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Abstract

In the last decade the dominance of the general computing systems market has
being replaced by embedded systems with billions of units manufactured every
year. Embedded systems appear in contexts where continuous operation is of

utmost importance and failure can be profound.

Nowadays, radiation poses a serious threat to the reliable operation of safety-
critical systems. Fault avoidance techniques, such as radiation hardening, have
been commonly used in space applications. However, these components are
expensive, lag behind commercial components with regards to performance and
do not provide 100% fault elimination. Without fault tolerant mechanisms, many
of these faults can become errors at the application or system level, which in

turn, can result in catastrophic failures.

In this work we study the concepts of fault tolerance and dependability and
extend these concepts providing our own definition of resilience. We analyse the
physics of radiation-induced faults, the damage mechanisms of particles and the
process that leads to computing failures. We provide extensive taxonomies of 1)
existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-
art electronics, analysing and comparing their characteristics. We propose a
detailed model of faults and provide a classification of the different types of
faults at various levels. We introduce an algorithm of fault tolerance and define
the system states and actions necessary to implement it. We introduce novel
hardware and system software techniques that provide a more efficient
combination of reliability, performance and power consumption than existing
techniques. We propose a new element of the system called syndrome that is the
core of a resilient architecture whose software and hardware can adapt to
reliable and unreliable environments. We implement a software simulator and
disassembler and introduce a testing framework in combination with ERA’s

assembler and commercial hardware simulators.
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Chapter 1

Introduction

1.1. Motivation

Embedded systems are ubiquitous nowadays, built into homes, offices, bridges,
medical instruments, cars, aeroplanes, and satellites and even into clothes. The
market size of such systems is already larger than the one for general purpose
computing. The majority of embedded systems are real-time systems (RTSs) and

most RTSs are embedded in a product.

For decades, embedded RTSs are being used in fields where their correct
operation is vital to ensure the safety and security of the public and the
environment: from automotive systems and avionics to intensive health care and
industrial control as well as military operations and defence systems. These
systems are subject to time constraints and must guarantee a response within
specified timing bounds. The safety critical nature of RT embedded systems
employed in those fields demands the highest possible availability and reliability

of system operation.

The exponential growth of clock frequency and memory size has lead to

important achievements in the technological development of microprocessors.



Manufacturers of advanced silicon electronics have been able to create more
complex designs by periodically scaling down the technology, increasing the
transistor density. This growth is supported by the progressive miniaturization

of electronic components predicted by Moore’s law in 1965.

This phenomenon has also produced undesirable consequences that introduce
physical limitations to the law. Due to the area reduction of electronic
components to nanometre scales and due to the increase in clock frequencies
(ITRS, 2011), supply voltages have been reduced to keep power dissipation
manageable while thermal noise voltages have increased (Asanovic et al., 2006;

Kish, 2002).

For a long time, radiation effects have been a serious concern in aviation and
spacecraft electronics. As the dimensions and voltages of embedded systems are
reduced, their sensitivity to ionizing particles has considerably increased.
Energizing particles can produce a number of faults at the hardware level, not
only in contexts with harsh environmental conditions such as outer space but
also at sea level with regular conditions. Components with lower power and
noise margins are less reliable and therefore recent systems are more prone to
transient faults induced primarily by radiation (Baumann, 2002; R. C. Baumann,
2005; Seifert et al., 2002; Shivakumar et al., 2002). Transient faults do not cause
permanent damage in circuits but can affect system behaviour by corrupting
stored information or signal communication (Karnik and Hazucha, 2004; Mavis

and Eaton, 2002; “JEDEC JESD89-34,” 2007).

Besides the typical stress experiments in laboratories based on particle
bombarding, there is a considerable amount of evidence of radiation induced
malfunctions and catastrophic failures during operation in real life
environments. Radiation induced faults are frequent in space environments
(Adams and Gelman, 1984; Adams et al.,, 1982; Binder et al.,, 1975; Blake and
Mandel, 1986; Waskiewicz et al., 1986). The Saturn’s Cassini (Swift and Guertin,
2000), Deep Space 1 (Caldwell, 1998), Mars Odyssey (Eckert, 2001) and Jupiter’s

Galileo (Fieseler et al, 2002) are examples of missions that presented



malfunctions as a result of cosmic rays. The satellites X-ray Timing Explorer
(Poivey et al., 2004), Gravity Probe B (Owens et al.,, 2006), TOPEX/Poseidon
(Swift and John, 1997) and GRACE (Pritchard et al., 2002) have also reported

anomalies during operation.

Radiation Induced faults are also present to a lesser extent in atmospheric
(Taber and Normand, 1993) and terrestrial environments (Hauge et al.,, 1996;

Normand et al., 2010; Ziegler, 1996).

Due to the reasons stated above there is an increasing need to deal with faults.
There are two classes of mechanisms to deal with them: fault avoidance and fault
tolerance (FT) (Avizienis et al, 2004). Fault avoidance means developing
components/systems that are less likely to present faults while fault tolerance
techniques focus on the system’s ability to tolerate the effects of these faults.
Fault-tolerance is defined as the ability to provide uninterrupted service,
conforming to the desired levels of reliability even in the presence of faults
(Avizienis et al., 2004). Applications of modern electronic systems require more

and more mechanisms to mitigate the effect of these faults (Nicolaidis, 2010).

Complete avoidance of faults in a system is practically impossible and hence a

balance of the two approaches is currently applied.

The research community mainly focuses on a) identifying all possible
mechanisms leading to accidents and b) on providing pre-planned defence
techniques against them. However, too little research effort has been employed

towards systems that can respond to deviations from desirable states.

The research is driven by observations of limitations from the evolution of
computer architectures, which have been motivated by technological and market
choices as well as physical limitations. These observations refer to performance
decrease, increase in power consumption/dissipation, reliability aspects,
parallelization challenges, design complexities, and hardware and software

inefficiencies. A brief explanation for each follows:



Performance deceleration: Transistor density and frequency have increased to
satisfy the immediate market demands. Therefore, more raw materials in the
form of transistors is available for system design. However, unjustified
complexity has been introduced in the current computer architectures. In recent
years, clock rates of commodity microprocessors have flattened and
performance of processor cores has slowed down (Asanovic et al.,, 2006; Hill,

2010).

Power consumption / dissipation: Scaling processor clock speed increases
power consumption (and consequently power dissipation) while the die size
remains the same. Therefore, the power/density ratio will keep increasing to the

point where no practical technique can dissipate the generated heat.

Reliability: Performance, heat and power consumption are not the only
concerns. Reliability of intra-chip communication is also affected by physical
constraints. Transistor scaling shortens wire distances, which improves
performance but also implies thinning of those wires. As wires become
narrower, in order to reduce the resistance per unit length they also become
taller. Media resistance limits the speed of electrons within. Tall wires within
close distance vary dependent timing characteristics at best and produce data
corruption at worst. In short, thinner wires increase delays and harm reliability.
Furthermore, as explained earlier, the same radiation fluxes that in the past had
no effect on electronics are now able to induce faults that affect the logic value of

current transistors with lower critical charge.

For these reasons, it is commonly believed by the research community that the
classic = Hardware/Software uniprocessor model has reached the

power/performance wall (Asanovic et al., 2006; Hill, 2010).

Parallelization: The microprocessor industry approach is based on using the
billions of transistors (now available on a die) to a) replicate the off-the-shelf
core design multiple times and to b) increase the size of caches. Nevertheless,

effective programming of multi-core is not trivial and introduces multiple



challenges (Geer, 2007; Goth, 2009; Pankratius et al.,, 2009). As an attempt to
overcome the power wall, the computer science research community has
reincarnated parallel computing. Parallel computing and parallel programming
are not new; they have been a mainstay in high-performance since the early 50s

(Hill and Rajwar, 2001).

Complexity: The semiconductor industry, driven by economic reasons and time-
to-market needs, has introduced unjustified complexity in microprocessor

designs.

Software and Hardware Inefficiency: In terms of software, modular
programming (Turski and Wasserman, 1978; Wirth, 1983) and later object
oriented programming (Wirth, 1992, 1988) were introduced to maximize
performance and effectiveness of the human agent in the programming process.
To maximize performance of HW/SSW/ASW, several approaches of parallelism
using distributed, dataflow and cluster architectures were introduced in the late
50s. The Flynn diagram (Flynn, 1972) is still in use: SIMD (Single Instruction
Multiple Data), MIMD (Multiple Instruction Multiple Data) and MISD (Multiple
Instruction Single Data) are very well known architectures, each with their own
benefits and drawbacks. In the early 80s the VLIW (Very Long Instruction Word)
(Fisher, 1983) approach was also introduced. But since then, no significant new

architecture has been introduced.

To make the next step in the design of special systems for safety critical
applications we should analyse what is applicable from the well-developed
theory and design of fault tolerant systems since early 70’s, in particular their
reliability and resilience to electromagnetic impulses. In turn, the success of
future computer systems for safety critical applications will depend on trading-

off performance, reliability and power consumption.

The combination of the following two statements forms a framework for this
research. At first, we should analyse the technological achievements of modern

electronics in terms of performance. Finally, we should find ways to improve the



efficiency of current embedded systems in terms of performance, reliability and

power consumption.



1.2. Scope and Contribution

This work relates to techniques that improve the reliability of embedded
systems with regards to permanent and transient hardware faults induced by
radiation. However, these techniques are also efficient to mitigate the effect of
faults induced by other means. Note that software faults as the source of errors
are out of the scope of this thesis. This section briefly explains these

contributions.

The main goal of this research was to find efficient techniques and original
mechanisms to improve the reliability, performance and energy use of real time
systems in safety-critical applications. This includes the design, development and
analysis of a fault tolerant reconfigurable architecture in presence of radiation-
induced faults. Such architecture will be further used as a core element for
reconfigurable computers with key requirements for reliability, power

awareness, performance and scalability.

This research is an attempt to overcome known drawbacks of modern RTS. The

outcomes of such work can be summarized as follows:

e The traditional Reliability, Fault Tolerance and Dependability concepts and
definitions do not take into account the transient nature of some of the
faults induced by radiation. The result is a new concept of resilience that
takes into account the changing nature of environment and the different FT

contexts.

e We provide a systematic examination of the physical mechanisms that lead
to faults induced by radiation and the error process. The result is an
comprehensive taxonomy of radiation-induced effects in modern

microprocessor technologies;



e We develop a fault model that contains an extensive taxonomy of faults that
can assist in the serviceability and coverage attributes of fault tolerant and

resilient system designs.

e We introduce a novel combination of structural hardware elements at the
active, passive and interfacing zones. In combination with system software,
these hardware elements can improve the resilience of a system with a
better compromise in silicon area, reliability, power and performance that
known fault tolerant systems. We design and implement a hardware

prototype as a proof-of-concept.

e We develop a framework and testing scheme for the testing and debugging
of the hardware prototype. As part of the framework, we implement an
assembler for the hardware prototype together with a disassembler and

simulator tool.

The research is part of a joint research effort performed internationally (so-
called Evolving Reconfigurable Architecture (Schagaev et al., 2010). Theoretical
development and hardware testing of RA will provide the hardware prototype

platform for testing hardware reconfigurability.



1.3. Structure

This thesis is divided in seven chapters configured as:

e Chapter 1. Introduction: this first chapter summarizes the approach of this
doctoral thesis, describes its contribution to science and defines its general

structure.

e Chapter 2. Resilience: in this chapter we provide part of the theoretical
framework of reliability. We analyse the properties of classic dependability

and we describe our own view of the concept of resilience.

e Chapter 3. Dealing with faults - redundancy: this chapter provides a
complete review of state-of-the art techniques employed to deal with faults
and explores the different types of redundancy and fault tolerant

techniques.

e Chapter 4. Impact of radiation in electronics of embedded systems: This
chapter studies the physical mechanisms of radiation as the primary
phenomenon that causes faults in current computing systems. We also

analyse their effect on semiconductors at low, circuit and system levels.

e Chapter 5. Fault tolerance models: We analyse a model of hardware faults.
We introduce GAFT and define the different states and actions required to

implement fault tolerance.

e Chapter 6. Hardware support and System Software Support for Resilience:
This chapter details the hardware and system software elements of a novel
resilient architecture that can achieve various levels of performance,

reliability and energy consumption.

e Chapter 7. Implementation: Hardware Prototype, Simulation and Testing:
This chapter focuses on the development and testing of the hardware
prototype. Details of the design and development of a software simulator of

the hardware architecture are also provided.

e Chapter 8 summarizes and concludes this work.



Chapter 2



Chapter 2

Resilience

This chapter provides a background of necessary concepts in the field of fault
tolerance and resilience. First, we introduce the system failure lifecycle and
describe the main threats to resilience. Then, the concept of resilience and its
attributes and measures are reviewed. We explain our own view of the
performance and reliability problems that the microprocessor industry is
currently facing. The classic theory of reliability is presented and an explanation
is given on how the hardware components of an embedded system can be made
more resilient to hardware faults. We review the classic mathematical definition
of reliability and show how to calculate the reliability of a system depending on
the topology of its components. Other attributes of resilience including safety,
performability, integrity, maintainability and availability are also reviewed.
Finally, we extend the definition of resilience and apply it to the field of safety

critical computing.
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2.1. System failure lifecycle

Correct service (Laprie, 1995) also named proper service (Laprie and Avizienis,
1986) is delivered by a system when the service implements the function as
specified. The fundamental threats to the correct service and to the resilience of
safety critical systems are faults, errors and failures that, in turn, can cause
catastrophic failures. Among these four terms there is a causal effect

relationship.

A failure, service failure or system failure is an event that takes place when the
delivered service deviates from proper service. Hence, a service failure implies a
transition of the system from proper service to an improper service, not
implementing the functions as specified by the functional specification of the
system. The downtime or period of delivery of improper service is also referred
to as service outage. The transition from improper service to proper service is

called service restoration, service recovery or repair.

Since a service is a sequence of the external states of a system, a service failure
takes place when one or more of its external states deviate(s) from the correct
service state. These deviations are errors. An error is a part of the system state
that is liable to lead to a subsequent failure. The hypothesized or adjudged cause

of such error is a fault.

Physical universe Informational universe User’s universe
f (| 1 [ |
2 catastrophic
source | fault error failure :
/ . failure
generahon activation propagahon causation
PROPER SERVICE IMPROPER SERVICE

Figure 2-1. System failure lifecycle within a three universe model

A fault is a weakness, blemish or shortcoming of a particular hardware

component or unit. An error is the manifestation of a fault, a deviation from
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accuracy or correctness. Finally, if the error leads to one of the system’s

functions being performed incorrectly then a failure has occurred.

Figure 2-1 graphically describes the well-known lifecycle of system failure within
a three universe model (Johnson, 1989) adapted from the four universal model
originally developed in (Avizienis, 1982). In the first universe, the physical one,
faults are generated due to various sources. Faults can activate errors within the
second universe, the informational one. Errors take place when some
information units become incorrect. In turn, errors could propagate the user
universe and lead to a failure. It is in this final universe, where the user can
witness the effects of faults and errors in the form of failures. One or more
failures could potentially cause a catastrophic failure in the case of safety critical

systems.

The arrows between the entities in Figure 2-1 correspond to latencies. Fault
latency (activation latency in Figure 2-1) is the time length between the
occurrence of a physical fault and the appearance of an error. Likewise, error
latency is the length of the propagation time that takes place between the

activation of the error and the manifestation of the failure.

Global system

sub-system
source | fault | error | . failure fault —> error —> failure

/ generation activation propagation genergti
activation propagation

Figure 2-2. Failure-fault transition between different levels of a
system
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The term fault and failure is sometimes unclear in reliability literature. In this
thesis, the term fault is sometimes equivalent to failure. For instance, a system
fault can be the same as a component failure. Figure 2-2 shows the fault-failure
transition between a subsystem and a global subsystem. The fault-failure cycle
can be applied at different levels of abstraction within a system; consider a
transistor as a subsystem that is part of a more global system (e.g. memory cell):
the occurrence of incorrect functionality of the transistor during normal
operation (e.g. the effects of aging and stress) is a subsystem failure of such
component but may lead to, for instance, a logic fault (global system fault). This
logic fault will remain dormant unless is activated, producing an error, which is
likely to propagate and create other errors. If the correct service of that global
system is affected, a global system failure occurs. The same subsystem-system
transition can take place between the memory cell, the memory circuit that the
cell is part of, the microprocessor system that can be part of a multiprocessor,

etc.

2.2. Resilience: Attributes and measures

The word resilience (from the Latin origin resilire, to jump back, or to rebound) is
literally the tendency, ability, act or action of springing back, and thus the ability
of a body to recover its normal shape and size after being pushed or pulled out of
shape. That is, the ability to recover to normality after a disturbance, shock or
deviation from the intended state and go back to a pre-existing or acceptable or

desirable, state.

The meaning of resilience is different between authors. Hollnagel defines

resilience as (Hollnagel et al., 2012):

“The intrinsic ability of a system to adjust its functioning prior to,
during, or following changes and disturbances, so that it can sustain

required operations under both expected and unexpected conditions”
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The US Department of Defense (DoD) defines a resilient system as (Neches,

2012):

“A resilient system is trusted and effective out of the box in a wide range
of contexts, easily adapted to many others through reconfiguration or

replacement, with graceful and detectable degradation of function”

The Keck Institute for Space Studies has also made a big effort studying the
attributes of Resilience. During its study (Murray et al, 2013) numerous

definitions were proposed and discussed.

The term Resilient has been traditionally used essentially as a synonym of fault-
tolerant (Laprie, 2008). Before we discuss fault tolerance as a concept and

review the resilience concept, several other terms need to be defined.

One of them is Dependability, which is an integrative concept that encompasses
many other quantitative and qualitative attributes. Laprie (Laprie et al., 1992)
defines dependability as the “trustworthiness of a computer system such that

reliance can be justifiably placed on the service that it delivers”.

Dependability is the ability to deliver a service that can be trusted justifiably.
Laprie defines the service delivered by the system, as its behaviour as it is
perceptible by is user(s); a user is another system (physical or human) which
interacts with the former. Such service is classified as “proper” or “correct” if it is
delivered as specified; otherwise it is considered as “improper” or “incorrect”
(Laprie and Avizienis, 1986). Again, the “properness” or “correctness” of the

system service depends on the viewpoint of the user.

The terms covered by dependability have been re-defined over the years
(Avizienis et al, 2004). We merge and organize the attributes or measures of
dependability and adapt them to the field of safety-critical applications. The
attributes of dependability are: reliability, safety, performability, and security. The
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later encloses a subset of attributes including integrity, maintainability and

availability.

2.3. Reliability

The reliability measure is most often used to characterize systems in which
failures are unacceptable; therefore, it is suitable to the field of safety critical

systems.

Fully

Failed

functional .
Failure

Start state

Figure 2-3. A non-repairable system with two states

Figure 2-3 shows a non-repairable system with two possible states: a fully
functional start state (up) and a failed state (down), involving loss of

functionality, which can be reached after a transition due to failure.

There is no disagreement about the need for reliable systems but some vague
notion of reliability is not enough in safety-critical engineering. Reliability can be
defined as follows: Reliability R(t) is the probability that a system or component
will perform its intended function without failure over the entire interval [0,t]
under specified environmental and operating conditions. R(t) is a probability in
the sense of being a recurring event. The intended function, period of time and
stated conditions are all defined as system requirements when designing a real-
time system. Note that the following mathematical equations regarding
reliability are based on the classical theory of reliability of (Birolini, 2007) and

are not our original work.
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2.3.1. Performance and Reliability

2.3.1.1. Power-reliability wall

Since the invention of the integrated circuit in 1958 each generation of
semiconductor technology has exponentially decreased the transistor price and

exponentially increased the transistor density per chip (Hutcheson, 2009).

This technological shrink model has led to the impressive level of technology and
hardware element density recently achieved (Nair, 2002) with processor
IBM Power6
Microprocessor and IBM System p 570,” 2007). The higher number of

frequencies reaching up to 4.7 GHz (“Power 6 Specs:

transistors and the kilometres of wire operating at higher frequencies lead to
several Watt/cm? on modern chips leading the peak energy consumption well

over 140W. Most of that energy becomes heat, rising operating temperatures.

The cost of the manufacturing process of smaller feature technologies is
increasing exponentially. Such cost is doubling every four years, which makes
smaller nanometre technologies and the continuation of this law no only a

technical challenge but an economic one.
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From Hennessy and Patterson, Computer
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Figure 2-4. Growth in performance since the mid-1980's (Hennessy
and Patterson, 2006)
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Evidence of this phenomenon is the chart shown in Figure 2-4 that plots
performance gap between the processor and memory of the VAX 11/780
(measured by the SPECint benchmarks!). Subsequent to the mid-1980s,
processor performance growth averaged about 52% per year. Since 2002,
uniprocessor performance has slowed down to about 20% per year reaching the
power-reliability wall in 2006. On the other hand, memory has averaged a

constant performance increase of 9%.

Using Moore’s law as a measure of progress has become misleading, as
improvements in transistor density no longer translate into performance and
energy efficiency. Starting around the 65nm technologies, transistor scaling no
longer delivers the performance and energy gains that drove the semiconductor

growth during the past decades (Dreslinski et al., 2010).

The Research community and the Industry believe that parallelism is the answer
to overcome the performance wall, however with different implementation
approaches. The industry has attempted to react by escalating the number of
processors introducing multi-core architectures and parallelism. Multiplying the
number of big, complex and power demanding existing cores, (which are part of
the problem) does not adequately solve any of the performance, reliability and

power awareness concerns (Asanovic et al., 2006).

1 SPECint benchmarks are a set of benchmarks design to test the integer processing performance
of modern CPU (http://www.spec.org/)
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2.3.1.2. Reliability within the vicious cycle

What follows is an attempt to interpret the current performance and reliability
issues of the microprocessor industry. In this context, we use the term vicious
cycles: cycles as chains of events that reinforce themselves in a feedback loop.

The term vicious is used, as the results of such chains are detrimental.

The semiconductor industry driven by economic reasons and time-to-market
needs has introduced too much complexity in microprocessor designs. Figure 2-5

shows our interpretation of the reliability problem in current computing.

Higher Level Larger ‘/\
Languages and — Development Larger and

$ Tools : Teams . Complex
\>_/ — S— — Software ;
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programs \ /\ : l\f/:ore
— i oftware
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Market — Hardware NG -
Demands Performance —
Increased Improved Shorter wire Transistor
Power Performance - distances T
m— Increases
Lower . )
Rellablllty ThlnnerWnres
Increased
Power
1 2
(»Zonsumptlon/nm‘ Thermal Rupaway
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O:t':ul;r‘\i < In;rease Power
- ower S
ot Consumption/nm?
taquited Dissipation- Rl L)

Figure 2-5. The Vicious Cycle and the evolution of computing
systems. 1950-2005

An efficient and logical design could have achieved better results in the long-
term. Instead, a brute force approach, increasing frequency, deeper pipelines and
cache levels (pipelines and cache levels provide slight performance at a high cost

of chip floor plan) has been employed (Asanovic et al., 2006).
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Increased processor performance allows software companies to develop larger
and feature-richer software, which involves larger development teams.
Consequently, developers need higher-level languages and abstractions, which
are less efficient and generate slower programs. As a result faster processors are
needed, reinforcing this vicious cycle (Figure 2-5) and generating detrimental
results. Under this cycle, existing programs would run faster on the latest

generation of microprocessors.

Since 2005-2006, no considerable increase in functional hardware performance
has occurred. Existing programs need to be redeveloped to take advantage of the
new multi-core. Consequently, the vicious cycle does not apply anymore. The
power wall has dramatically slowed down the evolution of microprocessors in

terms of performance.

Clearly, technological developments have not been supported by a logical
evolution. There is an increasing need for unified hardware and software
technologies. Development of a new computing paradigm and its implementation
through the whole cycle of hardware, software and application design,

development and prototyping is required.

