset

x Fault dominance collapsing: uses the notion of fault dominance to remove

dominating faults from the equivalent collapsed faults. If fault f2 dominates

f1, then f2 is removed from the fault list

Figure 5-8. Dominance and equivalence relationships of circuit
lines

185

Figure 5-8b shows the dominance and equivalence relationships of a given

circuit (Figure 5-8a).

Both equivalence and dominance relationships are transitive. For instance,

Figure 5-8c if fault f2 dominates f3 and f3 dominates f5 then f2 will dominate f5.

Collapsing algorithms use this transitivity property to reduce the fault patterns

(Prasad et al., 2002). If fault detection is the only objective (e.g. fail-safe system

that do not require diagnosis), then fault dominance collapsing can be used to

further reduce the fault list.

A fault f is detectable/testable if there is a test T that is able to test/detect f,

otherwise f is an undetectable/untestable fault (Agrawal and Chakradhar, 1995).

Undetectable faults can be partitioned into two subsets: partially detectable

faults and redundant faults. A test set/sequence is said to be N-detectable if all

faults are detected at least N times with N different test vectors (McCluskey and

Tseng, 2000). The higher the value of N the higher is the fault coverage.

A circuit is redundant if the function realized by the circuit without fault(s) is the

same as the function realized by the circuit with one or more faults (Carter,

1979). Redundant faults are undetectable faults that do not affect the circuit

operation (operationally redundant). It can be argued why is it of interest to

discover redundant faults if they do not affect circuit logical behaviour.

Discovering and removing redundant faults from the tests is important for the

following reasons:

x In redundant circuits, the presence of undetectable faults can invalidate

certain tests, raising problems such as (Friedman, 1967):

� If f1 is a detectable fault and f2 is an undetectable fault, then f can

become undetectable in the presence of g. In that case, f1 is a second-

generation redundant fault (Friedman, 1967)

� If two undetectable single faults g1 and g2 are simultaneously present

in a system, then they can become detectable

186

x Due to time and power consumption constrains, it is not feasible to

perform a complete search of all possible faults in any given circuit. There

are certain needs for minimizing the tests patterns that detect existing

faults.

x Additional current drains can be induced due to redundant faults such

leakage faults (Mao et al., 1990; Xiaoqing et al., 1996) and gate oxide shorts

(Hawkins et al., 2003; Segura and Hawkins, 2005) , which are especially

undesirable in low-power devices.

x Redundant defects may indicate a latent reliability problem.

In the case of combinational circuits, all undetectable faults are redundant faults

(Abramovici and Breuer, 1979). Testing sequential logic is significantly more

difficult that testing combinational logic, whose response is a function of its

initial state. In the case of sequential circuits, it has been shown that certain

faults for which a test sequence does not exist, under certain conditions, faulty

behaviour may be detected. These are partially/potentially detectable faults,

faults that affect circuit operation under some states (partially irredundant), but

are not manifested at the outputs for any input sequence under other states

(therefore undetectable) (Pomeranz and Reddy, 1993).

The testability features, observability and controllability (defined in 2.5.2.2, are

important to increase the effectiveness of fault detection. Therefore observability

and controllability would increase the number of testable and tested faults and

so the fault coverage. Conversely, lack of testability would increase the number

of untestable and untested faults.

In terms of diagnosis, different approaches can be followed: offline diagnosis

based on fault dictionaries, effect-cause diagnosis also called online or dynamic

diagnosis based approaches, or a combination of these two approaches (Smith,

1997).

187

Finally, as in Table 5-3, faults can also be classified according to their

diagnosability, containability and recoverability.

5.5. FT modelling

When system and fault modelling are developed together, the system behaviour

in presence of faults and the control process of FT can be considered at the

earliest stages of design. This enables us to take into account mutual

dependencies of solutions for reliability, performance and power consumption

making the resulting system more efficient and resilient.

When a fault appears, extra redundancy is needed to cope with it. Such

redundancy and the ability to use it are key in the implementation of

reconfigurability.

Figure 5-9. Performance, reliability and power concerns on the
design of embedded systems

At the same time, redundancy can be used for various purposes and can be

involved as an essential part of reconfiguration. System reconfiguration

purposes are:

x performance improvement,

x reliability enforcement,

x energy –wise use

188

Figure 5-10. Reconfiguration purposes for fault tolerance

Computers developed using this approach have been named PRE-smart

computers (Schagaev, 2009; Schagaev et al., 2010). A inheritance of properties is

shown on Figure 5-10. Thus PRE (performance-, reliability- and energy-) wise

systems might be designed rigorously, using reconfigurability and recoverability

as system features introduced at conceptual level. Success of PRE designs use of

this approach for connected computers (networking, clusters multiprocessing)

depends on careful trading of the redundancy introduced to achieve the required

property.

5.5.1. Trading P, R, E

Describing a system in terms of Structure, Information and Time as parameters

of redundancy, as well as other properties, (Schagaev, 2001) can help its

reliability estimation. Redundancy might be weighted, say, in units or values,

with or without relation to the steps of any supportive algorithm, that applies it

to form and control configuration. While time and information units are clear

(seconds and bits), structure units require some extra efforts. Note also that

time, information and structure are considered as independent variables.

Structural redundancy for our purposes might be measured using a graph

notation:

189

dS: < dV, dE >

where dS denotes introduced structural redundancy, while dV and dE denote

extra vertices and edges added in the structure to represent a step of an

algorithm.

Our efforts towards a PRE goal can be measured quantitatively with a

redundancy vector:

dR = < dT, dS, dI >

Time, information and structure as mentioned above are considered as

independent variables.

Furthermore, reconfigurability of the system can be used for various purposes

(Figure 5-9). To be able to use redundancy and apply reconfigurability we need

to consider the introduction of a supportive tool for reconfigurability, a

syndrome. The syndrome provides a snapshot of the system state, namely a real-

time status of every element of the system in terms of reliability, performance

and power awareness.

Lets analyse how a generalized algorithm of fault tolerance might be

implemented using mentioned redundancy types and reconfiguration introduced

as a system property.

As Figure 5-9 shows the just mentioned mutually contradictive requirements of

performance, power consumption and reliability limit the design choice of

embedded systems. These constrains become even more serious when the

system is implemented on a chip (SoC). In this case reliability, performance and

power consumption of the elements are defined and limited by the same

technology.

With regards to reliability, the available redundancy hints a potential solution: it

is known that max (Pi,Pj,Pk,Pl) is achieved when all mentioned probabilities of

190

independent elements are equal. For example, for SoC it technologically means

that we need to introduce in the system different redundancy levels for each

mentioned group of elements to equalize group reliabilities.

5.5.2. GAFT: Generalized algorithm of fault tolerance syndrome

support

It is well known that fault tolerance of a computer system can be achieved by

introducing static redundancy in hardware and system software (HW/SSW). It is

also well known that using traditional approaches of fault tolerance (Anderson

and Lee, 1981, p. 81; Avizienis, 1971; DeAngelis and Lauro, 1976) is expensive in

terms of time, information or hardware overheads. To avoid this, the authors

(Schagaev, 1987, 1986; Sogomonian and Schagaev, 1988) proposed to consider

fault tolerance not only as a feature but also as a process that can be

implemented algorithmically.

Figure 5-11. GAFT: Generalized algorithm of fault tolerance

191

A three-step algorithm (Sogomonian and Schagaev, 1988) has been further

developed. The outcome of this work is the Generalized Algorithm of Fault

Tolerance (GAFT), a five-step fault-handling algorithm (Figure 5-11):

x Detecting faults

x Identifying faults

x Identifying faulty components

x Hardware reconfiguration to achieve a repairable state

x Recovery of a correct state(s) for the system and user SW

The different types of redundancy (information, time and structural either

hardware- or software-based) can be used to implement every step of GAFT.

The more complex the system implementation is, the more complex Fault

detection and diagnosis will be. This is particularly true for multicore systems

(MIMD processors that support vector instructions (SIMD) and pipelined

implementations, which are particularly complex. In principle the complexity of

GAFT implementations also depends on the complexity of the system, its faults

and fault tolerance models.

Hardware support is a faster mechanism than software support to achieve

reliability and with a proper design there should be little performance

degradation. However, the introduction of static redundancy in HW might be

prohibitively expensive in terms of cost and power consumption. Therefore, a

process that implements fault tolerance assuming dynamic interaction of

existing redundancy types between elements can tackle these problems.

GAFT might be used for comparison and overview of different design solutions of

FT systems. It also allows controlling fault coverage at every step of system

design, providing a tool to select efficient solutions and estimate overheads.

192

A substantial redundancy can cover multiple steps in GAFT, such as fault

detection and fault recovery; take, for example, TMR systems, when a faulty

channel output is overruled by two correct outputs.

Figure 5-12. System recovery time according the level of
implementation of checking and recovery schemes

The implementation of the hardware checking and recovery (step A of GAFT) at

different levels causes different timing for GAFT completion (Figure 5-12):

microseconds for the instruction level, milliseconds for the procedure level,

hundreds of milliseconds for the module level, seconds to tens of seconds at the

task level and tens of seconds to minutes or even hours at the system level.

Different implementations would have different properties in terms of timing,

fault coverage, types of faults that can be tolerated, power consumption,

complexity and cost. Therefore in order to achieve the required specifications, it

is wise to combine different checking and recovery schemes in one system.

For example, it might be beneficial to protect the processor and the memory by

using hardware schemes at the level of instruction (duplicated processors,

triplicate memory) and use higher-level schemes (procedure or module) for the

other hardware components due to cost and power constraints. Processor and

memory is used at every instruction execution. The implementation levels are

193

not mutually exclusive; for example the combination of hardware- and software-

based checking can significantly improve fault coverage. In general, the higher

the implementation level the less hardware support is required, but with higher

timing and software coding overhead.

A good fault tolerant system tolerates the vast majority of transient faults within

the interval of instruction execution, making them invisible for other instructions

(and software). At the same time, our assumptions about transient “live” fault is

arbitrary, thus transient faults with longer time range or permanent faults might

be detected and recovered differently, for example, at the procedural or task

level of system software.

Taking into account that transient faults occur at an order of magnitude more

often than permanent faults, transient fault tolerance must be done extremely

effective.

In turn, it is necessary to implement special schemes for HW reconfigurability

and recoverability to eliminate the impact of permanent faults on the system.

There are two types of reconfiguration in GAFT. First a hardware

reconfiguration, that implies: 1) temporary isolation and substitution of the

suspected/faulty unit for a healthy one, if possible; or 2) replacement of the

faulty unit. The SW reconfiguration involves correction of data and/or code in

order to restore the system to a working state.

GAFT completion requires three fundamental processes, called in literature P1,

P2 and P3 [Stepanyants01]. The error checking process P1 is responsible for

checking the system state in terms of hardware fault existence/appearance. The

second process, the error recovery process P2 prepares recovery states when it is

scheduled by the system. When a transient fault is detected, its toleration

assumes recovering the information that has been modified and restoring

hardware states. The third one, the functional process P3 is the process of

calculation	
 or	
 instruction	
 execution.	
 Let’s	
 assume	
 the	
 primary	
 function	
 of	
 the	

real time critical system as	
 “process	
 three”	
 or	
 P3. If the system ensures full

194

functionality and transparent application recovery for the process P3 (from a

predefined set of faults in a given time frame) then the system is fault tolerant.

That is, we define a system as fault tolerant if and only if it implements GAFT

transparently for applications.

5.5.3. System estates and actions to implement fault tolerance

GAFT above presents an approach for achieving a new and complex property

(fault tolerance) considering it as a process with several steps and phases.

Further generalization and detailed analysis of system state change is presented

below. At any given time, a single processing element (SPE) system can be in one

and one only of five possible states: ideal, faulty, erroneous, degraded and failed.

Figure 5-13 shows the five S states, the potential T transitions and the M

mechanisms involved in fault tolerance. Two different areas can be

differentiated: the green area at the bottom half represents the conventional

environment with no FT capabilities whereas the red area at the top half

represents the possible states and transitions in a dependable environment.

Figure 5-13. System states sequence of actions for FT

195

Considering S1 as the initial state, a single event can change this ideal state. Note

that with the exception of the transition T12, Figure 5-13 does not contemplate

the cases where a single event can occur between transitions. If the deviation in

the form of voltage transient introduced by such event affects combinational

logic, the system would turn (Transition 1) into a faulty state S2. The voltage

transient may propagate to sequential logic such a memory cell or latch,

potentially flipping the bit, contaminating the data flowing within the system,

and leading the system to an erroneous state S3 (soft error in Figure 5-13).

However, there are three masking effects that can prevent transition for this

particular event from S2 to S3: logical masking, electrical masking and latch-

window masking. Logical masking happens when one of the other inputs of the

affected gate is in controlling state so that the output does not vary (e.g., 1 for an

AND gate, or 0 for a NAND gate). Electrical masking happens when the voltage

transient impacts successive logic gates and propagates through the logic chain

fading out before reaching the registered output. Latch-window masking

happens when the arrival of the pulse is outside the latching window, usually

based on the setup time and hold time of the sequential logic.

Nevertheless, if during the ideal state S1, as a result of the single event the

voltage transient affects the sequential logic directly, the system state would

transit straightforward to an erroneous state S3 (T6).

The implementation and the coverage of faults within the system can be

measured probabilistically, assuming existence of undetected faults. We consider

that an undetected fault would lead (T9) to failure in the system (S6), unless the

error is overwritten [(e.g.: a memory bit that has flipped can potentially be

flipped back to the original value by another event before the fault detection

mechanisms were activated or before the error leads to a failure) transiting back

to an ideal state. The probability of overwritten errors is very small.

The implemented action of fault detection and recovery mechanisms differs in

terms of permanent and transient faults. Faults are initially detected by the by

196

the fault detection mechanisms (M1 in Figure 5-13). A detected fault that is not

recoverable by the recovery mechanisms (M2) would lead to a failure (T11). In

most cases, recovery will be possible in two forms: full recovery (T8) and

graceful degradation (T4). Ideally, a full recovery would turn the system back to

the initial state S1 or, if full recovery is not possible, SSW will make use of the

reconfiguration mechanisms (M3) to turn into gracefully degraded state S5. In

this state the system can continue operating properly. In some cases, depending

on the severity of the failure, the operating quality may decrease. This becomes

more obvious if a further fault or error takes place. Further graceful degradation

may be possible depending on the levels of degradation introduced in the

implementation. A good example of degradation support for memory can be

found in (Bernstein et al., 1993, 1992).

Recovery from a degraded state takes place once the deviation has been

corrected. The recovery mechanisms should be able to return the system back to

correct state using additional reconfiguration (M5).

It is clear that a logic framework with holistic principles to follow might help to

design and develop an efficient resilient architecture with required properties.

These principles are explained in the following chapter.

197

5.6. Conclusion

In this chapter we have introduced a detailed fault model and analysed it

together with generalised methods and models of fault toleration. We have

extended the model of faults defined by (Avizienis et al., 2004) and provided a

classification suggesting methods for recognition and reaction. Manifestation,

detectability diagnosability and recoverability are discussed as one consistent

flow proposing adequate solutions for diagnosis and recovery. Note that the

proposed fault model is generic and has not been customized for the latest

version of the architecture proposed in the following chapter. In fact, the earlier

version of the architecture was developed before this fault model. However,

We have introduced the principle of reconfiguration of the system and how this

might be used for various purposes - performance, reliability and energy wise

gain, improving the efficiency of resilience.

Using PRE- properties, a generalised algorithm of fault tolerance is developed

further with a full explanation of system state changes and the actions required

to implement GAFT. In contrast with the fault model, the system estate sequence

of actions in Figure 5-13 can be directly applied to the newer version of the

architecture. In this figure the detection, recovery and reconfiguration

mechanisms correspond to the hardware and system software mechanisms

available in the ERA architecture.

198

Chapter 6

199

Chapter 6

Hardware Support for Resilience

Any new complex property of the system is studied and analysed as a process.

This chapter describes how by introducing a) reconfiguration properties and

processes into a system to adjust the system for reliability-, performance- and

power- wise applications we can extract new structural elements. We present a

necessary and detailed argumentation of the syndrome concept, its structural

design, possible ways of implementation and its applications. The syndrome

properties, its structure and its operations are described using a prototype of a

resilient architecture as an example. Detailed explanations of the use and

implementation of the syndrome is given within the context of GAFT.

We present a hybrid HW-SSW co-design approach of a resilient architecture with

the ability to reconfigure, achieving various levels of dependability in different

environments. The system is capable of increasing or decreasing the level of

reliability and power consumption by changing the active and passive

redundancy via reconfiguration.

In today's MBU scenario, the introduced architecture has advantages to known

architectures with a better compromise in area, performance, reliability, power,

cost and efficiency.

200

6.1. ERA concept, system design and hardware elements

The development of this new architecture follows the holistic principles

proposed by the ERA paradigm (Schagaev, I., 2010): simplicity, redundancy,

reconfigurability, scalability, reliability and resource awareness. To support

those principles a new hardware architecture (HW) and system software (SSW)

have been developed. Brief introduction of this principles are:

Simplicity: Complexity is difficult to implement and handle efficiently. In addition,

big complex systems are more prone to faults, thus lowering reliability.

Reliability: The highest reliability of individual components is preferable but

always keeping in mind the cost-efficiency of its implementation.

Redundancy: Deliberate introduction of hardware and software redundancy

provides the required level of reconfigurability to reach performance and

reliability goals.

Reconfigurability: Apart from the simplicity, reliability and deliberate

introduction of redundancy, it is essential to achieve balance between

performance, reliability and power. Reconfigurability serves three main

purposes: performance, reliability and power awareness. It allows the system to

adapt: 1st by recovering from a permanent fault and 2nd by adjusting the

requirements of the running application.

Scalability: Scalability should be kept in mind when designing a system so that it

can be extended if the requirements change.

Power-awareness: Mission critical systems have significant limitations of

hardware resources and power consumptions constraints (e.g. battery life).

Thus, for wise resource use, reconfigurability must be introduced.

201

By following these principles the processes of design and development of a new

architecture can be defined.

Figure 6-1. System zones from a information processing point of
view

Figure 6-1 shows a computer system as three semantically different (from the

point of view of information processing/transformation) elements. The

principles mentioned above might be applied at the level of each element, which

will help into designing a more efficient computer system.

Figure 6-2. Information processing in ERA

202

In terms of information processing the hardware is based on a Single Processing

Element (SPE) that is divided into three areas (Figure 6-1): first, the information

transformation area – further called active zone (AZ) and second the information

storage area – called passive zone (PZ). The interconnection of these zones is the

interfacing zone (IZ).

All three zones must have different properties and will use different redundancy

mechanisms to tolerate faults and to make system reconfigurability possible and

efficient. The proposed architecture structure of each zone is shown in Figure

6-2.

Active Zone: The active zone consists of the microprocessor elements including

the arithmetic unit and logic unit. Both units are separated for better fault

isolation and easier implementation of hardware tests.

Interfacing Zone: This includes all communication components such as the

memory buses and the reconfiguration logic. A configurable bus allows the

reconfiguration of the hardware to exclude failed hardware components and go

into a degraded state, or to replace the failed component with a working one.

Passive Zone: This includes basic storage systems, such as memory, that do not

act by themselves but are handled by controllers or devices.

Minimum deliberate redundancy has been introduced in the form of buffer,

register files, replicated memory modules, majority schemes (in terms of HW)

and interfacing logic. With regards to SSW, some extra elements required to

support fault tolerance are: checkpoint monitor, recovery point monitor, process

synchronization and reconfiguration monitor. These are named monitors to

express their uninterruptable mode of operation.

As mentioned above, hardware can be considered as three zones, (see Figure 6-1

and Figure 6-2). All elements in these zones have to be reconfigurable for their

203

own purposes as well as other zones requests. All zones might have different

reconfiguration properties.

Reconfiguration might have internal and external reasons. For example, when

the system forms a configuration for a task execution it might deliberately and

externally exclude some hardware elements from configuration due to a

transient/permanent fault. On the other hand, checking schemes can enable the

reconfiguration of hardware elements for reconfiguration due to task

requirements (internal reasons).

Interactions between zones define the level of reconfigurability and flexibility of

the architecture. These new hardware reconfiguration abilities must be reflected

and supported as new features of the architecture.

6.2. ERA hardware configuration

ERA is based on a first fault tolerant version of the system (ERRIC) resulting

from the ONBASS project (ONBASS Consortium, 2004) that has been improved

with the improvement of the reconfigurable memory and the addition of a

syndrome hardware structure and a memory management unit by the author.

With regards to system software, ERA has also benefited from the contribution of

(Kaegi-Trachsel and Gutknecht, 2008).

6.2.1. Active Zone

The main principle used in the design of the processor is simplicity. The cost of

P1 and P2 implementation of GAFT depends on the structure of the processor

and might become prohibitively high. Antola (Antola et al., 1986, p. 1) proved

that the overheads necessary to make a CPU fully fault tolerant might easily

exceed 100%. Thus, to avoid duplication, there is a requirement to keep the

redundancy level needed to implement fault tolerance, as low as possible.

204

Following the simplicity principle, the instruction set and its implementation

within the processor is reduced to the absolute minimum required to support

general purpose computing. This allows the careful introduction of redundancy

that implements error detection, diagnosis and recovery features. Complicated

memory addressing instructions are omitted, as they are not essential.

The instruction set architecture (ISA) consists of only 16 instructions with only

two of them for memory access. Such a simplified instruction set generally

requires less hardware (the control unit in particular), which increases, by

design, the reliability of a single processor. Performance might also be increased

as operating clock frequencies can be improved. Extra details on the instruction

architecture are explained further in 7.2.

The proposed microprocessor offers clear advantages in comparison to CISC

architectures: fewer and simple addressing modes, hardwired design (no

microcode), fixed and simple instruction formats. In turn, a simple instruction

format allows fetching of two 16-bit instructions per machine cycle. The

execution steps are similar to other RISC processors. There is no pipelining and

all steps of one single instruction are executed within one memory cycle.

Pipelines are one of the most vulnerable elements of modern microprocessors.

The relative amount of area of the chip dedicated to pipelines is increasing with

scaling design complexities. For instance, instructions can stall in the instruction

queue and the longer they reside there, the higher the chances of getting struck

by an energetic particle. A transient fault in a latch or a memory cell within the

pipeline (e.g. SET or SEU) can propagate and become an error at the

microarchitectural level (e.g. Register file or Instruction Register). Consequently,

the effects of ionizing radiation in this area can lead	
 to	
 SEFI’s, severely

decreasing the overall reliability.

The absence of pipelining and caches greatly simplifies the processor design,

which, in turn, simplifies the implementation of fault tolerance. A careful

introduction of redundancy for checking and recovery allows the processor:

205

- To detect transient faults during the execution of the instruction

- To abort the current instruction and

- To re-execute it, all transparently to software

There are known arguments that simple ISA’s do not have enough instructions to

perform most of the application operations. These argue that a small ISA would

result in higher compilation effort/time, and that the resultant programs would

be bigger, which would increase the amount of memory needed.

However, complex functions are well handled by the compiler instead of having

specialized instructions within the ISA dedicated to very particular tasks.

With regards to the size of the programs it is worth mentioning that:

x A bigger ISA such as CISC involves longer operation codes, which in turn,

increase the size of programs. Although the program size applications

compiled with the proposed microprocessor are still larger than the same

applications compiled in other architectures. This is mainly due to the

lack of certain instructions such the multiplication instruction, as the

corresponding library calls would need additional setup code.

x In an architecture based on a smaller ISA, register references require

fewer bits

x It is usually claimed that smaller ISA requires more memory. ERA

architecture has unique design property: size of all instructions is 16bit

while size of a word is 32. Thus, the instruction density per word is 2 and

the previous arguments above about bigger code size for RISC do not

stand to ERA

x Since the price of the memory is very low and keeps decreasing this

argument also becomes less important

206

Figure 6-3. Architecture of the active zone of ERA

The processor has a large register file with 32 general purpose registers with a

width of 32 bits and no restrictions on their use, which simplifies software

development (see Figure 6-3). All standard instructions expect exactly two

arbitrary registers as input, and save the result of the operation in one of these

two registers, thus overwriting one of the input values.

Memory access is currently possible for 32 bit words at a time, and it has to be

aligned. The main structure of the processor architecture is illustrated in Figure

6-3. The instructions are fetched from memory into the instruction register and

are decoded by the Control Unit, which also manages the execution of each

instruction. Operands for each instruction being executed are fetched from either

the register file or memory multiplexed into the Arithmetic or Logic Units (AU

and LU respectively).

The output data from AU or LU goes either to memory through the data bus or is

written back to the Register File. The current value and type of the data might

also indicate an address for branch instructions.

The hardware for fault detection and error recovery process, P1 and P2, are

marked in blue and red respectively (Figure 6-3). The hardware for the data

manipulation process P3 is marked green.

207

The simplified architecture presented in Figure 6-3 allows the implementation of

GAFT at instruction level with reasonably small reliability (13%) (Schagaev,

2008). As before, the three processes are essential for the guaranteed and

successful execution of each instruction.

Two processes P1 and P2 cope with fault checking and recovering of transient

errors respectively. P1 is initialized at the start of the instruction execution; P2

is required and initiated when fault has been detected, but it is essential that the

pre-modified state is stored at the start of execution of every instruction. P1 and

P3 can operate concurrently. P1 and P2 have an influence on each other: the

higher the fault detection coverage achieved by P1, the more successful recovery

should be (Stepanyants, 2001).

Figure 6-4.Check Generator and Checking Schemes

208

When data is written into the Register File, the Check Generator (marked in blue

in Figure 6-3 and Figure 6-4) generates the checking information for the 32 bits

data storing into the register file; this information allows the stored data to be

verified later on. The Checking schemes (marked in blue in Figure 6-3 and Figure

6-4) check the data integrity when data are read out from the Register File and

when possible, correct the data before the ALU operation takes place.

In order to implement the fault recovery process P2 an extra Register Buffer

Rbuf(R*) is introduced (marked in red in Figure 6-3). The register buffer is

allocated to keep the pre-modified state of operand for the currently executed

instruction.

When a fault is detected during instruction execution, it allows the processor to

restore to the initial state before the execution of the instruction, enabling the

instruction to be repeated. This allows the system to tolerate faults within

instruction execution.

The extra Register Rbuf(R*), the checking schemes and the reverse instruction

sequencer combined make the implementation of P1 and P2 possible without

any perceptible time overheads (13%).

6.2.2. Passive Zone

The proposed memory scheme may be regarded as a collection of 4 blocks or

RAM, 16-bit wide (in the case of ERA the blocks have an identical size of 1Mb

each: 16x64k). Using 16-bit memory modules instead of 32-bit memory modules

increases reliability and reduces, when necessary, the energy required for

execution. Additionally, the scheme includes two flash-based ROM modules with

replicated bootstrapping firmware and operating system software.

Reliability is increased by means of added working states and configurations that

are explained in 6.4.3 Energy-wise operation is improved by means of this

architecture ability to activate only certain modules when required (e.g. using a

single 16-bit memory module).

209

The proposed memory scheme allows different configuration schemes that will

be explained in 6.4.3. and 6.5.

6.2.3. Interfacing zone

The principles of architecture design explained above relate to the interfacing

zone as well. The architecture needs something (logic) in the interfacing area to

enhance the flexibility and resilience of system operation between active and

passive zones, for wide range of applications where PRE-properties are key

requirements. This motivates the ability to have a reconfigurable interfacing

zone.

One of the schemes that we propose is known as T-logic. T-logic is a hardware

element that provides reconfigurability of the passive zone for performance,

reliability and energy-wise operation. This logic should be able to provide

minimal configuration – when one processor and memory remain active. T-logic

is further explained in the following section.

6.3. ERA reconfigurability

As declared earlier performance, reliability and energy-awareness are required

for the next generation of computer systems. Reconfigurability requires

hardware and system software implementation and support. In order to be able

to change the configuration when necessary (sometimes several times during a

single mission) systems should have special elements with specific properties

such as extreme reliability, performance and simplicity, supported by

independence from faults of the system.

For the purposes declared above we propose a hardware element called T-logic.

The main function of a T-element is to connect and disconnect the system

component, using “logic rotation” for various types of connections and

configurations. Note,	
 that	
 we	
 use	
 the	
 term	
 “logic” since a physical movement or

rotation is not feasible and it is clear that any mechanical device that involves

210

movement would therefore be less reliable. The physical element that provides

the functionality for this T-Logic concept is the Memory management unit

defined in 6.6.1 and 6.6.2.

T- elements are controlled by hardware through syndrome schemes. Both types

of operation, during run time and during diagnostics, are assumed.

Table 6-1. T-LOGIC rotation

position Description

The	
 “T” logic connects the active zone to a front element
that is connected in redundant mode with a right element.
This front element leads the rest of the elements that is
connected to.

The	
 “T-logic”	
 connects the active zone to a front element. In
this case the element is working in serial mode.

The “T-logic”	
 connects the element to two neighbouring
elements in redundant mode. The element is leaded by the
left side component that is connected to the active zone.

The “T-logic”	
 connects the element to a left element. system
component will be leaded by side element that is connected
to the active zone.

Disconnected the element: The “T-logic”	
 is disconnected
from the interconnection scheme. The energy consumption
of the element is reduced to the minimum.

211

In order to connect and disconnect the system component there are several

possible “rotations”	
 of	
 a T-element. Table 6-1 describes the basic T-Logic

element and shows some of the possible states of a T-element.

 The reconfigurable interconnection schemes can execute dynamic

reconfiguration of a system, transparently from software. For example, when

triple system element configuration (TMR) is used, T-elements might exclude

faulty ones from operation, leaving only 2 elements active (DMR). If further

degradation, in terms of fault tolerance, takes place, the system can continue

operating with up to a single element (Schagaev and Buhanova, 2001).

Figure 6-5. Algorithm of reliability configuration using T-LOGIC

Figure 6-5 illustrates how reconfiguration might be used for reliability purposes

using T-elements. The figure shows a diagram that exemplifies a scheme with 3

memory modules working in parallel that at some point during operation

experiences two permanent failures in two out of three modules.

212

6.3.1. T logic for memory management

ERA power consumption can also be controlled using T-elements. Existing

electronic technologies posses the following drawback: increase in power

consumption causes degradation of system reliability. Therefore, an ability to

connect and disconnect a system element might be function and requirement in

real time and other applications.

Again, for illustrative purpose we use an example when ERA uses three system

elements in redundant mode. If the task scheduled does not require a full size

configuration, the architecture can be configured to operate using either two

elements or a single element on its own.

Hardware configuration should be implemented transparently to application

programs. Task defined requirements might be available for a run-time system.

Excluding memories will not change the logic of the program.

Figure 6-6. Energy-wise algorithm of configuration using T-LOGIC

Figure 6-6 shows the power saving algorithm for a reconfigurable system. The

reconfigurable interconnection schemes improve the memory management

flexibility. For instance, if the computer architecture has three elements and the

task requires maximum capacity, the system will configure all memories in

redundant mode so that it can provide maximum capacity.

213

6.3.2. T-Logic support of configurations in ERA

Possible configurations of a system that uses “T”	
 logic	
 are	
 presented	
 in	
 the	
 Table

6-2 below.

Table 6-2. Possible system configurations using T-LOGIC

configuration explanation

“T”	
 configurators	
 connect	
 all	
 three	
 components	
 with
the processor. Top system component acts as leading
element. The rest system elements compare the
results and participate in voting. Thus reliability of
this system configuration is high.

This system configuration serves for maximum energy
saving. In this	
 case	
 “T”	
 element	
 connects	
 only	
 one	

system component with processor, while the rest are
idle.

In this case, all three components are used for
maximum hardware capacity. When performance of
application is the main priority this configuration fits
the purpose.

The first row of the table illustrates a configuration with maximum reliability

(three HW elements are available). The power saving of the system could be

improved by disconnecting elements from the system and keep them idle

(second row). The configuration for maximum capacity required by a task is

shown in the third row.

214

6.4. Syndrome

As mentioned earlier, the new property of the system must be supported by

hardware and by SSW implementation of the required processes that define such

property. We introduce a special hardware scheme called syndrome. The term

syndrome is	
 new	
 Latin	
 and	
 was	
 originated	
 from	
 the	
 Greek	
 “syndrome” where:

x “Syn-“, from combination, concurrence

x “-Dramein”, base	
 meaning	
 “to run”

For our purposes a syndrome is “a group of related or coincident things, events,

actions, signs	
 and	
 symptoms	
 that	
 characterize	
 a	
 particular	
 abnormal	
 condition”.

Further analysis and development of syndrome concept and application follows.

6.4.1. Syndrome use

The functions of the syndrome are not only passive, presenting a "snapshot-

status" of the system, but also active, serving as a tool to control the system

configuration and to estimate system conditions. The syndrome can help to

answer the question:

WHAT PROVIDES THE FAULT TOLERANCE OF THE SYSTEM? ! ! ! Q1

It is usually assumed that the core logic is ultra reliable and guarantees control of

configuration and reconfiguration. Unfortunately, using the homogeneous

redundancy may limit the increase in reliability since techniques based on the

same type of redundancy are vulnerable to the same threats. Hybrid techniques

based on heterogeneous redundancy of components and techniques can be more

effective.

Thus even when checking schemes of memory or logic detect faults and reflect

this situation in the syndrome, the information may not be useful if the system

does not include as well:

215

x External elements responsible for exercising GAFT and making decision on

configuration / reconfiguration if necessary

x Internal elements capable of initiating the required sequence.

Indeed, in a regular computing system when there are faults in the processing

logic, to expect that the processor is able to perform self-healing and then control

and monitor configuration of the rest of the system is unrealistic. We propose a

possible solution as described below.

Figure 6-7.	
 Processor	
 structure	
 with	
 “separation	
 of	
 concerns”

Figure 6-7 shows conceptually the ERRIC’s active zone divided by two AU and LU

elements.

To be able to trust information regarding the status of an element, every

checking signal about the condition of registers (not shown), memory units, AU

and LU as well as control unit should be aggregated in syndrome. The

implementation scheme of fault tolerance separates the passive zone and active

zone of the proposed architecture. A clear separation of the functions of

216

processing (of data operation) and storing (memory) enables us to apply more

flexible checking and recovery solutions. The passive zone has the elements to

store data, while active zone is used for the data manipulation.

All processor registers (register file) may be protected by parity or other

checking schemes. During instruction execution data is loaded from the register

file into functional elements for operation and operands are checked. If no fault

is detected during instruction execution the operation is considered as successful

and the result is stored back into the register file or sent out to memory.

The memory context data might be protected by schemes such as error checking

code, Hamming code, or recently proposed schemes (Gössel et al., 2008). If a

fault is detected during the course of an instruction, the control unit (by

executing GAFT) would attempt to:

x Restore the damaged data

x Repeat the execution of the instruction that presented the fault

x Resume execution

ERA provides a fast and reliable recovery scheme within instruction execution

level, transparently to software.

Taking into account the requirement of minimal redundancy the architecture

presented on Figure 6-7 above seems efficient – there is no duplication or

greater level of reservation applied for active zone. Active zone consists of two

non-identical units: arithmetic and logic units respectively (AU and LU).

In terms of power consumption this scheme is also efficient. A question arises:

HOW TO TOLERATE FAULTS IN THE ARITHMETIC OR LOGIC UNITS? Q2

The question Q2 above becomes crucial for the implementation of fault tolerance

with minimum redundancy on any system. A possible solution is to apply well-

217

known mathematical results about the equivalence of arithmetic polynomial for

logic functions (Vykhovanets. 2004). That is, a theory where arithmetic functions

are represented by Boolean functions. These two groups of results hint us a

possible solution: an ISA that consist of logic and arithmetic instructions should

be supported by a sequence of functional equivalence of logic operators

implemented by arithmetic unit. For every arithmetic instruction a functionally

equivalent sequence of logic instructions should be added. Both sequences

should be stored in different segments of read-only memory. If a fault occur in

the AU a signal sets a flag in the syndrome and sequence of logic operators is

executed instead of arithmetic instructions to complete GAFT, and vice versa.

Note that this equivalence and hardware redundancy is used only when a fault is

detected and the recovery procedure is initiated. This enables the system to

recover from transient errors and execute reconfiguration. After reconfiguration,

the system can either continue functioning in normal mode or, in case of an

unrecoverable permanent fault, it can provide fail stop sequence of actions.

Figure 6-8. Syndrome purposes

!

!
218!

The!syndrome!acts!as!a!control!centre!for!three!main!functions:!fault!monitoring,!

reconfigurability!and!recovery!(Figure!6?8).!These!three!functions!serve!for!the!

purpose!of!performance,!reliability!and!power!efficiency.!!

!

Figure+639.+Syndrome+for+reconfigurable+architecture+

From! a! low! level! point! of! view! the! syndrome! is! represented! as! a! special!

hardware!register!that!will!interact!with!the!system!via!hardware!interruptions!

schemes.!

Semantically,!the!structure!of!the!syndrome!is!subdivided!in!three!different!areas!

Figure! 6?9:! Fault! control! area,! Configuration! control! area! and! Power! Control!

area.!!

The! Fault! control! area! reflects! the! hardware! status! of! the! different! areas! of! a!

single! processing! element:! processor,! memory! and! interface.! Full! "Zero"!

syndrome!in!this!area!indicates!that!no!fault!has!been!detected!in!the!system.!If!a!

fault! in! a! specific! element! is! detected,! the! corresponding! bit! is! set! to! 1.! Each!

hardware! element! has! sits! own! representative! flag! within! syndrome.! For! the!

ROM!memory!group!that!consists!of!two!chips!syndrome!of!ROM!condition!has!

two!positions!with!zero!whenever!the!ROM!functions!correctly.!In!turn,!the!static!

RAM!memory!group!has!4!hardware!elements.!!

!

219

The configuration area of syndrome reflects the memory mode that ERA is

currently implementing. The Bit mode field defines whether the addressing

mode is 16 or 32 bits, whereas the L/R field defines whether the memory banks

are in linear or redundant mode.

x Bit Mode: 0 = 16 bits

 1 = 32 bits addressing mode

x LR: 0 = Linear

 1 = Redundant

The power management area reflects the status of the modules in terms of

power. Bits Power RAM Module One, Two, Three and Four represent whether

the Memory module is powered or not:

x 0 = Power Off

x 1 = Power On

The combination of those three areas: Fault, configuration and Power

management control defines the state of the system, e.g.: a memory module could

be in the following states: faulty, failed, stand-by, ideal and off state. Checking

those 3 areas by a simple reading would determine the status of the memory

module. When reconfiguration is set by software, the states of the syndrome

might be mirrored in memory. Keeping those states only in SSW is not a

universal solution, for example when external element requires an access to a

syndrome and local memory has failed further use of available resources and

elements becomes impossible.

Without a doubt, the syndrome is one the most critical parts of the system. For

reliability purposes, there are three copies of the 32-bit register syndrome

connected to a voter within the processing element . Without this replication, a

bit flip in the faults area of the syndrome would lead to redundant fault detection

processing, whereas a bit flip in the configuration area would likely end up

causing a catastrophic failure.

220

6.4.2. Location access and way of operation of the syndrome

There are two major mechanisms that will be able to detect a fault: hardware

logic and SSW. Both, hardware logic (mismatch and voters) directly and SSW via

instruction (testing and detection mechanisms) should have access to the

syndrome:

SSW events: For SSW to have access to the syndrome it is necessary to

implement hardware elements that facilitate reading and writing its value. Note

that the current ISA does not include instructions within the processor to do that,

unless one of the registers is used as a syndrome. This is similar to the VAX V70

processor that includes a status word placed in a fixed address of the memory.

The register file could be hardened to avoid potential errors in it. At least the

syndrome needs to be hardened. For instance, a SEU that causes a bit flip in the

configuration area of the syndrome could mistakenly turn off one of the memory

modules.

Triplicating the syndrome increases complexity of logic. The voter would be

vulnerable as it is a single point of failure (unless the voters are also triplicated).

Another option that solves the complexity would be low-level hardening

techniques and/or using different technologies (such flash memory) just for the

syndrome register. However, that will increase the manufacturing costs. Since,

the size of the syndrome is just three bytes, triplication seems the most efficient

solution.

As a consequence, a preferred way to access the syndrome that avoids changing

the ISA and hardening the register file is the use of the input/output memory

lines (mapped in a reserved address) and accessing a TMR Syndrome Scheme

that is software independent. Regardless of the hardware implementation, only

one syndrome is visible to the system software. An error in one of the syndrome

registers is corrected by hardware without software intervention. However, for

the purpose of risk analysis it may be useful that the SSW is aware of errors in

221

the syndrome. Errors within the syndromes are useful information in a potential

contingency plan (e.g.: setting the fault tolerance of the system to a higher level

in case of recent particle impacts).

Automatic events via hardware detection mechanisms: Special HW

interruptions are needed for this; if during the diagnosis of a memory chip the

ALU, for instance, signals a problem, a diagnosis of the suspected element should

be done first.

The syndrome might be considered independent from other processor hardware

elements. A method is needed for synchronizing the operation of the processor

with the syndrome. One solution would be polling, where a loop that checks the

status of the syndrome is arranged. It has a major disadvantage: the processor is

busy reading the syndrome, instead of executing some useful code (wasteful in

terms of processing power).

Instead of polling the syndrome waiting for a change, a hardware interruption

system is preferred. In this case, the syndrome subsystem is responsible for

notifying its current state to the processor. When the syndrome needs the

processor's attention, it sends an electrical signal through a dedicated pin in the

interrupt controller. In such case, the processor stops its current activity and

jumps to execute a function (interrupt handler), which must be associated with

the fault manifestation.

By using hardware interruptions, in terms of total execution time, the syndrome

will be accessed only when a fault is manifested. Most of the time the fault area of

the syndrome will be 0 and the rest of the areas will only be altered when

restarting of the system or when changing the memory mode.

The same method might be applied to the control of other devices. Different

levels of interruptions are then needed. Active zone hardware should have

higher priority than passive zone elements.

222

If a hardware mechanism sets the syndrome bits, a trap (exception) takes place

and the software diagnosis starts. SSW treats the fault and clears the syndrome

accordingly. This scheme introduces a requirements to set and re-set syndrome

register internally or externally, from the	
 “rest	
 of	
 the	
 system”	
 when	
 ERRIC is

used in the form of CC – connected computer structure.

If the syndrome was located within the active zone, in the case of a fault in such

area, a neighbour processing element would have difficulties accessing to it. To

resolve it there are three options:

x To enable system flexibility in fault handling, one has to implement the

syndrome independently from the active area where it can be accessed via

hardware by neighbour single elements.

x Software message passing: Instead of hardware access SSW will deal with

the status of single elements, by sending un update (periodic updates) of

the syndrome to the single element neighbours before changing the

memory mode or when a fault has been detected (if feasible in this last

case). A syndrome table in a similar fashion to the routing tables used by

routers and the different routing algorithms could be shared by different

processing elements.

x Both, Hardware access and SW message passing are not mutually exclusive.

A combination of both may be possible.

223

6.4.3. Syndrome: Passive Zone Configurations

A total of 25 memory configurations are possible to operate in reliability, energy

or performance wise modes. The characteristics of the proposed memory

architecture are given in the following tables: Table 6-3 and Table 6-4.

Table 6-3. 16bit addressing modes in RA

Memory modes are subdivided into two major categories, depending on the

number of bits read/written at once: 32 bits and 16 bits. At the moment there

are 10 different usable memory configurations in 32-bit mode (defined in Table

6-4.) and 15 different configurations in 16 bit mode memories (defined in Table

6-3).

In addition, two modes of operation, depending on the existing amount of

redundancy can be selected: (1) Linear mode: where no module is replicated and

(2) Redundant mode: with at least one module being replicated. In order to

explain the available memory modes, let's consider the letters in the set {A, B, C,

D, x} as a representation of information stored in the 16-bit memory modules,

where:

x A lowercase letter x represents a module that is not in use.

x Identical letters represent identical information in different modules, i.e.

information stored in a module is n times replicated into n modules: e.g.

AA, AAA, BB and AAAA. In this case n-1 modules are connected in shadow

224

mode and perform all memory operations concurrently to their respective

master memory module. A hardware voter in the memory controller

compares the output of the memory modules and, in case of mismatch,

triggers an interruption that sets the corresponding fault in the syndrome.

x The pairs AB, BA and CD represent two 16-bit modules combined into a

virtual 32-bit module.

6.4.3.1. 32 bit mode

The memory modules in ERA are 16-bit wide. Therefore, two memory chips are

combined to allow 32-bit memory access.

Table 6-4. 32 bit addressing modes in RA

Table 6-4 reflects all the supported memory combinations in 32-bit mode. There

is only one possible configuration in 32-bit Linear Mode (state 10 in Table 6-4.).

Module 1 & 2 are combined and mapped in the memory space. Module 3 & 4 are

combined as well and mapped contiguously in the memory. This configuration

provides maximum space for the application but does not feature fault tolerance,

and not even fault detection at the memory level.

225

In terms of fault tolerance, the maximum redundancy based on 32-bit addressing

is the ABAB configuration (Table 6-4.). The information in the two modules AB is

replicated on an extra pair AB. In every reading operation the data from both

memory pairs is compared. If there is a mismatch, a checkpoint area in RAM will

be the decisive factor in selecting which modules has a fault.

Note that 32-bit modes that involve 3 working modules such as ABAx, ABxB,

AxAB or xBAB are not initial modes (starting in this mode does not offer any

advantage). Those four modes would typically involve that an error has occurred

in one of the modules and diagnostics is taking place.

6.4.3.2. 16-bit mode

With the main purpose of critical energy saving a 16 bit addressing mode was

introduced. This mode is using a single bank of memory. Hence, there is not

duplication of memory. The four different memory configurations, currently

allowed in this mode are presented in Table 6-3.

When only one single mode is available due to permanent faults in the other

three, the system could be restarted in a fresh 16-bit mode loading the different

SSW binary codes from a ROM location into RAM. Note that this mode is an

emergency mode and does not contemplate the possibility of hot switching from

a 32-bit mode. Schemes to change from 32-bit to 16 bit/power saving mode and

vice versa are defined by the runtime system. This saving energy mode can be

enough to execute a program with performance degradation.

6.5. Graceful Degradation

If one of the memory modules fails, the system can be reconfigured to exclude

such module from the current configuration. The ten admissible states in 32-bit

mode are given in (Table 6-4.). In terms of fault tolerance, the maximum

redundancy based on 32 bit addressing is the ABAB configuration. The transition

between these states is completely dependent on soft/hard errors and the

226

efficiency of recovery mechanisms. However, a voluntary transition between

different states is also allowed.

Figure 6-10. 32 bit degradation phases

Figure 6-11. 16 bit degradation phases

In case of degradation, successful recovery mechanisms could produce a

transition from a degraded phase to an initial phase. The group of states or

phases can be distinguished:

227

x Phase 1: States with full checking and replication of every single bit. The

single state in this phase is the initial state and has maximum redundancy

for 32-bit: ABAB configuration (see Table 6-4.).

x Phase 2: States in which at least 50% of the bits are replicated. Transition

to one of the four different states available in this phase is due to a fault in

one of the memory modules of State 1.

x Phase 3: States in which replication of bits does not exist. Six possible

states in this phase could potentially lead to a failure.

In a normal scenario with one processing element, if during the operation phase

three, a working module experiences another error, reboot of the system is the

only way forward. In a multi-processing element scenario and depending on the

resources available, reliability needed and current environment, SSW will have

to decide whether to:

x cold-switch the same element and restart using the 16-bit mode

x keep using the healthy active area but make use of the neighbour memory

elements or,

x cold-switch the execution to another element

6.5.1. Graceful Degradation – Markov analysis

Regarding computational capability and availability of resources, a system can be

modelled as being in one of many possible states. The number of states would be

large, if fine distinctions are made, or it may be relatively small if similar states

are grouped together. Different events can force the system moves from one

state to another depending on resource availability and computational changes.

By quantifying the probability of state transitions, State-space modelling can

determine the probability of the system being in each specific state; this can be

used to obtain some parameters of resilience (reliability, safety, maintainability,

safety, etc.).

228

The sum of all input and output transition probabilities of each state should be 1.

The state of the system is characterized by the vector (𝑆଴, 𝑆ଵ, 𝑆ଶ, 𝑆ଷ, … , 𝑆௡) . A

transition probability matrix has N states. On the t’th time-step the system is in

exactly one of the available states qt:

𝑞௧ ∈ {𝑆ଵ, 𝑆ଶ, 𝑆ଷ, … , 𝑆௡}

There are discrete time-steps, t=0, t=1, ... We are interested on how the system

will behave after several time steps. Initial condition of the system: S0. Given 𝑞௧ ,

𝑞௧ାଵis conditionally independent of {𝑞௧ିଵ, 𝑞௧ିଶ,… , 𝑞ଵ, 𝑞଴}, that is:

𝑃൫𝑞௧ାଵ = 𝑠௝|𝑞௧ = 𝑠௜൯ = 𝑃൫𝑞௧ାଵ = 𝑠௝|𝑞௧ = 𝑠௜, 𝑎𝑛𝑦 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 ℎ𝑖𝑠𝑡𝑜𝑟𝑦൯

The current state 𝑞௧ determines the probability distribution for the next state

𝑞௧ାଵ. In order to model of the system we do the following assumptions:

 a) System starts in the perfect state

 b) Only one fault can occur at a time

 c) System does not contain repair – permanent faults

In order to simplify we make a first-order Markov assumption: we say that the

probability of an observation at time n only depends on the observation at time n

only depends on the observation at time n-1. In a sequence {𝑞ଵ, 𝑞ଶ, … , 𝑞௡}

𝑃(𝑞௡|𝑞௧ିଵ, 𝑞௧ିଶ, … , 𝑞ଵ, 𝑞଴) ≈ 𝑃(𝑞௧|𝑞௧ିଵ)

Using the previous assumption, the joint probability can be expressed as:

𝑃(𝑞ଵ, 𝑞ଶ, … , 𝑞௡) =ෑ 𝑃(𝑞௜|𝑞௜ିଵ)
௡

௜ୀଵ

Figure 6-12 presents Markov model of reliability for reconfigurable memory

described above:

229

Figure 6-12. Markov model for the ERRIC memory system

The figure shows the transition probability in the case of a four-module memory

scheme with a TMR plus a spare configuration.. The circles in the figure

represent one of the 15 possible states. The arrows reflect transitions from a

source to a destination state.

Figure 6-13. Reduced Markov model for the ERRIC memory system

By merging states in the Markov model a simpler equivalent model is created.

Figure 6-13 represents such simplification illustrating the probabilities of

transition between the original TMR plus spare, a TMR, a DMR, a SMR and a FAIL

states.

230

6.6. Implementation constraints

As explained before in 6.2.1 taking into account the 16-bit instruction size and

32-bit word size of memory organization, at the time of compilation the compiler

schedules memory loads on the first 16-bit instruction of a 32-bit two-

instruction	
 “packet”.	
 	
