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Abstract 

In the last decade the dominance of the general computing systems market has 

being replaced by embedded systems with billions of units manufactured every 

year. Embedded systems appear in contexts where continuous operation is of 

utmost importance and failure can be profound.   

Nowadays, radiation poses a serious threat to the reliable operation of safety-

critical systems. Fault avoidance techniques, such as radiation hardening, have 

been commonly used in space applications. However, these components are 

expensive, lag behind commercial components with regards to performance and 

do not provide 100% fault elimination. Without fault tolerant mechanisms, many 

of these faults can become errors at the application or system level, which in 

turn, can result in catastrophic failures.   

In this work we study the concepts of fault tolerance and dependability and 

extend these concepts providing our own definition of resilience. We analyse the 

physics of radiation-induced faults, the damage mechanisms of particles and the 

process that leads to computing failures. We provide extensive taxonomies of 1) 

existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-

art electronics, analysing and comparing their characteristics. We propose a 

detailed model of faults and provide a classification of the different types of 

faults at various levels. We introduce an algorithm of fault tolerance and define 

the system states and actions necessary to implement it. We introduce novel 

hardware and system software techniques that provide a more efficient 

combination of reliability, performance and power consumption than existing 

techniques. We propose a new element of the system called syndrome that is the 

core of a resilient architecture whose software and hardware can adapt to 

reliable and unreliable environments.  We implement a software simulator and 

disassembler and introduce a	
   testing	
   framework	
   in	
   combination	
   with	
   ERA’s	
  

assembler and commercial hardware simulators.  
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Chapter 1 

Introduction 

1.1. Motivation 

Embedded systems are ubiquitous nowadays, built into homes, offices, bridges, 

medical instruments, cars, aeroplanes, and satellites and even into clothes. The 

market size of such systems is already larger than the one for general purpose 

computing. The majority of embedded systems are real-time systems (RTSs) and 

most RTSs are embedded in a product. 

For decades, embedded RTSs are being used in fields where their correct 

operation is vital to ensure the safety and security of the public and the 

environment: from automotive systems and avionics to intensive health care and 

industrial control as well as military operations and defence systems. These 

systems are subject to time constraints and must guarantee a response within 

specified timing bounds. The safety critical nature of RT embedded systems 

employed in those fields demands the highest possible availability and reliability 

of system operation. 

The exponential growth of clock frequency and memory size has lead to 

important achievements in the technological development of microprocessors. 
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Manufacturers of advanced silicon electronics have been able to create more 

complex designs by periodically scaling down the technology, increasing the 

transistor density. This growth is supported by the progressive miniaturization 

of electronic components predicted by Moore’s	
  law	
  in	
  1965.	
  	
   

This phenomenon has also produced undesirable consequences that introduce 

physical limitations to the law. Due to the area reduction of electronic 

components to nanometre scales and due to the increase in clock frequencies 

(ITRS, 2011), supply voltages have been reduced to keep power dissipation 

manageable while thermal noise voltages have increased (Asanovic et al., 2006; 

Kish, 2002).  

For a long time, radiation effects have been a serious concern in aviation and 

spacecraft electronics. As the dimensions and voltages of embedded systems are 

reduced, their sensitivity to ionizing particles has considerably increased. 

Energizing particles can produce a number of faults at the hardware level, not 

only in contexts with harsh environmental conditions such as outer space but 

also at sea level with regular conditions. Components with lower power and 

noise margins are less reliable and therefore recent systems are more prone to 

transient faults induced primarily by radiation (Baumann, 2002; R. C. Baumann, 

2005; Seifert et al., 2002; Shivakumar et al., 2002).  Transient faults do not cause 

permanent damage in circuits but can affect system behaviour by corrupting 

stored information or signal communication (Karnik and Hazucha, 2004; Mavis 

and	
  Eaton,	
  2002;	
  “JEDEC	
  JESD89-3A,”	
  2007). 

Besides the typical stress experiments in laboratories based on particle 

bombarding, there is a considerable amount of evidence of radiation induced 

malfunctions and catastrophic failures during operation in real life 

environments. Radiation induced faults are frequent in space environments 

(Adams and Gelman, 1984; Adams et al., 1982; Binder et al., 1975; Blake and 

Mandel, 1986; Waskiewicz et al., 1986).	
  The	
  Saturn’s	
  Cassini	
  (Swift and Guertin, 

2000), Deep Space 1 (Caldwell, 1998), Mars Odyssey (Eckert, 2001) and	
  Jupiter’s	
  

Galileo (Fieseler et al., 2002) are examples of missions that presented 
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malfunctions as a result of cosmic rays. The satellites X-ray Timing Explorer 

(Poivey et al., 2004), Gravity Probe B (Owens et al., 2006), TOPEX/Poseidon 

(Swift and John, 1997) and GRACE (Pritchard et al., 2002) have also reported 

anomalies during operation. 

Radiation Induced faults are also present to a lesser extent in atmospheric 

(Taber and Normand, 1993) and terrestrial environments (Hauge et al., 1996; 

Normand et al., 2010; Ziegler, 1996).    

Due to the reasons stated above there is an increasing need to deal with faults.  

There are two classes of mechanisms to deal with them: fault avoidance and fault 

tolerance (FT) (Avizienis et al., 2004). Fault avoidance means developing 

components/systems that are less likely to present faults while fault tolerance 

techniques	
   focus	
   on	
   the	
   system’s	
   ability	
   to	
   tolerate	
   the	
   effects	
   of	
   these	
   faults.	
  

Fault-tolerance is defined as the ability to provide uninterrupted service, 

conforming to the desired levels of reliability even in the presence of faults 

(Avizienis et al., 2004). Applications of modern electronic systems require more 

and more mechanisms to mitigate the effect of these faults (Nicolaidis, 2010). 

Complete avoidance of faults in a system is practically impossible and hence a 

balance of the two approaches is currently applied.  

The research community mainly focuses on a) identifying all possible 

mechanisms leading to accidents and b) on providing pre-planned defence 

techniques against them. However, too little research effort has been employed 

towards systems that can respond to deviations from desirable states.  

The research is driven by observations of limitations from the evolution of 

computer architectures, which have been motivated by technological and market 

choices as well as physical limitations. These observations refer to performance 

decrease, increase in power consumption/dissipation, reliability aspects, 

parallelization challenges, design complexities, and hardware and software 

inefficiencies. A brief explanation for each follows: 
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Performance deceleration: Transistor density and frequency have increased to 

satisfy the immediate market demands. Therefore, more raw materials in the 

form of transistors is available for system design. However, unjustified 

complexity has been introduced in the current computer architectures. In recent 

years, clock rates of commodity microprocessors have flattened and 

performance of processor cores has slowed down (Asanovic et al., 2006; Hill, 

2010).  

Power consumption / dissipation: Scaling processor clock speed increases 

power consumption (and consequently power dissipation) while the die size 

remains the same. Therefore, the power/density ratio will keep increasing to the 

point where no practical technique can dissipate the generated heat. 

Reliability: Performance, heat and power consumption are not the only 

concerns. Reliability of intra-chip communication is also affected by physical 

constraints. Transistor scaling shortens wire distances, which improves 

performance but also implies thinning of those wires. As wires become 

narrower, in order to reduce the resistance per unit length they also become 

taller. Media resistance limits the speed of electrons within. Tall wires within 

close distance vary dependent timing characteristics at best and produce data 

corruption at worst. In short, thinner wires increase delays and harm reliability. 

Furthermore, as explained earlier, the same radiation fluxes that in the past had 

no effect on electronics are now able to induce faults that affect the logic value of 

current transistors with lower critical charge.  

For these reasons, it is commonly believed by the research community that the 

classic Hardware/Software uniprocessor model has reached the 

power/performance wall (Asanovic et al., 2006; Hill, 2010). 

Parallelization: The microprocessor industry approach is based on using the 

billions of transistors (now available on a die) to a) replicate the off-the-shelf 

core design multiple times and to b) increase the size of caches. Nevertheless, 

effective programming of multi-core is not trivial and introduces multiple 
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challenges (Geer, 2007; Goth, 2009; Pankratius et al., 2009). As an attempt to 

overcome the power wall, the computer science research community has 

reincarnated parallel computing. Parallel computing and parallel programming 

are not new; they have been a mainstay in high-performance since the early 50s 

(Hill and Rajwar, 2001).  

Complexity: The semiconductor industry, driven by economic reasons and time-

to-market needs, has introduced unjustified complexity in microprocessor 

designs.  

Software and Hardware Inefficiency: In terms of software, modular 

programming (Turski and Wasserman, 1978; Wirth, 1983) and later object 

oriented programming (Wirth, 1992, 1988) were introduced to maximize 

performance and effectiveness of the human agent in the programming process. 

To maximize performance of HW/SSW/ASW, several approaches of parallelism 

using distributed, dataflow and cluster architectures were introduced in the late 

50s.  The Flynn diagram (Flynn, 1972) is still in use: SIMD (Single Instruction 

Multiple Data), MIMD (Multiple Instruction Multiple Data) and MISD (Multiple 

Instruction Single Data) are very well known architectures, each with their own 

benefits and drawbacks. In the early 80s the VLIW (Very Long Instruction Word) 

(Fisher, 1983) approach was also introduced. But since then, no significant new 

architecture has been introduced. 

To make the next step in the design of special systems for safety critical 

applications we should analyse what is applicable from the well-developed 

theory	
   and	
  design	
  of	
   fault	
   tolerant	
   systems	
   since	
   early	
  70’s,	
   in	
  particular	
   their	
  

reliability and resilience to electromagnetic impulses. In turn, the success of 

future computer systems for safety critical applications will depend on trading-

off performance, reliability and power consumption. 

The combination of the following two statements forms a framework for this 

research. At first, we should analyse the technological achievements of modern 

electronics in terms of performance. Finally, we should find ways to improve the 
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efficiency of current embedded systems in terms of performance, reliability and 

power consumption.  
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1.2. Scope and Contribution 

This work relates to techniques that improve the reliability of embedded 

systems with regards to permanent and transient hardware faults induced by 

radiation. However, these techniques are also efficient to mitigate the effect of 

faults induced by other means. Note that software faults as the source of errors 

are out of the scope of this thesis. This section briefly explains these 

contributions. 

The main goal of this research was to find efficient techniques and original 

mechanisms to improve the reliability, performance and energy use of real time 

systems in safety-critical applications. This includes the design, development and 

analysis of a fault tolerant reconfigurable architecture in presence of radiation-

induced faults. Such architecture will be further used as a core element for 

reconfigurable computers with key requirements for reliability, power 

awareness, performance and scalability.  

This research is an attempt to overcome known drawbacks of modern RTS. The 

outcomes of such work can be summarized as follows: 

x The traditional Reliability, Fault Tolerance and Dependability concepts and 

definitions do not take into account the transient nature of some of the 

faults induced by radiation.  The result is a new concept of resilience that 

takes into account the changing nature of environment and the different FT 

contexts. 

x We provide a systematic examination of the physical mechanisms that lead 

to faults induced by radiation and the error process. The result is an 

comprehensive taxonomy of radiation-induced effects in modern 

microprocessor technologies; 
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x We develop a fault model that contains an extensive taxonomy of faults that 

can assist in the serviceability and coverage attributes of fault tolerant and 

resilient system designs. 

x We introduce a novel combination of structural hardware elements at the 

active, passive and interfacing zones. In combination with system software, 

these hardware elements can improve the resilience of a system with a 

better compromise in silicon area, reliability, power and performance that 

known fault tolerant systems. We design and implement a hardware 

prototype as a proof-of-concept.   

x We develop a framework and testing scheme for the testing and debugging 

of the hardware prototype. As part of the framework, we implement an 

assembler for the hardware prototype together with a disassembler and 

simulator tool.  

The research is part of a joint research effort performed internationally (so-

called Evolving Reconfigurable Architecture (Schagaev et al., 2010). Theoretical 

development and hardware testing of RA will provide the hardware prototype 

platform for testing hardware reconfigurability. 

 



   

 
9 

1.3. Structure  

This thesis is divided in seven chapters configured as: 

x Chapter 1. Introduction: this first chapter summarizes the approach of this 

doctoral thesis, describes its contribution to science and defines its general 

structure. 

x Chapter 2. Resilience: in this chapter we provide part of the theoretical 

framework of reliability. We analyse the properties of classic dependability 

and we describe our own view of the concept of resilience.  

x Chapter 3. Dealing with faults - redundancy: this chapter provides a 

complete review of state-of-the art techniques employed to deal with faults 

and explores the different types of redundancy and fault tolerant 

techniques.  

x Chapter 4. Impact of radiation in electronics of embedded systems: This 

chapter studies the physical mechanisms of radiation as the primary 

phenomenon that causes faults in current computing systems. We also 

analyse their effect on semiconductors at low, circuit and system levels.  

x Chapter 5. Fault tolerance models: We analyse a model of hardware faults. 

We introduce GAFT and define the different states and actions required to 

implement fault tolerance.  

x Chapter 6. Hardware support and System Software Support for Resilience: 

This chapter details the hardware and system software elements of a novel 

resilient architecture that can achieve various levels of performance, 

reliability and energy consumption.  

x Chapter 7. Implementation: Hardware Prototype, Simulation and Testing: 

This chapter focuses on the development and testing of the hardware 

prototype. Details of the design and development of a software simulator of 

the hardware architecture are also provided.  

x Chapter 8 summarizes and concludes this work. 
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Chapter 2 

Resilience 

This chapter provides a background of necessary concepts in the field of fault 

tolerance and resilience. First, we introduce the system failure lifecycle and 

describe the main threats to resilience. Then, the concept of resilience and its 

attributes and measures are reviewed. We explain our own view of the 

performance and reliability problems that the microprocessor industry is 

currently facing. The classic theory of reliability is presented and an explanation 

is given on how the hardware components of an embedded system can be made 

more resilient to hardware faults. We review the classic mathematical definition 

of reliability and show how to calculate the reliability of a system depending on 

the topology of its components. Other attributes of resilience including safety, 

performability, integrity, maintainability and availability are also reviewed. 

Finally, we extend the definition of resilience and apply it to the field of safety 

critical computing. 
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2.1. System failure lifecycle 

Correct service (Laprie, 1995) also named proper service (Laprie and Avizienis, 

1986) is delivered by a system when the service implements the function as 

specified. The fundamental threats to the correct service and to the resilience of 

safety critical systems are faults, errors and failures that, in turn, can cause 

catastrophic failures. Among these four terms there is a causal effect 

relationship. 

A failure, service failure or system failure is an event that takes place when the 

delivered service deviates from proper service. Hence, a service failure implies a 

transition of the system from proper service to an improper service, not 

implementing the functions as specified by the functional specification of the 

system. The downtime or period of delivery of improper service is also referred 

to as service outage. The transition from improper service to proper service is 

called service restoration, service recovery or repair. 

Since a service is a sequence of the external states of a system, a service failure 

takes place when one or more of its external states deviate(s) from the correct 

service state. These deviations are errors. An error is a part of the system state 

that is liable to lead to a subsequent failure. The hypothesized or adjudged cause 

of such error is a fault. 

 

Figure 2-1. System failure lifecycle within a three universe model 

A fault is a weakness, blemish or shortcoming of a particular hardware 

component or unit. An error is the manifestation of a fault, a deviation from 
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accuracy	
   or	
   correctness.	
   Finally,	
   if	
   the	
   error	
   leads	
   to	
   one	
   of	
   the	
   system’s	
  

functions being performed incorrectly then a failure has occurred. 

Figure 2-1 graphically describes the well-known lifecycle of system failure within 

a three universe model (Johnson, 1989) adapted from the four universal model 

originally developed in (Avizienis, 1982).  In the first universe, the physical one, 

faults are generated due to various sources. Faults can activate errors within the 

second universe, the informational one. Errors take place when some 

information units become incorrect. In turn, errors could propagate the user 

universe and lead to a failure. It is in this final universe, where the user can 

witness the effects of faults and errors in the form of failures. One or more 

failures could potentially cause a catastrophic failure in the case of safety critical 

systems. 

The arrows between the entities in Figure 2-1 correspond to latencies. Fault 

latency (activation latency in Figure 2-1) is the time length between the 

occurrence of a physical fault and the appearance of an error. Likewise, error 

latency is the length of the propagation time that takes place between the 

activation of the error and the manifestation of the failure.  

 

Figure 2-2. Failure-fault transition between different levels of a 
system 
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The term fault and failure is sometimes unclear in reliability literature. In this 

thesis, the term fault is sometimes equivalent to failure. For instance, a system 

fault can be the same as a component failure. Figure 2-2 shows the fault-failure 

transition between a subsystem and a global subsystem. The fault-failure cycle 

can be applied at different levels of abstraction within a system; consider a 

transistor as a subsystem that is part of a more global system (e.g. memory cell): 

the occurrence of incorrect functionality of the transistor during normal 

operation (e.g. the effects of aging and stress) is a subsystem failure of such 

component but may lead to, for instance, a logic fault (global system fault). This 

logic fault will remain dormant unless is activated, producing an error, which is 

likely to propagate and create other errors. If the correct service of that global 

system is affected, a global system failure occurs.  The same subsystem-system 

transition can take place between the memory cell, the memory circuit that the 

cell is part of, the microprocessor system that can be part of a multiprocessor, 

etc. 

2.2. Resilience: Attributes and measures  

The word resilience (from the Latin origin resilire, to jump back, or to rebound) is 

literally the tendency, ability, act or action of springing back, and thus the ability 

of a body to recover its normal shape and size after being pushed or pulled out of 

shape. That is, the ability to recover to normality after a disturbance, shock or 

deviation from the intended state and go back to a pre-existing or acceptable or 

desirable, state. 