2.3.2. Reliability and unreliability functions

Let’s suppose we have a system with N identical components. We define S(t) as
the number of surviving components at time t and Q(t) as the number of failed

components up to time t. Therefore:
S+ Q) =N

Equation 2.1. Surviving and failed components at time t

The reliability R(t) is the proportion of components that continue to perform
without failure after being used for a period of time t. That is the probability of

survival of the components, given by:
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Equation 2.2 - Probability of survival of components at time t

Unreliability or Cumulative failure distribution function is generally referred to as
the probability of failure. More specifically, unreliability F(t) is the conditional
probability that the system begins to perform incorrectly during the interval [ty

t/ given that the system was performing correctly at time ¢y:

Equation 2.3. Probability of failure of components at time t

Based on Equation 2.1:

R(t)+F(t)=1
F(t) =1—R(t)

Equation 2.4 - Reliability and Probability of failure of components
attime t

R(t) F(t)
0.8

0.6

0.4

1
0.2 :

>
>

t

time

Figure 2-6. Reliability R(t) and Failure probability F(t) functions
over time t

21



Figure 2-6 shows a graph of the reliability and failure probabilities over time
with a constant failure rate. R(t) is a monotonically decreasing function that has
an initial value 1 whereas F{(t), starting at 0, increases monotonically. The sum of

F(t) and R(t) at any given time is 1.

2.3.3. Probability density function

The derivative of F(t) is a probability distribution function (PDF) that defines the
probability of failures per unit time f(t) of a particular component that has been
used for a period of time t (Birolini, 2007). Based on this definition, the

probability density function is described as:

Equation 2.5. Probability density function as a function of
Unreliability

Using Equation 2.4:

d[1—R(t)] B dR(t)

fO=—7=""a

Equation 2.6. Probability density function as a function of
Reliability

Thus, the probability of a failure during the time range [0,t] is:
t
PO = | fOde
0
Equation 2.7. Probability of failure during the time range [0,t]
Using Equation 2.4:

Rt)=1-F(@t)=1- ftf(t)dt = Joof(t)dt
0 t

Equation 2.8 - Reliability during the time range [0,t]
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Figure 2-7. Representation of Reliability, Unreliability and the
probability density function

Figure 2-7 is a schematic that illustrates the relationship between the
unreliability or probability of failure (area in red), and probability of success
(area in blue) and the PDF. In this schematic only two mutually exclusive states
can occur: failure or success. F(t) and R(t) are the probability of these two states

and the sum of these two is always equal to 1.

2.3.4. Failure rate function

The failure rate function A(t) (also known as momentary failure rate or hazard
function) describes the number of failures per unit of time versus the number of
components still operating at a time (surviving components) (Birolini, 2007):

1 -dQ(t)

A(t) = % —dt

Equation 2.9. Failure rate as failures vs components at time t

Using Equation 2.3 and Equation 2.2:

1 NdF(t)

A0 = VRO at
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1 dF®) _ f@®)
A(t)_R(t) dt  R(t)

Equation 2.10. Failure rate as a function of reliability and
probability density

The failure rate function is very accurate to express the reliability of
semiconductor components for long periods. However, calculating the failure
rate at a specific point of time within a short period is impractical. Consequently,

average failure rate, with longer time periods, is preferred:

Total failures during a period

Average failure rate = - - — -
gef total operating time within a period

Equation 2.11. Average failure rate

The values of average failure rate can be expressed by % or ppm?. However, FIT3

it is more widely used as a unit for reliability.

2.3.5. Cumulative hazard function

Using Equation 2.4:

-1 dR(®)
A(t) = m dt

Equation 2.12. Failure rate function as a function of reliability

Z ppm is the abbreviation of “parts per million”. One ppm means 1 faulty component out of
1000000 components. Hence, an average failure rate of 10 ppm means that there are 100 faulty
components out of 1000000, or 1 component out of 100000.

3 FIT is a unit widely used to express failure rate. One FIT equals to one failure per billion (109
hours (one failure in about 114,155 years), or 1ppm/1000h
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This expression can be integrated from time 0 to time t giving the cumulative

hazard function H(t):

t R(t) 4R
H(t) = f AO)dt = — j - ((tt))
0 1

Equation 2.13. Integration of the failure rate from time 0 to t.

The limits of the integration are obtained as follows:
e attime t=0, R(t)=1

e attime t by definition the reliability is R(t)

Given the assumption of a constant failure rate A of a component (typically in per

million hours or FIT):

At = —logR(t)
—At = —logR(t)
R(t) = e M

Equation 2.14. Reliability at time t with constant failure rate A .

2.3.6. Bathtub curve of failure rates

The following section describes the classic Bathtub Curve used in reliability
engineering. In the 1950’s the Advisory Group for the Reliability of Electronic
Equipment discovered this typical curve, which defines the failure rate of

electronic equipment.

A value can be assigned to the reliability of a system. For instance, a system may
have 97% reliability over a two-year mission, subject to a maximum vibration
Vmax, @ humidity range [Hmin, Hnax] and temperature range [15°C, 30°C]. Although
the above definition is generally accepted, it is not a complete definition from the
starting to the end time of a safety-critical system’s life. System reliability will be

different for different time periods. Therefore, more factors need to be
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considered. For a correct service delivery in a specific period, the system must be

operating properly at the beginning of the observation period.

The operational age of the system is one of the factors that should be taken into
account. The above definition does not differentiate between:

e anew system,

e a system that has been operational for a substantial amount of time and

whose faults have already been corrected, and

¢ an old system with a long operational history and wear out issues

(a) (b) (c)

Early failure | Normal operating | Wear out
period | period | period
| |
| |
| | /
Rate I 7 I /
—A
of [ R{ty=e [ /
failure | T | F
I ! [ /
v 7
|| osassnasscsatintssostasssanscy ....__..__‘..l ' Wear out
itaiit .| Constant (random) failures |'~.,.: // failures
mortality failure ...'.\Q' yj.l»"'. ,,/
e Y ......... P
I e
.-_____----—--—-——l-—eunstant'failure rate region |
0 Time

Figure 2-8. A bathtub curve of failure rates. During normal
operation period the failure rate A is constant and faults are
independent

Reliability distributions with decreasing, constant and increasing failure rate as a
function of time are illustrated in Figure 2-8 during period (a), (b) and (c)
respectively. The assumption made is that faults are independent and that the
failure rate (A) is constant. The system failure rate is dependent on the system’s
lifetime constituting a function with a bathtub shape and three distinctive areas

or periods: an early failure period (a), a normal operating period (b) and a wear
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out period (c). For failure rates higher than the constant failure rate (1), the

chance of system failure becomes higher.

For a new system (case a) there is an early failure or infant period with a
decreasing but high failure rate due to latent manufacturing defects that escape
the initial testing of the product. As the products get into operation, these defects
surface quickly when the devices are stressed. Once the infant failures are
eliminated, this high failure rate rapidly decreases to an almost constant value
during the normal operating or grace period (case b). This long period represents
the useful life of the system where failures occasionally occur due to the sporadic
breakdown of weak components. It is highly desirable that this period of low

failure rate and high reliability dominates the product’s lifetime.

During the wear out or breakdown period (case c) the reverse situation takes
place. As the system gets older, the failure rate increases sharply due to age-
related wear out. Note that many devices that form part of the same system will
initiate this phase roughly at the same time. This could create an avalanche effect

that could critically decrease the overall reliability of the system.

After analysing the bathtub curve and the three periods of operation involved, it
is clear that the previous equations of reliability only suit the normal operating
period with a constant failure rate. This curve represents very well hardware
reliability due to aging and degradation but it is not suitable to software,
especially in the case of versioning and upgrades. The silicon failure mechanisms

will be further studied in Chapter 4.

2.3.7. Mean time between failures (MTBF)

Instead of a monotonic function of time reliability can also be expressed as a
numeric index. Mean time between failures (MTBF) is the average time that the
system will run between failures (Garland and Stainer, 2013). This measure is
convenient to compare the reliability of different repairable systems. MTBF can

be estimated by averaging the time between failures, including any additional
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time required to repair the system and place it back to a functional state. The

equations in this section are obtained from (Birolini, 2007).

Being f(t) the probability of failure per unit time, MTBF can be described by:

MTBF = footf(t)dt

0

Equation 2.15. Probability of failure per unit time (MTBF).

Using Equation 2.6:

° dR(t)
MTBF = —f t
. dt

Equation 2.16

Integrating the above equations by parts we obtain:

oo

MTBF = —[tR(t)]8°f R(t)dt
0

Equation 2.17

For t =0, R(t) = 0, hence t x R(t)=0. As t increases from 0, R(t) decreases. As t
tends to oo, txR(t) tends to zero. Therefore, the first term of the previous
equation is zero. For any kind of failure distribution with a failure rate A as a

function of time, the general expression for MTBF can be described as:

o)

MTBF = f R(t)dt
0

Equation 2.18. General expression of MTBF

The higher the MTBF is, the higher is the reliability of the system or component.
Moreover, for failure distributions independent of time with a constant rate,

MTBEF is given by:
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o

MTBF = f e Mdt

0

Equation 2.19. MTBF for time independent failure distributions
with constant rate of failures

1 o 1
— — [o—At —
MTBF =5 le*dt] -

Equation 2.20. MTBF for time independent failure distributions
with constant rate of failures

Hence, MTBF of a system is reciprocal to its failure rate (given a constant failure
rate). MTBF will be expressed in hours if the constant rate is also expressed in

hours.
2.3.8. Mean time to failure (MTTF)

As described above, MTBF is a good measure of reliability for systems that can be
repaired. A similar single-parameter indicator of reliability for components that
cannot be repaired is the mean time to failure (MTTF). MTTF is the average time
until the first system’s failure. Results of life testing can be used to calculate
MTTF by testing a set of N identical units until all of them have failed with the
time to the first failure of the individual units identified as t1, t2, t3, ..., tn. It can

be observed that MTTF is given by:

n
1
MTTF = Zz t;
i=1

Equation 2.21. Mean time to failure (MTTF)

As before, the failure rate, if independent of time, can be calculated by:

1

A= UTTF

Equation 2.22. Failure rate as the inverse of MTTF
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MTBF and MTTF are sometime used interchangeably. Although the numerical
difference is small in many cases, both measures represent different concepts.
MTTF is related to MTBF but does not include the repair time (MTTR or mean
time to repair/restore) nor the detection time (MTTD or mean time to

detection):

MTBF = MTTF + MTTD + MTTR

Equation 2.23. MTBF as a function of MTTF, MTTD and MTTR

MTTR is the average time required to repair a system whereas MTTD is the
average time required to detect a failure. In most applications, MTTR and MTTD
are just a small fraction of the total MTTF. Therefore, the approximation that
MTBF and MTTF are almost equal is sometimes fair. MTTR and MTTD are
difficult to estimate and can be determined by injecting faults into a system,
measuring the time required to repair it. Both measures will be further discussed

in the availability section.

2.3.9. Reliability prediction

In the case of design of hardware systems, there are two different known
theoretical methods to meet the above mentioned reliability requirements and

specifications:

e Fault avoidance: makes use of substantially higher reliability components
and substantially higher than expected lifetime. Birolini (Birolini, 2007)
introduced a comprehensive theoretical approach based on the application

of reliability engineering throughout the system to reach this goal.

e Fault tolerance: deliberately introduces redundancy in the system to

achieve continuous operation.

During the last 50 years there have been several attempts (Gnedenko et al., 1999;
Koren and Krishna, 2007; Kovalenko et al., 1997) to connect probability and
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reliability. A brief review of the probabilistic theory of reliability for the analysis

of real objects and their features (fault tolerance) is presented below.

Reliability of systems can be estimated by partitioning those systems into more
elemental entities (e.g. subsystems or components) and then by assessing the
individual probability theory of these individual entities. The entities can be
interconnected in serial, parallel or both. Therefore reliability models are needed
to illustrate the functional relationship among the entities of the system and the
way in which a failure of each component would affect the overall reliability of

the system.
2.3.9.1. Serial Reliability

The mathematical equations in this section are based on the classic reliability of
(Birolini, 2007). In this model, the entities are connected in series. When
minimum design and costs are specified in the design requirements of a system,
a series system is the usual choice for designers. For the system to be
operational, all of the components or subsystems should be operational and
work correctly. Serial systems are inherently unreliable since the failure in one

of the elements would cause a stoppage of the overall system.

—{rat0 | a0 | rot0 e |

Figure 2-9. Logic diagram of Serial reliability

The reliability of a system without redundancy may be described with a
sequential reliability block diagram (see Figure 2-9). In this arrangement the
system reliability is the product of its individual component reliabilities,
assuming they are organized in serial (cumulative) structure. Note that for this
structure, if the reliability of each component is R;, the total system reliability Rs

is given by:
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n n
R.(t) = ﬂRi(t) =exp| — Z/Ij t
i=1 j=1

Equation 2.24. System reliability of a serial system

And the failure rate of the system A is given by:

152/11"'12 +A3+ +/1n

Equation 2.25. Failure rate of a serial system

Furthermore, the Mission Time Function Mr(r) gives the time at which system

reliability falls below the given threshold level r. The relationship between

reliability R(t) and mission time Mr(r) is given by the definitions:
RMr(M)]=r

Equation 2.26. Mission time function My with threshold level r

Mr[R(t)] =t

Equation 2.27. Mission time function Mt at a given time

If A is constant then, using Equation 2.14:

_ —In(r)

Equation 2.28. Mission time function Mt with constant failure rate

So for a non-redundant system with n components

oy = 1)

i=1

Equation 2.29. Mission time function My for non-redundant systems
with n components
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The failure rate of a sequential independent element system is equal to the sum
of the failure rates of its elements. In the case of a constant failure rate across all

elements, the MTTF of the whole system (MTTFs) can be calculated as follows:

MTTF; = 1/2;

Equation 2.30. Mission time to failure of a system with constant
failure rate

Note that this equation highlights the fact that the reliability of a system is
directly impacted (in practice often dominated but not solely determined) by the

reliability of its least reliable component.

2.3.9.2. Parallel reliability: Redundancy and fault tolerance

In the previous model, no redundancy was taken into account to calculate the
system reliability. A second approach to achieve a required level of reliability is
the deliberate introduction of extra components into the system. The sole
purpose of introducing this redundancy artificially is to increase reliability.

However, there is a price to pay for such improvement in the system'’s reliability.

This approach assumes a deliberate introduction of redundancy in the system
and has been applied since the original work of Von Neumann (von Neumann,
1956) and Pierce (Pierce, 1965). Note that introducing redundancy involves
some additional components and complexity and it is therefore imperative that
the reliability benefit accruing from the redundancy scheme must far exceed the
decrease in reliability due to the actual implementation of the redundancy

mechanism itself.

The classic parallel generalization of the redundancy model (Birolini, 2007)
describes a system of n statistically identical elements in active redundancy,
where k element(s) is/are required to perform a function and the remaining n-k

are in reserve.
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Figure 2-10. Parallel reliability

A function of the system is considered successful if during scheduled time k
element(s) of the system was/were available. As an example, in the case of a 1-
out-of-3 system (Figure 2-10), its function would be complete if at least one of
the elements was known to be working correctly. The second and third elements
are redundant and introduced only for reliability purposes when the first unit is

known to be faulty.

For the system of Figure 2-10 the reliability function is as follows:

R(®) = Ri(t) + R2(6) + R3(t) — Ri(O)R2(8)R3(0)

Equation 2.31. General reliability of a 1-out-of-3 parallel system

Assuming that the elements are identical, work or fail independently of each

other and have constant failure rate R;(t) = R,(t) = e *, then by

substitution:

R(t) = 3e M — ¢34t

Equation 2.32. Reliability of a 1-out-of-3 parallel system with
constant failure rate

MTTF—3 (1),1—8
ST 1 \3/)7 32

Equation 2.33. Mean time to failure of a 1-out-of-3 parallel system
with constant failure rate

Therefore the apparent working time of the redundant system is increased.
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In the general case where n redundant elements are introduced as spares to
provide successful completion of an element’s function with the same

assumptions as above, the overall system reliability is given by:

R =1-(1—e)"

Equation 2.34. General reliability of a 1-out of n parallel system
with constant failure rate

In the above equation n is the number of modules, e s the reliability of the

original system and it is assumed that:

e There is a fault-free mechanism to detect and report failure of the active

module,

e There is a fault free switching mechanism to replace the active module in

case of detected failure, and

e All modules have equal reliability

Thus, there is no doubt that redundancy even for this classic case could improve
reliability of the system considerably. Note that the redundant components do
not necessarily need to be identical, but could also correspond to additional

hardware with different reliabilities used to detect and treat transient faults.
2.3.9.3. Mixed reliability: Serial and Parallel

In practice, systems are usually made of a combination of serial and parallel
components. More complex math applies to the reliability of these mixed
arrangements. This type of arrangement is frequently used in systems where a
specific part is particularly prone to failure. Figure 2-11 depicts an example of M
of N system, whose elements may or may not have constant rates, and has a

voter that counts for the serial reliability element.
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Figure 2-11. Reliability of a combination of serial /parallel
components with a voter

Assuming that only 1 out of N parallel components needs to operate, the

reliability of the parallel section of the system is defined by:

R®=1-[1- R©®O)(1 - R,(®))(1 - Rs(®))]

Equation 2.35. General reliability of a parallel section of a specific
mixed serial/parallel system

R =1- | |- Rie)

Equation 2.36. General reliability of a parallel section of a specific
mixed serial/parallel system

The total reliability of the mixed serial/parallel system shown in Figure 2-11 is

specified by:

R(t) = Ri_3()R4(t)

Equation 2.37. General reliability of a parallel section of a specific
mixed serial/parallel system

Therefore, a relatively reliable voter would dominate the reliability of a

redundant system.
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2.4. Safety

In safety-critical systems, safety describes the absence of catastrophic failures for
users and the environment when a failure takes place. A system that can be
repaired after failure presents a minimum of two states: functional and failed.
Some other systems are able to have extra states even under faulty conditions.
An example of such system, depicted in Figure 2-12, has the possibility of

transiting to a safe state, in a manner that does not cause any harm.

Start state

FAIL-SAFE Fully Failure
. functional failure
state Fail-safe U
procedures

Figure 2-12. A basic fail-safe system with three states

Catasthropic

Safety is a measure of the fail-safe capability of a system and it is defined as the
probability that a system will either perform its function correctly or will
discontinue its operation in a safe way (Laplante and Ovaska, 2011).
Quantitatively, safety is the probability that the system will not fail in the interval
[0,t] in such a manner as to cause unacceptable damage to other systems or

compromise the safety of any people associated with the system.

The safety function can be described by:

S() = Pfunctional(t) + Psafe—mode(t)

Equation 2.38. Availability as reliability and recoverability

Safety is directly dependent on “risk”, as the probability of loss associated to a
particular failure. In turn, risk is a function of the probability of failures and their
severity on the system. A system can be unreliable, have low availability and yet
be safe. A system is safe if it functions correctly or if in case of failure it can

remain in a safe state.
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2.5. Security

Contrary to (Avizienis et al, 2004) that adds confidentiality as one of the
attributes of security, we consider Security as a property that can be defined by
three attributes: integrity, maintainability and availability. For a resilient system

in the field of RTS’s, confidentiality is not an essential attribute.
2.5.1. Integrity

The attribute of Integrity is inward-looking and is related to the capability of a
system to protect computational resources and data under severe circumstances.
Integrity can be defined as the absence of improper system state alterations. As

suggested by (Storey, 1996) two types of integrity can be defined:

e System integrity: the ability of a system to detect faults during operation

and to inform to a human operator.

e Data integrity: the ability of a system to prevent damage in data and

possibly to correct errors that occur as a consequence of faults.
2.5.2. Maintainability

Based on the definition of (McGraw-Hill concise encyclopedia of engineering,
2005), Qualitatively, we define maintainability as the ease and rapidity in which,
following a failure, a repairable system can be restored to a specified operational
condition. Quantitatively, we define maintainability as the probability M(t) that a
failed system will restore to a normal operable state specified within a given time

framedt.

The restoration process involves the location of the problem, the
reparation\recovery of the system bringing it back to a normal operational
condition. Maintainability has two main components, serviceability and
recoverability that should by carefully analysed in the implementation of self-

repairing systems:
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M) = f(S(®),RC(D))

Equation 2.39. Maintainability of a system

Maintainability characteristics are determined by the system design of
maintenance procedures, such preventive (PM) and corrective maintenance (CM)
procedures. These two procedures apply to the serviceability and recoverability
components and determine the length of repair times (Bodsberg and Hokstad,
1995; Dhillon, 2006). PM is the set of activities performed on a system before the
occurrence of failure in order to prevent any degradation in its operating
condition. PM aim to reduce the probability of failure at predetermined intervals
or along with prescribed criteria. CM is the remedial set of activities performed
on a system in order to recover an item to its fully functional condition. CM is

usually unplanned that requires urgent attention

Shutdown Running Shutdown
Preventive Preventive Corrective
Maintenance Maintenance Maintenance

Restoration Failure
Shutdown >( Fully [ aited
Preventive functional /_
Shutdown \J‘ Repair
Remedial
Corrective

Maintenance

Figure 2-13. Preventive and corrective maintenance on a three state
repairable system

Figure 2-13 shows PM and CM mechanisms on a three-state repairable system.
Note that not all maintenance leads to downtime of the three-state system.
Whilst running PM and remedial CM prevent and correct failures during normal

operation, shutdown PC and CM take place during non-functional states.

2.5.2.1. Recoverability

Once the problem has been identified and located by the testing mechanisms, CM

can be carried out to complete the necessary repairs. Consider a repairable
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system with two states: a fully functional and a failed one (as in Figure 2-3);
however, in this case the failed state can be abandoned after successful CM,

transiting back to a fully functional state (as in Figure 2-14).

Corrective
Start state Maintenance
Failure o
fu:c::':nal ). P
b Repair

Figure 2-14. A repairable system with two states and corrective
maintenance

Recoverability RC(t) may be defined as the ease of restoring the service after

failure. It can be modelled as:

RC(t) =1—e Mt

Equation 2.40. Recoverability of a system

where | is the repair rate or average number of repairs that can be performed

per time unit, the key aspects of recoverability, MTTR and MTTD, are given by:

1
MTTD + MTTR = E

Equation 2.41. Mean time to repair (MTTR) and Mean time to
detection (MTTD) of a system

Note that good testing would affect recoverability to a degree.
MTTR will be further discussed below in the availability section.

2.5.2.2. Serviceability or Testability, T(t)

Testability T(t) is the ease in which servicing and inspections can be conducted in
order to identify the characteristics of a system; it is the ability to check certain

attributes within a system. Measures of testability allow the system to assess the
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ease of performing tests. Ideally, in order to improve testability the tests can be
automated and implemented as an integral part of the system. These techniques
can be used for error detection and error correction within the system. Since
most of the time, testability is often used to determine the source of the problem,
one way to improve the maintainability of the system significantly is the use of

automatic diagnosis.

Testability relates to reliability since it allows detection and correction of errors
that would, otherwise become failures, thus improving the overall reliability of
the system. Testability is clearly connected with recoverability due to the

importance of minimizing the time to locate and identify specific problems.

Two properties/measures closely associated with testability, controllability and
observability (Franklin and Saluja, 1995, p. 199; Goldstein, 1979). Observability
relates to the probability of “observing”, via output measurements, the state of a
system. Controllability instead is associated to the ease of forcing parts of the
system into desired states by using appropriate control signals. Design for
testability techniques (DFT) (Alanen and Ungar, 2011; Karimi and Lombard,i,
2002; Landis, 1989; Mathew and Saab, 1993), can be used in order to increase

observability and controllability of systems.

2.5.2.3. Coverage

Mathematically, fault coverage C is the conditional probability that, given de
existence of a fault in the operational system, the system is able to recover, and
continue information processing with no permanent loss of essential information

(Bouricius et al,, 1969) i.e.:

C = Pr [system recovers | system fails]

Equation 2.42. Mathematical definition of coverage

Fault coverage is a good measure of maintainability and, specifically of the

system’s ability to detect, locate, diagnose, contain and recover from the
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presence of a fault. Several types of fault coverage can be distinguished,
depending on whether the designer is concerned with fault detection, diagnosis,
containment or recovery (Kaufman and Johnson, 2001). In Figure 2-15, we
extend the phases of fault handling by (Dugan and Trivedi, 1989), showing the

relationship among the steps of recovery and their coverage.