 This	
 way,	
 memory	
 loads	
 and	
 instruction	
 fetches	
 never	

occur at the same time. When the memory configuration is set as 16-bit words

each read or write precede instruction execution. In the case of a 32-bit memory

configuration two instructions might be loaded from memory by one access.

6.6.1. Memory Addressing

Different	
 models	
 could	
 have	
 been	
 followed	
 to	
 implement	
 the	
 ERA’s	
 memory

addressing scheme. We consider physical addressing and relative addressing.

Figure 6-14.Theoretical memory configuration for reconfigurability

Following the first case, as shown in Figure 6-14, the lowest 4 bits of a 32-bit

memory address would represent which modules are used to represent the

lower and the higher 16 bits. The encoding would be as follows: Bits 2 and 3

correspond to M1 and represent the lower 16 bits whereas bits 0 and 1

correspond to M2 and represent the higher 16 bits.

However, by using this scheme, having the configuration of the modules

physically mapped in program code would make reconfiguration difficult to

implement. If the binary code reflects which bank the program should run on,

then, in case of a fault that requires code to be transferred to another bank (bank

switching), a translation would be needed.

231

Re-compiling of the program is highly unlikely due to the real time constraints of

program execution. This also affects recovery time and, in fact, it excludes the

chances of recovery in real time.

Besides, if the contents of the memory banks are physically different this will

affect the hardware checkers complexity; the checker function would need to

compare equal values in case of data comparison and different values in case of

address comparison. Thus, separation of concerns principle and a virtual

memory approach are preferred.

Figure 6-15. MMU and syndrome as memory controllers

By removing M1 and M2 (Figure 6-14), the memory addresses used in a program

code refer to a relative position, for instance, within a pair of modules AB. A

reconfigurable memory controller (see Figure 6-15) links the relative address to

the physical address within a specific memory bank. Such controller is used in a

similar fashion to the translation of virtual addresses into physical addresses.

232

6.6.2. Interfacing Zone: The syndrome as memory addressing

controller

As previously seen in Table 6-1 the T-logic ERA element performs configuration

and reconfiguration of hardware by providing interconnection and dynamically

excluding faulty components from the operational system.

The T-logic interconnector provides flexibility of application of memory

elements (32- and 16- bit configurations) and at the same time helps in fault

containment. This logic is used to form a hardware configuration scheme

adjustable to the program requirements or when a hardware element itself (or

architecture) detects hardware faults and thus can’t	
 be	
 involved	
 in	
 further	

calculations.

Note	
 that	
 “isolation”	
 might be temporary or permanent, subject to the element’s

“health”.	
 	
 The	
 final	
 decision	
 about	
 permanent	
 isolation	
 of	
 an	
 element	
 will	
 take

place when testing and recovery procedures are complete.

The four T-logic interconnectors, one for each memory bank, are physically

included in the T-logic Management Unit or TLMU. TLMU (see MMU in Figure

6-15) manages the connectivity of the memory, configures and reconfigures the

working mode to a 16-bit single memory, 32-bit double memory with

master/slave configuration or any of the 14 memory addressing schemes

available (Table 6-3 and Table 6-4.). Using the T-logic scheme memory elements

could be isolated, switched off for power reduction or doubled in capacity when

the maximum storage volume is required, addressing PRE-wise computing.

The Configuration and Power management flags of the syndrome describe the

different states of the memory modules. Different values in the configuration

area of the syndrome select the bank used and the mode. The output memory

lines of the processor determine a location within a memory bank, whereas the

Configuration and Power areas of the syndrome specify which banks are to be

used and in which mode.

233

One example of a possible memory configuration (State 1 Table 6-4.) arranged

by	
 “T”-logic is presented in Figure 6-15. The example reflects a 32-bit (Bit mode =

1) ABAB configuration with 2x2 modules duplicated (Redundant = 1) working in

pairs.

By using this method we can increase the independence of software/hardware

configurations for the PRE- purposes. Memory addresses within the code do not

need to be arranged, as code integrity is a crucial requirement for safety critical

systems.

Let’s	
 define	
 the	
 following	
 scenario	
 where	
 it	
 is	
 required	
 to	
 switch	
 data	
 and	
 code	

from modules 1 and 2 to module 3 and 4. Let’s	
 assume	
 that	
 the work mode is

ABxx 32-bit, which is fast but not very reliable. Assuming that the user (or an

online fault detector manager using a fault model) requires a higher level of

reliability, transfer from the current ABxx mode to an ABAB mode is required. An

implementation of this example is based on the following algorithm (omitting the

testing procedures):

 i = 0;

REPEAT

 i++;

 Starting at memory location [0] load the n following words into RF (32x32)

 Change the value of the syndrome to the memory mode XXAB

Copy the n previously stored words from the RF starting at [0] + i*32*32

 i++

 Change the value of the syndrome to the memory mode ABXX

UNTIL EOM (End of Memory)

Change the value of the syndrome to the memory mode ABAB

6.6.3. Access to the syndrome

The design of the TLMU should allow the possibility of neighbour elements

accessing the memory elements. Synchronization is therefore required to avoid

several elements accessing a specific memory at the same time. Since the

syndrome should also be accessible by other elements it may be a good idea that

234

the syndrome is located in this interfacing area. Having access to the syndrome

via TLMU would save logic since only one synchronization element (TLMU) will

be used.

6.7. System software support

GAFT might be efficiently implemented by hardware and system software

working in a holistic way. In order for a system to be FT it needs to satisfactorily

complete three tasks: detection, determination and recovery. Due to the fact that

these tasks can be easily decoupled, we will treat them independently. The

occurrence of a fault is, in general, a rare event and therefore the error detection,

determination and recovery mechanisms are executed with much less frequency

than the checking mechanisms.

We present below how with the support of both hardware-checking elements

and system software it is possible to mitigate the accumulation of hardware

faults that could lead to catastrophic errors. In the case of radiation-induced

faults, this combination can remove the effect of one or several SEU before a SEFI

takes place. In turn, the SSW needs to be able to support the previously discussed

syndrome.

6.7.1. Hardware checking process via SW

Consider a sequence of tests and programs T and P within a system as in Figure

6-16.

Figure 6-16. Ensuring HW integrity through program test execution

235

The initial test T is executed before any given task execution guaranteeing HW

consistency, i.e. it guarantees that there is no fault at time t0 in the system.

However, a permanent fault (e.g. a Hard SEL) that occurs immediately after the

first test or during the program execution might be invisible for an arbitrary long

time (latent period). Therefore, a second sequential test is required right after

the program execution to guarantee that no permanent fault occurred since the

last test.

Figure 6-17. Regular sequence of program execution with test of
HW integrity to detect permanent faults

For periodic tasks, which are often used in control systems, we slightly adapt this

scheme as shown in Figure 6-17. Nevertheless, what if a transient fault occurs

during the execution of P? As mentioned in 3.5.2.1.1, at least three cases may

take place:

x The effect of the fault lasts until P finishes, T detects the error and the

recovery mechanisms are able to restore normal functioning on time

(detected recoverable error or DRE)

x The effect of the fault lasts until P finishes, T detects de error but the

recovery on time is not possible (detected unrecoverable error or DUE)

x The effect of the fault might not last until P finishes and therefore T would

not be able to detect the fault, which in turn would allow the fault to remain

undetected, perhaps causing data corruption (silent data corruption or

SDC). The corruption could go unnoticed (benign error) or could result in a

visible error.

236

Figure 6-18. Ensuring HW integrity through program test execution

to detect transient faults

Transient faults can be detected using time redundancy, re-executing the same

program P with comparison C of the result and the result state space. Figure 6-18

illustrates this scenario.

Note that for periodic tasks, the persistent state of the program, i.e. the program

state which is used in the next computation as input data must also be compared,

as transient faults might affect data that is no longer used in the current

computation but that will be used in the next.

Permanent faults however cannot be detected with the comparison scheme

alone, as they might affect both executions of P. That is, the scenario in Figure

6-17 can only detect permanent faults whereas the scenario in Figure 6-18 can

only detect transient faults.

Figure 6-19. Ensuring HW integrity through program test execution
to detect both transient and permanent faults

The combined power, in the form of information and time redundancy,

illustrated in Figure 6-19 allows the detection of both transient and permanent

faults. In this scenario, C is used to detect transient faults and T to detect

permanent faults. Assuming that C triggers an error but T does not, it is clear that

237

a transient fault occurred. Another run of program P with comparison to the

previous two runs can identify the run where the transient fault occurred.

In the following analysis, we concentrate on the detection of merely permanent

faults, using only T in the analysis. The detection of transient faults can be

considered as included in the following analysis if the double execution of P with

following C as a whole is treated as task P.

A testing phase is required initially at boot up time to guarantee the correctness

of the hardware and also a periodic test before and after the execution of a

program. The coverage of the applied tests might vary in the number and type of

faults that can be detected and also the set of tested hardware.

Every hardware component has typically at least one assigned test but might

also have more than one that could differ on the implementation level. Software

based tests need a processor and memory for the test execution even if a

peripheral device is tested.

In order to guarantee that faults in other hardware components that are not

subject of the test itself do not have an influence on the outcome of the test, the

order of the tests must follow the principle of growing core: if a test of a hardware

component ui has implicit dependencies on another hardware component uj, the

test of uj must be executed first.

If the resources needed by a task are known in advance, the testing procedures

of the accessed hardware resources only (selective testing), by using the

principle of growing core, would be enough. This way, the system stays fully

operational even in the case of present faults in some hardware components that

are not in use. Spare components can be used for the relocation of programs that

were running on faulty hardware components.

Yet, it may be useful to periodically test the full hardware as otherwise, faulty

spare components can be considered as fully operational and might be used

238

again in a subsequent reconfiguration process. A full hardware test also allows

the system software to monitor the current full state of the hardware and take

appropriate actions when needed.

Timely task completion in real time systems is a key requirement. Consequently,

the testing overheads should be reduced as much as possible when/where

necessary.

Figure 6-20. Tasks & tests combined

Figure 6-20 exemplifies a scenario of three tasks with their corresponding tests.

Analysis of the checking process assumption in this case is based on a scheduler,

which distributes time slices to the running processes. In this example, the

processes run to completion and are called periodically by the scheduler. Three

tasks are running, each with its own test (green boxes) at the end of the task

execution. The test only checks the resources that the respective process needs,

which results in different test execution times. The task execution is only

considered as successful if the test at the end of the task is successful. If the test

failed, the task is re-executed by using the same input data set as in the first try.

If no spare components are available in the system, all programs depending on

this component must be obviously terminated. If no essential program is affected

by this component, the system can continue operating in a degraded mode.

For diagnostic and monitoring purposes the test results should be available to

the SSW in that unit or to external systems. Therefore, we propose to organise

the test results of hardware in test syndromes.

239

6.7.2. Software support for reconfiguration

For every hardware component, e.g. register file, ALU, internal bus or device

controller, the checking procedures present their result in the form of a

syndrome to the software indicating, in binary form, the state of the device. By

grouping all syndromes together in one register, the software has a very effective

way to check the integrity of the system. In case of a non-zero syndrome further

analysis of the hardware conditions are required, especially when the duration of

the malfunction is long.

Depending on the checking scheme used, it is not only possible to signal a fault to

the runtime, but also to provide him with extra information to ease recovery. For

instance,	
 let’s	
 define	
 a	
 scenario	
 where	
 the testing schemes discover stuck bits in

memory due to a Hard SEL. It would be sufficient to recover programs that

access the affected location and not all programs that are using the affected

memory module.

Device drivers could for example provide their own testing schemes for their

respective device. Especially for devices, one could think of having a combination

of hardware and software based testing. I/O devices such as UARTs could

effectively be tested by cross connecting the input and output wires using very

simple additional hardware logic and sending various bit patterns over this

loopback connection.

In case of a detected hardware fault, the syndrome raises a hardware interrupt

and SSW takes control of the reconfiguration process. The whole procedure is

almost identical in the case of software-based schemes detecting the fault, with

the difference that the interrupt that is raised is not hardware but software

based. In the case of memory errors, if the current memory configuration does

not use a redundant mode, software based checking is the only possible

approach.

240

The general procedure of software support during reconfiguration is listed as

follows:

x The hardware checking scheme triggers the syndrome interrupt

x In order to distinguish the fault type, the syndrome interrupt handler then

either initiates a HW Built-In Self-Test (BIST) procedure of the device or

runs a SSW based self-test. In the case of SSW tests, writing different

memory patterns to the faulty memory address can be used to derive the

fault type. The syndrome bit indicating the fault has to be cleared after

recovery. If after the test and recovery, the syndrome still shows the fault,

the memory module is considered faulty. The affected memory address is

still present in one of the processor registers and based on the IRQ return

address, the correct register number can be derived by decoding the

memory instruction that triggered the fault. In general, all software based

testing procedures that test memory must not use the stack (no procedure

calls, no data pushed on the stack) until the proper functioning of the used

stack locations is ensured.

x In case of a transient fault, the event is logged and the program execution

resumed. Logging the events is important as an accumulation of

malfunctions in a module or a specified memory location could hint a

potential permanent failure in the near future.

x In case of a permanent fault, the current memory configuration is extracted

from the syndrome, and the next degradation state is calculated according

to the application needs and predefined degradation tables.

x The new calculated memory configuration is written to the syndrome

registers and the power of the faulty unit is removed. In some configuration

transitions, the SSW has to adapt to the new situation and recover after

excluding the faulty unit but before including the new one.

x SSW clears the fault in the syndrome and resumes processing by returning

from the interrupt.

241

Some of the presented transitions in 6.5 need software intervention to fully

recover from a permanent fault and to establish a new working software state.

We show here a few situations where SW support is needed:

x Adding/Replacing a module of an already populated bank: if a memory

module of a redundant memory mode (DMR or TMR) that is suspected of

presenting faults is replaced by another module, memory content must be

replicated to the new module before it is included in the configuration. A

small routine following the algorithm described in 6.6.2 is sufficient to

perform the copy without modifying the memory during the operation.

Before performing that routine, SSW configures the syndrome to include a

spare memory bank. After the copy operation, the spare module can be

included in the working set. These actions must be performed for example

when the system switches from Phase 2 to Phase 1 in Figure 6-10.

x Failed module in the runtime system area: The area of memory that contains

by convention all runtime system data structures is critical for system

operation. When the recovery procedures are unable to overcome the

situation, if the module has a replicated pair in redundant mode the

affected module is replaced by its replicated version via syndrome.

However, if the module is not replicated, resetting the system either via a

hardware watchdog or a software initiated power cycle is the option as a

last resort. The BIST mechanism automatically identifies the failed module

and configures another still working module to bank 1. The runtime system

can then restart all critical applications.

x Fault in a memory module that is not replicated: this case is the most

difficult to handle as the software must adapt to the smaller available

memory space.

Instead of graceful degradation, software can also decide to "upgrade" the

system in terms of redundancy, i.e. going from a mode with less redundancy to a

mode with higher redundancy. The inclusion of a spare module corresponds to

the first point in the list above; if an already used module is moved to another

242

bank, software has to release all data structures residing on that module in case

it is in non redundant use and repopulate it with data according to Point 1.

Intentional change of the operating mode to a less redundant mode is of course

also possible, and needs no special software measures. As soon as the module is

reconfigured to a free bank, the runtime system can start using it.

6.7.3. Hardware condition monitor by system software

A hardware monitor, which is part of the runtime system, is responsible for

keeping track of the hardware state. For every hardware component that is

managed by the syndrome, the hardware monitor tracks the state in more detail

than the syndrome alone can provide. It is also responsible for the execution of

all software checking schemes and performs the actual hardware

reconfiguration. Thus the hardware monitor must be accessible by the syndrome

interrupt handler as well as the runtime system. This monitor should however

not directly be accessible by applications; only drivers, which are part of the

runtime system, can register checking procedures for their respective hardware

component.

When the system is turned on, the BIST procedures embedded in the system are

executed. These run tests, using the principle of growing core, ensure the

integrity of all devices. If a failure is detected, the syndrome sets the appropriate

fault bits. The BIST is also responsible of initiating the system to a predefined

working state, i.e. the most reliable mode with all working available resources.

When the BIST finishes and gives control to the runtime system, the hardware

monitor first mirrors the current state in software and then reconfigures the

system according to the needs of the program. As the syndrome might trigger an

interrupt right after boot up, the syndrome interrupt handler has to ensure that

the stack pointer is valid and if not initialise it.

243

Figure 6-21. Hardware state diagram

Every hardware component managed by the syndrome is in exactly one state of

Figure 6-21. This state diagram shows also all possible transitions between

states, allowing the hardware monitor to reconfigure the system in a consistent

manner. In fact, all of the previously presented cases in the degradation

scenarios where software intervention is required are clearly identifiable in

Figure 6-21. Intervention is only required if the state transition goes from Stand-

by to one of the active cases (marked in blue).

After boot up, all devices are either in state OFF or in one of the blue operation

modes. As the BIST automatically configures the memory configuration with the

highest reliability possible, the initial states of all devices must be acquired by

reading the syndrome. Here is a short list of all possible states and a short

description:

x OFF: the device is currently not in use, powered or isolated for fault

containment

244

x Stand-by: the device is powered on but not in use. In case of

reconfiguration, all transitions go through this state.

x Active: the device is in use in a non-redundant mode. In case of permanent

fault, the runtime system would switch execution to a bank in non-

redundant mode.

x Duplicated: the device uses a DMR configuration.

x Triplicated: the device uses a TMR configuration.

x Suspected: As soon as a fault in the hardware is detected, the state of the

affected hardware component is set to suspected and the testing

procedures are initiated to diagnose the fault. If a device is often in this

state, this could be a hint that the device might fail in the near future. For

reliability purposes it might be sensible to replace the component with a

spare one.

x Faulty: depending on the analysis outcome from the diagnosis

mechanisms, the state is then set either to Faulty if a permanent fault was

diagnosed or back to the previous state if it was only a transient fault.

The state transition diagram of Figure 6-21 is not directly applicable to all

devices. A memory bank, for example should during the transition not go

through stand by to make sure that the stored data in the attached memory

modules are not lost.

Despite the state, periodical hardware checks should be performed on every

single hardware component. Even Stand-by states must also be tested. This

ensures that hidden faults are detected preventing a possible spread. Thus any

state can transition to a suspected one.

It is even possible to restore faulty components to a working condition, as for

instance environmental changes could allow a component to function correctly

again.

245

6.8. Programming Language for the Prototype

In 5.5.2 we introduced the three main processes of GAFT: P1 testing and

checking, P2 recovery preparation, and P3 recovery that were explained further

in 6.7. These concepts have been synthesized into programing language

extensions and runtime support. The language extensions use Oberon-07 as a

basis, which has been developed during the ONBASS project (ONBASS

Consortium, 2004) and used in the implementation of the Minos OS (Kaegi-

Trachsel and Gutknecht, 2008).

The simplicity, strong type safety, and built-in safe features of the Oberon

language makes it especially suitable for safety critical systems. In order to

support all GAFT steps, the language has been modernised with new naming

conventions and enumerations and new features have been added to the

extensions including: reconfiguration at the runtime system level, memory

partitioning, activities and message passing, and object orientation, etc. As in all

languages of the Oberon family all these features need runtime support.

Language and runtime system are hence closely connected.

6.9. Conclusions

A resilient architecture was proposed including the hardware and the system

software elements that can provide efficient performance, reliability and energy-

smartness.

The principles of designed followed and the structural properties of active,

passive and interfacing zones are introduced. Active zone of hardware was also

described with emphasis on recoverability after malfunctions and

implementation of checking schemes. A processor with a reduced instruction set

and a careful introduction of redundancy including checking-schemes and re-

execution at the instruction level can provide higher and efficient reliability.

246

Reconfigurability of a real-time architecture at the system level was proposed

and analysed in the context of each zone. With regards to the interfacing zone, a

new element (T-logic), as a basic unit of reconfiguration, and its different

configurations were proposed. We analysed and described how the flexibility of

the T-elements has a positive effect in reliability and power-smart functioning of

the system.

System-level reconfigurability can be achieved using a new hardware element

called Syndrome that can provide essential knowledge about hardware

conditions. We showed the relation of this element with the active, passive and

interfacing zones and how it can be used to implement GAFT. Functions of the

Syndrome for reliability, performance and energy-smart functioning were

described and explained.

Taking into account that memory use has, by design, a high impact on system

reliability and power consumption, passive zone reconfigurability was analysed

and described in detail, including the control of configuration and the phases of

hardware degradation.

A Markov model of reliability for passive zone was developed and analysis

indicates the reliability gain of the different schemes permitted by the proposed

reconfigurable architecture.

System software support of testing and reconfiguration (dealing with system

syndrome) was fully described. Shown that in combination of novel hardware

architecture and system software all key properties of performance, reliability

and energy-wise functioning can be improved.

247

Chapter 7

248

Chapter 7

Implementation: Hardware
Prototype, Simulation and Testing

There	
 is	
 always	
 a	
 gap	
 between	
 “what	
 we	
 design	
 and	
 analyse”	
 and	
 “what	
 we	
 can	

implement”.	
 While analysis of the technological domain and trends as well as a

new theory of resilient systems were organised in the previous six chapters, as a

next step, there	
 is	
 a	
 need	
 to	
 demonstrate	
 “proof	
 of	
 the	
 concept”	
 and	
 do-ability of

the proposed ideas on the existing hardware prototype. Thus implementation

efforts can be summarised as two-fold:

x Development and debugging of existing manufactured ERA prototype;

x Design and development of a software simulator for the developed ERA

hardware

The hardware prototype must work properly, being able to execute the basic

functions that will be further incremented, so that the system is prepared for

industrial use. In applications, ERA will work as stand alone system using

interface with PC or Mac to upload and run programs in a form of bit stream as

we use FPGA Altera for this. System software and programs for ERA also have to

be developed and therefore there is a need for a software simulator for the ERA

architecture.

249

As long as ERA is designed for embedded and safety critical applications we need

to have a simulator as close as possible to the architecture and ERRIC’s	
 binary

code. Therefore, all our efforts in this chapter are organised around the

simulation of the instruction set and the hardware element.

7.1. Instruction Execution

Figure 7-1 shows the execution flow of the proposed microprocessor. As we

mentioned in 6.2.1, the execution steps are similar to other RISC processors and

since there is no pipelining all steps of one single instruction are executed within

one memory cycle.

Figure 7-1. Simple version	
 of	
 the	
 Prototype’s	
 Instruction	
 Execution	

flow

The fetching step loads an instruction from main memory storing it into the

Instruction Register (IR). Since every instruction is 16-bit wide this step is

required every second instruction. Decoding and Execution of the Instruction

follows. After execution of the first instruction, the second instruction from the

250

Instruction Register (IR) can be executed without access to memory. This eases

the speed gap between processor and memory and reduces their dependency.

Finally, storage of the result takes place if the instruction execution has affected

the content of registers, processor flags or any other processor state.

The processor has two internal fetching states (F1 and F2) that are required by

the memory controller. Again, simplicity is not only applied to the processor but

also to the memory controller. Both are designed to avoid possible stalling due to

pending memory operations. This can be achieved by interleaving instruction

fetches and memory operations.

Figure 7-2. Instruction Execution Flow (Extended version)

251

The fetching step always loads two 16-bit instructions from memory into the

internal IR. In sequential instruction execution, the compiler can schedule

memory instructions in every second instruction slot where no instruction has to

be loaded by the processor. An example of this notion is illustrated Figure 7-2,

which is an extended version of the instruction execution flow in Figure 7-1. In

the F1 state, the processor fetches an instruction from memory; therefore since

the memory unit is busy during this cycle, it cannot execute at the same time an

instruction that involves memory. Only when the processor is in the fetching

state F2, the processor is able to execute a memory instruction. It is the

compiler’s	
 responsibility to schedule the instruction in the proper order. We

choose to simplify the hardware design at the expense of adding complexity to

the compiler. By doing so, we reduce the amount of redundancy and therefore

increase system reliability. If the instruction executed is a branch instruction the

processor is switched automatically to the F1 state. The reason for that is that

the memory controller can only load 32-bit aligned addresses and therefore, the

jump destination locations must also be 32-bit aligned. All this factors force the

compiler to fill the memory gaps with NOP instructions.

252

7.2. Instruction Set

As mentioned in 6.2.1, in the ultra reduced instruction set employed, each one of

the 16 instructions is encoded into 16 bits and only two of them are memory

instructions (load/store)

The instructions are designed as two register instructions. They expect exactly

two arbitrary registers as input, and save the result of the operation in the first

register, thus overwriting one of the input values. The compiler has to keep in

mind that the content of the first register is overwritten. Again we increase the

simplicity	
 of	
 design	
 at	
 the	
 expense	
 of	
 compiler’s	
 complexity.	
 The impact of the

size of the register file on overall performance of processor is a question of

further research.

Figure 7-3. Instruction Format

Figure 7-3 illustrates the instruction format divided in four different areas. Bits

15 and 14 (in red) indicate the format of the operation, which could be 8-, 16- or

32-bit. Bits 13 to 10 (in grey) contain one of the 16 different operation codes.

Bits 9 to 5 (in blue) and 4 to 0 (in green) contain the first and second operand,

which could be any of the 32 general-purpose registers in the RF.

The following Table 7-1 lists the current ISA with a short description of every

instruction together with their assembler representation:

253

Table 7-1. Explanation of instructions of current ISA

Name Format
Code

Op.
Code Op1 Op2 Op2

NOP 01 0000 Ignored Ignored Execute no action except increasing the PC

STOP 00 0000 0 0 Stop instruction Execution

TRACE 00 0000 Ri>0 Rj> Output Ri to debugger. Operand1 or Operand2 must be
> 0

RETI 11 0000 Return from interrupt (Address in R31)

LD 11 0001 Ri Rj Load 32-bit memory at address Ri into Register Rj(Rj :=
∗Ri)

LDA 00 0010 Ignored Rj Load the value from the next 32 bit word (rel. to PC)
and store it in Rj(Rj := constant). Operand 1 is ignored

ST 11 0011 Ri Rj Store content of register Ri to the memory at address
Rj(∗Rj	
 :=	
 Ri)

MOV XX 0100 Ri Rj Move content of register Ri to reg- ister Rj(Rj := Ri)

ADD XX 0101 Ri Rj Arithmetically add the content of Ri to the content of Rj
and store the result in Rj (Rj := Rj + Ri)

SUB XX 0110 Ri Rj Arithmetically subtract the content of Ri to the content
of Rj and store the result in Rj (Rj := Rj - Ri)

ASR XX 0111 Ri Rj Shift the content of register Ri arithmetically one bit to
the right and store the result in Rj

ASL XX 1000 Ri Rj Shift the content of register Ri arithmetically one bit to
the left and store the result in Rj

OR XX 1001 Ri Rj Perform a bitwise logical OR of register Ri with register
Rj and store the result in Rj

AND XX 1010 Ri Rj Perform a bitwise logical AND of register Ri with
register Rj and store the result in Rj

XOR XX 1011 Ri Rj Perform a bitwise logical XOR of register Ri with
register Rj and store the result in Rj

LSL XX 1100 Ri Rj Shift the content of register Ri logically one bit to the
right and store the result in Rj

LSR XX 1101 Ri Rj Shift the content of register Ri logically one bit to the
left and store the result in Rj

CND XX 1110 Ri Rj Arithmetic comparison of Ri with Rj and store the
result in Rj

CBR XX 1111 Ri Rj Jump to address in Rj if Ri is non zero and save PC in Ri

The current architecture comprises 7 control, 5 logic and 4 arithmetic

instructions. Whilst most entries in Table 7-1 are self-explanatory some of them

need further explanation. A special case of code operation is Opcode 0 which in

combination with the format represents four different instructions: STOP, NOP,

TRACE and RETI. TRACE is used for debug purposes and RETI is used to exit an

interrupt handler.

254

The compiler needs to be aware that constants cannot be directly encoded in the

instructions. LDA is another special instruction that loads a constant to the

specified register. The next aligned 32 bits aligned after the active program

counter store the constant to be loaded. Placing two instructions into one 32-bit

word increase code density and performance. As explained earlier, the processor

executes the first instruction on the left before executing the second one on the

right. Since the program counter has the same value for both instructions it

would be problematic to jump directly to a second instruction, which is not 32-

bit aligned and has no unique address. Therefore, it is responsibility of the

compiler to insert NOPs at the right places to prevent cases where instruction

reordering fails to fill the gap. .

Table 7-2. CND operation flags

Relation Bit Mask

< 010

≤ 110

= 100

>= 101

> 001

≠ 011

The CND instruction performs an arithmetic comparison of the Registers Ri and

Rj storing the result in Rj. The functioning is similar to other platforms: the

comparison involves checking of three conditions saving these as flags in the first

three bits of Rj:

x Bit 0: R1 > R2

x Bit 1: R1 < R2

x Bit 2: R1 = R2

255

Table 7-2 shows the relations of the comparison operations and their

corresponding bitmasks. By applying an appropriate mask to the flags, the result

for every possible comparison operation can be used as an argument in a

conditional jump or saved as a Boolean value.

At the moment there is no support for unsigned operations. All arithmetic

operations treat the values in the operands as signed values. All instructions

accept the same register for both arguments with the exception of conditional

jump instruction.

More detailed information on the CPU logical structure and the Instruction Set

Architecture can be found in Appendix B.

256

7.3. ERA hardware prototype

Figure 7-4 presents the current custom hardware prototype of the ERA device.

The prototype is provided with two flash based ROM modules 128Mb each (8Mb

x 16bit) with replicated bootstrapping firmware and operating system software.

Figure 7-4. ERA prototype board

The proposed memory scheme may be regarded as a collection of 4 blocks of

RAM, 16-bit wide, with identical size of 1Mb each (16x64k). Using 16-bit

memory modules instead of 32-bit memory modules increases reliability and

reduces when necessary energy required for execution.

Reliability is increased by means of added working states and configurations.

Energy-wise operation is improving by means of this architecture ability to

257

activate only modules required - by means of using a single 16-bit memory

module, when necessary.

Table 7-3 presents a basic memory map with memory locations occupied by the

ERA devices: ROM (2 banks) RAM (4 banks), USB, Ethernet, and UART interface.

The 4 RAM modules are 1 Megabit each (64k x 16bit). The flash based ROM

modules are 128Mbit each (8Mb x 16bit).

Table 7-3. Device’s	
 memory	
 map

Memory Range Device Details Device

0700FFFFH
-

07000000H
ISSI-IS61WV6416BLL SRAM logic module 2 (U7, U8)

0600FFFFH
-

06000000H
ISSI-IS61WV6416BLL SRAM logic module 1 (U5, U6)

057FFFFFH
-

05000000H
Sharp-LH28F128BFHT ROM logic module 1 (U9, U10)

04000000H FTDI-FT245BM USB

0300FFFFH
-

03000000H
SMSC-LAN91c11i Ethernet

02000002H
-

02000000H
RS232 UART Interface

01000000H Normal LEDs (1-2)

00000000H KNITTER Switch (3-4)

The SRAM modules representing the units 8,7,5 and 6 are located in the highest

part of the memory, followed by the ROM modules (units 9 and 10). The USB,

Ethernet,	
 Serial	
 Ports,	
 LED’s	
 and	
 switches	
 of	
 the	
 ERA	
 board	
 are	
 mapped	
 in	
 the	

lower part of memory.

7.3.1. Architectural Comparison

Nowadays the embedded processor market is dominated by the ARM

architectures with their RISC processors. Other relevant hardware architectures

are the LEON designs that include FT versions of their SPARC processor.

258

Although 64-bit versions are available for the x86 and ARM architectures, in

order to keep consistency, we have chosen to make a comparison of 32-bit

version	
 processors	
 including	
 Intel	
 x86’s	
 architectures.	

Table 7-4. Comparison of Hardware architectures

 ERRIC x86 SPARC v8 ARM7TDMI
(ARMv5-TE)

ARM7TDMI
Thumb

ISA type MISC CISC RISC RISC RISC

Integer Registers 32x32 bits 8x32 bits 31x32 bits 15x32 bits 8x32 bits + SR,
LR

Floating Point
Registers 0

Optional 8x32
bits or 8x64bit

(8x80 bits
internal)

32x32 bits or
16x64 bits or

8x128 bits

Optional 32x32
bits or 16x64 bits

Optional 32x32
bits or 16x64 bits

Vector Registers 0 Optional 8x64
bits or 8x128 bits 0 Optional 32x32

bits or 16x64 bits 0

Address Space 32 bits flat 32 bits, flat or
segmented 32 bits flat 32 bits flat 32 bits flat

Instruction Size (bytes) 2 1 – 15 4 4 2
Multi-Processor

capable No Yes Yes Yes No

Processor Modes 1 3 2 7 7

Data Aligned Yes No Yes Yes Yes

MMU Yes Yes Optional Optional Optional

Memory Addressing
Modes

1 7 2 6 6

Memory Addressing
Sizes

32-bit 8,16,32 8,16,32, 64 8,16,32 8,16,32

ISA size 16
332: 138 Integer

& Logic, 92
Floating Point

72 53 37

I/O
Memory
mapped

Instructions,
Memory mapped Memory mapped Memory mapped Memory mapped

Pipeline Length No Pipeline
Atom: 16

i7: 14
Pentium4: 20-31

Leon3: 7
SPARC64V:15

Ultra-SPARC T2: 8
3 3

Specialities
Very simple
ISA, built-in

FT

Big ISA and
memory
operands

Register Window,
Delayed Control

Transfer

Conditional
Instruction
Execution

32-bit ARM
instructions

partly required.

Table 7-4 provides an overview of these hardware architectures and their

diverse features. The table is based on data gathered from (Gaisler, 2002; Heise,

2009; Hennessy and Patterson, 2006; Seal, 2000; SPARC International, Inc.,

1992).

259

SPARC and ARM processors are based on a simple Reduced Instruction Set

Architecture and therefore more similar to the ERRIC processor, whilst the x86 is

based on a Complex Instruction Set with a much larger number of instructions.

The	
 table	
 clearly	
 shows	
 the	
 simplicity	
 of	
 ERRIC’s	
 ISA	
 with	
 its	
 16	
 instructions,	

which is by large margin smaller than the RISC and CISC architectures. Simple

and less powerful instructions come with the cost of longer code compared to

the other platforms.

The x86 is a register-memory architecture that allows using memory locations

directly in instructions. Conversely, ERRIC, ARM and SPARC as load and store

architectures must first load the argument into a register. The enormous number

of instructions of x86 has lead to the situation where the instruction decoder of

an	
 Intel	
 Atom	
 CPU	
 occupies	
 more	
 chip’s	
 real	
 state	
 than	
 the	
 complete	
 ARM	

Cortex-A5 (Heise, 2009).

As	
 an	
 example	
 let’s	
 examine	
 the	
 load	
 from	
 memory.	
 	
 Prior	
 to	
 the	
 memory	
 access,	

e.g. in the case array accesses, the absolute memory address must be explicitly

calculated and stored in a register. In the SPARC architecture the offset to the

base address can first be stored in a distinct register and then added on the fly in

the load instruction itself. ARM processors even permit to encode an offset to a

base address given in a register directly in the instruction itself.

The instruction set of ARM Thumb is a subset of the standard 32-bit ARM ISA.

The	
 Thumb’s	
 version	
 targets	
 resource constraint environments where only a 16-

bit data bus is available. The address space of	
 the	
 Thumb’s	
 is still 32-bit and all

registers are 32-bit wide. Nonetheless, while R0	
 −	
 R7	
 are	
 directly	
 accessible,	
 R8	
 −	

R16 are hidden. ERRIC’s	
 ISA, although even more constraint than the Thumb’s, is

intended to be used as a full instruction set, generic enough to encode all

language features. Compared to ARM’s, the ERRIC is much simpler and counts

with less than half the number of instructions. However, with ERRIC more

elaborate instructions need to be emulated, e.g. relative memory accesses or

procedure calls. The latter in particular is very efficiently implemented on the

ARM	
 by	
 the	
 ”load	
 multiple”	
 and	
 ”store	
 multiple”	
 instructions, which allows to

260

efficiently putting all procedure arguments on the stack. In contrast, ERRIC has

to individually store all arguments on the stack.

Table 7-5. Supported Adressing Modes

Data addressing mode ERRIC x86 SPARC
v8 ARM ERM

Thumb
Register X X (X) X X
Register + offset (displacement or based) - X X X X
Register + register (indexed) - X X X X
Register + scaled register (scaled) - X - X -
Register + offset and update register - - - X -
Register + register and update register - - - X -

Table 7-5 illustrates the different data addressing modes supported by the

compared architectures. In some cases, such as SPARC, the architecture does not

directly provide an absolute addressing mode. In order to emulate absolute

addressing, the SPARC microprocessor uses a register + register mode with a

nullified second register. It even provides a register, which is always nullified, so

that the absolute addressing emulation does not incur any performance penalty.

𝑜𝑓𝑓𝑠𝑒𝑡 =

⎩
⎪
⎨

⎪
⎧
𝐶𝑆:
𝐷𝑆:
𝑆𝑆:
𝐸𝑆:
𝐹𝑆:
𝐺𝑆:⎭

⎪
⎬

⎪
⎫

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐴𝑋
𝐸𝐵𝑋
𝐸𝐶𝑋
𝐸𝐷𝑋
𝐸𝑆𝑃
𝐸𝐵𝑃
𝐸𝑆𝐼
𝐸𝐷𝐼 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡

⎝

⎜
⎜
⎜
⎛

𝐸𝐴𝑋
𝐸𝐵𝑋
𝐸𝐶𝑋
𝐸𝐷𝑋
𝐸𝐵𝑃
𝐸𝑆𝐼
𝐸𝐷𝐼⎠

⎟
⎟
⎟
⎞
∗ ൮

1
2
4
8

൲

⎦
⎥
⎥
⎥
⎥
⎥
⎤

+ ൦

𝑁𝑜𝑛𝑒
8 − 𝑏𝑖𝑡
16 − 𝑏𝑖𝑡
32 − 𝑏𝑖𝑡

൪

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟: 𝐵𝑎𝑠𝑒 + (𝐼𝑛𝑑𝑒𝑥 ∗ 𝑆𝑐𝑎𝑙𝑒) + 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

Figure 7-5. Addressing modes of the x86 architecture

CISC addressing modes are more powerful than RISC ones. Figure 7-5

summarizes the x86 addressing modes. The offset part of a memory address, can

be either a static displacement or through an address computation made up of

one or more elements. The resulting offset is called effective address and can

constitute either positive or negative values except for the scaling factor.

261

ERRIC provides only absolute memory addressing. Since the addresses must be

explicitly computed before the data can be loaded,	
 ERRIC’s	
 code	
 requires	
 more	

instructions.

Table 7-6. Offset Sizes Encoded in instructions

Offset size encoded in
instructions (in bits) ERRIC x86 SPARC v8 ARM ERM

Thumb
Unconditional jump

call
0 8-32 signed, relative or

absolute, direct or indirect 30 24 11

Conditional branch 0 8-32 signed 19 24 8

Table 7-6 compares the offsets sizes that are directly encoded in the instruction.

Unless mentioned differently, the offset is always relative to the current

instruction pointer. ERRIC does not allow encoding the offset in an instruction.

Instead, the offset is always given as an absolute address in a register. Therefore,

ERRIC’s	
 requires	
 an	
 additional	
 ”load	
 constant”	
 instruction,	
 which	
 involves	

another extra 8 bytes (Load + NOP + 4 Byte constant). With regards to safety of

code, absolute jumps are desirable to relative jumps. The reason for that is that

calculated jumps (relative) are more prone to faults than absolute jumps.

In the following page Table 7-7 presents an overview of the instructions that are

required in the compared architectures to be able perform basic operations

(such as load, stores, etc.). If an instruction is not available in the ISA, a sequence

of instructions is given. In Table 7-7, a ”-” sign means that in order to simulate

the specific functionality more than a short instruction sequence is required.

All floating-point instructions are omitted, as the ERRIC architecture does not

include a floating-point unit and all of them are emulated in software.

262

Table 7-7. Comparison of Selected Instuctions

Instructions ERRIC x86 SPARC v8 ARM7TDMI
(ARMv5-TE)

ARM7TDMI
Thumb

Load word LD MOV LD LDR LDR
Load byte signed - MOVSX LDSB LDRSB LDRSB

Load byte unsigned
LD,

LDA,
AND-24

MOV LDUB LDRB LDRB

Store word ST MOV ST STR STR
Store byte - 25 MOV STB STRB STRB

ADD ADD ADD ADD ADD ADD

ADD (trap if overflow) - ADD,
INTO

ADDcc,
 TVS

ADDS,
SWIVS

ADD,
BVC+4,

SWI
Sub SUB SUB SUB SUB SUB

Sub (trap if overflow) - SUB,
INTO

SUBcc,
TVS

SUBS,
SWIBS

SUB,
BVC+4,

 SWI

Multiply - MUL,
IMUL MULX MUL MUL

Divide - DIV,
IDIV DIVX - -

AND AND AND AND AND AND
OR OR OR OR ORR ORR

XOR XOR XOR XOR EOR EOR
NOT - NOT - - -

Shift local left LSL 26 SHL SLL LSL LSL
Shift local right LSR 26 SHR SRL LSR LSR

Shift arithmetic right ASR26 SAR SRA - -
Compare CND CMP SUBcc r0 CMP CMP

Conditional Branch CBR CALL CALL BL BL
Call CBR CALL CALL BL BL

Trap CBR INT n TIcc,
SIR SWI SWI

Return from Interrupt RETI IRET
DONE,
RETRY,

RETURN
MOVS pc, r14 -27

NOP NOP NOP SETHI r0, 0 MOV r0, r0 MOV r0, r0

24 A sequence LD, LDA, AND must be used if the 8-bit data is aligned. Otherwise an LD and a
specific number of shift operations must be used

25 In order to store an 8-bit value the destination address must be loaded, the appropriate bits
must be cleared using a bit mask, the argument must be shifted and the written back to memory.
It seems clear that omitting the use of 8-bit values would be more efficient

26 Only one bit

27 Since Interrupts are always handled in 32-Bit mode and therefore a pure 16-bit Thumb CPU
would not support them

263

7.4. ERA testing and debugging

In order to test the ERRIC processor we must first ensure that the FPGA board

and the rest of the elements are working properly. Therefore, testing of the ERA

prototype board has been performed via two separate processes: first the testing

of the board physical elements and second the functional testing of the soft core.

7.4.1. Testing of the board

First, we test the separate elements of the board using a test case for each

element. The test cases employed are written using VHDL and are included in

Appendix A. The VHDL code is then compiled, using the Quartus II software

provided by Altera, to produce a bit stream. The function of the single element of

the board is tested by first loading the bit stream file and then by checking the

required function. `

As an example, lets examine one of the scenarios corresponding to the tests of

the basic functions of read and write of Units 5 and 7 (see U5 and U7 in Table

7-3) SRAM memory modules IS64WV6416BL. It also tests the link between the

Unit 1 components (FPGA) and the static memory. What follows is the

consequent VHDL code:

264

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY eurrica IS PORT (

SW3 : IN STD_LOGIC;
SW4 : IN STD_LOGIC;
 Data_0 : INOUT STD_LOGIC;
 Data_1 : INOUT STD_LOGIC;
 Data_2 : INOUT STD_LOGIC;
 Data_3 : INOUT STD_LOGIC;
 Data_4 : INOUT STD_LOGIC;
 Data_5 : INOUT STD_LOGIC;
 Data_6 : INOUT STD_LOGIC;
 Data_7 : INOUT STD_LOGIC;
 Data_8 : INOUT STD_LOGIC;
 Data_9 : INOUT STD_LOGIC;
 Data_10 : INOUT STD_LOGIC;
 Data_11 : INOUT STD_LOGIC;
 Data_12 : INOUT STD_LOGIC;
 Data_13 : INOUT STD_LOGIC;
 Data_14 : INOUT STD_LOGIC;
 Data_15 : INOUT STD_LOGIC;

 SRAM1_L_CE : OUT STD_LOGIC;
 SRAM1_L_WE : OUT STD_LOGIC;
 SRAM1_L_OE : OUT STD_LOGIC;

 SRAM2_L_CE : OUT STD_LOGIC;
 SRAM2_L_WE : OUT STD_LOGIC;
 SRAM2_L_OE : OUT STD_LOGIC;

 A0: OUT STD_LOGIC;
 A1: OUT STD_LOGIC;
 A2: OUT STD_LOGIC;
 A3: OUT STD_LOGIC;
 A4: OUT STD_LOGIC;
 A5: OUT STD_LOGIC;
 A6: OUT STD_LOGIC;
 A7: OUT STD_LOGIC;
 A8: OUT STD_LOGIC;
 A9: OUT STD_LOGIC;
 A10: OUT STD_LOGIC;
 A11: OUT STD_LOGIC;
 A12: OUT STD_LOGIC;
 A13: OUT STD_LOGIC;
 A14: OUT STD_LOGIC;
 A15: OUT STD_LOGIC;

 D0: OUT STD_LOGIC;
D1 : OUT STD_LOGIC);
END eurrica;

ARCHITECTURE behavior of eurrica IS

BEGIN

 D0 <= not SW3;
 D1 <= SW4;

 A0 <= '1';
 A1 <= '0';
 A2 <= '1';
 A3 <= '0';
 A4 <= '1';

265

 A5 <= '1';
 A6 <= '0';
 A7 <= '0';
 A8 <= '1';
 A9 <= '0';
 A10 <= '0';
 A11 <= '1';
 A12 <= '0';
 A13 <= '1';
 A14 <= '1';
 A15 <= '0';

sm: PROCESS(SW3)

 BEGIN

if (SW3= '1') then
-- write
 SRAM1_L_CE <= '0';
 SRAM1_L_WE <= '0';
 SRAM1_L_OE <= '0';

 SRAM2_L_CE <= '0';
 SRAM2_L_WE <= '0';
 SRAM2_L_OE <= '0';
 Data_0 <= SW4;
 Data_1 <= SW4;
 Data_2 <= SW4;
 Data_3 <= SW4;
 Data_4 <= SW4;
 Data_5 <= SW4;
 Data_6 <= SW4;
 Data_7 <= SW4;
 Data_8 <= SW4;
 Data_9 <= SW4;
 Data_10 <= SW4;
 Data_11 <= SW4;
 Data_12 <= SW4;
 Data_13 <= SW4;
 Data_14 <= SW4;
 Data_15 <= SW4;
else
-- read
 SRAM1_L_CE <= '0';
 SRAM1_L_WE <= '1';
 SRAM1_L_OE <= '0';

 SRAM2_L_CE <= '0';
 SRAM2_L_WE <= '1';
 SRAM2_L_OE <= '0';
end if;

END PROCESS;
END Behavior;

266

Table 7-8. Test results of reading and writing functions of U5 and
U7 SRAM memory modules and their interconnecting elements

 Net EP2C20Q240C8 Tests

U5/U7

DATA_0 155 0 0 0 +4v
DATA_1 156 0 0 0 +4v
DATA_2 157 0 0 0 +4v
DATA_3 159 0 0 0 +4v
DATA_4 161 0 0 0 +4v
DATA_5 162 0 0 0 +4v
DATA_6 164 0 0 0 +4v
DATA_7 165 0 0 0 +4v
DATA_8 166 0 0 0 +4v
DATA_9 167 0 0 0 +4v

DATA_10 168 0 0 0 +4v
DATA_11 170 0 0 0 +4v
DATA_12 171 0 0 0 +4v
DATA_13 173 0 0 0 +4v
DATA_14 174 0 0 0 +4v
DATA_15 175 0 0 0 +4v

U5/U7

ADDR_0 8 +4v +4v +4v +4v
ADDR_1 9 0 0 0 0
ADDR_2 11 +4v +4v +4v +4v
ADDR_3 13 0 0 0 0
ADDR_4 14 +4v +4v +4v +4v
ADDR_5 15 +4v +4v +4v +4v
ADDR_6 16 0 0 0 0
ADDR_7 18 0 0 0 0
ADDR_8 20 +4v +4v +4v +4v
ADDR_9 21 0 0 0 0

ADDR_10 37 0 0 0 0
ADDR_11 38 +4v +4v +4v +4v
ADDR_12 39 0 0 0 0
ADDR_13 41 +4v +4v +4v +4v
ADDR_14 42 +4v +4v +4v +4v
ADDR_15 44 0 0 0 0

U5
SRAM1_L_CE 233 0 0 0 0
SRAM1_L_WE 232 +4v +4v 0 0
SRAM1_L_OE 231 0 0 0 0

U7
SRAM2_L_CE 230 0 0 0 0
SRAM2_L_WE 228 +4v +4v 0 0
SRAM2_L_OE 226 0 0 0 0

 LED1 125 off off on on
 LED2 178 on off on off
 Switch_3 7 0(off) 0(off) 1(on) 1(on)
 Switch_4 119 0(off) 1(on) 0(off) 1(on)

Results (PASS) 9 9 9 9

267

The link configuration is shown on the second column of Table 7-8. The SW3 is to

control write data and read data into memory. SW4 specifies the data to test.

When	
 SW3	
 is	
 off	
 (‘0’),	
 it	
 performs	
 reading	
 operation.	
 When	
 it	
 is	
 on	
 (‘1’),	
 it	
 is	
 to	

perform writing operation. The address of the SRAM for testing is specified by

(A0-A15). The LED1 and LED2 indicate the correct operation of SW3, and SW4.

The data input and output from the SRAM (U5, and U7) is check by Voltage

meter.	
 Voltage	
 “0”	
 means	
 represents ‘0’ logic state,	
 and	
 Voltage	
 “+4”	
 represents a

‘1’ logic state. Initially,	
 all	
 the	
 memory	
 is	
 set	
 to	
 ‘0’. The testing is to change the

settings of SW3, and SW4 and check against the input and output voltages from

the data line of U5, and U7. If they are matching, then the test is passed, and the

links are correct and the memory modules are performed required functions.

The	
 first	
 column	
 on	
 Tests	
 is	
 checking	
 memory	
 reading	
 with	
 initial	
 value	
 of	
 ‘0’.	
 	

The	
 Voltage	
 on	
 the	
 data	
 line	
 shows	
 the	
 correct	
 results	
 ‘0’.	
 Then	
 the	
 second	

column	
 is	
 to	
 change	
 the	
 input	
 value	
 to	
 ‘1’	
 (SW4=1), because the write control is

not	
 changed,	
 so	
 the	
 result	
 should	
 still	
 be	
 ‘0’.	
 	
 The	
 output	
 is	
 correct	
 and	
 the	
 data	

still	
 keep	
 on	
 ‘0’.	
 	
 	
 The	
 third	
 column	
 is	
 to	
 write	
 ‘0’	
 into	
 the	
 memory	
 (SW3	
 is	
 setting	

to write and SW4 is setting to 0) and the result shown on data lines are correct,

and	
 fourth	
 column	
 is	
 to	
 write	
 ‘1’	
 (SW3	
 is	
 setting	
 to	
 write	
 and	
 SW4	
 is	
 setting	
 to	

‘1’)	
 into	
 the	
 memory	
 modules.	
 The	
 output	
 should	
 be	
 “+4V”	
 on	
 data	
 line.	
 	