The meaning of resilience is different between authors. Hollnagel defines 

resilience as (Hollnagel et al., 2012):  

“The	
   intrinsic	
   ability	
   of	
   a	
   system	
   to	
   adjust	
   its	
   functioning	
   prior	
   to,	
  

during, or following changes and disturbances, so that it can sustain 

required	
  operations	
  under	
  both	
  expected	
  and	
  unexpected	
  conditions” 
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The US Department of Defense (DoD) defines a resilient system as (Neches, 

2012): 

“A resilient system is trusted and effective out of the box in a wide range 

of contexts, easily adapted to many others through reconfiguration or 

replacement, with graceful and detectable degradation of function” 

The Keck Institute for Space Studies has also made a big effort studying the 

attributes of Resilience. During its study (Murray et al., 2013) numerous 

definitions were proposed and discussed.  

The term Resilient has been traditionally used essentially as a synonym of fault-

tolerant (Laprie, 2008). Before we discuss fault tolerance as a concept and 

review the resilience concept, several other terms need to be defined. 

One of them is Dependability, which is an integrative concept that encompasses 

many other quantitative and qualitative attributes. Laprie (Laprie et al., 1992) 

defines dependability as the “trustworthiness of a computer system such that 

reliance can be justifiably placed on the service that it delivers”. 

Dependability is the ability to deliver a service that can be trusted justifiably. 

Laprie defines the service delivered by the system, as its behaviour as it is 

perceptible by is user(s); a user is another system (physical or human) which 

interacts	
  with	
  the	
  former.	
  Such	
  service	
  is	
  classified	
  as	
  “proper”	
  or	
  “correct”	
  if	
  it	
  is	
  

delivered	
   as	
   specified;	
   otherwise	
   it	
   is	
   considered	
   as	
   “improper”	
   or	
   “incorrect” 

(Laprie and Avizienis, 1986).	
   Again,	
   the	
   “properness”	
   or	
   “correctness”	
   of	
   the	
  

system service depends on the viewpoint of the user. 

The terms covered by dependability have been re-defined over the years 

(Avizienis et al., 2004). We merge and organize the attributes or measures of 

dependability and adapt them to the field of safety-critical applications. The 

attributes of dependability are: reliability, safety, performability, and security. The 
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later encloses a subset of attributes including integrity, maintainability and 

availability. 

2.3. Reliability 

The reliability measure is most often used to characterize systems in which 

failures are unacceptable; therefore, it is suitable to the field of safety critical 

systems.  

 
Figure 2-3. A non-repairable system with two states 

Figure 2-3 shows a non-repairable system with two possible states: a fully 

functional start state (up) and a failed state (down), involving loss of 

functionality, which can be reached after a transition due to failure.  

There is no disagreement about the need for reliable systems but some vague 

notion of reliability is not enough in safety-critical engineering. Reliability can be 

defined as follows:  Reliability R(t) is the probability that a system or component 

will perform its intended function without failure over the entire interval [0,t] 

under specified environmental and operating conditions. R(t) is a  probability in 

the sense of being a recurring event. The intended function, period of time and 

stated conditions are all defined as system requirements when designing a real-

time system. Note that the following mathematical equations regarding 

reliability are based on the classical theory of reliability of (Birolini, 2007) and 

are not our original work. 
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2.3.1. Performance and Reliability 

2.3.1.1. Power-reliability wall 

Since the invention of the integrated circuit in 1958 each generation of 

semiconductor technology has exponentially decreased the transistor price and 

exponentially increased the transistor density per chip (Hutcheson, 2009).  

This technological shrink model has led to the impressive level of technology and 

hardware element density recently achieved (Nair, 2002) with processor 

frequencies reaching up to 4.7 GHz (“Power	
   6	
   Specs:	
   IBM	
   Power6	
  

Microprocessor	
   and	
   IBM	
   System	
   	
   p	
   570,”	
   2007). The higher number of 

transistors and the kilometres of wire operating at higher frequencies lead to 

several Watt/cm2 on modern chips leading the peak energy consumption well 

over 140W. Most of that energy becomes heat, rising operating temperatures.  

The cost of the manufacturing process of smaller feature technologies is 

increasing exponentially. Such cost is doubling every four years, which makes 

smaller nanometre technologies and the continuation of this law no only a 

technical challenge but an economic one. 

 
Figure 2-4. Growth in performance since the mid-1980's (Hennessy 

and Patterson, 2006) 
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Evidence of this phenomenon is the chart shown in Figure 2-4 that plots 

performance gap between the processor and memory of the VAX 11/780 

(measured by the SPECint benchmarks1). Subsequent to the mid-1980s, 

processor performance growth averaged about 52% per year. Since 2002, 

uniprocessor performance has slowed down to about 20% per year reaching the 

power-reliability wall in 2006. On the other hand, memory has averaged a 

constant performance increase of 9%. 

Using	
   Moore’s	
   law	
   as	
   a	
   measure of progress has become misleading, as 

improvements in transistor density no longer translate into performance and 

energy efficiency. Starting around the 65nm technologies, transistor scaling no 

longer delivers the performance and energy gains that drove the semiconductor 

growth during the past decades (Dreslinski et al., 2010). 

The Research community and the Industry believe that parallelism is the answer 

to overcome the performance wall, however with different implementation 

approaches. The industry has attempted to react by escalating the number of 

processors introducing multi-core architectures and parallelism. Multiplying the 

number of big, complex and power demanding existing cores, (which are part of 

the problem) does not adequately solve any of the performance, reliability and 

power awareness concerns (Asanovic et al., 2006).  

 

                                                        

1 SPECint benchmarks are a set of benchmarks design to test the integer processing performance 
of modern CPU (http://www.spec.org/) 

http://www.spec.org/
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2.3.1.2. Reliability within the vicious cycle 

What follows is an attempt to interpret the current performance and reliability 

issues of the microprocessor industry. In this context, we use the term vicious 

cycles: cycles as chains of events that reinforce themselves in a feedback loop. 

The term vicious is used, as the results of such chains are detrimental.  

The semiconductor industry driven by economic reasons and time-to-market 

needs has introduced too much complexity in microprocessor designs. Figure 2-5 

shows our interpretation of the reliability problem in current computing. 

 

Figure 2-5. The Vicious Cycle and the evolution of computing 
systems. 1950-2005 

An efficient and logical design could have achieved better results in the long-

term. Instead, a brute force approach, increasing frequency, deeper pipelines and 

cache levels (pipelines and cache levels provide slight performance at a high cost 

of chip floor plan) has been employed (Asanovic et al., 2006). 
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Increased processor performance allows software companies to develop larger 

and feature-richer software, which involves larger development teams. 

Consequently, developers need higher-level languages and abstractions, which 

are less efficient and generate slower programs. As a result faster processors are 

needed, reinforcing this vicious cycle (Figure 2-5) and generating detrimental 

results. Under this cycle, existing programs would run faster on the latest 

generation of microprocessors. 

Since 2005-2006, no considerable increase in functional hardware performance 

has occurred. Existing programs need to be redeveloped to take advantage of the 

new multi-core. Consequently, the vicious cycle does not apply anymore. The 

power wall has dramatically slowed down the evolution of microprocessors in 

terms of performance. 

Clearly, technological developments have not been supported by a logical 

evolution. There is an increasing need for unified hardware and software 

technologies. Development of a new computing paradigm and its implementation 

through the whole cycle of hardware, software and application design, 

development and prototyping is required. 

2.3.2. Reliability and unreliability functions 

Let’s	
  suppose	
  we have a system with N identical components. We define S(t) as 

the number of surviving components at time t and Q(t) as the number of failed 

components up to time t. Therefore: 

𝑆(𝑡) +   𝑄(𝑡) = 𝑁 

Equation 2.1. Surviving and failed components at time t  

The reliability R(t) is the proportion of components that continue to perform 

without failure after being used for a period of time t. That is the probability of 

survival of the components, given by: 
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𝑅(𝑡) =   
𝑆(𝑡)
𝑁    

Equation 2.2 – Probability of survival of components at time t 

Unreliability or Cumulative failure distribution function is generally referred to as 

the probability of failure. More specifically, unreliability F(t) is the conditional 

probability that the system begins to perform incorrectly during the interval [t0, 

t] given that the system was performing correctly at time t0 : 

𝐹(𝑡) =   
𝑄(𝑡)
𝑁    

Equation 2.3. Probability of failure of components at time t 

Based on Equation 2.1: 

𝑅(𝑡) + 𝐹(𝑡) = 1 

𝐹(𝑡) = 1 − 𝑅(𝑡) 

Equation 2.4 – Reliability and Probability of failure of components 
at time t 

 

Figure 2-6. Reliability R(t) and Failure probability F(t) functions 
over time t 
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Figure 2-6 shows a graph of the reliability and failure probabilities over time 

with a constant failure rate. R(t) is a monotonically decreasing function that has 

an initial value 1 whereas F(t), starting at 0, increases monotonically. The sum of 

F(t) and R(t) at any given time is 1. 

2.3.3. Probability density function  

The derivative of F(t) is a probability distribution function (PDF) that defines the 

probability of failures per unit time f(t) of a particular component that has been 

used for a period of time t (Birolini, 2007). Based on this definition, the 

probability density function is described as: 

𝑓(𝑡) =   
𝑑𝐹(𝑡)
𝑑𝑡    

Equation 2.5. Probability density function as a function of 
Unreliability 

Using Equation 2.4:  

𝑓(𝑡) =   
𝑑[1 − 𝑅(𝑡)]

𝑑𝑡 = −
𝑑𝑅(𝑡)
𝑑𝑡    

Equation 2.6. Probability density function as a function of 
Reliability 

Thus, the probability of a failure during the time range [0,t] is: 

𝐹(𝑡) = න 𝑓(𝑡)𝑑𝑡    
௧

଴
 

Equation 2.7. Probability of failure during the time range [0,t] 

Using Equation 2.4:  

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 −  න 𝑓(𝑡)𝑑𝑡    
௧

଴
=   න 𝑓(𝑡)𝑑𝑡    

ஶ

௧
 

Equation 2.8 – Reliability during the time range [0,t] 
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Figure 2-7. Representation of Reliability, Unreliability and the 
probability density function 

Figure 2-7 is a schematic that illustrates the relationship between the 

unreliability or probability of failure (area in red), and probability of success 

(area in blue) and the PDF. In this schematic only two mutually exclusive states 

can occur: failure or success. F(t) and R(t) are the probability of these two states 

and the sum of these two is always equal to 1. 

2.3.4. Failure rate function 

The failure rate function 𝜆(𝑡) (also known as momentary failure rate or hazard 

function) describes the number of failures per unit of time versus the number of 

components still operating at a time (surviving components) (Birolini, 2007): 

𝜆(𝑡) =   
1
𝑆(𝑡)  

– 𝑑𝑄(𝑡)
𝑑𝑡  

Equation 2.9. Failure rate as failures vs components at time t 

Using Equation 2.3 and Equation 2.2: 

𝜆(𝑡) =   
1

𝑁  𝑅(𝑡)  
𝑁  𝑑𝐹(𝑡)
𝑑𝑡  
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𝜆(𝑡) =   
1

𝑅(𝑡)  
𝑑𝐹(𝑡)
𝑑𝑡 =

𝑓(𝑡)
𝑅(𝑡) 

Equation 2.10. Failure rate as a function of reliability and 
probability density 

The failure rate function is very accurate to express the reliability of 

semiconductor components for long periods. However, calculating the failure 

rate at a specific point of time within a short period is impractical. Consequently, 

average failure rate, with longer time periods, is preferred: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑓𝑎𝑖𝑙𝑢𝑟𝑒  𝑟𝑎𝑡𝑒 =
Total  failures  during  a  period

total  operating  time  within  a  period 

Equation 2.11. Average failure rate 

The values of average failure rate can be expressed by % or ppm2. However, FIT3 

it is more widely used as a unit for reliability.  

2.3.5. Cumulative hazard function 

Using Equation 2.4: 

𝜆(𝑡) =   
−1
𝑅(𝑡)  

𝑑𝑅(𝑡)
𝑑𝑡  

Equation 2.12. Failure rate function as a function of reliability 

                                                        

2 ppm	
   is	
   the	
   abbreviation	
   of	
   “parts	
   per	
   million”.	
   One	
   ppm	
   means	
   1	
   faulty	
   component	
   out	
   of	
  
1000000 components. Hence, an average failure rate of 10 ppm means that there are 100 faulty 
components out of 1000000, or 1 component out of 100000.  

3 FIT is a unit widely used to express failure rate. One FIT equals to one failure per billion (109) 
hours (one failure in about 114,155 years), or 1ppm/1000h 
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This expression can be integrated from time 0 to time t giving the cumulative 

hazard function H(t): 

𝐻(𝑡) = න 𝜆(𝑡)𝑑𝑡    
௧

଴
= −න

𝑑𝑅(𝑡)
𝑅(𝑡)     

ோ(௧)

ଵ
 

Equation 2.13. Integration of the failure rate from time 0 to t. 

The limits of the integration are obtained as follows: 

x at time t=0, R(t)=1 

x at time t by definition the reliability is R(t) 

Given the assumption of a constant failure rate λ	
  of a component (typically in per 

million hours or FIT): 

𝜆𝑡 = −𝑙𝑜𝑔𝑅(𝑡) 

−𝜆𝑡 = −𝑙𝑜𝑔𝑅(𝑡) 

𝑅(𝑡) =    𝑒ିఒ௧ 

Equation 2.14. Reliability at time t with constant failure rate 𝛌 . 

2.3.6. Bathtub curve of failure rates 

The following section describes the classic Bathtub Curve used in reliability 

engineering.	
   In	
   the	
   1950’s	
   the	
   Advisory	
   Group	
   for	
   the	
   Reliability	
   of	
   Electronic	
  

Equipment discovered this typical curve, which defines the failure rate of 

electronic equipment. 

A value can be assigned to the reliability of a system. For instance, a system may 

have 97% reliability over a two-year mission, subject to a maximum vibration 

Vmax, a humidity range [Hmin, Hmax] and temperature range [15oC, 30oC]. Although 

the above definition is generally accepted, it is not a complete definition from the 

starting to the end time of a safety-critical	
  system’s	
  life.	
  System reliability will be 

different for different time periods. Therefore, more factors need to be 
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considered. For a correct service delivery in a specific period, the system must be 

operating properly at the beginning of the observation period. 

The operational age of the system is one of the factors that should be taken into 

account. The above definition does not differentiate between: 

x a new system, 

x a system that has been operational for a substantial amount of time and 

whose faults have already been corrected, and 

x an old system with a long operational history and wear out issues 

 

Figure 2-8. A bathtub curve of failure rates. During normal 
operation	
  period	
  the	
  failure	
  rate	
  λ	
  is	
  constant	
  and	
  faults	
  are	
  

independent 

Reliability distributions with decreasing, constant and increasing failure rate as a 

function of time are illustrated in Figure 2-8 during period (a), (b) and (c) 

respectively. The assumption made is that faults are independent and that the 

failure	
  rate	
  (λ)	
  is	
  constant.	
  The	
  system	
  failure	
  rate	
  is	
  dependent	
  on	
  the	
  system’s	
  

lifetime constituting a function with a bathtub shape and three distinctive areas 

or periods: an early failure period (a), a normal operating period (b) and a wear 
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out period (c).  For failure rates higher than the constant failure rate (λ), the 

chance of system failure becomes higher. 

For a new system (case a) there is an early failure or infant period with a 

decreasing but high failure rate due to latent manufacturing defects that escape 

the initial testing of the product. As the products get into operation, these defects 

surface quickly when the devices are stressed. Once the infant failures are 

eliminated, this high failure rate rapidly decreases to an almost constant value 

during the normal operating or grace period (case b). This long period represents 

the useful life of the system where failures occasionally occur due to the sporadic 

breakdown of weak components. It is highly desirable that this period of low 

failure	
  rate	
  and	
  high	
  reliability	
  dominates	
  the	
  product’s	
  lifetime. 

During the wear out or breakdown period (case c) the reverse situation takes 

place. As the system gets older, the failure rate increases sharply due to age-

related wear out. Note that many devices that form part of the same system will 

initiate this phase roughly at the same time. This could create an avalanche effect 

that could critically decrease the overall reliability of the system. 

After analysing the bathtub curve and the three periods of operation involved, it 

is clear that the previous equations of reliability only suit the normal operating 

period with a constant failure rate. This curve represents very well hardware 

reliability due to aging and degradation but it is not suitable to software, 

especially in the case of versioning and upgrades. The silicon failure mechanisms 

will be further studied in Chapter 4. 

2.3.7. Mean time between failures (MTBF) 

Instead of a monotonic function of time reliability can also be expressed as a 

numeric index. Mean time between failures (MTBF) is the average time that the 

system will run between failures (Garland and Stainer, 2013). This measure is 

convenient to compare the reliability of different repairable systems. MTBF can 

be estimated by averaging the time between failures, including any additional 
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time required to repair the system and place it back to a functional state.  The 

equations in this section are obtained from (Birolini, 2007). 

Being f(t) the probability of failure per unit time, MTBF can be described by: 

𝑀𝑇𝐵𝐹 = න 𝑡𝑓(𝑡)𝑑𝑡    
ஶ

଴
 

Equation 2.15. Probability of failure per unit time (MTBF). 