Fault
containment

Fault
diagnosis

1-C

r (o

Coverage
success

Figure 2-15. Four phases of fault handling and their coverage

Fault detection coverage Cq measures the system’s ability to detect fault. Fault
diagnosis coverage #C; is a measure of the system’s ability to locate and
determine the type of fault. Fault containment/isolation coverage C. is a measure
of the system’s ability to contain faults within a predefined boundary (fault
containment region or FCR). For instance, fault that occurs in a subsystem can be
detected, located, and its effects can be prevented from propagating to other

subsystems.

Finally, the general term “coverage” or “fault coverage” is often used to refer to
fault recovery coverage, which measures the system’s ability to recover from
faults and maintain correct operation. Recovery may involve modifying the
structure to remove the faulty component (reconfiguration) including graceful

degradation. The fault coverage C for the system is given by:

4 Fault diagnosis involves both the location (fault location) and determination of the fault type
(fault determination)
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C:CdXClXCCXCr

Equation 2.43. Coverage as a function of fault detection, diagnosis,
containment and recovery coverages

Clearly, high fault recovery coverage requires high fault detection, diagnosis and

containment coverage.

2.5.3. Availability

A simple definition for availability of a repairable> system is “Readiness for
correct service” (Avizienis et al., 2004). This measure is suitable for applications
in which continuous performance is not essential but where it would be costly to
have long downtimes. Availability is strongly dependent on how frequently the
system becomes non-operational (reliability) and how quickly it can be repaired

(maintainability) (see Figure 2-14).

MTBE; MTBE, MTBE,;

«—— MTTF —> «—— MTTF — «—— MTTF — <« MTTF —

uptime :'
MTTD; MTTR MTTD} MTTR IMTTD MTTR

= b - > g » % i3 3 TR

downtime L,

0 Xy r Xa ry Xq T, time

Figure 2-16. Failure and repair cycle of a system

5 The concept of availability is applicable to repairable systems. Availability of a non-repairable
system would be the equivalent to reliability.
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As defined in the MTBF equation (Equation 2.23) the mean time between failures
of a system can be defined as a combination of MTTF, MTTR and MTTD. Figure
2-16 illustrates the variations of the state (functional-failed) of a repairable
system. The time of operation of such systems is discontinuous. From time 0 to
time X; the system is continuously available and therefore has an internal
availability of 1. After the first failure at time x; internal availability keeps
decreasing until the detection and recovery mechanisms complete the repair at
time rj, returning to the original functional state. The system will fail again at
time x; after a certain time of operation [r; - xz/, get repaired at time rz, and this
process will reiterate. Assuming that X; is an average of system failure and i an

average of system repair, for i>1:

MTBF = ) (X;—X(i—1))

Equation 2.44. Mean time between failures with average failure and
system repair

The relation between time to failure, time between failures and time to repair is

displayed in Figure 2-17 above.

MTBF

MTTE MTTF

v
2

A

MTTD MTTR

1 1

H H

* 0
error2 errori

fault1 error1 detection repair fault2  orrorisa

Figure 2-17. Relation between Time to failure (TTF), time between
failures (TBF) and time to repair (TTR)

There are various availability measures that can be classified differently

depending on the time interval preferred or the downtimes used.

44



2.5.3.1. Instantaneous or point availability, A(t)

Instantaneous or point availability A(t) is the probability that the system will be
operational at a random time ¢ (Barlow and Proschan, 1975). It describes the on-
demand probability of proper service. It is equivalent to reliability when there is
no repair. While internal availability is based on an interval time, instantaneous
availability is based on a specific instant of time. At any given time t, the system

will be functional if one of the following conditions is met (Elsayed, 1996):

e The system was functional from 0 to t (it never failed by time t). The

probability of this happening is R(t) (Equation 2.14).

e The system has been functional since the last repair time r; (see Figure

2-16) when 0 < r; < t. This has a probability of:

ftR(t —rp)m(r;)dr;
0

Equation 2.45. Probability that the system has been functional since
last repair time for O ri < t.

e With m(r;) being the renewal density function of the system.

The instantaneous availability of the system is the sum of these two

probabilities:

A(t) =R(t) + ftR(t —rp)m(r;)dr;
0

Equation 2.46. Instantaneous or point availability of a repairable
system

2.5.3.2. Average uptime availability (or mean availability), A(t)
The average uptime availability or mean availability A(t) (Lie et al., 1977) is the

proportion of time during a time period [0-t] that the system is functional and is

given by:
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Equation 2.47. Average uptime availability of a repairable system

This type of measure is suitable to systems with periodical downtime for

maintenance/repairing.
2.5.3.3. Limiting or Steady-state availability, A(0)

The limiting or steady state availability (Applebaum, 1965) of the system A(c0) is

the limit of the availability function as time t tends to infinity:
A() = l{im A(t)

Equation 2.48. Average uptime availability of a repairable system
2.5.3.4. Inherent availability, A;

In its simplest form, availability A can be mathematically generalised as:

Uptime

- Uptime + Downtime

Equation 2.49. General availability as a function of uptime and
downtime
During the design phase of a FT system, Inherent availability A; is a useful
measure (Valstar, 1965). A; defines the availability of a system only in regard to
effective functional time (uptime) and downtime due to corrective maintenance
(CM). It can be calculated using estimated parameters (MTTF, MTTD and MTTR)

as:

4 MTTF _ MTTF
'™ MTTF + MTTD + MTTR ~ MTBF

Equation 2.50. Inherent availability as MTTF and MTBF

Hence, if MTTF or MTBF are long compared to MTTR and MTTD then the
system’s availability will be high. Likewise, if MTTR and MTTD are short then the
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system’s availability will also be high. As reliability decreases (e.g. low MTTF),
better recoverability will be needed (lower MTTR/MTTD) to achieve the same

availability.
2.5.3.5. Achieved availability, Aa

A; is a good parameter to measure systems under ideal conditions where
downtime due to preventive maintenance (PM) is overlooked. Achieved
availability Aa is similar to inherent availability with the exception that
downtimes due to PM tasks are also included (Conlon et al., 1982). In can be
defined as:

oT

A, =
A7 0T + TCM + TPM

Equation 2.51. Achieved availability according to USA department
of defence

Where OT is the total operating time, TCM is the total corrective maintenance

time and TPM the total time spent during preventive maintenance actions.

2.5.3.6. Availability-recoverability-reliability relationship

At first glance, it might seem that a highly available system would also have high
reliability. Nonetheless this in not always the case, a system can be highly
available yet suffer from frequent periods of non-operation as long as the length
of the downtime is extremely short. Let's explore further the relationship
between availability and reliability. Reliability represents the probability of
systems and components to perform its intended function for a desired period of
time [0,t] under specified environmental and operating conditions. However,
reliability in itself does not take into account any repair actions. Reliability does
not reflect how long the recovery of a component/system will need in order to
take it back to a working condition. Availability reflects not only how often a
system fails but how often it can be repaired (it accounts for repair actions).

Thus, it is a function of reliability, recoverability and thus testability.
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A() = f(R(®), M(¢))

Equation 2.52. Availability as reliability and recoverability

Table 2-1. Reliability-Recoverability-Availability relationship

Reliability = Recoverability Availability

Constant Constant Constant
Constant Decreases Decreases
Constant Increases Increases
Decreases Constant Decreases
Increases Constant Increases

Table 2-1 above, presents the relationship between reliability, recoverability and
availability. As shown by the table, once again, high reliability does not necessary
imply high availability. Availability decreases as time to repair increases. Even an

unreliable system could present high availability if MTTR is low.

2.6. Performability

The all-or-none nature of operation implicit in classic reliability and availability
models does not measure in detail systems that can operate with different
capability levels (e.g. multiprocessor systems). Consequently, another key
attribute of resilience, performability and its measure, mean computation before
failure (MCBF) can be employed. MCBF is described as the expected amount of
computation available on the system before its first failure, given an initial state

(Beaudry, 1978).

In qualitative terms, we define performability as the ability of a system or
component to accomplish its designated functions within specified constraints such
as speed, accuracy or memory usage. It is the measure of the likelihood that some
subset of the functions of the system or component is performed correctly

during a certain time interval. Quantitatively, Performability P(L,t) has been
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defined as “the probability that the component’s or system’s performance will be at

or above some level L at the instant of time t” (Fortes and Raghavendra, 1985).

After the occurrence of faults and errors, certain systems have the ability to
continue to perform correctly, however with a diminished level of performance.
This ability or feature is called Graceful degradation, or fail-soft operation
(Gountanis and Viss, 1966), and it is the ability of a system (gracefully degrading
system or GDS), upon failure of one or more of its component units, to continue
the processing of tasks at the expense of decreasing its performance level. The
performability of a GDS P(L,t) at time t depends on the amount of available

resources and their computational capability provided.

Note that performability differs from reliability in that reliability measures the
likelihood that all functions are performed properly, whereas performability
measures the likelihood that some subset of the functions is performed properly.
Nevertheless, these two concepts are related since a GDS with a low rate of
failure (high reliability) will have most of its resources computational capability
available and therefore performability of the system will be close to its ideal

value.
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2.7. Resilience

Historically, the term resilience has had multiple meanings in various fields. As a
property it has different connotations. In social psychology resilience is about
elasticity, spirit, resource and good mood. On the other hand, in material science
resilience involves not only elasticity but robustness. In computer science it has
been identified as a synonym for fault tolerance. In this thesis we extend the
concept of resilience for safety critical applications. First we start by selecting the
material science connotations. Hence, our definition of resilience includes both

attributes: robustness and elasticity.

| 1 Reliability

2.1 Integrity

2.2.1 Testability or Serviceability

2.2 Maintainability -
\ 2.2.2 Repairability or recoverability

Resilience 2.3 Availability

. 4 Performability
. 5 Robustness
. 6 Evolvability

6.1 Adaptability 6.1.1 Reconfigurability

Figure 2-18. Attributes and measures of resilience

Figure 2-18 illustrates the different attributes and measures of resilience. The
term robustness involves the use of static techniques such the use of very
reliable materials or the use of rigid and pre-design approaches of fault
tolerance. A robust system can deliver correct service in conditions beyond the
normal domain of operation without fundamental changes to the original system.
This is more an aim that an objective. Total reliability to unforeseen faults other

than the normal domain of operation is not feasible.

On the other hand, we interpret elasticity as the ability to spring back without

losing the intrinsic properties of the material. Applied to resilience, we
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understand elasticity as the ability to evolve, to successfully accommodate
changes (evolvability). An evolvable system may perform changes to the system,
decreasing its level of performance or reliability for a specific time range 1) to
compensate for faults or 2) during exceptional circumstances (graceful

degradation).

More specifically, we consider that a resilient system must have the ability to be
adaptable, understanding adaptability as the ability to evolve while executing.
Therefore, adaptability is a subset of evolvability and requires the ability to

anticipate to changes prior to the occurrence of the resulting damage.

Therefore a resilient architecture must include different mechanisms to acquire
both attributes: a) static pre-design fault tolerant techniques (robust) and b)
dynamic techniques (elastic) that may be achieved with the ability to reconfigure

elements of the system (reconfiguration).
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2.7.1. Requirements

The main aim required to implement a resilient architecture for safety critical
applications is the “ability to deliver correct service adapting to disturbance,

disruption and change within specified time constraints”.

The above aim can be subdivided into more specific objectives, as follows:

e Continuity of service (reliability);

e Readiness for usage (availability);

e Non-occurrence of catastrophic consequences (safety);

e Non-occurrence of incorrect system alterations (integrity);

e Ability to undergo corrective maintenance and recovery with maximum

coverage of faults (testability and recoverability)
e Ability to perform in the presence of faults (performability)

e Ability to decrease the level of performance for a specific time range in

order to compensate for hardware faults (graceful degradation)

e Ability to regain operational status via reconfiguration in the presence of

faults (recoverability via reconfiguration)
e Ability to accommodate changes (evolvability)

e Ability to anticipate to changes (adaptability)
2.7.2. Effectiveness of resilience
We consider the following attributes: reliability R(t), security SC(t), integrity I(t),
maintainability M(t), testability T(t), recoverability RC(t), availability A(t), safety

S(t), performability P(L,t), robustness RB(t), evolvability E(t), adaptability AD(t)
and reconfigurability RC().
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Maintainability is a function of serviceability and repairability:

M(t) = f(T(),RP (1))

Equation 2.53. Maintainability as a function of serviceability and
repairability

Security is a function of integrity, availability and maintainability:

Sc(e) = FI), A(®), M(T (), RP(1)))

Equation 2.54. Security as a function of Integrity, availability and
maintainability

Evolvability is a function of adaptability and reconfigurability:

E(t) = f(AD(t),RC(D))

Equation 2.55. Evolvability as a function of adaptability and
reconfigurability

Therefore resilience RES(t) will be a function of all these attributes:

reliability, integrity, testability, recoverability,
RES(t) =f availability,safety, performability,
robustness, adaptability, reconfiguration

Equation 2.56. Availability as reliability and recoverability

With all these attributes the following systems would benefit from the

implementation of effective resilience.

e Safety-life critical: e.g. aircraft and nuclear reactor control. life support

systems

e Business critical

e Reliable critical: e.g. telephone switching-, traffic light control-,

automotive control (ABS, fuel injection) systems

e Mission critical and long life systems: e.g. manned and unmanned space

borne, satellites and other systems in inaccessible locations

¢ Non-stop systems that demand high availability



Resilience is not a simple and single concept, rather, it possesses different
components or key attributes. Taking into consideration all these attributes, our

definition of resilience is as follows:

“A resilient system is a system that over a specified time interval, under specified
environmental and operating conditions, is ready to perform its intended function,
guaranteeing the absence of improper system alterations, having the ability to
anticipate and accommodate changes while executing, and the ability to conduct
servicing and inspections so that in case of failure quick restoration to a specified
working condition must be achieved, or otherwise discontinue of the operation in a

safe way is provided”

2.8. Conclusion

This chapter explains the concept of resilience that encompasses important
attributes and measures that will be used during the thesis. Such concepts have

been reviewed and combined to define our concept of resilience.

Safety critical systems must provide correct service at all times by trying to avoid
the occurrence of any catastrophic failure. Different techniques can be employed
to increase reliability by avoiding/preventing hardware faults from becoming

errors that may lead to failures and catastrophic failures.

We introduce the concept of vicious cycle that explains the reasons behind the
performance and reliability problems that the microprocessor industry is
currently facing. The increase of transistor density, operating frequencies and
architectural complexity is drastically decreasing the reliability of newer
systems. There is, therefore, a need for implementing mechanisms that can deal

with the upcoming fault rates.

The mathematical background for classical reliability has been reviewed
together with the basic definitions for reliability evaluation. For constant failure

rate, independent of time, the exponential distribution is the most suitable for
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the reliability analysis of the useful time of systems. The age of a system should
be taken into account when analysing reliability. Three different periods with
different reliability distributions have been explained by reviewing the bathtub
curve, which represents very well the effect that aging and degradation have on

HW reliability.

In addition, it is also shown how to estimate the reliability of serial, parallel and
mixed components. The failure rate of a serial system is equal to the sum of the
failure rates of its individual elements. Therefore the more components a serial
system has the higher the probability of system failure. The reliability of a
system is often dominated by the reliability of its least reliable component. By
deliberately and carefully introducing extra components into a system, overall
reliability can be increased as long as the reliability benefit accruing from the
redundancy scheme exceeds the decrease in reliability due to the actual

implementation of the redundancy mechanisms itself.

We extend the classical definition of resilience and apply it to the field of safety
critical computing. Moreover, we quantify the key attributes that a resilient
system must have, exploring the relationships among these quantitative
measures. The attributes of safety and performability are explained. The concept
of security is described, including its attributes: integrity, availability, testability
and recoverability. The mathematical background and the basic definitions for
system availability are also developed. We show how the availability of FT

systems can be estimated using different methods and measures.

Finally, the main aim and objectives required to implement a resilient
architecture for safety critical applications are defined. A resilient system, over a
specified time interval, under specified environmental and operating conditions
(performability), “must be ready” (in terms of availability) to perform its
intended function (reliability), guaranteeing the absence of improper system
alterations (integrity). It must have the ability to conduct servicing and
inspections (testability) so that in case of failure quick restoration to a specified

working condition must be achieved (maintainability) can be provided or can
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discontinue its operation in a safe way (safety). Furthermore, a resilient system
must have the ability to anticipate changes and evolve (evolvability) while
executing (adaptability), successfully accommodating changes by reconfiguring

elements of the system if necessary (reconfiguration).
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Chapter 3



Chapter 3

Dealing with faults: redundancy

This chapter provides a survey of state-of-the art design strategies to handle
faults with special stress on redundancy-based techniques. Section one presents
an overview of fault avoidance design strategies. Section two provides a survey
of fault tolerance techniques. The notion of redundancy and its different types
are presented and a notation, which may be used to describe the different types
of redundancy, is introduced. The concepts, capabilities and applications of the
different techniques based on structural (SR), information (IR) and time

redundancy (TR) are compared and discussed.
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3.1. Handling faults: design strategies

In order to increase the reliability of safety-critical systems so that correct
service can be delivered, techniques need to be developed to prevent or reduce
the appearance of faults that could cause catastrophic failures. Depending on the
phase of the development cycle and the level of abstraction at which the faults
are tackled, two different design strategies can be adopted: fault avoidance and

fault tolerance.

Fault avoidance strategies can be used at device level during design time. Typical
in mainstream applications, in order to reduce the number of failures, this
approach focuses on preventing the occurrence of faults. Since a failure is the
consequence of an error propagating, and an error is the consequence of a fault,
eliminating faults would maximize reliability. Examples of this are silicon on
insulator (SOI) and hardened memory cells. These techniques have drawbacks in

terms of cost, speed of operation and chip area.

At execution or run time and at different levels of abstraction, fault tolerant

strategies can be implemented.

& fault tolerance Fl————rrr>

¥ fault avoidance-——-3 €—— staticFT —> ¢—— dynamic FT —>

fault masking fault detection
and recovery

source | fault error . failure

generation activation propagation

Figure 3-1. Mechanisms to deal with faults within the fault-failure
lifecycle

Following the failure lifecycle and its different phases already described in

Section 2.1, Figure 3-1 adds the different mechanisms to deal with faults within
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the fault generation, error activation and failure propagation phases.
Additionally, Figure 3-1 serves as a summary of the chapter introducing the fault
avoidance and fault tolerance techniques and their phase of interaction within

the failure lifecycle.

Focusing on the source of faults, fault avoidance mechanisms attempt to prevent
faults from occurring in the first place. Once a fault has been generated it can be
prevented from activating an error using static fault tolerant techniques such as
masking. Alternately, errors can be detected and recovered using dynamic fault
tolerance techniques. Therefore, either we prevent the faults from taking place

(fault avoidance) or we deal with them using fault tolerance techniques.

3.2. Fault avoidance

Nowadays, mainstream systems employ fault avoidance design strategies in
order to achieve their projected failure rates. Manufacturing companies perform
assessments of sources and weaknesses that could lead to potential failures.
Based on the assessments, preventive measures are taken to ensure that the
overall reliability target is not compromised. Additionally, fault avoidance
strategies may include technology and design mitigation techniques that
implicate modifications of conventional manufacturing processes. These
techniques involve the use of specific materials, the modification of the doping
profiles of devices and substrates and the optimization of deposition processes

for insulators.

Technology mitigation techniques consist of IC process variations by either

improving the manufacturing process or by improving the materials used.

Improving materials: implicates the selection of specific materials with better

characteristics, e.g.:

e Boron has been used extensively as a p-type dopant in silicon and has also

been used in Boron-Phosphor-Silicate-Glass (BPSG) dielectric layers. For
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BPSG-based semiconductor processes, BPSG can, in fact, be the
predominant source of transient errors (Baumann, 2001). The removal of
B-10 Boron isotopes in BPSG has been proven effective in the reduction of

transient errors (Baumann et al., 1995).

Lead-free materials can reduce the effect of alpha particles (May, 1979)

(extensive information on alpha particle effects is provided in Chapter 4).

Implanting of elements such as Al, As, Fl, P, and Si into oxides improves the
resilience to Total lonizing dose effects (TID). (Kato et al., 1989; Mrstik et
al., 2000; Nishioka et al., 1989).

Improving the manufacturing process is based on changing the charge collection

and charge sharing capabilities of the devices:

Substrate techniques: e.g. using epitaxial substrate doping (EPI layer charge
reduction)(Puchner et al., 2006), wells (single well, twin well and triple
well processes) (Pellish et al., 2006; Puchner et al., 2006; Roche and Gasiot,
2005), buried layers (Roche and Gasiot, 2005) and dry thermal oxidation
(Hughes and Benedetto, 2003)

Non-capacitance techniques: e.g. increasing the node coupling capacitance
between storage nodes and memory, or using a DRAM capacitor on top of

the memory cell (Geppert, 2004)

Using alternative insulating substrates; e.g. the use of Silicon on Insulator
(SOI) or Silicon on Sapphire (SOS) (J. R. Schwank, 2003) would mitigate

significantly the transient faults due to radiation (described in Chapter 4).

Whilst technology mitigation techniques are based at the process level, design

mitigation techniques operate on the layout level. An example of this type of

technique is the use of enclosed layout transistors. Furthermore, to prevent the

effects of radiation memory cells can be hardened with the use of contact and

guard rings.
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The effect of silicon failure mechanisms, such as radiation induced transient
faults and wear-out defects, is proportional to the clock speed, supply voltage,
temperature, etc. Therefore, to ensure system reliability safety margins are
inserted into clock speed, operating temperature and supply voltage margins. If
the system failure rates resulting from the use of fault avoidance strategies fall
within the specified reliability targets, the use of redundancy techniques is not

justified. However, this is not the case for safety-critical systems.

Despite all the testing, verification techniques and technology improvement,
hardware components will eventually fail. The fault avoidance approach will not

be panacea and will be insufficient if:

e Failure rate and MTTR are unacceptable or

e the system is inaccessible for repair and maintenance actions

Therefore, fault avoidance techniques are only part of the solution for real time
safety critical domains. Complete removal of faults via fault avoidance is not
possible; above all, it has drawbacks in terms of cost of manufacturing the

elements required, speed of operation and increased chip area.

3.3. Fault tolerance: using redundancy

The key ingredient of fault tolerance is redundancy. Redundancy is defined as
the addition of information, resources or time beyond what is needed for correct
system operation (Latchoumy et al., 2011). Fault tolerant techniques rely on
redundancy that may include a combination of additional elements of hardware

and/or software to detect and/or recover from faults. These components are
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called redundant since they are not required in a perfect system®. Artificially built-
in or protective redundancy is a system property that we define as the
incorporation of extra components (transistors at a low level) in the design of a
system so that its function is not impaired in the event of a failure. Redundancy
may arise by design (artificially built-in redundancy) or as a natural by-product
of design (natural redundancy). Natural redundancy is usually unexploited whilst
artificially built-in redundancy has been deliberately introduced. In this thesis,
when the term redundancy (or redundant) is used it is meant to have the

artificial connotation instead of the natural one.

When a system does not provide the minimum reliability required, extra
redundancy, not strictly necessary for the normal functioning of the system can
be added in order to increase the probability of normal functioning. Notice that
the term redundant does not mean identical functionality; it just denotes that it
performs the same job. In this sense, heterogeneous hardware performing the

same work can also provide redundancy.

Fault tolerance assumes actions such as fault detection, location of the faulty
component, recovery, and if necessary, reconfiguration of the system. Fault
detection is the process of determining the presence of faults and the time of
occurrence. Fault location is to exactly locate the reason/origin of the fault. The
system must be dynamically restored as though it is ‘as good as new’ in
operational terms, except for the fact that some of the redundancy has been used

up and this may limit the possibilities for future repairs.

6 A perfect system is a system with a theoretical 100% reliability. A perfect system is usually
assumed to model extra reliable systems.