 The	

measures by voltage meter show the correct results.

Once every element of the board has been tested we assume that the board

elements are working correctly.

7.4.2. Functional testing of the ERRIC processor

The next step is to confirm that ERRIC processor is working correctly. Similarly

to the testing of the board, the testing of the processor is based in several test

cases. Again, since the ERRIC processor can only process binary data the test

cases consists of bit stream files. However, instead of VHDL, the functional test

cases are obtained by using an assembler on an ERRIC’s specific pseudo code. A

detailed explanation of such assembler is provided in the following section 7.5.

268

There are several unit test cases for the 16 different instructions of the ERRIC

processor. The resulting bit stream file from the assembling process is loaded

into the FPGA through the JTAG interface. Then the codes are executed. The

input is the number controlled by push bottom of the Altera board and the

calculation results is shown out on 7 segment indicators.

What follow is an example of a test case for a specific SUB instruction:

-- testing for SUB
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00011000011000110000010000100011; --4 SUB R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is a loop to continue loading input data, do

the SUB calculation, and output results. First, the input port memory address is

loaded into R1, output port memory address is loaded into R2. Then load the

269

input data, do the SUB operation on the loaded data, and then output the results.

After the operation, it jumps back to the next loop ready to the next tests.

The following picture (Figure 7-6) is shows both the simulation results and the

physical testing results. It performs a 3-3 operation, the subtract function gives

the results 0. The results in simulation and indication on testing board (7

Segment digital) are matched to prove that the tests are passed. The number

shows in the square on the following pictures are matched the 7 segments of

testing Altera board in all the following tests.

270

Figure 7-6. Simulation Results of Unit Test of the SUB instruction using Quartus II Simulator

271

7.5. ERA’s	
 assembler

The system software for ERA assembler-level programming consists of the

following components:

x An Assembler that performs the compilation of source programs written

in ERA assembler into executable or object code.

� Program name: Assembler.exe

� Call form: assembler [options] source.era

� Result: source.obj or source.code

x A Linker that takes several files with object code as input and produces the

single result object or executable file depending on the existence of

external references in the result.

� Program name: Linker.exe

� Call form: linker [options] [entry_point] source1.obj…sourceN.obj

� Result: source1.code

x A Runner that takes an ERA executable file as input, loads it into the

memory (using the interface of the Model component) and executes it in

the simulation mode.

� Program name: Runner.exe

� Call form: runner [options] source.code

� Result: an output on the console or printing device

x A Preparator, an extra component which supports transition from the

model to the real ERA board. The Preparator takes the ERA executable file

as input and produces the pure binary file which is completely ready to

load to the real memory.

� Program name: Preparator.exe

� Call form: preparator source.code

� Result: source.bin

272

The overall configuration of the assembler (except the Preparator) is shown on

the picture below.

Figure 7-7. Flow of ERRIC testing (top) and flow of ERRIC testing

with the help of a disassembler

As an example, below is the source code of a program implementing the simple

in-place sorting algorithm. The program is written in the ERA assembler. The

assembler’s	
 syntax	
 for	
 every	
 ERA	
 instruction	
 was	
 described	
 in 7.2. The sorting

algorithm itself is specified in a Pascal-like language like as follows:

procedure Sort (a : array of int; size : int)
begin
 for i := 1 to size
 for j := i to 0 by -1
 if a[j-1] < a[j]
 then
 w := a[j-1];
 a[j-1] := a[j];
 a[j] := w;
 end
 end
 end
end Sort;

273

Additional remarks concerning ERA assembler syntax:

x For debugging purposes two pseudo-instructions have been added to the

ERA assembler: DATA and TRACE. DATA instruction just denotes literal

data which will go directly to the object code. TRACE instruction causes

registers specified in the instructions to be output to the console or to a

printing device.

x Labels are specified as identifiers enclosed in angle brackets. The value of a

label is the address of the instruction or data immediately following the

label.

x Comments have the form // sequence of any characters until end of line

The ERA program implementing the sorting algorithm looks like as follows:

// i: R1; j: R2; intermediate values: R3, R4, R5

 R1 := 1; // i := 1
<LoopOuter>
 R3 := Size;
 R3 := *R3; // R3: Size
 R4 := 1;
 R3 -= R4;
 R3 ?= R1; // Compare Size-1 and i
 R4 &= R3; // Extract > sign using R4=1 as mask for >
 R3 := OutOuter;
 if R4 goto R3; // if i>Size goto OutOuter

 // Organize inner loop
 R2 := R1; NOP; // j := i
<LoopInner>
 R3 := 0; // w := 0
 R3 ?= R2; // Compare j with 0
 R4 := 4; // Mask for equality
 R3 &= R4; // Extract equality sign
 R4 := OutInner;
 if R3 goto R4; // if j=0 exit the inner loop

 // Otherwise, compare two array elements
 // to decide if we need to exchange them.
 // R10: address of j-th element
 // R11: a[j]
 // R12: a[j-1]
 R10 := Array;
 R10 += R2; // array base address+j
 R11 := *R10; // R11 := a[j]
 R12 := R10;
 R13 := 1;
 R12 -= R13; // a+j-1
 R12 := *R12; // R12 := a[j-1]

 R3 := R12; // w := a[j-1]

274

 R3 ?= R11; // Compare a[j-1] and a[j]
 R4 := 5; // Mask for >=
 R4 &= R3; // Extract > and = signs
 R3 := OutExchange;
 if R4 goto R3; // if a[j-1] >= a[j] do not perform exchange

 // Otherwise, perform exchange
 R3 := R10;
 R4 := 1;
 R3 -= R4; // R5: address of (j-1)th element
 *R3 := R11; // a[j-1] := a[j]
 *R10:= R12; // a[j] := a[j-1]
<OutExchange>
 // Decreasing j (inner loop)
 R3 := 1;
 R2 -= R3; // j := j-1
 R4 := LoopInner;
 if R3 goto R4; // goto LoopInner
<OutInner>
 // Increasing i (outer loop)
 R3 := 1;
 R1 += R3; // i := i+1
 R4 := LoopOuter;
 if R3 goto R4; // goto LoopOuter
 NOP;

<OutOuter>
 R15 := Size;
 R15 := *R15;
 R16 := Array;
 TRACE R15,R16;
 STOP; NOP;
<Size>
 DATA 20
<Array>
 DATA 537
 DATA 242
 DATA 114
 DATA 436
 DATA 337
 DATA 296
 DATA 285
 DATA 655
 DATA 639
 DATA 436
 DATA 912
 DATA 520
 DATA 624
 DATA 551
 DATA 600
 DATA 741
 DATA 612
 DATA 943
 DATA 871
 DATA 735

275

Here is the screen snapshot demonstrating the compilation and execution

process for the sorting example shown above.

C:\Z\ERA Demo>assembler sort.era
ERA Assembler, Version 1.0.0.0 of 26 March 2014, 13:57:19
ERA Model, Version 1.0.0.0
Copyright (c) London Metropolitan University, 2013
source file 'sort.era'is being assembled
assembling is successfully completed

C:\Z\ERA Demo>runner sort.code
ERA Model, Version 1.0.0.0 of 26 March 2013, 14:10:37
Copyright (c) London Metropolitan University, 2013
code file 'sort.code'is being executed
537 242 114 436 337 296 285 655 639 436 912 520 624 551 600 741 612 943
871 735
114 242 285 296 337 436 436 520 537 551 600 612 624 639 655 735 741 871
912 943
execution is successfully completed

C:\Z\ERA Demo>

Another example of a simpler program is illustrated in Table 7-9. The table

shows the location of data variables and code within the memory structure

together with an explanation of the specific line of code and their effect. The R31

register, set by the program loader, always keeps the base address of the global

data and the program code. The register uses negative offsets for the data and

non-negative offsets for the code and local data. More examples on how the

assembler transforms source code into machine code can be found in Appendix

C.

276

Table 7-9. Example of code trnsformed into assembly code by the assembler
Example 1.
Global data and code
Source code Memory structure Code Assembler.

Code
Comments

 char ch;
 short int i;
 int j;

 Programming convention 1:

R31register always keeps the base address
of the global data (with negative offsets)
and the program code (with non-negative
offsets).

Initially R31 is set by the progam loader.

 ch := ‘0’;

 LDA R1 NOP
R1 := ‘0’; Get the value of ‘0’ into R1

‘0’
LDA R2 ADD R31,R2 R2:=-6;

R2+=R31; Get the address of ch into R2 (as R31+offset) -3

ST R1,R2 *R2:=R1; Store the value from R1 to ch (pointed to by R2)

 i := 10;

 LDA R1 NOP
R1:=10; Get the value of 10 into R1

10
LDA R2 ADD R31,R2 R2:=-4;

R2+=R31; Get the address of i to into R2 (as R31+offset) -2
ST R1,R2 *R2:=R1; Store the value from R1 to i (pointed to by R2)

 j := i;

 LDA R1 ADD R31,R1
R1:=-2; Get the offset of j into R1; get the address of j

into R1 (as R31+offset) -1
LDA R2 ADD R31,R2 R2:=-4;

R2+=R31;
Get the offset of i into R1; get the address of I
into R2 (as R31+offset) -2

LD R2,R2 ST R2,R1 R2:=*R2;
*R1:=R2;

Get the value pointed to by R2 (i.e., i) to R2.
Store the value from R2 to j (pointed to by R1)

R31

Memory

i

j

. . .

. . .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

R31

Memory

i

j

. . .

. . .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

277

7.6. ERA’s simulator: Dissimera

Reading binary code is a painful experience. In order to test and troubleshoot

any error of design, bug or incompatibility between the assembler and the VHDL

code, a new tool has been develop: a Disassembler and a Simulator in a combined

tool that will ease this process. In addition it will allow the simulation of the state

of the processor at any given time. Dissimera’s	
 main	
 goal	
 is	
 to	
 simulate	
 the	
 basic	

core features of ERA in a reliable and accurate manner.

The fundamental characteristics of this tool are:

x Disassembling of instructions: Binary-to-ASM and Binary-to-PSEUDOCODE

that will complement the assembler.

x Ability to discern data from instructions

x Simulation of the ERA architecture including: Program Counter (PC),

Instruction Registry (IR), Register FILE (RF) and memory contents.

x Step-by-Step Execution.

x Breakpoints.

x Overflow warning

x Logging.

x Ability to compare results of simulation execution with the results of Altera

execution.

7.6.1. Architecture

The main two functions of Dissimera, Disassembling and Simulation, are

embedded into a single software product. The architecture of such software is

based on three main modules: the Interface module, the parsing module and the

simulation module. The programming language used to implement those is ANSI

C and currently targets 80x86 machines.

278

Figure 7-8. Design of the Interface of the current version of the
simulator

The Dissimera disassembler reads the output of the assembler introduced in 7.5.

Dissimera uses such output, in binary code, as an input, to start the simulation

process.

The Interface module (IM) is based on an NCurses API with MIT license to

implement the interface under a Windows Console. The IM is built independently

from	
 the	
 Dissimera’s	
 engine	
 (composed	
 by	
 the	
 parsing	
 and	
 simulation	
 modules)	

with the intention of improving scalability. It is integrated in a way that

escalating to a newer interface or migration to a different operating system will

not be problematic.

Figure 7-8 illustrates	
 the	
 different	
 elements	
 of	
 the	
 current	
 design	
 of	
 Dissimera’s	

interface.	
 The	
 current	
 version	
 is	
 based	
 on	
 a	
 single	
 ERRIC’s	
 processor	
 with	
 a 32-

279

bit mode. The Paddr1 and MAIN1 elements contain the addresses and binary

contents of the 32-bit memory unit that contains the running code. Paddr2 and

MEM also contain a copy of the addresses and binary content but allow the user

to browse the memory contents during and after execution and check the

program results. IDHEX shows the Instructions in assembler or the data in

hexadecimal numbering. ADDRF and RF contain the name and value of the 32

registers that compose the register file. PC is the program counter or instruction

pointer. The Instruction Register or IR stores the 32-bit value with the decoded

instructions that are about to be executed. The status of execution and a log with

extra details is shown in the STATUS element. An example of log execution can

be seen in 7.6.2.

The parser module (PM) involves three different processes. The first process is

the lexical analysis by which the input binary code is fragmented into meaningful

symbols (tokens) in the context	
 of	
 ERA’s	
 pseudo-code language. The next process

is the syntactic analysis of these tokens that define allowable expressions

according to the rules of a formal grammar, based on the ISA format introduced

in 7.2. . Finally, a semantic analysis works out the implications of the validated

tokens and takes appropriate action.

These three processes need extra attention. How can we determine the type of a

specific value? i.e. How can Dissimera be certain that a 16-bit binary value is

either code or data?

Figure 7-9. Memory allocation of a program in ERA

R31

Memory

i

j

. . .

. . .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

R31

Memory

i

j

. . .

. . .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

280

Figure 7-9 depicts what we already mentioned, the program loader sets R31 with

the base address of the global data (negative offsets) and program code (positive

offsets). However, in the case of local data, by just examining a single binary

value it is not possible to determine its type. E.g.: According to ERA’s ISA rules, a

1100010011100001 value can be interpreted:

x as a C4E1h data value, or

x as an LD R7 R1 instruction that loads the 32-bit value of the memory

address contained in R7 into the register R1 (i.e.: R1:=*R7).

The type of a value is determined by its context. Dissimera uses the execution

context to determine that, by performing two top-down runs before the

assembly code is presented on the screen. During the first run the code is

fragmented and the starting point of execution is determined. The

determination of type takes place in the second run. Dissimera proceeds to

silently execute instruction-by-instruction, marking the values as code tokens

and decoding them consecutively performing the appropriate jump

instructions and following the Program Counter. Once all the code lines are

executed the rest of the tokens are marked as local data tokens. This second

run also includes error detection mechanisms for bad syntax and buffer

overflow. Note that both runs are transparent in terms of user interface. Once

the parsing module has finished these processes, the UI contains now the

results of disassembling and the simulation process can start.

The simulation module (SM) is in charge of program execution. This stage

benefits from the two previous runs using the output of the parsing stage as an

input. Hence, the SM is able to differentiate from code tokens and local and global

data tokens.

281

Below, Figure 7-10 presents a screenshot of the current version of Dissimera and

the IM, PM and SM modules.

Figure 7-10. Screenshot of the current version of Dissimera

Initially, the execution starts at the address set by program counter (loaded with

the content of R31). The PC holds the memory address of the next instruction to

be executed and is incremented just after fetching the 32 bits from memory

containing two instructions. After the processors fetches the memory location

stored in the PC, the instruction is loaded in the Instruction Register (IR). The

instructions are fetched sequentially from memory unless a CBR instruction

changes the sequence placing a new value in it. Dissimera offers several run

modes:

x Normal Mode: It is the standard mode. The simulator continuously executes

instructions of a program until a STOP instruction is found.

x Debugging Mode: which includes the ability to place breakpoints within the

code and the ability to perform step-by-step execution. In addition, this

mode allows for step-back execution. Simulation can return to a previous

state. All this features benefit the debugging of the system.

282

Dissimera can be used as a tool for analysis and debugging of ERA programs, and

more importantly, as a tool for testing and debugging of the hardware

architecture. Figure 7-11 depicts two different testing methodologies for ERRIC.

Initially, several test programs are developed using the pseudo-code language

introduced in 7.5. The assembler is then used to obtain the tests programs in

binary code compatible with ERRIC.

Figure 7-11. Flow of ERRIC testing (top) and flow of ERRIC testing
with the help of a disassembler

These tests programs are	
 introduced	
 into	
 ERRIC’s	
 soft-core processor through

the	
 JTAG	
 Interface	
 of	
 ERA’s	
 board.	
 The	
 tests	
 programs	
 are	
 executed	
 with	
 the	

Quartus II Software and upon execution a memory dump with the results of

execution is produced.

After the Soft Processor simulation, the same initial tests programs generated by

the assembler are introduced into Dissimera together with the memory dump of

execution results produced by Quartus II. Here, the PM of Dissimera performs

the disassembling of the binary code. After full execution of the ERA program by

the SM, using	
 the	
 Dissimera’s	
 IM,	
 the memory dump of the MEM element can be

compared and analysed with the previous results of Quartus II. In case of

283

mismatch, debugging via step-by-step execution of both simulators can help in

the detection and location of design and implementation errors.

In the following page, Figure 7-12 Figure 7-13 show the caller graph of

Dissimera’s	
 main	
 function.	
 A	
 full	
 documentation	
 on	
 the	
 current	
 version	
 of	
 this	

software, including the implementation details of the IM, PM and SM, libraries

used and dependency graphs, together with the source code are included in

Appendix D.

284

Figure 7-12. Caller	
 Graph	
 of	
 Dissimera’s	
 main	
 function	
 	
 1/2

285

Figure 7-13. Caller	
 Graph	
 of	
 Dissimera’s	
 main	
 function	
 	
 2/3

286

7.6.2. Disassembler Log Sample

A Dissimera log is divided in four-line units. What follows is an example of a Log

File related to the execution of the disassembler. Each unit represents

information on 32-bit. The first line of each unit shows the instruction memory

address and the hexadecimal value of each 16-bit half. The second line contains

the binary values of each half. The third line and fourth lines include information

on the assembly instructions of the first and second half respectively, and their

pseudo-code meaning.

fname = test.txt

Number of Bytes = 80 bytes

Number of 32-bit instruction-data = 20

 1 C800 C000
 11 0010 00000 00000 11 0000 00000 00000
 LDA R0 R0 meaning R0:=CONSTANT meaning R0:=1 meaning R0:=1

 3 C801 C000
 11 0010 00000 00001 11 0000 00000 00000
 LDA R0 R1 meaning R1:=CONSTANT meaning R1:=10 meaning R1:=10

 5 C807 C000
 11 0010 00000 00111 11 0000 00000 00000
 LDA R0 R7 meaning R7:=CONSTANT meaning R7:=111 meaning R7:=111

 7 C807 C4E0
 11 0010 00000 00111 11 0001 00111 00000
 LDA R0 R7 meaning R7:=CONSTANT meaning R7:=111 meaning R7:=111

 9 C4E1 C802
 11 0001 00111 00001 11 0010 00000 00010
 LD R7 R1 meaning R1:=*R7 meaning R1:=-939014944
 LDA R0 R2 meaning R2:=CONSTANT meaning R2:=10 meaning R2:=10

 11 C803 C000
 11 0010 00000 00011 11 0000 00000 00000
 LDA R0 R3 meaning R3:=CONSTANT meaning R3:=11 meaning R3:=11

 13 C804 C000
 11 0010 00000 00100 11 0000 00000 00000
 LDA R0 R4 meaning R4:=CONSTANT meaning R4:=100 meaning R4:=100

 15 C805 C000
 11 0010 00000 00101 11 0000 00000 00000
 LDA R0 R5 meaning R5:=CONSTANT meaning R5:=101 meaning R5:=101

 17 C806 DC41
 11 0010 00000 00110 11 0111 00010 00001

287

 LDA R0 R6 meaning R6:=CONSTANT meaning R6:=110 meaning R6:=110

 19 CC07 CC22
 11 0011 00000 00111 11 0011 00001 00010
 ST R0 R7 meaning *R7:=R0 meaning MEM[111]=1 meaning MEM[111]=1
 ST R1 R2 meaning *R2:=R meaning MEM[10]=-939014944 meaning MEM[10]=-939014944

 20 D0A4 0000
 11 0100 00101 00100 00 0000 00000 00000
 MOV R5 R4 meaning R4:=R5 meaning R4:=101
 NOP-STOP R0 R0 meaning STOP instruction

7.7. Conclusion

In the development of reliable architectures there is a need for providing

accurate testing and debugging of hardware and software. In this chapter we

first show the implementation details of hardware architecture that are relevant

for simulation.

We	
 show	
 ERRIC’s	
 instruction	
 execution	
 flow	
 and	
 explained	
 how	
 it	
 can	
 achieve	

the decoding and execution of two instructions per single fetch and its

implications on system compilers.

We also provide an overview of the hardware prototype and its memory

mapping together with an architectural comparison to other relevant RISC and

CISC architectures. We introduced Minimal Instruction Set Architecture that

simplifies the instruction decoder design and the overall	
 system’s	
 reliability.	

ERA’s	
 ISA	
 has	
 16	
 instructions,	
 does	
 not	
 have	
 a	
 pipeline	
 and	
 provides	
 only	

absolute memory addressing. We argue how far from being a drawback, this

simplicity is sufficient to perform safety-critical code improving efficiency

reliability.

We provide the details of a testing and debugging methodology of a hardware

prototype. Finally we showed the features and implementation of an assembler,

and a disassembler/simulator as a proof of concept of the architecture. These

custom tools are useful, not only for testing and debugging of the hardware

prototype, but for the system and application software.

288

Chapter 8

289

Chapter 8

Conclusion

Initially, the main objective of this research was to find new ways to improve the

fault tolerance of current architectures. We first reviewed the classic theories of

reliability and fault tolerance and found that a) the more components a system

has the higher the probability of system failure and b) the reliability of a system

is often dominated by the reliability of its least reliable component. We

concluded that some of the keys to improve reliability would be simplicity of

implementation and careful introduction of redundancy.

The terms Reliability, Fault-Tolerance and Dependability do not cover all the

attributes of safety-critical applications or, after being redefined over the years,

are ambiguous. As a consequence, in Chapter 2 we provided a novel concept of

Resilience that encompasses several attributes adapting them to the safety-

critical domain. A resilient system, over a specified time interval, under specified

environmental	
 and	
 operating	
 conditions	
 (performability),	
 “must	
 be	
 ready”	
 (in	

terms of availability) to perform its intended function (reliability), guaranteeing

the absence of improper system alterations (integrity). It must have the ability to

conduct servicing and inspections (testability) so that in case of failure quick

restoration to a specified working condition must be achieved (maintainability)

can be provided or can discontinue its operation in a safe way (safety).

290

Furthermore, a resilient system must have the ability to anticipate changes and

evolve (evolvability) while executing (adaptability), successfully accommodating

changes by reconfiguring elements of the system if necessary (reconfiguration).

Since one of the keys to improve resilience was the careful choice of redundancy

and the manner in which this should be applied, we decided to review the

different types of redundancy and how such redundancy is translated into

functional mechanisms to either avoid or tolerate faults. In Chapter 3 we

provided a full classification of fault-tolerant mechanisms based on the type of

redundancy employed and study their benefits and drawbacks. Fault avoidance

techniques do not guarantee complete removal of faults and present drawbacks

such	
 as	
 cost,	
 speed	
 of	
 operation	
 and	
 chip’s	
 area.	
 Therefore,	
 fault	
 tolerance	

mechanisms are needed to further improve the resilience of safety-critical

systems. In order to select a specific set of redundancy techniques for the

implementation of FT we should first define the different requirements of the

particular application. Once the domain and requirements are defined we should

select the techniques that are more suitable for such requirements and the level

at which the redundancy should be applied.

We realised that in order to improve the existing mechanisms, before

researching what it is required from them, we should study and analyse how

failures originate, what causes them, under what circumstances, in which

contexts, and how often they happen. In Chapter 2 we introduced the concept of

vicious cycle that explains our interpretation of the reasons behind the

performance and reliability problems that jeopardize the continuation of

Moore’s	
 Law.	
 We also reviewed the fault-failure lifecycle and defined the

necessary concepts of fault, error, failure and catastrophic failure.

Since the majority of hardware faults in current electronics are induced by

ionizing radiation we studied the damage mechanisms at the physical level, the

sources of error and the micro- and macro- effects of such mechanisms. . As a

result Chapter 4 provides an extensive taxonomy of radiation effects describing

their nature, type of degradation, susceptibility, fault rate trends and

291

recoverability. From the study of this taxonomy we conclude that as we moved to

denser technologies at lower voltages, system SER will continue to rise and in

particular the contribution of SEU, SET, MBU and SEFI will increase. We also

conclude that current mitigation techniques are not efficient when dealing with

certain types of SEE and/or with the upcoming rates.

In Chapter 5 we explained how any fault tolerant system involves a Model of the

System, a Model of Faults and a Model of Fault Tolerance. Consequently, we add

value to such system by developing a comprehensive Fault Model suggesting

methods for recognition and reaction against faults. We discuss fault

manifestation, detectability diagnosability and recoverability and propose

adequate solutions for diagnosis and recovery. We have introduced the principle

of reconfiguration of the system and how this might be used for various

purposes: performance, reliability and energy wise gain, improving the

efficiency of resilience. In addition, we introduced GAFT and extend it by

providing the different states and actions required to achieve fault tolerance and

therefore improve system resilience.

In Chapter 6, using know-how and conclusions acquired in the previous chapters

we introduced a hybrid HW-SSW co-design approach of a resilient architecture

with the ability to reconfigure, achieving various levels of dependability in

different environments. As part of the architecture, we first introduced the

syndrome as a new property of the system and analysed it as a process and as a

tool for reconfiguration that can provide efficiency of reliability, performance

and power consumption.

We	
 also	
 introduced	
 the	
 ERRIC’s	
 microprocessor	
 and	
 the	
 ERA	
 architecture	

defining their active, passive and interfacing zones of information processing.

We keep the redundancy level needed to implement fault tolerance, as low as

possible. With regards to the active zone, the instruction set and its

implementation are reduced to the minimum; coprocessors, pipelining and

floating-point units are removed which simplifies the processor design and

reduces the complexity and fault rates. We explained the checking schemes and

292

re-execution of instruction mechanisms within ERRIC and how they can improve

reliability.

With regards to the Interfacing zone, we introduced the T-Logic as basic unit of

reconfiguration and discuss its various configurations. We introduced the

syndrome and explained implementation details and how, in combination with a

Memory Management Unit and a Reconfigurable Memory Scheme, it can act as a

control centre of three functions: fault monitoring, reconfigurability and

recovery. As part of the passive zone, the reconfigurable memory scheme can

operate 25 memory configurations and support graceful degradation. We

quantify the probability of state transitions and provide a Markov model of

reliability	
 for	
 ERA’s	
 configurable	
 memory.	
 Finally	
 we	
 described the system

software support for testing and reconfiguration. We showed that by combining

this novel hardware architecture with the system software, all key properties of

performance, reliability and energy-wise functioning could be improved.

In Chapter 7 we provided the	
 implementation	
 details	
 of	
 ERA’s	
 hardware	

prototype. Having a software simulator of a hardware platform at hand is very

useful to speed up software development and debugging of applications. We

developed an accurate hardware simulator with graphical user frontend called

Dissimera.	
 Dissimera’s	
 main	
 goal	
 was	
 not	
 speed	
 but	
 to	
 simulate	
 reliably	
 and	

accurately the basic core features of ERA with fully reproducible results. The

simulator is built extendable; once core simulation is achieved, we will escalate

from there adding new features with an agile methodology. The development of

such disassembler/simulator gives us the possibility of 1) testing and locating

errors of design of the soft core processor; 2) understand the smallest details of

the ERRIC functionality; 3) Simulation of the current version of the processor

and the FT version of the processor; 4) testing and debugging of errors in

application and system software. Finally we introduced a testing framework that

in combination with Dissimera’s,	
 with	
 ERA’s	
 assembler	
 and	
 with	
 commercial	

hardware	
 simulators	
 can	
 properly	
 test	
 and	
 debug	
 not	
 only	
 the	
 ERA’s	
 hardware	

prototype	
 but	
 ERRIC’s	
 application	
 and	
 system	
 software.

293

8.1. Next steps

Arithmetic and logic units are both implemented through the use of logic

components. It is known that an arithmetic instruction can be translated into

several logic operations. Applying this principle, if an arithmetic unit is suspected

of not being able to provide correct service, arithmetic instructions can be

translated into logic ones that can be executed by the logic unit of the ALU.

Further research could be done on determining if logic operations can be

translated into a set of arithmetic ones and how can this be implemented. What

would it be the complexity of such translation. Performance would be affected

(graceful degradation), but this technique would allow a running program to

finish before recovery or fail-safe restart takes place.

The impact of the size of the register file on overall performance of processor is

also a question of further research as in 6.2.1.

With regards to Dissimera, although basic functionality has been achieved, the

implementation of Dissimera is still a working progress:

x The design is completed and the user interface is fully defined.

x Assembling of pseudo code using ERA assembler/preparator (100%

completed).

x Disassembling of binary into human readable code (assembly code) (100%

completed).

x The simulator is capable of parsing the binary file resulting from the

previous step and is then capable of classifying data and instructions

(100% completed).

x Simulation of main memory, register file, program counter and instruction

registry is almost completed (90%).

For future revisions of Dissimera we are working on a low-level fault-injection

scheme that would support testing of the architecture. We also plan to include

294

support for: syndrome, extra memory configurations including 16-bit memory

configurations.

We are very interested in finding ways to exploit the functionality that the

syndrome can provide. We believe that for safety-critical missions such as

embedded systems in satellites or space further research is needed. We would

like to pursue more research in dependency matrix mapping of symptoms and

failure modes. We would like to apply the context sensing (e.g. altitude, latitude,

temperature, dynamic events such as solar flares and weather forecasting) and

experience to system software in combination with the syndrome.

8.2. Personal contributions

I am responsible for the definition of Resilience in Chapter 2. Some of the

attributes are based on individual authors but the combination of those and the

particular definition is my own work.

The author is responsible for the two taxonomies: taxonomy of mitigation

techniques (Chapter 3), the taxonomy of single event effects (Chapter 4).

The individual contributions of the author in Chapter 5 are the implementation

of the Fault Model. GAFT is based on previous work from (Sogomonian and

Schagaev, 1988). The author is responsible for extending GAFT by adding the

system state changes and the actions to implement fault tolerance.

The ERRIC microprocessor including the active zone, checking schemes, the

instruction set architecture and the T-Logic as a concept is the result of previous

work from the ONBASS project. The memory management unit that allows

implementation of these as a concept is my contribution. The syndrome was a

simple idea of Prof. Schagaev that I took on and further developed. I am

responsible for the extension of the syndrome concept and its implementation,

including the structure, location, access and functionality. The graceful

degradation and Markov Models are also my contribution.

295

As stated earlier, the instruction set was designed before the thesis was started.

The assembler is contribution of ETH Zurich. My main personal contribution in

Chapter 7 is the framework for testing including 1) the testing of the custom

FPGA-based board, 2) the functional testing of the novel architecture and the

development of the disassembler and simulator (Dissimera).

296

References

Abramovici, M., Breuer, M.A., 1979. On Redundancy and Fault Detection in
Sequential Circuits. IEEE Trans. Comput. 28, 864–865.
doi:10.1109/TC.1979.1675267

Abramovici, M., Breuer, M.A., Friedman, A.D., 1994. Digital Systems Testing &
Testable Design, 1st ed. Wiley-IEEE Press.

Adams, J.H., Gelman, A., 1984. The Effects of Solar Flares on Single Event Upset
Rates. Nuclear Science, IEEE Transactions on DOI -
10.1109/TNS.1984.4333485 31, 1212–1216.

Adams, J.H., Silberberg, R., Tsao, C.H., 1982. Cosmic Ray Effects on
Microelectronics. Nuclear Science, IEEE Transactions on DOI -
10.1109/TNS.1982.4335821 29, 169–172.

Agrawal, V.D., Chakradhar, S.T., 1995. Combinational ATPG theorems for
identifying untestable faults in sequential circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 14, 1155 –
1160. doi:10.1109/43.406717

Alanen, J., Ungar, L.Y., 2011. Comparing software design for testability to
hardware DFT and BIST, in: 2011 IEEE AUTOTESTCON. Presented at the
2011 IEEE AUTOTESTCON, pp. 272 –278.
doi:10.1109/AUTEST.2011.6058776

Allenspach, M., Brews, J.R., Mouret, I., Schrimpf, R.D., Galloway, K.F., 1994.
Evaluation of SEGR threshold in power MOSFETs. Nuclear Science, IEEE
Transactions on 41, 2160–2166. doi:10.1109/23.340557

Amusan, O.A., Witulski, A.F., Massengill, L.W., Bhuva, B.L., Fleming, P.R., Alles,
M.L., Sternberg, A.L., Black, J.D., Schrimpf, R.D., 2006. Charge Collection
and Charge Sharing in a 130 nm CMOS Technology. Nuclear Science, IEEE
Transactions on 53, 3253–3258. doi:10.1109/TNS.2006.884788

Anderson, T., Lee, 1981. Fault Tolerance: Principles and Practice. Prentice-Hall.

Antola, A., Erényi, I., Scarabottolo, N., 1986. Transient fault management in
systems based on the AMD 2900 microprocessors. Microprocessing and
Microprogramming 17, 205–217. doi:10.1016/0165-6074(86)90115-8

297

Applebaum, S.P., 1965. Steady-State Reliability of Systems of Mutually
Independent Subsystems. IEEE Transactions on Reliability R-14, 23 –29.
doi:10.1109/TR.1965.5214868

Arimoto, K., Matsuda, Y., Furutani, K., Tsukude, M., Ooishi, T., Mashiko, K.,
Fujishima, K., 1990. A speed-enhanced DRAM array architecture with
embedded ECC. IEEE Journal of Solid-State Circuits 25, 11 –17.
doi:10.1109/4.50277

Armstrong, D.B., 1966. On Finding a Nearly Minimal Set of Fault Detection Tests
for Combinational Logic Nets. IEEE Transactions on Electronic Computers
EC-15, 66 –73. doi:10.1109/PGEC.1966.264376

Asakura, M., Matsuda, Y., Hidaka, H., Tanaka, Y., Fujishima, K., 1990. An
experimental 1-Mbit cache DRAM with ECC. IEEE Journal of Solid-State
Circuits 25, 5 –10. doi:10.1109/4.50276

Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K.,
Patterson, D., Plishker, W., Shalf, J., Williams, S., Yelick, K., 2006. The
landscape of parallel computing research: a view from Berckeley (No.
Technical Report No. UCB/EECS-2006-183).

Avizienis, A., 1971. Faulty-Tolerant Computing: An Overview. Computer 4, 5–8.

Avizienis, A., 1976. Fault-Tolerant Systems. IEEE Transactions on Computers C-
25, 1304 –1312. doi:10.1109/TC.1976.1674598

Avizienis, A., 1982. The Four-Universe Information System Model for the Study of
Fault Tolerance. Proceedings of the 12th Annual International
Symposium on Fault-Tolerant Computing, Santa Monica, California pp. 6–
13.

Avizienis, A., Kelly, J.P.J., 1984. Fault Tolerance by Design Diversity: Concepts and
Experiments. Computer 17, 67 –80. doi:10.1109/MC.1984.1659219

Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C., 2004. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Trans.\ on
Dependable and Secure Computing 1, 11–33.

Azadmanesh, M.H., Kieckhafer, R.M., 2000. Exploiting omissive faults in
synchronous approximate agreement. IEEE Transactions on Computers
49, 1031 –1042. doi:10.1109/12.888039

298

Baeg, S., Wen, S., Wong, R., 2009. SRAM Interleaving Distance Selection With a
Soft Error Failure Model. IEEE Transactions on Nuclear Science 56, 2111–
2118. doi:10.1109/TNS.2009.2015312

Barlow, R.E., Proschan, F., 1975. Statistical Theory of Reliability and Life Testing:
Probability Models,.

Barth, J.L., LaBel, K.A., Poivey, C., 2004. Radiation assurance for the space
environment, in: Integrated Circuit Design and Technology, 2004. ICICDT
’04.	
 International	
 Conference	
 on.	
 Presented	
 at	
 the	
 Integrated	
 Circuit	

Design	
 and	
 Technology,	
 2004.	
 ICICDT	
 ’04.	
 International	
 Conference	
 on,	

pp. 323–333. doi:10.1109/ICICDT.2004.1309976

Baumann, R., 2002. The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction, in: Electron
Devices	
 Meeting,	
 2002.	
 IEDM	
 ’02.	
 Digest.	
 International.	
 Presented	
 at	
 the	

Electron	
 Devices	
 Meeting,	
 2002.	
 IEDM	
 ’02.	
 Digest.	
 International,	
 pp.	
 329–
332. doi:10.1109/IEDM.2002.1175845

Baumann, R., 2005. Soft errors in advanced computer systems. Design & Test of
Computers, IEEE 22, 258–266. doi:10.1109/MDT.2005.69

Baumann, R., Hossain, T., Murata, S., Kitagawa, H., 1995. Boron compounds as a
dominant source of alpha particles in semiconductor devices, in:
Reliability Physics Symposium, 1995. 33rd Annual Proceedings., IEEE
International. Presented at the Reliability Physics Symposium, 1995. 33rd
Annual Proceedings., IEEE International, pp. 297–302.
doi:10.1109/RELPHY.1995.513695

Baumann, R.C., 2001. Soft errors in advanced semiconductor devices-part I: the
three radiation sources. Device and Materials Reliability, IEEE
Transactions on 1, 17–22. doi:10.1109/7298.946456

Baumann, R.C., 2005. Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on 5,
305–316. doi:10.1109/TDMR.2005.853449

Beaudry, M.D., 1978. Performance-Related Reliability Measures for Computing
Systems. IEEE Transactions on Computers C-27, 540 –547.
doi:10.1109/TC.1978.1675145

Becker, H.N., Miyahira, T.F., Johnston, A.H., 2002. Latent damage in CMOS devices
from single-event latchup. Nuclear Science, IEEE Transactions on 49,
3009–3015. doi:10.1109/TNS.2002.805332

299

Beitman, B.A., 1988. n-channel MOSFET breakdown characteristics and modeling
for p-well technologies. Electron Devices, IEEE Transactions on 35, 1935–
1941. doi:10.1109/16.7407

Bentoutou, Y., Djaifri, M., 2008. Observations of single-event upsets and multiple-
bit upsets in random access memories on-board the Algerian satellite, in:
Nuclear	
 Science	
 Symposium	
 Conference	
 Record,	
 2008.	
 NSS	
 ’08.	
 IEEE.	

Presented at the Nuclear Science Symposium Conference Record, 2008.
NSS	
 ’08.	
 IEEE,	
 pp.	
 2568–2570. doi:10.1109/NSSMIC.2008.4774882

Berger, M.J., Coursey, J.S., Zucker, M.A., Chang, J., 2005. ESTAR, PSTAR, and
ASTAR: Computer Programs for Calculating Stopping-Power and Range
Tables for Electrons, Protons, and Helium Ions (version 1.2.3) [WWW
Document]. URL http://physics.nist.gov/Star (accessed 11.9.10).

Bernstein, A.V., Tomfield, Y.L., Schagaev, I.V., 1992. Storage Unit with High
Reliability Characteristics. I. Avtomat. i Telemekh 145–152.

Bernstein, A.V., Tomfield, Y.L., Schagaev, I.V., 1993. RAM of High Reliability
Properties. II. Avtomat. i Telemekh 169–179.

Binder, D., Smith, E.C., Holman, A.B., 1975. Satellite Anomalies from Galactic
Cosmic Rays. Nuclear Science, IEEE Transactions on DOI -
10.1109/TNS.1975.4328188 22, 2675–2680.

Birolini, A., 2007. Reliability engineering. Springer.

Blake, J.B., Mandel, R., 1986. On-Orbit Observations of Single Event Upset in
Harris HM-6508 1K RAMS. Nuclear Science, IEEE Transactions on DOI -
10.1109/TNS.1986.4334651 33, 1616–1619.

Blandford, J.T., Waskiewicz, A.E., Pickel, J.C., 1984. Cosmic Ray Induced
Permanent Damage in MNOS EAROMs. Nuclear Science, IEEE
Transactions on 31, 1568–1570. doi:10.1109/TNS.1984.4333551

Boatella, C., Hubert, G., Ecoffet, R., Duzellier, S., 2009. ICARE on-board SAC-C:
More than 8 years of SEU & MCU, analysis and prediction. IEEE, pp.
369–374. doi:10.1109/RADECS.2009.5994678

Bodsberg, L., Hokstad, P., 1995. A system approach to reliability and life-cycle
cost of process safety-systems. IEEE Transactions on Reliability 44, 179 –
186. doi:10.1109/24.387369

300

Bogliolo, A., Favalli, M., Damiani, M., 2000. Enabling testability of fault-tolerant
circuits by means of IDDQ checkable voters. IEEE Trans. Very Large Scale
Integr. Syst. 8, 415–419. doi:10.1109/92.863620

Bose, R.C., Ray-Chaudhuri, D.K., 1960. On a class of error correcting binary group
codes. Information and Control 3, 68–79. doi:10.1016/S0019-
9958(60)90287-4

Bougerol, A., Miller, F., Buard, N., 2008. SDRAM Architecture & Single Event
Effects Revealed with Laser, in: On-Line Testing Symposium, 2008. IOLTS
’08.	
 14th	
 IEEE	
 International.	
 Presented	
 at	
 the	
 On-Line Testing
Symposium,	
 2008.	
 IOLTS	
 ’08.	
 14th	
 IEEE	
 International,	
 pp.	
 283–288.
doi:10.1109/IOLTS.2008.40

Bougerol, A., Miller, F., Guibbaud, N., Gaillard, R., Moliere, F., Buard, N., 2010. Use
of Laser to Explain Heavy Ion Induced SEFIs in SDRAMs. Nuclear Science,
IEEE Transactions on DOI - 10.1109/TNS.2009.2037418 57, 272–278.

Bougerol, A., Miller, F., Guibbaud, N., Leveugle, R., Carriere, T., Buard, N., 2011.
Experimental Demonstration of Pattern Influence on DRAM SEU and SEFI
Radiation Sensitivities. Nuclear Science, IEEE Transactions on 58, 1032 –
1039. doi:10.1109/TNS.2011.2107528

Bouricius, W.G., Carter, W.C., Schneider, P.R., 1969. Reliability modeling
techniques for self-repairing computer systems, in: Proceedings of the
1969	
 24th	
 National	
 Conference,	
 ACM	
 ’69.	
 ACM,	
 New	
 York,	
 NY,	
 USA,	
 pp.	

295–309. doi:10.1145/800195.805940

Bradley, P.D., Normand, E., 1998. Single event upsets in implantable cardioverter
defibrillators. Nuclear Science, IEEE Transactions on 45, 2929–2940.
doi:10.1109/23.736549

Breuer, M.A., 1973. Testing for Intermittent Faults in Digital Circuits. Computers,
IEEE Transactions on C-22, 241 – 246. doi:10.1109/T-C.1973.223701

Brocklehurst, S., Littlewood, B., Olovsson, T., Jonsson, E., 1994. On measurement
of operational security. IEEE Aerospace and Electronic Systems Magazine
9, 7 –16. doi:10.1109/62.318876

Buchner, S., Baze, M., Brown, D., McMorrow, D., Melinger, J., 1997. Comparison of
error rates in combinational and sequential logic. Nuclear Science, IEEE
Transactions on 44, 2209–2216. doi:10.1109/23.659037

Buckle, R., Highleyman, W.H., 2003. The New NonStop Advanced Architecture: A
Massive Jump in Processor Reliability. The Connection 24.

301

Caldwell, D.W., 1998. DSI GDE/Power Anomaly Day 300:Analysis and Resolution.

Carter, W.C., 1979. Hardware Fault Tolerance, in: Computing Systems Reliability.
CUP Archive, pp. 211–263.

Carter, W.C., Bouricius, W.G., 1971. A Survey of Fault Tolerant Computer
Architecture and its Evaluation. Computer 4, 9 –16. doi:10.1109/C-
M.1971.216739

Carter, W.C., Schneider, P.R., 1968. Design of dynamically checked computers, in:
IFIP Congress (2). pp. 878–883.

Caywood, J.M., Prickett, B.L., 1983. Radiation-Induced Soft Errors and Floating
Gate Memories, in: Reliability Physics Symposium, 1983. 21st Annual.
Presented at the Reliability Physics Symposium, 1983. 21st Annual, pp.
167–172. doi:10.1109/IRPS.1983.361979

Cazeaux, J.M., Rossi, D., Metra, C., 2004. New High Speed CMOS Self-Checking
Voter, in: Proceedings of the International On-Line Testing Symposium,
10th	
 IEEE,	
 IOLTS	
 ’04.	
 IEEE	
 Computer	
 Society,	
 Washington,	
 DC,	
 USA,	
 p.	
 58–
. doi:10.1109/IOLTS.2004.31

Cha, H., Rudnick, E.M., Choi, G.S., Patel, J.H., Iyer, R.K., 1993. A fast and accurate
gate-level transient fault simulation environment, in: Fault-Tolerant
Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third
International Symposium on. Presented at the Fault-Tolerant Computing,
1993. FTCS-23. Digest of Papers., The Twenty-Third International
Symposium on, pp. 310–319. doi:10.1109/FTCS.1993.627334

Chang-Ming	
 Hsieh,	
 Murley,	
 P.C.,	
 O’Brien,	
 R.R.,	
 1983.	
 Collection	
 of	
 charge	
 from	

alpha-particle tracks in silicon devices. Electron Devices, IEEE
Transactions on 30, 686–693. doi:10.1109/T-ED.1983.21190

Chen, C.L., Hsiao, M.Y., 1984. Error-Correcting Codes for Semiconductor Memory
Applications: A State-of-the-Art Review. IBM Journal of Research and
Development 28, 124 –134. doi:10.1147/rd.282.0124

Claeys, C.L., Simoen, E., 2002. Radiation effects in advanced semiconductor
materials and devices. Springer.

Coe, T., Mathisen, T., Moler, C., Pratt, V., 1995. Computational aspects of the
Pentium affair. IEEE Computational Science Engineering 2, 18 –30.
doi:10.1109/99.372929

302

Conlon, J.C., Lilius, W.A., Tubbesing, F.H., Evaluation, U.S.O. of the D.D.T. and,
Engineering, U.S.O. of the U.S. of D. for R. and, Activity, U.S.A.M.S.A.,
Activity, U.S.A.M.E.T., 1982. Test and evaluation of system reliability,
availability, maintainability: a primer. Office of the Director, Defense Test
and Evaluation, Under Secretary of Defense for Research and Engineering.

Constantinescu, C., 2003. Trends and challenges in VLSI circuit reliability. IEEE
Micro 23, 14 – 19. doi:10.1109/MM.2003.1225959

Constantinescu, C., Parulkar, I., Harper, R., Michalak, S., 2008. Silent Data
Corruption - Myth or reality?, in: IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008.
Presented at the IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC, 2008. DSN 2008, pp. 108 –109.
doi:10.1109/DSN.2008.4630077

Cottrell, P.E., Troutman, R.R., Ning, T.H., 1979. Hot-electron emission in N-
channel	
 IGFET’s.	
 IEEE	
 Transactions	
 on Electron Devices 26, 520 – 533.
doi:10.1109/T-ED.1979.19456

Crain, S.H., Velazco, R., Alvarez, M.T., Bofill, A., Yu, P., Koga, R., 1999. Radiation
effects in a fixed-point digital signal processor, in: Radiation Effects Data
Workshop, 1999. Presented at the Radiation Effects Data Workshop,
1999, pp. 30–34. doi:10.1109/REDW.1999.816053

Czajkowski, D.R., Pagey, M.P., Samudrala, P.K., Goksel, M., Viehman, M.J., 2005.
Low Power, High-Speed Radiation Hardened Computer & Flight
Experiment, in: Aerospace Conference, 2005 IEEE. Presented at the
Aerospace Conference, 2005 IEEE, pp. 1–10.
doi:10.1109/AERO.2005.1559559

Czajkowski, D.R., Samudrala, P.K., Pagey, M.P., 2006. SEU mitigation for
reconfigurable FPGAs, in: Aerospace Conference, 2006 IEEE. Presented at
the Aerospace Conference, 2006 IEEE, p. 7 pp.
doi:10.1109/AERO.2006.1655957

DeAngelis, D., Lauro, J.A., 1976. Software recovery in the fault-tolerant
spaceborne computer, in: Digest Sixth Int. Fault-Tolerant Computing
Symp. IEEE Computer Society, Pittsburg, PA, pp. 143–148.

DeCastro, J., Tang, L., Zhang, B., Vachtsevanos, G., 2011. A Safety Verification
Approach to Fault-Tolerant Aircraft Supervisory Control, in: AIAA
Guidance, Navigation, and Control Conference. American Institute of
Aeronautics and Astronautics.

303

Desko, J.C., Darwish, M.N., Dolly, M.C., Goodwin, C.A., Dawes, W.R., Titus, J.L.,
1990. Radiations hardening of a high voltage IC technology (BCDMOS).
IEEE Transactions on Nuclear Science 37, 2083–2088.
doi:10.1109/23.101234

Dhillon, B.S., 2006. Maintainability, Maintenance, and Reliability for Engineers.
CRC Press.

Dhillon, Y.S., Diril, A.U., Chatterjee, A., Metra, C., 2005. Load and Logic Co-
Optimization for Design of Soft-Error Resistant Nanometer CMOS Circuits,
in: IEEE International On-Line Testing Symposium. IEEE Computer
Society, Los Alamitos, CA, USA, pp. 35–40.
doi:http://doi.ieeecomputersociety.org/10.1109/IOLTS.2005.41

Dijkstra, E.W., 1965. Solution of a problem in concurrent programming control.
Commun. ACM 8, 569. doi:10.1145/365559.365617

Dixit, A., Wood, A., 2011. The impact of new technology on soft error rates, in:
Reliability Physics Symposium (IRPS), 2011 IEEE International. pp. 5B.4.1
–5B.4.7. doi:10.1109/IRPS.2011.5784522

Dodd, P.E., 2005. Physics-based simulation of single-event effects. Device and
Materials Reliability, IEEE Transactions on 5, 343–357.
doi:10.1109/TDMR.2005.855826

Dodd, P.E., Massengill, L.W., 2003. Basic mechanisms and modeling of single-
event upset in digital microelectronics. Nuclear Science, IEEE
Transactions on 50, 583–602. doi:10.1109/TNS.2003.813129

Dodd, P.E., Shaneyfelt, M.R., Walsh, D.S., Schwank, J.R., Hash, G.L., Loemker, R.A.,
Draper, B.L., Winokur, P.S., 2000. Single-event upset and snapback in
silicon-on-insulator devices and integrated circuits. Nuclear Science, IEEE
Transactions on 47, 2165–2174. doi:10.1109/23.903749

Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T., 2010. Near-
Threshold	
 Computing:	
 Reclaiming	
 Moore’s	
 Law	
 Through	
 Energy	
 Efficient	

Integrated Circuits. Proceedings of the IEEE 98, 253 –266.
doi:10.1109/JPROC.2009.2034764

Dufour, C., Garnier, P., Carriere, T., Beaucour, J., Ecoffet, R., Labrunee, M., 1992.
Heavy ion induced single hard errors on submicronic memories [for space
application]. Nuclear Science, IEEE Transactions on 39, 1693–1697.
doi:10.1109/23.211355

304

Dugan, J.B., Trivedi, K.S., 1989. Coverage modeling for dependability analysis of
fault-tolerant systems. IEEE Transactions on Computers 38, 775 –787.
doi:10.1109/12.24286

Dunn, M., 1991. Designer fault models for VLSI, in: IEE Colloquium on Design for
Testability. Presented at the IEE Colloquium on Design for Testability, pp.
4/1 –4/5.