Using Equation 2.6:  

𝑀𝑇𝐵𝐹 = −න 𝑡
𝑑𝑅(𝑡)
𝑑𝑡     

ஶ

଴
 

Equation 2.16 

Integrating the above equations by parts we obtain: 

𝑀𝑇𝐵𝐹 = −[𝑡𝑅(𝑡)]଴ஶ න 𝑅(𝑡)𝑑𝑡    
ஶ

଴
 

Equation 2.17 

For  t = 0, R(t) = 0, hence t × R(t)=0. As t increases from 0, R(t) decreases. As t 

tends to ∞, t×R(t) tends to zero. Therefore, the first term of the previous 

equation is zero. For any kind of failure distribution with a failure rate λ as a 

function of time, the general expression for MTBF can be described as: 

𝑀𝑇𝐵𝐹 = න 𝑅(𝑡)𝑑𝑡    
ஶ

଴
 

Equation 2.18. General expression of MTBF  

The higher the MTBF is, the higher is the reliability of the system or component. 

Moreover, for failure distributions independent of time with a constant rate, 

MTBF is given by: 
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𝑀𝑇𝐵𝐹 = න 𝑒ିఒ௧𝑑𝑡    
ஶ

଴
 

Equation 2.19. MTBF for time independent failure distributions 
with constant rate of failures 

 

𝑀𝑇𝐵𝐹 =
1
𝜆  ൣ𝑒

ିఒ௧𝑑𝑡൧
଴
ஶ =

1
𝑏 

Equation 2.20. MTBF for time independent failure distributions 
with constant rate of failures 

Hence, MTBF of a system is reciprocal to its failure rate (given a constant failure 

rate). MTBF will be expressed in hours if the constant rate is also expressed in 

hours.  

2.3.8. Mean time to failure (MTTF) 

As described above, MTBF is a good measure of reliability for systems that can be 

repaired. A similar single-parameter indicator of reliability for components that 

cannot be repaired is the mean time to failure (MTTF). MTTF is the average time 

until	
   the	
   first	
   system’s	
   failure.	
   Results of life testing can be used to calculate 

MTTF by testing a set of N identical units until all of them have failed with the 

time to the first failure of the individual units identified as t1,	
  t2,	
  t3,	
  …, tn. It can 

be observed that MTTF is given by: 

𝑀𝑇𝑇𝐹 =
1
𝜆෍𝑡௜

௡

௜ୀଵ

 

Equation 2.21. Mean time to failure (MTTF) 

As before, the failure rate, if independent of time, can be calculated by: 

𝜆 =
1

𝑀𝑇𝑇𝐹 

Equation 2.22. Failure rate as the inverse of MTTF 
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MTBF and MTTF are sometime used interchangeably. Although the numerical 

difference is small in many cases, both measures represent different concepts. 

MTTF is related to MTBF but does not include the repair time (MTTR or mean 

time to repair/restore) nor the detection time (MTTD or mean time to 

detection): 

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝐷 +𝑀𝑇𝑇𝑅 

Equation 2.23. MTBF as a function of MTTF, MTTD and MTTR 

MTTR is the average time required to repair a system whereas MTTD is the 

average time required to detect a failure. In most applications, MTTR and MTTD 

are just a small fraction of the total MTTF. Therefore, the approximation that 

MTBF and MTTF are almost equal is sometimes fair. MTTR and MTTD are 

difficult to estimate and can be determined by injecting faults into a system, 

measuring the time required to repair it. Both measures will be further discussed 

in the availability section.  

2.3.9. Reliability prediction  

In the case of design of hardware systems, there are two different known 

theoretical methods to meet the above mentioned reliability requirements and 

specifications: 

x Fault avoidance: makes use of substantially higher reliability components 

and substantially higher than expected lifetime. Birolini (Birolini, 2007) 

introduced a comprehensive theoretical approach based on the application 

of reliability engineering throughout the system to reach this goal. 

x Fault tolerance: deliberately introduces redundancy in the system to 

achieve continuous operation. 

During the last 50 years there have been several attempts (Gnedenko et al., 1999; 

Koren and Krishna, 2007; Kovalenko et al., 1997) to connect probability and 
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reliability. A brief review of the probabilistic theory of reliability for the analysis 

of real objects and their features (fault tolerance) is presented below. 

Reliability of systems can be estimated by partitioning those systems into more 

elemental entities (e.g. subsystems or components) and then by assessing the 

individual probability theory of these individual entities. The entities can be 

interconnected in serial, parallel or both. Therefore reliability models are needed 

to illustrate the functional relationship among the entities of the system and the 

way in which a failure of each component would affect the overall reliability of 

the system. 

2.3.9.1. Serial Reliability 

The mathematical equations in this section are based on the classic reliability of 

(Birolini, 2007). In this model, the entities are connected in series. When 

minimum design and costs are specified in the design requirements of a system, 

a series system is the usual choice for designers. For the system to be 

operational, all of the components or subsystems should be operational and 

work correctly. Serial systems are inherently unreliable since the failure in one 

of the elements would cause a stoppage of the overall system.  

 

Figure 2-9. Logic diagram of Serial reliability  

The reliability of a system without redundancy may be described with a 

sequential reliability block diagram (see Figure 2-9). In this arrangement the 

system reliability is the product of its individual component reliabilities, 

assuming they are organized in serial (cumulative) structure. Note that for this 

structure, if the reliability of each component is Ri, the total system reliability Rs 

is given by: 
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𝑅௦(𝑡) =ෑ𝑅௜(𝑡)
௡

௜ୀଵ

= 𝑒𝑥𝑝ቌ−ቌ෍𝜆௝

௡

௝ୀଵ

ቍ 𝑡ቍ 

Equation 2.24. System reliability of a serial system 

And the failure rate of the system 𝜆௦  is given by: 

𝜆௦ = 𝜆ଵ + 𝜆ଶ + 𝜆ଷ +  …  + 𝜆௡ 

Equation 2.25. Failure rate of a serial system 

Furthermore, the Mission Time Function MT(r) gives the time at which system 

reliability falls below the given threshold level r. The relationship between 

reliability R(t) and mission time MT(r) is given by the definitions: 

𝑅[𝑀்(𝑟)] = 𝑟 

Equation 2.26. Mission time function MT with threshold level r 

𝑀்[𝑅(𝑡)] = 𝑡 

Equation 2.27. Mission time function MT at a given time 

If	
  λ is constant then, using Equation 2.14: 

𝑡 =   
−𝑙𝑛(𝑟)
𝜆  

𝑀்(𝑟) =   
−𝑙𝑛(𝑟)
𝜆  

Equation 2.28. Mission time function MT with constant failure rate 

So for a non-redundant system with n components 

𝑀்(𝑟) =   
−𝑙𝑛(𝑟)
∑ 𝜆௜௡
௜ୀଵ

   

Equation 2.29. Mission time function MT for non-redundant systems 
with n components 
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The failure rate of a sequential independent element system is equal to the sum 

of the failure rates of its elements. In the case of a constant failure rate across all 

elements, the MTTF of the whole system (MTTFS) can be calculated as follows: 

𝑀𝑇𝑇𝐹ௌ = 1/𝜆௦ 

Equation 2.30. Mission time to failure of a system with constant 
failure rate 

Note that this equation highlights the fact that the reliability of a system is 

directly impacted (in practice often dominated but not solely determined) by the 

reliability of its least reliable component. 

2.3.9.2. Parallel reliability: Redundancy and fault tolerance 

In the previous model, no redundancy was taken into account to calculate the 

system reliability. A second approach to achieve a required level of reliability is 

the deliberate introduction of extra components into the system. The sole 

purpose of introducing this redundancy artificially is to increase reliability. 

However, there is	
  a	
  price	
  to	
  pay	
  for	
  such	
  improvement	
  in	
  the	
  system’s	
  reliability. 

This approach assumes a deliberate introduction of redundancy in the system 

and has been applied since the original work of Von Neumann (von Neumann, 

1956) and Pierce (Pierce, 1965). Note that introducing redundancy involves 

some additional components and complexity and it is therefore imperative that 

the reliability benefit accruing from the redundancy scheme must far exceed the 

decrease in reliability due to the actual implementation of the redundancy 

mechanism itself. 

The classic parallel generalization of the redundancy model (Birolini, 2007) 

describes a system of n statistically identical elements in active redundancy, 

where k element(s) is/are required to perform a function and the remaining n-k 

are in reserve. 
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Figure 2-10. Parallel reliability 

A function of the system is considered successful if during scheduled time k 

element(s) of the system was/were available. As an example, in the case of a 1-

out-of-3 system (Figure 2-10), its function would be complete if at least one of 

the elements was known to be working correctly. The second and third elements 

are redundant and introduced only for reliability purposes when the first unit is 

known to be faulty. 

For the system of Figure 2-10 the reliability function is as follows: 

𝑅(𝑡) = 𝑅ଵ(𝑡) +  𝑅ଶ(𝑡) +  𝑅ଷ(𝑡) −  𝑅ଵ(𝑡)𝑅ଶ(𝑡)𝑅ଷ(𝑡) 

Equation 2.31. General reliability of a 1-out-of-3 parallel system 

Assuming that the elements are identical, work or fail independently of each 

other and have constant failure rate  𝑅ଵ(𝑡) = 𝑅ଶ(𝑡) =    𝑒ିఒ௧ , then by 

substitution: 

𝑅(𝑡) = 3𝑒ିఒ௧ − 𝑒ିଷఒ௧ 

Equation 2.32. Reliability of a 1-out-of-3 parallel system with 
constant failure rate 

𝑀𝑇𝑇𝐹௦ =
3
𝜆 − ൬

1
3൰ 𝜆 =

8
3𝜆 

Equation 2.33. Mean time to failure  of a 1-out-of-3 parallel system 
with constant failure rate 

Therefore the apparent working time of the redundant system is increased. 
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In the general case where n redundant elements are introduced as spares to 

provide successful completion	
   of	
   an	
   element’s	
   function	
   with	
   the	
   same	
  

assumptions as above, the overall system reliability is given by: 

𝑅(𝑡) = 1 − ൫1 − 𝑒ିఒ௧൯௡ 

Equation 2.34. General reliability of a 1-out of n parallel system 
with constant failure rate 

In the above equation n is the number of modules, 𝑒ିఒ௧is the reliability of the 

original system and it is assumed that: 

x There is a fault-free mechanism to detect and report failure of the active 

module,  

x There is a fault free switching mechanism to replace the active module in 

case of detected failure, and  

x All modules have equal reliability 

Thus, there is no doubt that redundancy even for this classic case could improve 

reliability of the system considerably. Note that the redundant components do 

not necessarily need to be identical, but could also correspond to additional 

hardware with different reliabilities used to detect and treat transient faults. 

2.3.9.3. Mixed reliability: Serial and Parallel 

In practice, systems are usually made of a combination of serial and parallel 

components. More complex math applies to the reliability of these mixed 

arrangements. This type of arrangement is frequently used in systems where a 

specific part is particularly prone to failure. Figure 2-11 depicts an example of M 

of N system, whose elements may or may not have constant rates, and has a 

voter that counts for the serial reliability element. 
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Figure 2-11. Reliability of a combination of serial/parallel 
components with a voter 

Assuming that only 1 out of N parallel components needs to operate, the 

reliability of the parallel section of the system is defined by: 

𝑅(𝑡) = 1 − ൣ൫1 −  𝑅ଵ(𝑡)൯൫1 −  𝑅ଶ(𝑡)൯൫1 −  𝑅ଷ(𝑡)൯൧ 

Equation 2.35. General reliability of a parallel section of a specific 
mixed serial/parallel system 

 

𝑅ଵିଷ(𝑡) = 1 −  ෑ(1 −  𝑅௜(𝑡))
௡

௜ୀଵ

 

Equation 2.36. General reliability of a parallel section of a specific 
mixed serial/parallel system 

The total reliability of the mixed serial/parallel system shown in Figure 2-11 is 

specified by: 

𝑅(𝑡) =   𝑅ଵିଷ(𝑡)𝑅ସ(𝑡) 

Equation 2.37. General reliability of a parallel section of a specific 
mixed serial/parallel system 

Therefore, a relatively reliable voter would dominate the reliability of a 

redundant system. 
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2.4. Safety 

In safety-critical systems, safety describes the absence of catastrophic failures for 

users and the environment when a failure takes place. A system that can be 

repaired after failure presents a minimum of two states: functional and failed. 

Some other systems are able to have extra states even under faulty conditions. 

An example of such system, depicted in Figure 2-12, has the possibility of 

transiting to a safe state, in a manner that does not cause any harm. 

 

Figure 2-12. A basic fail-safe system with three states 

Safety is a measure of the fail-safe capability of a system and it is defined as the 

probability that a system will either perform its function correctly or will 

discontinue its operation in a safe way (Laplante and Ovaska, 2011). 

Quantitatively, safety is the probability that the system will not fail in the interval 

[0,t] in such a manner as to cause unacceptable damage to other systems or 

compromise the safety of any people associated with the system.  

The safety function can be described by: 

𝑆(𝑡) =   𝑃௙௨௡௖௧௜௢௡௔௟(𝑡) +    𝑃௦௔௙௘ି௠௢ௗ௘(𝑡) 

Equation 2.38. Availability as reliability and recoverability 

Safety is directly dependent on “risk”,	
  as the probability of loss associated to a 

particular failure. In turn, risk is a function of the probability of failures and their 

severity on the system. A system can be unreliable, have low availability and yet 

be safe. A system is safe if it functions correctly or if in case of failure it can 

remain in a safe state. 
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2.5. Security 

Contrary to (Avizienis et al., 2004) that adds confidentiality as one of the 

attributes of security, we consider Security as a property that can be defined by 

three attributes:  integrity, maintainability and availability. For a resilient system 

in	
  the	
  field	
  of	
  RTS’s, confidentiality is not an essential attribute. 

2.5.1. Integrity 

The attribute of Integrity is inward-looking and is related to the capability of a 

system to protect computational resources and data under severe circumstances. 

Integrity can be defined as the absence of improper system state alterations. As 

suggested by (Storey, 1996) two types of integrity can be defined: 

x System integrity: the ability of a system to detect faults during operation 

and to inform to a human operator. 

x Data integrity: the ability of a system to prevent damage in data and 

possibly to correct errors that occur as a consequence of faults.  

2.5.2. Maintainability 

Based on the definition of (McGraw-Hill concise encyclopedia of engineering, 

2005), Qualitatively, we define maintainability as the ease and rapidity in which, 

following a failure, a repairable system can be restored to a specified operational 

condition. Quantitatively, we define maintainability as the probability M(t) that a 

failed system will restore to a normal operable state specified within a given time 

frame t.  

The restoration process involves the location of the problem, the 

reparation\recovery of the system bringing it back to a normal operational 

condition. Maintainability has two main components, serviceability and 

recoverability that should by carefully analysed in the implementation of self-

repairing systems: 
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𝑀(𝑡) =   𝑓൫𝑆(𝑡), 𝑅𝐶(𝑡)൯ 

Equation 2.39. Maintainability of a system 

Maintainability characteristics are determined by the system design of 

maintenance procedures, such preventive (PM) and corrective maintenance (CM) 

procedures. These two procedures apply to the serviceability and recoverability 

components and determine the length of repair times (Bodsberg and Hokstad, 

1995; Dhillon, 2006). PM is the set of activities performed on a system before the 

occurrence of failure in order to prevent any degradation in its operating 

condition. PM aim to reduce the probability of failure at predetermined intervals 

or along with prescribed criteria. CM is the remedial set of activities performed 

on a system in order to recover an item to its fully functional condition. CM is 

usually unplanned that requires urgent attention 

 

Figure 2-13. Preventive and corrective maintenance on a three state 
repairable system 

Figure 2-13 shows PM and CM mechanisms on a three-state repairable system. 

Note that not all maintenance leads to downtime of the three-state system. 

Whilst running PM and remedial CM prevent and correct failures during normal 

operation, shutdown PC and CM take place during non-functional states. 

2.5.2.1. Recoverability 

Once the problem has been identified and located by the testing mechanisms, CM 

can be carried out to complete the necessary repairs. Consider a repairable 
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system with two states: a fully functional and a failed one (as in Figure 2-3); 

however, in this case the failed state can be abandoned after successful CM, 

transiting back to a fully functional state (as in Figure 2-14).   

 

Figure 2-14. A repairable system with two states and corrective 
maintenance 

Recoverability RC(t) may be defined as the ease of restoring the service after 

failure. It can be modelled as: 

𝑅𝐶(𝑡) = 1 − 𝑒ିஜ௧ 

Equation 2.40. Recoverability of a system 

where µμ is the repair rate or average number of repairs that can be performed 

per time unit, the key aspects of recoverability, MTTR and MTTD, are given by: 

𝑀𝑇𝑇𝐷 +𝑀𝑇𝑇𝑅 =
1
µμ 

Equation 2.41. Mean time to repair (MTTR) and Mean time to 
detection (MTTD) of a system 

Note that good testing would affect recoverability to a degree.  

MTTR will be further discussed below in the availability section. 

2.5.2.2. Serviceability or Testability, T(t) 

Testability T(t) is the ease in which servicing and inspections can be conducted in 

order to identify the characteristics of a system; it is the ability to check certain 

attributes within a system. Measures of testability allow the system to assess the 
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ease of performing tests. Ideally, in order to improve testability the tests can be 

automated and implemented as an integral part of the system. These techniques 

can be used for error detection and error correction within the system. Since 

most of the time, testability is often used to determine the source of the problem, 

one way to improve the maintainability of the system significantly is the use of 

automatic diagnosis.  

Testability relates to reliability since it allows detection and correction of errors 

that would, otherwise become failures, thus improving the overall reliability of 

the system. Testability is clearly connected with recoverability due to the 

importance of minimizing the time to locate and identify specific problems. 