63



Information Time
redundancy redundancy

Structural
redundancy

(s) (1 (M)

% J

Figure 3-2. Redundancy types and their implementation (Schagaev,
2001)

Many different attempts to classify redundancy have been made (Avizienis,
1971; Carter and Bouricius, 1971; Schagaev, 1989, 2001). This thesis follows the
approach proposed by (Schagaev, 2001) to classify redundancy. Figure 3-2
shows the different types of redundancy (at the top of the figure) and the way it
can be implemented (at the bottom of the figure). In general, three types of
redundancy exist: structural (S), involving multiplication of components,
information (I), involving multiplication of information, and time redundancy
(7), involving multiplication of functions in time. These can be implemented in
hardware and software. This thesis focuses on the hardware aspect of

redundancy and fault tolerance.

Redundancy comes with a cost. Information and structural redundancies require
additional hardware components, extra power and perhaps extra area and
shielding. Time redundancy requires faster processing to achieve the same

performance, which in turn requires extra hardware and power.
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3.3.1. Redundancy notation

Existing implementations of system redundancy use at least one of these three
redundancy types, usually more than one and can be implemented in hardware
(HW()), software (SW()) or a combination of both (HW(); SW()). As an example,
hardware based information redundancy is abbreviated as HW(I). Additional
quantifiers are used together with the redundancy type to further specify the

used redundancy as shown below in Table 3-1:

Table 3-1. Redundancy classifiers (Schagaev, 2001)

Quantifier Example Description

No quantifier means general, not further specified
SwW() redundancy. SW(I) for instance just indicates general software
information redundancy

0) SW(sI) Additional used software based redundancy

The number indicates duplication (2), triplication (3), etc. of a
system if used as a prefix for the redundancy type. The

Number HW(2S) original system and the copies are identical. n instead of a
discreet number is used to mark repetition until success in
case of time redundancy

Indices are used to mark a duplicated system

el AR SR implementation/hardware components

Note that the current notation does not include the implementation level.
HW(2S) only indicates duplication, but not whether the whole system is
duplicated or it is just parts of that system, such as, for example, duplicated

memory.

Table 3-2 and Table 3-3 present some concrete examples of notation of
hardware and software based redundancy. Any type of redundancy (hardware

and software) needs additional structural redundancy for its implementation.
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Table 3-2. Examples of notation of HW based redudancy

Redundancy s
type Description

HW(2S) Struc.tural (material) redundancy of hardware such as
duplicated memory system

HW(Sy, S2) A dupllcated FT computer system with principally non
identical parts

HW(SI) Redundant information bit, for example an additional parity
bit per data word in HW memory for error detection

HW(nT) Spef:lal HW.to delay execution (like in a timing diagram) to
avoid transient faults

HW(ST) Special HW to delay execution to avoid transient faults

Table 3-3. Examples of notation of SW based redudancy

Redundancy .
Description
type P

SW(2S) Stru(.:tural (material) redundancy of hardware such as
duplicated memory system

SW(S, S3) A dupllcated FT computer system with principally non
identical parts

SW(SI) Redundant information bit, for example an additional parity

bit per data word in HW memory for error detection

For instance, instruction repetition HW(nT) needs additional hardware registers
to store the internal state to be able to perform instruction rollback. We refer to
this as supportive redundancy and we define it as the redundancy needed for the
implementation of the main redundancy technique. For the sake of simplicity, we
usually omit this supportive redundancy. In cases where it is not clear whether
an applied redundancy type is supportive or not, more than one redundancy type
can be used. An example of this is the case of software based and hardware

checks that are performed during idle time of the system: SW(4S,8T).
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3.3.2. Prognostics: Health management

An important contribution to the increase of system reliability is the use of
Prognostics, defined by the International Organisation for Standardization as

(1SO, 2004):

"... the estimation of time to failure and risk for one or more existing

and future failure modes”

This concept can be applied to real-time critical systems with active redundancy
and fault reporting. Prognostics Health Management, also referred to as
Condition-Based Maintenance (CBM), are strategies that recommend
maintenance decisions based on information collected via condition monitoring
(Jardine et al., 2006). These capabilities have been integrated in many safety-
critical systems from unmanned vehicles, to aircraft, to power generation plants,

etc. (DeCastro et al., 2011; Zhang et al.,, 2011)

In contrast with Planned Scheduled Maintenance (PM) where maintenance is
carried out upon pre-defined schedule, CBM is performed only when it is

triggered upon specific asset conditions.

CBM strategy consists of three major steps: data acquisition, data processing and
maintenance decision-making. During the data acquisition phase the condition of
the equipment is monitored to detect developing issues. The data processing
phase involves diagnosis; this phase attempts to isolate the root of the cause.
Finally, the maintenance decision-making phase where a corrective plan is

developed and applied based on the data obtained from the previous step.

3.4. Structural redundancy: HW(S)

Structural hardware redundancy involves the multiplication of independent

hardware components and execution of the same computation over such

67



components at the same time. Errors are exposed by checking/comparing the

results of the independent executions.

In terms of granularity, redundancy in general, and not only hardware
redundancy, can be applied on different abstraction levels. From bottom up we
can distinguish between finer-grained: transistor level, gate or logic level, and
between coarser-grained designs: circuit level, function level, system level,
microcode level and chip level of abstraction. Therefore, redundant components
can be as simple as transistors or logic gates but also as complex as processors or

even larger entities.

1.1.1.1.1
TMR single
voter

1.1 Parallel redundancy 1.1.1 HW voter (NMR) 1.1.1.1 TMR ;

( 1.1.1.1.2 TMR triplicated voter

2.1 DMR with comparison

Hardware Structural

Redundancy 221 Hot

2.2 Standby
222 Cold

2.2.3 Warm

3.1 NMR With spare

3.2 self-purging NMR

3.3 Triple-Duplex

Figure 3-3. Taxonomy of structural HW redundancy

Figure 3-3 displays a taxonomy of the different hardware techniques based on
structural redundancy. Two different architectures of redundancy can be
distinguished: Parallel redundancy with redundant components running
concurrently and Standby redundancy with a spare component being activated

upon failure of an active component.

Furthermore, these extra resources can be used passively (passive redundancy),
actively (active redundancy) or combined. In systems with active redundancy, all
redundant components are in operation, sharing the load with the normal

components. This implies that both, regular and redundant components, age

68



together. Passive components are not fully energized and start normal operation
only when normal components fail. Passive components can be further broken
down into two types: warm and cold standby. Warm standby components remain
partially energized until becoming active and tend to deteriorate with time,
hence, having lower failure rate than the regular components. Cold standby
components are kept in reserve and they only become energized when put into
use. These types of components have a zero failure rate, meaning they do not fail
when they are in standby mode. Whilst passive components are switched off
completely, standby components are partially activated. Standby redundancy is

usually applied when the start time of the component is unacceptably long.

3.4.1. Static redundancy

Static redundancy, also called masking redundancy, implements error mitigation.
The term static relates to the fact that redundancy is built into the system
structure. Fault tolerant techniques based on this type of redundancy (static fault
tolerance) transparently remove errors on detection. The most common form of
hardware redundancy is Triple modular redundancy (TMR) (von Neumann,
1956) and its generalization N-modular redundancy (NMR). Note that Dual
modular redundancy (DMR) (DMR is further explained in Section 3.4.2.1) is not
considered static redundancy since the mismatch can take place but recovery is

not possible.

3.4.1.1. Triple modular redundancy: HW(3S)+HW(3S)

A basic TMR system (two-out-of-three) is a fault tolerant form of NMR that
consists of three fully redundant and active components or modules working in

parallel with equivalent functionality (Johnson, 1989; von Neumann, 1956).
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error/no error

input
P 4 result

Figure 3-4. Triple modular redundancy (TMR) with a voter

Figure 3-4 above presents an example of a TMR system with a voter. The three
components perform a process based on individual inputs whose results are in
turn processed by a voting system to produce a single output. The voting is based
on majority; if any of the three components has a fault, the other two systems can
mask the fault. It is assumed that two out of three modules must deliver correct

results. Therefore, TMR is capable of masking a single error.

Generally, a majority voting mechanism should:
e (Guarantee a majority vote on the input data to the voter

e Determine the faulty block

In order to guarantee the majority vote, loosely synchronized systems require

synchronization of the inputs to the voter.

A specific example of this technique is the Boeing TMR 777 primary flight
computer (Yeh, 1996), which has triple redundancy for all hardware including

computing system, communication paths, electrical and hydraulic power.
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3.4.1.2. Comparing the Reliability of Simplex and TMR with perfect

voter’ systems

A simplex system is a system with a single component. The reliability of a
simplex system is given by:
-2t

Rsimplex = €

Equation 3.1. Reliability of a simplex system

where A is the failure rate for the single component; the MTTF of a simplex

system can be expressed as:

1
MTTFyimpier = [ 7 =3

Equation 3.2. MTTF of a simplex system

A TMR system such the one in Figure 3 includes three blocks, two of which are
required for the system to provide correct service. The reliability of a TMR

system with a perfect voter is given by:

3
Roun = R+ () Ra(1 = Rw)

3
Ry = e~3% + (2) =21t (] — =1t
—22t

Rryr = 3e

Equation 3.3. Reliability of a TMR system with a perfect voter

7 A perfect voter is a voter with a theoretical 100% reliability. A perfect voter is usually assumed
to model extra reliable voters.
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and therefore:

3 2 5
MTTFTMR == -

21 31 64
MTTFyimpiex > MTTFryg

Equation 3.4. MTTF of a TMR with a perfect voter

Reliability

__.-Simplex

0.1 4

0 0.5 At 1 1.5 2 2.5 3 3.5 4 45 5
o lambda * t

Figure 3-5. Comparative reliability of TMR and Simplex systems
(Ravishankar K. Iyer, 2003).

Figure 3-5 shows how TMR has higher reliability than Simplex for short missions
(t<t,). Note that:

Rryr(t) = R(t) 0 <t<t,
Rryr(®) <R() ¢ St <o

Equation 3.5. Comparative reliability of TMR and Simplex systems
(Ravishankar K. Iyer, 2003)

Where:
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TMR is very useful in aircraft applications offering high reliability for short
missions. (Ravishankar K. Iyer, 2003) shows that TMR is not suitable for long
safety-critical missions (¢t>t,) because paradoxically, after the first failure, the two
remaining components compete to fail. Higher reliability can be achieved
extending TMR to N-Modular Redundancy. Therefore, a blind use of redundancy

can lead to seemingly paradoxical results.
3.4.1.2.1. Reliability of TMR with voting

The previous expression of reliability of TMR assumes that the voter is perfect,

i.e. the voter is 100% reliable.

The reliability of a generic TMR system with non-perfect single voting (TMRV)

and identical blocks is given by:

3
Rryry = Ry <R1?"n + (2) Rr3n(1 - Rm))

Equation 3.6. Reliability of a TMR system with a non-perfect voter
and identical blocks

where Ry is the reliability of the voter mechanism and Ry, is the reliability of the
block. In terms of reliability, the voter becomes the weak part of this
configuration. The voter is a single point of failure (SPF); if the voter fails then the
complete system will potentially fail. This can be tackled following different

alternatives:

e By increasing the reliability of the voter using fault avoidance techniques

e By triplicating the voter and connecting the module outputs to all three
voters (Johnson, 1989) so that individual voting failures can be corrected

by the extra voting process

e By implementing online self-testing for the voting circuitry (Cazeaux et al,,

2004; Metra et al,, 1997)
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e Using an Ippg checkable voters (ICVs) (Bogliolo et al., 2000): under fault-free
conditions, ICVs work as traditional CMOS voters; however, they cause
quiescent supply currents (IDDQs)? in the presence of maskable stuck-at
faults (see Section 5.3.1 ). Faults can be detected using Ippo testing, by
monitoring IDDQs (Williams et al.,, 1996)

A basic TMR system does not support common-mode failures (CMFs®) (Lala and
Harper, 1994). CMFs are the result of failures affecting more than one
component, usually due to a common cause, which may be due to design-faults
or operational ones resulting from external (such as radiation or
electromigration) or internal causes. For instance, a radiation source causing
multiple event upsets (Reed et al., 1997) can potentially lead to the failure of

more than one component in a TMR system.

3.4.1.3. N-modular redundancy: HW(nS)+HW/(6S)

The generalized version of TMR is NMR where N stands for the number of
redundant modules. The main advantage of using N modules as opposed to only
three is that often more faults can be tolerated. For instance, a 5MR system
contains 5 replicated modules including a majority voting arrangement. The
voter allows the system to deliver correct service in case of as many as two

module faults.

8 Quiescent current is the current consumed by a circuit when no load is present. Fault-free CMOS
devices have very quiescent currents when they are in a quiescent state. Faults that cause high
quiescent currents can be detected if the quiescent current is significantly higher that that of a
fault-free circuit (Williams et al., 1996)

9 Multiple faults can be either independent (attributed to different causes) or related (attributed to
a common cause. Both can lead to similar errors (e.g. errors that cannot be distinguished by the
detection mechanisms being used) (Avizienis and Kelly, 1984). The failures triggered by similar
errors are called CMF
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Figure 3-6. N-modular redundancy with a voter: M-out-of-N system

Figure 3-6 depicts a generic N-modular redundant system with a voter. The
redundancy of this system can be defined as HW(nS)+HW{(4S) using the previous
notation. NMR works similarly to TMR but this type of structure is able to detect
[(N—=1)] /2errors in different processing modules. Besides TMR, 5- and 7-
modular redundancies are the most common structures and are capable of

detecting two and three errors respectively.

M-out-of-N systems are a type of NMR. The reliability of a generic M-out-of-N
system assuming that it has a perfect voter and M out of N modules need to

function is expressed by:

N-M

Ruw = ) (N)RET (1= Ry

i
i=0

Equation 3.7. Reliability of an M-out-of-N system with perfect voter

Note than NMR systems offer higher reliability than TMR but at a much higher
cost. Undoubtedly, for practical applications there must be some limit on the

amount of redundancy that can be employed.
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Figure 3-7. Redundancy applied on different levels of abstraction:
(a) Three logic gates in a TMR at the logic or gate level of
abstraction; (b) Three memory modules in a TMR configuration at
the circuit abstraction level; (c¢) Three microprocessors in a TMR
configuration at the chip level

TMR and NMR could be applied on different levels of abstraction by triplicating
logic gates, single memory cells, memory modules or complete microprocessors.

Figure 3-7 displays how TMR can be applied on logic (a), circuit (b) and chip level
(c).

TMR and NMR are typically employed in aerospace applications where the cost of
failure is particularly high. However, the higher reliability of these systems
involves more than 200% increase in redundancy. Such an example is the NASA
Space Shuttle onboard system, which is based on four computers with a majority

voter (Sklaroff, 1976).
3.4.2. Dynamic redundancy

To reduce the extensive space, energy and performance requirements of TMR
and NMR systems, numerous approaches have been developed. These
approaches are usually based in dynamic redundancy, which implements error
processing. This type of redundancy is similar to static redundancy with the
main difference being the voter logic is replaced with a switch that is controlled
by an error detection block. At least one of the modules is working as the main

module, whereas the rest of the modules or replicas can either be working in
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parallel (e.g. DMR with comparison) or can be turned off and used as spares

(stand-by redundancy).

To avoid failures, after a fault has been detected, the system must be
reconfigured. Detection, reconfiguration and recovery are required in order to
prevent error propagation. Some examples of this type of redundancy are: pair
and spare, duplex systems (DMR with comparison), backup sparing techniques

etc.
3.4.2.1. Dual modular redundancy: HW(2S)+HW(6S)

By duplicating two components and adding a comparison structure, Dual
modular redundancy (DMR), or duplex, are common systems to detect errors
(von Neumann, 1956). DMR uses two fully redundant units working in parallel
and has been widely used in low level circuit implementations where a signal is
duplicated as an input to two redundant and independent logic gates and it is

transparently checked for errors.

) . - BFFrar R errar
input
- result

Figure 3-8. Dual modular redundant (DMR) structure

Figure 3-8 depicts a DMR structure with a checker component. The checker logic
compares the output of block 1 and block 2. In the case of normal execution with
no error, both blocks would produce the same output and a result would be
delivered. On the other hand, in case of a mismatch between the two outputs of
the blocks, the output of the checker would produce an error signal and no result
will be given. Therefore, in its simplest version, as the checker logic is unable to
identify the incorrect unit, DMR through output comparison will only provide

error detection and will not provide error recovery capabilities on its own.
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Additional mechanisms will be needed to provide error recovery so that if one of
the units experiences an error, the surviving/correct unit can continue

execution. Upon successful repair/recovery DMR is fully restored.

3.4.2.1.1. Redundant execution

A widespread and simple implementation of coarse-grained DMR is lock-
stepping, or lock-step execution (Buckle and Highleyman, 2003; McEvoy, 1981;
Sherman, 2003). Here, the processor pipeline is duplicated and the clock is
shared, comparing each instruction result before committing the results. This
type of error detection is considered to perform at the macro-level since it is

applied at the microprocessor’s scope.

Lock-stepping is widely used in a number of commercial processor designs and
can both detect and correct certain errors; e.g. IBM G5 (Slegel et al,, 1999) and
Compaq Himalaya (Wood, 1999). Redundant threads are executed in multiple
processors and every instruction result is compared. No instruction can be
committed until its identical pair has also been completed and verified, hence

involving considerable overhead.

3.4.2.2. Standby redundancy

Standby redundancy, standby replacement, or standby sparing, is a well-known
fault tolerant design technique used as a failover mechanism (Avizienis, 1976).
In this case some units are online and operational and one or more backup units

serve as standby units.
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Figure 3-9. Simple standby sparing configuration

, l standby '
— | unit 1
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Figure 3-10. Multiple standby spares with n-to1 switch
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Figure 3-9 and Figure 3-10 present simple and multiple standby configurations.
When a fault is detected in an online/active unit, a standby unit replaces the
affected unit by using the selector (Figure 3-9) or by using the 3-to-1-switch
(Figure 3-10).

- cold spares

warm spares

hot spares

Figure 3-11. Typical reconfiguration steps for backup sparing

There are three common forms of standby redundancy: hot, warm and cold. The
type of application plays a key role in selecting the type of standby spare units.
Figure 3-11 graphically describes the typical reconfiguration steps for hot, cold
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and warm backup spares. When a spare unit is to be switched over, the selected
spare is powered up and gets ready to become active. The reconfiguration

process whereby a standby spare unit becomes operational is composed of:

e Switching on the power and the bus connections
e Powering up of the unit

e Running the Built-In-Self-Test'® (BIST): Extensive testing is usually done
after powering up to avoid replacing a faulty module with a faulty module

before starting normal operation, e.g. memory tests of a spare module
¢ Loading programs and data

e Initializing the software if needed

Hot standby spares (HSP) operate in synchrony with the operational units and
are ready to take over whenever a fault is detected. HSP units reduce the mean
time to recovery (MTTR) and therefore their use is suitable for applications that
require short recovery time, that is, applications where the disruption of

processing must be minimized.

Cold standby spares (CSP) remain unpowered and thus do not operate or
consume any power until they need to replace an active unit. Since the restarting
of the units is required, the use of CSP is best suited to remote operations where
power is hard to come by, e.g. satellites and sensor systems. CSP units are also
suitable for applications where short lapses in operation are acceptable and state
data is not critical. In addition, CSP are likely to have a lower failure rate than
operational modules. However, the startup delay required to switchover to a

spare module is high since power up, BIST and initialization are needed. In

10 Built-In-Self-Tests (BISTs) are one of the common methods of testing circuits. BIST is a DFT
technique that takes place on the same substrate as the device under test (DUT) within the
system allowing them to perform self-testing (Stroud, 2002).
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particular, the time necessary for BIST depends upon the fault coverage and the

complexity of the unit/module.

Warm standby spares (WSP) consist of a trade-off between the high power
consumption of CSP and the long recovery time of HSP. WSP units have time
dependent behaviour. Before and after replacing an operational unit, WSP

present different failure distributions.

The advantage of standby sparing for a system with n identical units is that a

certain level of fault tolerance can be provided with k<n spare modules.

3.4.2.3. Pair and spare

The pair and spare configurations are a combination of DMR with comparison

and extra spare techniques.

B8 —

stand
[ unltll’y 2 » error/no error
n-to2 > result
. o switch
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' unit n
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Figure 3-12. Pair and spare configuration

Figure 3-12 depicts a pair and spare configuration where two units are always
online and compared to each other, with any of the n spares being able to replace

either of the operational units.

3.4.3. Hybrid redundancy

By mixing fault masking, detection location and recovery, the advantages of

static and dynamic redundancy can be combined (Johnson, 1989). Hybrid
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approaches use Fault masking to prevent erroneous results from being activated.
Fault detection, location and recovery are also employed in hybrid techniques to

improve fault tolerance by removing errors.
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Figure 3-13. Hybrid approach using TMR with spaces
(Johnson, 1989)

inputs

A general approach is to back up the replicated modules with spares, e.g. a TMR
configuration with a fault/disagreement detector, a voter and a reconfiguration
unit (see Figure 3-13). In such a system, the triplicated operational modules are
backed up with an additional pool of spares that can replace faulty modules
(TMR with spares). The system will work as a basic TMR configuration until the
disagreement detector determines that a faulty module exists. One alternative
approach towards fault detection is to feed the output of the majority voter back
to the faulty detection unit whose job is to compare the output of the voter with
the individual outputs of each operational module. Any disagreement with a
specific module’s output would indicate that the module should be labelled as
faulty and therefore replaced by a spare unit. The reliability of the basic TMR
system is retained as long as the pool of spares is not exhausted. Note that voting
only occurs among the operational modules in the TMR core, masking faults and

making sure that continuous correct service is delivered.
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Figure 3-14. A triple-duplex approach

A variation to NMR with spares is the triple-duplex approach depicted in Figure
3-14 that combines duplication with comparison and TMR. The use of passive
redundancy in the form of TMR allows potential faults to be masked and
continuous correct service to be provided for a maximum of two faulty modules.
The use of DMR with comparison allows faults to be detected and faulty modules

to be removed from the voting process and replaced by spares.

These options are simple but far more expensive in terms or real estate of the
chip than traditional static techniques. Besides, as seen in section 3.4.1.2.1, the
reliability of TMR depends mostly on that of the voters. Hence, if a fault takes
place within a voter, an incorrect majority vote may be given to the output and
propagated throughout the system thus compromising the correctness of the
system’s service. In order to avoid such unreliability, voters can be designed to
be capable of testing themselves online with regards to their own internal faults

(Cazeaux et al.,, 2004; Metra et al., 1997, p. 97).
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An extra form of hybrid scheme that allows error detection and correction thus

improving the reliability of a memory system is depicted in Figure 3-15:
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Figure 3-15.Transient faults tolerant TRAM (Schagaev and
Buhanova, 2001)

Any reading and writing operation is followed by a content check of a specific
address in all three blocks. In case of a mismatch among these a majority voting
takes place whose result is then rewritten (via control unit) to the inputs of all

elements using the same address.

3.5. Information redundancy

Information redundancy involves the addition of new information to existing
information, often in compressed form i.e. using more bits than needed. The
most common form of information redundancy is coding (see Figure 3-16).
Coding theory in hardware and software fault tolerance goes back a very long
way and was initially motivated by the need to mitigate errors in information

transmission (Shannon, 1948).
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Figure 3-16. Coding-encoding process of a d-bit word into a c-bit
word

Coding consists of adding check bits to the data allowing 1) the verification of
data correctness and/or 2) the correction of erroneous data. Therefore, with
coding an original piece of meaningful information, or d-bit data word, is
encoded obtaining a c-bit code word, where c>d (see Figure 3-16). Because of
these extra bits not all 2¢ possible binary combinations are valid code words.
Therefore, a code should be selected so that any potential error would transform

the codeword, after decoding, into an invalid code word (non-codeword).

An important property of coding is separability. Two main approaches are

possible:

e Separable or systematic codes: the code word is formed by adding extra
information (check bits) to the original data. A separable code has
separable fields for data and check bits. Decoding this type of code is
simple and consists of selecting the data bits and disregarding the check

bits.