Duzellier, S., Ecoffet, R., Falguere, D., Nuns, T., Guibert, L., Hajdas, W., Calvert, M.C.,
1997. Low energy proton induced SEE in memories. IEEE Trans. Nucl. Sci.
44, 2306–2310. doi:10.1109/23.659050

Duzellier, S., Falguere, D., Ecoffet, R., 1993. Protons and heavy ions induced stuck
bits on large capacity RAMs, in: Radiation and Its Effects on Components
and Systems, 1993.,RADECS 93., Second European Conference on.
Presented at the Radiation and its Effects on Components and Systems,
1993.,RADECS 93., Second European Conference on, pp. 468–472.
doi:10.1109/RADECS.1993.316527

Dyer, C.S., Sims, A.J., Farren, J., Stephen, J., 1990. Measurements of solar flare
enhancements to the single event upset environment in the upper
atmosphere [avionics]. Nuclear Science, IEEE Transactions on 37, 1929–
1937. doi:10.1109/23.101211

Dyer, C.S., Truscott, P.R., Evans, H., Sims, A.J., Hammond, N., Comber, C., 1996.
Secondary radiation environments in heavy space vehicles and
instruments. Advances in Space Research 17, 53–58. doi:10.1016/0273-
1177(95)00512-D

Eckert, D.I., 2001. Odyssey MEEB Analysis: Lockheed-Martin Presentation.

Ecoffet, R., Duzellier, S., Tastet, P., Aicardi, C., Labrunee, M., 1994. Observation of
heavy ion induced transients in linear circuits, in: Radiation Effects Data
Workshop, 1994 IEEE. Presented at the Radiation Effects Data Workshop,
1994 IEEE, pp. 72–77. doi:10.1109/REDW.1994.633038

ECSS, 2007. Space engineering: Methods for the calculation of radiation received
and its effects, and a policy for design margins - ECSS-E-10-12 Draft 0.5,
ECSS-E-10-12 Draft 0.5.

Edwards, R., Dyer, C., Normand, E., 2004. Technical standard for atmospheric
radiation single event effects, (SEE) on avionics electronics, in: Radiation
Effects Data Workshop, 2004 IEEE. Presented at the Radiation Effects
Data Workshop, 2004 IEEE, pp. 1–5. doi:10.1109/REDW.2004.1352895

305

EIA/JEDEC	
 STANDARD,“Test	
 Procedures for the Measurement of Single-Event
Effects	
 in	
 Semiconductor	
 Devices	
 from	
 Heavy	
 Ion	
 Irradiation,,”	
 1996.

Eishi Ibe, Chung, S.S., ShiJie Wen, Hironaru Yamaguchi, Yasuo Yahagi, Hideaki
Kameyama, Shigehisa Yamamoto, Takashi Akioka, 2006. Spreading
Diversity in Multi-cell Neutron-Induced Upsets with Device Scaling, in:
Custom	
 Integrated	
 Circuits	
 Conference,	
 2006.	
 CICC	
 ’06.	
 IEEE.	
 Presented	
 at	

the	
 Custom	
 Integrated	
 Circuits	
 Conference,	
 2006.	
 CICC	
 ’06.	
 IEEE,	
 pp.	
 437–
444. doi:10.1109/CICC.2006.321010

Elsayed, E.A., 1996. Reliability Engineering, Har/Dsk. ed. Prentice Hall.

Felix, J.A., Shaneyfelt, M.R., Schwank, J.R., Dalton, S.M., Dodd, P.E., Witcher, J.B.,
2007. Enhanced Degradation in Power MOSFET Devices Due to Heavy Ion
Irradiation. Nuclear Science, IEEE Transactions on 54, 2181–2189.
doi:10.1109/TNS.2007.910873

Fieseler, P.D., Ardalan, S.M., Frederickson, A.R., 2002. The radiation effects on
Galileo spacecraft systems at Jupiter. IEEE Transactions on Nuclear
Science 49, 2739–2758. doi:10.1109/TNS.2002.805386

Fischer, T.A., 1987. Heavy-Ion-Induced, Gate-Rupture in Power MOSFETs.
Nuclear Science, IEEE Transactions on 34, 1786–1791.
doi:10.1109/TNS.1987.4337555

Fisher, J.A., 1983. Very Long Instruction Word architectures and the ELI-512, in:
Proceedings of the 10th Annual International Symposium on Computer
Architecture. ACM, Stockholm, Sweden, pp. 140–150.
doi:10.1145/800046.801649

Fleetwood, D., Pantelides, S., Schrimpf, R., 2008. Oxide Traps, Border Traps, and
Interface Traps in SiO2, in: Fleetwood, D., Pantelides, S., Schrimpf, R.
(Eds.), Defects in Microelectronic Materials and Devices. CRC Press.

Flynn, M., 1972. Some Computer Organizations and Their Effectiveness. IEEE
Trans. Comput. C-21, 948.

Fortes, J.A.B., Raghavendra, C.S., 1985. Gracefully Degradable Processor Arrays.
IEEE Transactions on Computers C-34, 1033 –1044.
doi:10.1109/TC.1985.1676536

Franklin, M., Saluja, K.K., 1995. Embedded RAM testing, in: , Records of the 1995
IEEE International Workshop on Memory Technology, Design and
Testing, 1995. Presented at the , Records of the 1995 IEEE International
Workshop on Memory Technology, Design and Testing, 1995, pp. 29 –33.
doi:10.1109/MTDT.1995.518078

306

Friedman, A.D., 1967. Fault Detection in Redundant Circuits. IEEE Transactions
on Electronic Computers EC-16, 99 –100. doi:10.1109/PGEC.1967.264621

Furutani, K., Arimoto, K., Miyamoto, H., Kobayashi, T., Yasuda, K., Mashiko, K.,
1989. A built-in Hamming code ECC circuit for DRAMs. IEEE Journal of
Solid-State Circuits 24, 50 –56. doi:10.1109/4.16301

Gaisler, J., 2002. A Portable and Fault-Tolerant Microprocessor Based on the
SPARC V8 Architecture, in: Proceedings of the 2002 International
Conference on Dependable Systems and Networks. IEEE Computer
Society, pp. 409–415.

Galey, J.M., Norby, R.E., Roth, J.P., 1961. Techniques for the diagnosis of switching
circuit failures, in: Proceedings of the Second Annual Symposium on
Switching Circuit Theory and Logical Design, 1961. SWCT 1961.
Presented at the Proceedings of the Second Annual Symposium on
Switching Circuit Theory and Logical Design, 1961. SWCT 1961, pp. 152 –
160. doi:10.1109/FOCS.1961.33

Garland, D.J., Stainer, F.W., 2013. Modern Electronic Maintenance Principles.
Elsevier.

Geer, D., 2007. For Programmers, Multicore Chips Mean Multiple Challenges.
Computer 40, 17–19.

Geppert, L., 2004. A static RAM says goodbye to data errors [radiation induced
soft errors]. IEEE Spectrum 41, 16 – 17.
doi:10.1109/MSPEC.2004.1265121

Gnedenko, B., Pavlov, I.V., Ushakov, I.A., 1999. Statistical Reliability Engineering,
1st ed. Wiley-Interscience.

Goldstein, L., 1979. Controllability/observability analysis of digital circuits. IEEE
Transactions on Circuits and Systems 26, 685 – 693.
doi:10.1109/TCS.1979.1084687

Gössel, M., Ocheretny, V., Sogomonyan, E., Marienfeld, D., 2008. New Methods of
Concurrent Checking. Springer.

Goth, G., 2009. Entering a parallel universe. Commun. ACM 52, 15.
doi:10.1145/1562164.1562171

Gountanis, R.J., Viss, N.L., 1966. A method of processor selection for interrupt
handling in a multiprocessor system. Proceedings of the IEEE 54, 1812 –
1819. doi:10.1109/PROC.1966.5265

307

Gregory, B.L., Shafer, B.D., 1973. Latch-Up in CMOS Integrated Circuits. IEEE
Transactions on Nuclear Science 20, 293 –299.
doi:10.1109/TNS.1973.4327410

Guenzer, C.S., Wolicki, E.A., Allas, R.G., 1979. Single Event Upset of Dynamic Rams
by Neutrons and Protons. Nuclear Science, IEEE Transactions on 26,
5048–5052. doi:10.1109/TNS.1979.4330270

Hamming, R.W., 1950. Error correction and error detection coding. Bell System
technical journal XXIX.

Hana, H.H., Johnson, B.W., 1986. Concurrent error detection in VLSI circuits using
time redundancy. Proc. IEEE Southeastcon 1986 Regional Conf. pp. 208–
212.

Haraszti, T.P., 2000. CMOS Memory Circuits. Springer.

Harboe-Sorensen, R., Guerre, F.-X., Lewis, G., 2007. Heavy-Ion SEE Test Concept
and Results for DDR-II Memories. Nuclear Science, IEEE Transactions on
DOI - 10.1109/TNS.2007.909747 54, 2125–2130.

Hauge, P.S., Ziegler, J.F., Srinivasan, G.R., 1996. Special issue: terrestrial cosmic
rays and soft errors [WWW Document]. IBM J. Res. Dev. URL
http://portal.acm.org/citation.cfm?id=226354 (accessed 7.1.10).

Hawkins, C., Keshavarzi, A., Segura, J., 2003. CMOS IC nanometer technology
failure mechanisms, in: Custom Integrated Circuits Conference, 2003.
Proceedings of the IEEE 2003. Presented at the Custom Integrated
Circuits Conference, 2003. Proceedings of the IEEE 2003, pp. 605 – 611.
doi:10.1109/CICC.2003.1249470

Hayes, J.P., 1975. Detection oF Pattern-Sensitive Faults in Random-Access
Memories. IEEE Transactions on Computers C-24, 150 – 157.
doi:10.1109/T-C.1975.224182

Hazucha, P., Karnik, T., Maiz, J., Walstra, S., Bloechel, B., Tschanz, J., Dermer, G.,
Hareland, S., Armstrong, P., Borkar, S., 2003. Neutron soft error rate
measurements in a 90-nm CMOS process and scaling trends in SRAM from
0.25- mu;m to 90-nm generation, in: Electron Devices Meeting, 2003.
IEDM	
 ’03	
 Technical	
 Digest.	
 IEEE	
 International.	
 pp.	
 21.5.1	
 – 21.5.4.
doi:10.1109/IEDM.2003.1269336

Hazucha, P., Svensson, C., 2000. Impact of CMOS technology scaling on the
atmospheric neutron soft error rate. IEEE Transactions on Nuclear
Science 47, 2586 –2594. doi:10.1109/23.903813

308

Heidel, D.F., Marshall, P.W., LaBel, K.A., Schwank, J.R., Rodbell, K.P., Hakey, M.C.,
Berg, M.D., Dodd, P.E., Friendlich, M.R., Phan, A.D., Seidleck, C.M.,
Shaneyfelt, M.R., Xapsos, M.A., 2008. Low Energy Proton Single-Event-
Upset Test Results on 65 nm SOI SRAM. Nuclear Science, IEEE
Transactions on 55, 3394–3400. doi:10.1109/TNS.2008.2005499

Heise, V., 2009. Arm: Nachwuchs fr die die cortex-a- familie. World Wide Web
electronic publication.

Hennessy, J.L., Patterson, D.A., 2006. Computer Architecture: A Quantitative
Approach, 4th Edition, 4th ed. Morgan Kaufmann.

Hentschke, R., Marques, F., Lima, F., Carro, L., Susin, A., Reis, R., 2002. Analyzing
Area and Performance Penalty of Protecting Different Digital Modules
with Hamming Code and Triple Modular Redundancy, in: Proceedings of
the 15th Symposium on Integrated Circuits and Systems Design, SBCCI
’02.	
 IEEE	
 Computer	
 Society, Washington, DC, USA, p. 95–.

Hill, M.D., Rajwar, R., 2001. The Rise and Fall of Multiprocessor Papers in ISCA
[WWW Document]. The Rise and Fall of Multiprocessor Papers in the
International Symposium on Computer Architecture (ISCA). URL
http://pages.cs.wisc.edu/~markhill/mp2001.html (accessed 4.8.10).

Hohl, J.H., Galloway, K.F., 1987. Analytical Model for Single Event Burnout of
Power MOSFETs. Nuclear Science, IEEE Transactions on 34, 1275–1280.
doi:10.1109/TNS.1987.4337465

Hollnagel, P.E., Wreathall, M.J., Woods, P.D.D., Pariès, J., 2012. Resilience
Engineering in Practice: A Guidebook. Ashgate Publishing, Ltd.

Howe, C.L., Weller, R.A., Reed, R.A., Mendenhall, M.H., Schrimpf, R.D., Warren,
K.M., Ball, D.R., Massengill, L.W., LaBel, K.A., Howard, J.W., Haddad, N.F.,
2005. Role of heavy-ion nuclear reactions in determining on-orbit single
event error rates. Nuclear Science, IEEE Transactions on 52, 2182–2188.
doi:10.1109/TNS.2005.860683

Hsiao, M.Y., 1970. A class of optimal minimum odd-weight-column SEC-DED
codes. IBM J. Res. Dev. 14, 395–401. doi:10.1147/rd.144.0395

Hsieh,	
 C.M.,	
 Murley,	
 P.C.,	
 O’Brien,	
 R.R.,	
 1981.	
 A	
 field-funneling effect on the
collection of alpha-particle-generated carriers in silicon devices. Electron
Device Letters, IEEE 2, 103–105. doi:10.1109/EDL.1981.25357

Hughes, H.L., Benedetto, J.M., 2003. Radiation effects and hardening of MOS
technology: devices and circuits. IEEE Transactions on Nuclear Science
50, 500 – 521. doi:10.1109/TNS.2003.812928

309

Hugue, M.M., Purtilo, J., 2002. Guerrilla tactics: motivating design patterns for
high-dependability applications, in: 27th Annual NASA Goddard/IEEE
Software Engineering Workshop, 2002. Proceedings. Presented at the
27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2002.
Proceedings, pp. 33 – 39. doi:10.1109/SEW.2002.1199447

Hutcheson,	
 G.D.,	
 2009.	
 The	
 Economic	
 Implications	
 of	
 Moore’s	
 Law,	
 in:	
 Into	
 the	

Nano Era. pp. 11–38.

Ibe, E., Taniguchi, H., Yahagi, Y., Shimbo, K. -i., Toba, T., 2010. Impact of Scaling on
Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design
Rule. Electron Devices, IEEE Transactions on 57, 1527 –1538.
doi:10.1109/TED.2010.2047907

Irom, F., Nguyen, D.N., 2007. Single Event Effect Characterization of High Density
Commercial NAND and NOR Nonvolatile Flash Memories. Nuclear Science,
IEEE Transactions on 54, 2547–2553. doi:10.1109/TNS.2007.909984

ISO, 2004. ISO, 13381-1, Condition monitoring and diagnostics of machines -
prognostics - Part1: General guidelines.

ITRS, 2011. International Technology Roadmap for Semiconductors.

J. R. Schwank, P.E.D., 2003. Charge collection in SOI capacitors and circuits and its
effect on SEU hardness. Nuclear Science, IEEE Transactions on 2937 –
2947. doi:10.1109/TNS.2002.805429

Jardine, A.K.S., Lin, D., Banjevic, D., 2006. A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical
Systems and Signal Processing 20, 1483–1510.
doi:10.1016/j.ymssp.2005.09.012

Jennings, B.F., 1990. Fault detection in microprocessor based systems, in: IEE
Colloquium on Fault Tolerant Techniques. Presented at the IEE
Colloquium on Fault Tolerant Techniques, pp. 7/1 –718.

Johansson, K., Dyreklev, P., Granbom, O., Calver, M.C., Fourtine, S., Feuillatre, O.,
1998. In-flight and ground testing of single event upset sensitivity in static
RAMs. Nuclear Science, IEEE Transactions on DOI - 10.1109/23.685251
45, 1628–1632.

Johnson, B.W., 1989. The Design and Analysis of Fault Tolerant Digital Systems.
Addison-Wesley.

310

Johnson, B.W., Aylor, J.H., Hana, H.H., 1988. Efficient use of time and hardware
redundancy for concurrent error detection in a 32-bit VLSI adder. IEEE
Journal of Solid-State Circuits 23, 208 –215. doi:10.1109/4.281

Johnson, G.H., Schrimpf, R.D., Galloway, K.F., Koga, R., 1992. Temperature
dependence of single-event burnout in n-channel power MOSFETs [for
space application]. IEEE Transactions on Nuclear Science 39, 1605–1612.
doi:10.1109/23.211342

Johnston, A.H., 1996. The influence of VLSI technology evolution on radiation-
induced latchup in space systems. Nuclear Science, IEEE Transactions on
43, 505–521. doi:10.1109/23.490897

Johnston, A.H., Hughlock, B.W., Baze, M.P., Plaag, R.E., 1991. The effect of
temperature on single-particle latchup. IEEE Transactions on Nuclear
Science 38, 1435–1441. doi:10.1109/23.124129

K. LaBel, E.G. Stassinopoulos, G.J. Brucker, C.A. Stauffer, 1992. SEU tests of a
80386 based flight-computer/data-handling system and of discrete PROM
and EEPROM devices, and SEL tests of discrete 80386, 80387, PROM,
EEPROM and ASICs, in: Radiation Effects Data Workshop, 1992.
Workshop Record., 1992 IEEE. Presented at the Radiation Effects Data
Workshop, 1992. Workshop Record., 1992 IEEE, pp. 1–11.
doi:10.1109/REDW.1992.247332

Kadayif, I., Sen, H., Koyuncu, S., 2010. Modeling soft errors for data caches and
alleviating their effects on data reliability. Microprocess. Microsyst. 34,
200–214. doi:10.1016/j.micpro.2010.04.003

Kaegi-Trachsel, T., Gutknecht, J., 2008. Minos—the design and implementation of
an embedded real-time operating system with a perspective of fault
tolerance, in: Computer Science and Information Technology, 2008.
IMCSIT 2008. International Multiconference on. Presented at the
Computer Science and Information Technology, 2008. IMCSIT 2008.
International Multiconference on, pp. 649–656.
doi:10.1109/IMCSIT.2008.4747312

Kaegi-Trachsel, T., Schagaev, I., Gutknecht, J., 2009. Hardware testing on the level
of tasks, in: 30th IFAC Workshop on Real-Time Programming and 4th
International Workshop on Real-Time Software. Presented at the
International Multiconference on Computer Science and Information
Technology.

Karimi, F., Lombardi, F., 2002. A scan-BIST environment for testing embedded
memories, in: On-Line Testing Workshop, 2002. Proceedings of the Eighth
IEEE International. Presented at the On-Line Testing Workshop, 2002.

311

Proceedings of the Eighth IEEE International, pp. 211 – 217.
doi:10.1109/OLT.2002.1030221

Karnik, T., Hazucha, P., 2004. Characterization of soft errors caused by single
event upsets in CMOS processes. IEEE Transactions on Dependable and
Secure Computing 1, 128 – 143. doi:10.1109/TDSC.2004.14

Kato, M., Watanabe, K., Okabe, T., 1989. Radiation effects on ion-implanted
silicon-dioxide films. IEEE Transactions on Nuclear Science 36, 2199 –
2204. doi:10.1109/23.45425

Katz, R., Barto, R., McKerracher, P., Carkhuff, B., Koga, R., 1994. SEU hardening of
field programmable gate arrays (FPGAs) for space applications and device
characterization. Nuclear Science, IEEE Transactions on 41, 2179–2186.
doi:10.1109/23.340560

Katz, R., LaBel, K., Wang, J.J., Cronquist, B., Koga, R., Penzin, S., Swift, G., 1997.
Radiation effects on current field programmable technologies. Nuclear
Science, IEEE Transactions on 44, 1945–1956. doi:10.1109/23.658966

Kaufman, L., Johnson, B.W., 2001. Embedded Digital System Reliability and Safety
Analysis. NUREG/GR-0020.

Kim, J., Hardavellas, N., Mai, K., Falsafi, B., Hoe, J., 2007. Multi-bit Error Tolerant
Caches Using Two-Dimensional Error Coding, in: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
40. IEEE Computer Society, Washington, DC, USA, pp. 197–209.
doi:10.1109/MICRO.2007.28

Kish,	
 L.B.,	
 2002.	
 End	
 of	
 Moore’s	
 law:	
 thermal	
 (noise)	
 death	
 of	
 integration	
 in	

micro and nano electronics. Physics Letters A 305, 144–149.
doi:10.1016/S0375-9601(02)01365-8

Koga, R., Crain, S.H., Yu, P., Crawford, K.B., 2001a. SEE sensitivity determination
of high-density DRAMs with limited-range heavy ions, in: Radiation
Effects Data Workshop, 2001 IEEE. Presented at the Radiation Effects
Data Workshop, 2001 IEEE, pp. 182–189.
doi:10.1109/REDW.2001.960479

Koga, R., Crain, W.R., Crawford, K.B., Lau, D.D., Pinkerton, S.D., Yi, B.K., Chitty, R.,
1991. On the suitability of non-hardened high density SRAMs for space
applications. Nuclear Science, IEEE Transactions on 38, 1507–1513.
doi:10.1109/23.124139

Koga, R., Crawford, K.B., Grant, P.B., Kolasinski, W.A., Leung, D.L., Lie, T.J., Mayer,
D.C., Pinkerton, S.D., Tsubota, T.K., 1993a. Single ion induced multiple-bit

312

upset in IDT 256K SRAMs, in: Radiation and Its Effects on Components
and Systems, 1993.,RADECS 93., Second European Conference on.
Presented at the Radiation and its Effects on Components and Systems,
1993.,RADECS 93., Second European Conference on, pp. 485–489.
doi:10.1109/RADECS.1993.316526

Koga, R., Kolasinski, W.A., 1989. Heavy ion induced snapback in CMOS devices.
Nuclear Science, IEEE Transactions on 36, 2367–2374.
doi:10.1109/23.45450

Koga, R., Kolasinski, W.A., Marra, M.T., Hanna, W.A., 1985. Techniques of
Microprocessor Testing and SEU-Rate Prediction. Nuclear Science, IEEE
Transactions on 32, 4219–4224. doi:10.1109/TNS.1985.4334098

Koga, R., Pinkerton, S.D., Lie, T.J., Crawford, K.B., 1993b. Single-word multiple-bit
upsets in static random access devices. Nuclear Science, IEEE
Transactions on 40, 1941–1946. doi:10.1109/23.273460

Koga, R., Yu, P., Crawford, K.B., Crain, S.H., Tran, V.T., 2001b. Permanent single
event functional interrupts (SEFIs) in 128- and 256-megabit synchronous
dynamic random access memories (SDRAMs), in: Radiation Effects Data
Workshop, 2001 IEEE. Presented at the Radiation Effects Data Workshop,
2001 IEEE, pp. 6–13.

Koren, I., Koren, Z., 1998. Defect tolerance in VLSI circuits: techniques and yield
analysis. Proceedings of the IEEE 86, 1819 –1838. doi:10.1109/5.705525

Koren, I., Krishna, C.M., 2007. Fault-Tolerant Systems. Morgan Kaufmann.

Koren, I., Singh, A.D., 1990. Fault tolerance in VLSI circuits. Computer 23, 73 –83.
doi:10.1109/2.56854

Kovalenko, I.N., Kuznetzov, N.Y., Pegg, P.A., 1997. Mathematical Theory of
Reliability of Time Dependent Systems with Practical Applications, 1st ed.
Wiley.

Kulkarni, G.V., Nicola, F.V., Trivedi, S.K., 1987. Effects of Checkpointing and
Queueing on Program Performance. Duke University, Durham, NC, USA.

LaBel, K.A., Gates, M.M., Moran, A.K., Kim, H.S., Seidleck, C.M., Marshall, P.,
Kinnison, J., Carkhuff, B., 1996. Radiation effect characterization and test
methods of single-chip and multi-chip stacked 16 Mbit DRAMs. Nuclear
Science, IEEE Transactions on 43, 2974–2981. doi:10.1109/23.556894

313

Lala, J.H., Harper, R.E., 1994. Architectural principles for safety-critical real-time
applications. Proceedings of the IEEE 82, 25 –40. doi:10.1109/5.259424

Landis, D.L., 1989. A self-test system architecture for reconfigurable WSI, in: Test
Conference, 1989. Proceedings. Meeting the Tests of Time., International.
Presented at the Test Conference, 1989. Proceedings. Meeting the Tests of
Time., International, pp. 275 –282. doi:10.1109/TEST.1989.82308

Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S., 1994. A taxonomy of
computer program security flaws. ACM Comput. Surv. 26, 211–254.
doi:10.1145/185403.185412

Laplante, P.A., Ovaska, S.J., 2011. Real-Time Systems Design and Analysis: Tools
for the Practitioner. John Wiley & Sons.

Laprie, J., 1995. {Dependability - Its Attributes, Impairments and Means}, in:
Randell, B., Laprie, J., Kopetz, H., Littlewood, B. (Eds.), Predictably
Dependable Computing Systems. Springer-Verlag Heidelberg, pp. 1–24.

Laprie, J., Avizienis, A., 1986. Dependable computing: From concepts to design
diversity, in: PROCEEDINGS OF THE IEEE. pp. 629–638.

Laprie, J.-C., 2008. From dependability to resilience 8, G8–G9.

Laprie, J.C.C., Avizienis, A., Kopetz, H. (Eds.), 1992. Dependability: Basic Concepts
and Terminology. Springer-Verlag New York, Inc.

Latchoumy, P., Sheik, P., Khader, A., 2011. Survey on Fault Tolerance in Grid
Computing.

Lawrence, R.K., 2007. Radiation Characterization of 512Mb SDRAMs, in:
Radiation Effects Data Workshop, 2007 IEEE. Presented at the Radiation
Effects Data Workshop, 2007 IEEE, pp. 204–207.
doi:10.1109/REDW.2007.4342566

Leavy, J.F., Poll, R.A., 1969. Radiation-Induced Integrated Circuit Latchup. Nuclear
Science, IEEE Transactions on 16, 96–103.
doi:10.1109/TNS.1969.4325510

LEON3-FT SPARC V8 Processor - LEON3FT-RTAX - Data	
 Sheet	
 and	
 User’s	

manual. Aeroflex Gaisler AB, Sweden, 1.1.0.8 edition, 2009.

Li, J., Swartzlander, E., 1992. Concurrent error detection in ALUs by recomputing
with rotated operands, in: , 1992 IEEE International Workshop on Defect
and Fault Tolerance in VLSI Systems, 1992. Proceedings. Presented at the ,

314

1992 IEEE International Workshop on Defect and Fault Tolerance in VLSI
Systems, 1992. Proceedings, pp. 109 –116.
doi:10.1109/DFTVS.1992.224374

Lie, C.H., Hwang, C.L., Tillman, F.A., 1977. Availability of Maintained Systems: A
State-of-the-Art Survey. A I I E Transactions 9, 247–259.
doi:10.1080/05695557708975153

Lin, S., Costello, D.J., 1983. Error Control Coding: Fundamentals and Applications.
Prentice Hall.

Mahout, G., Pearce, M., Andrieux, M.-L., Arvidsson, C.-B., Charlton, D.G.,
Dinkespiler, B., Dowell, J.D., Gallin-Martel, L., Homer, R.J., Jovanovic, P.,
Kenyon, I.R., Kuyt, G., Lundquist, J., Mandic, I., Martin, O., Shaylor, H.R.,
Stroynowski, R., Troska, J., Wastie, R.L., Weidberg, A.R., Wilson, J.A., Ye, J.,
2000. Irradiation studies of multimode optical fibres for use in ATLAS
front-end links. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 446, 426–434. doi:10.1016/S0168-9002(99)01275-9

Maiz, J., Hareland, S., Zhang, K., Armstrong, P., 2003. Characterization of multi-bit
soft error events in advanced SRAMs, in: Electron Devices Meeting, 2003.
IEDM	
 ’03	
 Technical	
 Digest.	
 IEEE International. Presented at the Electron
Devices	
 Meeting,	
 2003.	
 	
 IEDM	
 ’03	
 Technical	
 Digest.	
 IEEE	
 International,	

IEEE, pp. 21.4.1– 21.4.4. doi:10.1109/IEDM.2003.1269335

Mao, W., Gulati, R.K., Goel, D.K., Ciletti, M.D., 1990. QUIETEST: a quiescent current
testing methodology for detecting leakage faults, in: , 1990 IEEE
International Conference on Computer-Aided Design, 1990. ICCAD-90.
Digest of Technical Papers. Presented at the , 1990 IEEE International
Conference on Computer-Aided Design, 1990. ICCAD-90. Digest of
Technical Papers, pp. 280 –283. doi:10.1109/ICCAD.1990.129902

Marshall, R.W., 1963. Microelectronic Devices for Application in Transient
Nuclear Radiation Environments. Aerospace and Navigational Electronics,
IEEE Transactions on Technical_Paper, 1.4.1–1–1.4.1–6.
doi:10.1109/TANE.1963.4502234

Mathew, B., Saab, D.G., 1993. Partial reset: An inexpensive design for testability
approach, in: [4th] European Conference on Design Automation, 1993,
with the European Event in ASIC Design. Proceedings. Presented at the
[4th] European Conference on Design Automation, 1993, with the
European Event in ASIC Design. Proceedings, pp. 151 –155.
doi:10.1109/EDAC.1993.386484

315

Matsunaga, J., Momose, H., Iizuka, H., Kohyama, S., 1980. Characterization of two
step impact	
 ionization	
 and	
 its	
 influence	
 in	
 NMOS	
 and	
 PMOS	
 VLSI’s,	
 in:	

Electron Devices Meeting, 1980 International. Presented at the Electron
Devices Meeting, 1980 International, pp. 736 – 739.
doi:10.1109/IEDM.1980.189942

Mavis,	
 D.G.,	
 2002.	
 “Single	
 event	
 transient phenomena—Challenges and solutions.
”	
 presented	
 at	
 the	
 Microelectronics	
 Reliability	
 and	
 Qualification	

Workshop.

Mavis, D.G., Eaton, P.H., 2002. Soft error rate mitigation techniques for modern
microcircuits, in: Reliability Physics Symposium Proceedings, 2002. 40th
Annual. Presented at the Reliability Physics Symposium Proceedings,
2002. 40th Annual, pp. 216–225. doi:10.1109/RELPHY.2002.996639

May, T., 1979. Soft Errors in VLSI: Present and Future. Components, Hybrids, and
Manufacturing Technology, IEEE Transactions on 2, 377–387.

May, T.C., Scott, G.L., Meieran, E.S., Winer, P., Rao, V.R., 1984. Dynamic Fault
Imaging of VLSI Random Logic Devices, in: Reliability Physics Symposium,
1984. 22nd Annual. Presented at the Reliability Physics Symposium, 1984.
22nd Annual, pp. 281–283. doi:10.1109/IRPS.1984.362061

May, T.C., Woods, M.H., 1979. Alpha-particle-induced soft errors in dynamic
memories. Electron Devices, IEEE Transactions on DOI - 26, 2–9.

McCluskey, E.J., Tseng, C.-W., 2000. Stuck-fault tests vs. actual defects, in: Test
Conference, 2000. Proceedings. International. Presented at the Test
Conference, 2000. Proceedings. International, pp. 336 –342.
doi:10.1109/TEST.2000.894222

McEvoy,	
 D.,	
 1981.	
 The	
 architecture	
 of	
 Tandem’s	
 NonStop	
 system,	
 in:	
 Proceedings
of	
 the	
 ACM	
 ’81	
 Conference,	
 ACM	
 ’81.	
 ACM,	
 New	
 York,	
 NY,	
 USA,	
 p.	
 245–.
doi:10.1145/800175.809886

McGraw-Hill concise encyclopedia of engineering., 2005. . McGraw-Hill, New
York.

McMahan, M.A., Leitner, D., Gimpel, T., Morel, J., Ninemire, B., Siero, R., Silver, C.,
Thatcher, R., 2004. A 16 MeV/nucleon cocktail for heavy ion testing, in:
Radiation Effects Data Workshop, 2004 IEEE. Presented at the Radiation
Effects Data Workshop, 2004 IEEE, pp. 156–159.
doi:10.1109/REDW.2004.1352923

Mei, K.C.Y., 1974. Bridging and Stuck-At Faults. IEEE Transactions on Computers
C-23, 720 – 727. doi:10.1109/T-C.1974.224020

316

Messenger, G.C., Ash, M.S., 1992. The Effects of Radiation on Electronic Systems,
2nd ed. Springer.

Metra, C., Favalli, M., Ricco, B., 1997. Compact and low power on-line self-testing
voting scheme, in: , 1997 IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, 1997. Proceedings. Presented at the ,
1997 IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, 1997. Proceedings, pp. 137 –145.
doi:10.1109/DFTVS.1997.628319

Meyer, F.J., Pradhan, D.K., 1991. Consensus with dual failure modes. IEEE
Transactions on Parallel and Distributed Systems 2, 214 –222.
doi:10.1109/71.89066

Miller, L.A., Brice, D.K., Prinja, A.K., Picraux, S.T., 1994. Molecular dynamics
simulations of bulk displacement threshold energies in Si. Radiation
Effects and Defects in Solids: Incorporating Plasma Science and Plasma
Technology 129, 127. doi:10.1080/10420159408228889

Miller, L.S., Mullin, J.B., 1991. Electronic materials: from silicon to organics.
Springer.

Moon, T.K., 2005. Error Correction Coding: Mathematical Methods and
Algorithms. John Wiley & Sons.

Mrstik, B.J., Hughes, H.L., McMarr, P.J., Lawrence, R.K., Ma, D.I., Isaacson, I.P.,
Walker, R.A., 2000. Hole and electron trapping in ion implanted thermal
oxides and SIMOX. IEEE Transactions on Nuclear Science 47, 2189 –2195.
doi:10.1109/23.903752

Mukherjee, S.S., Emer, J., Fossum, T., Reinhardt, S.K., 2004. Cache Scrubbing in
Microprocessors: Myth or Necessity?, in: Proceedings of the 10th IEEE
Pacific Rim International Symposium on Dependable Computing
(PRDC’04),	
 PRDC	
 ’04.	
 IEEE	
 Computer	
 Society,	
 Washington,	
 DC,	
 USA,	
 pp.	

37–42.

Murray, R.M., Day, J.C., Ingham, M.D., Reder, L.J., Williams, B.C., 2013. Engineering
Resilient Space Systems: Final Report - Keck Institute for Space Studies.

Nair, R., 2002. Effect of increasing chip density on the evolution of computer
architectures. IBM J. Res. Dev. 46, 223–234.

Nair, R., Thatte, S.M., Abraham, J.A., 1978. Efficient Algorithms for Testing
Semiconductor Random-Access Memories. IEEE Transactions on
Computers C-27, 572 –576. doi:10.1109/TC.1978.1675150

317

Naseer, R., Bhatti, R.Z., Draper, J., 2006. Analysis of Soft Error Mitigation
Techniques for Register Files in IBM Cu-08 90nm Technology, in: 49th
IEEE International Midwest Symposium on Circuits and Systems, 2006.
MWSCAS	
 ’06.	
 Presented	
 at	
 the	
 49th	
 IEEE	
 International	
 Midwest	

Symposium	
 on	
 Circuits	
 and	
 Systems,	
 2006.	
 MWSCAS	
 ’06,	
 pp.	
 515	
 –519.
doi:10.1109/MWSCAS.2006.382112

NASNGSFC Landsat-7 Project Office, Private Communication, 1995.

Neches, R., 2012. Engineered Resilient Systems: A DoD Science and Technology
Priority Area.

Neuberger, G., de Lima Kastensmidt, F.G., Reis, R., 2005. An automatic technique
for optimizing Reed-Solomon codes to improve fault tolerance in
memories. IEEE Design Test of Computers 22, 50 – 58.
doi:10.1109/MDT.2005.2

Neuberger, G., Lima, F. de, Carro, L., Reis, R., 2003. A multiple bit upset tolerant
SRAM memory. ACM Trans. Des. Autom. Electron. Syst. 8, 577–590.
doi:10.1145/944027.944038

Nguyen, D.N., Guertin, S.M., Swift, G.M., Johnston, A.H., 1999. Radiation effects on
advanced flash memories. Nuclear Science, IEEE Transactions on 46,
1744–1750. doi:10.1109/23.819148

Nicolaidis, M. (Ed.), 2010. Soft Errors in Modern Electronic Systems, 1st Edition.
ed. Springer.

Ning, T.H., Yu, H.N., 1974. Optically induced injection of hot electrons into
SiO<inf>2</inf>. Journal of Applied Physics 45, 5373 –5378.
doi:10.1063/1.1663246

Nishioka, Y., Ohyu, K., Ohji, Y., Kato, M., da Silva, E.F., J., Ma, T.P., 1989. Radiation
hardened micron and submicron MOSFETs containing fluorinated oxides.
IEEE Transactions on Nuclear Science 36, 2116 –2123.
doi:10.1109/23.45413

Normand, E., Wert, J.L., Quinn, H., Fairbanks, T.D., Michalak, S., Grider, G.,
Iwanchuk, P., Morrison, J., Wender, S., Johnson, S., 2010. First Record of
Single-Event Upset on Ground, Cray-1 Computer at Los Alamos in 1976.
Nuclear Science, IEEE Transactions on 57, 3114 –3120.
doi:10.1109/TNS.2010.2083687

Northcliffe, L., Schilling, R., 1970. Range and stopping-power tables for heavy
ions. Atomic Data and Nuclear Data Tables 7, 233–463.

318

Oh, N., Shirvani, P.P., McCluskey, E.J., 2002a. Control-flow checking by software
signatures. IEEE Transactions on Reliability 51, 111 –122.
doi:10.1109/24.994926

Oh, N., Shirvani, P.P., McCluskey, E.J., 2002b. Error detection by duplicated
instructions in super-scalar processors. IEEE Transactions on Reliability
51, 63 –75. doi:10.1109/24.994913

Oldham, T.R., Ladbury, R.L., Friendlich, M., Kim, H.S., Berg, M.D., Irwin, T.L.,
Seidleck, C., LaBel, K.A., 2006. SEE and TID Characterization of an
Advanced Commercial 2Gbit NAND Flash Nonvolatile Memory. Nuclear
Science, IEEE Transactions on 53, 3217–3222.
doi:10.1109/TNS.2006.885843

Oldham, T.R., Suhail, M., Friendlich, M.R., Carts, M.A., Ladbury, R.L., Kim, H.S.,
Berg, M.D., Poivey, C., Buchner, S.P., Sanders, A.B., Seidleck, C.M., LaBel,
K.A., 2008. TID and SEE Response of Advanced 4G NAND Flash Memories,
in: Radiation Effects Data Workshop, 2008 IEEE. Presented at the
Radiation Effects Data Workshop, 2008 IEEE, pp. 31–37.
doi:10.1109/REDW.2008.12

Olsen, J., Becher, P.E., Fynbo, P.B., Raaby, P., Schultz, J., 1993. Neutron-induced
single event upsets in static RAMS observed a 10 km flight attitude.
Nuclear Science, IEEE Transactions on 40, 74–77. doi:10.1109/23.212319

ONBASS Consortium, 2004. ONBASS Consortium, ON Board Active Safety System,
European Commission DG Research, contract number AST4-CT-2004-
516045.

Owens, B.D., Adams, M.E., Benzce, W.J., Green, G., Shestople, P., 2006. The Effects
of Radiation Events on Gravity Probe B. IEEE Transactions on Nuclear
Science.

Pankratius, V., Jannesari, A., Tichy, W.F., 2009. Parallelizing Bzip2: A Case Study
in Multicore Software Engineering. IEEE Softw. 26, 70–77.

Patel,	
 J.H.,	
 Fung,	
 L.Y.,	
 1982.	
 Concurrent	
 Error	
 Detection	
 in	
 ALU’s	
 by	
 Recomputing	

with Shifted Operands. IEEE Transactions on Computers C-31, 589 –595.
doi:10.1109/TC.1982.1676055

Paul, S., Cai, F., Zhang, X., Bhunia, S., 2011. Reliability-Driven ECC Allocation for
Multiple Bit Error Resilience in Processor Cache. IEEE Transactions on
Computers 60, 20 –34. doi:10.1109/TC.2010.203

Pellish, J.A., Reed, R.A., Schrimpf, R.D., Alles, M.L., Varadharajaperumal, M., Niu, G.,
Sutton, A.K., Diestelhorst, R.M., Espinel, G., Krithivasan, R., Comeau, J.P.,

319

Cressler, J.D., Vizkelethy, G., Marshall, P.W., Weller, R.A., Mendenhall, M.H.,
Montes, E.J., 2006. Substrate Engineering Concepts to Mitigate Charge
Collection in Deep Trench Isolation Technologies. IEEE Transactions on
Nuclear Science 53, 3298 –3305. doi:10.1109/TNS.2006.885798

Pickel, J.C., Blandford, J.T., 1978. Cosmic Ray Induced in MOS Memory Cells.
Nuclear Science, IEEE Transactions on 25, 1166–1171.
doi:10.1109/TNS.1978.4329508

Pickel, J.C., Blandford, J.T., 1980. Cosmic-Ray-Induced Errors in MOS Devices.
IEEE Transactions on Nuclear Science 27, 1006–1015.
doi:10.1109/TNS.1980.4330967

Pierce, W.H., 1965. Failure-tolerant computer design. Academic Press, (New
York).

Podgorsak, E.B., 2009. Radiation Physics for Medical Physicists. Springer.

Poivey, C., Gee, G., LaBel, K.A., Barth, J.L., 2004. In-flight observations of long-term
single event effect (SEE) performance on X-ray Timing Explorer (XTE)
solid-state recorders (SSRs) [SRAM], in: 2004 IEEE Radiation Effects Data
Workshop. Presented at the 2004 IEEE Radiation Effects Data Workshop,
pp. 54–57. doi:10.1109/REDW.2004.1352904

Pomeranz, I., Reddy, S.M., 1993. Classification of faults in synchronous sequential
circuits. IEEE Transactions on Computers 42, 1066 –1077.
doi:10.1109/12.241596

Pouponnot, A.L.R., 2005. Strategic Use of SEE Mitigation Techniques for the
Development of the ESA Microprocessors: Past, Present and Future, in:
Proceedings of the 11th IEEE International On-Line Testing Symposium,
IOLTS	
 ’05.	
 IEEE	
 Computer	
 Society,	
 Washington,	
 DC,	
 USA,	
 pp.	
 319–323.
doi:10.1109/IOLTS.2005.66

Power 6 Specs: IBM Power6 Microprocessor and IBM System p 570, 2007.

Prasad, A.V.S.S., Agrawal, V.D., Atre, M.V., 2002. A new algorithm for global fault
collapsing into equivalence and dominance sets, in: Test Conference,
2002. Proceedings. International. Presented at the Test Conference, 2002.
Proceedings. International, pp. 391 – 397.
doi:10.1109/TEST.2002.1041783

Price, D., 1995. Pentium FDIV flaw-lessons learned. IEEE Micro 15, 86 –88.
doi:10.1109/40.372360

320

Pritchard, B.E., Swift, G.M., Johnston, A.H., 2002. Radiation Effects Predicted,
Observed, and Galileo Compared for Spacecraft Systems.

Puchner, H., Kapre, R., Sharifzadeh, S., Majjiga, J., Chao, R., Radaelli, D., Wong, S.,
2006. Elimination of Single Event Latchup in 90nm SRAM Technologies,
in: Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE
International. Presented at the Reliability Physics Symposium
Proceedings, 2006. 44th Annual., IEEE International, pp. 721 –722.
doi:10.1109/RELPHY.2006.251342

Qian, Y., 2008. Information Assurance: Dependability and Security in Networked
Systems. Morgan Kaufmann.

Quinn, H., Graham, P., Krone, J., Caffrey, M., Rezgui, S., 2005. Radiation-induced
multi-bit upsets in SRAM-based FPGAs. Nuclear Science, IEEE
Transactions on 52, 2455–2461. doi:10.1109/TNS.2005.860742

R. Ladbury, M. D Berg, H. Kim, K. LaBel, M. Friendlich, R. Koga, J. George, S. Crain,
P. Yu, R. A. Reed, 2006. Radiation Performance of 1 Gbit DDR SDRAMs
Fabricated in the 90 nm CMOS Technology Node, in: Radiation Effects
Data Workshop, 2006 IEEE. Presented at the Radiation Effects Data
Workshop, 2006 IEEE, pp. 126–130. doi:10.1109/REDW.2006.295480

Ramanarayanan, R., Degalahal, V.S., Krishnan, R., Jungsub Kim, Narayanan, V.,
Yuan Xie, Irwin, M.J., Unlu, K., 2009. Modeling Soft Errors at the Device
and Logic Levels for Combinational Circuits. Dependable and Secure
Computing, IEEE Transactions on 6, 202–216.
doi:10.1109/TDSC.2007.70231

Ravishankar K. Iyer, Z.K., 2003. Hardware and Software Error Detection.

Reed, I.S., Solomon, G., 1960. Polynomial Codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics 8, 300–304.

Reed, R.A., Carts, M.A., Marshall, P.W., Marshall, C.J., Buchner, S., La Macchia, M.,
Mathes, B., McMorrow, D., 1996. Single Event Upset cross sections at
various data rates. Nuclear Science, IEEE Transactions on 43, 2862–2867.
doi:10.1109/23.556878

Reed, R.A., Carts, M.A., Marshall, P.W., Marshall, C.J., Musseau, O., McNulty, P.J.,
Roth, D.R., Buchner, S., Melinger, J., Corbiere, T., 1997. Heavy ion and
proton-induced single event multiple upset. IEEE Transactions on Nuclear
Science 44, 2224–2229. doi:10.1109/23.659039

Reed, R.A., Weller, R.A., Schrimpf, R.D., Mendenhall, M.H., Warren, K.M.,
Massengill, L.W., 2006. Implications of Nuclear Reactions for Single Event

321

Effects Test Methods and Analysis. Nuclear Science, IEEE Transactions on
DOI - 10.1109/TNS.2006.885950 53, 3356–3362.

Reviriego, P., Maestro, J.A., Baeg, S., Wen, S., Wong, R., 2010. Protection of
Memories Suffering MCUs Through the Selection of the Optimal
Interleaving Distance. IEEE Transactions on Nuclear Science 57, 2124 –
2128. doi:10.1109/TNS.2010.2042818

Reviriego, P., Maestro, J.A., Cervantes, C., 2007. Reliability Analysis of Memories
Suffering Multiple Bit Upsets. IEEE Transactions on Device and Materials
Reliability 7, 592 –601. doi:10.1109/TDMR.2007.910443

Reynolds, D.A., Metze, G., 1978. Fault Detection Capabilities of Alternating Logic.
IEEE Transactions on Computers C-27, 1093 –1098.
doi:10.1109/TC.1978.1675011

Roche, P., Gasiot, G., 2005. Impacts of front-end and middle-end process
modifications on terrestrial soft error rate. IEEE Transactions on Device
and Materials Reliability 5, 382 – 396. doi:10.1109/TDMR.2005.853451

Rockett, L.R., 1988. An SEU-hardened CMOS data latch design. IEEE Transactions
on Nuclear Science 35, 1682–1687. doi:10.1109/23.25522

Roy, R.K., Niermann, T.M., Patel, J.H., Abraham, J.A., Saleh, R.A., 1988. Compaction
of ATPG-generated test sequences for sequential circuits, in: , IEEE
International Conference on Computer-Aided Design, 1988. ICCAD-88.
Digest of Technical Papers. Presented at the , IEEE International
Conference on Computer-Aided Design, 1988. ICCAD-88. Digest of
Technical Papers, pp. 382 –385. doi:10.1109/ICCAD.1988.122533

Saleh, A.M., Serrano, J.J., Patel, J.H., 1990. Reliability of scrubbing recovery-
techniques for memory systems. IEEE Transactions on Reliability 39, 114
–122. doi:10.1109/24.52622

Sandireddy, R.K.K.R., Agrawal, V.D., 2005. Diagnostic and detection fault
collapsing for multiple output circuits, in: Design, Automation and Test in
Europe, 2005. Proceedings. Presented at the Design, Automation and Test
in Europe, 2005. Proceedings, pp. 1014 – 1019 Vol. 2.
doi:10.1109/DATE.2005.121

Schagaev, I., 1986. Algorithms of computation recovery. Automatic and Remote
Control 7.

Schagaev, I., 1987. Algorithms to restoring a computing process. Automatic and
Remote Control 7.

322

Schagaev, I., 1989. Yet Another Approach To Classification Of Redundancy, in:
Proceedings of FTSD. Prague,Czeschoslovakia, pp. 485–490.

Schagaev, I., 2008. Reliability of malfunction tolerance, in: 2008 International
Multiconference on Computer Science and Information Technology.
Presented at the 2008 International Multiconference on Computer
Science and Information Technology (IMCSIT), Wisla, Poland, pp. 733–
737. doi:10.1109/IMCSIT.2008.4747323

Schagaev, I., 2009. ERA: Embedded Reconfigurable Architecture - past present
and future.

Schagaev, I., Buhanova, G., 2001. Comparative Study of Fault Tolerant RAM
Structures, in: IEEE DSN01. Presented at the IEEE DSN01, Goteborg.

Schagaev, I., Kaegi, T., Gutknetch, J., 2010. ERA: Evolving Reconfigurable
Architecture, in: Proceedings of 11th ACIS. Presented at the International
Conference on Software Engineering Artificial Intelligence, Networking
and Parallel/Distributed Computing, London.

Schagaev, J.Z.I., 2001. Redundancy classification and its applications for fault
tolerant computer design. IEEE TESADI-01.

Schindlbeck, G., 2005. Types of soft errors in DRAMs, in: Radiation and Its Effects
on Components and Systems, 2005. RADECS 2005. 8th European
Conference on. Presented at the Radiation and Its Effects on Components
and Systems, 2005. RADECS 2005. 8th European Conference on, pp. PE1–
1–PE1–5. doi:10.1109/RADECS.2005.4365591

Schroder, D.K., Babcock, J.A., 2003. Negative bias temperature instability: Road to
cross in deep submicron silicon semiconductor manufacturing. Journal of
Applied Physics 94, 1 –18. doi:10.1063/1.1567461

Seal, D., 2000. ARM architecture reference manual. Addison-Wesley.

Segura, J., Hawkins, C.F., 2005. Bridging Defects, in: CMOS Electronics. John Wiley
& Sons, Inc., pp. 199–222.