Two properties/measures closely associated with testability, controllability and 

observability (Franklin and Saluja, 1995, p. 199; Goldstein, 1979). Observability 

relates to the probability of “observing”, via output measurements, the state of a 

system. Controllability instead is associated to the ease of forcing parts of the 

system into desired states by using appropriate control signals. Design for 

testability techniques (DFT) (Alanen and Ungar, 2011; Karimi and Lombardi, 

2002; Landis, 1989; Mathew and Saab, 1993), can be used in order to increase 

observability and controllability of systems.  

2.5.2.3. Coverage 

Mathematically, fault coverage C is the conditional probability that, given de 

existence of a fault in the operational system, the system is able to recover, and 

continue information processing with no permanent loss of essential information 

(Bouricius et al., 1969) i.e.: 

𝐶 = Pr   [𝑠𝑦𝑠𝑡𝑒𝑚  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑠  |  𝑠𝑦𝑠𝑡𝑒𝑚  𝑓𝑎𝑖𝑙𝑠] 

Equation 2.42. Mathematical definition of coverage 

Fault coverage is a good measure of maintainability and, specifically of the 

system’s	
   ability	
   to	
   detect, locate, diagnose, contain and recover from the 
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presence of a fault. Several types of fault coverage can be distinguished, 

depending on whether the designer is concerned with fault detection, diagnosis, 

containment or recovery (Kaufman and Johnson, 2001). In Figure 2-15, we 

extend the phases of fault handling by (Dugan and Trivedi, 1989), showing the 

relationship among the steps of recovery and their coverage. 

 

Figure 2-15. Four phases of fault handling and their coverage 

Fault detection coverage Cd measures	
   the	
   system’s	
   ability	
   to	
   detect	
   fault.	
   Fault 

diagnosis coverage 4Cl is	
   a	
   measure	
   of	
   the	
   system’s	
   ability	
   to	
   locate  and 

determine the type of fault.  Fault containment/isolation coverage Cc is a measure 

of	
   the	
   system’s	
   ability	
   to	
   contain	
   faults	
   within a predefined boundary (fault 

containment region or FCR). For instance, fault that occurs in a subsystem can be 

detected, located, and its effects can be prevented from propagating to other 

subsystems.  

Finally,	
   the	
  general	
   term	
  “coverage”	
  or	
  “fault coverage”	
   is	
  often	
  used	
  to	
  refer	
   to	
  

fault recovery coverage,	
   which	
   measures	
   the	
   system’s	
   ability	
   to	
   recover	
   from	
  

faults and maintain correct operation. Recovery may involve modifying the 

structure to remove the faulty component (reconfiguration) including graceful 

degradation. The fault coverage C for the system is given by: 

                                                        

4 Fault diagnosis involves both the location (fault location) and determination of the fault type 
(fault determination) 
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𝐶 = 𝐶ௗ × 𝐶௟ × 𝐶௖ × 𝐶௥ 

Equation 2.43. Coverage as a function of fault detection, diagnosis, 
containment and recovery coverages 

Clearly, high fault recovery coverage requires high fault detection, diagnosis and 

containment coverage. 

2.5.3. Availability 

A simple definition for availability of a repairable5 system is “Readiness	
   for	
  

correct	
  service” (Avizienis et al., 2004). This measure is suitable for applications 

in which continuous performance is not essential but where it would be costly to 

have long downtimes.  Availability is strongly dependent on how frequently the 

system becomes non-operational (reliability) and how quickly it can be repaired 

(maintainability) (see Figure 2-14).  

 

Figure 2-16. Failure and repair cycle of a system 

 

                                                        

5 The concept of availability is applicable to repairable systems. Availability of a non-repairable 
system would be the equivalent to reliability.  
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As defined in the MTBF equation (Equation 2.23) the mean time between failures 

of a system can be defined as a combination of MTTF, MTTR and MTTD. Figure 

2-16 illustrates the variations of the state (functional-failed) of a repairable 

system. The time of operation of such systems is discontinuous.  From time 0 to 

time X1 the system is continuously available and therefore has an internal 

availability of 1.  After the first failure at time x1 internal availability keeps 

decreasing until the detection and recovery mechanisms complete the repair at 

time r1, returning to the original functional state. The system will fail again at 

time x2 after a certain time of operation [r1 – x2], get repaired at time r2, and this 

process will reiterate. Assuming that Xi is an average of system failure and i an 

average of system repair, for i>1: 

𝑀𝑇𝐵𝐹 =  ෍(𝑋௜ − 𝑋(𝑖 − 1))
௡

௞ୀଵ

 

Equation 2.44. Mean time between failures with average failure and 
system repair 

The relation between time to failure, time between failures and time to repair is 

displayed in Figure 2-17 above.  

 

Figure 2-17. Relation between Time to failure (TTF), time between 
failures (TBF) and time to repair (TTR) 

There are various availability measures that can be classified differently 

depending on the time interval preferred or the downtimes used.     
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2.5.3.1. Instantaneous or point availability, A(t) 

Instantaneous or point availability A(t) is the probability that the system will be 

operational at a random time t (Barlow and Proschan, 1975). It describes the on-

demand probability of proper service. It is equivalent to reliability when there is 

no repair. While internal availability is based on an interval time, instantaneous 

availability is based on a specific instant of time. At any given time t, the system 

will be functional if one of the following conditions is met (Elsayed, 1996):  

x The system was functional from 0 to t (it never failed by time t). The 

probability of this happening is R(t) (Equation 2.14). 

x The system has been functional since the last repair time ri (see Figure 

2-16) when 0 < ri < t. This has a probability of: 

න 𝑅(𝑡 − 𝑟௜)𝑚(𝑟௜)𝑑𝑟௜
௧

଴
 

Equation 2.45. Probability that the system has been functional since 
last repair time for 0 ri < t. 

x With m(ri) being the renewal density function of the system. 

The instantaneous availability of the system is the sum of these two 

probabilities: 

𝐴(𝑡) = 𝑅(𝑡) + න 𝑅(𝑡 − 𝑟௜)𝑚(𝑟௜)𝑑𝑟௜
௧

଴
 

Equation 2.46. Instantaneous or point availability of a repairable 
system 

2.5.3.2. Average uptime availability (or mean availability), 𝑨(𝒕) 

The average uptime availability or mean availability 𝑨(𝒕)   (Lie et al., 1977) is the 

proportion of time during a time period [0-t] that the system is functional and is 

given by: 
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𝐴(𝑡) =
1
𝑡 න 𝐴(𝑟௜)𝑑𝑟௜

௧

଴
 

Equation 2.47. Average uptime availability of a repairable system 

This type of measure is suitable to systems with periodical downtime for 

maintenance/repairing.  

2.5.3.3. Limiting or Steady-state availability,	
  A(∞) 

The limiting or steady state availability (Applebaum, 1965) of the system A(∞) is 

the limit of the availability function as time t tends to infinity: 

𝐴(∞) = 𝑙𝑖𝑚
௧→ஶ

𝐴(𝑡) 

Equation 2.48. Average uptime availability of a repairable system 

2.5.3.4. Inherent availability, AI 

In its simplest form, availability A can be mathematically generalised as: 

𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 

Equation 2.49. General availability as a function of uptime and 
downtime 

During the design phase of a FT system, Inherent availability AI is a useful 

measure (Valstar, 1965). AI defines the availability of a system only in regard to 

effective functional time (uptime) and downtime due to corrective maintenance 

(CM). It can be calculated using estimated parameters (MTTF, MTTD and MTTR) 

as: 

𝐴ூ =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝐷 +𝑀𝑇𝑇𝑅 =
𝑀𝑇𝑇𝐹
𝑀𝑇𝐵𝐹 

Equation 2.50. Inherent availability as MTTF  and MTBF  

Hence, if MTTF or MTBF are long compared to MTTR and MTTD then the 

system’s	
  availability	
  will	
  be	
  high.	
  Likewise,	
  if	
  MTTR and MTTD are short then the 



 

 
47 

system’s	
   availability	
  will	
  also be high. As reliability decreases (e.g. low MTTF), 

better recoverability will be needed (lower MTTR/MTTD) to achieve the same 

availability. 

2.5.3.5. Achieved availability, AA 

AI is a good parameter to measure systems under ideal conditions where 

downtime due to preventive maintenance (PM) is overlooked. Achieved 

availability AA is similar to inherent availability with the exception that 

downtimes due to PM tasks are also included (Conlon et al., 1982). In can be 

defined as:  

𝐴஺ =
𝑂𝑇

𝑂𝑇 + 𝑇𝐶𝑀 + 𝑇𝑃𝑀 

Equation 2.51. Achieved availability according to USA department 
of defence 

Where OT is the total operating time, TCM is the total corrective maintenance 

time and TPM the total time spent during preventive maintenance actions. 

2.5.3.6. Availability-recoverability-reliability relationship 

At first glance, it might seem that a highly available system would also have high 

reliability. Nonetheless this in not always the case, a system can be highly 

available yet suffer from frequent periods of non-operation as long as the length 

of	
   the	
   downtime	
   is	
   extremely	
   short.	
   Let’s	
   explore	
   further	
   the	
   relationship	
  

between availability and reliability. Reliability represents the probability of 

systems and components to perform its intended function for a desired period of 

time [0,t] under specified environmental and operating conditions. However, 

reliability in itself does not take into account any repair actions. Reliability does 

not reflect how long the recovery of a component/system will need in order to 

take it back to a working condition. Availability reflects not only how often a 

system fails but how often it can be repaired (it accounts for repair actions). 

Thus, it is a function of reliability, recoverability and thus testability. 
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𝐴(𝑡) = 𝑓(𝑅(𝑡),𝑀(𝑡)) 

Equation 2.52. Availability as reliability and recoverability 

Table 2-1. Reliability-Recoverability-Availability relationship 

Reliability Recoverability Availability 

Constant Constant Constant 

Constant Decreases Decreases 

Constant Increases Increases 

Decreases Constant Decreases 

Increases Constant Increases 

Table 2-1 above, presents the relationship between reliability, recoverability and 

availability. As shown by the table, once again, high reliability does not necessary 

imply high availability. Availability decreases as time to repair increases. Even an 

unreliable system could present high availability if MTTR is low.  

2.6. Performability 

The all-or-none nature of operation implicit in classic reliability and availability 

models does not measure in detail systems that can operate with different 

capability levels (e.g. multiprocessor systems). Consequently, another key 

attribute of resilience, performability and its measure, mean computation before 

failure (MCBF) can be employed. MCBF is described as the expected amount of 

computation available on the system before its first failure, given an initial state 

(Beaudry, 1978).  

In qualitative terms, we define performability as the ability of a system or 

component to accomplish its designated functions within specified constraints such 

as speed, accuracy or memory usage. It is the measure of the likelihood that some 

subset of the functions of the system or component is performed correctly 

during a certain time interval. Quantitatively, Performability P(L,t) has been 
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defined as “the	
  probability	
  that	
  the	
  component’s	
  or	
  system’s	
  performance	
  will	
  be	
  at	
  

or above some level L at the instant of time t” (Fortes and Raghavendra, 1985). 

After the occurrence of faults and errors, certain systems have the ability to 

continue to perform correctly, however with a diminished level of performance. 

This ability or feature is called Graceful degradation, or fail-soft operation 

(Gountanis and Viss, 1966), and it is the ability of a system (gracefully degrading 

system or GDS), upon failure of one or more of its component units, to continue 

the processing of tasks at the expense of decreasing its performance level. The 

performability of a GDS P(L,t) at time t depends on the amount of available 

resources and their computational capability provided.  

Note that performability differs from reliability in that reliability measures the 

likelihood that all functions are performed properly, whereas performability 

measures the likelihood that some subset of the functions is performed properly. 

Nevertheless, these two concepts are related since a GDS with a low rate of 

failure (high reliability) will have most of its resources computational capability 

available and therefore performability of the system will be close to its ideal 

value. 
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2.7. Resilience 

Historically, the term resilience has had multiple meanings in various fields. As a 

property it has different connotations. In social psychology resilience is about 

elasticity, spirit, resource and good mood. On the other hand, in material science 

resilience involves not only elasticity but robustness. In computer science it has 

been identified as a synonym for fault tolerance. In this thesis we extend the 

concept of resilience for safety critical applications. First we start by selecting the 

material science connotations. Hence, our definition of resilience includes both 

attributes: robustness and elasticity.  

 

Figure 2-18. Attributes and measures of resilience 

Figure 2-18 illustrates the different attributes and measures of resilience. The 

term robustness involves the use of static techniques such the use of very 

reliable materials or the use of rigid and pre-design approaches of fault 

tolerance. A robust system can deliver correct service in conditions beyond the 

normal domain of operation without fundamental changes to the original system. 

This is more an aim that an objective. Total reliability to unforeseen faults other 

than the normal domain of operation is not feasible. 

On the other hand, we interpret elasticity as the ability to spring back without 

losing the intrinsic properties of the material. Applied to resilience, we 
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understand elasticity as the ability to evolve, to successfully accommodate 

changes (evolvability). An evolvable system may perform changes to the system, 

decreasing its level of performance or reliability for a specific time range 1) to 

compensate for faults or 2) during exceptional circumstances (graceful 

degradation). 

More specifically, we consider that a resilient system must have the ability to be 

adaptable, understanding adaptability as the ability to evolve while executing. 

Therefore, adaptability is a subset of evolvability and requires the ability to 

anticipate to changes prior to the occurrence of the resulting damage. 

Therefore a resilient architecture must include different mechanisms to acquire 

both attributes: a) static pre-design fault tolerant techniques (robust) and b) 

dynamic techniques (elastic) that may be achieved with the ability to reconfigure 

elements of the system (reconfiguration). 
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2.7.1. Requirements 

The main aim required to implement a resilient architecture for safety critical 

applications is the “ability	
   to	
   deliver	
   correct service adapting to disturbance, 

disruption	
  and	
  change	
  within	
  specified	
  time	
  constraints”.   

The above aim can be subdivided into more specific objectives, as follows: 

x Continuity of service (reliability); 

x Readiness for usage (availability); 

x Non-occurrence of catastrophic consequences (safety); 

x Non-occurrence of incorrect system alterations (integrity); 

x Ability to undergo corrective maintenance and recovery with maximum 

coverage of faults (testability and recoverability) 

x Ability to perform in the presence of faults (performability) 

x Ability to decrease the level of performance for a specific time range in 

order to compensate for hardware faults (graceful degradation) 

x Ability to regain operational status via reconfiguration in the presence of 

faults (recoverability via reconfiguration) 

x Ability to accommodate changes (evolvability) 

x Ability to anticipate to changes (adaptability) 

2.7.2. Effectiveness of resilience 

We consider the following attributes: reliability R(t), security SC(t), integrity I(t), 

maintainability M(t), testability T(t), recoverability RC(t), availability  A(t), safety 

S(t), performability P(L,t), robustness RB(t), evolvability E(t), adaptability AD(t) 

and reconfigurability RC(). 
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Maintainability is a function of serviceability and repairability: 

𝑀(𝑡) = 𝑓(𝑇(𝑡), 𝑅𝑃(𝑡)) 

Equation 2.53. Maintainability as a function of serviceability and 
repairability 

Security is a function of integrity, availability and maintainability: 

𝑆𝐶(𝑡) = 𝑓൫𝐼(𝑡), 𝐴(𝑡),𝑀(𝑇(𝑡), 𝑅𝑃(𝑡))൯ 

Equation 2.54. Security as a function of Integrity, availability and 
maintainability 

Evolvability is a function of adaptability and reconfigurability: 

𝐸(𝑡) = 𝑓(𝐴𝐷(𝑡), 𝑅𝐶(𝑡)) 

Equation 2.55. Evolvability as a function of adaptability and 
reconfigurability 

Therefore resilience RES(t) will be a function of all these attributes: 

𝑅𝐸𝑆(𝑡) = 𝑓 ቌ
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦, 𝑡𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦,

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑠𝑎𝑓𝑒𝑡𝑦, 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦,
  𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠, 𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

ቍ   

Equation 2.56. Availability as reliability and recoverability 

With all these attributes the following systems would benefit from the 

implementation of effective resilience. 

x Safety-life critical: e.g. aircraft and nuclear reactor control. life support 

systems 

x Business critical 

x Reliable critical: e.g. telephone switching-, traffic light control-, 

automotive control (ABS, fuel injection) systems  

x Mission critical and long life systems: e.g. manned and unmanned space 

borne, satellites and other systems in inaccessible locations 

x Non-stop systems that demand high availability  
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Resilience is not a simple and single concept, rather, it possesses different 

components or key attributes.  Taking into consideration all these attributes, our 

definition of resilience is as follows:  

 “A	
  resilient	
  system	
  is	
  a	
  system	
  that	
  over	
  a	
  specified	
   time interval, under specified 

environmental and operating conditions, is ready to perform its intended function, 

guaranteeing the absence of improper system alterations, having the ability to 

anticipate and accommodate changes while executing, and the ability to conduct 

servicing and inspections so that in case of failure quick restoration to a specified 

working condition must be achieved, or otherwise discontinue of the operation in a 

safe way is provided” 

2.8. Conclusion 

This chapter explains the concept of resilience that encompasses important 

attributes and measures that will be used during the thesis. Such concepts have 

been reviewed and combined to define our concept of resilience.  

Safety critical systems must provide correct service at all times by trying to avoid 

the occurrence of any catastrophic failure. Different techniques can be employed 

to increase reliability by avoiding/preventing hardware faults from becoming 

errors that may lead to failures and catastrophic failures.  

We introduce the concept of vicious cycle that explains the reasons behind the 

performance and reliability problems that the microprocessor industry is 

currently facing.  The increase of transistor density, operating frequencies and 

architectural complexity is drastically decreasing the reliability of newer 

systems. There is, therefore, a need for implementing mechanisms that can deal 

with the upcoming fault rates.  