¢ Non-separable or non-systematic codes: data and check bits are integrated
together requiring some extra processing and therefore incurring

additional delays and overheads.
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Important parameters for codes are:

The number of erroneous bits that can be detected
The number of those that can be corrected

The number of additional bits that are required
The time needed to encode

The decoding time

Information redundancy techniques make use of detection-based codes (EDC) or

correction based (ECC) codes. Figure 3-17 presents a taxonomy of coding

techniques.

Examples of some of these techniques include:

Error detection and correction codes for cross-checking the contents of

main memory, register files and cache,
Cross-checking of run-time control flow using signatures and

Algorithm based checksums for cross checking of the data values generated

In general, information redundancy involves some space and computational

overheads, thus requiring extra circuitry and is thus more commonly

implemented in memory structures instead of in processor datapaths.
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Figure 3-17. Taxonomy of information redundancy coding techniques
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3.5.1. Error Detection Codes: EDC

Error detection codes have the ability to expose error(s) in a given data word
based on the encoding-decoding principles discussed in Section 3.5, In general,
error detecting codes (EDC) present less overhead than error correcting codes

(ECC) since they do not have correction capabilities.

parity
| ’l generator I

error signal

>

.

Input DW retrieved DW

Figure 3-18. Coding-encoding in a memory block with parity checking

The simplest EDC are parity codes, which involve the addition of extra bits or
parity bits. Figure 3-18 depicts a basic scheme of memory with parity checking.
Before storing a word in the memory block a parity generator computes the
parity bits based on the bits of the input data word (DW). A parity bit is an extra
bit added to a group of source bits (DWs) in order to ensure that the outcome or
coded word has an even (in the case of even parity) or odd (in case of odd parity)
number of bits set to 1. When a memory block is read, the parity checker
compares the computed and the stored parity bits, setting the error signal
consequently. If both, computed and stored parity bits, match then the error
signal would indicate a correct output; otherwise the error signal would indicate
that the retrieved DW is incorrect. Note that for n bits of data there are 2.

possible DWs. Adding one parity bit would allow 27*I possible DWs. Among these

21’1+1

possible DWs there are possible DWs with an odd number of 1s and

2n+1

possible DWs with an even number of 1s. In the case of odd parity, only the

DWs with an odd number of 1s are valid code words (CWs). In the presence of a
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single bit flip (error) an odd parity CW would change into an even parity CW and
therefore the parity checker will detect the error. Nonetheless, it will not know
which bit has been flipped. This simple configuration can be used to detect single
or any odd number of errors in the retrieved DW. However, an even number of
flipped bits would make the parity bit of the CW appear to be correct although
the data is incorrect. With single parity, double errors and even number of errors

would remain undetected.

3.5.2. Error Correction Codes: ECC

More powerful codes than parity codes can be created by adding more check bits
to the original data. The size of the data to be protected will determine the
number of check bits needed. Using this basic principle, error correction codes
have the ability to detect errors and reconstruct the original error-free data.

These can generally be realized in three different manners (see Figure 3-17):

e Backward Error Correction (BEC) sometimes referred to as Automatic
repeat request (ARQ): combines an error detection technique (error
detection encoding prior to transmission) with retransmission request of
erroneous data. BEC requires simpler decoding infrastructure than FEC but
frequent retransmissions would significantly compromise performance in

high data rate transmissions.

e Forward Error Correction (FEC) or Channel Coding: With this approach,
errors are both detected and corrected at the receiver’s end. Thus, it
involves error-correcting encoding prior to transmission without
retransmission of the original information. FEC requires more complex
decoding infrastructure than BEC but it is suitable for high data rate

applications.

e Hybrid automatic repeat request (HARQ): BEC and FEC are combined. e.g.: a
scheme where minor errors are corrected without retransmission (FEC)

and major errors are corrected via retransmission (BEC).
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read DW

Figure 3-19. Basic ECC memory scheme including calculation,
checking and correcting

An overview of popular FEC schemes employed in fault tolerant design of
embedded systems follows. Figure 3-19 shows a basic ECC memory scheme that
applies to any of the following codes including calculation, checking and
correcting logic. When data is written into the data row specified by the address
signals, the ECC encoding logic generates the parity checks (as specified by the
code) and introduces them into the ECC part of the memory. When the DW is
read from the memory the parity bits would allow missing data to be

reconstructed in the case of an error being detected.
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3.5.2.1. SEC-DED1: Hamming and Hsiao: HW(8I)

The most common ECCs are based on Hamming (Hamming, 1950) or Hsiao
(Hsiao, 1970). These two separable code families introduce the concept of
overlapping parity by which every data bit has a part in adjusting the value of
several parity bits. These codes can correct single bit errors in a given word, can
detect double bit errors, are relatively fast decoding and have moderate

redundancy.

Hamming codes are a family of perfect codes!? that generalize the original
Hamming(7,4)-code (Hamming, 1950). A minimum distance d means that it
takes d bit changes to move from one valid codeword to the other. Extended
Hamming code sometimes generalized as SEC-DED (single error correction and
double error detection), is an example of this type of code. In SEC-DED, an extra
parity bit is added achieving a distance of four instead of the three (as in the
original Hamming). The extra parity bit allows the decoder to distinguish

between two possible situations:
¢ When at most one bit flip has occurred and

e When two bit flips have taken place

In contrast with Hamming(7,4), SEC-DED provides single-bit-error correction

and simultaneous double-bit-error detection.

Compared to Hamming codes, Hsiao codes (Hsiao, 1970) provide improvements

in speed, reliability and calculation cost as well as checking and correcting logic.

11 SEC-DED: Single error correction and double error detection

12 A Hamming code is perfect in the sense that it can achieve the highest possible rate for codes
with a given block length and minimum distance of three (Moon, 2005)
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However, in situations that demand higher reliability requirements than those

provided by SEC-DED, more complex codes are required.

3.5.2.1.1. SEC-DED limitations and alternative techniques

The main limitation of SEC-DED codes is that triple-bit errors may not only
remain undetected but it may also be miscorrected as if they were single-bit-
errors (Hsiao, 1970). The probability of this type of miscorrection for 32bit data

words is around 60% or more.

Multiple errors are usually taking place in adjacent memory locations, therefore
increasing the chances of having multiple bit errors in a given word (Bentoutou
and Djaifri, 2008; Boatella et al., 2009). These are called burst errors3, errors
that are highly correlated. If a specific memory cell has an error, it’s likely that
adjacent cells may also be corrupted by the same event that triggered the error
in the first place. Theses are sometimes referred to as spatial multi-bit errors
(Mukherjee et al., 2004). In contrast, temporal multi-bit errors are errors that
take place when two different cells of the same word are affected by different

events (Mukherjee et al.,, 2004).

An important risk for SEC-DED schemes is that if a specific memory word is not
accessed for a long period of time, the chance of accumulating errors increases
(temporal multi-bit errors). One method to avoid these is the use of memory
scrubbing (Mukherjee et al., 2004; Saleh et al.,, 1990; Weaver et al., 2004) , by
which every memory location is read periodically. This may be implemented by
having a hardware controller that, during idle periods, reads every memory

location searching for errors and correcting any single error found during the

13 Also called cluster of errors
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process, thus reducing the chance of detected (DRE'* and DUE"5) and undetected
errors (e.g. SDC®). Scrubbing does, however, impose additional SW and/or HW
overheads depending on the implementation. In current architectures with high
memory bandwidths, HW scrubbing is preferred due to its lower timing
overhead. In combination with SEC, scrubbing is effective against single-bit- and

temporal multi-bit errors but not against spatial multi-bit errors.

Interleaving distance
IiD=4

Figure 3-20. Memory interleaving of four 3-bit words with a 4
interleaving distance (ID)

To avoid this problem of spatial multi-bit errors, memory interleaving (Haraszti,
2000; Reviriego et al., 2010, 2007) is commonly used in conjunction with ECC
ensuring that cells that are physically closely located belong to different logic

14 A DRE is a detected recoverable error, a benign type of error since recovery of the normal
operation by fault tolerant techniques is possible (Kadayif et al., 2010; Weaver et al., 2004)

15 A DUE is a detected unrecoverable error. DUE take place when fault tolerant techniques are
able to discover and/or report an error, from which recovery is not possible (Kadayif et al., 2010;
Weaver et al.,, 2004)

16 SPC stands for Silent data corruption. A SDC take place when an error is undetected and causes
data corruption (SDC). In this case, the corrupted data could go unnoticed making this type of
error benign, or could result in a visible error and/or catastrophic failure such as crashing a
computer system (Constantinescu et al.,, 2008; Kadayif et al., 2010; Weaver et al., 2004)
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words. That is, cells that belong to the same logical word are physically apart.
Figure 3-20 illustrates an example of memory interleaving in a four 3-bit
memory word. This type of memory distributes logical data into a non-
continuous arrangement. More columns than the number of bits of a single word
are added, and the corresponding columns for each word are interleaved. In this
way, burst errors are distributed over a number of words each suffering only one
single bit error. Any 4-bit-upset affecting adjacent memory cells would cause four

single bit errors in separate words, which can be easily corrected by SEC-DEC.

A shortcoming of interleaving is that high interleaving distances (ID) involve
more complex designs and thus higher area and latency overheads (Baeg et al,,
2009; Reviriego et al., 2010). Ideally the ID should be selected as the maximum
expected MCU size so that all upsets in a burst error would occur in different

logical words.

Table 3-4. ECC-TMR comparison

Characteristic Hamming (SEC-DED) TMR RS (DEC-TED) BCH (DEC-TED)
Small overhead to Extra 200% plus the
implement voting and correcting Varies depending Varies depending on
Area Varies depending on logic on the number of the number of bits
the number of bits (7- Number of votersis  bits (13-75%) (13-75%)
32%) proportional to the

number of units
It can be affected by
the coder-decoder . Lower .
functions High performance. performance than Higher performance

Performance  Proportionally Voter is the only BCH and much than RS but much
source of delay, hence lower than
dependent on

lower compared to .
number of bits to be almost constant delay Hamming and TMR Hamming or TMR

corrected
.. o handl :
Limited capabilities: Correcifs up to i Can .and € Can handle multiple
. errors in an n-bit multiple errors; . .
Error it corrects only one . errors; Efficient for
. : . : word as long as the  Efficient for
Correction single incorrect bit . uncorrelated errors
er word errors are located ina correlated errors T e p—
P : distinct position/unit. (e.g. burst) =
Bi
. Symbol based inary based .
. Binary based . . Complex but simpler
Implementation Simple to implement Complex to decode

to decode and
implement than RS

Simple to implement and implement
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3.5.2.2. Complex codes

EDAC implementations based on Hamming codes are the easiest to implement
but only provide single error correction (Hentschke et al., 2002). There are
alternatives to SEC-DED like Bose-Chaudhuri-Hocquenghem (BCH) (Bose and
Ray-Chaudhuri, 1960) and Reed-Solomon (RS) codes (Reed and Solomon, 1960)

based on finite-field arithmetic that can correct multiple faults.

Table 3-4 shows a comparison of the main error correction techniques in
memories. BCH codes are able to correct a given number of bits at any position
whereas RS codes group the bits in blocks in order to correct them. RS based
codes provide a more robust error correction capability but uses a large amount
of system resources!’. The RS decoding process has several stages to get the
location of the error and correct it. Implementations of RS codes can be found in
(Neuberger et al., 2005, 2003). Although the RS algorithm can be simplified
(Neuberger et al., 2003) the main disadvantage of these two codes is having

complex and iterative algorithms.

Table 3-5. EDC-ECC storage array overheads, based on (Slayman,

2005).
Data bits Single Parity SEC-DED SMNC-DND DEC-TED
check bits|overhead|check bits|overhead|check bits|overhead|check bits|overhead
16 1 6% ] 32% 12 75% 11 69%
32 1 3% Fi 22% 12 38% 13 41%
v | 1 2% 8 13% 14 22% 15 23%
128 1 1% 9 7% 16 13% 17 13%

17 DEC-TED implementations are expensive from both area-penalty and computational-
complexity points of view
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As with hamming based SEC-DED, more complex codes can be implemented
based on RS and BCH algorithms. Some examples are SNC-DND18 (Chen and
Hsiao, 1984) and DEC-TED?° codes (Lin and Costello, 1983). Table 3-5 is an
overhead comparison of various EDAC schemes: Single parity EDC, Hamming
SEC-DED, SNC-DND and DEC-TED. Note that the calculation of overheads is just
the number of check bits divided by the number of data bits and does not include
the extra overheads (e.g. I/0 and checkers). Complex errors increase the
overhead rapidly as correction capability is increased (Kim et al., 2007). For any
given technique, as the data size increases, the relative overhead of a given

scheme decreases (Table 3-5).

In addition to the area penalty, as the correction capability increases, timing
overheads also increase. Results on 64kb SRAM developed in 90nm processes
show that the implementation of a DEC-TED encoder involves a latency penalty

of 80% to 85% as compared to SEC-DED (Naseer et al., 2006).

Schemes based on information redundancy can also be applied on different
levels. For instance parity codes can be applied to registers, cache and internal
memory whereas SEC-DED can be implemented in external memory, etc. As all
these are more complex codes than SEC-DED let alone single parity codes they
produce higher overheads as the correction capability increases (Kim et al,
2007) and are thus not suitable for areas of real-time systems that demand high

possessing performance.

18 SNC-DND: single nibble error correcting, double nibble error detecting

19 DEC-TED: double bit error correcting, triple bit error detecting
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3.6. Time redundancy: HW(T)

Figure 3-21 shows a list of the most relevant techniques based on time
redundancy, which are fully described in Sections 3.6.2, 3.6.3, 3.6.4, 3.6.5 and
3.6.6.

| (1) Alternating Iogic]

| Recomputing with shifted operands

(2) RESO J

. (3) RERO
Hardware Time | Recomputing with rotated operands

redundancy

(4) RESWO ]
S

' Recomputing with swapped operand

(5) REDWC
. Recomputing with duplication with
comparison

Figure 3-21. Taxonomy of time redundancy techniques

3.6.1. Concurrent error detection: Basics of time redundancy

The main problem with the space and information redundancy types reviewed is
the penalty imposed in the form of extra hardware. At the expense of using
additional time, FT techniques based on time redundancy (7R) aim to reduce the
amount of hardware required for the implementation. Time redundancy
techniques involve the re-execution of code using the same piece of hardware
and comparing the two execution results to determine if a fault has occurred.
This approach was commonly used in the past and is effective in detecting errors

resulting from transient faults.
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Figure 3-22. Transient fault detection mechanism based on
redundant execution

Figure 3-22 shows the basic transient fault detection mechanism based on re-
execution. With this technique two or more different computations are
performed at different times tg, to+At, and to+nAt given n>1. The result of a given
computation is stored in the corresponding register and then compared to the
results obtained from the previous computation(s). If the re-execution is
performed twice and a disagreement exists, then transient errors can be
detected. This type of technique was used in the past, but on its own, and did not
provide protection against errors due to permanent faults. However, the
executions can be performed again to check if the discrepancy remains or not.
This is useful in order to distinguish between permanent and transient faults. If
after re-execution the fault disappears, it is assumed to be transient. The
hardware resource affected by a transient fault is still usable. On the other hand,
if after re-execution the problem persists, the fault is assumed to be permanent

and reconfiguration of the specific hardware resource is necessary.

< computatioll store
(x) resul \ |
. encoding computati " decoding store arvor
time ty + At w F(E(x)) D(F(E(x))) result Se
 S—
3 encoding computal ; decoding store
time ty + nAt w F(E(x)) D(F(E(x))) result
 —

Figure 3-23. Transient and permanent fault detection mechanism
based on redundant execution
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Modern FT techniques based on time redundancy can detect permanent faults as
shown in Figure 3-23. In this case, during the first computation, the results
obtained are simply stored in a register. Then, prior to the next computation(s) a
specific type of encoding is performed on the operands. After the relevant
computation(s) take(s) place on the encoded operands, the results of all

computations are then decoded and compared.

Given that x is the input data, E(x) is the data decoding, F(x) is the functional
computation, F(E(x)) is the functional computation of the decoding data and
D(E(f(x))) is the decoding of the encoded data after computation, and assuming

that the functional block is free of permanent faults and assuming that:

V x D(E(x)) = x

Equation 3.8. Encoding-decoding relationship
Then, the following relation can be stated:

vV x D(F(E(x))) = F(x)

Equation 3.9. Relationship among encoding, decoding and
functional computation

If the decoder and the encoding process are carefully selected so that a failure in
x would affect F(x) differently than it would affect F(E(x) then if At>0 the

comparison mechanism would produce an error signal.

The main problem with time redundancy techniques is that if the system’s data is
corrupted by a transient or permanent fault, it will be difficult to repeat a given
computation. The critical part of these techniques is assuring that the data is
correct and identical before each one of the redundant computations take place.
The leading concurrent error detection (CED) techniques based on time
redundancy are alternating logic (Reynolds and Metze, 1978), recomputing with
shifted operands (RESO) (Patel and Fung, 1982), recomputing with rotated
operands (RERO) (Li and Swartzlander, 1992), recomputing with swapped
operands (RESWO) (Hana and Johnson, 1986) and recomputing with comparison
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(REDWC) (Johnson et al., 1988). All these techniques work as specified in Figure
3-23. The main difference among them is the type of encoding and decoding

used.
3.6.1.1. Self-duality

Self-duality is a property required for certain circuit’s functions in order to
implement specific error detection techniques based on time redundancy. A

function is said to be self-dual if it satisfies the property:

Vx  fxy, x5, %3 ) = f_(x1, %z, 0, X3)

Equation 3.10. Property of self-duality

Where x1, X2, X3, ..., Xn iS the set of inputs to the circuit, x;, x2,..,x,_ the set of

complemented inputs, f{) the output and f () the complemented output.

By letting C be a function that complements each bit of a given vector:

vV x C(xl_, X2 ) e x3_) = (X1, X5, v, X3)
Equation 3.11. Property of self-duality
It becomes clear that:
cl=cC
¢ (f(et)) = f@)

Equation 3.12. Complementary function

Resulting in:

c(fe) = f(c)

Equation 3.13. Complementary function and self-duality

There are several problems that must be considered when designing a fault

tolerant technique using time redundancy. A function C that satisfies the
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previous property must firstly be determined. Finding a C may not guarantee the
desired level of error detection since different circuit implementations based on
different C can have different coverage. Complexity is also an important issue. In
the case where the hardware required to implement the coding and decoding
functions based on C and C-1 is similar to that of implementing f{x), then
structural redundancy becomes the more effective choice. In short, the aim of a
cost effective design should be finding a function C that provides a good trade-off

between high coverage and low complexity.
3.6.2. Alternating logic
An example of encoding/decoding function is the complementation operation

used in alternating logic (Reynolds and Metze, 1978) and successfully applied to

permanent fault detection of data transmission and digital systems.

L, +At t,
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0 1 —> - N 1
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0 1 p ] > @ > 1 0
- 'E > 2 — 0 1
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0o 1 - > 1 0
O * > 5 1 1
 — stuck at 1 N

Figure 3-24. Time redundancy technique based on alternating logic

As shown in Figure 3-24, the data computed at time t¢ is then complemented and
transmitted at time tp+At. In the case of a stuck line (either at 0 or at 1) the two
computations will generate data that are not complement of each other and

therefore the error signal will become enabled after comparison. In the case of
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Figure 3-24, the last communication line is stuck at 120 and therefore
complement and data would both become 1, which is not an alternate output and
therefore a fault is detected. In order to implement error detection in this coding
the circuit function must have the property of self-duality otherwise extra input
bits would be required. For certain circuits 100% area overhead may be required
for certain error detection circuits in addition to time redundancy (Carter and

Schneider, 1968; Johnson et al., 1988; Woodard and Metze, 1978).

The key for fault detection is to determine that at least one input vector exists for
which the fault will not result in alternated outputs. Although any single stuck-at
fault can be detected by this technique, extra redundancy and hardware
modifications are required to create self-dual functions from non-self-dual ones.
Any non-self-dual function of x variables can be converted into an x +1 variable
function that is self-dual and can thus be implemented with an alternating logic

circuit.

3.6.3. Recomputing with shifted operands (RESO)

Recomputing with shifted operands is a logic level concurrent error detection
technique based on time redundancy developed by Patel and Fung (Patel and
Fung, 1982). RESO can be applied to certain problems in which shifting the
inputs forms a complementing function that produces a known relationship in
the outputs. It has been originally used for arithmetic and logic units. The error
detection capability of RESO depends on the number of shift operations. The
generalized version is RESO-k and it refers to shifting by k bits.

20 A stuck-at fault is a particular fault model used to represent a manufacturing defect within an
integrated circuit. Depending on the effect of the fault, a suck-at fault can be stuck either at a
logical value of 0 (stuck-at 0) or 1 (stuck-at 1)
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Figure 3-25. ALU concurrent error detection using recomputing
with shifted operands (RESO-k)

Figure 3-25 shows a schematic of a concurrent error detection mechanism on an
ALU using RESO. The operands a and b undergo a normal ALU operation f(a, b)
during the first computation at time to and the result is stored in a register.
During the second computation at time ty+At, before entering the ALU the
operands are shifted left by k bits and the result of the ALU operation is right
shifted and finally compared to the ones previously stored in the register. In such
operations, left and right shifting can also be denoted as E(x) and D(x) (or E1(x)).
Therefore, if the equivalent notation for the recomputation is E ‘1[f (E (a, b))] it
should be equal to the first computation f(a, b). If the results are identical the
output of the computation will be f(a, b). However, if there is a discrepancy an

error signal will be generated.

When an n-bit operand is shifted left by k-bit(s), its leftmost k bit(s) move out
and the right most k-bit(s) become zero. This may lead to an incorrect result of

f(a,b) since k essential bit(s) are removed whenever shifted left. As with
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alternating logic, extra redundancy is needed as an (n + k) shifters need to be
implemented. Furthermore, a bigger (n+ k) bits length ALU is needed and
therefore the recomputation takes (n + k) bit operations rather than the original
n-bit ones. Furthermore, a totally self-checking equality checker is required for
the comparison process and error signalling. Additionally, parity codes can also

be used to detect error in the shifter logic.

Note that the fault coverage capability of RESO depends on the number of shifts.
RESO-1 can detect all single bit-slice errors in an ALU for all bitwise operations,
including AND, OR, NOT, NOR and XOR. As k becomes larger, an increase of space
and time complexity is entailed which in turn increase the probability of error.
Consider an ALU with an n-bit shifter and a RERO-2 implementation and an
operand a equal to 11010. After the 11010 is being shifted left by two bits, it will
have the two MSBs shifted out, thus becoming 01000. As a consequence, the

result of the calculation f(a, b) will probably be incorrect.

If the shifter is replaced by an (n + k)-bit shifter with k=2 in this particular case
(RESO-2), then the operand a after the shifting operation will be equal to
1101000, thus keeping the MSBs and ensuring the correct result f(a, b). Note

that during the first computation k-zero MSBs are added to each of the operands.

This is one way of detecting errors using RESO. Alternatively, as before, during
the first computation at time to, the operands a and b undergo a normal ALU
operation f(a,b) but the results are now left-shifted before being stored in the
register. In the second computation at time typ+A4t, the operands are also left-
shifted by k bits, but in this new way, the results are directly compared with the

ones in the register (there is not right-shifting performed on the operands).

The penalty paid for implementing RESO is that every component must be
extended to accommodate the shifting. For instance, to implement RESO-1 on a
32bit ALU the main system and the shifters are required to be 33 bits whereas
the storage registers and the equality checker must be 34 bits.
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3.6.4. Recomputing with rotated operands (RERO)

Recomputing with rotated operands (Li and Swartzlander, 1992) is another
technique designed to overcome the limitations of RESO. RERO-k has similar time
redundancy characteristics to RESO but with different structural redundancy

demands.
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Figure 3-26. ALU concurrent error detection using recomputing
with rotated operands

Figure 3-26 displays an ALU with RERO-k based concurrent error detection.
RESO-k requires an (n + k)-bit rotator and an (n + k)-bit ALU whilst RERO-k
only requires an (n + 1)-bit rotator and an (n + 1)-bit ALU.