Seifert, N., Xiaowei Zhu, Massengill, L.W., 2002. Impact of scaling on soft-error
rates in commercial microprocessors. Nuclear Science, IEEE Transactions
on 49, 3100–3106. doi:10.1109/TNS.2002.805402

Sexton, F.W., Fleetwood, D.M., Shaneyfelt, M.R., Dodd, P.E., Hash, G.L., 1997. Single
event gate rupture in thin gate oxides. IEEE Transactions on Nuclear
Science 44, 2345 –2352. doi:10.1109/23.659060

323

Shannon, C.E., 1948. A mathematical theory of communication. Bell System
Technical Journal 27, pp 379–423,623–656.

Shedletsky, J.J., 1978. Error Correction by Alternate-Data Retry. IEEE
Transactions on Computers C-27, 106 –112.
doi:10.1109/TC.1978.1675044

Sherman, L., 2003. Stratus continuous processing technology – the smarter
approach to uptime. Stratus Technologies Whitepaper. Technical report,
Stratus Technologies.

Shirvani, P.P., McCluskey, E.J., 1998. Fault-Tolerant Systems in A Space
Environment: The CRC ARGOS Project. Stanford University.

Shivakumar, P., Kistler, M., Keckler, S.W., Burger, D., Alvisi, L., 2002. Modeling the
effect of technology trends on the soft error rate of combinational logic,
in: Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on. Presented at the Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International Conference on, pp.
389–398.

Silberberg, R., Tsao, C.H., Letaw, J.R., 1984. Neutron Generated Single-Event
Upsets in the Atmosphere. Nuclear Science, IEEE Transactions on 31,
1183 –1185. doi:10.1109/TNS.1984.4333479

Silvestri, M., Gerardin, S., Paccagnella, A., Ghidini, G., 2009. Gate Rupture in Ultra-
Thin Gate Oxides Irradiated With Heavy Ions. Nuclear Science, IEEE
Transactions on 56, 1964–1970. doi:10.1109/TNS.2009.2022364

Sklaroff, J.R., 1976. Redundancy Management Technique for Space Shuttle
Computers. IBM Journal of Research and Development 20, 20 –28.
doi:10.1147/rd.201.0020

Slayman, C.W., 2005. Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations. Device and
Materials Reliability, IEEE Transactions on 5, 397–404.
doi:10.1109/TDMR.2005.856487

Slegel, T.J., Averill, R.M., I., Check, M.A., Giamei, B.C., Krumm, B.W., Krygowski,
C.A., Li, W.H., Liptay, J.S., MacDougall, J.D., McPherson, T.J., Navarro, J.A.,
Schwarz, E.M., Shum, K., Webb,	
 C.F.,	
 1999.	
 IBM’s	
 S/390	
 G5	
 microprocessor	

design. IEEE Micro 19, 12 –23. doi:10.1109/40.755464

Smith, G.L., 1985. Models for delay faults based on paths. Proc. Int. Test Conf
342–349.

324

Smith, M., 1997. Application-Specific Integrated Circuits, 1st ed. Addison-Wesley
Professional.

Sogomonian, E.., Schagaev, I., 1988. Hardware and software fault tolerance of
computer systems. Avtomatika i Telemekhanika 3–39.

SPARC International, Inc., C., 1992. The SPARC Architecture Manual: Version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Srour, J.R., Marshall, C.J., Marshall, P.W., 2003. Review of displacement damage
effects in silicon devices. IEEE Transactions on Nuclear Science 50, 653 –
670. doi:10.1109/TNS.2003.813197

Stassinopoulos, E.G., Brucker, G.J., Calvel, P., Baiget, A., Peyrotte, C., Gaillard, R.,
1992. Charge generation by heavy ions in power MOSFETs, burnout space
predictions and dynamic SEB sensitivity. Nuclear Science, IEEE
Transactions on 39, 1704–1711. doi:10.1109/23.211357

Stepanyants, A., 2001. Fault Tolerant Processor and Its Reliability Analysis, in:
IEEE DSN01. Presented at the IEEE DSN01, Goteborg.

Storey, D.N., 1996. Safety Critical Computer Systems, 1st ed. Prentice Hall.

Stroud,	
 C.E.,	
 2002.	
 A	
 Designer’s	
 Guide	
 to	
 Built-in Self-Test. Springer.

Swift, D.W., John, G.H., 1997. Evaluation of the Space Environment on TOPEX-
Poseidon and On-Board Failure of Optocouplers - Document JPL D-14157.

Swift, G., Katz, R., 1996. An experimental survey of heavy ion induced dielectric
rupture in Actel Field Programmable Gate Arrays (FPGAs). Nuclear
Science, IEEE Transactions on 43, 967–972. doi:10.1109/23.510741

Swift, G.M., Guertin, S.M., 2000. In-flight observations of multiple-bit upset in
DRAMs. IEEE Transactions on Nuclear Science 47, 2386–2391.
doi:10.1109/23.903781

Taber, A., Normand, E., 1993. Single event upset in avionics. Nuclear Science,
IEEE Transactions on 40, 120–126. doi:10.1109/23.212327

Taber, A.H., Normand, E., 1992. Investigation and Characterization of SEU Effects
and Hardening Strategies in Avionics. (IBM Report 92-L75-020-2 No. 92-
L75-020-2), IBM Report 92-L75-020-2. IBM Report 92-L75-020-2.
Defense Technical Information Center.

325

Takeda, E., Kume, H., Nakagome, Y., Makino, T., Shimizu, A., Asai, S., 1983. An As-P
double diffused drain MOSFET	
 for	
 VLSI’s.	
 IEEE	
 Transactions	
 on	
 Electron	

Devices 30, 652 – 657. doi:10.1109/T-ED.1983.21184

Tehranipoor, M., Peng, K., Chakrabarty, K., 2012. Delay Test and Small-Delay
Defects, in: Test and Diagnosis for Small-Delay Defects. Springer New
York, pp. 21–36.

Test Method for Beam Accelerated Soft Error Rate, 2007.

Thambidurai, P., Park, Y., 1988. Interactive consistency with multiple failure
modes, in: , Seventh Symposium on Reliable Distributed Systems, 1988.
Proceedings. Presented at the , Seventh Symposium on Reliable
Distributed Systems, 1988. Proceedings, pp. 93 –100.
doi:10.1109/RELDIS.1988.25784

Turski, W.M., Wasserman, A.I., 1978. Computer programming methodology.
SIGSOFT Softw. Eng. Notes 3, 20–21. doi:10.1145/1005888.1005894

Underwood, C.I., 1998. The single-event-effect behaviour of commercial-off-the-
shelf memory devices-A decade in low-Earth orbit. Nuclear Science, IEEE
Transactions on 45, 1450–1457. doi:10.1109/23.685222

Valstar, J.E., 1965. The Contribution of Testability to the Cost-Effectiveness of a
Weapon System. IEEE Transactions on Aerospace AS-3, 52 –59.
doi:10.1109/TA.1965.4319758

Velazco, R., Fouillat, P., Reis, R.A. da L., 2007. Radiation effects on embedded
systems. Springer.

Von Neumann, J., 1956. Probabilistic logics and the synthesis of reliable
organisms from unreliable components, in: Automata Studies. Princeton
University Press, pp. 43–98.

Wallmark, J.T., Marcus, S.M., 1962. Minimum Size and Maximum Packing Density
of Nonredundant Semiconductor Devices. Proceedings of the IRE 50, 286–
298. doi:10.1109/JRPROC.1962.288321

Warren, K.M., Weller, R.A., Mendenhall, M.H., Reed, R.A., Ball, D.R., Howe, C.L.,
Olson, B.D., Alles, M.L., Massengill, L.W., Schrimpf, R.D., Haddad, N.F.,
Doyle, S.E., McMorrow, D., Melinger, J.S., Lotshaw, W.T., 2005. The
contribution of nuclear reactions to heavy ion single event upset cross-
section measurements in a high-density SEU hardened SRAM. Nuclear
Science, IEEE Transactions on 52, 2125–2131.
doi:10.1109/TNS.2005.860677

326

Waskiewicz, A.E., Groninger, J.W., Strahan, V.H., Long, D.M., 1986. Burnout of
Power MOS Transistors with Heavy Ions of Californium-252. Nuclear
Science, IEEE Transactions on DOI - 10.1109/TNS.1986.4334670 33,
1710–1713.

Weaver, C., Emer, J., Mukherjee, S.S., Reinhardt, S.K., 2004. Techniques to reduce
the soft error rate of a high-performance microprocessor, in: Computer
Architecture, 2004. Proceedings. 31st Annual International Symposium
on. pp. 264 – 275. doi:10.1109/ISCA.2004.1310780

Weaver, H.T., Axness, C.L., McBrayer, J.D., Browning, J.S., Fu, J.S., Ochoa, A., Koga,
R., 1987. An SEU Tolerant Memory Cell Derived from Fundamental
Studies of SEU Mechanisms in SRAM. IEEE Transactions on Nuclear
Science 34, 1281–1286. doi:10.1109/TNS.1987.4337466

Williams, T.W., Kapur, R., Mercer, M.R., Dennard, R.H., Maly, W., 1996. Iddq
testing for high performance CMOS-the next ten years, in: European
Design and Test Conference, 1996. ED TC 96. Proceedings. Presented at
the European Design and Test Conference, 1996. ED TC 96. Proceedings,
pp. 578 –583. doi:10.1109/EDTC.1996.494359

Wirth, G.I., Vieira, M.G., Neto, E.H., Kastensmidt, F.L., 2008. Modeling the
sensitivity of CMOS circuits to radiation induced single event transients.
Microelectronics Reliability 48, 29–36.
doi:10.1016/j.microrel.2007.01.085

Wirth, N., 1983. Programming in Modula-2. Springer-Verlag TELOS.

Wirth, N., 1988. The programming language Oberon. Softw. Pract. Exper. 18,
671–690.

Wirth, N., 1992. Project Oberon: The Design of an Operating System and
Compiler. Addison-Wesley Pub (Sd).

Wood, A., 1999. Data Integrity Concepts, Features, and Technology. White paper,
Tandem Division, Compaq Computer Corporation.

Woodard, S.E., Metze, G., 1978. Self-checking alternating logic: Sequential circuit
design, in: Proceedings of the 5th Annual Symposium on Computer
Architecture,	
 ISCA	
 ’78.	
 ACM,	
 New	
 York,	
 NY,	
 USA,	
 pp.	
 114–122.
doi:10.1145/800094.803037

Wrobel, F., Hubert, G., Iacconi, P., 2006. A Semi-empirical Approach for Heavy Ion
SEU Cross Section Calculations. Nuclear Science, IEEE Transactions on 53,
3271–3276. doi:10.1109/TNS.2006.886200

327

Wyatt, R.C., McNulty, P.J., Toumbas, P., Rothwell, P.L., Filz, R.C., 1979. Soft Errors
Induced by Energetic Protons. Nuclear Science, IEEE Transactions on 26,
4905–4910. doi:10.1109/TNS.1979.4330248

Xiaoqing, W., Saluja, K.K., Kinoshita, K., Tamamoto, H., 1996. Equivalence fault
collapsing for transistor leakage faults, in: , IEEE International Workshop
on IDDQ Testing, 1996. Presented at the , IEEE International Workshop on
IDDQ Testing, 1996, pp. 79 –83. doi:10.1109/IDDQ.1996.557836

Xiaowei Zhu, Baumann, R., Pilch, C., Zhou, J., Jones, J., Cirba, C., 2005. Comparison
of product failure rate to the component soft error rates in a multi-core
digital signal processor, in: Reliability Physics Symposium, 2005.
Proceedings. 43rd Annual. 2005 IEEE International. Presented at the
Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005
IEEE International, pp. 209–214. doi:10.1109/RELPHY.2005.1493086

Yu Qingkui, Tang Min, Zhu Hengjing, Zhang Haiming, Zhang Yanwei, Sun Jixing,
2005. Experimental Investigation of Radiation Damage on CCD with
Protons and Cobalt 60 Gamma Rays, in: Radiation and Its Effects on
Components and Systems, 2005. RADECS 2005. 8th European Conference
on. Presented at the Radiation and Its Effects on Components and
Systems, 2005. RADECS 2005. 8th European Conference on, pp. LNW2–1–
LNW2–5. doi:10.1109/RADECS.2005.4365667

Zhang, B., Tang, L., DeCastro, J., Goebel, K., 2011. Prognostics-enhanced Receding
Horizon Mission Planning for Field Unmanned Vehicles, in: AIAA
Guidance, Navigation, and Control Conference. American Institute of
Aeronautics and Astronautics.

Ziegler, J.F., 1996. Terrestrial cosmic rays [WWW Document]. IBM Journal of
Research and Development. URL 10.1147/rd.401.0019

Ziegler, J.F., Lanford, W.A., 1979. Effect of Cosmic Rays on Computer Memories.
Science 206, 776–788. doi:10.1126/science.206.4420.776

Ziegler, J.F., Puchner, H., 2004. SER--history, Trends and Challenges: A Guide for
Designing with Memory ICs. Cypress.

Ziegler, J.F., Ziegler, M.D., Biersack, J.P., 2010. SRIM - The stopping and range of
ions in matter (2010). Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms 268,
1818–1823. doi:10.1016/j.nimb.2010.02.091

328

Appendix A

Appendix A

ERRIC’s CPU Logical Structure

and

Instruction Set

Appendix A

 328

1 CPU Logical Structure

Logically, the Processor Unit consists of the following components:

x Central processor unit itself (CPU)

x Common purpose registers (R0, … R31)

x Special purpose registers (IR, PC)

x Random access memory (RAM).

Below is the short characteristics of the components mentioned.

Processor has only two special register IR and PC, and they are not accessible for
programmers. The memory image in the example below o shows mapping and using of
the general purpose registers (R0,…,R31) for SB, FP etc.

1.1 Common Purpose Registers
• 32 common registers (R0…R31) are of 32 bits each.
• Every register can contain either a value or an address of a memory location.
• An address in a register can address any byte of memory.
• The CPU performs all actions on the operands taken from common registers. There

are instructions for loading values from the memory to a register, and for storing a
value from a register to the memory.

1.2 Special Purpose Registers
• PC register (Program Counter) contains 32-bit address of the leftmost (high)

byte of the instruction which is being currently executed. After the current
instruction is completed, the address in PC is normally increased by 2 addressing
the next instruction (because every instruction occupies 2 bytes, see later). The
exception is CBR instruction which can alter this behavior setting the new
address on the PC taking it from a common register. There are no other ways to
modify the contents of the PC register.

R0

R1

R31

. . .

Appendix A

 329

1.3 Supported Values
• The CPU operates with 8-, 16-, and 32-bit values.
• The values of all formats are considered either as signed integers (arithmetic

ADD and SUB instructions, and arithmetic shift ASL, ASR instructions) or as bit
scales (logical shift LSL, LSR instructions and logical AND, OR, and XOR
instructions).

• Positive integer values are represented in the direct code (with 0 in the sign bit).
Negative integers are represented in the two's complement code. See ISO-
XXXX for details.

8-bit Values
• The range of possible 8-bit integer values is [-128..127].
• Alignment requrements
• The format of 8-bit signed integers is shown below:

16-bit Values
• The range of possible 16-bit integer values is [-32768..32767].
• Alignment requirements
• The format of 16-bit signed integers is shown below:

Bits 31- 17 are not used

31 0

15-bit absolute
value

Value sign:
0 for positives,
1 for negatives

151617

Bits 31- 17 are not used

31 0

15-bit absolute
value

Value sign:
0 for positives,
1 for negatives

151617

Here is a mistake. 16 bit value takes 0-15 bits and 15th bit is sign. We count from
0, not from 1, thus 15th bit is a bit number 16.

Appendix A

 330

32-bit Values
• The range of possible 32-bit integer values is [-2147483648..2147483647]
• Alignment requirements

• The format of 32-bit signed integers is shown below:

31 0

31-bit absolute
value

Value sign:
0 for positives,
1 for negatives

3031 0

31-bit absolute
value

Value sign:
0 for positives,
1 for negatives

30

Non-supported Values

• Long (64-bit) integer and floating point values are not directly supported by the
CPU. If necessary, the support can be provided by using special software
routines using predefined library.

• The floating-point types should be conceptually associated with the 32-bit single-
precision and 64-bit double-precision IEEE 754 values and operations as
specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985 (IEEE, New York).

Appendix A

 331

2 Instruction Set
2.1 Common Instruction Format
• Every instruction occupies 16 bits (two bytes).

• Format code (bits 15-14 of the instruction) encodes format of operands:
00 is for 8 bit (lowest 8 bits of operands participate in the operation),
01 is for 16 bit (lowest 16 bits of operands participate in the operation),
10 is reserved,
11 is for 32 bits (entire 32 bits of operands participate in the operation).

• Instruction code (bits 13-10 of the instruction) encodes the operation kind of the
instruction. There are 16 main kinds of instructions coded by 0x0, 0x1, … 0xF.

• Two operands (bits 9-5 and 4-0 of the instruction) always contain register codes
(numbers within the range of 0..31).

• Alignment requirements

• The overall instruction’s layout is shown below:

Operand 2:
5 bits

Operand 1:
5 bits

Instruction
code: 4 bits

Format
code:
2 bits

13 09 410 51415

Operand 2:
5 bits

Operand 1:
5 bits

Instruction
code: 4 bits

Format
code:
2 bits

13 09 410 51415

Appendix A

 332

2.1 LD Instruction
• LD Ri, Rj Load from the memory
• The LD instruction copies the value of a 32-bit memory word pointed to by

Ri register, to the Rj register.
• The suggested assembly statement for the LD instruction is:

 Rj := *Ri

• The instruction format is as follows:

1 1 0 0 0 1 i j1 1 0 0 0 1 i j

• The contents of the register Ri is considered as a 32-bit address
of a 32-bit memory word.

• Instruction format is always 16 bit, i.e., the entire 32-bit word is copied from the
memory to the register contains 2 isntructions.

• When the instruction is completed, the original contents of the register Rj is lost.

• Registers Ri and Rj can be the same register. If not, the contents of the Ri
register (i.e., the address) does not change.

• The effect of the LD instruction is shown below:

Ri

Rj

Ri

Rj

Memory
Before LD

After LD
Memory

Ri

Rj

Ri

Rj

Memory
Before LD

After LD
Memory

Appendix A

 333

2.2 LDA Instruction (Load address from memory)
x The LDA instruction takes the value from the next 32-bit word, then adds it

to the current value of the Ri register, and stores the result to the Ri
register. (LDA Ri, Rj ???)

Eugene, your semantics is different with ours. For your LDA version, it is efficient for
indexed addressing and can facilitate procedural calls. However, it slows down the
direct addressing which is more often in programs. When you need directly addressing
constants or variables, you need to load a ZERO into Ri and then perform the operation.
For us, the semantics of LDA Rj is to load the next 32-bit word into register Rj. For
index addressing, it can be achieve by two instructions (LDA Rj; ADD Ri, Rj). Here,
it is the choice between RISC instruction and complex instructions. I do agree, as we
stand for two operand instruction set with explicit “manifestation” of them, and I
believe we can progress here immediately if Eugene agree with this approach.
Probably write couple of more sentences why we are choosing this approach will
be good, three variables two actions sum and access, while semantic of
instruction should remind what we are doing – i.e. read or write, not add or delete.

x The instruction format is as follows:

1 1 0 0 1 0 i j1 1 0 0 1 0 i j

• The contents of the register Ri is considered as a 32-bit address of a 32-bit

memory word.
• The next 32-bit word (pointed to by the PC register) is considered as a constant

that loaded.
• When the instruction is completed, the original contents of the register Rj is lost.
• Alignment requirements for the LDA instruction are as follows:

- The LDA instruction must occupy the left two bytes of the 32-bit word (not
necessary please see the example code and early comments).
- The right two bytes must be left empty. (not necessary, see early comments)
- The constant must occupy the entire 32-bit word next to the word with the LDA
instruction.

• After the instruction has completed its execution, the next instruction to execute
is fetched by the address PC+2 (but not PC+1 as for all other instructions).
For 32 bit memory, PC is increased only after 32 bits code (2 instructions) or 32
bits data have been processed. Each time, two instructions will be fetched.

Proper alignment is necessary for dealing with subroutine.

Appendix A

 334

• The suggested assembly statement for the LDA instruction:
HAO, PLS WRITE AS WE DISCUSS, CORRECT AS WE DISCUSS. USING AS
MUCH AS POSSIBLE THE SAME FIGURES EUGENE DID.

• Rj := Address

• The scheme of how code is being processed is shown below:

• The effect of the LDA instruction is shown below

LDA i

Constant

Current instruction

Before LDA

Next instructions

PC

. . .

LDA j

Address

Current instruction

Before LDA

PC

. . .

After LDA

Address

PC

Current instructions

Next instructions

. . .

LDA i j

Appendix A

 335

Fig. XX. The Effect of the LDA instruction (LMU version)

Eugene’s version of LDA
•

 Rj := Ri + constant
 Rj := Ri - constant

• The scheme of how code is being processed is shown below:

Before LDA

LDA j

Address

After LDA

Data
Section

Code
Section

PC

Rj

Memory

LDA j

Address

Data
Section

Code
Section

PC

Rj Address

Appendix A

 336

LDA i j Empty

Constant

Current instruction

Before LDA

Next instructions

PC

. . .

LDA i j Empty

Constant

Current instruction

Before LDA

Next instructions

PC

. . .

After LDA
LDA i j Empty

Constant

PC

Current instructions

Next instructions
. . .

• The effect of the LDA instruction is shown below

Appendix A

 337

Before LDA

LDA i j Empty

Constant

Ri

Rj

Memory

Ri

Rj

Memory

After LDA

Ri

Rj

Memory

Co
ns

ta
nt

After LDA

Ri

Rj

Memory

Co
ns

ta
nt

CPU has 32 general registers. It is acceptable to use four of them for procedural calls.
It might be interesting to compare with other CPUs for dealing with procedural calls and
see how many registers will be involved for other CPUs.

common ones. Therefore, we need the LDA instruction to work both with common
registers and with SB/FP. It makes LDA to complicated to implement.

So the overall conclusion is that 1) the common semantics of the LDA instruction
presented at the beginning of this section is the most desired one, and 2) we do not
need any special purpose registers.

Appendix A

 338

2.3 ST Instruction
• The ST instruction copies the value of the register Ri to the memory by

address taken from the register Rj.
• The instruction format is as follows:

1 1 0 0 1 1 ji1 1 0 0 1 1 ji

• The contents of the register Ri is treated as an arbitrary value. The contents of
the register Rj is considered as a 32-bit address of a 32-bit memory word.

• Instruction format is always 32, i.e., the entire 32-bit register is copied to the
memory.

• Memory state is not considered in the instruction, and the memory state does not
change.

• The contents of Ri and Rj registers do not change.

• Suggested assembly statement for the ST instruction is:

 *Rj := Ri

• The effect of the ST instruction is shown below:

Ri

Rj

Ri

Rj

MemoryBefore ST

After ST Memory

Ri

Rj

Ri

Rj

MemoryBefore ST

After ST Memory

Appendix A

 339

2.4 MOV Instruction

• The MOV instruction copies the value from register Ri to the register Rj.
• Memory state is not considered in the instruction, and the memory state does not

change.
• The instruction format is as follows:

0 1 0 0 i jFormat 0 1 0 0 i jFormat

x Suggested assembly statement for the MOV instruction is:

 Rj := Ri

x Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

x Memory state is not considered in the instruction, and the memory state does not
change.

x The effect of the MOV instruction is shown below:

Ri

Rj

Ri

Rj

Format 8: Before

Format 8: After

Ri

Rj

Ri

Rj

Format 16: Before

Format 16: After

Ri

Rj

Ri

Rj

Format 32: After

Format 32: Before

Ri

Rj

Ri

Rj

Format 8: Before

Format 8: After

Ri

Rj

Ri

Rj

Format 16: Before

Format 16: After

Ri

Rj

Ri

Rj

Format 32: After

Format 32: Before

• Instruction format 8: the lowest byte is copied; three highest bytes of Rj remain

the same. The original value of Rj’s lowest byte is lost.

Instruction format 16: two lowest bytes are copied; two highest bytes of Rj remain
the same. The original value of Rj’s two lowest bytes is lost.

Instruction format 32: the entire 32-bit register is copied. The original value of Rj
is lost.

• Memory state is not considered in the instruction, and the memory state does not
change.

Appendix A

 340

2.5 ADD Instruction
• The ADD instruction denotes the two’s complement arithmetic addition.

The contents of registers Ri and Rj are arithmetically added, and the result
is put into the register Rj.

• The instruction format is as follows:

0 1 0 1 i jFormat 0 1 0 1 i jFormat

• Memory state is not considered in the instruction, and the memory state does not
change.

• Both operands can refer to the same register.

• If the addition gives a result which cannot be put into the format specified in the
instruction, then overflow happens: ?????

• SIGNS MUST BE CHANGED ACCORDINGLY IN BOTH INSTRUCTIONS
ARITHMETIC INSTRUCTIONS. PLS CORRECT.

• Suggested assembly statement for the ADD instruction:
 Rj += Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• The effect of the ADD instruction is shown below:

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

+
Rj

+
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

+

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

+
Rj

+
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

+

Appendix A

 342

2.6 SUB Instruction
• The SUB instruction denotes the two’s complement arithmetic subtraction.

The contents of register Ri is subtracted from the contents of the register
Rj, and the result is put into the register Rj.

• The instruction format is as follows:

0 1 1 0 i jFormat 0 1 1 0 i jFormat

• Memory state is not considered in the instruction, and the memory state does not
change.

• Both operands can refer to the same register.

• If the subtraction gives a result which cannot be put into the format specified in
the instruction, then …… happens: ?????

• Suggested assembly statement for the SUB instruction:

 Rj -= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• The effect of the SUB instruction is shown below:

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

-
Rj

-
Rj

Format 16: Before Format 16: After

Ri

Rj

-
Rj

Format 32: Before Format 32: After

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

-
Rj

-
Rj

Format 16: Before Format 16: After

Ri

Rj

-
Rj

Format 32: Before Format 32: After

Appendix A

 343

2.7 ASR Instruction
• The ASR instruction arithmetically shifts the contents of the register Ri one

bit right, and puts the result into the register Rj.
• The instruction format is as follows:

0 1 1 1 i jFormat 0 1 1 1 i jFormat

• Memory state is not considered in the instruction, and the memory state does not
change.

• Both operands can refer to the same register.

• Suggested assembly statement for the ASR instruction:

 Rj >>= Ri;

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• Arithmetic shift means that the sign bit does not participate in the operation but
remains on its usual place.

• The leftmost bit of the operand gets the value of 0. The rightmost bit of the
operand is always lost.

• The contents of the Ri register does not change.

• The effect of the ASR instruction for format 16 is shown below. The operation for
formats 8 and 32 is performed in the similar way.

• The effect of the ASR instruction for the case of 16-bit operands is shown below:

S X X X X X X X X X X X X X X XRi

Rj S 0 X X X X X X X X X X X X X X

. . .

. . .

. . .

15 01631

LostS X X X X X X X X X X X X X X XRi

Rj S 0 X X X X X X X X X X X X X X

. . .

. . .

. . .

15 01631

Lost

What to do with the high bits of the result for 8 and 16 formats?
• Copy them from the source register.

• Remain them as they were (no modifications).

• Set them to 0s. BEST OPTION,

Appendix A

 344

2.8 ASL Instruction
• The ASL instruction arithmetically shifts the contents of the register Ri one

bit left, and puts the result into the register Rj.
• The instruction format is as follows:

1 0 0 0 i jFormat 1 0 0 0 i jFormat

• Memory state is not considered in the instruction, and the memory state does not

change.
• Both operands can refer to the same register.
• Suggested assembly statement for the ASL instruction:

 Rj <<= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• Arithmetic shift means that the sign bit does not participate in the operation but
remains on its usual place.

• The leftmost bit of the operand is always lost. The rightmost bit of the operand
gets the value of 0.

• The contents of the Ri register does not change.
• The effect of the ASL instruction for format 16 is shown below. The operation for

formats 8 and 32 is performed in the similar way.

S X X X X X X X X X X X X X X XRi

Rj S 0X X X X X X X X X X X X XX

. . .

. . .

. . .

15 01631

Lost

S X X X X X X X X X X X X X X XRi

Rj S 0X X X X X X X X X X X X XX

. . .

. . .

. . .

15 01631

Lost

What to do with the high bits of the result for 8 and 16 formats?

• Copy them from the source register.
• Remain them as they were (no modifications).
• Set them to 0s. BEST OPTION

Appendix A

 345

2.9 OR Instruction
• The OR instruction applies logical addition (“OR”) operator to every pair of

bits taken from registers Ri and Rj, respectively, and puts the result into
the register Rj.

• The instruction format is as follows:

1 0 0 1 i jFormat 1 0 0 1 i jFormat

• Memory state is not considered in the instruction, and the memory state does not

change.
• Both operands can refer to the same register. If not, the contents of the Ri

register does not change.
• Suggested assembly statement for the OR instruction:

 Rj |= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• In this instruction, the contents of registers Ri and Rj are considered as two bit
scales. The operation is performed on every pair of bits independently.

• The rule for the OR operation performed on each pair of bits is defined as
follows:

X Y Result
0 0 0
0 1 1
1 0 1
1 1 1

• The mechanism of the OR instruction – for one pair of bits - is shown below.

Here, k�[0..31] for format 32, k�[0..15] for format 16, and k�[0..7] for format 8.

X . . .Ri

Rj

. . .

k 031

Y

k

031

OR

Appendix A

 346

2.10 AND Instruction
• The AND instruction applies logical multiplicative (“AND”) operator to

every pair of bits taken from registers Ri and Rj, respectively, and puts the
result into the register Rj.

• The instruction format is as follows:

1 0 1 0 i jFormat 1 0 1 0 i jFormat

• Memory state is not considered in the instruction, and the memory state does not

change.
• Both operands can refer to the same register. If not, the contents of the Ri

register does not change.
• Suggested assembly statement for the AND instruction:

 Rj &= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• In this instruction, the contents of registers Ri and Rj are considered as two bit
scales. The operation is performed on every pair of bits independently.

• The rule for the AND operation performed on each pair of bits is defined as
follows:

X Y Result
0 0 0
0 1 0
1 0 0
1 1 1

• The mechanism of the AND instruction – for one pair of bits - is shown below.

Here, k�[0..31] for format 32, k�[0..15] for format 16, and k�[0..7] for format 8.

X . . .Ri

Rj

. . .

k 031

Y

k

031

AND

X . . .Ri

Rj

. . .

k 031

Y

k

031

AND

Appendix A

 347

2.11 XOR Instruction
• The XOR instruction applies logical exclusive OR (“XOR”) operator to every

pair of bits taken from registers Ri and Rj, respectively, and puts the result
into the register Rj.

• The instruction format is as follows:

1 0 1 1 i jFormat 1 0 1 1 i jFormat

• Memory state is not considered in the instruction, and the memory state does not

change.
• Both operands can refer to the same register. If not, the contents of the Ri

register does not change.
• Suggested assembly statement for the XOR instruction:

 Rj ^= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• In this instruction, the contents of registers Ri and Rj are considered as two bit
scales. The operation is performed on every pair of bits independently.

• The rule for the XOR operation performed on each pair of bits is defined as
follows:

X Y Result
0 0 0
0 1 1
1 0 1
1 1 0

• The mechanism of the XOR instruction – for one pair of bits - is shown below.

Here, k�[0..31] for format 32, k�[0..15] for format 16, and k�[0..7] for format 8.

X . . .Ri

Rj

. . .

k 031

Y

k

031

XOR

X . . .Ri

Rj

. . .

k 031

Y

k

031

XOR

Appendix A

 348

2.12 LSL Instruction
• The LSL instruction logically shifts the contents of the register Ri one bit

left, and puts the result into the register Rj.
• The instruction format is as follows:

1 1 0 0 i jFormat 1 1 0 0 i jFormat

• Memory state is not considered in the instruction, and the memory state does not
change.

• Both operands can refer to the same register. If not, the contents of the Ri
register does not change.

• Suggested assembly statement for the LSL instruction:

 Rj <= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• In this instruction, the contents of registers Ri and Rj are considered as two bit
scales. The operation is performed on every bit independently.

• The leftmost bit of the operand is always lost. The rightmost bit of the operand
gets the value of 0.

• The effect of the LSL instruction for format 16 is shown below. The operation for
formats 8 and 32 is performed in the similar way.

X X X X X X X X X X X X X X X XRi

Rj X 0X X X X X X X X X X X X XX

. . .

. . .

. . .

15 01631

Lost

15 01631

X X X X X X X X X X X X X X X XRi

Rj X 0X X X X X X X X X X X X XX

. . .

. . .

. . .

15 01631

Lost

15 01631

Appendix A

 349

2.13 LSR Instruction
• The LSR instruction logically shifts the contents of the register Ri one bit

right, and puts the result into the register Rj.
• The instruction format is as follows:

1 1 0 1 i jFormat 1 1 0 1 i jFormat

• Memory state is not considered in the instruction, and the memory state does not
change.

• Both operands can refer to the same register. If not, the contents of the Ri
register does not change.

• Suggested assembly statement for the LSR instruction:

 Rj >= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• In this instruction, the contents of registers Ri and Rj are considered as two bit
scales. The operation is performed on every bit independently.

• The rightmost bit of the operand is always lost. The leftmost bit of the operand
gets the value of 0.

• The effect of the LSR instruction for format 16 is shown below. The operation for
formats 8 and 32 is performed in the similar way.

X X X X X X X X X X X X X X X XRi

Rj 0 X X X X X X X X X X X X X X X

. . .

. . .

. . .

15 01631

Lost

15 01631

X X X X X X X X X X X X X X X XRi

Rj 0 X X X X X X X X X X X X X X X

. . .

. . .

. . .

15 01631

Lost

15 01631

Appendix A

 350

2.14 CND Instruction

• The CND instruction arithmetically compares the contents
of registers Ri and Rj and puts the result of the comparison
(as a set of 1-bit signs) to the register Rj.

• Signs occupy four lowest bits of the result (see next slides for details and for the
meaning of the signs).

• The instruction format is as follows:

1 1 1 0 i jFormat 1 1 1 0 i jFormat

• Memory state is not considered in the instruction, and the memory state does not
change.

• Both operands can refer to the same register. If not, the contents of the Ri
register does not change.

• Suggested assembly statement for the CND instruction:

 Rj ?= Ri

• Additional assembly directives specifying the current instruction format:

 .format 8 or .format 16 or .format 32

• The effect of the CND instruction is shown below:

Appendix A

 351

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

?
Rj

?
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

?

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

?
Rj

?
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

?

• The result of the instruction (i.e., the contents of the Rj register) is as follows:

Z N C
31 01234

Bits 31- 4 are not used

• Bit 3: Reserved (always 0)

• Bit 2 (Z): 1, if Ri = Rj,
0, otherwise

• Bit 1 (N): 1, if Ri < Rj,
0, otherwise

• Bit 0 (C): 1, if Ri > Rj,
0, otherwise

Z N C
31 01234

Bits 31- 4 are not used

• Bit 3: Reserved (always 0)

• Bit 2 (Z): 1, if Ri = Rj,
0, otherwise

• Bit 1 (N): 1, if Ri < Rj,
0, otherwise

• Bit 0 (C): 1, if Ri > Rj,
0, otherwise

• Signs are mutually exclusive: i.e., the semantics of signs assumes that the only
one sign is set as the result of the comparison.

• The result of the comparison can be used in an arbitrary way. Perhaps the most
important one is to use it for organizing conditional jumps (see CBR instruction).

• Signs can be checked using logical instructions (e.g., AND) together with
appropriate masks.

For example, the ≤ condition can be treated as either < or = conditions, and the
corresponding mask is binary 110. Similarly, the ≥ condition is either > or =

Appendix A

 352

conditions, and the mask is binary 101. Finally, the inequality ≠ condition is either
≤ or ≥ conditions, and the mask for selecting is binary 011.

Therefore, all six possible comparison results (<, ≤, >, ≥, =, ≠) can be extracted
using AND instruction with the following masks:

 Relation Mask
 < 010
 ≤ 110
 > 001
 ≥ 101
 = 100
 ≠ 011

Appendix A

 353

2.15 CBR Instruction
• The CBR instruction checks the contents of the Ri register. If it is non-zero,

then
1) the address of the next instruction (i.e., current value of the PC
register + 2) is stored in the Ri register, and
2) the value of the Rj register is set to the PC register. This means that the
next instruction will be fetched by the address taken from the Rj register.

• The instruction format is as follows:

1 1 1 1 1 1 i j1 1 1 1 1 1 i j

• Memory state is not considered in the instruction, and the memory state does not
change.

• Format code does not affect the instruction’s execution.
• The contents of the Rj register does not change.

• Suggested assembly statement for the CBR instruction:

 if Ri goto Rj

• The effect of the CBR instruction (for the case when Ri is non-zero) is shown
below:

Ri

Rj

Ri

Rj

MemoryBefore CBR

After CBR

PC

Memory

PC
+2

Addr
Addr+2

Ri

Rj

Ri

Rj

MemoryBefore CBR

After CBR

PC

Memory

PC
+2

Addr
Addr+2

Appendix A

 354

2.16 NON/STOP Instruction
• The NOP instruction performs no actions, except moving the PC register to

the next instruction.
• The NOP instruction format is as follows:

0 1 0 0 0 00 1 0 0 0 0

• Memory state is not considered in the instruction, and the memory state does not

change.
• The value of the operand part of the instruction (bits from 9 to 0) does not affect

the execution.
• The NOP instruction is used as a placeholder (for example to meet alignment

requirements), or as a “stub” while code editing or automatic code generation.
• Suggested assembly statement for the NOP instruction:

 skip

• The STOP instruction causes the program execution to interrupt.
• The STOP instruction format is as follows:

0 0 0 0 0 00 0 0 0 0 0

• Memory state is not considered in the instruction, and the memory state does not

change.
• The value of the operand part of the instruction (bits from 9 to 0) does not affect

the execution.
• Suggested assembly statement for the STOP instruction:
• stop

351

Appendix B

Appendix B

Board elements Testing

Appendix B

 356

Appendix B

Board elements Testing

The board elements tests are illustrated by the scenario based approach.

Each time, a test case is used to test each element. The function of the FPGA

is tested by loading the bit stream file and by checking the required

functions.

The board elements tests are illustrated by the scenario based approach.

Each time, a test case is used to test each element. The function of the FPGA

is tested by loading the bit stream file and by checking the required

functions.

Scenario 1

x Units: U5, U7 static memory modules

x SRAM tests Modules ISSI - IS64WV6416BLL

x Tests the links between U1 (FPGA) components and static memory

x Tests the basic functions of reading and writing from and into U5, U7

Appendix B

 357

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY eurrica IS PORT (

SW3 : IN STD_LOGIC;
SW4 : IN STD_LOGIC;
 Data_0 : INOUT STD_LOGIC;
 Data_1 : INOUT STD_LOGIC;
 Data_2 : INOUT STD_LOGIC;
 Data_3 : INOUT STD_LOGIC;
 Data_4 : INOUT STD_LOGIC;
 Data_5 : INOUT STD_LOGIC;
 Data_6 : INOUT STD_LOGIC;
 Data_7 : INOUT STD_LOGIC;
 Data_8 : INOUT STD_LOGIC;
 Data_9 : INOUT STD_LOGIC;
 Data_10 : INOUT STD_LOGIC;
 Data_11 : INOUT STD_LOGIC;
 Data_12 : INOUT STD_LOGIC;
 Data_13 : INOUT STD_LOGIC;
 Data_14 : INOUT STD_LOGIC;
 Data_15 : INOUT STD_LOGIC;

 SRAM1_L_CE : OUT STD_LOGIC;
 SRAM1_L_WE : OUT STD_LOGIC;
 SRAM1_L_OE : OUT STD_LOGIC;

 SRAM2_L_CE : OUT STD_LOGIC;
 SRAM2_L_WE : OUT STD_LOGIC;
 SRAM2_L_OE : OUT STD_LOGIC;

 A0: OUT STD_LOGIC;
 A1: OUT STD_LOGIC;
 A2: OUT STD_LOGIC;
 A3: OUT STD_LOGIC;
 A4: OUT STD_LOGIC;
 A5: OUT STD_LOGIC;
 A6: OUT STD_LOGIC;
 A7: OUT STD_LOGIC;
 A8: OUT STD_LOGIC;
 A9: OUT STD_LOGIC;
 A10: OUT STD_LOGIC;
 A11: OUT STD_LOGIC;
 A12: OUT STD_LOGIC;
 A13: OUT STD_LOGIC;
 A14: OUT STD_LOGIC;
 A15: OUT STD_LOGIC;

 D0: OUT STD_LOGIC;
D1 : OUT STD_LOGIC);
END eurrica;

ARCHITECTURE behavior of eurrica IS

Appendix B

 358

BEGIN

 D0 <= not SW3;
 D1 <= SW4;

 A0 <= '1';
 A1 <= '0';
 A2 <= '1';
 A3 <= '0';
 A4 <= '1';
 A5 <= '1';
 A6 <= '0';
 A7 <= '0';
 A8 <= '1';
 A9 <= '0';
 A10 <= '0';
 A11 <= '1';
 A12 <= '0';
 A13 <= '1';
 A14 <= '1';
 A15 <= '0';

sm: PROCESS(SW3)

 BEGIN

if (SW3= '1') then

-- write

 SRAM1_L_CE <= '0';
 SRAM1_L_WE <= '0';
 SRAM1_L_OE <= '0';

 SRAM2_L_CE <= '0';
 SRAM2_L_WE <= '0';
 SRAM2_L_OE <= '0';
 Data_0 <= SW4;
 Data_1 <= SW4;
 Data_2 <= SW4;
 Data_3 <= SW4;
 Data_4 <= SW4;
 Data_5 <= SW4;
 Data_6 <= SW4;
 Data_7 <= SW4;
 Data_8 <= SW4;
 Data_9 <= SW4;
 Data_10 <= SW4;
 Data_11 <= SW4;
 Data_12 <= SW4;
 Data_13 <= SW4;
 Data_14 <= SW4;
 Data_15 <= SW4;
else
-- read
 SRAM1_L_CE <= '0';

Appendix B

 359

 SRAM1_L_WE <= '1';
 SRAM1_L_OE <= '0';

 SRAM2_L_CE <= '0';
 SRAM2_L_WE <= '1';
 SRAM2_L_OE <= '0';

end if;

END PROCESS;

END Behavior;
--

Appendix B

 360

The scenario of the first test is to set the specified links between the FPGA

and the static memory modules (U5, U7) and tests writing and reading

function. The link configuration is shown on the second column of the table.

The SW3 is to control write data and read data into memory. SW4 specifies

the	
 data	
 to	
 test.	
 	
 When	
 SW3	
 is	
 off	
 (‘0’),	
 it	
 performs	
 reading	
 operation.	
 When	

it	
 is	
 on	
 (‘1’),	
 it	
 is to perform writing operation. The address of the SRAM

for testing is specified by (A0-A15). The LED1 and LED2 indicate the

correct operation of SW3, and SW4. The data input and output from the

SRAM	
 (U5,	
 and	
 U7)	
 is	
 check	
 by	
 Voltage	
 meter.	
 Voltage	
 “0”	
 represents a ‘0’

logic value,	
 and	
 Voltage	
 “+4”	
 represents a ‘1’ logic value. Initially, all the

memory	
 is	
 set	
 to	
 ‘0’.	
 	
 	
 The	
 testing	
 is	
 to	
 change	
 the	
 settings	
 of	
 SW3,	
 and	
 SW4	

and check against the input and output voltages from the data line of U5,

and U7. If they are matching, then the test is passed, and the links are

correct and the memory modules are performed required functions.

The first column on Tests is checking memory reading with initial value of

‘0’.	
 	
 The	
 Voltage	
 on	
 the	
 data	
 line	
 shows	
 the	
 correct	
 results	
 ‘0’.	
 Then	
 the	

second	
 column	
 is	
 to	
 change	
 the	
 input	
 value	
 to	
 ‘1’	
 (SW4=1),	
 because	
 the	

write	
 control	
 is	
 not	
 changed,	
 so	
 the	
 result	
 should	
 still	
 be	
 ‘0’.	
 	
 The	
 output	
 is	

correct	
 and	
 the	
 data	
 still	
 keep	
 on	
 ‘0’.	
 	
 	
 The	
 third	
 column	
 is	
 to	
 write	
 ‘0’	
 into

the memory (SW3 is setting to write and SW4 is setting to 0) and the result

shown	
 on	
 data	
 lines	
 are	
 correct,	
 and	
 fourth	
 column	
 is	
 to	
 write	
 ‘1’	
 (SW3	
 is	

setting	
 to	
 write	
 and	
 SW4	
 is	
 setting	
 to	
 ‘1’)	
 into	
 the	
 memory	
 modules.	
 The	

output	
 should	
 be	
 “+4V”	
 on	
 data line. The measures by voltage meter show

the correct results.

Appendix B

 361

Scenario 1 results
Net EP2C20Q240C8 Tests

U5
/U7

DATA_0 155 0 0 0 +4v
DATA_1 156 0 0 0 +4v
DATA_2 157 0 0 0 +4v
DATA_3 159 0 0 0 +4v
DATA_4 161 0 0 0 +4v
DATA_5 162 0 0 0 +4v
DATA_6 164 0 0 0 +4v
DATA_7 165 0 0 0 +4v
DATA_8 166 0 0 0 +4v
DATA_9 167 0 0 0 +4v
DATA_10 168 0 0 0 +4v
DATA_11 170 0 0 0 +4v
DATA_12 171 0 0 0 +4v
DATA_13 173 0 0 0 +4v
DATA_14 174 0 0 0 +4v
DATA_15 175 0 0 0 +4v

U5
/U7

ADDR_0 8 +4v +4v +4v +4v
ADDR_1 9 0 0 0 0
ADDR_2 11 +4v +4v +4v +4v
ADDR_3 13 0 0 0 0
ADDR_4 14 +4v +4v +4v +4v
ADDR_5 15 +4v +4v +4v +4v
ADDR_6 16 0 0 0 0
ADDR_7 18 0 0 0 0
ADDR_8 20 +4v +4v +4v +4v
ADDR_9 21 0 0 0 0
ADDR_10 37 0 0 0 0
ADDR_11 38 +4v +4v +4v +4v
ADDR_12 39 0 0 0 0
ADDR_13 41 +4v +4v +4v +4v
ADDR_14 42 +4v +4v +4v +4v
ADDR_15 44 0 0 0 0

U5
SRAM1_L_CE 233 0 0 0 0
SRAM1_L_WE 232 +4v +4v 0 0
SRAM1_L_OE 231 0 0 0 0

U7
SRAM2_L_CE 230 0 0 0 0
SRAM2_L_WE 228 +4v +4v 0 0
SRAM2_L_OE 226 0 0 0 0

 LED1 125 off off on on
 LED2 178 on off on off
 Switch_3 7 0(off) 0(off) 1(on) 1(on)
 Switch_4 119 0(off) 1(on) 0(off) 1(on)

Results (PASS) 9 9 9 9

Scenario 2

Appendix B

 362

x U6 and U8 testing

x SRAM tests Modules ISSI - IS64WV6416BLL

x Tests the links between U1 (FPGA) components and static memory

x Tests the basic functions of reading and writing from and into U6, U8

Appendix B

 363

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY eurrica IS PORT (

SW3 : IN STD_LOGIC;
SW4 : IN STD_LOGIC;

 Data_16 : INOUT STD_LOGIC;
 Data_17 : INOUT STD_LOGIC;
 Data_18 : INOUT STD_LOGIC;
 Data_19 : INOUT STD_LOGIC;
 Data_20 : INOUT STD_LOGIC;
 Data_21 : INOUT STD_LOGIC;
 Data_22 : INOUT STD_LOGIC;
 Data_23 : INOUT STD_LOGIC;
 Data_24 : INOUT STD_LOGIC;
 Data_25 : INOUT STD_LOGIC;
 Data_26 : INOUT STD_LOGIC;
 Data_27 : INOUT STD_LOGIC;
 Data_28 : INOUT STD_LOGIC;
 Data_29 : INOUT STD_LOGIC;
 Data_30 : INOUT STD_LOGIC;
 Data_31 : INOUT STD_LOGIC;

 SRAM2_H_CE : OUT STD_LOGIC;
 SRAM2_H_WE : OUT STD_LOGIC;
 SRAM2_H_OE : OUT STD_LOGIC;

 A0: OUT STD_LOGIC;
 A1: OUT STD_LOGIC;
 A2: OUT STD_LOGIC;
 A3: OUT STD_LOGIC;
 A4: OUT STD_LOGIC;
 A5: OUT STD_LOGIC;
 A6: OUT STD_LOGIC;
 A7: OUT STD_LOGIC;
 A8: OUT STD_LOGIC;
 A9: OUT STD_LOGIC;
 A10: OUT STD_LOGIC;
 A11: OUT STD_LOGIC;
 A12: OUT STD_LOGIC;
 A13: OUT STD_LOGIC;
 A14: OUT STD_LOGIC;
 A15: OUT STD_LOGIC;

 LED1: OUT STD_LOGIC;
LED2 : OUT STD_LOGIC);
END eurrica;

ARCHITECTURE behavior of eurrica IS

BEGIN
 LED1 <= not SW3;
 LED2 <= SW4;

Appendix B

 364

 A0 <= '1';
 A1 <= '0';
 A2 <= '1';
 A3 <= '0';
 A4 <= '1';
 A5 <= '1';
 A6 <= '0';
 A7 <= '0';
 A8 <= '1';
 A9 <= '0';
 A10 <= '0';
 A11 <= '1';
 A12 <= '0';
 A13 <= '1';
 A14 <= '1';
 A15 <= '0';

sm: PROCESS(SW3)

 BEGIN

if (SW3 = '1') then

-- write

 SRAM2_H_CE <= '0';
 SRAM2_H_WE <= '0';
 SRAM2_H_OE <= '0';

 Data_16 <= SW4;
 Data_17 <= SW4;
 Data_18 <= SW4;
 Data_19 <= SW4;
 Data_20 <= SW4;
 Data_21 <= SW4;
 Data_22 <= SW4;
 Data_23 <= SW4;
 Data_24 <= SW4;
 Data_25 <= SW4;
 Data_26 <= SW4;
 Data_27 <= SW4;
 Data_28 <= SW4;
 Data_29 <= SW4;
 Data_30 <= SW4;
 Data_31 <= SW4;

else

-- read

 SRAM2_H_CE <= '0';
 SRAM2_H_WE <= '1';
 SRAM2_H_OE <= '0';

Appendix B

 365

end if;

END PROCESS;

END Behavior;

Appendix B

 366

The scenario of the second test is to set the specified links between the

FPGA and the static memory modules (U6, U8) and tests writing and

reading function. The link configuration is shown on the second column of

the table. The SW3 is to control write data and read data into memory.

SW4	
 specifies	
 the	
 data	
 to	
 test.	
 	