The mathematical background for classical reliability has been reviewed 

together with the basic definitions for reliability evaluation. For constant failure 

rate, independent of time, the exponential distribution is the most suitable for 
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the reliability analysis of the useful time of systems. The age of a system should 

be taken into account when analysing reliability. Three different periods with 

different reliability distributions have been explained by reviewing the bathtub 

curve, which represents very well the effect that aging and degradation have on 

HW reliability. 

In addition, it is also shown how to estimate the reliability of serial, parallel and 

mixed components. The failure rate of a serial system is equal to the sum of the 

failure rates of its individual elements. Therefore the more components a serial 

system has the higher the probability of system failure. The reliability of a 

system is often dominated by the reliability of its least reliable component. By 

deliberately and carefully introducing extra components into a system, overall 

reliability can be increased as long as the reliability benefit accruing from the 

redundancy scheme exceeds the decrease in reliability due to the actual 

implementation of the redundancy mechanisms itself.  

We extend the classical definition of resilience and apply it to the field of safety 

critical computing.  Moreover, we quantify the key attributes that a resilient 

system must have, exploring the relationships among these quantitative 

measures. The attributes of safety and performability are explained. The concept 

of security is described, including its attributes: integrity, availability, testability 

and recoverability. The mathematical background and the basic definitions for 

system availability are also developed. We show how the availability of FT 

systems can be estimated using different methods and measures.  

Finally, the main aim and objectives required to implement a resilient 

architecture for safety critical applications are defined. A resilient system, over a 

specified time interval, under specified environmental and operating conditions 

(performability), “must be ready” (in terms of availability) to perform its 

intended function (reliability), guaranteeing the absence of improper system 

alterations (integrity). It must have the ability to conduct servicing and 

inspections (testability) so that in case of failure quick restoration to a specified 

working condition must be achieved (maintainability) can be provided or can 
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discontinue its operation in a safe way (safety). Furthermore, a resilient system 

must have the ability to anticipate changes and evolve (evolvability) while 

executing (adaptability), successfully accommodating changes by reconfiguring 

elements of the system if necessary (reconfiguration). 
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Chapter 3 

Dealing with faults: redundancy 

This chapter provides a survey of state-of-the art design strategies to handle 

faults with special stress on redundancy-based techniques. Section one presents 

an overview of fault avoidance design strategies. Section two provides a survey 

of fault tolerance techniques. The notion of redundancy and its different types 

are presented and a notation, which may be used to describe the different types 

of redundancy, is introduced. The concepts, capabilities and applications of the 

different techniques based on structural (SR), information (IR) and time 

redundancy (TR) are compared and discussed.  
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3.1. Handling faults: design strategies 

In order to increase the reliability of safety-critical systems so that correct 

service can be delivered, techniques need to be developed to prevent or reduce 

the appearance of faults that could cause catastrophic failures. Depending on the 

phase of the development cycle and the level of abstraction at which the faults 

are tackled, two different design strategies can be adopted: fault avoidance and 

fault tolerance. 

Fault avoidance strategies can be used at device level during design time. Typical 

in mainstream applications, in order to reduce the number of failures, this 

approach focuses on preventing the occurrence of faults. Since a failure is the 

consequence of an error propagating, and an error is the consequence of a fault, 

eliminating faults would maximize reliability. Examples of this are silicon on 

insulator (SOI) and hardened memory cells. These techniques have drawbacks in 

terms of cost, speed of operation and chip area. 

At execution or run time and at different levels of abstraction, fault tolerant 

strategies can be implemented.  

 

Figure 3-1. Mechanisms to deal with faults within the fault-failure 
lifecycle 

Following the failure lifecycle and its different phases already described in 

Section 2.1, Figure 3-1 adds the different mechanisms to deal with faults within 
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the fault generation, error activation and failure propagation phases. 

Additionally, Figure 3-1 serves as a summary of the chapter introducing the fault 

avoidance and fault tolerance techniques and their phase of interaction within 

the failure lifecycle. 

Focusing on the source of faults, fault avoidance mechanisms attempt to prevent 

faults from occurring in the first place. Once a fault has been generated it can be 

prevented from activating an error using static fault tolerant techniques such as 

masking. Alternately, errors can be detected and recovered using dynamic fault 

tolerance techniques. Therefore, either we prevent the faults from taking place 

(fault avoidance) or we deal with them using fault tolerance techniques. 

3.2. Fault avoidance 

Nowadays, mainstream systems employ fault avoidance design strategies in 

order to achieve their projected failure rates. Manufacturing companies perform 

assessments of sources and weaknesses that could lead to potential failures. 

Based on the assessments, preventive measures are taken to ensure that the 

overall reliability target is not compromised. Additionally, fault avoidance 

strategies may include technology and design mitigation techniques that 

implicate modifications of conventional manufacturing processes. These 

techniques involve the use of specific materials, the modification of the doping 

profiles of devices and substrates and the optimization of deposition processes 

for insulators. 

Technology mitigation techniques consist of IC process variations by either 

improving the manufacturing process or by improving the materials used. 

Improving materials: implicates the selection of specific materials with better 

characteristics, e.g.: 

x Boron has been used extensively as a p-type dopant in silicon and has also 

been used in Boron-Phosphor-Silicate-Glass (BPSG) dielectric layers. For 
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BPSG-based semiconductor processes, BPSG can, in fact, be the 

predominant source of transient errors (Baumann, 2001). The removal of 

B-10 Boron isotopes in BPSG has been proven effective in the reduction of 

transient errors (Baumann et al., 1995). 

x Lead-free materials can reduce the effect of alpha particles (May, 1979) 

(extensive information on alpha particle effects is provided in Chapter 4). 

x Implanting of elements such as Al, As, Fl, P, and Si into oxides improves the 

resilience to Total Ionizing dose effects (TID). (Kato et al., 1989; Mrstik et 

al., 2000; Nishioka et al., 1989). 

Improving the manufacturing process is based on changing the charge collection 

and charge sharing capabilities of the devices: 

x Substrate techniques: e.g. using epitaxial substrate doping (EPI layer charge 

reduction)(Puchner et al., 2006), wells (single well, twin well and triple 

well processes) (Pellish et al., 2006; Puchner et al., 2006; Roche and Gasiot, 

2005), buried layers (Roche and Gasiot, 2005) and dry thermal oxidation 

(Hughes and Benedetto, 2003) 

x Non-capacitance techniques: e.g. increasing the node coupling capacitance 

between storage nodes and memory, or using a DRAM capacitor on top of 

the memory cell (Geppert, 2004) 

x Using alternative insulating substrates; e.g. the use of Silicon on Insulator 

(SOI) or Silicon on Sapphire (SOS) (J. R. Schwank, 2003) would mitigate 

significantly the transient faults due to radiation (described in Chapter 4).  

Whilst technology mitigation techniques are based at the process level, design 

mitigation techniques operate on the layout level. An example of this type of 

technique is the use of enclosed layout transistors. Furthermore, to prevent the 

effects of radiation memory cells can be hardened with the use of contact and 

guard rings. 
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The effect of silicon failure mechanisms, such as radiation induced transient 

faults and wear-out defects, is proportional to the clock speed, supply voltage, 

temperature, etc. Therefore, to ensure system reliability safety margins are 

inserted into clock speed, operating temperature and supply voltage margins. If 

the system failure rates resulting from the use of fault avoidance strategies fall 

within the specified reliability targets, the use of redundancy techniques is not 

justified. However, this is not the case for safety-critical systems. 

Despite all the testing, verification techniques and technology improvement, 

hardware components will eventually fail. The fault avoidance approach will not 

be panacea and will be insufficient if: 

x Failure rate and MTTR are unacceptable or 

x the system is inaccessible for repair and maintenance actions 

Therefore, fault avoidance techniques are only part of the solution for real time 

safety critical domains. Complete removal of faults via fault avoidance is not 

possible; above all, it has drawbacks in terms of cost of manufacturing the 

elements required, speed of operation and increased chip area. 

3.3. Fault tolerance: using redundancy 

The key ingredient of fault tolerance is redundancy. Redundancy is defined as 

the addition of information, resources or time beyond what is needed for correct 

system operation (Latchoumy et al., 2011). Fault tolerant techniques rely on 

redundancy that may include a combination of additional elements of hardware 

and/or software to detect and/or recover from faults. These components are 
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called redundant since they are not required in a perfect system6. Artificially built-

in or protective redundancy is a system property that we define as the 

incorporation of extra components (transistors at a low level) in the design of a 

system so that its function is not impaired in the event of a failure. Redundancy 

may arise by design (artificially built-in redundancy) or as a natural by-product 

of design (natural redundancy). Natural redundancy is usually unexploited whilst 

artificially built-in redundancy has been deliberately introduced. In this thesis, 

when the term redundancy (or redundant) is used it is meant to have the 

artificial connotation instead of the natural one. 

When a system does not provide the minimum reliability required, extra 

redundancy, not strictly necessary for the normal functioning of the system can 

be added in order to increase the probability of normal functioning. Notice that 

the term redundant does not mean identical functionality; it just denotes that it 

performs the same job. In this sense, heterogeneous hardware performing the 

same work can also provide redundancy. 

Fault tolerance assumes actions such as fault detection, location of the faulty 

component, recovery, and if necessary, reconfiguration of the system.  Fault 

detection is the process of determining the presence of faults and the time of 

occurrence. Fault location is to exactly locate the reason/origin of the fault. The 

system must be dynamically restored as though it is ‘as	
   good	
   as	
   new’ in 

operational terms, except for the fact that some of the redundancy has been used 

up and this may limit the possibilities for future repairs. 

                                                        

6 A perfect system is a system with a theoretical 100% reliability. A perfect system is usually 
assumed to model extra reliable systems. 
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Figure 3-2. Redundancy types and their implementation (Schagaev, 
2001) 

Many different attempts to classify redundancy have been made (Avizienis, 

1971; Carter and Bouricius, 1971; Schagaev, 1989, 2001). This thesis follows the 

approach proposed by (Schagaev, 2001) to classify redundancy. Figure 3-2 

shows the different types of redundancy (at the top of the figure) and the way it 

can be implemented (at the bottom of the figure). In general, three types of 

redundancy exist: structural (S), involving multiplication of components, 

information (I), involving multiplication of information, and time redundancy 

(T), involving multiplication of functions in time. These can be implemented in 

hardware and software. This thesis focuses on the hardware aspect of 

redundancy and fault tolerance. 

Redundancy comes with a cost. Information and structural redundancies require 

additional hardware components, extra power and perhaps extra area and 

shielding. Time redundancy requires faster processing to achieve the same 

performance, which in turn requires extra hardware and power. 
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3.3.1. Redundancy notation 

Existing implementations of system redundancy use at least one of these three 

redundancy types, usually more than one and can be implemented in hardware 

(HW()), software (SW()) or a combination of both (HW(); SW()). As an example, 

hardware based information redundancy is abbreviated as HW(I). Additional 

quantifiers are used together with the redundancy type to further specify the 

used redundancy as shown below in Table 3-1: 

Table 3-1. Redundancy classifiers (Schagaev, 2001) 

Quantifier Example Description 

 SW(I) 
No quantifier means general, not further specified 
redundancy. SW(I) for instance just indicates general software 
information redundancy 

δ SW(δI) Additional used software based redundancy 

Number HW(2S) 

The number indicates duplication (2), triplication (3), etc. of a 
system if used as a prefix for the redundancy type. The 
original system and the copies are identical. n instead of a 
discreet number is used to mark repetition until success in 
case of time redundancy 

indices HW(S1, S2) Indices are used to mark a duplicated system 
implementation/hardware components 

Note that the current notation does not include the implementation level. 

HW(2S) only indicates duplication, but not whether the whole system is 

duplicated or it is just parts of that system, such as, for example, duplicated 

memory. 

Table 3-2 and Table 3-3 present some concrete examples of notation of 

hardware and software based redundancy. Any type of redundancy (hardware 

and software) needs additional structural redundancy for its implementation. 
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Table 3-2. Examples of notation of HW based redudancy 

Redundancy 
type Description 

HW(2S) Structural (material) redundancy of hardware such as 
duplicated memory system 

HW(S1, S2) A duplicated FT computer system with principally non 
identical parts 

HW(δI) Redundant information bit, for example an additional parity 
bit per data word in HW memory for error detection 

HW(nT) Special HW to delay execution (like in a timing diagram) to 
avoid transient faults 

HW(δT) Special HW to delay execution to avoid transient faults 

Table 3-3. Examples of notation of SW based redudancy 

Redundancy 
type Description 

SW(2S) Structural (material) redundancy of hardware such as 
duplicated memory system 

SW(S1, S2) A duplicated FT computer system with principally non 
identical parts 

SW(δI) Redundant information bit, for example an additional parity 
bit per data word in HW memory for error detection 

For instance, instruction repetition HW(nT) needs additional hardware registers 

to store the internal state to be able to perform instruction rollback. We refer to 

this as supportive redundancy and we define it as the redundancy needed for the 

implementation of the main redundancy technique. For the sake of simplicity, we 

usually omit this supportive redundancy. In cases where it is not clear whether 

an applied redundancy type is supportive or not, more than one redundancy type 

can be used. An example of this is the case of software based and hardware 

checks that are performed during idle time of the system: SW(δS,δT). 
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3.3.2. Prognostics:  Health management 

An important contribution to the increase of system reliability is the use of 

Prognostics, defined by the International Organisation for Standardization as 

(ISO, 2004):  

"… the estimation of time to failure and risk for one or more existing 

and future failure modes" 

This concept can be applied to real-time critical systems with active redundancy 

and fault reporting. Prognostics Health Management, also referred to as 

Condition-Based Maintenance (CBM), are strategies that recommend 

maintenance decisions based on information collected via condition monitoring 

(Jardine et al., 2006). These capabilities have been integrated in many safety-

critical systems from unmanned vehicles, to aircraft, to power generation plants, 

etc. (DeCastro et al., 2011; Zhang et al., 2011) 

In contrast with Planned Scheduled Maintenance (PM) where maintenance is 

carried out upon pre-defined schedule, CBM is performed only when it is 

triggered upon specific asset conditions.   

CBM strategy consists of three major steps: data acquisition, data processing and 

maintenance decision-making. During the data acquisition phase the condition of 

the equipment is monitored to detect developing issues. The data processing 

phase involves diagnosis; this phase attempts to isolate the root of the cause. 

Finally, the maintenance decision-making phase where a corrective plan is 

developed and applied based on the data obtained from the previous step.  

3.4. Structural redundancy: HW(S) 

Structural hardware redundancy involves the multiplication of independent 

hardware components and execution of the same computation over such 
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components at the same time. Errors are exposed by checking/comparing the 

results of the independent executions. 

In terms of granularity, redundancy in general, and not only hardware 

redundancy, can be applied on different abstraction levels. From bottom up we 

can distinguish between finer-grained: transistor level, gate or logic level, and 

between coarser-grained designs: circuit level, function level, system level, 

microcode level and chip level of abstraction. Therefore, redundant components 

can be as simple as transistors or logic gates but also as complex as processors or 

even larger entities. 

 

Figure 3-3. Taxonomy of structural HW redundancy 

Figure 3-3 displays a taxonomy of the different hardware techniques based on 

structural redundancy. Two different architectures of redundancy can be 

distinguished: Parallel redundancy with redundant components running 

concurrently and Standby redundancy with a spare component being activated 

upon failure of an active component. 

Furthermore, these extra resources can be used passively (passive redundancy), 

actively (active redundancy) or combined. In systems with active redundancy, all 

redundant components are in operation, sharing the load with the normal 

components. This implies that both, regular and redundant components, age 
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together. Passive components are not fully energized and start normal operation 

only when normal components fail. Passive components can be further broken 

down into two types: warm and cold standby. Warm standby components remain 

partially energized until becoming active and tend to deteriorate with time, 

hence, having lower failure rate than the regular components. Cold standby 

components are kept in reserve and they only become energized when put into 

use. These types of components have a zero failure rate, meaning they do not fail 

when they are in standby mode. Whilst passive components are switched off 

completely, standby components are partially activated. Standby redundancy is 

usually applied when the start time of the component is unacceptably long. 

3.4.1. Static redundancy 

Static redundancy, also called masking redundancy, implements error mitigation. 

The term static relates to the fact that redundancy is built into the system 

structure. Fault tolerant techniques based on this type of redundancy (static fault 

tolerance) transparently remove errors on detection. The most common form of 

hardware redundancy is Triple modular redundancy (TMR) (von Neumann, 

1956) and its generalization N-modular redundancy (NMR).  Note that Dual 

modular redundancy (DMR) (DMR is further explained in Section 3.4.2.1) is not 

considered static redundancy since the mismatch can take place but recovery is 

not possible. 

3.4.1.1. Triple modular redundancy: HW(3S)+HW(δS) 

A basic TMR system (two-out-of-three) is a fault tolerant form of NMR that 

consists of three fully redundant and active components or modules working in 

parallel with equivalent functionality (Johnson, 1989; von Neumann, 1956).  
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Figure 3-4. Triple modular redundancy (TMR) with a voter 

Figure 3-4 above presents an example of a TMR system with a voter. The three 

components perform a process based on individual inputs whose results are in 

turn processed by a voting system to produce a single output. The voting is based 

on majority; if any of the three components has a fault, the other two systems can 

mask the fault. It is assumed that two out of three modules must deliver correct 

results. Therefore, TMR is capable of masking a single error.  

Generally, a majority voting mechanism should: 

x Guarantee a majority vote on the input data to the voter 

x Determine the faulty block 

In order to guarantee the majority vote, loosely synchronized systems require 

synchronization of the inputs to the voter.  