During the first computation, the (n + 1) bit rotators do not rotate the operands,
thus the input and output of the rotators is identical. Both operands undergo a
regular ALU operation whose result is stored in a register. During the second
computations, the first two rotators perform a k-bit(s) right-rotation of the input

operands before they enter the ALU. Next, the result is rotated left and compared
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to the previous result from the first computation. If the results are identical the
output of the computation will be f(a, b). However if there is a discrepancy an

error signal will be generated.

With regards to error coverage, a RERO-k implementation with an n-bit ALU can

detect:

e (kmode n) consecutive errors for bit-wise logical operations.

e (k-1) consecutive errors in a ripple carry adder for arithmetic operations.

3.6.5. Recomputing with swapped operands (RESWO)

Recomputing with swapped operands (Hana and Johnson, 1986) is an extension of
the RESO technique that tries to detect errors by alternating the position of the
operands. RESWO implementation is very intuitive but with limited applications
such as addition, multiplication and Boolean functions but not division or

subtraction operations.

The first computation at time t, is performed on unmodified operands. During
recomputation, at time tp+A4t, the operands are first split into two halves, upper
and lower, then swapped before calculation and finally swapped back after it.
The logic for implementing RESWO has been shown to be less complex and less

expensive than in RESO, in particular when the complexity of individual modules

is high (Shedletsky, 1978).

3.6.6. Recomputing with comparison (REDW(C)

Recomputing with comparison (Johnson et al.,, 1988) uses a combination of both
hardware and time redundancy. The operands a and b of an n-bit operation are
split into two halves and computed by two virtually divided devices (n/2-bit
size) twice. In a first time slot, the least significant n/2-bits (lower halves) of the
operands and their duplicates are carried out and then their results compared.

Upon completion, in a second time slot, the same operation is repeated for most
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significant n/2-bits (the upper halves) of the operands. As long as the separate
halves do not become faulty in the same way and at the same time, REDWC can

detect all single faults.

3.7. Redundancy schemes comparison

In general, the addition of correction capabilities to a mechanism involves extra
area and/or time overheads. Table 3-6 compares timing, area overheads and

capabilities of structural- and time- based FT mechanisms.

Table 3-6. Comparison structural-, time- based FT mechanisms

Alternating logic ~ =0%- 100% >100% D
RESO ~0%- 93%% >100% D
RESO ~0%-93% >200% DC
RERO ~0%- 93% >100% D
RESWO ~0%-77% 0-100% D
REDWC ~=0%- 90% 0-100% D

DwcC >100% ~0%-17% D
TMR >202% ~0%-17% DC
TMR with

0 ~004-170,
triplicated voter >208% 0%-17% be

Single Parity 1-6% ~0%-10% D
SEC-DED 7-32% 10%-129% DC
SNC-DND 13-75% - DC
DEC-TED 13-69% 22%-200% DC
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TR techniques involve low area overheads at the cost of extra timing. Note that
some of these techniques, such as RESO, can provide correction capabilities by
performing more than two computations. In contrast, at the cost of area
penalties, SR techniques can provide detection and correction with very little

timing overheads.

Error detection codes, such as parity coding involve low complexity and low
overheads but have limited detection abilities and are not able to detect multi-bit
errors. Although information redundancy schemes can be feasible to correct
single and double errors in high-capacity memories (Paul et al., 2011), for n>2, n-
bit correction circuitry demands considerable area, energy and timing
overheads, especially in low capacity memories. For instance, in an 8-bit ECC
scheme integrated to a 64kb SRAM the area overhead can be more than 80%
(Kim et al.,, 2007). Application of Hamming SEC-DED codes to 16M-bit DRAM
chips has a 10% access time penalty on a to 16M-bit DRAM (Arimoto et al., 1990;
Furutani et al.,, 1989). For an experimental 1M-bit DRAM cache, applying a SEC-
DED code imposes up to 15% access time overhead (Asakura et al., 1990)

The area penalty is even greater in register files (RFs); experimental results for
SEC applied to a 64-bit 32-word RF using 90nm standard cell ASIC technology
(Naseer et al,, 2006) incurs a 22% area penalty and a 129% increase in read
access time. TMR applied to the same type of registers incurs a 204% area
penalty but increases the read access time by only 17%. Therefore, for sensitive

ASIC applications that demand low-latency, TMR is more suitable.

3.8. Conclusion

The use of fault avoidance techniques does not guarantee complete removal of
faults, having many drawbacks in terms of cost, speed of operation and chip area.
System testing and verification techniques can never be exhaustive enough to

remove all potential faults and their causes.
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Structural redundancy techniques, such as DWC for single error detection and
TMR for single error correction, are very popular. However, both techniques
entail high area and power overheads and may not be suitable in embedded

applications where power consumption is an important issue.

CED techniques based on EDC, such as parity coding, involve lower area
overheads than structural redundancy techniques but have limited detection
abilities and cannot correct errors or efficiently detect multi-bit errors. ECC and
physical interleaving incur large area overheads for multi-bit errors. Identifying

the time interval for scrubbing can be tricky.

In terms of time redundancy, the aim of a cost effective design should be finding
a function C that provides a good trade-off between high coverage and low
complexity. If the hardware required to implement the coding and decoding
functions is similar to that of implementing f(x) then structural redundancy
techniques are more effective. Time redundancy cannot be used in every
application due to the additional time required. For instance, certain long-life
critical systems used in space applications can tolerate additional time much
easier than additional space or power requirements whereas real-time safety
critical systems used in avionics cannot afford any additional performance
penalty. Apart from time, extra hardware in the form of shifters, registers,
comparators and extra bits are needed in ALUs. Moreover, fault coverage is not
provided for shifters, rotators and comparators unless they are implemented
with self-checking capabilities. However, if time is available TR techniques do
offer an opportunity to minimize the additional hardware required as compared

to structural redundancy.

When it comes to implementing FT, the selection of particular types of
redundancy greatly depends upon the application. Therefore to select a specific
set of redundancy techniques for implementation we should examine a) the
different requirements of the particular application and b) the techniques that
are more suitable for such requirements. Likewise, not only the type of

redundancy technique is important, but where and at which level it’s applied; for
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instance, applying TMR at the gate, register or circuit level would have a different

fault coverage, time, structural and power consumption trade-off.

110



Chapter 4



Chapter 4

Impact of Radiation on electronics of
embedded systems

Exposure to radiation of electronic devices can lead to catastrophic system
failures in embedded systems, significantly affecting their reliability. Therefore,
prior to the design of a resilient architecture, several factors shall be considered
in the earliest phases of the system design. The physics of radiation-induced
faults, the study of the error process and the sources of error are discussed. The
phenomenon that causes faults at the physical level is reviewed. This chapter
presents a review of unwanted effects in semiconductor devices caused by high-
energy particles focusing on standard electronic materials: silicon and its oxide.
We learn that the number of faults, and in particular the ones due to radiation

are expected to increase significantly.

4.1. Introduction
To develop efficient fault tolerant systems, designers need to be aware of the

impact of permanent and transient faults. Hardware faults are a major concern

in silicon based electronic components such as SRAM, DRAM, microprocessors
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and FPGA. These devices have a well-documented history of faults mainly caused

by high-energy nuclear particles.

In the cases of safety-critical systems, aerospace and health monitoring systems,
maximum reliability can be achieved assuming susceptibility of those systems to
faults produced by various internal (e.g., interconnect coupling noise) and
external reasons (e.g., cosmic and solar radiation). The traditional reliability
analyses of these systems assume failure rates of permanent faults. A typical
failure rate for permanent faults due to hard reliability mechanisms such as gate
oxide breakdown or metal electromigration is generally between 1 and 50 FITS.
So far, design and reliability engineers are discounting the effect of transient
faults. Moreover, advances in semiconductor technology have been gradually
increasing performance. Aggressive scaling of transistor sizes has driven these
remarkable improvements in computational performance. However, the density
of modern silicon chips makes them vulnerable to particles of lower energy
causing transient faults and, as a consequence, -catastrophic failures
(Constantinescu, 2003; Hazucha and Svensson, 2000; Hazucha et al., 2003).
Without mitigation mechanisms the error rates due to these transient faults can

easily exceed 50,000 FITS per chip.

4.2. Radiation and its effects on electronics

The term “radiation” is commonly used to describe a process in which energy
travels through a medium, or space, ultimately to be absorbed by another body.
Radiation can generally be divided into ionising and non-ionising radiation
depending on its ability to ionise matter. Non-ionizing radiation does not usually
carry enough energy to produce changes to electronic circuitry. Non-ionising
radiation can move atoms in a molecule around or cause them to vibrate but
does not carry enough energy to ionise atoms or molecules, and as such is not a
concern. Non-ionising radiation comes in the form of visible and infrared light,

radio- and micro- waves and thermal.
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lonising radiation has enough energy to directly or indirectly remove electrons
from atoms or molecules, thus causing the formation of ions. It includes highly
energetic protons, alpha particles, heavy ions, galactic cosmic rays and others.
Even though neutrons are not ionizing particles their collision with nuclei

produces ionizing radiation and therefore are also included in this classification.

As manufacturing technologies evolve, the effects of ionising radiation are
becoming a primary concern. Semiconductor devices are sensitive to ionising
radiation in the space environment, high altitudes and sea levels. There are
different radiation damage mechanisms affecting electronics including atomic
"lattice displacements and ionisation damage. Such mechanisms induce different
types of failures such Total Ionising Dose (TID), Single Event Effects (SEEs) and
Displacement Damage Dose (DDD).

Resulting particles from distinct radiation sources affect diverse electronic
technologies in a variety of ways. Due to the reduction in size of the transistors
and the reduction in critical charge of logic circuits, the natural resilience of
previous technologies to information corruption is decreasing (Baumann, 2002;
R. C. Baumann, 2005; Seifert et al.,, 2002; Shivakumar et al., 2002). Collision of
energetic particles with sensitive regions of the semiconductor can alter stored

information, potentially leading to logic errors.

Transient faults (Breuer, 1973), the predominant faults in modern technologies,
can be caused by environmental conditions like temperature, pressure, humidity,
voltage, power supply, vibrations, fluctuations and electromagnetic interferences
due to crosstalk between long parallel lines in a die. However, ionising particles
are the major source of this type of fault. Transient errors in electronic devices
due to ionising radiation in the space environment are well known (Adams and
Gelman, 1984; Adams et al,, 1982; Binder et al., 1975; Blake and Mandel, 1986;
Waskiewicz et al., 1986) as is the impact of such radiation on application-specific
electronics such as commercial (Dyer et al., 1990; Johansson et al., 1998; Olsen et
al, 1993) and military (Taber and Normand, 1993) avionics, nuclear exposed

environments (Mahout et al, 2000; Marshall, 1963), medical instrumentation
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(Bradley and Normand, 1998), and other sea level domains (Hauge et al., 1996;
Ziegler, 1996).
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Figure 4-1.Taxonomy of radiation effects in silicon based electronics
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4.3. Damage mechanisms

The two fundamental damage mechanisms (Claeys and Simoen, 2002) to
electronic elements due to radiation are atomic lattice displacements and

ionisation damages.

Atomic lattice displacement occurs when an energetic particle undergoes a
nuclear collision with one or more atoms of the electronic device, changing its
original position (see Figure 4-2 below) and thus the analog properties of the
semiconductor junctions, potentially worsening in the long term the properties
of the material and creating lasting damage. In silicon, an impacted atom can
become displaced if it is part of the crystalline structure and the incident particle
is capable of inducing a minimum energy (displacement threshold energy) of

around 20eV (Miller et al., 1994).
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Figure 4-2. Atomic lattice displacement

The displaced atom is referred to as “primary knock-on atom” (PKA) and its new
non-lattice position is called “interstitial” while its absence from its original
lattice position is named “vacancy”. Normally, the simplest configuration is a
vacancy and an adjacent interstitial generated as a result of a low energy particle
hitting the material, a combination referred to as “Frenkel pair”. However, in

most cases the displaced atom has enough energy to knock out a neighbouring
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atom creating a more complex configuration called “cluster”, altering the
properties of the bulk semiconductor material. In silicon, vacancies and clusters
are of unstable nature and tend to be filled by near atoms leading to more stable
defects. In general, this migration leads to the most typical process, called “defect
reordering” or “forward annealing” reducing the amount of damage and its
effectiveness. Yet, in some cases, depending on the time, temperature and nature
of the device, “reverse annealing” can take place, resulting in more efficient

defects.

Ionisation damage is primarily induced by charged particles usually leading to
transient effects causing temporary variation of the functionality of the system.
Since no permanent damage is induced in the electronic circuit, this type of error
is called soft error. lonisation damage may also lead to small degradation and
permanent errors, also called hard errors. A key factor in the damage process is
the critical charge, or Qcrit, which is the smallest amount of charge that can cause
a change of value in a cell. The effects provoked by the above damage
mechanisms can vary depending on the type or combination of types of
radiation, radiation flux, total dose, critical charge of the device and
manufacturing technology. These factors make modelling of faults difficult and

time consuming,.

4.4. Radiation macro effects

Three major macro effect categories may be used to classify the resultant effects:
Total Ionising Dose (TID), Displacement Damage Dose (DDD) and Single Event
Effects (SEE). As far as the type of degradation that these macro effects have, TID
and DDD are considered as long term cumulative and SEE as short term. Table

4-1 summarizes the characteristics of these radiation macro effects.
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Table 4-1. Characteristics of radiation macroeffects

-Partial mitigation: Additional
shielding is only effective in
particular technologies and

Small energy

Trapped protons transfers environments Power MOS,
Total lonizing Long-ter.m trapped electrons and lonizing dePOSIted Robust electronic design. High drive CMOS, NMOS, YES
Dose (TID) cumulative damage uniformly and . o ; PMOS, SOI, SOS,
solar event protons . currents. High noise immunity, large _. .
delivered over a . . Bipolar, BiCMOS
long time gain margins, etc.
' Cold redundancy using spares. Not
suitable for all technologies.
Accumulation of
Displacement Atomic Lattice ‘fglilslfz?se Egy
Damage Dose  Long-term Trapped and solar . . . -Shielding is not only ineffective, but _. .
. Displacement atomic nuclei L. Bipolar, BiCMOS NO
(DDD) - Bulk  cumulative protons and neutrons itis also the root of the problem
damage (Coulomb,
damage
nuclear
interactions).
-Additional shielding is NOT effective.
. . Power MOS,
GCRs, particles from Sudden large - Ensure systems are not sensitive to CMOS. NMOS
Single Event Short-term solar events, trapped lonizing energy transfers transient effects. PM OS’ Bi ola'r YES
Effects (SEE) protons, and damage at the 'wrong - Fault tolerant design techniques. SOL S (')S polar,
secondary neutrons place and time'. - Error Detection and Correction for BiCiV[ OS'

critical circuits.
- System Autonomous re-boot.
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Total Ionising Dose is a measure of the cumulative effects of the prolonged
exposure to ionising radiation. In the context of silicon devices, it is also called
surface damage. MOS and bipolar electronic technologies are affected by TID and
once the material is damaged, it will not return to its original state (Felix et al,,
2007). In today's devices, the formerly used bipolar transistors have been almost
completely replaced by the MOSFETs (Metal Oxide Silicon Field Effect

Transistors).
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(Oxide film)

N type
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N type !f!
diffusion zone

p-type Si substrate

Figure 4-3. Schematic of a MOS transistor

The schematic of a typical MOS transistor is shown in Figure 4-3. Its basic
architecture is based on an N-(P-) doped silicon substrate and two highly P-(N-)
doped contacts, the source and the drain. The channel between the source and
the drain is covered by the gate oxide. This thin silicon dioxide (SiO2) insulating
layer is situated under the gate electrode and can attract charge carriers into the
channel region. If no voltage is applied at the gate electrode, no current can flow
between drain and source. By regularly applying low voltages at the gate, the

current between drain and source is regularly switched on and off.
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Figure 4-4. Schematic of the motion of electron holes in a silicon
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When a highly energetic particle strikes the semiconductor material, as shown in

Figure 4-4, electron hole pairs are generated but disappear quickly due to the

low resistance of the gate and the substrate. However, in the oxide, and due to

their different mobility, electrons rapidly move either to the gate or to the

channel whereas the holes slowly bounce from site to site until they become

trapped?! by defects near the silicon oxide interface. Some of these holes may be

trapped for a long time resulting in a positive charge in the oxide that can affect

the characteristics of the transistor and generate shifts in its operating threshold.

These voltage shifts are the most common form of radiation damage in MOS

technology and can persist from hours to years.

21 In MOS structures oxide traps are defects in the SiO; layer, interface traps are defects at the

Si/Si0; interface and border traps are defects near the interface (Fleetwood et al., 2008)
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TID effects can lead to degradation within the electrical circuit (threshold shifts),
decreased functionality, switching speed, device current, increased device
leakage (higher power consumption) and even functional failures. The primary
sources of TID are trapped protons and electrons, and solar protons (Barth et al.,

2004).

Modern submicron electronics offer relative relief to these effects in the way of
natural radiation hardening (Pouponnot, 2005; Velazco et al., 2007). Current
gate oxides are around 100 times thinner than the approximately 100nm oxide
layers employed in the early 1990s. Modern gate oxides are around 1nm thick,
which allow electrons to tunnel through the potential barrier at the silicon oxide
interface, neutralizing the trapped holes. Since there is not enough trapped

charge, transistor threshold shifts cannot be generated.

Circuit level radiation hardening techniques, i.e. changes in the geometry of
transistors, have been used to mitigate TID effects but such techniques are
expensive. Furthermore, TID effects might be partially reduced with the use of
shielding material that absorbs most electrons and low energy protons.
However, the amount of shielding is inversely proportional to its effectiveness in
stopping the protons with higher energy (Dyer et al., 1996). TID is considered a

severe problem (Claeys and Simoen, 2002) during the lifetime of satellites.

Displacement Damage Dose (DDD) or “Bulk” damage (Barth et al, 2004; Yu
Qingkui et al.,, 2005), occurs when high energy particles dislodge or displace
atoms from the semiconductor lattice due to its long time exposure to non
ionising energy loss (NIEL). DDD results in a similar long-term cumulative
degradation to that caused by TID. The damage mechanism is the result of
collisions with atoms, which become displaced from the lattice creating
interstitials and vacancies. Consequently, DDD is an effect of concern for all
semiconductor bulk based devices such as bipolar devices (B]T circuits and
diodes), BiCMOS, electro optic sensors (CCDs, photo diodes, phototransistors),

silicon detectors and solar cells, whereas CMOS is almost insensitive to it.
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DDD accumulation primarily occurs when the semiconductor material is exposed
to neutrons, trapped protons and solar protons over time. Likewise, secondary
radiation produced in shielding materials can cause DDD effects. The overall
effect of DDD in semiconductors is alteration in the minority carrier lifetimes,
which results in lower currents between the collector and the emitter and
therefore reduced transistor gain. An extended review of literature related to

this type of damage can be found on (Srour et al,, 2003).

4.5. Single event effects (SEE)

The term Single Event (SE) is used to lay emphasis on the fact that the effect is
caused by an individual particle interacting with the material. In current
semiconductor technologies single event effects represent a much larger

problem than the combination of all long-term cumulative effects.

SEEs are induced by the strike of a single energetic particle (ion, proton, electron,
neutron, etc.) in sensitive regions of the material. The particle travels through
the semiconductor material leaving an ionised track behind depositing sufficient
energy to cause an effect on a localized area of the electronic device. Both TID
and SEE take place as a result of ionising radiation; however, whilst the former is
a long term effect that changes the electrical properties of the device, SEEs are

the result of an instantaneous perturbation.

Neutron and alpha (a) particles are the most common sources of SEEs in
terrestrial environments whilst cosmic rays and heavy ions are most responsible
for space applications. SEEs affect many different types of electronic devices and
technologies resulting in data corruption, high current conditions and transient
disturbances. If not handled well, unwanted functional interruptions and

catastrophic failures could take place.
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4.5.1. Physical mechanisms responsible for SEEs

In the “technological shrink model” of sensitivity to upsets (Baumann, 2002;
Seifert et al., 2002; Shivakumar et al.,, 2002) the detailed physical mechanisms
responsible for SEE are identified in four consecutive steps (Dodd and

Massengill, 2003; Wirth et al., 2008) taking place before an SEE occurrence:

e Prior charge deposition by the incident particle striking the semiconductor,
e Transport of the released charge into the device,
e Charge collection by the different sensitive regions,

e (ircuitresponse.

4.5.1.1. Charge deposition

lonising radiation can release charge in the semiconductor in different
ways. SEEs can occur through the impact of the incident particles themselves
(e.g., direct ionisation from galactic cosmic rays (GCRs) or solar particles). SEEs
can also occur as a result of secondary particles generated via inelastic or elastic
nuclear reactions (Howe et al., 2005; Reed et al., 2006; Warren et al., 2005) and
Coulombic (Rutherford or inelastic Coulomb) scattering (Wrobel et al., 2006)
between the incident particles and the stationary targets in the struck material

(indirect ionisation).

An incident particle can experience a number of interactions before its kinetic
energy is expended. In every interaction the path of the particle can be altered
and can lose some of the kinetic energy. To measure the energy transferred to
the material the terms Linear Stopping Power and Linear Energy Transfer (LET)
can be used. Equation 4.1 describes the rate at which a particle loses energy
while moving through an absorber. The incremental energy (dE) may be
expressed in units of MeV while the path length (dx) may be expressed in units of

cm.
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dE

SUE) = - dx

Equation 4.1. Linear stopping power

From these interactions, two types of stopping power can be distinguished

(ECSS, 2007; Podgorsak, 2009):

Nuclear stopping power (also called radiation stopping power) resulting
from energy loss per unit path length due to inelastic Coulomb interactions
between the charge particle and the nuclei of the absorber. Only light
particles, such as electrons and positrons, experience significant energy
loss via nuclear stopping power. For heavier charged particles, such as

protons and a particles, this type of loss is insignificant.

Electronic stopping power (also called ionisation or collision stopping
power) resulting from inelastic Coulomb interactions between the charge
particle and orbital electrons of the absorber. Electronic stopping power
describes the energy lost due to direct ionisation. Unlike nuclear stopping
power, heavy and light particles experience this type of interaction that
results energy transfer from the incident particle to the orbital electrons

via excitation and ionisation (ECSS, 2007).
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Figure 4-5. Electronic, nuclear and total stopping power of protons
in silicon, computed with PSTAR from NIST laboratory (Berger et

al., 2005)

The electronic, nuclear and total stopping energy of different particles are

presented in Figure 4-5 (for protons) and Figure 4-6 (for electrons). Figure 4-5

shows that at all energies the electronic stopping power of protons dominates

and that the nuclear stopping power is insignificant. Figure 4-6 shows that the

nuclear stopping power of electrons dominates at higher energies.
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Figure 4-6. Electronic, nuclear and total stopping power of electrons
in silicon computed with ESTAR from NIST laboratory (Berger et al.,,
2005)

The total stopping power (S(E)twt) for a charged particle with Ex energy passing
through an absorber of atomic number Z is in general the sum of nuclear
stopping power and electronic stopping power as shown in Equation 4.2

(Podgorsak, 2009):

S(E)tot = S(E)nuclear + S(E)electronic

Equation 4.2. Total stopping power for a charged particle

Charge deposition is often characterized by mass stopping power, instead of
Linear stopping power. Mass stopping power is defined as the Linear Energy
Transfer (LET) (not equal to Linear Stopping Power, but approximated) and can
be obtained by dividing S(E) (expressed in MeV/cm) by the density of the
material p (expressed in mg/cm3). Nearly independent of the density of the
material, LET (Equation 4.3) describes the linear rate of energy transfer to the

material as the energetic particle traverses the absorber.
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Equation 4.3. Linear energy transfer

The LET of an incident ion and thus the density of ionisation, typically increase to
a maximum immediately before the particle comes to rest. This peak, the Bragg

peak, occurs due to the increasing cross section as the particle loses energy.
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Figure 4-7. Bragg peaks: LET (MeV/cm2) of the standard
components of a 16MeV/nucleon cocktail versus depth in silicon
(um) (McMahan et al.,, 2004)

Incident particles can cause different nuclear reactions depending not only on
the striking energy but also on the target mat  erial. Figure 4-7 shows a plot of
the LET of the standard components of a 16MeV /nucleon cocktail as a function of
depth in silicon. The LET of a given ion is dependent on its energy and the target
material, and therefore is an important parameter to quantify the sensitivity of
electronic devices. Theoretical and experimental values of LET for most ions in
different materials have been published (Northcliffe and Schilling, 1970). In
addition, stopping power for different particles can be calculated using the TRIM
code (Ziegler et al,, 2010), and the ESRAR, ASTAR and PSTAR programs (Berger
et al., 2005).
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The LET can be converted into charge per unit length (fC/um or pC/um). This is
more suitable to situations that take into account the physical dimensions of the
device and the charge stored at the critical nodes. For example, in silicon based
technologies a particle with a LET of 97 MeV-cm2/mg corresponds to a charge
deposition of approx. 1 pC/pm.
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Figure 4-8. Energetic particle strike and generation of electron hole
pairs: a) direct ionisation due to heavy strike; b) indirect ionisation
due to proton strike

In passing through a semiconductor material, high energetic particles (direct
ionisation Figure 4-8a) can deposit energy in the absorber through a one step
process involving Coulomb interactions with the electrostatic field electrons in
the target atom (Podgorsak, 2009). The energy introduced allows bound
electrons to leave their atoms, releasing free electron hole pairs and converting
their energy into charge (part b of Figure 4-8b). The particle rests in the
semiconductor material once almost all its energy is lost. The formation of an
electron hole requires an average energy of 3.6eV. The energy lost due to direct

ionisation can be referred as the electronic stopping power.