 When	
 SW3	
 is	
 off	
 (‘0’),	
 it	
 performs	
 reading	

operation.	
 When	
 it	
 is	
 on	
 (‘1’),	
 it	
 is	
 to	
 perform	
 writing	
 operation.	
 	
 	
 The	

address of the SRAM for testing is specified by (A0-A15). The data input

and output is linked to D16-D31. The LED1 and LED2 indicate the correct

operation of SW3, and SW4. The data input and output from the SRAM (U6,

and U8) is check by Voltage meter. Voltage	
 “0”	
 represents a ‘0’ logic value,

and	
 Voltage	
 “+4”	
 represents a ‘1’ logic value. Initially, all the memory is set

to	
 ‘0’.	
 	
 	
 The	
 testing	
 is	
 to	
 change	
 the	
 settings	
 of	
 SW3,	
 and	
 SW4	
 and	
 check	

against the input and output voltages from the data line of U6, and U8. If

they are matching, then the test is passed, and the links are correct and the

memory modules are performed required functions.

The first column on Tests is checking memory reading with initial value of

‘0’.	
 	
 The	
 Voltage	
 on	
 the	
 data	
 line	
 shows	
 the	
 correct	
 results	
 ‘0’.	
 Then	
 the	

second	
 column	
 is	
 to	
 change	
 the	
 input	
 value	
 to	
 ‘1’	
 (SW4=1),	
 because	
 the	

write	
 control	
 is	
 not	
 changed,	
 so	
 the	
 result	
 should	
 still	
 be	
 ‘0’.	
 	
 The	
 output	
 is	

correct	
 and	
 the	
 data	
 still	
 keep	
 on	
 ‘0’.	
 	
 	
 The	
 third	
 column	
 is	
 to	
 write	
 ‘0’	
 into	

the memory (SW3 is setting to write and SW4 is setting to 0) and the result

shown	
 on	
 data	
 lines	
 are	
 correct,	
 and	
 fourth	
 column	
 is	
 to	
 write	
 ‘1’	
 (SW3	
 is	

setting	
 to	
 write	
 and	
 SW4	
 is	
 setting	
 to	
 ‘1’)	
 into	
 the	
 memory	
 modules.	
 The	

output	
 should	
 be	
 “+4V”	
 on	
 data	
 line.	
 	
 The	
 measures	
 by	
 voltage	
 meter	
 show	

the correct results.

Scenario 2 results U6

Net EP2C20Q240C8 Tests

Appendix B

 367

U6

DATA_16 177 0 0 0 +4v
DATA_17 184 0 0 0 +4v
DATA_18 185 0 0 0 +4v
DATA_19 186 0 0 0 +4v
DATA_20 187 0 0 0 +4v
DATA_21 188 0 0 0 +4v
DATA_22 189 0 0 0 +4v
DATA_23 191 0 0 0 +4v
DATA_24 192 0 0 0 +4v
DATA_25 194 0 0 0 +4v
DATA_26 195 0 0 0 +4v
DATA_27 197 0 0 0 +4v
DATA_28 199 0 0 0 +4v
DATA_29 200 0 0 0 +4v
DATA_30 203 0 0 0 +4v
DATA_31 208 0 0 0 +4v

U6

ADDR_0 8 +4v +4v +4v +4v
ADDR_1 9 0 0 0 0
ADDR_2 11 +4v +4v +4v +4v
ADDR_3 13 0 0 0 0
ADDR_4 14 +4v +4v +4v +4v
ADDR_5 15 +4v +4v +4v +4v
ADDR_6 16 0 0 0 0
ADDR_7 18 0 0 0 0
ADDR_8 20 +4v +4v +4v +4v
ADDR_9 21 0 0 0 0
ADDR_10 37 0 0 0 0
ADDR_11 38 +4v +4v +4v +4v
ADDR_12 39 0 0 0 0
ADDR_13 41 +4v +4v +4v +4v
ADDR_14 42 +4v +4v +4v +4v
ADDR_15 44 0 0 0 0

U6
SRAM1_H_CE 230 0 0 0 0
 SRAM1_H_WE 228 +4v +4v 0 0
SRAM1_H_OE 226 0 0 0 0

 LED1 125 off off on on
 LED2 178 on off on off

 Switch_3 7 0(off) 0(off) 1(on) 1(on)
 Switch_4 119 0(off) 1(on) 0(off) 1(on)
 Results (PASS) 9 9 9 9

Appendix B

 368

Scenario 2 results U8

Net EP2C20Q240C8 Tests

U8

DATA_16 177 0 0 0 +4v
DATA_17 184 0 0 0 +4v
DATA_18 185 0 0 0 +4v
DATA_19 186 0 0 0 +4v
DATA_20 187 0 0 0 +4v
DATA_21 188 0 0 0 +4v
DATA_22 189 0 0 0 +4v
DATA_23 191 0 0 0 +4v
DATA_24 192 0 0 0 +4v
DATA_25 194 0 0 0 +4v
DATA_26 195 0 0 0 +4v
DATA_27 197 0 0 0 +4v
DATA_28 199 0 0 0 +4v
DATA_29 200 0 0 0 +4v
DATA_30 203 0 0 0 +4v
DATA_31 208 0 0 0 +4v

U8

ADDR_0 8 +4v +4v +4v +4v
ADDR_1 9 0 0 0 0
ADDR_2 11 +4v +4v +4v +4v
ADDR_3 13 0 0 0 0
ADDR_4 14 +4v +4v +4v +4v
ADDR_5 15 +4v +4v +4v +4v
ADDR_6 16 0 0 0 0
ADDR_7 18 0 0 0 0
ADDR_8 20 +4v +4v +4v +4v
ADDR_9 21 0 0 0 0
ADDR_10 37 0 0 0 0
ADDR_11 38 +4v +4v +4v +4v
ADDR_12 39 0 0 0 0
ADDR_13 41 +4v +4v +4v +4v
ADDR_14 +4v +4v +4v +4v
ADDR_15 0 0 0 0

 42

U8
SRAM2_H_CE 216 0 0 44 0
SRAM2_H_WE 232 +4v +4v 0 0
SRAM2_H_OE 117 0 0 0 0

 LED1 125 off off on on
 LED2 178 on off on off

 Switch_3 7 0(off) 0(off) 1(on) 1(on)
 Switch_4 119 0(off) 1(on) 0(off) 1(on)
 Results (PASS) 9 9 9 9

Comments: The SRAM2_H_WE is configured to connect U1 pin 232.

Scenario 3

Appendix B

 369

x U9, and U10- the Read Only Memory (ROM) modules testing

x Tests ROM Modules SHARP - LHF12F17

x Tests the links between U1 (FPGA) components and ROM

x Tests the basic functions of reading and writing of U9, U10

Appendix B

 370

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY eurrica IS PORT (
SW3 : IN STD_LOGIC;
SW4 : IN STD_LOGIC;
-- Data Bus
 Data_0 : INOUT STD_LOGIC;
 Data_1 : INOUT STD_LOGIC;
 Data_2 : INOUT STD_LOGIC;
 Data_3 : INOUT STD_LOGIC;
 Data_4 : INOUT STD_LOGIC;
 Data_5 : INOUT STD_LOGIC;
 Data_6 : INOUT STD_LOGIC;
 Data_7 : INOUT STD_LOGIC;
 Data_8 : INOUT STD_LOGIC;
 Data_9 : INOUT STD_LOGIC;
 Data_10 : INOUT STD_LOGIC;
 Data_11 : INOUT STD_LOGIC;
 Data_12 : INOUT STD_LOGIC;
 Data_13 : INOUT STD_LOGIC;
 Data_14 : INOUT STD_LOGIC;
 Data_15 : INOUT STD_LOGIC;
 Data_16 : INOUT STD_LOGIC;
 Data_17 : INOUT STD_LOGIC;
 Data_18 : INOUT STD_LOGIC;
 Data_19 : INOUT STD_LOGIC;
 Data_20 : INOUT STD_LOGIC;
 Data_21 : INOUT STD_LOGIC;
 Data_22 : INOUT STD_LOGIC;
 Data_23 : INOUT STD_LOGIC;
 Data_24 : INOUT STD_LOGIC;
 Data_25 : INOUT STD_LOGIC;
 Data_26 : INOUT STD_LOGIC;
 Data_27 : INOUT STD_LOGIC;
 Data_28 : INOUT STD_LOGIC;
 Data_29 : INOUT STD_LOGIC;
 Data_30 : INOUT STD_LOGIC;
 Data_31 : INOUT STD_LOGIC;
-- U9 control signals
 ROM1_L_CE : OUT STD_LOGIC;
 ROM1_L_OE : OUT STD_LOGIC;
 ROM1_L_WE : OUT STD_LOGIC;
 ROM1_L_WP : OUT STD_LOGIC;
-- U10 control signals
 ROM1_H_CE: OUT STD_LOGIC;
 ROM1_H_OE: OUT STD_LOGIC;
 ROM1_H_WE: OUT STD_LOGIC;
 ROM1_H_WP: OUT STD_LOGIC;

-- Address Bus
 A0: OUT STD_LOGIC;
 A1: OUT STD_LOGIC;
 A2: OUT STD_LOGIC;
 A3: OUT STD_LOGIC;
 A4: OUT STD_LOGIC;
 A5: OUT STD_LOGIC;

Appendix B

 371

 A6: OUT STD_LOGIC;
 A7: OUT STD_LOGIC;
 A8: OUT STD_LOGIC;
 A9: OUT STD_LOGIC;
 A10: OUT STD_LOGIC;
 A11: OUT STD_LOGIC;
 A12: OUT STD_LOGIC;
 A13: OUT STD_LOGIC;
 A14: OUT STD_LOGIC;
 A15: OUT STD_LOGIC;
 A16: OUT STD_LOGIC;
 A17: OUT STD_LOGIC;
 A18: OUT STD_LOGIC;
 A19: OUT STD_LOGIC;
 A20: OUT STD_LOGIC;
 A21: OUT STD_LOGIC;
 A22: OUT STD_LOGIC;
 LED1: OUT STD_LOGIC;
LED2 : OUT STD_LOGIC);
END eurrica;
ARCHITECTURE behavior of eurrica IS
BEGIN
 LED1 <= not SW3;
 LED2 <= SW4;
 A0 <= '1';
 A1 <= '0';
 A2 <= '1';
 A3 <= '0';
 A4 <= '1';
 A5 <= '1';
 A6 <= '0';
 A7 <= '0';
 A8 <= '1';
 A9 <= '0';
 A10 <= '0';
 A11 <= '1';
 A12 <= '0';
 A13 <= '1';
 A14 <= '1';
 A15 <= '0';
 A16 <= '1';
 A17 <= '1';
 A18 <= '1';
 A19 <= '1';
 A20 <= '1';
 A21 <= '1';
 A22 <= '1';
sm: PROCESS(SW3)
 BEGIN
if (SW3 = '1') then
-- write

-- U9 control signals
 ROM1_L_CE <= '0';
 ROM1_L_OE <= '1';
 ROM1_L_WE <= '0';

Appendix B

 372

 ROM1_L_WP <= '1';

-- U10 control signals
 ROM1_H_CE <='0';
 ROM1_H_OE <='1';
 ROM1_H_WE <='0';
 ROM1_H_WP <='1';

 Data_0 <= SW4;
 Data_1 <= SW4;
 Data_2 <= SW4;
 Data_3 <= SW4;
 Data_4 <= SW4;
 Data_5 <= SW4;
 Data_6 <= SW4;
 Data_7 <= SW4;
 Data_8 <= SW4;
 Data_9 <= SW4;
 Data_10 <= SW4;
 Data_11 <= SW4;
 Data_12 <= SW4;
 Data_13 <= SW4;
 Data_14 <= SW4;
 Data_15 <= SW4;
 Data_16 <= SW4;
 Data_17 <= SW4;
 Data_18 <= SW4;
 Data_19 <= SW4;
 Data_20 <= SW4;
 Data_21 <= SW4;
 Data_22 <= SW4;
 Data_23 <= SW4;
 Data_24 <= SW4;
 Data_25 <= SW4;
 Data_26 <= SW4;
 Data_27 <= SW4;
 Data_28 <= SW4;
 Data_29 <= SW4;
 Data_30 <= SW4;
 Data_31 <= SW4;
else
-- read
-- U9 control signals
 ROM1_L_CE <= '0';
 ROM1_L_OE <= '0';
 ROM1_L_WE <= '1';
 ROM1_L_WP <= '0';
-- U10 control signals

 ROM1_H_CE <='0';
 ROM1_H_OE <='0';
 ROM1_H_WE <='1';
 ROM1_H_WP <='0';

end if;

Appendix B

 373

END PROCESS;

END Behavior;
--

Appendix B

 374

The scenario of testing ROM is similar with testing RAM, except that the WP

is	
 set	
 to	
 ‘0’	
 and	
 allows	
 read	
 and	
 write.	
 	
 	
 The	
 specified	
 links	
 between	
 the	

FPGA and the ROM modules (U9, U10) is shown on the second column of

the following table. The SW3 is to control write data and read data into

memory.	
 	
 SW4	
 specifies	
 the	
 data	
 to	
 test.	
 	
 When	
 SW3	
 is	
 off	
 (‘0’),	
 it	
 performs	

reading	
 operation.	
 When	
 it	
 is	
 on	
 (‘1’), it is to perform writing operation.

The address of the ROM for testing is specified by (A0-A22). The LED1 and

LED2 indicate the correct operation of SW3, and SW4. The data input and

output (D0-D31)	
 is	
 check	
 by	
 Voltage	
 meter.	
 	
 If	
 Voltage	
 “0”	
 means	
 ‘0’, and

Voltage	
 “+4”	
 means	
 ‘1’.	
 	
 	
 Initially,	
 all	
 the	
 memory	
 is	
 set	
 to	
 ‘0’.	
 	
 	
 The	
 testing	
 is	

to change the settings of SW3, and SW4 and check against the input and

output voltages from D0-D31. If they are matching, then the test is passed,

and the links are correct and the memory modules are performed required

functions.

The first column on Tests is checking memory reading with initial value of

‘0’.	
 	
 The	
 Voltage	
 on	
 the	
 data	
 line	
 shows	
 the	
 correct	
 results	
 ‘0’.	
 Then	
 the	

second column is to change the input value	
 to	
 ‘1’	
 (SW4=1),	
 because	
 the	

write	
 control	
 is	
 not	
 changed,	
 so	
 the	
 result	
 should	
 still	
 be	
 ‘0’.	
 	
 The	
 output	
 is	

correct	
 and	
 the	
 data	
 still	
 keep	
 on	
 ‘0’.	
 	
 	
 The	
 third	
 column	
 is	
 to	
 write	
 ‘0’	
 into	

the memory (SW3 is setting to write and SW4 is setting to 0) and the result

shown	
 on	
 data	
 lines	
 are	
 correct,	
 and	
 fourth	
 column	
 is	
 to	
 write	
 ‘1’	
 (SW3	
 is	

setting	
 to	
 write	
 and	
 SW4	
 is	
 setting	
 to	
 ‘1’)	
 into	
 the	
 memory	
 modules.	
 The	

output	
 should	
 be	
 “+4V”	
 on	
 data	
 line.	
 	
 The	
 measures	
 by	
 voltage	
 meter	
 show	

the correct results.

Appendix B

 375

Scenario 3 results

Net EP2C20Q240C8 Tests

U9
/U10

DATA_0 PIN_155 0 0 0 +4v
DATA_1 PIN_156 0 0 0 +4v
DATA_2 PIN_157 0 0 0 +4v
DATA_3 PIN_159 0 0 0 +4v
DATA_4 PIN_161 0 0 0 +4v
DATA_5 PIN_162 0 0 0 +4v
DATA_6 PIN_164 0 0 0 +4v
DATA_7 PIN_165 0 0 0 +4v
DATA_8 PIN_166 0 0 0 +4v
DATA_9 PIN_167 0 0 0 +4v

DATA_10 PIN_168 0 0 0 +4v
DATA_11 PIN_170 0 0 0 +4v
DATA_12 PIN_171 0 0 0 +4v
DATA_13 PIN_173 0 0 0 +4v
DATA_14 PIN_174 0 0 0 +4v
DATA_15 PIN_175 0 0 0 +4v
DATA_16 PIN_177 0 0 0 +4v
DATA_17 PIN_184 0 0 0 +4v
DATA_18 PIN_185 0 0 0 +4v
DATA_19 PIN_186 0 0 0 +4v
DATA_20 PIN_187 0 0 0 +4v
DATA_21 PIN_188 0 0 0 +4v
DATA_22 PIN_189 0 0 0 +4v
DATA_23 PIN_191 0 0 0 +4v
DATA_24 PIN_192 0 0 0 +4v
DATA_25 PIN_194 0 0 0 +4v
DATA_26 PIN_195 0 0 0 +4v
DATA_27 PIN_197 0 0 0 +4v
DATA_28 PIN_199 0 0 0 +4v
DATA_29 PIN_200 0 0 0 +4v
DATA_30 PIN_203 0 0 0 +4v
DATA_31 PIN_208 0 0 0 +4v

U9
/U10

ADDR_0 PIN_8 +4v +4v +4v +4v
ADDR_1 PIN_9 0 0 0 0
ADDR_2 PIN_11 +4v +4v +4v +4v
ADDR_3 PIN_13 0 0 0 0
ADDR_4 PIN_14 +4v +4v +4v +4v
ADDR_5 PIN_15 +4v +4v +4v +4v
ADDR_6 PIN_16 0 0 0 0
ADDR_7 PIN_18 0 0 0 0
ADDR_8 PIN_20 +4v +4v +4v +4v
ADDR_9 PIN_21 0 0 0 0
ADDR_10 PIN_37 0 0 0 0
ADDR_11 PIN_38 +4v +4v +4v +4v
ADDR_12 PIN_39 0 0 0 0
ADDR_13 PIN_41 +4v +4v +4v +4v
ADDR_14 PIN_42 +4v +4v +4v +4v
ADDR_15 PIN_44 0 0 0 0
ADDR_16 PIN_46 +4v +4v +4v +4v
ADDR_17 PIN_47 +4v +4v +4v +4v
ADDR_18 PIN_49 +4v +4v +4v +4v

 ADDR_19 PIN_50 +4v +4v +4v +4v

Appendix B

 376

 ADDR_20 PIN_51 +4v +4v +4v +4v
 ADDR_21 PIN_52 +4v +4v +4v +4v
 ADDR_22 PIN_54 +4v +4v +4v +4v

U9

 ROM1_H_CE PIN_111 0 0 0 0
ROM1_H_WE PIN_114 +4v +4v +4v +4v
ROM1_H_OE PIN_113 0 0 0 0
ROM1_H_WP PIN_116 0 0 +4v +4v

U10

 ROM1_L_CE PIN_105 0 0 0 0
ROM1_L_WE PIN_109 +4v +4v +4v +4v
ROM1_L_OE PIN_106 0 0 0 0
ROM1_L_WP PIN_110 0 0 +4v +4v

 LED1 125 off off on on
 LED2 178 on off on off

 Switch_3 7 0(off) 0(off) 1(on) 1(on)
 Switch_4 119 0(off) 1(on) 0(off) 1(on)
 Results 9 9 9 9

Appendix B

 377

The functional testing of the ERRIC

The sequences of the code to test ERRIC processor are illustrated below.
They are loaded with the bits stream file into the FPGA through JTAG
interface. Then the codes are executed. The input is the number controlled
by push bottom of the Altera board and the calculation results is shown out
on 7 segment indicators.

-- testing for ADD, Load, CND, CBR
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00010100011000110000010000100011; --4 ADD R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

Appendix B

 378

The function of first sequences of code is a loop to continue loading input

data, do the ADD calculation, and output results. To achieve these

functions, the instructions - ADD, Load, CND, CBR must function correctly.

First, the input port memory address is loaded into R1, output port

memory address is loaded into R2. Then load the input data, do the ADD

operation on the loaded data, and then output the results. After the

operation, it jumps back to the next loop ready to the next tests.

The following picture is showed both the simulation results and the

physical testing results. It performs 3+3 function, the ADD function gives

the results 6. The results in simulation and indication on testing board (7

Segment digital) are matched to prove that the tests are passed. The

number shows in the circles on the pictures are matched the 7 segments of

testing Altera board in all the following tests.

Appendix B

 379

Results of functional testing of ADD, LOAD, CND, CBR instruction

-- testing for SUB
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00011000011000110000010000100011; --4 SUB R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is a loop to continue loading input data, do
the SUB calculation, and output results. First, the input port memory address is
loaded into R1, output port memory address is loaded into R2. Then load the
input data, do the SUB operation on the loaded data, and then output the results.
After the operation, it jumps back to the next loop ready to the next tests.

Appendix B

 381

The following picture is showed both the simulation results and the physical
testing results. It performs 3-3 function, the subtract function gives the results
0. The results in simulation and indication on testing board (7 Segment digital)
are matched to prove that the tests are passed. The number shows in the square
on the following pictures are matched the 7 segments of testing Altera board in
all the following tests.

Appendix B

 382

Testing results of SUB

Appendix B

 383

-- testing for ASL
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00100000011000110000010000100011; --4 ASL R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is a loop to continue loading input data, do
the ASL calculation, and output results. First, the input port memory address is
loaded into R1, output port memory address is loaded into R2. Then load the
input data, do the ASL operation on the loaded data, and then output the results.
After the operation, it jumps back to the next loop ready to the next tests.

Appendix B

 384

The following picture is showed both the simulation results and the physical
testing results. It performs arithmetically left shift function	
 on	
 input	
 data	
 ‘3’,	
 the	

function	
 gives	
 the	
 results	
 ‘6’.	
 	
 The	
 results	
 in	
 simulation	
 and	
 indication	
 on	
 testing	

board (7 Segment digital) are matched to prove that the tests are passed. The
number shows in the square on the following pictures are matched the 7
segments of testing Altera board in all the following tests.

Appendix B

 385

The results of testing ASL instructions

Appendix B

 386

-- testing for ASR
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00011100011000110000010000100011; --4 ASR R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is to test arithmetic shift right instruction.
It is a loop to continue loading input data, do the ASR calculation, and output
results. First, the input port memory address is loaded into R1, output port
memory address is loaded into R2. Then load the input data, do the ASR
operation on the loaded data, and then output the results. After the operation, it
jumps back to the next loop ready to the next tests.

Appendix B

 387

The following picture is showed both the simulation results and the physical
testing results. It performs arithmetically right shift function on input data
“0..011”,	
 the	
 function	
 gives	
 the	
 results	
 “..0..01”.	
 	
 The	
 results	
 in	
 simulation	
 and	

indication on testing board (7 Segment digital) are matched to prove that the
tests are passed. The number shows in the square on the following pictures are
matched the 7 segments of testing Altera board in all the following tests.

Appendix B

 388

The results of ASR

Appendix B

 389

-- testing for AND
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00101000011000110000010000100011; --4 AND R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is to test logic AND instruction. It is a loop
to continue loading input data, do the logically AND function, and output results.
First, the input port memory address is loaded into R1, output port memory
address is loaded into R2. Then load the input data, do the AND operation on the
loaded data, and then output the results. After the operation, it jumps back to
the next loop ready to the next tests.

Appendix B

 390

The following picture is showed both the simulation results and the physical
testing	
 results.	
 	
 It	
 performs	
 logical	
 AND	
 function	
 on	
 input	
 data	
 “0..011”,	
 the	

function	
 gives	
 the	
 results	
 “0..011”.	
 	
 The	
 results	
 in	
 simulation	
 and	
 indication	
 on	

testing board (7 Segment digital) are matched to prove that the tests are passed.
The number shows in the square on the following pictures are matched the 7
segments of testing Altera board in all the following tests.

Appendix B

 391

The testing results of AND instructions

Appendix B

 392

-- testing for OR
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00100100001000110000010000100011; --4 OR R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is to test logic OR instruction. It is a loop
to continue loading input data, do the logically OR function, and output results.
First, the input port memory address is loaded into R1, output port memory
address is loaded into R2. Then load the input data, do the OR operation on the
loaded data, and then output the results. After the operation, it jumps back to
the next loop ready to the next tests.

Appendix B

 393

The following picture is showed both the simulation results and the physical
testing results. It performs logical OR function	
 on	
 input	
 data	
 “0..011”	
 and	

“0..0..00”,	
 the	
 function	
 gives	
 the	
 results	
 “0..011”.	
 	
 The	
 results	
 in	
 simulation	
 and	

indication on testing board (7 Segment digital) are matched to prove that the
tests are passed. The number shows on the following pictures are matched the 7
segments of testing Altera board in all the following tests.

Appendix B

 394

The testing results of the OR instruction

Appendix B

 395

-- testing for XOR
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00101100001000110000010000100011; --4 XOR R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is to test logic XOR instruction. It is a loop
to continue loading input data, do the logically XOR function, and output results.
First, the input port memory address is loaded into R1, output port memory
address is loaded into R2. Then load the input data, do the XOR operation on the
loaded data, and then output the results. After the operation, it jumps back to
the next loop ready to the next tests.

Appendix B

 396

The following picture is showed both the simulation results and the physical
testing	
 results.	
 	
 It	
 performs	
 logical	
 XOR	
 function	
 on	
 input	
 data	
 “0..001”	
 and	

“0..000”,	
 the	
 function	
 gives	
 the	
 results	
 “0..001”.	
 	
 The	
 results	
 in	
 simulation	
 and	

indication on testing board (7 Segment digital) are matched to prove that the
tests are passed. The number shows on the following pictures are matched the 7
segments of testing Altera board in all the following tests.

Appendix B

 397

The testing results of the XOR instruction

Appendix B

 398

-- testing for LSL
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00110000011000110000010000100011; --4 LSL R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is to test logic left shift instruction. It is a
loop to continue loading input data, do the logically left shift function, and
output results. First, the input port memory address is loaded into R1, output
port memory address is loaded into R2. Then load the input data, do the logic
left shift operation on the loaded data, and then output the results. After the
operation, it jumps back to the next loop ready to the next tests.

Appendix B

 399

The following picture is showed both the simulation results and the physical
testing	
 results.	
 	
 It	
 performs	
 logical	
 left	
 function	
 on	
 input	
 data	
 “0..001”,	
 the	

function	
 gives	
 the	
 results	
 “0..010”.	
 	
 The	
 results	
 in	
 simulation	
 and	
 indication	
 on	

testing board (7 Segment digital) are matched to prove that the tests are passed.
The number shows on the following pictures are matched the 7 segments of
testing Altera board in all the following tests.

Appendix B

 400

The testing result of LSL

Appendix B

 401

-- testing for LSR
WIDTH=32;
DEPTH=64;
ADDRESS_RADIX=HEX;
DATA_RADIX=BIN;

CONTENT BEGIN
 00 : 00000000000000000000000000000000; --0 ------------
 01 : 00001000000000100000100000000001; --1 LDA R2 ; LDA R1
 02 : 00100000000000000000000000000000; --2 (input) port1(addr)
 03 : 01000000000000000000000000000000; --3 (output) port2(addr)
 04 : 00110100011000110000010000100011; --4 LSR R3 R3 ; LD (R1) R3
 05 : 00001100010000110000110001000011; --5 -- ; ST (R2) R3
 06 : 00111000101000010000100000000101; --6 CBR R5 R1 ; LDA R5
 07 : 00000000000000000000000000000100; --7 --4-- Address
 08 : 00001000000001100000100000000101; --8 --LDA R6 ; LDA R5
 09 : 00000000000000000000000000010110; --9 -- 22(jump1)
 0a : 00000000000000000000000000010101; --10 -- 21(jump2)
 0b : 00001000000010000000100000000111; --11 --LDA R8 ; LDA R7
 0c : 00000000000000000000000000011100; --12 -- 28(jump3)
 0d : 01000000000000000000000000000000; --13 --(output) port2(addr)
 0e : 00001000000010100000100000001001; --14 --LDA R10 ; LDA R9
 0f : 00000000000000000000000000001011; --15 -- B
 10 : 00000000000000000000000000001010; --16 -- A
 11 : 00001000000011000000100000001011; --17 --LDA R12 ; LDA R11
 12 : 11000000000000000000000000000000; --18 -- Mask(<=)
 13 : 00100000000000000000000000000000; --19 -- Mask(>)
 14 : 00000000000000000000100000001101; --20 -- LD (PC) R13
 15 : 00000000000000000000000000000010; --21 -- 2
 16 : 00000000000000000001000001001110; --22 -- MV R2 R14
 17 : 00000000000000000001010000101110; --23 -- ADD R1 R14
 18 : 00111100011100000001000111010000; --24 -- CND R3 R16 ; mv R14 R16
 19 : 00111000101100000010100101110000; --25 -- CBR R5 R16; AND R11 R16
 1a : 00111101101011110000010010001111; --26 -- CND R13 R15; LD R4 R15
 1b : 00111001111001110010100110001111; --27 -- CBR R7 R15 ; AND R12 R15
 1c : 00111000110000010000110101001000; --28 -- CBR R6 R1; ST R10 R8
 1d : 00111000110000010000110100101000; --29 -- CBR R6 R1; ST R9 R8
 1e : 10001110100000000010000000000000;
 [1f..2d] : 10101110000000000010000000000000;
 2e : 11011110000000000010000000000000;
 [2f..3a] : 01011000100000000010000000000000;
 3b : 11011110000000000010000000000000;
 [3c..3d] : 01111000100000000010000000000000;
 3e : 00110100000000000010000000000000;
 3f : 11111111111111110010000000000000;
END;

The function of this sequence of code is to test logic right shift instruction. It is a
loop to continue loading input data, do the logically left shift function, and
output results. First, the input port memory address is loaded into R1, output
port memory address is loaded into R2. Then load the input data, do the logic
left right operation on the loaded data, and then output the results. After the
operation, it jumps back to the next loop ready to the next tests.

Appendix B

 402

The following picture is showed both the simulation results and the physical
testing	
 results.	
 	
 It	
 performs	
 logical	
 left	
 function	
 on	
 input	
 data	
 “0..011”,	
 the	

function	
 gives	
 the	
 results	
 “0..001”.	
 	
 The	
 results	
 in	
 simulation	
 and	
 indication	
 on	

testing board (7 Segment digital) are matched to prove that the tests are passed.
The number shows on the following pictures are matched the 7 segments of
testing Altera board in all the following tests.

Appendix B

 403

The testing results of LSR

400

Appendix C

Appendix C

Assembler Code Examples

Appendix C 401

Example 1.
Global data and code
Source code Memory structure Code Ass.Code Comments

 char ch;
 short int i;
 int j;

R31

Memory

i

j

. . .

. . .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

R31

Memory

i

j

. . .

. . .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

 Programming convention 1:

R31 register always keeps the base
address of the global data (with
negative offsets) and the program
code (with non-negative offsets).

Initially R31 is set by the progam
loader.

 ch := ‘0’;

 LDA R1 NOP
R1 := ‘0’; Get the value of ‘0’ into R1

‘0’
LDA R2 ADD R31,R2 R2:=-6;

R2+=R31;
Get the address of ch into R2 (as
R31+offset) -3

ST R1,R2 *R2:=R1;
Store the value from R1 to ch
(pointed to by R2)

 i := 10;

 LDA R1 NOP
R1:=10; Get the value of 10 into R1

10
LDA R2 ADD R31,R2 R2:=-4;

R2+=R31;
Get the address of i to into R2 (as
R31+offset) -2

ST R1,R2 *R2:=R1;
Store the value from R1 to i (pointed
to by R2)

 j := i;

 LDA R1 ADD R31,R1
R1:=-2;

Get the offset of j into R1; get the
address of j into R1 (as R31+offset) -1

LDA R2 ADD R31,R2 R2:=-4;
R2+=R31;

Get the offset of i into R1; get the
address of I into R2 (as R31+offset) -2

LD R2,R2 ST R2,R1 R2:=*R2;
*R1:=R2;

Get the value pointed to by R2 (i.e., i)
to R2.
Store the value from R2 to j (pointed
to by R1)

Appendix C 402

Example 2.
Jumps Without Context Switch: Gotos Within Routine Code
Source code Code base Offset Code Assembly Code Comments

Label is treated as the
relative address of the
instruction which follows
directly after the label

 Stmts before
 goto L;
 Stmts between
L:
 Stmts after

R31 ---> 0 Code before
Code before

... . . .

N LDA R1 ADD R1,R31
R1 := L;
R1 += R31;

Calculate physical address
of the target instruction:
codebase+label N+1 L

N+2 CBR R1,R1 if R1 goto R1;

Unconditional branch: we
use R1 as the “condition”
because it is guaranteed
non-null.

N+3 Code between
Code between

... . . .

L Code after <L>
 Code after

Appendix C 403

Example 3.
Jumps with Context Switch: Procedure Call
Source code Code structure Comment

 . . .
proc P;
 var x, y, z, t : int;
begin
 . . .
 Q(x,7,&y,z+t);
 . . .
end P;

proc Q(a,b:int;c:int&;d:int);
begin
 . . .
 return;
end Q;
 . . .

R31
Memory

. . .

. . .

Offset

Global
code

0
…
P
P+1
…

. . .

Q
Q+1
…

. . .

Сode of
proc P

Сode of
proc Q

R31
Memory

. . .

. . .

Offset

Global
code

0
…
P
P+1
…

. . .

Q
Q+1
…

. . .

Сode of
proc P

Сode of
proc Q

This example illustrates different ways of
passing parameters:

1. The value of a standalone variable
2. A constant
3. An address of a variable (“passing by
 reference”)
4. The value of an expression (evaluate
 and pass)

Procedure value is treated as the relative
address (of common code base R31) of
the first procedure’s instruction.

Source code Memory structure before call to Q Memory structure after call to Q

Programming
convention 2:

R30 register always keeps
the base address of the
current stackframe which
stores local data of the
latest procedure call
(together with some

Appendix C 404

Stackfrm Size
Dynamic Link

Return Addr

x
y
z
t

R30
Stackfrm Size
Dynamic Link

Return Addr

x
y
z
t

R30

a
b
c
d

Stackfrm Size
Dynamic Link

Return Addr

x
y
z
tR30

Stackfrm size
Dynamic Link
Return Addr

a
b
c
d

Stackfrm Size
Dynamic Link

Return Addr

x
y
z
tR30

Stackfrm size
Dynamic Link
Return Addr

additional information).

The R30’s contents
changes when calling a
routine and returning from
a routine (see example
below).

R30 is set by the program
loader and initially points
to the global data
(i.e., R30=R31).

Programming
convention 3:

R29 register is used for
passing the return value (if
any) from the callee to the
caller.

 Code for calling routine

...
Q(x,7,&y,z+t);
...

// Create the stackframe for Q (permanent part of the call)
R1 := *R30; // get the size of the stackframe
R1 += R30; // R1 points to the start of the new stackfrm
R2 := 1; R2 += R1; // R2 points to the 2nd word of the new stackframe
*R2 := R30; // Store dynamic link: pointer to the old stackframe

// Evaluate and store actual arguments (this part can vary)
// First actual: x
R2 := 3; R2 += R30; // Get the address of x (based by R30)
R2 := *R2; // Get the value of x
R3 := 3; R3 += R1; // Get the address for the 1st actual
*R3 := R2; // Store the value of the 1st actual

Appendix C 405

// Second actual: constant 7
R2 := 7; // Get the value of the 2nd actual
R3 := 4; R2 += R1; // Get the address for the 2nd actual
*R3 := R2; // Store the value of the 2nd actual
// Third actual: address of y
R2 := 4; R2 += R30; // Get the address of y
R3 := 5; R3 += R1; // Get the address for the 3rd actual
*R3 := R2; // Store the address of y as the 3rd actual
// Fourth actual: z+t
R2 := 5; R2 += R30; // Get the address of z
R2 := *R2; // Get the value of z
R3 := 6; R3 += R30; // Get the address of t
R3 := *R3; // Get the value of t
R2 += R3; // Get the sum z+t
R3 := 6; R3 += R1; // Get the address for the 4th actual
*R3 := R2; // Store the sum z+t as the 4th actual

// Jump to the code of proc Q (permanent part of the call)
R30 := R1; // Make new stackframe the current one
R2 := Q; R2 += R31; // Get the address of the procedure Q
if R2 goto R2; // Return address is stored in R2;

 Code for the routine being called (Routine’s “standard prologue”)

R1 := <own-stackframe-size>;
*R30 := R1; // Store the size of the own stackframe
R1 := 2; R1 += R30; // The address for storing return address
*R1 := R2; // Store return address
 . . . // The routine code itself

 Code for returning from a routine (Routine’s “standard epilogue”)

return;

R1 := 2; R1 += R30; // Get the address of the RetAddr in the current stkfrm
R1 := *R1; // Get the return address itself
R2 := 1; R2 += R30; // Get the address of the dynamic link
R2 := *R2; // Get the dynamic link itself
R30 := R2; // Restore the address of the previous stackframe
if R1 goto R1; // Return to the caller

Appendix C 406

Example 4.
Dynamic Data Structures
Source code Memory structure Code Assembly

Code
Comments

struct S
{ int a;
 int b;
 int c; };

. . .

S* p = new S;

. . .

R3

Memory

b
c

. . .

. . .

a 1
2
3

OffsetR3

Memory

b
c

. . .

. . .

a 1
2
3

Offset

p->a = 7; LDA R4 ST R4,R3 R4 := 7;
*R3 := R4;

Get the address of a field (R3)
and store the value of 3 by this
address 7

p->b = p->c; LDA R4 ADD R3,R4 R4:=1;
R4+=R3;

Set 1 (as field b’s offset) to R4,
and then get the address of b
as R3+1

1

 LDA R5 ADD R3,R5 R5:=2;
R5+=R3;

Set 2 (as field c’s offset) to R5,
and then get the address of c
as R3+2

2

LD R5,R5 ST R4,R5 R5:=*R5;

*R4:=R5;
Load c to R5 and then store it
by the address of b (from R4)

407

Appendix D

Appendix D

Dissimera’s Source Code Documentation

i

Dissimera’s Source Code and
documentation

Dissimera

Disassembler/Simulator of the ERA architecture

Victor Castano
Version 0.1a

16 March 2012

ii

Abstract

What follows is a detailed documentation of the simulator’s source code for the

ERA architecture. can help others to:

1) understand the simulator and its design at a low level, and

2) co-participate in the development/upgrade of the tool.

Alternatively, a dynamic website has been deployed at a temporary location at:

http://victorccc.com/index.html.

By the time this document is read, this website will include newer developments.

Hence, it is recommendable to have a look at it to see the latest updates.

http://victorccc.com/index.html0

iii

Table of Contents

Introduction...1
Interface and current state..3
Log Sample..5
Todo List ... 8
Bug List ... 9
File Index ..10
File Documentation...11

D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disside.h11
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/dissimera.h46
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disstools.h73
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/viewbin.cpp77

Index ...84

1

Introduction

Reading binary code is a painful experience for any programmer. In order to test and

troubleshoot any error of design, bug or incompatibility between linker and the

VHDL code I have decided to develop a Disassembler and a Simulator in a

combined tool that will ease this process. In addition it will allow the simulation of

the state of the processor at any given time.

The fundamental characteristics of this tool will be:

x Disassembling of instructions: Binary-to-ASM and and

Binary-to-PSEUDOCODE that will complement Zouev’s assembler.

x Ability to discern data from instructions

x Simulation of the ERA architecture including: Program Counter (PC),

Instruction Registry (IR), Register FILE (RF), memory contents and

Syndrome Structure.

x Step by Step Execution.

x Breakpoints.

x Overflow warning

x Logging.

x Ability to compare results of simulation execution with the results of Altera

execution.

2

Figure 1. Flow of ERRIC testing (top) and Flow of ERRIC testing with the help of a disassembler

The development of such disassembler/simulator gives us the possibility of 1)

testing and location of errors of design of the soft core processor; 2) understand the

smallest details of the ERRIC functionality; 3) Simulation of the current version of

the processor and the FT version of the processor and 4) Fault Injection.

Basic disassembling (1) and ability to differentiate data from instructions are already

implemented. The rest of the features will be developed in the next two months. I

believe that this tool could have an application in a learning environment. It could be

easily modified to be used in any computing architecture or software engineer

module to explain how computers work at the very low level.

3

Interface and current state

The design is completed and the user interface is fully defined (see Figure 2 and

Figure 3 below):

 Figure 2. Design of the Interface of the current version of the simulator v0.1a

The implementation is still a working progress. Nonetheless, several parts have
already been completed :

 1) The design is completed and the user interface is fully defined.

4

 2) Assembling of pseudo code using ERA assembler/preparator (100%
completed).

 3) Disassembling of binary into human readable code (assembly code) (100%
completed).

 4) The simulator is capable of parsing the binary file resulting from the
previous step and is then capable of classifying data and instructions (100%
completed).

 5) Simulation of main memory, register file, program counter and instruction
registry is almost completed (90%).

Figure 3. Interface of the current version of the simulator v0.1a

5

Log sample

Example of Log file related to the execution of the disassembler

fname = log.txt

 Number of Bytes = 68 bytes
 Number of 32-bit instruction-data = 17

 0 C800 C000
 11 0010 00000 00000 11 0000 00000 00000
 LDA R0 R0 NOP-STOP R0 R0

 1 0000 0001
 00 0000 00000 00000 00 0000 00000 00001
 NOP-STOP R0 R0 NOP-STOP R0 R1

 2 C801 C000
 11 0010 00000 00001 11 0000 00000 00000
 LDA R0 R1 NOP-STOP R0 R0

 3 0000 000A
 00 0000 00000 00000 00 0000 00000 01010
 NOP-STOP R0 R0 NOP-STOP R0 R10

 4 C802 C000
 11 0010 00000 00010 11 0000 00000 00000
 LDA R0 R2 NOP-STOP R0 R0

 5 0000 000A
 00 0000 00000 00000 00 0000 00000 01010
 NOP-STOP R0 R0 NOP-STOP R0 R10

 6 C803 C000
 11 0010 00000 00011 11 0000 00000 00000
 LDA R0 R3 NOP-STOP R0 R0

 7 0000 000B
 00 0000 00000 00000 00 0000 00000 01011
 NOP-STOP R0 R0 NOP-STOP R0 R11

 8 C804 C000
 11 0010 00000 00100 11 0000 00000 00000
 LDA R0 R4 NOP-STOP R0 R0

 9 0000 0064

6

 00 0000 00000 00000 00 0000 00011 00100
 NOP-STOP R0 R0 NOP-STOP R3 R4

 10 C805 C000
 11 0010 00000 00101 11 0000 00000 00000
 LDA R0 R5 NOP-STOP R0 R0

 11 0000 0065
 00 0000 00000 00000 00 0000 00011 00101
 NOP-STOP R0 R0 NOP-STOP R3 R5

 12 C806 C000
 11 0010 00000 00110 11 0000 00000 00000
 LDA R0 R6 NOP-STOP R0 R0

 13 0000 006E
 00 0000 00000 00000 00 0000 00011 01110
 NOP-STOP R0 R0 NOP-STOP R3 R14

 14 C807 DC41
 11 0010 00000 00111 11 0111 00010 00001
 LDA R0 R7 ASL R2 R1

 15 0000 006F
 00 0000 00000 00000 00 0000 00011 01111
 NOP-STOP R0 R0 NOP-STOP R3 R15

 16 0000 C000
 00 0000 00000 00000 11 0000 00000 00000
 NOP-STOP R0 R0 NOP-STOP R0 R0

 Size of File = 68 bytes
 Number of Elements = 17

 1 C800 C000
 11 0010 00000 00000 11 0000 00000 00000
 LDA R0 R0 meaning R0:=CONSTANT meaning R0:=1 meaning R0:=1

 3 C801 C000
 11 0010 00000 00001 11 0000 00000 00000
 LDA R0 R1 meaning R1:=CONSTANT meaning R1:=10 meaning R1:=10

 5 C802 C000

7

 11 0010 00000 00010 11 0000 00000 00000
 LDA R0 R2 meaning R2:=CONSTANT meaning R2:=10 meaning R2:=10

 7 C803 C000
 11 0010 00000 00011 11 0000 00000 00000
 LDA R0 R3 meaning R3:=CONSTANT meaning R3:=11 meaning R3:=11

 9 C804 C000
 11 0010 00000 00100 11 0000 00000 00000
 LDA R0 R4 meaning R4:=CONSTANT meaning R4:=100 meaning R4:=100

 11 C805 C000
 11 0010 00000 00101 11 0000 00000 00000
 LDA R0 R5 meaning R5:=CONSTANT meaning R5:=101 meaning R5:=101

 13 C806 C000
 11 0010 00000 00110 11 0000 00000 00000
 LDA R0 R6 meaning R6:=CONSTANT meaning R6:=110 meaning R6:=110

 15 C807 DC41
 11 0010 00000 00111 11 0111 00010 00001
 LDA R0 R7 meaning R7:=CONSTANT meaning R7:=111 meaning R7:=111

 17 0000 C000
 00 0000 00000 00000 11 0000 00000 00000
 NOP-STOP R0 R0 meaning STOP instruction
 NOP-STOP R0 R0 meaning NOP instruction

8

Todo List

Global fParseFile (char *iniFileName, s_item *pCode)

To load, not only the code list, but also the RAM. Disabling the comment for "pRAM[i-1]=pCode[i].HLLL;" will
be the only thing left to do.

File viewbin.cpp

9

Bug List
Global main (int argc, char *argv[])

File viewbin.cpp

10

File Index
File List
Here is a list of all files with brief descriptions:

D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disside.h (Header file for the Visual Interface of
Dissimera) ... 11
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/dissimera.h (General Header file for Dissimera)
 .. 46
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disstools.h (Header file for the general tools of
Dissimera) ... 73
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/viewbin.cpp (Main source file for the Dissimera
simulator) ... 77

11

File Documentation
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disside.h File
Reference

Header file for the Visual Interface of Dissimera.
#include <curses.h>
#include <panel.h>
#include <windows.h>
Include dependency graph for disside.h:

This graph shows which files directly or indirectly include this file:

Data Structures
x struct s_coord
x struct s_panel
x struct s_winborder
x struct s_window

Defines
x #define ESCAPE_KEY 27
x #define CTRL_LEFT_KEY 443
x #define CTRL_RIGHT_KEY 444
x #define CTRL_UP_KEY 480
x #define CTRL_DOWN_KEY 481
x #define KEY_F1 265
x #define KEY_F2 266
x #define KEY_F3 267
x #define KEY_F4 268
x #define KEY_F5 269
x #define KEY_F6 270
x #define KEY_F7 271
x #define KEY_F8 272
x #define KEY_F9 273

12

x #define KEY_F10 274
x #define KEY_F11 275
x #define KEY_F12 276
x #define KEY_PGDOWN 338
x #define KEY_PGUP 339
x #define NUMPANELS 30
x #define NUMWINDOWS 30
x #define BUFFERWIN 250
x #define P_NULL -1
x #define P_TOPBAR 0
x #define P_SUBTOPBAR 1
x #define P_ADDR1 2
x #define P_SUBADDR1 3
x #define P_PADDR1 4
x #define P_MAIN1 5
x #define P_SUBMAIN1 6
x #define P_PMAIN1 7
x #define P_IDHEX 8
x #define P_SUBIDHEX 9
x #define P_PIDHEX 10
x #define P_ADDRRF 11
x #define P_SUBADDRRF 12
x #define P_RF 13
x #define P_SUBRF 14
x #define P_PC 15
x #define P_SUBPC 16
x #define P_IR 17
x #define P_SUBIR 18
x #define P_ADDR2 19
x #define P_SUBADDR2 20
x #define P_PADDR2 21
x #define P_MEM 22
x #define P_SUBMEM 23
x #define P_PMEM 24
x #define P_STATUS 25
x #define P_SUBSTATUS 26
x #define P_BOTTBAR 27
x #define P_SUBBOTTBAR 28
x #define E_NORMALRUN -1
x #define E_NOP -1
x #define E_STEPBSTEP 1

Functions
x int fInitWindows (s_window *p_window)
x int fInitPanels (s_panel *p_panel)
x void fHighlight_line (WINDOW *pwin, int pline, unsigned int pbackgcolor)
x void fUnHighlight_line (WINDOW *pwin, int pline)
x int fUpdateCursors_Main (s_window *p_window, int p_iLastIntr, int p_iNewInstr, unsigned int pbackgcolor)
x int fSetTerm ()

It sets a long buffer and Size of the terminal (maximizing it).
x void fIniP_TopBar (s_window *p_window, s_panel *p_panel)
x void fIniP_ADDR1 (s_window *p_window, s_panel *p_panel, unsigned short int p_numInstr)

13

x void fIniP_MAIN1 (s_window *p_window, s_panel *p_panel)
x void fIniP_IDHEX (s_window *p_window, s_panel *p_panel)
x void fIniP_ADDRRF (s_window *p_window, s_panel *p_panel)
x void fIniP_RF (s_window *p_window, s_panel *p_panel)
x void fIniP_PC (s_window *p_window, s_panel *p_panel)
x void fIniP_IR (s_window *p_window, s_panel *p_panel)
x void fIniP_ADDR2 (s_window *p_window, s_panel *p_panel)
x void fIniP_MEM (s_window *p_window, s_panel *p_panel)
x void fIniP_STATUS (s_window *p_window, s_panel *p_panel)
x void fIniP_BOTTBAR (s_window *p_window, s_panel *p_panel)
x int fSetIDE (s_panel *p_panel, s_window *p_window, unsigned short int p_numInstr)
x void fHighlightPanel (short int pwin, char pflag, s_window *p_window)
x short fmovePanel (int pkey, short *pActiveP, s_panel *p_panels, s_window *p_window)
x int fBootHardware (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item

*plRAM, unsigned pPC)
x int fLoadPanels (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item *plRAM,

unsigned pPC)
x int fExecuteCode (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item

*plRAM, unsigned *pPC, s_exec *p_exec, int p_nIexec)
x int fHandleKeyDown (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item

*plRAM, unsigned *pPC, s_exec *p_exec)
x int fHandleKeyUp (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item

*plRAM, unsigned *pPC, s_exec *p_exec)

Detailed Description
Header file for the Visual Interface of Dissimera.

 \author Victor Castano
 \version 0.1a
 \date 08\03\2012 It contains the variables and functions related to the interface
Definition in file disside.h.

Data Structure Documentation

struct s_coord
Definition at line 104 of file disside.h.

Data Fields:

unsigned int h
unsigned int w
unsigned int x
unsigned int y

struct s_panel
Definition at line 111 of file disside.h.
Collaboration diagram for s_panel:

14

Data Fields:

s_coord coord
short int cursorcomp
short int down

unsigned char hide
char label

int labelcolor
short int left

PANEL * panel
short int right
short int up

struct s_winborder
The parameters elements are
x ls: character to be used for the left side of the window
x rs: character to be used for the right side of the window
x ts: character to be used for the top side of the window
x bs: character to be used for the bottom side of the window
x tl: character to be used for the top left corner of the window
x tr: character to be used for the top right corner of the window
x bl: character to be used for the bottom left corner of the window
x br: character to be used for the bottom right corner of the window
Definition at line 137 of file disside.h.