A specific example of this technique is the Boeing TMR 777 primary flight 

computer (Yeh, 1996), which has triple redundancy for all hardware including 

computing system, communication paths, electrical and hydraulic power. 
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3.4.1.2. Comparing the Reliability of Simplex and TMR with perfect 

voter7 systems 

A simplex system is a system with a single component. The reliability of a 

simplex system is given by: 

𝑅௦௜௠௣௟௘௫ =    𝑒ିఒ௧ 

Equation 3.1. Reliability of a simplex system 

where λ	
   is the failure rate for the single component; the MTTF of a simplex 

system can be expressed as: 

𝑀𝑇𝑇𝐹௦௜௠௣௟௘௫ =   න𝑒ିఒ௧ =
1
𝜆 

Equation 3.2. MTTF of a simplex system 

A TMR system such the one in Figure 3 includes three blocks, two of which are 

required for the system to provide correct service. The reliability of a TMR 

system with a perfect voter is given by: 

𝑅்ெோ =   𝑅௠ଷ + ൬
3
2൰𝑅௠

ଶ (1 − 𝑅௠) 

𝑅்ெோ =    𝑒ିଷఒ௧ + ൬
3
2൰ 𝑒

ିଶఒ௧(1 − 𝑒ିఒ௧) 

𝑅்ெோ =   3𝑒ିଶఒ௧ 

Equation 3.3. Reliability of a TMR system with a perfect voter 

 

 

                                                        

7 A perfect voter is a voter with a theoretical 100% reliability. A perfect voter is usually assumed 
to model extra reliable voters.   



 

 
72 

and therefore: 

𝑀𝑇𝑇𝐹்ெோ =
3
2𝜆 −

2
3𝜆 =

5
6𝜆 

𝑀𝑇𝑇𝐹௦௜௠௣௟௘௫ > 𝑀𝑇𝑇𝐹்ெோ 

Equation 3.4. MTTF of a TMR with a perfect voter 

 

Figure 3-5. Comparative reliability of TMR and Simplex systems 
(Ravishankar K. Iyer, 2003).  

Figure 3-5 shows how TMR has higher reliability than Simplex for short missions 

(t<t0).  Note that: 

𝑅்ெோ(𝑡) ≥ 𝑅(𝑡)          0   ≤ 𝑡 ≤ 𝑡଴ 

𝑅்ெோ(𝑡) ≤ 𝑅(𝑡)          𝑡଴   ≤ 𝑡 ≤ ∞ 

Equation 3.5. Comparative reliability of TMR and Simplex systems 
(Ravishankar K. Iyer, 2003) 

Where:  

𝑡଴ =
𝑙𝑛 2
𝜆   ≈

0.7
𝜆  



 

 
73 

TMR is very useful in aircraft applications offering high reliability for short 

missions. (Ravishankar K. Iyer, 2003) shows that TMR is not suitable for long 

safety-critical missions (t>t0) because paradoxically, after the first failure, the two 

remaining components compete to fail. Higher reliability can be achieved 

extending TMR to N-Modular Redundancy. Therefore, a blind use of redundancy 

can lead to seemingly paradoxical results. 

3.4.1.2.1. Reliability of TMR with voting 

The previous expression of reliability of TMR assumes that the voter is perfect, 

i.e. the voter is 100% reliable.  

The reliability of a generic TMR system with non-perfect single voting (TMRV) 

and identical blocks is given by: 

𝑅்ெோ௏ =   𝑅௏   ቆ𝑅௠ଷ + ቀ32ቁ𝑅௠
ଷ (1 − 𝑅௠)ቇ   

Equation 3.6. Reliability of a TMR system with a non-perfect voter 
and identical blocks 

where Rv is the reliability of the voter mechanism and Rm is the reliability of the 

block. In terms of reliability, the voter becomes the weak part of this 

configuration. The voter is a single point of failure (SPF); if the voter fails then the 

complete system will potentially fail. This can be tackled following different 

alternatives:  

x By increasing the reliability of the voter using fault avoidance techniques  

x By triplicating the voter and connecting the module outputs to all three 

voters (Johnson, 1989) so that individual voting failures can be corrected 

by the extra voting process 

x By implementing online self-testing for the voting circuitry (Cazeaux et al., 

2004; Metra et al., 1997) 
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x Using an IDDQ checkable voters (ICVs) (Bogliolo et al., 2000): under fault-free 

conditions, ICVs work as traditional CMOS voters; however, they cause 

quiescent supply currents (IDDQs)8 in the presence of maskable stuck-at 

faults (see Section 5.3.1 ). Faults can be detected using IDDQ testing, by 

monitoring IDDQs (Williams et al., 1996)  

A basic TMR system does not support common-mode failures (CMFs9) (Lala and 

Harper, 1994). CMFs are the result of failures affecting more than one 

component, usually due to a common cause, which may be due to design-faults 

or operational ones resulting from external (such as radiation or 

electromigration) or internal causes. For instance, a radiation source causing 

multiple event upsets (Reed et al., 1997) can potentially lead to the failure of 

more than one component in a TMR system.  

3.4.1.3. N-modular redundancy: HW(nS)+HW(δS) 

The generalized version of TMR is NMR where N stands for the number of 

redundant modules. The main advantage of using N modules as opposed to only 

three is that often more faults can be tolerated. For instance, a 5MR system 

contains 5 replicated modules including a majority voting arrangement. The 

voter allows the system to deliver correct service in case of as many as two 

module faults.  

                                                        

8 Quiescent current is the current consumed by a circuit when no load is present. Fault-free CMOS 
devices have very quiescent currents when they are in a quiescent state. Faults that cause high 
quiescent currents can be detected if the quiescent current is significantly higher that that of a 
fault-free circuit (Williams et al., 1996) 

9 Multiple faults can be either independent (attributed to different causes) or related (attributed to 
a common cause. Both can lead to similar errors (e.g. errors that cannot be distinguished by the 
detection mechanisms being used) (Avizienis and Kelly, 1984). The failures triggered by similar 
errors are called CMF 
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Figure 3-6. N-modular redundancy with a voter: M-out-of-N system 

Figure 3-6 depicts a generic N-modular redundant system with a voter. The 

redundancy of this system can be defined as HW(nS)+HW(δS) using the previous 

notation. NMR works similarly to TMR but this type of structure is able to detect 

[(𝑁 − 1)  ]    /  2  errors in different processing modules. Besides TMR, 5- and 7- 

modular redundancies are the most common structures and are capable of 

detecting two and three errors respectively. 

M-out-of-N systems are a type of NMR. The reliability of a generic M-out-of-N 

system assuming that it has a perfect voter and M out of N modules need to 

function is expressed by: 

𝑅ெே = ෍   ቀ𝑁𝑖 ቁ
ேିெ

௜ୀ଴

𝑅௠ேି௜  (1 − 𝑅௠)௜   

Equation 3.7. Reliability of an M-out-of-N system with perfect voter  

Note than NMR systems offer higher reliability than TMR but at a much higher 

cost. Undoubtedly, for practical applications there must be some limit on the 

amount of redundancy that can be employed.    
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Figure 3-7. Redundancy applied on different levels of abstraction: 
(a) Three logic gates in a TMR at the logic or gate level of 
abstraction; (b) Three memory modules in a TMR configuration at 
the circuit abstraction level; (c) Three microprocessors in a TMR 
configuration at the chip level 

TMR and NMR could be applied on different levels of abstraction by triplicating 

logic gates, single memory cells, memory modules or complete microprocessors. 

Figure 3-7 displays how TMR can be applied on logic (a), circuit (b) and chip level 

(c). 

TMR and NMR are typically employed in aerospace applications where the cost of 

failure is particularly high. However, the higher reliability of these systems 

involves more than 200% increase in redundancy. Such an example is the NASA 

Space Shuttle onboard system, which is based on four computers with a majority 

voter (Sklaroff, 1976).  

3.4.2. Dynamic redundancy 

To reduce the extensive space, energy and performance requirements of TMR 

and NMR systems, numerous approaches have been developed. These 

approaches are usually based in dynamic redundancy, which implements error 

processing. This type of redundancy is similar to static redundancy with the 

main difference being the voter logic is replaced with a switch that is controlled 

by an error detection block. At least one of the modules is working as the main 

module, whereas the rest of the modules or replicas can either be working in 
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parallel (e.g. DMR with comparison) or can be turned off and used as spares 

(stand-by redundancy). 

To avoid failures, after a fault has been detected, the system must be 

reconfigured. Detection, reconfiguration and recovery are required in order to 

prevent error propagation. Some examples of this type of redundancy are: pair 

and spare, duplex systems (DMR with comparison), backup sparing techniques 

etc.  

3.4.2.1. Dual modular redundancy: HW(2S)+HW(δS) 

By duplicating two components and adding a comparison structure, Dual 

modular redundancy (DMR), or duplex, are common systems to detect errors 

(von Neumann, 1956). DMR uses two fully redundant units working in parallel 

and has been widely used in low level circuit implementations where a signal is 

duplicated as an input to two redundant and independent logic gates and it is 

transparently checked for errors. 

 

Figure 3-8. Dual modular redundant (DMR) structure 

Figure 3-8 depicts a DMR structure with a checker component. The checker logic 

compares the output of block 1 and block 2. In the case of normal execution with 

no error, both blocks would produce the same output and a result would be 

delivered. On the other hand, in case of a mismatch between the two outputs of 

the blocks, the output of the checker would produce an error signal and no result 

will be given. Therefore, in its simplest version, as the checker logic is unable to 

identify the incorrect unit, DMR through output comparison will only provide 

error detection and will not provide error recovery capabilities on its own. 
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Additional mechanisms will be needed to provide error recovery so that if one of 

the units experiences an error, the surviving/correct unit can continue 

execution. Upon successful repair/recovery DMR is fully restored.  

3.4.2.1.1. Redundant execution 

A widespread and simple implementation of coarse-grained DMR is lock-

stepping, or lock-step execution (Buckle and Highleyman, 2003; McEvoy, 1981; 

Sherman, 2003). Here, the processor pipeline is duplicated and the clock is 

shared, comparing each instruction result before committing the results. This 

type of error detection is considered to perform at the macro-level since it is 

applied at the microprocessor’s scope. 

Lock-stepping is widely used in a number of commercial processor designs and 

can both detect and correct certain errors; e.g. IBM G5 (Slegel et al., 1999) and 

Compaq Himalaya (Wood, 1999). Redundant threads are executed in multiple 

processors and every instruction result is compared. No instruction can be 

committed until its identical pair has also been completed and verified, hence 

involving considerable overhead. 

3.4.2.2. Standby redundancy 

Standby redundancy, standby replacement, or standby sparing, is a well-known 

fault tolerant design technique used as a failover mechanism (Avizienis, 1976). 

In this case some units are online and operational and one or more backup units 

serve as standby units.  
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Figure 3-9. Simple standby sparing configuration 

 

Figure 3-10. Multiple standby spares with n-to1 switch 

Figure 3-9 and Figure 3-10 present simple and multiple standby configurations. 

When a fault is detected in an online/active unit, a standby unit replaces the 

affected unit by using the selector (Figure 3-9) or by using the 3-to-1-switch 

(Figure 3-10). 

 

Figure 3-11. Typical reconfiguration steps for backup sparing 

There are three common forms of standby redundancy: hot, warm and cold. The 

type of application plays a key role in selecting the type of standby spare units. 

Figure 3-11 graphically describes the typical reconfiguration steps for hot, cold 
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and warm backup spares. When a spare unit is to be switched over, the selected 

spare is powered up and gets ready to become active. The reconfiguration 

process whereby a standby spare unit becomes operational is composed of: 

x Switching on the power and the bus connections 

x Powering up of the unit 

x Running the Built-In-Self-Test10 (BIST): Extensive testing is usually done 

after powering up to avoid replacing a faulty module with a faulty module 

before starting normal operation, e.g. memory tests of a spare module 

x Loading programs and data 

x Initializing the software if needed 

Hot standby spares (HSP) operate in synchrony with the operational units and 

are ready to take over whenever a fault is detected. HSP units reduce the mean 

time to recovery (MTTR) and therefore their use is suitable for applications that 

require short recovery time, that is, applications where the disruption of 

processing must be minimized.  

Cold standby spares (CSP) remain unpowered and thus do not operate or 

consume any power until they need to replace an active unit. Since the restarting 

of the units is required, the use of CSP is best suited to remote operations where 

power is hard to come by, e.g. satellites and sensor systems. CSP units are also 

suitable for applications where short lapses in operation are acceptable and state 

data is not critical. In addition, CSP are likely to have a lower failure rate than 

operational modules. However, the startup delay required to switchover to a 

spare module is high since power up, BIST and initialization are needed. In 

                                                        

10 Built-In-Self-Tests (BISTs) are one of the common methods of testing circuits. BIST is a DFT 
technique that takes place on the same substrate as the device under test (DUT) within the 
system allowing them to perform self-testing (Stroud, 2002).  
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particular, the time necessary for BIST depends upon the fault coverage and the 

complexity of the unit/module. 

Warm standby spares (WSP) consist of a trade-off between the high power 

consumption of CSP and the long recovery time of HSP. WSP units have time 

dependent behaviour. Before and after replacing an operational unit, WSP 

present different failure distributions.  

The advantage of standby sparing for a system with n identical units is that a 

certain level of fault tolerance can be provided with k<n spare modules.  

3.4.2.3. Pair and spare 

The pair and spare configurations are a combination of DMR with comparison 

and extra spare techniques.  

 

Figure 3-12. Pair and spare configuration 

Figure 3-12 depicts a pair and spare configuration where two units are always 

online and compared to each other, with any of the n spares being able to replace 

either of the operational units. 

3.4.3. Hybrid redundancy 

By mixing fault masking, detection location and recovery, the advantages of 

static and dynamic redundancy can be combined (Johnson, 1989). Hybrid 
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approaches use Fault masking to prevent erroneous results from being activated. 

Fault detection, location and recovery are also employed in hybrid techniques to 

improve fault tolerance by removing errors. 

 

Figure 3-13. Hybrid approach using TMR with spaces 
(Johnson, 1989) 

A general approach is to back up the replicated modules with spares, e.g. a TMR 

configuration with a fault/disagreement detector, a voter and a reconfiguration 

unit (see Figure 3-13). In such a system, the triplicated operational modules are 

backed up with an additional pool of spares that can replace faulty modules 

(TMR with spares). The system will work as a basic TMR configuration until the 

disagreement detector determines that a faulty module exists. One alternative 

approach towards fault detection is to feed the output of the majority voter back 

to the faulty detection unit whose job is to compare the output of the voter with 

the individual outputs of each operational module. Any disagreement with a 

specific	
  module’s	
   output	
  would	
   indicate	
   that	
   the	
  module	
   should	
   be	
   labelled as 

faulty and therefore replaced by a spare unit. The reliability of the basic TMR 

system is retained as long as the pool of spares is not exhausted. Note that voting 

only occurs among the operational modules in the TMR core, masking faults and 

making sure that continuous correct service is delivered. 
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Figure 3-14. A triple-duplex approach 

A variation to NMR with spares is the triple-duplex approach depicted in Figure 

3-14 that combines duplication with comparison and TMR. The use of passive 

redundancy in the form of TMR allows potential faults to be masked and 

continuous correct service to be provided for a maximum of two faulty modules. 

The use of DMR with comparison allows faults to be detected and faulty modules 

to be removed from the voting process and replaced by spares. 

These options are simple but far more expensive in terms or real estate of the 

chip than traditional static techniques. Besides, as seen in section 3.4.1.2.1, the 

reliability of TMR depends mostly on that of the voters. Hence, if a fault takes 

place within a voter, an incorrect majority vote may be given to the output and 

propagated throughout the system thus compromising the correctness of the 

system’s	
  service.	
   In	
  order	
  to	
  avoid	
  such	
  unreliability,	
  voters	
  can	
  be	
  designed	
  to	
  

be capable of testing themselves online with regards to their own internal faults 

(Cazeaux et al., 2004; Metra et al., 1997, p. 97). 
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An extra form of hybrid scheme that allows error detection and correction thus 

improving the reliability of a memory system is depicted in Figure 3-15: 

 

Figure 3-15.Transient faults tolerant TRAM (Schagaev and 
Buhanova, 2001) 

Any reading and writing operation is followed by a content check of a specific 

address in all three blocks. In case of a mismatch among these a majority voting 

takes place whose result is then rewritten (via control unit) to the inputs of all 

elements using the same address.  

3.5. Information redundancy 

Information redundancy involves the addition of new information to existing 

information, often in compressed form i.e. using more bits than needed. The 

most common form of information redundancy is coding (see Figure 3-16). 

Coding theory in hardware and software fault tolerance goes back a very long 

way and was initially motivated by the need to mitigate errors in information 

transmission (Shannon, 1948).  
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Figure 3-16. Coding-encoding process of a d-bit word into a c-bit 
word 

Coding consists of adding check bits to the data allowing 1) the verification of 

data correctness and/or 2) the correction of erroneous data. Therefore, with 

coding an original piece of meaningful information, or d-bit data word, is 

encoded obtaining a c-bit code word, where c>d (see Figure 3-16). Because of 

these extra bits not all 2c possible binary combinations are valid code words. 

Therefore, a code should be selected so that any potential error would transform 

the codeword, after decoding, into an invalid code word (non-codeword).  

An important property of coding is separability. Two main approaches are 

possible:  

x Separable or systematic codes: the code word is formed by adding extra 

information (check bits) to the original data. A separable code has 

separable fields for data and check bits. Decoding this type of code is 

simple and consists of selecting the data bits and disregarding the check 

bits. 

x Non-separable or non-systematic codes:  data and check bits are integrated 

together requiring some extra processing and therefore incurring 

additional delays and overheads.  
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Important parameters for codes are:  

x  The number of erroneous bits that can be detected 

x The number of those that can be corrected 

x The number of additional bits that are required 

x The time needed to encode  

x The decoding time 

Information redundancy techniques make use of detection-based codes (EDC) or 

correction based (ECC) codes. Figure 3-17 presents a taxonomy of coding 

techniques. 