The total path length or total distance travelled is referred as particle’s range and
is highly dependent on the type of particle, its initial energy and the properties of

the semiconductor material.
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At sea level, direct ionisation is the main charge deposition mechanism for
upsets caused by heavy ions and alpha particles, emitted due to the
contaminants in packaging materials. Traditionally, since protons and neutrons
are lighter, the charge released by them is not enough to produce upsets via

direct ionisation.

As suggested in 1997 the technological shrink model would soon be affected by
direct ionisation of low energy particles (Duzellier et al, 1997). Recent
experimental evidence (Heidel et al,, 2008) of 65nm SOI SRAM sensitivity to
direct ionisation from protons supported the latter suggestion with results that
the low energy proton for the 65nm technology is different to those from

previous generations.

However, the most significant upset rates due to light particles are caused via
indirect ionisation mechanisms. In fact, in today’s semiconductor technology,
high-energy neutrons derived from cosmic rays are the primary contributor to

soft error rates at sea level.

In those mechanisms, the highly energetic particles (protons or neutrons) do not

directly interact with the material. The three indirect ionisation mechanisms are:

e Inelastic nuclear reactions that take place when the incident particle hits a

target nucleus causing fragmentation and ejection of secondary particles;

e Elastic nuclear reactions that take place when the incident particle
transfers some of its energy to a target nucleus that recoils (Figure 4-8)

with extra energy transferred from the incident particle;

e Coulombic scattering, similar to elastic nuclear reactions, takes place when
the incident particle gets close to a target nucleus that recoils due to
Coulomb force with less momentum and smaller angle than with elastic

nuclear reactions.

Among these three mechanisms, inelastic nuclear reactions have the higher

probability of depositing larger amounts of charge, and hence are the most
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significant indirect mechanism in the formation of SEE. If an inelastic nuclear
reaction takes place, a collision with a target nucleus leads to the emission of

reaction products that can, in turn, deposit energy via direct ionisation.

Those resulting particles are much heavier than the incident particle, which
involves higher charge deposition that may result in a SEE. Since the incident
particles do not directly interact with the semiconductor material, the number of

counts or neutrons per cm? is used to measure the effect rather than the LET.

4.5.1.2. Charge transport and collection

Subsequent to the charge deposition, the released carriers are transported and
collected by the semiconductor elementary structures. The transport of the

charge is based on three main mechanisms (Dodd, 2005):

e Charge collection by drift: The charge can drift in regions with an electric
field. Reverse biased semiconductor p-n junctions are usually the most
sensitive regions. If the ionised track affects one of those junctions, the high
electrical field present in the region can collect the incident charge, which
can result in significant transient currents. This is a fast mechanism in the

order of 100ps.

e Charge collection by diffusion: the charge may diffuse in neutral zones
(bulk of the device), leading to considerable transient currents. This is a

slow mechanism in the order of nanoseconds.

e Recombination: The charge can recombine with free carriers in the lattice.
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Figure 4-9. Funnelling effect and charge collection mechanisms
(Messenger and Ash, 1992)

As Figure 4-9 illustrates the charge collection can be extended via “field
funnelling” (Chang-Ming Hsieh et al., 1983; Hsieh et al., 1981). If a high field
region, such as the depletion region of a p-n junction, is traversed by a column of
electron holes, the associated electric field can be disturbed, spreading down
along the particle’s track deep into the substrate, consequently reducing the net

charge in the depletion region.

Three different areas within the track can be distinguished: 1) the initial

depletion region, 2) the funnel region, and 3) the bulk region.

Within the external depletion region, positive potential areas attract the
electrons and negative potential areas attract the holes. Rapid collection by drift
will take place in the funnel region whilst the diffusion mechanisms will slowly
collect the charge of the residual carriers in the bulk region. The “funnelling
effect” is effective in the range of a few nanoseconds. The generated carrier

density in the vicinity of the junction becomes similar to the substrate doping
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concentration, and the electrical field is then re-established back to its original
position (Figure 4-10). Therefore, field funnelling and consequently charge

collection are highly dependent on the substrate doping concentration.
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Figure 4-10. Funneling effect and charge collection mechanisms
after a particle strike on a p-n junction (Mavis, 2002)

4.5.1.3. Circuit level response

The collected charge transported in the device induces parasitic transient
currents, which turn could induce disturbances in the external
circuits. Depending on a) the collected charge, b) the intensity of the resultant
current transient, c) the details of the circuit application and d) the area affected,
the excess of charge can be manifested as one of many types of SEE (or a

combination of them).

Semiconductor devices experience SEEs in two major forms: in the form of
destructive effects, which result in permanent degradation or even destruction of
the device affecting functionality, and in the form of non-destructive effects,
causing no permanent damage. Table 4-2 presents different type of errors, their

nature, characteristics and a solution to eliminate their effect.
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Table 4-2. Type of errors and how to fix them

Type of error Characteristics Nature Fix

Transient Functionality in place : : L
tyinp Non-destructive Reading or writing

soft Incorrect logical value
Soft _. Functionality in place
Firm, . . -
: Incorrect logical value Non-destructive ~ Writing
Static soft

Reading does not fix it
Power-off cycle or

Pseudo-hard ULl i) Non-destructive LU RER OO O8
No permanent damage supply voltage below
the holding voltage
Functionality lost
Hard Physical-permanent Destructive Replacement of HW

damage

Soft errors are of temporal nature and imply that the physical functionality of the
circuit is not affected even though its temporal integrity is. Soft errors have been
defined (“JEDEC JESD89-3A,” 2007) as “an erroneous output signal from a latch or
memory cell that can be corrected by performing one or more normal functions of

the device containing the latch or memory cell”.

Typical examples of this are undesired changes of logic value in sequential logic
and undesired analog pulses that temporarily change the output of
combinational logic. Soft errors can be further categorized into transient and

static errors (Mavis and Eaton, 2002).

Transient soft errors are “soft errors that can be corrected by repeated reading
without rewriting and without the removal of power” (“]JEDEC JESD89-3A,” 2007).
On the other hand, static soft errors, or firm errors, are those that cannot be
corrected by repeated reading but can be corrected by rewriting without the
removal of power, resulting in a completely functional memory (Caywood and

Prickett, 1983).

When a soft error has occurred, it could result in a detected recoverable error
(DRE), detected unrecoverable error (DUE) or silent data corruption (SDC)
(Kadayif et al., 2010; Weaver et al, 2004). If fault tolerant techniques are
implemented a soft error could potentially be recovered, either by hardware or

software. This is a DRE, a more benign type of error, since recovery of the normal
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operation is possible. DUE take place when the same fault tolerant techniques
are able to discover and/or report an error, from which recovery is not possible.
A SDC take place when an error is undetected and causes data corruption (SDC)
(Constantinescu et al., 2008). In this case, the corrupted data could go unnoticed
making this type of error benign, or could result in a visible error and/or

catastrophic failure such as crashing a computer system.

Hard errors, or Permanent errors, lead to loss of device functionality but, in
contrast with transient soft and firm errors, the functionality of the device is
permanently damaged. Repeated reading, writing or re-powering is not effective
in recovering from this type of errors. In general, hard error effects can only be

corrected via maintenance action, involving replacement of components.

A further categorization between hard and soft errors is pseudo hard errors,
sometimes referred to as power cycle soft errors (PCSE) (“JEDEC JESD89-3A,”
2007). These take place as a result of the ionising radiation from a particle strike,
when the functionality of the device is lost but the device is not permanently
damaged. Unlike soft errors, pseudo hard errors cannot be corrected by
repetitive readings or writings. Instead, they can be corrected by removing the
power from the device. Examples of this are non-destructive latchup and firm
errors in FPGA where the area affected by the particle strike is the control path
(Edwards et al.,, 2004). Although the data may not be corrupted, the device
functionality is compromised. SRAM based FPGA devices are subject to this type
of error if the “gate array” configuration in SRAM is corrupted. These systems
contain the “gate array” configuration area within ROM, which is loaded into the
SRAM during power up. Recovery can be achieved via repowering and

reinitialization.

A classification of SEEs is presented in Table 4-3. The numerous types of SEE can
be categorized depending on the type of degradation, recoverability and
technologies susceptibility. Long- and short- term radiation effects on different

manufacturing technologies are presented in Table 4-4.
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Table 4-3. Classification of single event effects

Combinatorial logic, operational
amplifiers, analogic and mixed
signal circuits

Transient

SET Single event transients
soft

SBU Single bit upset Static soft RAM, PLC - Sequential logic
MCU Multiple Cell Upset Staticsoft  RAM, PLC - Sequential logic
MBU Multiple Bit Upset Staticsoft RAM, PLC - Sequential logic
Single event latchup Pseudo-
SEL (microlatchups) hard CMOS, CPUs, PLC

Address error, recoverable

. Pseudo- Complex devices with built-in

Logic SEFI bust error, temporary block hard U0 S S
error

Soft SEFI Reset.table single event Static soft Complex devices Wll.?h built-in
functional Interrupt state or control sections
Reboot or Permanent single  Pseudo- Complex devices with built-in

Hard SEFI . . -
event functional interrupt hard state or control sections

Address error, recoverable

SDgls‘tructlve bust error, temporary block  Hard CMOS, BiCMOS
error

s Resettable single event Pseudo-

destructive ; & CMOS, BiCMOS

SEL functional Interrupt hard

Reboot or Permanent single  Pseudo-

Micro-latchup event functional interrupt hard

CMOS, BiCMOS

SEHE or SHE or Memories and latches in logic
devices

SEHR Single event hard error Hard

SEBO or SEB Single event burnout Hard Power MOS and bipolar

Single event dielectric Hard Non-volatile nMOS structures,

SEDR rupture or micro-damages FPGA (antifuse), linear devices
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Table 4-4. Long and short term radiation effects on different
manufacturing technologies - X1 - Except SOI

Technology Function SET SEU SEFI SEHE SEL SESB SEBO SEGR SEDR TID DDD
SRAM X X X1 X X
DRAM/ X X X X X X
SDRAM 1
EEPROM/
Flash X X X X1 X X X

CMOS, SOI EEPROM

Mcontroller

X X X X X
/uP 1
FPGA X X X X1 X X X X
Power MOS X X X
Bipolar X X X X X X

4.5.2. System level response

Many different acronyms are used to describe the numerous SEEs in digital
integrated circuits. Also called “reversible errors”, non-destructive effects can be

classified as SET, SEU, MBU, MCU, and SEFI.

4.5.2.1. Single event upsets (SEUs): conventional upset mechanisms

SEUs are a particular type of SEE that take place when a single energetic particle
strike causes a charge disturbance, large enough to directly modify the logic state
of a sequential element, such as a register, latch, flip-flop or a memory cell. It is
by far the most common effect affecting all kinds of memory devices, including

SRAM, DRAM, FLASH memories, microprocessor registers, DSPs, FPGAs, logic
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programmable state machines and other similar. SEUs can be categorized as
static soft errors since the device functionality is not permanently affected (soft),
and cannot be corrected by repetitive reading (static) but only through the

rewriting of new data (R. C. Baumann, 2005; “JEDEC JESD89-3A,” 2007).

Between 1954 and 1957, there were reports of anomalies in electronic
equipment during above ground nuclear bomb tests. Since these anomalies were
random, and not related to any permanent hardware fault, these were attributed
to electronic noise from the bomb’s electromagnetic shock wave. Even though
the actual term “Single event upset” was first adopted in 1979 (Guenzer et al.,
1979), SEUs were, in fact, predicted in 1962 (Wallmark and Marcus, 1962) when
it was forecasted that terrestrial cosmic rays would lead to the eventual
occurrence of upsets in microelectronics. Moreover, it was anticipated that this
kind of upset would limit the volume of semiconductor devices to a minimum of

about 10 um per side.

Evidence of a small rate of cosmic ray induced upsets in bipolar J-K flip-flops in
the space environment (Binder et al., 1975) was presented in 1975 confirming
the earlier predictions. Four anomalies were found in the analysis of 17 years of
satellite operation. It was suggested that 100MeV heavy ions in the solar wind
striking the electronics might be responsible. During the early years of
computing there have been many reported cases of electronic anomalies, whose
source was unknown at the time. As an example, in 1976, the Crayl
supercomputer at Los Alamos presented an average of 25 memory parity soft
errors per month. It was not until 2010 that a study was published, attributing
the cause of these anomalies to high-energy neutrons from the cosmic ray

background (Normand et al., 2010).

As integration density of DRAM increased to 64Kk, a significant SEU rate, mainly
caused by alpha particle contaminants in package materials was found in
terrestrial environments. The first evidence of SEUs at sea level in computer

electronics was reported by May and Woods from Intel Corporation in 1978.
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Eventually, May and Woods attributed the anomalies to alpha particle from

impurities in the packaging modules (May and Woods, 1979).

SEUs at sea level and aircraft altitudes due to cosmic radiation were first
predicted (Ziegler and Lanford, 1979) in 1979 by Ziegler and Lanford from IBM
Corporation. In 1984 SEU appearances due to cosmic radiation were reported for
the first time (Ziegler and Puchner, 2004). The use of low alpha activity materials
(May, 1979) mitigated the soft error rate due to this radiation from impurities,
leaving cosmic ray as the primary factor of “single event rate” (SER) (Pickel and

Blandford, 1978), which is the amount of single events pet unit of time.

However, the increased use of large-scale integration (LSI) technology decreased
the volume of the sensitive elements, which implied a corresponding reduction
of the critical charge and the number of ion pairs needed to induce a soft error.
The resultant SER raise was attributed to a new source, protons from solar

events and trapped protons in the Van Allen belts (Wyatt et al., 1979).

The 1980s where characterized by extensive research and development of SEU
hardened electronics (Desko et al., 1990; Rockett, 1988; Weaver et al., 1987) and
research on the fundamental SEU mechanisms, mostly on memory circuitry
(Adams and Gelman, 1984; Blake and Mandel, 1986), since SEUs in
combinational logic were rare (May et al, 1984). In 1984 SEUs induced by
atmospheric neutrons were predicted in avionics for the first time (Silberberg et

al, 1984).

During the 1990s, the prediction of atmospheric neutron induced SEU in avionics
was rigorously demonstrated to occur during flight (Taber and Normand, 1992).
Furthermore, the concern for SEU increased due to manufacturers reducing the
number of SEU hardened components which led to an increased interest for
commercially available off-the-shelf (COTS) components, even in space

environments (Shirvani and McCluskey, 1998; Underwood, 1998).
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Due to its high operating voltages, early SRAM cells were very robust, but with
technology scaling, in the last decades, SEUs have become more of a concern,
posing a major challenge for the design of memories. SEU susceptibility increases
exponentially as voltage decreases and, in contrast, decreases quadratically as
feature size decreases. Measurements of neutron accelerated induced upsets in
0.25pum, 0.18um, 0.13pm and 90nm SRAM showed a SER/bit increase of 8% per
generation. The SER of a 90nm SRAM increased of a by 18% for a 10% reduction
in voltage (Hazucha et al.,, 2003). In contrast, more recent results in technology
nodes ranging from 250nm through 28nm have shown that the SEU rate per bit
has been declining up to the 65nm node (Dixit and Wood, 2011). However, this
long term trend has been reversed with results for 40nm SRAM presenting 30%
higher bit SER than the previous 65nm technology (Dixit and Wood, 2011). Note
that the results provided are based on bit SER. Nonetheless, for every generation
the complexity and the number of bits per unit area are increasing and so is the
System SER. Recent predictions using Monte-Carlo simulator CORIMS on neutron
induced soft errors in SRAMS show that system SER will increase x7 from 130nm

to 22nm technology (Ibe et al., 2010).

Embedded DRAM has been widely used in System on Chip (SOC) systems thanks
to its density and high performance. At the same technology node, the size of an
embedded DRAM bit cell is a quarter of the size of an embedded SRAM cell. With
scaling, the voltage reduction has also reduced Qcrit. However, by replacing 2D
capacitors (very efficient at collecting radiation charge due to its high area
junctions) for 3D capacitors, the collection efficiency has decreased considerably,
hence increasing Qcrit. The Qcrit increase due to junction volume scaling is more
significant than the Qcrit decrease due to voltage scaling. Because of these, the
DRAM bit SER has decreased to around 4x to 5x per generation (R. Baumann,
2005). Then again, the DRAM system SER has remained roughly constant over
many generations. In contrast with SRAM, whose SEU susceptibility has
increased over the years, the problematic earlier DRAM based on planar cells has

evolved to become one of the most robust devices.
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4.5.2.1.1. Cell upsets

A cell upset takes place if the deposited charge is greater or equal than the
critical charge of the cell, changing its original logical value. These could be single

bit upsets (SBUs), multi cell upsets (MCUs) or multiple bit upsets (MBUs).

Single bit upsets (SBUs) are single upsets in a memory cell caused by a single
event, i.e. one event producing a single bit error, and are very common on

SRAMs.

A single particle can energize two or more memory cells, as shown by (Reed et
al., 1997). Multi cell upsets (MCUs), first reported in SRAMs exposed to the harsh
space radiation environment (Blake and Mandel, 1986), are multiple bit upsets
for one event regardless of the location of the multiple bits, i.e. an FPGA where
one routing bit gets an impact from a high energetic particle affecting several
memory positions. Hence, MCUs involve both types of upsets, the ones that can
be corrected by EDC/ECC as well as those that cannot. Traditionally, MCUs have
represented a small fraction of the total number of observed SEU (0-5%) (Maiz
et al, 2003). However, in the case of FPGA, high linear energy transfer (LET)
heavy ion induced radiation experiments indicate that as geometries shrink the
MCU probability significantly increases, accounting for up to 35% of the upsets
induced (Quinn et al., 2005). As for SRAM devices, it has been predicted that: 1)
the MCU ratio will increase x7 from 130nm down to 22nm; 2) the MCU maximum
size (MxN bits rectangular area including failed bits) will exceed as many as
1Mbits in the extreme case; and 3) for 22nm process the maximum bit

multiplicity will exceed as many as 100bit (Ibe et al., 2010)

Multiple bit upsets (MBUs) also referred to as single word multiple bit upset
(SMUs) (Koga et al., 1993a, 1993b) are a subset of MCUs. And MBU is a multiple
bit upset for one event that affects several bits in the same word. This type of
deviation cannot be corrected by EDC/ECC. However, it is possible to partially

avoid MBUs by using specific layout design of memory cells.
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In contrast to cells, bit line upsets are only upset susceptible during a short
period of time, the pre-charge period specific from read cycle states. However,
susceptibility is dependent on the core cycle frequency. Therefore, bit line upset
rates are becoming more important (Schindlbeck, 2005) since recent
technologies make use of shorter core cycles, which in turn involve higher

susceptibility to upset.

Figure 4-11 shows the sensitive areas that are susceptible to cell and bit line
upset. NMOS drains of transistors connected to capacitors are sensitive zones to
cell upset. In contrast, the sensitive zones to bit line upsets are the NMOS drains

of transistors connected to bit lines (Bougerol et al., 2008).
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Figure 4-11. Sensitive areas to SEU in a DRAM memory array
(Bougerol et al., 2008)
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Historically, the occurrence of MCU was attributed to the collection of charges
generated by a nuclear spallation reaction as a result of the impact between a
secondary ion and the device. As sensitive devices shrink, neighbouring cells
present closer physical proximity, increasing the number of cells that can be
affected by the impact of a single particle. Nonetheless, novel MCUs are being
reported such as “charge sharing among neighbour nodes” (Amusan et al., 2006;

Eishi Ibe et al,, 2006).

4.5.2.2. Single event transient (SET): an emerging upset mechanism

Without the peripheral logic that interconnects them, sequential logic including
embedded SRAM and DRAM would be useless. In general, the scientific
community is mostly concerned with the effects of SEUs on sequential logic even
though combinational logic is not immune to radiation as single event transients
do occur here as well (Baumann, 2002; Buchner et al., 1997; Xiaowei Zhu et al,,
2005). However, confusion seems to exist in the literature regarding the
terminology used for single event transients. In analog circuits, a SET has also
been referred to as “analog single event upset” (Ecoffet et al., 1994). In digital
circuits, a transient that causes an incorrect state in the data output of a logic

gate has been referred to as “digital single event upset” (Reed et al., 1996).
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Figure 4-12. Traditional propagation of an SET in combinational
logic
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Earlier publications often incorporate both phenomena, SET and SEU, together
as SEU, perhaps because the effects of an SET can potentially be propagated
down the logic line and change the state of a sequential logic element. In this
case, the effects are identical to the effects produced by an SEU as shown in
Figure 4-12. It is also possible that more than on logic element change their state.
This is known as a single event multiple upset or SEMU and should not be

confused with MBU/MCU.

In contrast with SEUs, SETs were at the time not considered a serious threat to

the reliability of semiconductors.

For the purposes of this article, the following definition will apply to the term
SET: Single Event Transients (SETs) are analog transient pulses resulting from a
single ionising particle, that are large or big enough to momentarily change the
output of non latched elements, such as combinational logic, clock line and global
control lines to an incorrect logic value. The duration of such pulse is in the order

of 100ps (Pouponnot, 2005).

As seen previously in section 5.1.2, different semiconductor technologies show
different charge collection and transport mechanisms that lead to different
pulses. Depending on the device technology, circuit topology, impact location,
particle energy device supply voltage and output load, the resultant SET would
have unique characteristics in terms of amplitude, waveform, polarity, duration,
etc. Pulses can vary from tenths of picoseconds to tenths of microseconds. The
effects of a SET can further be propagated along the logical path, and potentially
be latched into one or more flip-flop, latch or register at a distant location from
the original charge collection area. Yet, there has not been too much interest in
protecting combinational logic since this type of logic has a natural tendency to
mask these transient faults. There are inherent masking mechanisms that
mitigate the propagation of the glitches, preventing the latch from taking place.
These three mechanisms, that can provide a certain level of natural resistance to
soft errors, are logical masking, electrical masking, and latch-window masking

(Shivakumar et al.,, 2002; Wirth et al.,, 2008).
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Figure 4-13. Effects of logical and electrical masking on a pipeline
stage (Ramanarayanan et al., 2009)

Logical masking takes place when the particle strikes a portion of the
combinational logic that, regardless of its output, has no effect on the output of
the subsequent gate Figure 4-13. The result of the subsequent gate is solely
determined by its other input values. For instance, the output of a NAND gate
with an input A equals to ‘1’ and an input B equals to ‘0’ would not be affected by
a glitch on the A input since regardless of the value that A has, the gate’s output

would be 1’

Electrical masking occurs when, as the signal propagates, due to the electrical
properties of the subsequent logic gates, the pulse suffers from attenuation to a
point that it is not of sufficient magnitude to upset any downstream state

element (Figure 4-13).
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Figure 4-14. Latch window masking; temporal relationship of
latching a data SET as an error (Mavis and Eaton, 2002)

Latch window masking, also called timing windows masking, occurs when the
undesired pulse reaches a latch at the wrong time of the clock transition (Cha et
al., 1993). That is, the pulse does not satisfy the compulsory setup and hold time
of the flip-flop. The transient will get latched if the pulse reaches the latch within

the “window of vulnerability” (Figure 4-14), hence causing data corruption.