15

Data Fields:
chtype bl
chtype br
chtype bs
chtype ls
chtype rs
chtype tl
chtype tr
chtype ts

struct s_window
Definition at line 145 of file disside.h.
Collaboration diagram for s_window:

Data Fields:

s_coord coord
short int cursor

WINDOW * win

Define Documentation

#define BUFFERWIN 250

Definition at line 50 of file disside.h.
Referenced by fIniP_ADDR1(), fIniP_IDHEX(), and fIniP_MAIN1().

#define CTRL_DOWN_KEY 481

Definition at line 26 of file disside.h.
Referenced by fmovePanel(), and main().

16

#define CTRL_LEFT_KEY 443

Definition at line 23 of file disside.h.
Referenced by fmovePanel(), and main().

#define CTRL_RIGHT_KEY 444

Definition at line 24 of file disside.h.
Referenced by fmovePanel(), and main().

#define CTRL_UP_KEY 480

Definition at line 25 of file disside.h.
Referenced by fmovePanel(), and main().

#define E_NOP -1

Definition at line 99 of file disside.h.

#define E_NORMALRUN -1

Definition at line 98 of file disside.h.

#define E_STEPBSTEP 1

Definition at line 100 of file disside.h.

#define ESCAPE_KEY 27

Definition at line 22 of file disside.h.
Referenced by main().

#define KEY_F1 265

Definition at line 27 of file disside.h.

#define KEY_F10 274

Definition at line 36 of file disside.h.
Referenced by main().

#define KEY_F11 275

Definition at line 37 of file disside.h.

#define KEY_F12 276

Definition at line 38 of file disside.h.

17

#define KEY_F2 266

Definition at line 28 of file disside.h.

#define KEY_F3 267

Definition at line 29 of file disside.h.

#define KEY_F4 268

Definition at line 30 of file disside.h.

#define KEY_F5 269

Definition at line 31 of file disside.h.
Referenced by main().

#define KEY_F6 270

Definition at line 32 of file disside.h.

#define KEY_F7 271

Definition at line 33 of file disside.h.

#define KEY_F8 272

Definition at line 34 of file disside.h.

#define KEY_F9 273

Definition at line 35 of file disside.h.
Referenced by main().

#define KEY_PGDOWN 338

Definition at line 43 of file disside.h.
Referenced by main().

#define KEY_PGUP 339

Definition at line 44 of file disside.h.
Referenced by main().

#define NUMPANELS 30

Definition at line 48 of file disside.h.
Referenced by fInitPanels(), and main().

18

#define NUMWINDOWS 30

Definition at line 49 of file disside.h.
Referenced by fInitWindows(), and main().

#define P_ADDR1 2

Definition at line 57 of file disside.h.
Referenced by fHighlightPanel(), fIniP_ADDR1(), fIniP_MAIN1(), and fUpdateCursors_Main().

#define P_ADDR2 19

Definition at line 81 of file disside.h.
Referenced by fHighlightPanel(), fIniP_ADDR2(), fIniP_IR(), fIniP_MEM(), fIniP_PC(), and fIniP_RF().

#define P_ADDRRF 11

Definition at line 69 of file disside.h.
Referenced by fIniP_ADDRRF(), fIniP_IDHEX(), and fIniP_RF().

#define P_BOTTBAR 27

Definition at line 92 of file disside.h.
Referenced by fIniP_BOTTBAR(), and fIniP_STATUS().

#define P_IDHEX 8

Definition at line 65 of file disside.h.
Referenced by fHighlightPanel(), fIniP_ADDRRF(), fIniP_IDHEX(), fIniP_IR(), fIniP_MAIN1(), fIniP_PC(),
fLoadPanels(), and fUpdateCursors_Main().

#define P_IR 17

Definition at line 78 of file disside.h.
Referenced by fBootHardware(), fIniP_IR(), and fIniP_PC().

#define P_MAIN1 5

Definition at line 61 of file disside.h.
Referenced by fHighlightPanel(), fIniP_ADDR1(), fIniP_IDHEX(), fIniP_MAIN1(), fIniP_STATUS(),
fIniP_TopBar(), fLoadPanels(), fUpdateCursors_Main(), and main().

#define P_MEM 22

Definition at line 85 of file disside.h.
Referenced by fHighlightPanel(), fIniP_ADDR2(), and fIniP_MEM().

19

#define P_NULL -1

Definition at line 52 of file disside.h.
Referenced by fIniP_ADDR1(), fIniP_BOTTBAR(), fIniP_MEM(), fIniP_STATUS(), fIniP_TopBar(),
fInitPanels(), and fmovePanel().

#define P_PADDR1 4

Definition at line 59 of file disside.h.

#define P_PADDR2 21

Definition at line 83 of file disside.h.

#define P_PC 15

Definition at line 75 of file disside.h.
Referenced by fBootHardware(), fIniP_ADDRRF(), fIniP_IR(), fIniP_PC(), and fIniP_RF().

#define P_PIDHEX 10

Definition at line 67 of file disside.h.

#define P_PMAIN1 7

Definition at line 63 of file disside.h.

#define P_PMEM 24

Definition at line 87 of file disside.h.

#define P_RF 13

Definition at line 72 of file disside.h.
Referenced by fBootHardware(), fIniP_ADDR2(), fIniP_ADDRRF(), fIniP_PC(), and fIniP_RF().

#define P_STATUS 25

Definition at line 89 of file disside.h.
Referenced by fIniP_ADDR1(), fIniP_ADDR2(), fIniP_BOTTBAR(), fIniP_IDHEX(), fIniP_IR(),
fIniP_MAIN1(), fIniP_MEM(), and fIniP_STATUS().

#define P_SUBADDR1 3

Definition at line 58 of file disside.h.
Referenced by fIniP_ADDR1().

#define P_SUBADDR2 20

20

Definition at line 82 of file disside.h.
Referenced by fIniP_ADDR2().

#define P_SUBADDRRF 12

Definition at line 70 of file disside.h.
Referenced by fIniP_ADDRRF().

#define P_SUBBOTTBAR 28

Definition at line 93 of file disside.h.
Referenced by fIniP_BOTTBAR().

#define P_SUBIDHEX 9

Definition at line 66 of file disside.h.
Referenced by fIniP_IDHEX(), and fLoadPanels().

#define P_SUBIR 18

Definition at line 79 of file disside.h.
Referenced by fIniP_IR().

#define P_SUBMAIN1 6

Definition at line 62 of file disside.h.
Referenced by fIniP_MAIN1(), and fLoadPanels().

#define P_SUBMEM 23

Definition at line 86 of file disside.h.
Referenced by fIniP_MEM().

#define P_SUBPC 16

Definition at line 76 of file disside.h.
Referenced by fIniP_PC().

#define P_SUBRF 14

Definition at line 73 of file disside.h.
Referenced by fIniP_RF().

#define P_SUBSTATUS 26

Definition at line 90 of file disside.h.
Referenced by fBootHardware(), fIniP_STATUS(), fLoadPanels(), fmovePanel(), and fSetIDE().

21

#define P_SUBTOPBAR 1

Definition at line 55 of file disside.h.
Referenced by fIniP_TopBar(), and main().

#define P_TOPBAR 0

Definition at line 54 of file disside.h.
Referenced by fIniP_ADDR1(), fIniP_ADDR2(), fIniP_ADDRRF(), fIniP_IDHEX(), fIniP_MAIN1(),
fIniP_MEM(), fIniP_RF(), and fIniP_TopBar().

Function Documentation

int fBootHardware (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF,
s_item * plRAM, unsigned pPC)

Definition at line 1050 of file disside.h.
Referenced by main().
{

 unsigned int lSizeCode = 0;

 unsigned int i=0;

 unsigned int lIR=0;

 char lstInstr[64]="";

 char lstreg[64]="";

 waddstr(p_window[P_SUBSTATUS].win, " Booting Hardware ... ");

 wrefresh(p_window[P_SUBSTATUS].win);

 //Obtaining number of Elements

 lSizeCode = fSizeCode(pCode);

///

/*

 //Loading the MEMORY PANEL

 for (i=1; i<=lSizeCode; i++)

 {

 fB16tostring(pCode[i].HL,lstInstr);

 mvwaddnstr(p_window[P_MEM].win, i, 0,lstInstr,-1);

 fB16tostring(pCode[i].LL,lstInstr);

 mvwaddnstr(p_window[P_MEM].win, i, 18, lstInstr,-1);

 }

 wrefresh(p_window[P_MEM].win);

*/

 //Loading the Register File

 for (i=0; i<32; i++)

 {

 fB32tostring(pRF[i],lstreg);

 mvwaddnstr(p_window[P_RF].win, i+1, 1,lstreg,-1);

 }

 wrefresh(p_window[P_RF].win);

 //Loading Program Counter

 strcpy(lstreg, "");

 sprintf(lstreg, "%08X", pPC);

 mvwaddnstr(p_window[P_PC].win, 1, 14, lstreg,-1);

 wrefresh(p_window[P_PC].win);

 //Loading Instruction Register

 strcpy(lstreg, "");

22

 sprintf(lstreg, "%08X", lIR);
 mvwaddnstr(p_window[P_IR].win, 1, 14, lstreg,-1);
 wrefresh(p_window[P_IR].win);
/// end comment

 waddstr(p_window[P_SUBSTATUS].win, "Hardware Booted\n");
 wrefresh(p_window[P_SUBSTATUS].win);

 return 0;
}

Here is the call graph for this function:

Here is the caller graph for this function:

int fExecuteCode (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF,
s_item * plRAM, unsigned * pPC, s_exec * p_exec, int p_nIexec)

Definition at line 1175 of file disside.h.
Referenced by main().
{
 // p_nIexec represents the number of instructions to be executed
 // (-1 means normal execution, 0 means no execution)
 // fExecuteCode function returns the number of instructions executed.
 // -1 as a result means an error has occured during execution.

 //s_item item;
 unsigned int lsize=0;
 unsigned int i=0;
 unsigned short int lEOLOAD=0; // Variable that will represent which load is active
High (1) Load or Low (2) Load
 bool lEOCODE=0; // Variable that will represent whether the END OF
CODE has been reached
 s_instruction lInstr; // Local var that stores the instruction: either
High or Low
 int lnInstEx=0; // Number of instructions executed

 //Obtain number of Elements
 //lsize=pCode[0].linenum;
 lsize=fSizeCode(pCode);

 fptraza(gflog, 1, "\n Executing code");
 fptraza(gflog, 1, "\n Size of Array = %d bytes", lsize*4);
 fptraza(gflog, 3, "\n Number of Elements = %d \n", lsize);

 //Check if the Code list is empty
 if (lsize <=0)
 {
 return -1; //Empty code list
 }

 /* Browse the list of Code (High and Low part) starting by the first element
 By default every item was set as T_32BITDATA, we are now browsing only instruction by
instruction
 in order to mark instructions from the data
 */

23

 i=*pPC+1; // Position in the code list is 1+ due to the first element being used for
configuration
 do
 {
 fshowItem(&pCode[i]);
 //pCode[i].type=T_INSTRUCTIONS; // The item is definitely an instruction load
 lEOLOAD=1;
 do //Browse firts the high and then the low part (specified by lEOLOAD)
 {
 if (lEOLOAD==1)
 {
 lInstr=pCode[i].InstrA;
 }
 else
 {
 lInstr=pCode[i].InstrB;
 fptraza(gflog, 1, "\n");
 }

 fshowInstruction(&lInstr);
 p_exec->uiLastInstr=*pPC;

 switch (lInstr.i_code)
 {
 case 0: //The NOP instruction performs no actions, except moving the PC register
to the next instruction.
 switch (lInstr.f_code)
 {
 case 0: // x00b STOP instruction
 fptraza(gflog, 1, " meaning STOP instruction ");
 lEOCODE=true; // End of CODE
 break;
 case 1: // x01b NOP instruction
 //break; //Assuming that 01 and 11 for f_code are a NOP
instruction (check with Igor, Thomas and Eugene
 case 3: // QUESTION: x11b According to the
Document Instruction Set this is not possible but it seems to be a NOP instruction
 fptraza(gflog, 1, " meaning NOP instruction ");
 break;
 default:
 fptraza(gflog, 1, "THIS IS NOT POSSIBLE - a 01??? in the format code?");
 }

 break;
 case 1: // The LD instruction copies the value of a 32-bit memory word pointed
to by Ri into Rj
 fptraza(gflog, 1, " meaning R%d:=*R%d ", lInstr.Op2, lInstr.Op1);
 //Loading Rj with the vaule from the memory location
 pRF[lInstr.Op2]=plRAM[lInstr.Op1].HLLL;
 fptraza(gflog, 1, " meaning R%d:=%d ", lInstr.Op2,
plRAM[lInstr.Op1].HLLL);
 break;
 case 2: // The LDA instruction takes the value from the next 32-bit word and stores
the result into Rj
 // constant stored in the Next 32bit location
 fptraza(gflog, 1, " meaning R%d:=CONSTANT", lInstr.Op2);
 fptraza(gflog, 1, " meaning R%d:=%d ", lInstr.Op2, pCode[i+1].HLLL);
 pRF[lInstr.Op2]=pCode[i+1].HLLL; //Loading Rj with the next 32bit word
 fptraza(gflog, 1, " meaning R%d:=%d ", lInstr.Op2, pRF[lInstr.Op2]);

 if (lEOLOAD ==1)
 {
 lnInstEx++; // Not sure if this is correct. Does LDA execute the low 16
bits????
 lEOLOAD++; // Jumping the load
 }
 i++; // Jumping to the following instruction (the one after the data)

 break;

24

 case 3: // The ST instruction copies the value of Ri to the memory by address
taken from Rj
 fptraza(gflog, 1, " meaning *R%d:=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning MEM[%d]=%d ", pRF[lInstr.Op2],
pRF[lInstr.Op1]);
 plRAM[pRF[lInstr.Op2]].HLLL = pRF[lInstr.Op1]; // MEM(Rj)=Ri
 fptraza(gflog, 1, " meaning MEM[%d]=%d ", pRF[lInstr.Op2],
plRAM[pRF[lInstr.Op2]].HLLL);
 break;
 case 4: // The MOV instruction copies the value from Ri to the Rj
 // Assuming that format code is fixed to 11
 fptraza(gflog, 1, " meaning R%d:=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d:=%d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2]=pRF[lInstr.Op1]; // Rj=Ri
 break;
 case 5: // The ADD instruction denotes the two’s complement arithmetic addition.
 // The contents of Ri and Rj are arithmetically added, and the result
is put into Rj.
 // Assuming that format code is fixed to 11
 fptraza(gflog, 1, " meaning R%d+=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=R%d+R%d", lInstr.Op2,lInstr.Op2,
lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=%d+%d", lInstr.Op2,pRF[lInstr.Op2],
pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] + pRF[lInstr.Op2]; // Rj=Rj+Ri
 break;
 case 6: /* The SUB instruction denotes the two’s complement arithmetic
subtraction.
 The content of Ri is subtracted from the contents of Rj, and the
result
 is put into the register Rj
 */
 fptraza(gflog, 1, " meaning R%d-=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=R%d-R%d", lInstr.Op2,lInstr.Op2,
lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=%d-%d", lInstr.Op2,pRF[lInstr.Op2],
pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] - pRF[lInstr.Op2]; // Rj=Rj+Ri
 break;
 case 7: // The ASR instruction arithmetically shifts Ri one bit right, and puts
the result into Rj.
 fptraza(gflog, 1, " meaning R%d >>= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri
 pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1; // one bit right
shitfing of Rj
 fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 8: /* The ASL instruction arithmetically shifts the contents of Ri one
bit left, and puts
 the result into the register Rj. */
 fptraza(gflog, 1, " meaning R%d <<= R%d", lInstr.Op2, lInstr.Op1);
 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri
 fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1; // one bit left
shitfing of Rj
 fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 9: /* The OR instruction applies logical addition (“OR”) operator to every
pair
 of bits taken from Ri and Rj, respectively, and puts the result into
Rj. */
 fptraza(gflog, 1, " meaning R%d |= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] | pRF[lInstr.Op1];
 fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 10: /* The AND instruction applies logical multiplicative (“AND”) operator
to
 every pair of bits taken from Ri and Rj, respectively, and puts the
 result into Rj */

25

 fptraza(gflog, 1, " meaning R%d &= R%d", lInstr.Op2, lInstr.Op1);

 fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op1]);

 pRF[lInstr.Op2] = pRF[lInstr.Op2] & pRF[lInstr.Op1];

 fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op2]);

 break;

 case 11: /* The XOR instruction applies logical exclusive OR (“XOR”) operator
to every

 pair of bits taken from Ri and Rj, respectively, and puts the result

into Rj. */

 fptraza(gflog, 1, " meaning R%d ^= R%d", lInstr.Op2, lInstr.Op1);

 fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]);

 pRF[lInstr.Op2] = (pRF[lInstr.Op2] || pRF[lInstr.Op1]) && !(pRF[lInstr.Op2]

&& pRF[lInstr.Op1]);

 fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]);

 break;

 case 12: /* The LSL instruction logically shifts the contents of Ri one bit left,

and

 puts the result into the Rj. */

 fptraza(gflog, 1, " meaning R%d <= R%d", lInstr.Op2, lInstr.Op1);

 fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op1]);

 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri

 pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1; // one bit logicleft

right shitfing of Rj

 fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op2]);

 break;

 case 13:

 /* The LSR instruction logically shifts the contents of Ri one bit right,

and

 puts the result into the register Rj. */

 fptraza(gflog, 1, " meaning R%d >= R%d", lInstr.Op2, lInstr.Op1);

 fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op1]);

 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri

 pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1; // one bit logic right

shitfing of Rj

 fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op2]);

 break;

 case 14:

 /* The CND instruction arithmetically compares the contents Ri and Rj

 and puts the result of the comparison (as a set of 1-bit signs) to Rj.

*/

 fptraza(gflog, 1, " meaning R%d ?= R%d", lInstr.Op2, lInstr.Op1);

 // Victor When executing we can check the result and show it

 break;

 case 15:

 /* The CBR instruction checks the contents of Ri. If it is non-zero,

 then:

 1) the address of the next instruction (i.e., current value of

 the PC register + 1) is stored in the Ri register, and

 2) the value of Rj is set to the PC register. This means that

 the next instruction will be fetched by the address taken Rj

 */

 fptraza(gflog, 1, " meaning if R%d GOTO R%d", lInstr.Op1, lInstr.Op2);

 break;

 default:

 return -1; //This should never happen;

 }

 lEOLOAD++;

 lnInstEx++;

 } while (lEOLOAD <= 2); // Loop finishes when every part of the load (High and Low)

has been processed

 i++;

 (*pPC)++;

 }while (lnInstEx<p_nIexec && lEOCODE==FALSE);

 p_exec->nInstrEx=lnInstEx;

 return lnInstEx;

26

}
Here is the call graph for this function:

Here is the caller graph for this function:

int fHandleKeyDown (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF,
s_item * plRAM, unsigned * pPC, s_exec * p_exec)

Definition at line 1390 of file disside.h.
Referenced by main().
{

 return 0;
}

Here is the caller graph for this function:

int fHandleKeyUp (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF,
s_item * plRAM, unsigned * pPC, s_exec * p_exec)

Definition at line 1399 of file disside.h.
Referenced by main().
{

 return 0;
}

Here is the caller graph for this function:

27

void fHighlight_line (WINDOW * pwin, int pline, unsigned int pbackgcolor)

Definition at line 193 of file disside.h.
Referenced by fUpdateCursors_Main().
{
 mvwchgat(pwin, pline, 1, pwin->_maxx-2, pbackgcolor, 0, NULL);
 wrefresh(pwin);
}

Here is the caller graph for this function:

void fHighlightPanel (short int pwin, char pflag, s_window * p_window)

Definition at line 879 of file disside.h.
Referenced by fmovePanel(), and main().
{
 if (pflag==1)
 // Enable highlighting of current Panel
 {
 //wattrset(p_win, COLOR_PAIR(2) | A_BOLD);
 wattron(p_window[pwin].win, COLOR_PAIR(2) | A_BOLD);
 box(p_window[pwin].win, 0 , 0);
 wrefresh(p_window[pwin].win);
 wattroff(p_window[pwin].win, COLOR_PAIR(2) | A_BOLD);
 }
 else
 {
 // Disable highlighting of current Panel
 wattron(p_window[pwin].win, COLOR_PAIR(0));
 box(p_window[pwin].win, 0 , 0);
 wrefresh(p_window[pwin].win);
 wattron(p_window[pwin].win, COLOR_PAIR(0));

 }

 //Refreshing the subwindows if there is any
 switch(pwin)
 {
 case P_ADDR1:
 case P_MAIN1:
 case P_IDHEX:
 case P_ADDR2:
 case P_MEM:
 wrefresh(p_window[pwin+1].win);
 wattroff(p_window[pwin+1].win, COLOR_PAIR(2) | A_BOLD);
 wrefresh(p_window[pwin+1].win); // Refreshing the Subwindow or pad in this case
(next window)
 break;
 default:
 break;
 }

 return;
}

Here is the caller graph for this function:

28

void fIniP_ADDR1 (s_window * p_window, s_panel * p_panel, unsigned short int p_numInstr)

Definition at line 304 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 // We first Create and Initialize the Window
 i = P_ADDR1;

 coord.x=0; coord.y=3; coord.h=40; coord.w=6;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);
 wrefresh(p_window[i].win);

 // Creating subwindows within the window
 p_window[P_SUBADDR1].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 if (p_window[P_SUBADDR1].win == NULL)
 {
 addstr("Unable to create new subwindow");
 refresh();
 endwin();
 return;
 }
 //wrefresh(p_window[P_SUBADDR1].win);
 p_window[P_SUBADDR1].win = newpad(BUFFERWIN, coord.w-2);
 if (p_window[P_SUBADDR1].win == NULL)
 {
 addstr("Unable to create new pad");
 refresh();
 endwin();
 return;
 }

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " ADDRESS 1 PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_TOPBAR;
 p_panel[i].down=P_STATUS;
 p_panel[i].left=P_NULL;
 p_panel[i].right=P_MAIN1;
 p_panel[i].cursorcomp=0;
 ////////p_panel[i].panel = new_panel(p_window[P_SUBADDR1].win);

 //wrefresh(p_window[i].win);

 //Writing HEX Addresses on pad
 unsigned short lhexadd=0;
 char lsaddr[10];
 for (lhexadd=0; lhexadd<p_numInstr-1; lhexadd++)
 {
 sprintf(lsaddr,"%04x", lhexadd);
 mvwaddnstr(p_window[P_SUBADDR1].win, lhexadd,0,lsaddr,-1);
 //prefresh(p_window[P_SUBADDR1].win,0,0,coord.y+1,coord.x+1,coord.h+1,coord.w);
 //wrefresh(p_window[P_SUBADDR1].win);
 }

 //wrefresh(p_window[i].win);

29

 prefresh(p_window[P_SUBADDR1].win,0,0,coord.y+1,coord.x+1,coord.h+1,coord.w);

 //char ch=getch();
// wrefresh(p_window[i].win);
// prefresh(p_window[P_SUBADDR1].win,1,0,coord.y+1,coord.x+1,coord.h+1,coord.w);
 /*
 ch=getch();
 prefresh(p_window[P_SUBADDR1].win,2,0,coord.y+1,coord.x+1,coord.h+1,coord.w);
 ch=getch();
 prefresh(p_window[P_SUBADDR1].win,3,0,coord.y+1,coord.x+1,coord.h+1,coord.w);
 */
 return;
}

Here is the caller graph for this function:

void fIniP_ADDR2 (s_window * p_window, s_panel * p_panel)

Definition at line 672 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;
 unsigned short lhexadd=0;
 char lsaddr[10];

 i = P_ADDR2;

 coord.x=108; coord.y=3; coord.h=40; coord.w=6;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 p_window[P_SUBADDR2].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panelp_panel[i].coord = coord;
 sprintf(ls_label, " Address Memory PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_TOPBAR;
 p_panel[i].down=P_STATUS;
 p_panel[i].left=P_RF;
 p_panel[i].right=P_MEM;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 //Writing HEX Addresses on panel
 for (lhexadd=0; lhexadd<coord.h-2; lhexadd++)
 {
 sprintf(lsaddr,"%04x", lhexadd);
 mvwaddnstr(p_window[i].win, lhexadd+1,1,lsaddr,-1);
 }
 prefresh(p_window[i].win,108,0,3,0,40,6);
 //wrefresh(p_window[i].win);

 return;
}

30

Here is the caller graph for this function:

void fIniP_ADDRRF (s_window * p_window, s_panel * p_panel)

Definition at line 499 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 char lsreg[5]="R0";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;
 unsigned short int j = 0;

 i = P_ADDRRF;

 coord.x=68; coord.y=3; coord.h=34; coord.w=5;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 p_window[P_SUBADDRRF].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " Address Registers PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_TOPBAR;
 p_panel[i].down=P_PC;
 p_panel[i].left=P_IDHEX;
 p_panel[i].right=P_RF;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 //Writing Register names on panel
 for (j=0; j<32; j++)
 {
 sprintf(lsreg,"R%d", j);
 mvwaddnstr(p_window[i].win, j+1,1,lsreg,-1);
 }
 wrefresh(p_window[i].win);

 return;
}

Here is the caller graph for this function:

void fIniP_BOTTBAR (s_window * p_window, s_panel * p_panel)

Definition at line 792 of file disside.h.

31

Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_BOTTBAR;

 coord.x=0; coord.y=54; coord.h=3; coord.w=149;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 //CORREGIRRRRRRRRRRRRRRRRRRRRR
 p_window[P_SUBBOTTBAR].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panelp_panel[i].coord = coord;
 p_panel[i].coord = coord;
 sprintf(ls_label, " BOTTBAR ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_STATUS;
 p_panel[i].down=P_NULL;
 p_panel[i].left=P_NULL;
 p_panel[i].right=P_NULL;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 return;
}

Here is the caller graph for this function:

void fIniP_IDHEX (s_window * p_window, s_panel * p_panel)

Definition at line 436 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_IDHEX;

 coord.x=41; coord.y=3; coord.h=40; coord.w=26;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);
 wrefresh(p_window[i].win);

 // Creating subwindows within the window
 p_window[P_SUBIDHEX].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 if (p_window[P_SUBIDHEX].win == NULL)
 {
 addstr("Unable to create new subwindow");

32

 refresh();
 endwin();
 return;
 }

 //wrefresh(p_window[P_SUBIDHEX].win);
 //wrefresh(p_window[i].win);
 p_window[P_SUBIDHEX].win = newpad(BUFFERWIN, coord.w-2);
 if (p_window[P_SUBIDHEX].win == NULL)
 {
 addstr("Unable to create subpad");
 refresh();
 endwin();
 return;
 }

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " Instruction/Data Decoding PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_TOPBAR;
 p_panel[i].down=P_STATUS;
 p_panel[i].left=P_MAIN1;
 p_panel[i].right=P_ADDRRF;
 p_panel[i].cursorcomp=0;

 //testing
 /*
 char lstInstr[64]="";
 strcpy(lstInstr, "Victor1");
 mvwaddnstr(p_window[P_SUBIDHEX].win, 0,0,lstInstr,-1);
 prefresh(p_window[P_SUBIDHEX].win,0,0,coord.y+1,coord.x+2,coord.h+1,coord.w+3);
 */

 return;
}

Here is the caller graph for this function:

void fIniP_IR (s_window * p_window, s_panel * p_panel)

Definition at line 637 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_IR;

 coord.x=73; coord.y=40; coord.h=3; coord.w=35;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 p_window[P_SUBIR].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

33

 //Creating and Setting-Up a new Panelp_panel[i].coord = coord;
 sprintf(ls_label, " Instruction Register ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_PC;
 p_panel[i].down=P_STATUS;
 p_panel[i].left=P_IDHEX;
 p_panel[i].right=P_ADDR2;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 return;
}

Here is the caller graph for this function:

void fIniP_MAIN1 (s_window * p_window, s_panel * p_panel)

Definition at line 384 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_MAIN1;

 coord.x=6; coord.y=3; coord.h=40; coord.w=35;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);
 wrefresh(p_window[i].win);

 // Creating subwindows within the window
 p_window[P_SUBMAIN1].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 if (p_window[P_SUBMAIN1].win == NULL)
 {
 addstr("Unable to create new subwindow");
 refresh();
 endwin();
 return;
 }

 //wrefresh(p_window[P_SUBMAIN1].win);
 p_window[P_SUBMAIN1].win = newpad(BUFFERWIN, coord.w-2);
 if (p_window[P_SUBMAIN1].win == NULL)
 {
 addstr("Unable to create subpad");
 refresh();
 endwin();
 return;
 }

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " MAIN PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_TOPBAR;

34

 p_panel[i].down=P_STATUS;
 p_panel[i].left=P_ADDR1;
 p_panel[i].right=P_IDHEX;
 p_panel[i].cursorcomp=0;

 return;
}

Here is the caller graph for this function:

void fIniP_MEM (s_window * p_window, s_panel * p_panel)

Definition at line 719 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_MEM;

 coord.x=114; coord.y=3; coord.h=40; coord.w=35;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 p_window[P_SUBMEM].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panelp_panel[i].coord = coord;
 sprintf(ls_label, " MEMORY PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_TOPBAR;
 p_panel[i].down=P_STATUS;
 p_panel[i].left=P_ADDR2;
 p_panel[i].right=P_NULL;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 return;
}

Here is the caller graph for this function:

void fIniP_PC (s_window * p_window, s_panel * p_panel)

Definition at line 601 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;

35

 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_PC;

 coord.x=73; coord.y=37; coord.h=3; coord.w=35;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 p_window[P_SUBPC].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " Program COUNTER ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_RF;
 p_panel[i].down=P_IR;
 p_panel[i].left=P_IDHEX;
 p_panel[i].right=P_ADDR2;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 return;
}

Here is the caller graph for this function:

void fIniP_RF (s_window * p_window, s_panel * p_panel)

Definition at line 547 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;
 int x=0;
 int y=0;

 i = P_RF;

 coord.x=73; coord.y=3; coord.h=34; coord.w=35;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);

 // Creating subwindows within the window
 p_window[P_SUBRF].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " REGISTER FILE PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

36

 p_panel[i].up=P_TOPBAR;
 p_panel[i].down=P_PC;
 p_panel[i].left=P_ADDRRF;
 p_panel[i].right=P_ADDR2;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

// getyx(p_window[i].win,y,x);
// wmove(p_window[i].win,2,2);

 /*
 //Highlighting current cursor
 fHighlight_line(p_window[*pActiveP].
 g_wins[gactiveP].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD); // Main/present
panel
 fHighlight_line(g_wins[P_ADDR1].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD); //
ADDR1 Panel
 fHighlight_line(g_wins[P_IDHEX].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD); //
IDHEX Panel
 */

 return;
}

Here is the caller graph for this function:

void fIniP_STATUS (s_window * p_window, s_panel * p_panel)

Definition at line 754 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_STATUS;

 coord.x=0; coord.y=43; coord.h=11; coord.w=149;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);
 wrefresh(p_window[i].win);

 // Creating subwindows within the window
 p_window[P_SUBSTATUS].win=derwin(p_window[i].win, coord.h-2, coord.w-4, 1, 1);
 // Enabling Scroll in the subwindow
 scrollok(p_window[P_SUBSTATUS].win,TRUE);
 wbkgd(p_window[P_SUBSTATUS].win,COLOR_PAIR(2));

 p_panel[i].coord = coord;
 sprintf(ls_label, " STATUS ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_MAIN1;
 p_panel[i].down=P_BOTTBAR;
 p_panel[i].left=P_NULL;
 p_panel[i].right=P_NULL;

37

 p_panel[i].cursorcomp=0;
 //p_panel[i].panel = new_panel(p_window[i].win);

 return;
}

Here is the caller graph for this function:

void fIniP_TopBar (s_window * p_window, s_panel * p_panel)

Definition at line 261 of file disside.h.
Referenced by fSetIDE().
{
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 unsigned short int i = 0;

 i = P_TOPBAR;

 coord.x=0; coord.y=0; coord.h=3; coord.w=149;
 p_window[i].coord = coord;
 p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x);
 box(p_window[i].win, 0, 0);
 wrefresh(p_window[i].win);

 // Creating subwindows within the window
 p_window[P_SUBTOPBAR].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1);
 //wbkgd(p_window[P_SUBTOPBAR].win,COLOR_PAIR(3));

 //Writing welcome message on panel
 mvwaddnstr(p_window[P_SUBTOPBAR].win, 0,0," Welcome to the ERA
disassembler/simulator\n",-1);
 wrefresh(p_window[P_SUBTOPBAR].win);
 wrefresh(p_window[i].win);

 //Creating and Setting-Up a new Panel
 p_panel[i].coord = coord;
 sprintf(ls_label, " TOP BAR PANEL ");
 sprintf(p_panel[i].label, ls_label);
 p_panel[i].labelcolor = lcolor;
 p_panel[i].hide= lhide;

 p_panel[i].up=P_NULL;
 p_panel[i].down=P_MAIN1;
 p_panel[i].left=P_NULL;
 p_panel[i].right=P_NULL;
 p_panel[i].cursorcomp=0;
 p_panel[i].panel = new_panel(p_window[i].win);

 return;
}

Here is the caller graph for this function:

int fInitPanels (s_panel * p_panel)

Definition at line 170 of file disside.h.

38

Referenced by fSetIDE().
{
 unsigned int i=0;

 for (i=0; i<NUMPANELS; i++)
 {
 p_panel[i].coord.h=0;
 p_panel[i].coord.w=0;
 p_panel[i].coord.x=0;
 p_panel[i].coord.y=0;
 p_panel[i].cursorcomp=0;
 p_panel[i].down=P_NULL;
 p_panel[i].up=P_NULL;
 p_panel[i].left=P_NULL;
 p_panel[i].right=P_NULL;
 p_panel[i].hide=0;
 strcpy(p_panel[i].label," ");
 p_panel[i].labelcolor=0;
 p_panel[i].panel=NULL;
 }
 return 0;
}

Here is the caller graph for this function:

int fInitWindows (s_window * p_window)

Definition at line 154 of file disside.h.
Referenced by fSetIDE().
{
 unsigned int i=0;

 for (i=0; i<NUMWINDOWS; i++)
 {
 p_window[i].coord.h=0;
 p_window[i].coord.w=0;
 p_window[i].coord.x=0;
 p_window[i].coord.y=0;
 p_window[i].cursor=0;
 p_window[i].win=NULL;
 }
 return 0;
}

Here is the caller graph for this function:

int fLoadPanels (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF,
s_item * plRAM, unsigned pPC)

Definition at line 1104 of file disside.h.
Referenced by main().
{
 unsigned int lSizeCode = 0;
 unsigned int i=0;
 char lstInstr[64]="";
 char lsIcode[20]="";
 s_coord coord = {0,0,0,0};

39

 //Obtain number of Elements
 lSizeCode = fSizeCode(pCode);

 waddstr(p_window[P_SUBSTATUS].win, " Loading Panels ");
 wrefresh(p_window[P_SUBSTATUS].win);

 //Browsing the list
 for (i=0; i<lSizeCode; i++)
 {
 //Loading coordinates of the MAIN 1 window
 coord=p_window[P_MAIN1].coord;

 // Printing binary in MAIN 1
 fB16tostring(pCode[i].HL,lstInstr);
 //mvwaddnstr(p_window[P_PMAIN1].win, i, 0,lstInstr,-1);
 mvwaddnstr(p_window[P_SUBMAIN1].win, i, 0,lstInstr,-1);
 fB16tostring(pCode[i].LL,lstInstr);
 mvwaddnstr(p_window[P_SUBMAIN1].win, i, 17,lstInstr,-1);
 //mvwaddnstr(p_window[P_PMAIN1].win, i, 18, lstInstr,-1);
 prefresh(p_window[P_SUBMAIN1].win,0,0,coord.y+1,coord.x+2,coord.h+1,coord.w+3);

 strcpy(lstInstr, "");

 //Loading coordinates of the IDHEX window
 coord=p_window[P_IDHEX].coord;

 // Printing Instruction
 if (pCode[i].type==T_INSTRUCTIONS)
 {
 fGetStInstruction(pCode[i].InstrA, lstInstr);
 mvwaddnstr(p_window[P_SUBIDHEX].win, i, 0, lstInstr,-1);

 fGetStInstruction(pCode[i].InstrB, lstInstr);
 mvwaddnstr(p_window[P_SUBIDHEX].win, i, 13, lstInstr,-1);
 }
 else
 {
 sprintf(lstInstr, "%08X", pCode[i].HLLL);
 //mvwaddnstr(p_window[P_SUBIDHEX].win, i, 8, lstInstr,-1);
 //mvwaddnstr(p_window[P_SUBIDHEX].win, i, 8, "xxx",-1);
 int k=0;
 k=mvwaddnstr(p_window[P_SUBIDHEX].win, i, 8, "xxx",-1);
 if (k!=OK)
 {
 addstr("Unable to create subpad");
 refresh();
 endwin();
 return -1; // Testing
 }
 }

 //Refreshing SUBIDHEX window
 prefresh(p_window[P_SUBIDHEX].win,0,0,coord.y+1,coord.x+1,coord.h+1,coord.w);
 prefresh(p_window[P_SUBMAIN1].win,0,0,coord.y+1,coord.x+2,coord.h+1,coord.w+3);
 }

 waddstr(p_window[P_SUBSTATUS].win, "Panels Loaded\n");
 wrefresh(p_window[P_SUBSTATUS].win);

 return 0;
}

Here is the call graph for this function:

40

Here is the caller graph for this function:

short fmovePanel (int pkey, short * pActiveP, s_panel * p_panels, s_window * p_window)

Definition at line 920 of file disside.h.
Referenced by main().
{
 short int ltempP=*pActiveP; // Backing up Active panel parameter
 char lstMessage[255]=""; // Message for the status window (sprintf)

 switch(pkey)
 {
 case CTRL_LEFT_KEY: // CTRL+LEFT
 if (p_panels[ltempP].left != P_NULL)
 {
 ltempP=*pActiveP;

 // Disable highlighting of current Panel
 fHighlightPanel(ltempP, 0, p_window);

 // Switching to the left Panel
 *pActiveP=p_panels[ltempP].left;

 // Remembering the way in in orther to return back (right in this case)
 p_panels[*pActiveP].right=ltempP;

 // Enable highlighting of current Panel
 fHighlightPanel(*pActiveP, 1, p_window);
 }
 else
 {
 beep();
 }
 break;
 case CTRL_RIGHT_KEY: // CTRL+RIGHT KEY
 if (p_panels[ltempP].right != P_NULL)
 {
 ltempP=*pActiveP;

 // Disable highlighting of current Panel
 fHighlightPanel(ltempP, 0, p_window);

 // Switching to the right Panel
 *pActiveP=p_panels[ltempP].right;

 // Remembering the way in in orther to return back (left in this case)
 p_panels[*pActiveP].left=ltempP;

 // Enable highlighting of current Panel
 fHighlightPanel(*pActiveP, 1, p_window);

41

 }
 else
 {
 beep();
 }
 break;
 case CTRL_UP_KEY: // CTRL+UP KEY
 if (p_panels[ltempP].up != P_NULL)
 {
 ltempP=*pActiveP;

 // Disable highlighting of current Panel
 fHighlightPanel(ltempP, 0, p_window);

 // Switching to the upper Panel
 *pActiveP=p_panels[ltempP].up;

 // Remembering the way in in orther to return back (down in this case)
 p_panels[*pActiveP].down=ltempP;

 // Enable highlighting of current Panel
 fHighlightPanel(*pActiveP, 1, p_window);
 }
 else
 {
 beep();
 }
 break;
 case CTRL_DOWN_KEY: // CTRL+DOWN KEY
 if (p_panels[ltempP].down != P_NULL)
 {
 ltempP=*pActiveP;

 // Disable highlighting of current Panel
 //fHighlightPanel(p_window[ltempP].win, 0);
 fHighlightPanel(ltempP, 0, p_window);

 // Switching to the down Panel
 *pActiveP=p_panels[ltempP].down;

 // Remembering the way in in orther to return back (up in this case)
 p_panels[*pActiveP].up=ltempP;

 // Enable highlighting of current Panel
 //fHighlightPanel(p_window[*pActiveP].win, 1);
 fHighlightPanel(*pActiveP, 1, p_window);
 }
 else
 {
 beep();
 }
 break;

 default:
 break;
 }

 // Updating the status subwindow with the new move
 if (*pActiveP!= ltempP) // Preventing from showing the message when moving to the same panel
 {
 sprintf(lstMessage," Moving to the%s \n",p_panels[*pActiveP].label);
 waddstr(p_window[P_SUBSTATUS].win, lstMessage);
 wrefresh(p_window[P_SUBSTATUS].win);
 }

 // ltempP=*pActiveP;
 // Disable highlighting of current Panel
 // fHighlightPanel(p_window[ltempP].win, 0);

 // Highlighting MAIN panel
 // *pActiveP=P_IDHEX;

42

 // fHighlightPanel(p_window[*pActiveP].win, 1);

 /*
 //Highlighting current cursor
 fHighlight_line(p_window[*pActiveP].
 g_wins[gactiveP].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD); // Main/present
panel
 fHighlight_line(g_wins[P_ADDR1].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD); //
ADDR1 Panel
 fHighlight_line(g_wins[P_IDHEX].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD); //
IDHEX Panel
 */

return *pActiveP;
}

Here is the call graph for this function:

Here is the caller graph for this function:

int fSetIDE (s_panel * p_panel, s_window * p_window, unsigned short int p_numInstr)

Definition at line 830 of file disside.h.
Referenced by main().
{
 unsigned short int i = 0;
 s_coord coord = {0,0,0,0};
 char ls_label[255]="";
 int lcolor=1;
 unsigned char lhide=0; // TRUE if panel is hidden
 //s_winborder lwinb={'â”‚', 'â”‚', 'â”€', 'â”€', 'â”Œ', 'â”� ', 'â””', 'â”˜'};;

 fInitWindows(p_window);
 fInitPanels(p_panel);

 // Initializing panels
 fIniP_TopBar(p_window, p_panel);
 fIniP_ADDR1(p_window, p_panel, p_numInstr);
 fIniP_MAIN1(p_window, p_panel);
 fIniP_IDHEX(p_window, p_panel);

 fIniP_ADDRRF(p_window, p_panel);
 fIniP_RF(p_window, p_panel);
 fIniP_PC(p_window, p_panel);
 fIniP_IR(p_window, p_panel);
 fIniP_ADDR2(p_window, p_panel);
 fIniP_MEM(p_window, p_panel);

 fIniP_STATUS(p_window, p_panel);
 fIniP_BOTTBAR(p_window, p_panel);

 //Writing PC and IR
 //coord.x=73; coord.y=37; coord.h=3; coord.w=35;
// mvaddnstr(38,69,"PC",-1);
// mvaddnstr(41,69,"IR",-1);

 waddstr(p_window[P_SUBSTATUS].win, " All panels Initialized\n");
 wrefresh(p_window[P_SUBSTATUS].win);

43

 // Refreshing all panels
 /*
 refresh();
 update_panels();
 doupdate();
 */

 return 0;
}

Here is the call graph for this function:

44

Here is the caller graph for this function:

int fSetTerm ()

It sets a long buffer and Size of the terminal (maximizing it).

Author:

Victor Castano
Date:

08\03\2012
This function uses windows specific libreries/functions. Hence, the code is only portable with minor
modifications

Returns:

int 0 for correct execution
Definition at line 228 of file disside.h.
Referenced by main().
{
 HWND hWnd;
 HANDLE hOut;
 CONSOLE_SCREEN_BUFFER_INFO SBInfo;
 COORD NewSBSize;
 SMALL_RECT DisplayArea = {0, 0, 0, 0};
 char lsNamewnd[255] ="ERA Disassambler v0.1 June-2011 - Victor Castano";

 hOut = GetStdHandle(STD_OUTPUT_HANDLE);
 GetConsoleScreenBufferInfo(hOut, &SBInfo);

 SetConsoleTitle(lsNamewnd);
 hWnd = FindWindow(NULL, lsNamewnd);

 NewSBSize = GetLargestConsoleWindowSize(hOut);
 // The following two lines will overwrite the detected
 // maximum resolution for the console. Comment if appropiate
 NewSBSize.X=192;
 NewSBSize.Y=58;
 DisplayArea.Right = NewSBSize.X-1;
 DisplayArea.Bottom = NewSBSize.Y-1;

 SetConsoleScreenBufferSize(hOut, NewSBSize);
 SetConsoleWindowInfo(hOut, TRUE, &DisplayArea);
 ShowWindow(hWnd, SW_MAXIMIZE);
 //printf("\n right = %d, bottom = %d", DisplayArea.Right, DisplayArea.Bottom);
 //getchar();

 return 0;
}

Here is the caller graph for this function:

void fUnHighlight_line (WINDOW * pwin, int pline)

45

Definition at line 199 of file disside.h.
Referenced by fUpdateCursors_Main().
{

 //wattron(p_win, COLOR_PAIR(0));

 mvwchgat(pwin, pline, 1, pwin->_maxx-2, COLOR_PAIR(0), 0, NULL);

 wrefresh(pwin);

}

Here is the caller graph for this function:

int fUpdateCursors_Main (s_window * p_window, int p_iLastIntr, int p_iNewInstr, unsigned int
pbackgcolor)

Definition at line 207 of file disside.h.
Referenced by main().
{

 fUnHighlight_line(p_window[P_MAIN1].win,p_iLastIntr+1); // Main Panel

 fUnHighlight_line(p_window[P_ADDR1].win,p_iLastIntr+1); // ADDR1 Panel

 fUnHighlight_line(p_window[P_IDHEX].win,p_iLastIntr+1); // IDHEX Panel

 fHighlight_line(p_window[P_MAIN1].win,p_iNewInstr+1,pbackgcolor); // Main Panel

 fHighlight_line(p_window[P_ADDR1].win,p_iNewInstr+1,pbackgcolor); // ADDR1 Panel

 fHighlight_line(p_window[P_IDHEX].win,p_iNewInstr+1,pbackgcolor); // IDHEX Panel

 return 0;

}

Here is the call graph for this function:

Here is the caller graph for this function:

46

D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/dissimera.h File
Reference

General Header file for Dissimera.
#include "disstools.h"
Include dependency graph for dissimera.h:

This graph shows which files directly or indirectly include this file:

Data Structures
x struct s_instruction
x Structure that represents the instruction. struct s_item
x Structure that represents either a data or a instruction word. struct s_exec

Structure that represents the state of the execution. Defines
x #define MAX_LIST_SIZE 2000

Size of the array of 32bit instructions.
x #define RAM_ELEMENTS 2000

Size of the RAM = 2000x32bits=64000bits=7.8125 kilobytes.
x #define STBUFFER 1000

Size of the terminal buffer.
x #define T_INSTRUCTIONS 1

Type of load: T_INSTRUCTIONS 1 = 2x16 Instructions.
x #define T_32DATA 3

Type of load: T_32DATA 3 = 32 bit Data.
x #define T_SPECIAL 8

Type of load: T_SPECIAL 8 = Configuration load (such position 0)
x #define F_STOP 0

47

Stop Instruction FormatCode = 00 InstructionCode = 0000.
x #define F_NOP 3

Nop Instruction.
x #define I_NOPSTOP 0

NOP/STOP instruction.
x #define I_LD 1

LD instruction.
x #define I_LDA 2

LDA instruction.
x #define I_ST 3

ST instruction.
x #define I_MOV 4

MOV instruction.
x #define I_ADD 5

ADD instruction.
x #define I_SUB 6

SUB instruction.
x #define I_ASR 7

ASR instruction.
x #define I_ASL 8

ASL instruction.
x #define I_OR 9

OR instruction.
x #define I_AND 10

AND instruction.
x #define I_XOR 11

XOR instruction.
x #define I_LSL 12

LSL instruction.
x #define I_LSR 13

LSR instruction.
x #define I_CND 14

CND instruction.
x #define I_CBR 15

CBR instruction.
x #define LSDEBUB 0

LSDEBUB tobedone.
x #define LNDEBUG 1

LSDEBUB tobedone.
x #define LNORMAL 2

LSDEBUB tobedone.

Functions
x int fInitRegisterFile (unsigned int *pRF)

It initializes the register file structure.
x int fInitExec (s_exec *p_exec)

48

It initializes Execution structure.
x int fInitRAM (unsigned int pNumelem, unsigned int *pRAM)

It initializes RAM structure.
x void fInitItem (s_item *item)

It initializes an Item structure.
x void fIniItemList (int pNumelem, s_item *pItemlist)

It initializes the Code/Data list specified whose number of elements is pNumelem.
x int fGetICODE (char codenum, char *sIcode)

It returns an output parameter sIcode with the ASCII equivalent of the instruction code.
x int fGetStInstruction (s_instruction p_instr, char *pstInstr)

It returns an output parameter *pstInstr with the ASCII equivalent of the instruction.
x void fset_type (s_item *item, char type)

It sets the type of the item/load.
x short int SwapTwoBytes (short int w)

It converts two bytes from Little Endian to Big Endian.
x int SwapFourBytes (int dw)

It converts four bytes from Little Endian to Big Endian.
x void fB16tostring (unsigned int n, char *pschar)

It prints a 16 digit binary integer n as a binary in text.
x void fB32tostring (unsigned int n, char *pschar)

It prints a 32 digit binary integer n as a binary in text.
x unsigned int fASL (unsigned int pnum)

ERA arithmetic shift left operation (keeping the sign bit)
x unsigned int fASR (unsigned int pnum)
x s_item parseItem (unsigned int numline, unsigned int instr32)

It will return an structure of the 2x16bit instructions filled.
x int fParseFile (char *iniFileName, s_item *pCode)

It parses the bin file that results of Eugene's assembler/preparator.
x int fSizeCode (s_item *pCode)
x int fshowItem (s_item *item)

fuction that shows an item on the screen using fptraza.
x int fshowInstruction (s_instruction *pInstr)

It shows the instruction included as an input parameter.
x int fParseCode (s_item *pCode, unsigned *pRF, s_item *plRAM, unsigned *pPC)

It browses the Code list and discriminates between data and instructions.

Detailed Description
General Header file for Dissimera.

 \author Victor Castano
 \version 0.1a
 \date 08\03\2012 It contains a collection of variables and functions related to the simulator
Warning:

Definition in file dissimera.h.

49

Data Structure Documentation

struct s_instruction
Structure that represents the instruction.
Definition at line 159 of file dissimera.h.