Examples of some of these techniques include: 

x Error detection and correction codes for cross-checking the contents of 

main memory, register files and cache,  

x Cross-checking of run-time control flow using signatures and  

x Algorithm based checksums for cross checking of the data values generated 

In general, information redundancy involves some space and computational 

overheads, thus requiring extra circuitry and is thus more commonly 

implemented in memory structures instead of in processor datapaths. 
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Figure 3-17. Taxonomy of information redundancy coding techniques
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3.5.1. Error Detection Codes: EDC 

Error detection codes have the ability to expose error(s) in a given data word 

based on the encoding-decoding principles discussed in Section 3.5, In general, 

error detecting codes (EDC) present less overhead than error correcting codes 

(ECC) since they do not have correction capabilities. 

 

Figure 3-18. Coding-encoding in a memory block with parity checking 

The simplest EDC are parity codes, which involve the addition of extra bits or 

parity bits. Figure 3-18 depicts a basic scheme of memory with parity checking. 

Before storing a word in the memory block a parity generator computes the 

parity bits based on the bits of the input data word (DW). A parity bit is an extra 

bit added to a group of source bits (DWs) in order to ensure that the outcome or 

coded word has an even (in the case of even parity) or odd (in case of odd parity) 

number of bits set to 1. When a memory block is read, the parity checker 

compares the computed and the stored parity bits, setting the error signal 

consequently. If both, computed and stored parity bits, match then the error 

signal would indicate a correct output; otherwise the error signal would indicate 

that the retrieved DW is incorrect. Note that for n bits of data there are 2n 

possible DWs.  Adding one parity bit would allow 2n+1 possible DWs. Among these 

possible DWs there are 
ଶ೙శభ  

ଶ
  possible DWs with an odd number of 1s and 

ଶ೙శభ  

ଶ
  possible DWs with an even number of 1s. In the case of odd parity, only the 

DWs with an odd number of 1s are valid code words (CWs). In the presence of a 
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single bit flip (error) an odd parity CW would change into an even parity CW and 

therefore the parity checker will detect the error. Nonetheless, it will not know 

which bit has been flipped. This simple configuration can be used to detect single 

or any odd number of errors in the retrieved DW. However, an even number of 

flipped bits would make the parity bit of the CW appear to be correct although 

the data is incorrect. With single parity, double errors and even number of errors 

would remain undetected. 

3.5.2. Error Correction Codes: ECC 

More powerful codes than parity codes can be created by adding more check bits 

to the original data. The size of the data to be protected will determine the 

number of check bits needed. Using this basic principle, error correction codes 

have the ability to detect errors and reconstruct the original error-free data. 

These can generally be realized in three different manners (see Figure 3-17): 

x Backward Error Correction (BEC) sometimes referred to as Automatic 

repeat request (ARQ): combines an error detection technique (error 

detection encoding prior to transmission) with retransmission request of 

erroneous data. BEC requires simpler decoding infrastructure than FEC but 

frequent retransmissions would significantly compromise performance in 

high data rate transmissions.  

x Forward Error Correction (FEC) or Channel Coding: With this approach, 

errors are both detected	
   and	
   corrected	
   at	
   the	
   receiver’s	
   end.	
   Thus,	
   it	
  

involves error-correcting encoding prior to transmission without 

retransmission of the original information. FEC requires more complex 

decoding infrastructure than BEC but it is suitable for high data rate 

applications.  

x Hybrid automatic repeat request (HARQ): BEC and FEC are combined. e.g.: a 

scheme where minor errors are corrected without retransmission (FEC) 

and major errors are corrected via retransmission (BEC).   
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Figure 3-19. Basic ECC memory scheme including calculation, 
checking and correcting 

An overview of popular FEC schemes employed in fault tolerant design of 

embedded systems follows. Figure 3-19 shows a basic ECC memory scheme that 

applies to any of the following codes including calculation, checking and 

correcting logic. When data is written into the data row specified by the address 

signals, the ECC encoding logic generates the parity checks (as specified by the 

code) and introduces them into the ECC part of the memory.  When the DW is 

read from the memory the parity bits would allow missing data to be 

reconstructed in the case of an error being detected.   
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3.5.2.1. SEC-DED11: Hamming and Hsiao: HW(δI) 

The most common ECCs are based on Hamming (Hamming, 1950) or Hsiao 

(Hsiao, 1970). These two separable code families introduce the concept of 

overlapping parity by which every data bit has a part in adjusting the value of 

several parity bits. These codes can correct single bit errors in a given word, can 

detect double bit errors, are relatively fast decoding and have moderate 

redundancy. 

Hamming codes are a family of perfect codes12 that generalize the original 

Hamming(7,4)-code (Hamming, 1950). A minimum distance d means that it 

takes d bit changes to move from one valid codeword to the other. Extended 

Hamming code sometimes generalized as SEC-DED (single error correction and 

double error detection), is an example of this type of code. In SEC-DED, an extra 

parity bit is added achieving a distance of four instead of the three (as in the 

original Hamming). The extra parity bit allows the decoder to distinguish 

between two possible situations: 

x When at most one bit flip has occurred and 

x When two bit flips have taken place 

In contrast with Hamming(7,4), SEC-DED provides single-bit-error correction 

and simultaneous double-bit-error detection. 

Compared to Hamming codes, Hsiao codes (Hsiao, 1970) provide improvements 

in speed, reliability and calculation cost as well as checking and correcting logic. 

                                                        

11 SEC-DED: Single error correction and double error detection  

12 A Hamming code is perfect in the sense that it can achieve the highest possible rate for codes 
with a given block length and minimum distance of three (Moon, 2005) 
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However, in situations that demand higher reliability requirements than those 

provided by SEC-DED, more complex codes are required. 

3.5.2.1.1. SEC-DED limitations and alternative techniques 

The main limitation of SEC-DED codes is that triple-bit errors may not only 

remain undetected but it may also be miscorrected as if they were single-bit-

errors (Hsiao, 1970). The probability of this type of miscorrection for 32bit data 

words is around 60% or more. 

Multiple errors are usually taking place in adjacent memory locations, therefore 

increasing the chances of having multiple bit errors in a given word (Bentoutou 

and Djaifri, 2008; Boatella et al., 2009). These are called burst errors13, errors 

that	
  are	
  highly	
  correlated.	
   If	
  a	
  specific	
  memory	
  cell	
  has	
  an	
  error,	
   it’s	
   likely	
  that	
  

adjacent cells may also be corrupted by the same event that triggered the error 

in the first place. Theses are sometimes referred to as spatial multi-bit errors 

(Mukherjee et al., 2004). In contrast, temporal multi-bit errors are errors that 

take place when two different cells of the same word are affected by different 

events (Mukherjee et al., 2004).  

An important risk for SEC-DED schemes is that if a specific memory word is not 

accessed for a long period of time, the chance of accumulating errors increases 

(temporal multi-bit errors). One method to avoid these is the use of memory 

scrubbing (Mukherjee et al., 2004; Saleh et al., 1990; Weaver et al., 2004) , by 

which every memory location is read periodically. This may be implemented by 

having a hardware controller that, during idle periods, reads every memory 

location searching for errors and correcting any single error found during the 

                                                        

13 Also called cluster of errors 
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process, thus reducing the chance of detected (DRE14 and DUE15) and undetected 

errors (e.g. SDC16). Scrubbing does, however, impose additional SW and/or HW 

overheads depending on the implementation.  In current architectures with high 

memory bandwidths, HW scrubbing is preferred due to its lower timing 

overhead.  In combination with SEC, scrubbing is effective against single-bit- and 

temporal multi-bit errors but not against spatial multi-bit errors.  

 

Figure 3-20. Memory interleaving of four 3-bit words with a 4 
interleaving distance (ID) 

To avoid this problem of spatial multi-bit errors, memory interleaving (Haraszti, 

2000; Reviriego et al., 2010, 2007) is commonly used in conjunction with ECC 

ensuring that cells that are physically closely located belong to different logic 

                                                        

14 A DRE is a detected recoverable error, a benign type of error since recovery of the normal 
operation by fault tolerant techniques is possible (Kadayif et al., 2010; Weaver et al., 2004) 

15 A DUE is a detected unrecoverable error. DUE take place when fault tolerant techniques are 
able to discover and/or report an error, from which recovery is not possible (Kadayif et al., 2010; 
Weaver et al., 2004) 

16 SDC stands for Silent data corruption. A SDC take place when an error is undetected and causes 
data corruption (SDC). In this case, the corrupted data could go unnoticed making this type of 
error benign, or could result in a visible error and/or catastrophic failure such as crashing a 
computer system (Constantinescu et al., 2008; Kadayif et al., 2010; Weaver et al., 2004)  
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words. That is, cells that belong to the same logical word are physically apart.  

Figure 3-20 illustrates an example of memory interleaving in a four 3-bit 

memory word. This type of memory distributes logical data into a non-

continuous arrangement. More columns than the number of bits of a single word 

are added, and the corresponding columns for each word are interleaved. In this 

way, burst errors are distributed over a number of words each suffering only one 

single bit error. Any 4-bit-upset affecting adjacent memory cells would cause four 

single bit errors in separate words, which can be easily corrected by SEC-DEC.    

A shortcoming of interleaving is that high interleaving distances (ID) involve 

more complex designs and thus higher area and latency overheads (Baeg et al., 

2009; Reviriego et al., 2010). Ideally the ID should be selected as the maximum 

expected MCU size so that all upsets in a burst error would occur in different 

logical words. 

Table 3-4. ECC-TMR comparison 

Characteristic Hamming (SEC-DED) TMR RS (DEC-TED) BCH (DEC-TED) 

Area 

Small overhead to 
implement  
Varies depending on 
the number of bits (7-
32%) 
 

Extra 200% plus the 
voting and correcting 
logic 
Number of voters is 
proportional to the 
number of units 

Varies depending 
on the number of 
bits (13-75%) 
 

Varies depending on 
the number of bits 
(13-75%) 
 

Performance 

It can be affected by 
the coder-decoder 
functions 
Proportionally 
dependent on 
number of bits to be 
corrected  

High performance. 
Voter is the only 
source of delay, hence 
almost constant delay  

Lower 
performance than 
BCH and much 
lower compared to 
Hamming and TMR 

Higher performance 
than RS but much 
lower than 
Hamming or TMR 

Error 
Correction 

Limited capabilities: 
it corrects only one 
single incorrect bit 
per word.  

Corrects up to n 
errors in an n-bit 
word as long as the 
errors are located in a 
distinct position/unit.  

Can handle 
multiple errors; 
Efficient for 
correlated errors 
(e.g. burst) 

Can handle multiple 
errors; Efficient for 
uncorrelated errors 
(e.g. random errors) 

Implementation Binary based 
Simple to implement Simple to implement 

Symbol based 
Complex to decode 
and implement 

Binary based 
Complex but simpler 
to decode and 
implement than RS 
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3.5.2.2. Complex codes 

EDAC implementations based on Hamming codes are the easiest to implement 

but only provide single error correction (Hentschke et al., 2002). There are 

alternatives to SEC-DED like Bose-Chaudhuri-Hocquenghem (BCH) (Bose and 

Ray-Chaudhuri, 1960) and Reed-Solomon (RS) codes (Reed and Solomon, 1960) 

based on finite-field arithmetic that can correct multiple faults.  

Table 3-4 shows a comparison of the main error correction techniques in 

memories. BCH codes are able to correct a given number of bits at any position 

whereas RS codes group the bits in blocks in order to correct them. RS based 

codes provide a more robust error correction capability but uses a large amount 

of system resources17. The RS decoding process has several stages to get the 

location of the error and correct it. Implementations of RS codes can be found in 

(Neuberger et al., 2005, 2003). Although the RS algorithm can be simplified 

(Neuberger et al., 2003) the main disadvantage of these two codes is having 

complex and iterative algorithms.  

Table 3-5. EDC-ECC storage array overheads, based on (Slayman, 
2005).  

 

                                                        

17 DEC-TED implementations are expensive from both area-penalty and computational-
complexity points of view 
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As with hamming based SEC-DED, more complex codes can be implemented 

based on RS and BCH algorithms. Some examples are SNC-DND18 (Chen and 

Hsiao, 1984) and DEC-TED19 codes (Lin and Costello, 1983). Table 3-5 is an 

overhead comparison of various EDAC schemes: Single parity EDC, Hamming 

SEC-DED, SNC-DND and DEC-TED.  Note that the calculation of overheads is just 

the number of check bits divided by the number of data bits and does not include 

the extra overheads (e.g. I/O and checkers). Complex errors increase the 

overhead rapidly as correction capability is increased (Kim et al., 2007). For any 

given technique, as the data size increases, the relative overhead of a given 

scheme decreases (Table 3-5). 

In addition to the area penalty, as the correction capability increases, timing 

overheads also increase. Results on 64kb SRAM developed in 90nm processes 

show that the implementation of a DEC-TED encoder involves a latency penalty 

of 80% to 85% as compared to SEC-DED (Naseer et al., 2006).  

Schemes based on information redundancy can also be applied on different 

levels. For instance parity codes can be applied to registers, cache and internal 

memory whereas SEC-DED can be implemented in external memory, etc. As all 

these are more complex codes than SEC-DED let alone single parity codes they 

produce higher overheads as the correction capability increases (Kim et al., 

2007) and are thus not suitable for areas of real-time systems that demand high 

possessing performance.   

                                                        

18 SNC-DND: single nibble error correcting, double nibble error detecting 

19 DEC-TED: double bit error correcting, triple bit error detecting 
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3.6. Time redundancy: HW(T) 

Figure 3-21 shows a list of the most relevant techniques based on time 

redundancy, which are fully described in Sections 3.6.2, 3.6.3, 3.6.4, 3.6.5 and 

3.6.6.  

 

Figure 3-21. Taxonomy of time redundancy techniques 

3.6.1.  Concurrent error detection: Basics of time redundancy  

The main problem with the space and information redundancy types reviewed is 

the penalty imposed in the form of extra hardware. At the expense of using 

additional time, FT techniques based on time redundancy (TR) aim to reduce the 

amount of hardware required for the implementation. Time redundancy 

techniques involve the re-execution of code using the same piece of hardware 

and comparing the two execution results to determine if a fault has occurred. 

This approach was commonly used in the past and is effective in detecting errors 

resulting from transient faults. 
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Figure 3-22. Transient fault detection mechanism based on 
redundant execution 

Figure 3-22 shows the basic transient fault detection mechanism based on re-

execution. With this technique two or more different computations are 

performed at different times t0, t0+∆t, and t0+n∆t given n>1. The result of a given 

computation is stored in the corresponding register and then compared to the 

results obtained from the previous computation(s). If the re-execution is 

performed twice and a disagreement exists, then transient errors can be 

detected. This type of technique was used in the past, but on its own, and did not 

provide protection against errors due to permanent faults. However, the 

executions can be performed again to check if the discrepancy remains or not. 

This is useful in order to distinguish between permanent and transient faults. If 

after re-execution the fault disappears, it is assumed to be transient. The 

hardware resource affected by a transient fault is still usable. On the other hand, 

if after re-execution the problem persists, the fault is assumed to be permanent 

and reconfiguration of the specific hardware resource is necessary. 

 

Figure 3-23. Transient and permanent  fault detection mechanism 
based on redundant execution 
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Modern FT techniques based on time redundancy can detect permanent faults as 

shown in Figure 3-23. In this case, during the first computation, the results 

obtained are simply stored in a register. Then, prior to the next computation(s) a 

specific type of encoding is performed on the operands. After the relevant 

computation(s) take(s) place on the encoded operands, the results of all 

computations are then decoded and compared. 

Given that x is the input data, E(x) is the data decoding, F(x) is the functional 

computation, F(E(x)) is the functional computation of the decoding data and 

D(E(f(x))) is the decoding of the encoded data after computation, and assuming 

that the functional block is free of permanent faults and assuming that: 

∀  𝑥          𝐷൫𝐸(𝑥)൯ =   𝑥         

Equation 3.8. Encoding-decoding relationship  

Then, the following relation can be stated: 

∀  𝑥            𝐷 ቀ𝐹൫𝐸(𝑥)൯ቁ =   𝐹(𝑥)         

Equation 3.9. Relationship among encoding, decoding and 
functional computation  

If the decoder and the encoding process are carefully selected so that a failure in 

x would affect F(x) differently than it would affect F(E(x) then if ∆t>0 the 

comparison mechanism would produce an error signal.  

The main problem with time redundancy	
  techniques	
  is	
  that	
  if	
  the	
  system’s	
  data	
  is	
  

corrupted by a transient or permanent fault, it will be difficult to repeat a given 

computation. The critical part of these techniques is assuring that the data is 

correct and identical before each one of the redundant computations take place. 

The leading concurrent error detection (CED) techniques based on time 

redundancy are alternating logic  (Reynolds and Metze, 1978), recomputing with 

shifted operands (RESO) (Patel and Fung, 1982), recomputing with rotated 

operands (RERO) (Li and Swartzlander, 1992), recomputing with swapped 

operands (RESWO) (Hana and Johnson, 1986) and recomputing with comparison 
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(REDWC) (Johnson et al., 1988). All these techniques work as specified in Figure 

3-23. The main difference among them is the type of encoding and decoding 

used. 