In terms of upset tolerance of single gates, there are two characteristics of
interest: glitch generation and glitch propagation (Dhillon et al, 2005). The
shape and the magnitude of the voltage glitch generated at the gate’s output are
determined by the glitch generation characteristics. The voltage magnitude of
the glitch depends on the total capacitance of the node while the duration of the
glitch depends on the gate’s delay. Faster gates lead to wider glitches and

therefore better generation characteristics.

Alternatively, the glitch propagation characteristics of a logic gate determine the
glitch attenuation as it passes through the gate. Assuming a linear ramp at the
output of a gate, where d is the gate propagation delay and w;is the glitch
duration at the gate input, the glitch duration of the gate wy can be approximated

using Equation 4.4 (Dhillon et al,, 2005) as:
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wo= 0 if d>w;

wo = 2w;—d) if 2d>w;>d

wo = w; if w;>2d

Equation 4.4. Approximation of the glitch duration of a gate [83]

According to Equation 4, slower gates will induce more attenuation on glitches
than faster gates. Therefore, fast gates have better glitch propagation
characteristics. An increase in the gates capacitance would increase the delay of
the gate, which in turn, would reduce the glitch propagation characteristics. SETs
affecting the clock logic or the reset trees can lead to much larger problems (see

Single event functional interrupts section).

In the past, these masking effects are some of the reasons why SETs have not
been a dominant contributor in the overall SER. In addition, designers have not
been significantly concerned about errors in microprocessor logic because the
number of flops on microprocessors was much fewer than the number of
memory cells. Since flop protection techniques are more difficult to implement
than memory protection mechanisms such as parity or ECC, from 90nm

downwards, flop SEU rates are higher than SRAM SEU rates.

SETs are particularly worrisome in safety-critical applications whose memory
has been protected to decrease SEU rates. In this type of systems, SET rates can

be the dominant reliability failure mechanism.

4.5.2.3. Single event functional interrupt (SEFI)

SEFI represent the most disruptive version of non-destructive SEE. Although
this type of anomaly was previously predicted for space environments (Koga et
al., 1985), the term single event functional interrupt (SEFI) was first mentioned
in 1996 (“EIA/JEDEC STANDARD, Test Procedures for the Measurement of

Single-Event Effects in Semiconductor Devices from Heavy lon Irradiation”
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1996). SEFI is defined as all non-destructive failure modes that lead to the
malfunction (or interruption of normal operation) of a part or the totality of the
device (Bougerol et al., 2008). This definition is in contrast with certain authors
that define SEFI as the cause of a higher error rate than expected due to

uniformly distributed upsets (Crain et al.,, 1999; LaBel et al., 1996).

The causes and effects of SEFIs vary from the type of component and the
technology used. In general, SEFIs are linked to an upset (SET or SEU) in a
control area that configures a specific function, and leads to the loss of that
function. In contrast to SEUs and SETs that may or may not affect the operation
of the device, every single type of SEFI leads to a direct malfunction. Figure 4-12
shows an SET affecting combinational logic, not affected by the logical and
electrical masking mechanisms (as in Figure 4-13), that propagates to a register
in a control area within the latch window (as in Figure 4-14). If the register
affected is being used by a vital part of the system software, a SEFI could take

place.
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Table 4-5. Classification of SEFI

Address error, Reading/writing of the Rewriting of

Logic recoverable bust wrone row. column: 512-  the richt Complex memories Fuse latch upsets
SEFI error, temporary & T ’ g such SDRAM (SEFLUs)
8k addresses in errors value
block error
Functionality loss of u Refresh FPGA, Stuck block
Soft SEFI Resettable SEFI y p microprocessors,
to a full memory bank cycles . errors
complex memories
Events that
Hard Permanent SEFI,  Complete loss of Cgvn\:ge: ecle Il;Pl((:;lf?) rocessors lfﬁ(rjllcl'fi?)::ltia alr:)dss
SEFI Reboot SEFI functionality P ye P . ty
of the device  complex memories that cannot be
recovered
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As microcircuits become more complex they also become more susceptible to
SEFIs; among those: SDRAMs (Harboe-Sorensen et al.,, 2007) with complex
internal architecture (such as state machine), FLASH memories (Irom and
Nguyen, 2007; Nguyen et al., 1999; Oldham et al,, 2008), FPGA (Czajkowski et al,,
2006) and microprocessors (Czajkowski et al., 2005). Dependent on cause,

consequences and recovery procedures, SEFIs can be classified as logic, soft or

hard (see Table 4-5).

Logic SEFIs (Bougerol et al., 2008): with regards to memories, it is also called
“address error”, “recoverable burst error” (R. Ladbury et al., 2006) or
“temporary block error” and mainly includes row and column errors. The upset
of a row or column register leads to the reading or writing of the wrong
row/column. This type of SEFI typically causes between X and 8k addresses in
errors where X is the number of addresses per row/column (Bougerol et al.,

2008). Rewriting of the right values is used as to recover functionality (Schagaev

and Buhanova, 2001).

Examples of logic SEFIs are “fuse latch upsets” also called SEFLUs (Bougerol et
al, 2011, 2010) that lead to the wrong addressing of a whole row/column.
Manufacturers are experiencing an increasing number of defective cells,
therefore adding spare cells and exposing them to reliability tests. If during those
tests, a cell is found defective, fuse latches are used to disable the particular
row/column. Typical signatures of fuse latch upsets are multiples of X addresses

where X is the number of addresses belonging to a column/row.

Soft SEFIs also called “Resettable SEFIs” (Bougerol et al., 2008; Lawrence, 2007)
are due to upsets in the device configuration area and usually induce the
functionality loss of several thousands of addresses up to a full memory bank.
Reconfiguration of the device with a mode register set command can be used as a
recovery procedure of the functionality (but not the data). Examples of this are
“block SEFIs” also called “stuck block errors”, observed in the IBM Luna-ES rev C
during heavy ion testing (“NASNGSFC Landsat-7 Project Office, Private

Communication,” 1995) where an entire row of 1024 addresses was stuck to a
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specific value. Since simple writing was not sufficient, device refresh cycles were
used to clear the problem. SEUs in selected areas of an FPGA such the JTAG bit

serial configuration port can lead to inability of reconfiguration.

Hard SEFIs (Bougerol et al, 2010; Harboe-Sorensen et al.,, 2007), also called
Reboot SEFIs (Bougerol et al., 2008), “permanent SEFIs” (Slayman, 2005), “non
resettable errors” (Lawrence, 2007, p. 512) or “persistent non recoverable
errors” (R. Ladbury et al., 2006) can be induced by different phenomena and lead
to the complete loss of memory functionality. Possible causes of this type of
catastrophic SEFI are upsets in the internal state machine, counter registers or
activation of special modes. An example of this is an SEU in one of the power on
reset registers that can lead to the removal of the entire configuration area.

Complete power cycle of the device is compulsory as a recovery procedure.

Fortunately, the probability of SEFI is low compared to other types of SEEs
(Slayman, 2005). The reasons for that are:

e The ratio of the periphery logic area to memory array area is very low;
e The critical charge for logic gates is usually higher than for SRAM cells.

e The most part of the periphery logic is combinational, and therefore less

susceptible to upsets due to the three inherent masking mechanisms.

SEFIs can also be classified as high current SEFIs if they involve a certain

increase in current (Koga et al., 2001a, 2001b).

In addition to SEFIs in complex memories, the energetic particles can also strike
other circuits such that the error detection and correction mechanisms affect the
functioning of the whole circuit. In FPGAs, SEFIs can cause the device to stop
from functioning normally and therefore require a power reset in order to
resume normal operations. In microprocessors, SEFIs can induce upsets in the

program counter, illegal branching and jumps to undefined states.
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4.5.2.4. Single event latchup (SEL) and other destructive effects

”n “

Also called “hard errors” or “non reversible errors”, “single event destructive
effects” are events that momentarily or permanently change the state of a device
or cell/node affecting their functionality. Destructive effects are persistent even
after a reset or reconfiguration and a replacement of components may be

required.

4.5.2.4.1. Single event latchup

A latchup is an unintended and potentially catastrophic state that affects CMOS
devices, characterized by excessive current flow between a power supply and its

ground rail.

It can take place due to the interaction between parasitic structures, usually an
npn- and a pnp- bipolar transistor. A low resistance path develops between
ground and power supply of the device and remains after the triggering event
has been removed. Once triggered, a latchup can amplify currents to a point
where the device fails as a result of thermal overstress. This electrically induced
effect typically occurs in improperly design circuits. However, it was
demonstrated (Leavy and Poll, 1969) that a latchup could also be induced via
ionising radiation (SEL), including high-energy protons, alpha particles, cosmic
rays and heavy ions. The difference between a conventional latchup (electrical)
and a single event latchup (SEL) is that latter phenomenon is triggered by an

energetic particle instead of an electrical overvoltage.
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A classification of different SEL is shown in Table 4-6:

Table 4-6. Classification of SEL

Name Type of error Nature Recovery procedure

Traditional or

destructive SEL Hard High current Replacement of components

Non-destructive

SEL Pseudo-hard  Low current System restart

Reducing the power supply
voltage below the holding
voltage or reset

Localized, high

Microlatchup Pseudo-hard
current

Parasitic transistors of CMOS devices can be triggered by the strike of high-
energy protons, alpha particles, neutrons and heavy ions. An SEL may occur if
enough energy, critical charge, is deposited by a given particle within a
microscopic region of the device, regardless of the total flux. High currents can
lead to metal traces to vaporize, bond wires to fuse open and silicon regions can
be melted due to thermal runaway. Hence, the latched condition may potentially
destroy the device, affect other surrounding devices and destroy the power
supply (traditional or destructive SEL). In certain cases after one or several SEL

can make the device more susceptible to future SEUs.

Both high current and low current SELs can occur (K. LaBel et al., 1992). Modern
devices may have many different latchup paths, making characterization of those
latchup states a challenging task. In some cases, events resulting in localized high
current (microlatchups) can remain functional. In order to restore the device to a
normal operation, these effects can be tolerated by reducing the power supply

voltage below the holding voltage e.g. power off-on reset (PCSE).

Additionally, latent damages have been observed in several types of CMOS

devices after non-destructive latchup events (Becker et al., 2002). Becker defines
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latent damages as “structural damages that cause no electrically observable
parametric or catastrophic device failure, but can be detected by surface analysis
using optical or scanning electron microscopy”. These type of permanent
structural damages are a potential reliability hazard since the interconnect
cross-sections in the damaged area may be reduced by one or two orders of

magnitude.

Sometimes the SELs are not localized affecting the entire device, but the current
may not be high enough to destroy the device (non-destructive SEL). Therefore,
SELs are not invariably destructive and can also be categorized as pseudo hard

errors.

Temperature is an important factor in SEL susceptibility. Higher temperatures
involve a cross section increment and reduction of SEL threshold (Johnston et al.,

1991).

SELs can be mitigated through internal fabrication process modification. Silicon
on insulator (SOI), silicon on sapphire (SOS) and the use of epitaxial substrates
are immune to this type of effects (Miller and Mullin, 1991). However, those are
very expensive and their availability normally limited to mission critical systems
in space environments (Pouponnot, 2005). Additionally, different layout
techniques, like guard drains and guard rings, are often used in CMOS processes.
Alternatively, SEL can be circumvented externally through the use of current
sensing, watchdogs, etc. Internal methods are trying to keep the event from
occurring. With external mechanisms, the event still occurs, but there should be a

recovery strategy to deal with them.

4.5.2.4.2. Single event hard error (SHE or SEHR) or stuck bits

Since the mid-1980s certain SRAM devices, when exposed to heavy ions,
experienced semi-permanent stored bit patterns or stuck bits with no
implication of total dose effects. This form of damage was not reported until

1991 (Koga et al., 1991) and was later studied and renamed as “single hard
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error” (SHE) (Dufour et al, 1992). SHE is an unalterable change of state of a
memory element associated with semi-permanent damage due to high-localized
dose deposition from a single ion track. This type of effect affects memories
(SRAM, DRAM, Flash) and latches in logic devices rendering the cell
unprogrammable (Dufour et al., 1992).

The cell may have an indeterminate value, also appearing as a permanent fault at
the system level. SHEs are considered semi-permanent since some of the stuck

bits tend to disappear (in some cases after a day (Duzellier et al., 1993)).

4.5.2.4.3. Single event snapback (SES or SESB)

This type of effect induce high currents in most cases and is particularly difficult
to differentiate from high current SELs (Beitman, 1988; Koga and Kolasinski,
1989). While SESBs can take place in technologies immune to SEL, it does not
require a four-region structure to arise. In this context, snapback has been
confirmed to be particularly susceptible to SOI structures because of their

internal design (Dodd et al., 2000).

With regards to SESB and NMOS technology, the parasitic NPN bipolar transistor
that exists between the drain and the source amplifies the avalanche current
resulting from the impact of an ionising particle. The transistor then opens and

remains open.

Like SEL, SESB is also considered a potentially catastrophic event since it can
lead to device destruction if not corrected within a short time of occurrence. The
main differences between SEL and SESB lie in the amplitude of the current
increase, their temperature dependence and recovery conditions. First, unlike
destructive SEL, it is often possible to restore normal operation and bring the
device out of the high current mode by changing the gate voltage without
shutting off the power supply. Secondly, the amplitude of the current increase is

much lower for SESB due to its localized nature. Finally, contrary to SEL, SESB is
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weakly dependent on temperature (Johnston, 1996). These facts can be used to

distinguish between SESB and SEL mechanisms.

4.5.2.4.4. Single event burnout (SEB or SEBO)

SEBO typically occurs in power metal oxide semiconductor field-effect
transistors (power MOSFETs) and bipolar transistors since these devices contain
parasitic bipolar transistors between the drain and the source (Hohl and
Galloway, 1987; Waskiewicz et al, 1986). SEBO creates a permanent short
between a source and a drain and involves high currents and localized
overheating. If the device is not provided with current limitation capabilities, and
the drain-source voltage exceeds the local breakdown voltage of the transistor,
the SEBO can lead to the destruction of the device by melting of the silicon in the
affected region (Stassinopoulos et al., 1992)(see Figure 4-15).

Figure 4-15. IRF 150 power MOSFET burnout: a) Optical view of
burnout area on the surface, b) Scanning electron microscope
(SEM) sectional view of a burnout area with 1000x magnification
(Stassinopoulos et al., 1992)

SEBO has occurred in low voltage devices, however devices with high voltages

are more prone to this type of error.

With regards to temperature, it has been shown (Johnson et al., 1992) that
higher temperatures decrease the SEBO susceptibility. The probability of SEBO
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occurrence is low, but apart from the selection of immune device technology,

there are no mitigation techniques.

4.5.2.4.5. Single event gate rupture (SEGR)

It was first observed in non-volatile memories in 1980 (Pickel and Blandford,
1980) and later identified and confirmed in 1984 (Blandford et al., 1984). In
1987 was reported in power MOSFETs (Fischer, 1987) but due to the scaling of
CMOS technology SEGR has become a concern in low voltage circuits (Silvestri et
al, 2009). This type of single event is often observed with SEB in power
MOSFETs. SEGR is triggered by a single ionising particle in a high field region of a
gate oxide, creating a localized gate rupture in such area (Sexton et al.,, 1997).
This rupture manifests as a permanent conducting path between the gate and the
drain (gate rupture - see Figure 4-16). As a result, the electrical performance is

compromised and the functionality of the device may be affected.
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Figure 4-16. SEGR as a result of the impact of a highly energetic
particle. Holes from the particle’s track aggregate under the gate
oxide increasing the high field of the gate oxide to the dielectric
breakdown point (Allenspach et al., 1994)
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Flash memories (Oldham et al, 2006) and non-volatile SRAM are SEGR
susceptible during a write or clear operation due to the large voltage applied to
the memory elements. SEGR is not typical of avionics and ground equipment.
Like SEBO, the probability of occurrence is low, but should be taken into account

in the component selection process.

In order to mitigate SEGR, voltage derating and limiting the available energy to a

device can be employed.

4.5.2.4.6. Single event dielectric rupture (SEDR)

Also called “micro damages”, SEDR was encountered during heavy ion SEE
testing of antifuse FPGA (Katz et al, 1994) and eventually identified as ion
induced rupture of antifuses. Similar to the SEGRs observed in power MOSFETs,
SEDRs affect non-volatile NMOS devices and non-volatile FPGAs (Katz et al,
1997; Swift and Katz, 1996). SEDRs are triggered by a single ionising particle,
and lead to the formation of a conducting path in a high field region of a

dielectric.

4.6. Conclusion

This chapter presents the long-term cumulative and short-term effects of
radiation in embedded systems. First, we present an overview of the
fundamental damage mechanisms and, resulting from such mechanisms we
introduce the major macro effects. Secondly, we focus on the short-term
degradation induced by ionizing particles, namely single event effects. Thirdly,
we describe the physical mechanisms that are responsible for SEE including
charge deposition, charge transport, charge collection, to finally fully describe
the different circuit responses. As a result, an extensive taxonomy of SEE has
been produced, describing their nature, type of degradation, susceptibility, fault

rate trends and recoverability.
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Radiation can have a major impact on all kind of embedded microelectronics
potentially leading to catastrophic failures. As we move to denser semiconductor
technologies at lower voltages, system SER will continue to rise and in particular
the contribution of single event upsets, single event transients, multi-cell upsets
and single event functional interrupts will increase. Error correcting codes are
not efficient when dealing with certain multi-bit faults and errors in combination
logic. In the case of safety-critical embedded systems, more efforts need to be
directed towards research on mitigation techniques for the recent and future

undesired effects.
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5.1. Models

We define M as the known model of a system that performs a given function F.
Let’s imagine a new feature of extreme reliability in that model. In order to
express the existence of this new feature, the predicates P and Q are introduced
to determine the state of the model. P and Q also defined the direction of the time

arrow (see Figure 5-1).

Ms >

Mer

Figure 5-1. New feature of an FT system: reliability

To analyse methods for achieving a required level of reliability with performance
and power consumption constraints, we offer a combination of the following

three models:

e The model of the system M;
e The model of the faults Mpuirthat a RT FT system will be exposed to

¢ The model of fault tolerance Mrror the new structure that implements FT

As shown in Figure 5-1, Ms, Maautand Mrr are mutually dependent models. Notice
that in this approach development and manufacturing costs of a solution are not

considered.

Mfaurt is a description of all faults that a system must tolerate. In binary logic a

typical permanent fault can manifest as "stuck at zero" or "stuck at one".

162



Table 5-1. Typical examples of HW faults

Type of fault  Description Impact

The behaviour of a component that
Byzantine gives conflicting values to other The entire system is affected
components
A temporary or permanent incorrect
behaviour of a subsystem

Resistance on either a line or a block The value associated to the line or the

Subsystem fault The entire system is affected

Open fault

due to a bad connection block is modified
Brideine fault Signals S7 and Sz are connected The value associated to the line or the
ging unintentionally block is modified to a different value
Stuck-at fault  The result value is fixed to 0 or 1 The result value is stuck to 0 or 1

A state switch from 0 to 1, or vice

Bit-flip fault versa, when it should not

The result changes its original value

Table 5-1 shows typical examples of HW faults. Hidden faults, also called Latent
faults are behavioural faults that exist in the hardware over a long period of time,
e.g.: Byzantine faults22 and fail-stop?3 faults. Both types complicate the design of
FT; all described faults should be tolerated within a limited and specified period
of time. This period actually determines the availability of the system. Fault types

differ by their impact, as well as the way they are handled.

Thus, the fault model has its own hierarchy, including single-bit, element,
behavioural and subsystem faults. One has to accept that the fault type is varying
and some action hierarchy to tolerate them is also required. A detailed fault

model is further developed and discussed in Sections 5.2, 5.3 and 5.4.

22 Byzantine faults occur when a faulty system continues to operate, producing incorrect results
sometimes giving the impression that they are working correctly. Dealing with this type of fault is
difficult

23 Fail-stop (also known as fail-silent) faults take place when a faulty unit stops functioning
producing no bad output. It either produces not output or produces correct results that clearly
indicate that the unit has failed.
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Fault encapsulation approaches can help to handle faults: due to deliberate
design solutions it is possible to ensure that severe faults in the system do not
escalate and remain simpler to handle; therefore making the fault handling

practically possible to implement.

RT FT system applications assume long operational life; however, fault-handling
schemes are needed much more often towards the end of the device lifecycle.
The appropriate techniques for tolerating faults of various types are presented
on Table 5-1. As discussed in Section 3.6.1 to tolerate transient faults, time
redundancy in hardware (e.g. instruction re-execution) might be effectively used
and implemented. System software support is also needed, as the hardware

cannot cover all possible faults.

Faults, occurring at the bit level (stuck zero, stuck one and similar) should be
efficiently handled ASAP (as soon as possible) and ALAP (as local as possible), i.e.
at the same or nearest level. The term "level" in our case means the level in the
hardware hierarchy on which the fault should be handled. For instance, when a
"stuck-at zero" permanent fault has occurred in the register file (RF) with no
corrective schemes available, the whole RF has to be replaced, if no other
possible reconfigurations were predefined. In turn, when only one RF is
integrated in the chip and no other reconfigurations are defined then the whole
chip has to be replaced, etc. Pursuing these two principles allows limiting the
fault spreading and its impact to a higher level either in the chip or the system as

a whole.

To tolerate bit-flip faults, hardware and system software information
redundancies might be used, as well as hardware structural support. In this
sense parity checking in registers, supported and implemented concurrently by
hardware, is described as HW(61). HW(6S) and HW(ST) are needed as supportive
redundancies, HW(6S) describing the additional parity line and comparison logic,
and HW(8T) describing the additional time needed to update the parity line and
executing the comparison. Nonetheless, the main type of redundancy used in this

approach is information.
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An exact characterization of the distribution of faults for computer systems is
extremely difficult due to the number of different factors that determine faults,
such temperature, vibration, radiation exposure etc. Besides, discriminating
between transient and permanent faults is difficult. The transient-permanent
fault ratio varies from 10 to more than 1000 depending on the technology,
manufacturing scale, operating conditions, etc. In the case of memories a typical
value of hard error rates is in the order of 10-100 FIT whereas for soft errors it
can vary between 1000 and more than 5000. The upper bound belongs to

aerospace and aviation, principally due to faults induced by alpha particles.

Figure 5-2. Fault tolerance model of a computer system

Figure 5-2 is a combination of Figure 3-2 and Figure 5-1 and presents various
faults in the system and various possible solutions. Mgy illustrates the fact that
the fault types are not separated. For example, Byzantine faults of the system
might be "stuck at zero" faults of the hardware that were spread throughout the
system. The latency of faults becomes crucial in determining the reliability of the
system. Consequently different faults require different actions and mechanisms

to tolerate them.
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The system model of Figure 5-2 has overlapped SSW and HW ellipses to
represent the duality of the system: hardware and system software. Both of them
must be involved in the implementation of fault tolerance and real time features.
The overlapped HW and SSW ellipses indicate that HW and SSW functions might
be applied to tolerate specific types of hardware faults. Other fault types might
also be tolerated by HW or SSW only. Mg is "a conceptual deliverer” of reliability
for the RT FT system. It has to be effective during the whole operational lifetime
of the computer itself. As hardware degrades over time, the fault tolerance
mechanisms are more likely to be used towards the end of the lifecycle. FT
systems are designed with the assumption that new types of faults do not appear
during the operational lifetime of the system, i.e. the system must be designed to
be fault tolerant for the set of faults and their types known at design time. All
these solution