Data Fields:

unsigned char f_code Format Code (2bits)
unsigned char i_code Instruction Code (4bits)
unsigned char Op1 First operand (5bits)
unsigned char Op2 Second operand (5bits)

struct s_item
Structure that represents either a data or a instruction word.
Position 0 of the array of s_items is deliberately left empty for future configuration purposes. It seems that
5+4+4=13 elements would be more than enough for future configuration. For instance: Number of elements
in the array. I know, I know. Redundant data. But It will be easier to handle. If needed I will swap the array
for a dynamic list (at the moment this is just to test instructions on EURRICA.
Definition at line 175 of file dissimera.h.
Collaboration diagram for s_item:

Data Fields:

unsigned short int HL Higher load (16) of the 32 bits.

50

unsigned int HLLL 32 bit instruction/data
s_instruction InstrA
s_instruction InstrB

unsigned short int linenum the x coordinate
unsigned short int LL Lower load (16) of the 32 bits.

unsigned char type Type of load: 1=2x16 Instructions,
2=Instruction+Data , 3=32 bit Data,
8=Configuration load (such as position 0) By
default every load will be treated as Data

struct s_exec
Structure that represents the state of the execution.
In the future it will include timing and stats.
Definition at line 193 of file dissimera.h.

Data Fields:

unsigned int nInstrEx Number of Instructions Executed.
unsigned int uiLastInstr Last Instruction Executed.

Define Documentation

#define F_NOP 3

Nop Instruction.

Definition at line 132 of file dissimera.h.
Referenced by fGetStInstruction().

#define F_STOP 0

Stop Instruction FormatCode = 00 InstructionCode = 0000.

Definition at line 131 of file dissimera.h.
Referenced by fGetStInstruction().

#define I_ADD 5

ADD instruction.

Definition at line 139 of file dissimera.h.

#define I_AND 10

AND instruction.

Definition at line 144 of file dissimera.h.

51

#define I_ASL 8

ASL instruction.

Definition at line 142 of file dissimera.h.

#define I_ASR 7

ASR instruction.

Definition at line 141 of file dissimera.h.

#define I_CBR 15

CBR instruction.

Definition at line 149 of file dissimera.h.

#define I_CND 14

CND instruction.

Definition at line 148 of file dissimera.h.

#define I_LD 1

LD instruction.

Definition at line 135 of file dissimera.h.

#define I_LDA 2

LDA instruction.

Definition at line 136 of file dissimera.h.

#define I_LSL 12

LSL instruction.

Definition at line 146 of file dissimera.h.

#define I_LSR 13

LSR instruction.

52

Definition at line 147 of file dissimera.h.

#define I_MOV 4

MOV instruction.

Definition at line 138 of file dissimera.h.

#define I_NOPSTOP 0

NOP/STOP instruction.

Definition at line 134 of file dissimera.h.

#define I_OR 9

OR instruction.

Definition at line 143 of file dissimera.h.

#define I_ST 3

ST instruction.

Definition at line 137 of file dissimera.h.

#define I_SUB 6

SUB instruction.

Definition at line 140 of file dissimera.h.

#define I_XOR 11

XOR instruction.

Definition at line 145 of file dissimera.h.

#define LNDEBUG 1

LSDEBUB tobedone.

Definition at line 152 of file dissimera.h.

#define LNORMAL 2

LSDEBUB tobedone.

53

Definition at line 153 of file dissimera.h.

#define LSDEBUB 0

LSDEBUB tobedone.

Definition at line 151 of file dissimera.h.

#define MAX_LIST_SIZE 2000

Size of the array of 32bit instructions.

Definition at line 121 of file dissimera.h.
Referenced by main().

#define RAM_ELEMENTS 2000

Size of the RAM = 2000x32bits=64000bits=7.8125 kilobytes.

Definition at line 122 of file dissimera.h.

#define STBUFFER 1000

Size of the terminal buffer.

Definition at line 123 of file dissimera.h.

#define T_32DATA 3

Type of load: T_32DATA 3 = 32 bit Data.

Definition at line 128 of file dissimera.h.
Referenced by fInitItem().

#define T_INSTRUCTIONS 1

Type of load: T_INSTRUCTIONS 1 = 2x16 Instructions.

Definition at line 126 of file dissimera.h.
Referenced by fLoadPanels(), and fParseCode().

#define T_SPECIAL 8

Type of load: T_SPECIAL 8 = Configuration load (such position 0)

54

Definition at line 129 of file dissimera.h.
Referenced by fParseFile().

Function Documentation

unsigned int fASL (unsigned int pnum)

ERA arithmetic shift left operation (keeping the sign bit)

Author:

Victor Castano

Date:
08\03\2012

It shifts the content of register Ri arithmetically one bit to the left and store the result in Ri.
Memory state is not considered in the instruction, and the memory state does not change.
Both operands can refer to the same register.
Suggested assembly statement for the ASL instruction: Rj <<= Ri
Additional assembly directives specifying the current instruction format: .format 8 or .format 16 or
.format 32
Arithmetic shift means that the sign bit does not participate in the operation but remains on its usual
place.
The leftmost bit of the operand is always lost.
The rightmost bit of the operand gets the value of 0.
The contents of the Ri register does not change.
The effect of the ASL instruction for format 16 is shown below.
The operation for formats 8 and 32 is performed in the similar way.
Parameters:
pnum is contents of the register Ri that should be arithmeticaly shifted to the left

Returns:
void

Definition at line 537 of file dissimera.h.
{

 unsigned int i=0;

 unsigned int j=0;

 // If bit in position 0 (the most left position) is 1 ... (negative number)

 // preparing mask to keep the sign

 if(pnum&(0x80000000>>i))

 {

 j=0x80000000;

 }

 else

 {

 j=0x00000000;

 }

 i=pnum & (0X3FFFFFFF); // selecting bits 14-0

 i=i<<1; // Shifting them one to the left

 i=i|j; // Or with the mask (keeping the sign if needed)

 return i;

55

}

unsigned int fASR (unsigned int pnum)

Definition at line 561 of file dissimera.h.
{
 unsigned int i=0;
 unsigned int j=0;

 // If bit in position 0 (the most left position) is 1 ... (negative number)
 // preparing mask to keep the sign
 if(pnum&(0x80000000>>i))
 {
 j=0xC0000000;
 }
 else
 {
 j=0x40000000;
 }

 // To be
finishedd
dddddddd
 //i=pnum & (0X3FFFFFFF);
 //i=i<<1;
 //i=i|j;

// colorprintI32(i);
// fptraza(gflog, 1," i = %d\n",i);

 return i;
}

void fB16tostring (unsigned int n, char * pschar)

It prints a 16 digit binary integer n as a binary in text.

Author:

Victor Castano

Date:
08\03\2012

Parameters:
n is the integer with the number
*pschar is the string with the binary number to be returned

Returns:
void

Definition at line 467 of file dissimera.h.
Referenced by fLoadPanels().
{
 unsigned int i=0;
 char lsnum[20]="";
 for(i = 0; i<16; i++)
 {
 if(n&(0x8000>>i))
 {
 strcat(lsnum, "1");
 }
 else
 {
 strcat(lsnum, "0");

56

 }

 //if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/
 }
 strcpy(pschar, lsnum);
}

Here is the caller graph for this function:

void fB32tostring (unsigned int n, char * pschar)

It prints a 32 digit binary integer n as a binary in text.

Author:

Victor Castano
Date:

08\03\2012
Parameters:
n is the integer with the number
*pschar is the string with the binary number to be returned

Returns:
void

Definition at line 497 of file dissimera.h.
Referenced by fBootHardware().
{
 unsigned int i=0;
 char lsnum[40]="";

 for(i = 0; i<32; i++) {
 if(n&(0x80000000>>i)) strcat(lsnum, "1"); else strcat(lsnum, "0");
 //if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 15) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 17) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 21) fptraza(gflog, 1," "); /*put a space between bytes*/
 //if(i == 26) fptraza(gflog, 1," "); /*put a space between bytes*/
 }

 strcpy(pschar, lsnum);
}

Here is the caller graph for this function:

int fGetICODE (char codenum, char * sIcode)

It returns an output parameter sIcode with the ASCII equivalent of the instruction code.

57

Author:
Victor Castano

Date:
08\03\2012

Parameters:
codenum is the number of elements
*sIcode is the output parameter with the ASCII equivalent of the instruction code

Returns:
int 0 for correct execution

Definition at line 307 of file dissimera.h.
Referenced by fGetStInstruction(), fshowInstruction(), fshowItem(), and parseItem().
{
 strcpy(sIcode," ");
 switch (codenum)
 {
 case 0:
 strcpy(sIcode, "NOP-STOP"); //The NOP instruction performs no actions, except moving
the PC register to the next instruction.
 break;
 case 1:
 strcpy(sIcode, "LD"); //The LD instruction copies the value of a 32-bit memory
word pointed to by Ri register, to the Rj register.
 break;
 case 2:
 strcpy(sIcode, "LDA");
 break;
 case 3:
 strcpy(sIcode, "ST");
 break;
 case 4:
 strcpy(sIcode, "MOV");
 break;
 case 5:
 strcpy(sIcode, "ADD");
 break;
 case 6:
 strcpy(sIcode, "SUB");
 break;
 case 7:
 strcpy(sIcode, "ASL");
 break;
 case 8:
 strcpy(sIcode, "ASR");
 break;
 case 9:
 strcpy(sIcode, "OR");
 break;
 case 10:
 strcpy(sIcode, "AND");
 break;
 case 11:
 strcpy(sIcode, "XOR");
 break;
 case 12:
 strcpy(sIcode, "LSL");
 break;
 case 13:
 strcpy(sIcode, "LSR");
 break;
 case 14:
 strcpy(sIcode, "CND");
 break;
 case 15:
 strcpy(sIcode, "CBR");
 break;

58

 default:
 return 1; //This would never happen;
 }

 return 0;
}

Here is the caller graph for this function:

int fGetStInstruction (s_instruction p_instr, char * pstInstr)

It returns an output parameter *pstInstr with the ASCII equivalent of the instruction.

Author:

Victor Castano
Date:

08\03\2012
Parameters:
p_instr is structure with the instruction and the operands
*pstInstr is the output parameter with the ASCII equivalent of the instruction code and

parameters

Returns:
int 0 for correct execution

Definition at line 377 of file dissimera.h.
Referenced by fLoadPanels().
{
 char lstInstr[20]="";
 char lsIcode[20]="";

 if(p_instr.i_code == 0)
 {
 if (p_instr.f_code == F_NOP)sprintf(lstInstr, "NOP");
 if (p_instr.f_code == F_STOP) sprintf(lstInstr, "STOP");
 }
 else
 {
 fGetICODE(p_instr.i_code, lsIcode);
 sprintf(lstInstr, "%s R%d R%d", lsIcode, p_instr.Op1, p_instr.Op2);
 }

 strcpy(pstInstr, lstInstr);

 return 0;
}

Here is the call graph for this function:

59

Here is the caller graph for this function:

void fIniItemList (int pNumelem, s_item * pItemlist)

It initializes the Code/Data list specified whose number of elements is pNumelem.

Author:

Victor Castano
Date:

08\03\2012
Parameters:
pNumelem is the number of elements
pItemlist the list of elements

Returns:
void

Definition at line 287 of file dissimera.h.
Referenced by main().
{
 int i=0;

 for (i=0; i<pNumelem; i++)
 {
 fInitItem(&pItemlist[i]);
 }

 return;
}

Here is the call graph for this function:

Here is the caller graph for this function:

int fInitExec (s_exec * p_exec)

It initializes Execution structure.

Author:

Victor Castano
Date:

08\03\2012

60

Parameters:
*p_exec is a reference to the execution structure

Returns:
int 0 for correct execution

Definition at line 226 of file dissimera.h.
Referenced by main().
{
 p_exec->nInstrEx = 0;
 p_exec->uiLastInstr = 0;

 return 0;
}

Here is the caller graph for this function:

void fInitItem (s_item * item)

It initializes an Item structure.

Author:

Victor Castano
Date:

08\03\2012
Parameters:
*item is a reference to the RAMs tructure

Returns:
void

Definition at line 261 of file dissimera.h.
Referenced by fIniItemList(), fParseFile(), and parseItem().
{
 item->linenum=0;
 item->type=T_32DATA; // By default every load will be treated as a 32bit data
 item->HLLL=0;
 item->InstrA.f_code=0;
 item->InstrA.i_code=0;
 item->InstrA.Op1=0;
 item->InstrA.Op2=0;
 item->InstrB.f_code=0;
 item->InstrB.i_code=0;
 item->InstrB.Op1=0;
 item->InstrB.Op2=0;
 item->HL=0;
 item->LL=0;
 return;
}

Here is the caller graph for this function:

61

int fInitRAM (unsigned int pNumelem, unsigned int * pRAM)

It initializes RAM structure.

Author:

Victor Castano

Date:
08\03\2012

Parameters:
pNumelem is the number of elements to be initialized
*pRAM is a reference to the RAM structure

Returns:
int 0 for correct execution

Definition at line 243 of file dissimera.h.
{
 unsigned int i=0;

 for (i=0; i<pNumelem; i++)
 {
 pRAM[i]=0;
 }
 return 0;
}

int fInitRegisterFile (unsigned int * pRF)

It initializes the register file structure.

Author:

Victor Castano

Date:
08\03\2012

Returns:
int 0 for correct execution

Definition at line 207 of file dissimera.h.
Referenced by main().
{
 unsigned char i=0;

 for (i=0; i<32; i++)
 {

62

 pRF[i]=0;
 }
 return 0;
}

Here is the caller graph for this function:

int fParseCode (s_item * pCode, unsigned * pRF, s_item * plRAM, unsigned * pPC)

It browses the Code list and discriminates between data and instructions.

Author:

Victor Castano
Version:

0.1a
Date:

08\03\2012
Parameters:
*pCode
*pRF
*plRAM
*pPC

Returns:
int 0 for correct execution

fParseCode browses the Code list and discriminates between data and instructions It browses
instructions starting in the address 0 and jumps from one to the next setting up the load to
T_INSTRUCTIONS leaving the rest as DATA. Any data stored after the STOP instruction will not be
browsed.
Definition at line 786 of file dissimera.h.
Referenced by main().
{
 //s_item item;
 unsigned int lsize=0;
 unsigned int i=0;
 unsigned short int lEOLOAD=0; // Variable that will represent which load
is active High (1) Load or Low (2) Load
 bool lEOCODE=0; // Variable that will represent whether
the END OF CODE has been reached
 s_instruction lInstr; // Local var that stores the instruction:
either High or Low

 //Obtain number of Elements
 lsize=pCode[0].linenum;
 fptraza(gflog, 1, "\n Size of File = %d bytes", lsize*4);
 fptraza(gflog, 3, "\n Number of Elements = %d \n", lsize);

 //Check if the Code list is empty
 if (lsize <=0)
 {
 return -1;
 }

 /* Browse the list of Code (High and Low part) starting by the first element

63

 By default every item was set as T_32BITDATA, we are now browsing only instruction by

instruction

 in order to mark instructions from the data

 */

 i=*pPC+1; // Position in the code list is 1+ due to the first element being used for

configuration

 do

 {

 fshowItem(&pCode[i]);

 pCode[i].type=T_INSTRUCTIONS; // The item is definitely an instruction load

 lEOLOAD=1;

 do //Browse firts the high and then the low part (specified by lEOLOAD)

 {

 if (lEOLOAD==1)

 {

 lInstr=pCode[i].InstrA;

 }

 else

 {

 lInstr=pCode[i].InstrB;

 fptraza(gflog, 1, "\n");

 }

 fshowInstruction(&lInstr);

 switch (lInstr.i_code)

 {

 case 0: //The # instruction performs no actions, except moving the PC register

to the next instruction.

 switch (lInstr.f_code)

 {

 case 0: // x00b STOP instruction

 fptraza(gflog, 1, " meaning STOP instruction ");

 lEOCODE=true; // End of CODE

 break;

 case 1: // x01b NOP instruction

 //break; //Assuming that 01 and 11 for f_code are a NOP

instruction (check with Igor, Thomas and Eugene

 case 3: // QUESTION: x11b According to the

Document Instruction Set this is not possible but it seems to be a NOP instruction

 fptraza(gflog, 1, " meaning NOP instruction ");

 break;

 default:

 fptraza(gflog, 1, "THIS IS NOT POSSIBLE - a 01??? in the format code?");

 }

 break;

 case 1: // The LD instruction copies the value of a 32-bit memory word pointed

to by Ri into Rj

 fptraza(gflog, 1, " meaning R%d:=*R%d ", lInstr.Op2, lInstr.Op1);

 //Loading Rj with the vaule from the memory location

 pRF[lInstr.Op2]=plRAM[lInstr.Op1].HLLL;

 fptraza(gflog, 1, " meaning R%d:=%d ", lInstr.Op2,

plRAM[lInstr.Op1].HLLL);

 break;

 case 2: // The LDA instruction takes the value from the next 32-bit word and stores

the result into Rj

 // constant stored in the Next 32bit location

 fptraza(gflog, 1, " meaning R%d:=CONSTANT", lInstr.Op2);

 fptraza(gflog, 1, " meaning R%d:=%d ", lInstr.Op2, pCode[i+1].HLLL);

 pRF[lInstr.Op2]=pCode[i+1].HLLL; //Loading Rj with the next 32bit word

 fptraza(gflog, 1, " meaning R%d:=%d ", lInstr.Op2, pRF[lInstr.Op2]);

 if (lEOLOAD ==1) lEOLOAD++; // Jumping the load

 i++; // Jumping to the following instruction (the one after the data)

 break;

 case 3: // The ST instruction copies the value of Ri to the memory by address

taken from Rj

 fptraza(gflog, 1, " meaning *R%d:=R%d", lInstr.Op2, lInstr.Op1);

 fptraza(gflog, 1, " meaning MEM[%d]=%d ", pRF[lInstr.Op2],

pRF[lInstr.Op1]);

64

 plRAM[pRF[lInstr.Op2]].HLLL = pRF[lInstr.Op1]; // MEM(Rj)=Ri
 fptraza(gflog, 1, " meaning MEM[%d]=%d ", pRF[lInstr.Op2],
plRAM[pRF[lInstr.Op2]].HLLL);
 break;
 case 4: // The MOV instruction copies the value from Ri to the Rj
 // Assuming that format code is fixed to 11
 fptraza(gflog, 1, " meaning R%d:=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d:=%d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2]=pRF[lInstr.Op1]; // Rj=Ri
 break;
 case 5: // The ADD instruction denotes the two’s complement arithmetic addition.
 // The contents of Ri and Rj are arithmetically added, and the result
is put into Rj.
 // Assuming that format code is fixed to 11
 fptraza(gflog, 1, " meaning R%d+=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=R%d+R%d", lInstr.Op2,lInstr.Op2,
lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=%d+%d", lInstr.Op2,pRF[lInstr.Op2],
pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] + pRF[lInstr.Op2]; // Rj=Rj+Ri
 break;
 case 6: /* The SUB instruction denotes the two’s complement arithmetic
subtraction.
 The content of Ri is subtracted from the contents of Rj, and the
result
 is put into the register Rj
 */
 fptraza(gflog, 1, " meaning R%d-=R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=R%d-R%d", lInstr.Op2,lInstr.Op2,
lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d=%d-%d", lInstr.Op2,pRF[lInstr.Op2],
pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] - pRF[lInstr.Op2]; // Rj=Rj+Ri
 break;
 case 7: // The ASR instruction arithmetically shifts Ri one bit right, and puts
the result into Rj.
 fptraza(gflog, 1, " meaning R%d >>= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri
 pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1; // one bit right
shitfing of Rj
 fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 8: /* The ASL instruction arithmetically shifts the contents of Ri one
bit left, and puts
 the result into the register Rj. */
 fptraza(gflog, 1, " meaning R%d <<= R%d", lInstr.Op2, lInstr.Op1);
 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri
 fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1; // one bit left
shitfing of Rj
 fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 9: /* The OR instruction applies logical addition (“OR”) operator to every
pair
 of bits taken from Ri and Rj, respectively, and puts the result into
Rj. */
 fptraza(gflog, 1, " meaning R%d |= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] | pRF[lInstr.Op1];
 fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 10: /* The AND instruction applies logical multiplicative (“AND”) operator
to
 every pair of bits taken from Ri and Rj, respectively, and puts the
 result into Rj */
 fptraza(gflog, 1, " meaning R%d &= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op2] & pRF[lInstr.Op1];
 fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;

65

 case 11: /* The XOR instruction applies logical exclusive OR (“XOR”) operator
to every
 pair of bits taken from Ri and Rj, respectively, and puts the result
into Rj. */
 fptraza(gflog, 1, " meaning R%d ^= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = (pRF[lInstr.Op2] || pRF[lInstr.Op1]) && !(pRF[lInstr.Op2]
&& pRF[lInstr.Op1]);
 fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]);
 break;
 case 12: /* The LSL instruction logically shifts the contents of Ri one bit left,
and
 puts the result into the Rj. */
 fptraza(gflog, 1, " meaning R%d <= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri
 pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1; // one bit logicleft
right shitfing of Rj
 fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 13:
 /* The LSR instruction logically shifts the contents of Ri one bit right,
and
 puts the result into the register Rj. */
 fptraza(gflog, 1, " meaning R%d >= R%d", lInstr.Op2, lInstr.Op1);
 fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op1]);
 pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri
 pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1; // one bit logic right
shitfing of Rj
 fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op2]);
 break;
 case 14:
 /* The CND instruction arithmetically compares the contents Ri and Rj
 and puts the result of the comparison (as a set of 1-bit signs) to Rj.
*/
 fptraza(gflog, 1, " meaning R%d ?= R%d", lInstr.Op2, lInstr.Op1);
 // Victor When executing we can check the result and show it
 break;
 case 15:
 /* The CBR instruction checks the contents of Ri. If it is non-zero,
 then:
 1) the address of the next instruction (i.e., current value of
 the PC register + 1) is stored in the Ri register, and
 2) the value of Rj is set to the PC register. This means that
 the next instruction will be fetched by the address taken Rj
 */
 fptraza(gflog, 1, " meaning if R%d GOTO R%d", lInstr.Op1, lInstr.Op2);
 break;
 default:
 return 1; //This would never happen;
 }
 lEOLOAD++;
 } while (lEOLOAD <= 2); // Loop finishes when every part of the load (High and Low)
has been processed
 i++;
 (*pPC)++;
 }while (!lEOCODE);

 return 0;
}

Here is the call graph for this function:

66

Here is the caller graph for this function:

int fParseFile (char * iniFileName, s_item * pCode)

It parses the bin file that results of Eugene's assembler/preparator.

Author:

Victor Castano
Date:

08\03\2012
This function loads data into 1) the code list and 2) the RAM (not yet)
Parameters:
*iniFileName is the bin file to be parsed
*pCode is the code list returned

Todo:
To load, not only the code list, but also the RAM. Disabling the comment for "pRAM[i-1]=pCode[i].HLLL;"
will be the only thing left to do.

Returns:
int 0 for correct execution

Definition at line 662 of file dissimera.h.
Referenced by main().
{

 FILE *fp;

 unsigned int instr32=0;

 unsigned short int i=0;

 unsigned long lSize;

 fp=fopen(iniFileName,"rb");

 if (!fp)

 {

 fptraza(gflog, 1,"Unable to open file!");

 return -1;

 }

 fptraza(gflog, 1,"fname = %s\n", iniFileName);

 // ===

 //The following would browse a file an put it into a buffer

 // ===

 // obtain file size

 fseek (fp , 0 , SEEK_END);

 lSize = ftell (fp);

 rewind (fp);

 //fptraza(gflog, 1,"\n Number of Bytes = %d bytes \n 32-bit-instructions = %d \n 16-bit

instructions = %d \n",lSize, lSize/4, lSize/2);

 fptraza(gflog, 1, "\n Number of Bytes = %d bytes \n Number of 32-bit instruction-data = %d

\n",lSize, lSize/4);

 fInitItem(&pCode[0]); // Initializing the first config element in position 0

 pCode[0].type=T_SPECIAL; // Setting the load as special

 //Browse the file and store the contents into 1)Code List and 2)RAM

 rewind (fp);

 for(i = 1; i <= lSize/4; i++) // Position 0 of the array is

deliberately left empty for future configuration purposes

 {

67

 pCode[i].linenum=i;

 fread(&pCode[i].HLLL, sizeof(int), 1, fp);

 pCode[i].HLLL = SwapFourBytes(pCode[i].HLLL);

 // Store elements into code list

 pCode[i] = parseItem(i, pCode[i].HLLL);

 // Store elements into RAM

 //pRAM[i-1]=pCode[i].HLLL;

 pCode[0].linenum++; // Increase the number of

elements in the array of Code

 fptraza(gflog, 1,"\n\n");

 }

 // terminate

 fclose(fp);

 return 0;

}

Here is the call graph for this function:

Here is the caller graph for this function:

void fset_type (s_item * item, char type)

It sets the type of the item/load.

Author:

Victor Castano
Date:

08\03\2012
Parameters:
*item is the structure with the item
type is the type of Load

Returns:
void

Definition at line 407 of file dissimera.h.
{

 item->type = type;

 return;

}

int fshowInstruction (s_instruction * pInstr)

It shows the instruction included as an input parameter.

68

Author:

Victor Castano
Version:

0.1a
Date:

08\03\2012
Parameters:
*pInstr

Returns:
int 0 for correct execution

Definition at line 760 of file dissimera.h.
Referenced by fExecuteCode(), and fParseCode().
{

 unsigned int numchar=0;

 char lsIcode[20]=" ";

 fGetICODE(pInstr->i_code, lsIcode);

 numchar=fptraza(gflog, 1," %s R%d R%d ", lsIcode, pInstr->Op1, pInstr->Op2);

 return numchar;

}

Here is the call graph for this function:

Here is the caller graph for this function:

fshowItem (s_item * item)

fuction that shows an item on the screen using fptraza.

\author Victor Castano

\version 0.1a

\date 08\03\2012

Parameters:
*item

Returns:
int 0 for correct execution

Definition at line 733 of file dissimera.h.
Referenced by fExecuteCode(), and fParseCode().
{

 char lsIcodeA[20]=" ";

 char lsIcodeB[20]=" ";

 fptraza(gflog, 1, "\n\n\n %d ", item->linenum);

 fptraza(gflog, 1," %04X %04X \n ",item->HL, item->LL);

 colorprintI16(item->HL);

 fptraza(gflog, 1," ");

69

 colorprintI16(item->LL);
 fptraza(gflog, 1,"\n");

 fGetICODE(item->InstrA.i_code, lsIcodeA);
 fGetICODE(item->InstrB.i_code, lsIcodeB);
 //numchar=fptraza(gflog, 1," %s R%d R%d %s R%d R%d\n", lsIcodeA,
item->InstrA.Op1, item->InstrA.Op2, lsIcodeB, item->InstrB.Op1, item->InstrB.Op2);
 return 0;
}

Here is the call graph for this function:

Here is the caller graph for this function:

int fSizeCode (s_item * pCode)

Definition at line 715 of file dissimera.h.
Referenced by fBootHardware(), fExecuteCode(), and fLoadPanels().
{
 unsigned int size=0;

 size = pCode[0].linenum;
 return size;
}

Here is the caller graph for this function:

s_item parseItem (unsigned int numline, unsigned int instr32)

It will return an structure of the 2x16bit instructions filled.

Author:

Victor Castano
Date:

08\03\2012
Parameters:
numline
instr32

Returns:
s_item: an structure containing the 2x16bit instructions

70

If the input parameter numline is 0 then linenum will not be filled within the structure. It is important to
discriminate data from instructions. This is not trivial: setting up the load to T_INSTRUCTIONS
leaving the rest as DATA. Any data stored after the STOP instruction will not be browsed. When the
current load is an instruction we can determine which one is the next instruction
Definition at line 606 of file dissimera.h.
Referenced by fParseFile().
{

 s_item item;

 unsigned int l_instr32 = instr32; //Backup of instruction due to bit operations

modifying original

 //Initialize item

 fInitItem(&item);

 if (numline!=0)

 {

 item.linenum = numline;

 }

 //fptraza(gflog, 1," \n LIne: %d \n", item.linenum);

 fptraza(gflog, 1," \n %d ", item.linenum-1);

 //Loading the structure

 item.HLLL=instr32;

 item.HL = (short int)((l_instr32 & 0xFFFF0000)>>16);

 item.LL= (short int)(instr32 & 0x0000FFFF);

 fptraza(gflog, 1," %04X %04X \n ",item.HL, item.LL);

 colorprintI16(item.HL);

 fptraza(gflog, 1," ");

 colorprintI16(item.LL);

 fptraza(gflog, 1,"\n");

 item.InstrA.f_code = (char)((item.HL & 0xC000)>>14);

 item.InstrB.f_code = (char)((item.LL & 0xC000)>>14);

 item.InstrA.i_code = (char)((item.HL & 0x3C00)>>10);

 item.InstrB.i_code = (char)((item.LL & 0x3C00)>>10);

 item.InstrA.Op1 = (char)((item.HL & 0x03E0)>>5);

 item.InstrB.Op1 = (char)((item.LL & 0x03E0)>>5);

 item.InstrA.Op2 = (char)((item.HL & 0x001F));

 item.InstrB.Op2 = (char)((item.LL & 0x001F));

 char lsIcodeA[20]=" ";

 char lsIcodeB[20]=" ";

 fGetICODE(item.InstrA.i_code, lsIcodeA);

 fGetICODE(item.InstrB.i_code, lsIcodeB);

 fptraza(gflog, 1," %s R%d R%d %s R%d R%d\n", lsIcodeA, item.InstrA.Op1,

item.InstrA.Op2, lsIcodeB, item.InstrB.Op1, item.InstrB.Op2);

 return item;

}

Here is the call graph for this function:

Here is the caller graph for this function:

71

int SwapFourBytes (int dw)

It converts four bytes from Little Endian to Big Endian.

Author:

Victor Castano
Date:

08\03\2012
Eugene's bin files from assembler-preparator seem to be in Big Endian format. This function and the
function SwapTwoBytes will help to convert from Little Endian to Big Endian.
Parameters:
dw is the int with the four bytes in Little Endian format

Returns:
int with the two bytes in Big Endian format

Definition at line 446 of file dissimera.h.
Referenced by fParseFile().
 {
 register int tmp;
 tmp = (dw & 0x000000FF);
 tmp = ((dw & 0x0000FF00) >> 0x08) | (tmp << 0x08);
 tmp = ((dw & 0x00FF0000) >> 0x10) | (tmp << 0x08);
 tmp = ((dw & 0xFF000000) >> 0x18) | (tmp << 0x08);
 return(tmp);
 }

Here is the caller graph for this function:

short int SwapTwoBytes (short int w)

It converts two bytes from Little Endian to Big Endian.

Author:

Victor Castano
Date:

08\03\2012
Eugene's bin files from assembler-preparator seem to be in Big Endian format. This function and the
function SwapFourBytes will help to convert from Little Endian to Big Endian.
Parameters:
w is the short int with the two bytes in Little Endian format

Returns:
short int with the two bytes in Big Endian format

Definition at line 427 of file dissimera.h.
{
 register short int tmp;
 tmp = (w & 0x00FF);
 tmp = ((w & 0xFF00) >> 0x08) | (tmp << 0x08);
 return(tmp);
}

72

73

D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disstools.h File
Reference

Header file for the general tools of Dissimera.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
Include dependency graph for disstools.h:

This graph shows which files directly or indirectly include this file:

Functions
x int fptraza (FILE *file, short int level, char *format,...)
x void colorprintI16 (short int n)
x void colorprintI8 (unsigned char n)
x void colorprintI32 (unsigned int n)

Variables
x FILE * gflog = NULL
x short int gTLEVEL = 0

Detailed Description
Header file for the general tools of Dissimera.
It contains the generic variables and functions that could be used in
other projects, not only in Dissemera.

 \author Victor Castano

74

 \version 0.1a

 \date 08\03\2012 It contains the generic variables and functions that could be used in other
projects, not only in Dissemera.
Definition in file disstools.h.

Function Documentation

void colorprintI16 (short int n)

Definition at line 56 of file disstools.h.
Referenced by fshowItem(), and parseItem().
{
 unsigned int i;
 for(i = 0; i<16; i++) {
 if(n&(0x8000>>i)) fptraza(gflog, 1, "1"); else fptraza(gflog, 1, "0");
 if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/
 }
}

Here is the call graph for this function:

Here is the caller graph for this function:

void colorprintI32 (unsigned int n)

Definition at line 84 of file disstools.h.
{
 unsigned int i;
 for(i = 0; i<32; i++) {
 if(n&(0x80000000>>i)) fptraza(gflog, 1,"1"); else fptraza(gflog, 1,"0");
 if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 15) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 17) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 21) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 26) fptraza(gflog, 1," "); /*put a space between bytes*/
 }
}

Here is the call graph for this function:

75

void colorprintI8 (unsigned char n)

Definition at line 69 of file disstools.h.
{
 unsigned int i;
 for(i = 0; i<8; i++) {
 if(n&(0x80>>i)) fptraza(gflog, 1, "1"); else fptraza(gflog, 1, "0");
 if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/
 if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/
 }
}

Here is the call graph for this function:

int fptraza (FILE * file, short int level, char * format, ...)

Definition at line 31 of file disstools.h.
Referenced by colorprintI16(), colorprintI32(), colorprintI8(), fExecuteCode(), fParseCode(), fParseFile(),
fshowInstruction(), fshowItem(), and parseItem().
{
 int i = 0;
 va_list args;
 char buf[255];

 if (gTLEVEL > level)
 {
 return i;
 }

 va_start(args, format);
 vsprintf(buf, format, args);
 va_end(args);

 i= fprintf(file, buf, args);

 return i;
}

Here is the caller graph for this function:

76

Variable Documentation

FILE* gflog = NULL

Definition at line 24 of file disstools.h.
Referenced by colorprintI16(), colorprintI32(), colorprintI8(), fExecuteCode(), fParseCode(), fParseFile(),
fshowInstruction(), fshowItem(), main(), and parseItem().

short int gTLEVEL = 0

Definition at line 27 of file disstools.h.
Referenced by fptraza().

77

D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/viewbin.cpp
File Reference

Main source file for the Dissimera simulator.
#include "dissimera.h"
#include "disside.h"
Include dependency graph for viewbin.cpp:

Defines
x #define _CRT_SECURE_NO_DEPRECATE

Functions
x int main (int argc, char *argv[])

Main fuction of the disassembler/simulator DISSEMERA.

Detailed Description
Main source file for the Dissimera simulator.

 \author Victor Castano
 \version 0.1a

 \date 08\03\2012 This project started as a Little utility to transform a bin file (ready for
altera)into a human readable version and ended up as a disassembler/simulator of the ERA
architecture. It contains the main function and it is the starting running point of the application.
Todo:

 13/09/2011
 - Crear una variable (global??) que tenga la ventana activa en todo momento
 - Otra variable con modo edit on cuando se presione enter
 - Cada ventana deberia tener el valor del cursor actual

 14/09/2011

78

 - Crear un array de ventanas que se puede pasar como parametro por referencia

 a las funciones que modifiquen las ventanas

 - Ventana activa

 - Played with fInitExec(&g_exec)

 - note tested

 19/09/2011

 - Fixed pad and windows

 - Worked on Status Panel Scroll

 20/09/2011

 - Will: F10 , F5 and F9 (rollback) compilation.

 - Will: Scroll down 1 and 3 panels at once. Bug:

Warning:

See also:
dissimera.h for documentation of variables and functions of the dissasembler/simulator
disside.h for documentation of variables and functions of the User Interface

Definition in file viewbin.cpp.

Define Documentation

#define _CRT_SECURE_NO_DEPRECATE

Definition at line 40 of file viewbin.cpp.

Function Documentation

int main (int argc, char * argv[])

Main fuction of the disassembler/simulator DISSEMERA.

Author:

Victor Castano

Version:
0.1a

Date:
08\03\2012

Bug:

Warning:

Parameters:
argc argument count: contains the number of arguments passed to the program
argv argument vector: is a one-dimensional array of strings. Each string is one of the

arguments that was passed to the program.
Definition at line 57 of file viewbin.cpp.

79

{
 char gSlogname[255]="log.txt"; // gSlogname
 unsigned int gPC=0; // Program counter
 unsigned int gIR=0; // Instruction register
 //unsigned int gNI=0; // Next Instruction
 unsigned int gRF[32]; // Brief description after the member //
Register File
 s_item gLcode[MAX_LIST_SIZE]; // List of Code
 s_item glistRAM[MAX_LIST_SIZE]; // List of RAM
 s_window g_wins[NUMWINDOWS];
 s_panel g_panels[NUMPANELS];
 s_exec g_exec;
 short int gactiveP=P_MAIN1;
 short int gCinstr=0;
 short int gtempP=P_MAIN1;
 int gkey=0;

 gflog = fopen(gSlogname, "w");
 if (gflog == NULL)
 {
 perror("failed to open log file");
 return EXIT_FAILURE;
 }

 //Setting up the terminal to max. resolution
 fSetTerm();

 //Initializating the Register File
 fInitRegisterFile(gRF);

 // Initializating the RAM
 //fInitRAM(RAM_ELEMENTS, gRAM);

 // Initializating the list of code
 fIniItemList(MAX_LIST_SIZE, gLcode);
 fIniItemList(MAX_LIST_SIZE, glistRAM);

 //Initializating the Execution structure
 fInitExec(&g_exec);

 // Parsing the bin file from Eugene's bin file (after assembling/preparation) and
 // 1) loading data into the code list and 2) loading the RAM
 fParseFile(argv[1], gLcode);

 // Making an identical copy of the code list into a RAM list
 memcpy(glistRAM, gLcode, MAX_LIST_SIZE*sizeof(s_item));

 // Parsing the array of code and discriminating data and instructions
 // - gPC should be 0 for ERA in order to start in memory location 0
 fParseCode(gLcode, gRF, glistRAM, &gPC);

 // Initializating Hardware:Register FILE PC and IR;
 fInitRegisterFile(gRF);
 gPC=0;
 gIR=0;

 //Setting up Curses
 initscr();
 cbreak();
 noecho();
 keypad(stdscr, TRUE);
 curs_set(0);

 /* Initialize all the colors */
 start_color();
 init_pair(0, COLOR_WHITE, COLOR_BLACK);
 init_pair(1, COLOR_BLUE, COLOR_BLACK);
 init_pair(2, COLOR_GREEN, COLOR_BLACK);
 init_pair(3, COLOR_RED, COLOR_BLUE);
 init_pair(4, COLOR_RED, COLOR_BLACK);

80

 init_pair(5, COLOR_MAGENTA, COLOR_BLACK);
 init_pair(6, COLOR_YELLOW, COLOR_BLACK);
 init_pair(7, COLOR_WHITE, COLOR_CYAN);

 // Setting up the IDE frame
 fSetIDE(g_panels, g_wins, gLcode[0].linenum);

 // Loading Panels with data/instrucions
 fLoadPanels(g_panels, g_wins, gLcode, gRF, glistRAM, gPC);

 // Loading Hardware with content
 fBootHardware(g_panels, g_wins, gLcode, gRF, glistRAM, gPC);
// getch();

 // Active window by default is MAIN (highlighting)
 gactiveP=P_MAIN1;
 //fHighlightPanel(g_wins[gactiveP].win, 1);

 fHighlightPanel(gactiveP, 1, g_wins);

 //Highlighting current Instruction

 fUpdateCursors_Main(g_wins, g_exec.nInstrEx, gPC,COLOR_PAIR(3|A_BOLD));

 do
 {
 switch(gkey)
 {
 case CTRL_LEFT_KEY: // CTRL+LEFT
 fmovePanel(gkey, &gactiveP, g_panels,g_wins);
 break;
 case CTRL_RIGHT_KEY: // CTRL+RIGHT KEY
 fmovePanel(gkey, &gactiveP, g_panels,g_wins);
 break;
 case CTRL_UP_KEY: // CTRL+UP KEY
 fmovePanel(gkey, &gactiveP, g_panels,g_wins);
 break;
 case CTRL_DOWN_KEY: //CTRL+DOWN KEY
 fmovePanel(gkey, &gactiveP, g_panels,g_wins);
 break;
 case KEY_F5: // F5 Execution
 // Execution code still needed
 break;
 case KEY_F9: // F9 Rollback
 fExecuteCode(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec, 13);
 break;
 case KEY_F10: // F10 Execution/Debugging step by step
 fExecuteCode(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec, 13);
 break;
 case KEY_DOWN: //DOWN KEY
 fHandleKeyDown(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec);
 break;
 case KEY_UP: //UP KEY
 fHandleKeyUp(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec);
 break;
 case KEY_PGDOWN://PAGE DOWN
 break;
 case KEY_PGUP: //PAGE UP
 break;
 default:
 beep();
 break;
 }

 // Show current window on TOP panel
 werase(g_wins[P_SUBTOPBAR].win);
 mvwaddnstr(g_wins[P_SUBTOPBAR].win, 0,1,g_panels[gactiveP].label,-1);
 wrefresh(g_wins[P_SUBTOPBAR].win);

 }while((gkey = getch()) != ESCAPE_KEY);

81

 endwin();

 return 0;

}Here is the call graph for this function:

82

83

84

Index

_CRT_SECURE_NO_DEPRECATE

viewbin.cpp, 78
BUFFERWIN

disside.h, 15
colorprintI16

disstools.h, 74
colorprintI32

disstools.h, 74
colorprintI8

disstools.h, 75
CTRL_DOWN_KEY

disside.h, 15
CTRL_LEFT_KEY

disside.h, 16
CTRL_RIGHT_KEY

disside.h, 16
CTRL_UP_KEY

disside.h, 16
D:/ERA/Visual Studio

2008/Projects/Simulator/viewbin/disside.h, 11
D:/ERA/Visual Studio

2008/Projects/Simulator/viewbin/dissimera.h, 46
D:/ERA/Visual Studio

2008/Projects/Simulator/viewbin/disstools.h, 73
D:/ERA/Visual Studio

2008/Projects/Simulator/viewbin/viewbin.cpp, 77
disside.h

BUFFERWIN, 15
CTRL_DOWN_KEY, 15
CTRL_LEFT_KEY, 16
CTRL_RIGHT_KEY, 16
CTRL_UP_KEY, 16
E_NOP, 16
E_NORMALRUN, 16
E_STEPBSTEP, 16
ESCAPE_KEY, 16
fBootHardware, 21
fExecuteCode, 22
fHandleKeyDown, 26
fHandleKeyUp, 26
fHighlight_line, 27
fHighlightPanel, 27
fIniP_ADDR1, 28
fIniP_ADDR2, 29
fIniP_ADDRRF, 30
fIniP_BOTTBAR, 30
fIniP_IDHEX, 31
fIniP_IR, 32
fIniP_MAIN1, 33
fIniP_MEM, 34
fIniP_PC, 34
fIniP_RF, 35

fIniP_STATUS, 36
fIniP_TopBar, 37
fInitPanels, 37
fInitWindows, 38
fLoadPanels, 38
fmovePanel, 40
fSetIDE, 42
fSetTerm, 44
fUnHighlight_line, 44
fUpdateCursors_Main, 45
KEY_F1, 16
KEY_F10, 16
KEY_F11, 16
KEY_F12, 16
KEY_F2, 17
KEY_F3, 17
KEY_F4, 17
KEY_F5, 17
KEY_F6, 17
KEY_F7, 17
KEY_F8, 17
KEY_F9, 17
KEY_PGDOWN, 17
KEY_PGUP, 17
NUMPANELS, 17
NUMWINDOWS, 18
P_ADDR1, 18
P_ADDR2, 18
P_ADDRRF, 18
P_BOTTBAR, 18
P_IDHEX, 18
P_IR, 18
P_MAIN1, 18
P_MEM, 18
P_NULL, 19
P_PADDR1, 19
P_PADDR2, 19
P_PC, 19
P_PIDHEX, 19
P_PMAIN1, 19
P_PMEM, 19
P_RF, 19
P_STATUS, 19
P_SUBADDR1, 19
P_SUBADDR2, 19
P_SUBADDRRF, 20
P_SUBBOTTBAR, 20
P_SUBIDHEX, 20
P_SUBIR, 20
P_SUBMAIN1, 20
P_SUBMEM, 20
P_SUBPC, 20

85

P_SUBRF, 20
P_SUBSTATUS, 20
P_SUBTOPBAR, 21
P_TOPBAR, 21

dissimera.h
F_NOP, 50
F_STOP, 50
fASL, 54
fASR, 55
fB16tostring, 55
fB32tostring, 56
fGetICODE, 56
fGetStInstruction, 58
fIniItemList, 59
fInitExec, 59
fInitItem, 60
fInitRAM, 61
fInitRegisterFile, 61
fParseCode, 62
fParseFile, 66
fset_type, 67
fshowInstruction, 67
fshowItem, 68
fSizeCode, 69
I_ADD, 50
I_AND, 50
I_ASL, 51
I_ASR, 51
I_CBR, 51
I_CND, 51
I_LD, 51
I_LDA, 51
I_LSL, 51
I_LSR, 51
I_MOV, 52
I_NOPSTOP, 52
I_OR, 52
I_ST, 52
I_SUB, 52
I_XOR, 52
LNDEBUG, 52
LNORMAL, 52
LSDEBUB, 53
MAX_LIST_SIZE, 53
parseItem, 69
RAM_ELEMENTS, 53
STBUFFER, 53
SwapFourBytes, 71
SwapTwoBytes, 71
T_32DATA, 53
T_INSTRUCTIONS, 53
T_SPECIAL, 53

disstools.h
colorprintI16, 74
colorprintI32, 74
colorprintI8, 75

fptraza, 75
gflog, 76
gTLEVEL, 76

E_NOP
disside.h, 16

E_NORMALRUN
disside.h, 16

E_STEPBSTEP
disside.h, 16

ESCAPE_KEY
disside.h, 16

F_NOP
dissimera.h, 50

F_STOP
dissimera.h, 50

fASL
dissimera.h, 54

fASR
dissimera.h, 55

fB16tostring
dissimera.h, 55

fB32tostring
dissimera.h, 56

fBootHardware
disside.h, 21

fExecuteCode
disside.h, 22

fGetICODE
dissimera.h, 56

fGetStInstruction
dissimera.h, 58

fHandleKeyDown
disside.h, 26

fHandleKeyUp
disside.h, 26

fHighlight_line
disside.h, 27

fHighlightPanel
disside.h, 27

fIniItemList
dissimera.h, 59

fIniP_ADDR1
disside.h, 28

fIniP_ADDR2
disside.h, 29

fIniP_ADDRRF
disside.h, 30

fIniP_BOTTBAR
disside.h, 30

fIniP_IDHEX
disside.h, 31

fIniP_IR
disside.h, 32

fIniP_MAIN1
disside.h, 33

fIniP_MEM

86

disside.h, 34
fIniP_PC

disside.h, 34
fIniP_RF

disside.h, 35
fIniP_STATUS

disside.h, 36
fIniP_TopBar

disside.h, 37
fInitExec

dissimera.h, 59
fInitItem

dissimera.h, 60
fInitPanels

disside.h, 37
fInitRAM

dissimera.h, 61
fInitRegisterFile

dissimera.h, 61
fInitWindows

disside.h, 38
fLoadPanels

disside.h, 38
fmovePanel

disside.h, 40
fParseCode

dissimera.h, 62
fParseFile

dissimera.h, 66
fptraza

disstools.h, 75
fset_type

dissimera.h, 67
fSetIDE

disside.h, 42
fSetTerm

disside.h, 44
fshowInstruction

dissimera.h, 67
fshowItem

dissimera.h, 68
fSizeCode

dissimera.h, 69
fUnHighlight_line

disside.h, 44
fUpdateCursors_Main

disside.h, 45
gflog

disstools.h, 76
gTLEVEL

disstools.h, 76
I_ADD

dissimera.h, 50
I_AND

dissimera.h, 50
I_ASL

dissimera.h, 51
I_ASR

dissimera.h, 51
I_CBR

dissimera.h, 51
I_CND

dissimera.h, 51
I_LD

dissimera.h, 51
I_LDA

dissimera.h, 51
I_LSL

dissimera.h, 51
I_LSR

dissimera.h, 51
I_MOV

dissimera.h, 52
I_NOPSTOP

dissimera.h, 52
I_OR

dissimera.h, 52
I_ST

dissimera.h, 52
I_SUB

dissimera.h, 52
I_XOR

dissimera.h, 52
KEY_F1

disside.h, 16
KEY_F10

disside.h, 16
KEY_F11

disside.h, 16
KEY_F12

disside.h, 16
KEY_F2

disside.h, 17
KEY_F3

disside.h, 17
KEY_F4

disside.h, 17
KEY_F5

disside.h, 17
KEY_F6

disside.h, 17
KEY_F7

disside.h, 17
KEY_F8

disside.h, 17
KEY_F9

disside.h, 17
KEY_PGDOWN

disside.h, 17
KEY_PGUP

disside.h, 17
LNDEBUG

87

dissimera.h, 52
LNORMAL

dissimera.h, 52
LSDEBUB

dissimera.h, 53
main

viewbin.cpp, 78
MAX_LIST_SIZE

dissimera.h, 53
NUMPANELS

disside.h, 17
NUMWINDOWS

disside.h, 18
P_ADDR1

disside.h, 18
P_ADDR2

disside.h, 18
P_ADDRRF

disside.h, 18
P_BOTTBAR

disside.h, 18
P_IDHEX

disside.h, 18
P_IR

disside.h, 18
P_MAIN1

disside.h, 18
P_MEM

disside.h, 18
P_NULL

disside.h, 19
P_PADDR1

disside.h, 19
P_PADDR2

disside.h, 19
P_PC

disside.h, 19
P_PIDHEX

disside.h, 19
P_PMAIN1

disside.h, 19
P_PMEM

disside.h, 19
P_RF

disside.h, 19
P_STATUS

disside.h, 19
P_SUBADDR1

disside.h, 19
P_SUBADDR2

disside.h, 19
P_SUBADDRRF

disside.h, 20
P_SUBBOTTBAR

disside.h, 20
P_SUBIDHEX

disside.h, 20
P_SUBIR

disside.h, 20
P_SUBMAIN1

disside.h, 20
P_SUBMEM

disside.h, 20
P_SUBPC

disside.h, 20
P_SUBRF

disside.h, 20
P_SUBSTATUS

disside.h, 20
P_SUBTOPBAR

disside.h, 21
P_TOPBAR

disside.h, 21
parseItem

dissimera.h, 69
RAM_ELEMENTS

dissimera.h, 53
s_coord, 13
s_exec, 50
s_instruction, 49
s_item, 49
s_panel, 13
s_winborder, 14
s_window, 15
STBUFFER

dissimera.h, 53
SwapFourBytes

dissimera.h, 71
SwapTwoBytes

dissimera.h, 71
T_32DATA

dissimera.h, 53
T_INSTRUCTIONS

dissimera.h, 53
T_SPECIAL

dissimera.h, 53
viewbin.cpp

_CRT_SECURE_NO_DEPRECATE, 78
main, 78

498

Appendix E

Appendix E

An example of parts of the RTL Design of

ERRIC’s CPU

499