3.6.1.1. Self-duality 

Self-duality is a property required for	
   certain	
   circuit’s	
   functions	
   in order to 

implement specific error detection techniques based on time redundancy. A 

function is said to be self-dual if it satisfies the property: 

  ∀  𝑥              𝑓൫𝑥ଵ_, 𝑥ଶ_, … , 𝑥ଷ_൯ = 𝑓_(𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ)   

Equation 3.10. Property of self-duality  

Where x1, x2, x3,	
   …,	
   xn is the set of inputs to the circuit, x1_, x2_,...,xn_ the set of 

complemented inputs, f() the output and f_() the complemented output.  

By letting C be a function that complements each bit of a given vector: 

∀  𝑥            𝐶൫𝑥ଵ_, 𝑥ଶ_, … , 𝑥ଷ_൯ = (𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ) 

Equation 3.11. Property of self-duality  

It becomes clear that: 

𝐶ିଵ = 𝐶 

𝐶ିଵ ቀ𝑓൫𝑐(𝑥)൯ቁ = 𝑓(𝑥) 

Equation 3.12. Complementary function 

Resulting in: 

𝐶൫𝑓(𝑥)൯ = 𝑓൫𝐶(𝑥)൯ 

Equation 3.13. Complementary function and self-duality 

There are several problems that must be considered when designing a fault 

tolerant technique using time redundancy. A function C that satisfies the 
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previous property must firstly be determined. Finding a C may not guarantee the 

desired level of error detection since different circuit implementations based on 

different C can have different coverage. Complexity is also an important issue. In 

the case where the hardware required to implement the coding and decoding 

functions based on C and C-1 is similar to that of implementing f(x), then 

structural redundancy becomes the more effective choice. In short, the aim of a 

cost effective design should be finding a function C that provides a good trade-off 

between high coverage and low complexity. 

3.6.2. Alternating logic 

An example of encoding/decoding function is the complementation operation 

used in alternating logic (Reynolds and Metze, 1978) and successfully applied to 

permanent fault detection of data transmission and digital systems.  

 

Figure 3-24. Time redundancy technique based on alternating logic 

As shown in Figure 3-24, the data computed at time t0 is then complemented and 

transmitted at time t0+∆t. In the case of a stuck line (either at 0 or at 1) the two 

computations will generate data that are not complement of each other and 

therefore the error signal will become enabled after comparison. In the case of 
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Figure 3-24, the last communication line is stuck at 120 and therefore 

complement and data would both become 1, which is not an alternate output and 

therefore a fault is detected. In order to implement error detection in this coding 

the circuit function must have the property of self-duality otherwise extra input 

bits would be required. For certain circuits 100% area overhead may be required 

for certain error detection circuits in addition to time redundancy (Carter and 

Schneider, 1968; Johnson et al., 1988; Woodard and Metze, 1978). 

The key for fault detection is to determine that at least one input vector exists for 

which the fault will not result in alternated outputs. Although any single stuck-at 

fault can be detected by this technique, extra redundancy and hardware 

modifications are required to create self-dual functions from non-self-dual ones. 

Any non-self-dual function of x variables can be converted into an x +1 variable 

function that is self-dual and can thus be implemented with an alternating logic 

circuit. 

3.6.3. Recomputing with shifted operands (RESO) 

Recomputing with shifted operands is a logic level concurrent error detection 

technique based on time redundancy developed by Patel and Fung (Patel and 

Fung, 1982).  RESO can be applied to certain problems in which shifting the 

inputs forms a complementing function that produces a known relationship in 

the outputs. It has been originally used for arithmetic and logic units. The error 

detection capability of RESO depends on the number of shift operations. The 

generalized version is RESO-k and it refers to shifting by k bits. 

                                                        

20 A stuck-at fault is a particular fault model used to represent a manufacturing defect within an 
integrated circuit. Depending on the effect of the fault, a suck-at fault can be stuck either at a 
logical value of 0 (stuck-at 0) or 1 (stuck-at 1) 
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Figure 3-25. ALU concurrent error detection using recomputing 
with shifted operands (RESO-k) 

Figure 3-25 shows a schematic of a concurrent error detection mechanism on an 

ALU using RESO. The operands a and b undergo a normal ALU operation 𝑓(𝑎, 𝑏) 

during the first computation at time t0 and the result is stored in a register. 

During the second computation at time t0+∆t, before entering the ALU the 

operands are shifted left by k bits and the result of the ALU operation is right 

shifted and finally compared to the ones previously stored in the register. In such 

operations, left and right shifting can also be denoted as E(x) and D(x) (or E1(x)). 

Therefore, if the equivalent notation for the recomputation is 𝐸ିଵൣ𝑓൫𝐸(𝑎, 𝑏)൯൧ it 

should be equal to the first computation  𝑓(𝑎, 𝑏). If the results are identical the 

output of the computation will be  𝑓(𝑎, 𝑏). However, if there is a discrepancy an 

error signal will be generated. 

When an n-bit operand is shifted left by k-bit(s), its leftmost k bit(s) move out 

and the right most k-bit(s) become zero. This may lead to an incorrect result of 

𝑓(𝑎, 𝑏)  since k essential bit(s) are removed whenever shifted left. As with 
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alternating logic, extra redundancy is needed as an (𝑛 + 𝑘) shifters need to be 

implemented. Furthermore, a bigger (𝑛 + 𝑘) bits length ALU is needed and 

therefore the recomputation takes (𝑛 + 𝑘) bit operations rather than the original 

n-bit ones. Furthermore, a totally self-checking equality checker is required for 

the comparison process and error signalling. Additionally, parity codes can also 

be used to detect error in the shifter logic.  

Note that the fault coverage capability of RESO depends on the number of shifts. 

RESO-1 can detect all single bit-slice errors in an ALU for all bitwise operations, 

including AND, OR, NOT, NOR and XOR. As k becomes larger, an increase of space 

and time complexity is entailed which in turn increase the probability of error. 

Consider an ALU with an n-bit shifter and a RERO-2 implementation and an 

operand a equal to 11010. After the 11010 is being shifted left by two bits, it will 

have the two MSBs shifted out, thus becoming 01000. As a consequence, the 

result of the calculation 𝑓(𝑎, 𝑏)  will probably be incorrect. 

If the shifter is replaced by an (𝑛 + 𝑘)-bit shifter with k=2 in this particular case 

(RESO-2), then the operand a after the shifting operation will be equal to 

1101000, thus keeping the MSBs and ensuring the correct result  𝑓(𝑎, 𝑏). Note 

that during the first computation k-zero MSBs are added to each of the operands. 

This is one way of detecting errors using RESO. Alternatively, as before, during 

the first computation at time t0, the operands a and b undergo a normal ALU 

operation 𝑓(𝑎, 𝑏)  but the results are now left-shifted before being stored in the 

register. In the second computation at time t0+∆t, the operands are also left-

shifted by k bits, but in this new way, the results are directly compared with the 

ones in the register (there is not right-shifting performed on the operands). 

The penalty paid for implementing RESO is that every component must be 

extended to accommodate the shifting. For instance, to implement RESO-1 on a 

32bit ALU the main system and the shifters are required to be 33 bits whereas 

the storage registers and the equality checker must be 34 bits.  
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3.6.4. Recomputing with rotated operands (RERO) 

Recomputing with rotated operands (Li and Swartzlander, 1992) is another 

technique designed to overcome the limitations of RESO. RERO-k has similar time 

redundancy characteristics to RESO but with different structural redundancy 

demands.  

 

Figure 3-26. ALU concurrent error detection using recomputing 
with rotated operands 

Figure 3-26 displays an ALU with RERO-k based concurrent error detection. 

RESO-k requires an (𝑛 + 𝑘)-bit rotator and an (𝑛 + 𝑘)-bit ALU whilst RERO-k 

only requires an (𝑛 + 1)-bit rotator and an (𝑛 + 1)-bit ALU.   

During the first computation, the (𝑛 + 1) bit rotators do not rotate the operands, 

thus the input and output of the rotators is identical. Both operands undergo a 

regular ALU operation whose result is stored in a register. During the second 

computations, the first two rotators perform a k-bit(s) right-rotation of the input 

operands before they enter the ALU. Next, the result is rotated left and compared 
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to the previous result from the first computation. If the results are identical the 

output of the computation will be  𝑓(𝑎, 𝑏). However if there is a discrepancy an 

error signal will be generated.  

With regards to error coverage, a RERO-k implementation with an n-bit ALU can 

detect: 

x (k mode n) consecutive errors for bit-wise logical operations. 

x (k-1) consecutive errors in a ripple carry adder for arithmetic operations.  

3.6.5. Recomputing with swapped operands (RESWO) 

Recomputing with swapped operands (Hana and Johnson, 1986) is an extension of 

the RESO technique that tries to detect errors by alternating the position of the 

operands. RESWO implementation is very intuitive but with limited applications 

such as addition, multiplication and Boolean functions but not division or 

subtraction operations.  

The first computation at time t0 is performed on unmodified operands. During 

recomputation, at time t0+∆t, the operands are first split into two halves, upper 

and lower, then swapped before calculation and finally swapped back after it. 

The logic for implementing RESWO has been shown to be less complex and less 

expensive than in RESO, in particular when the complexity of individual modules 

is high (Shedletsky, 1978).  

3.6.6. Recomputing with comparison (REDWC) 

Recomputing with comparison (Johnson et al., 1988) uses a combination of both 

hardware and time redundancy. The operands a and b of an n-bit operation are 

split into two halves and computed by two virtually divided devices (𝑛/2-bit 

size) twice. In a first time slot, the least significant 𝑛/2-bits (lower halves) of the 

operands and their duplicates are carried out and then their results compared. 

Upon completion, in a second time slot, the same operation is repeated for most 



 

 
107 

significant 𝑛/2-bits (the upper halves) of the operands. As long as the separate 

halves do not become faulty in the same way and at the same time, REDWC can 

detect all single faults.  

3.7. Redundancy schemes comparison 

In general, the addition of correction capabilities to a mechanism involves extra 

area and/or time overheads. Table 3-6 compares timing, area overheads and 

capabilities of structural- and time- based FT mechanisms. 

Table 3-6. Comparison structural-, time- based FT mechanisms  

Scheme Space 
redundancy 

Time 
Redundancy 

Detection (D) and 
correction (C) 

Time redundancy based 

Alternating logic ≈0%- 100% >100% D 

RESO ≈0%- 93%% >100% D 

RESO  ≈0%- 93% >200% DC 

RERO ≈0%- 93% >100% D 

RESWO ≈0%- 77% 0-100% D 

REDWC ≈0%- 90% 0-100% D 

Structural redundancy based 

DWC >100% ≈0%-17% D 

TMR >202% ≈0%-17% DC 

TMR with 
triplicated voter >208% ≈0%-17% DC 

Information redundancy based 

Single Parity 1-6% ≈0%-10% D 

SEC-DED 7-32% 10%-129% DC 

SNC-DND 13-75% - DC 

DEC-TED 13-69% 22%-200% DC 
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TR techniques involve low area overheads at the cost of extra timing. Note that 

some of these techniques, such as RESO, can provide correction capabilities by 

performing more than two computations.  In contrast, at the cost of area 

penalties, SR techniques can provide detection and correction with very little 

timing overheads.  

Error detection codes, such as parity coding involve low complexity and low 

overheads but have limited detection abilities and are not able to detect multi-bit 

errors. Although information redundancy schemes can be feasible to correct 

single and double errors in high-capacity memories (Paul et al., 2011), for n>2, n-

bit correction circuitry demands considerable area, energy and timing 

overheads, especially in low capacity memories. For instance, in an 8-bit ECC 

scheme integrated to a 64kb SRAM the area overhead can be more than 80% 

(Kim et al., 2007). Application of Hamming SEC-DED codes to 16M-bit DRAM 

chips has a 10% access time penalty on a to 16M-bit DRAM (Arimoto et al., 1990; 

Furutani et al., 1989).  For an experimental 1M-bit DRAM cache, applying a SEC-

DED code imposes up to 15% access time overhead (Asakura et al., 1990) 

The area penalty is even greater in register files (RFs); experimental results for 

SEC applied to a 64-bit 32-word RF using 90nm standard cell ASIC technology 

(Naseer et al., 2006) incurs a 22% area penalty and a 129% increase in read 

access time. TMR applied to the same type of registers incurs a 204% area 

penalty but increases the read access time by only 17%. Therefore, for sensitive 

ASIC applications that demand low-latency, TMR is more suitable.  

3.8. Conclusion 

The use of fault avoidance techniques does not guarantee complete removal of 

faults, having many drawbacks in terms of cost, speed of operation and chip area. 

System testing and verification techniques can never be exhaustive enough to 

remove all potential faults and their causes.  
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Structural redundancy techniques, such as DWC for single error detection and 

TMR for single error correction, are very popular. However, both techniques 

entail high area and power overheads and may not be suitable in embedded 

applications where power consumption is an important issue.  

CED techniques based on EDC, such as parity coding, involve lower area 

overheads than structural redundancy techniques but have limited detection 

abilities and cannot correct errors or efficiently detect multi-bit errors. ECC and 

physical interleaving incur large area overheads for multi-bit errors. Identifying 

the time interval for scrubbing can be tricky.  

In terms of time redundancy, the aim of a cost effective design should be finding 

a function C that provides a good trade-off between high coverage and low 

complexity. If the hardware required to implement the coding and decoding 

functions is similar to that of implementing f(x) then structural redundancy 

techniques are more effective. Time redundancy cannot be used in every 

application due to the additional time required. For instance, certain long-life 

critical systems used in space applications can tolerate additional time much 

easier than additional space or power requirements whereas real-time safety 

critical systems used in avionics cannot afford any additional performance 

penalty. Apart from time, extra hardware in the form of shifters, registers, 

comparators and extra bits are needed in ALUs. Moreover, fault coverage is not 

provided for shifters, rotators and comparators unless they are implemented 

with self-checking capabilities. However, if time is available TR techniques do 

offer an opportunity to minimize the additional hardware required as compared 

to structural redundancy. 

When it comes to implementing FT, the selection of particular types of 

redundancy greatly depends upon the application. Therefore to select a specific 

set of redundancy techniques for implementation we should examine a) the 

different requirements of the particular application and b) the techniques that 

are more suitable for such requirements. Likewise, not only the type of 

redundancy	
  technique	
  is	
  important,	
  but	
  where	
  and	
  at	
  which	
  level	
  it’s	
  applied; for 
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instance, applying TMR at the gate, register or circuit level would have a different 

fault coverage, time, structural and power consumption trade-off. 
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Chapter 4 

Impact of Radiation on electronics of 
embedded systems 

Exposure to radiation of electronic devices can lead to catastrophic system 

failures in embedded systems, significantly affecting their reliability. Therefore, 

prior to the design of a resilient architecture, several factors shall be considered 

in the earliest phases of the system design. The physics of radiation-induced 

faults, the study of the error process and the sources of error are discussed. The 

phenomenon that causes faults at the physical level is reviewed. This chapter 

presents a review of unwanted effects in semiconductor devices caused by high-

energy particles focusing on standard electronic materials: silicon and its oxide. 

We learn that the number of faults, and in particular the ones due to radiation 

are expected to increase significantly.  

4.1. Introduction 

To develop efficient fault tolerant systems, designers need to be aware of the 

impact of permanent and transient faults.  Hardware faults are a major concern 

in silicon based electronic components such as SRAM, DRAM, microprocessors 
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and FPGA. These devices have a well-documented history of faults mainly caused 

by high-energy nuclear particles. 

In the cases of safety-critical systems, aerospace and health monitoring systems, 

maximum reliability can be achieved assuming susceptibility of those systems to 

faults produced by various internal (e.g., interconnect coupling noise) and 

external reasons (e.g., cosmic and solar radiation). The traditional reliability 

analyses of these systems assume failure rates of permanent faults. A typical 

failure rate for permanent faults due to hard reliability mechanisms such as gate 

oxide breakdown or metal electromigration is generally between 1 and 50 FITS. 

So far, design and reliability engineers are discounting the effect of transient 

faults. Moreover, advances in semiconductor technology have been gradually 

increasing performance. Aggressive scaling of transistor sizes has driven these 

remarkable improvements in computational performance. However, the density 

of modern silicon chips makes them vulnerable to particles of lower energy 

causing transient faults and, as a consequence, catastrophic failures 

(Constantinescu, 2003; Hazucha and Svensson, 2000; Hazucha et al., 2003). 

Without mitigation mechanisms the error rates due to these transient faults can 

easily exceed 50,000 FITS per chip.  

4.2. Radiation and its effects on electronics 

The	
   term	
   “radiation”	
   is	
   commonly	
   used	
   to	
   describe	
   a	
   process	
   in	
  which	
   energy	
  

travels through a medium, or space, ultimately to be absorbed by another body. 

Radiation can generally be divided into ionising and non-ionising radiation 

depending on its ability to ionise matter. Non-ionizing radiation does not usually 

carry enough energy to produce changes to electronic circuitry. Non-ionising 

radiation can move atoms in a molecule around or cause them to vibrate but 

does not carry enough energy to ionise atoms or molecules, and as such is not a 

concern. Non-ionising radiation comes in the form of visible and infrared light, 

radio- and micro- waves and thermal. 
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 Ionising radiation has enough energy to directly or indirectly remove electrons 

from atoms or molecules, thus causing the formation of ions. It includes highly 

energetic protons, alpha particles, heavy ions, galactic cosmic rays and others.  

Even though neutrons are not ionizing particles their collision with nuclei 

produces ionizing radiation and therefore are also included in this classification.   

As manufacturing technologies evolve, the effects of ionising radiation are 

becoming a primary concern. Semiconductor devices are sensitive to ionising 

radiation in the space environment, high altitudes and sea levels. There are 

different radiation damage mechanisms affecting electronics including atomic 

"lattice displacements and ionisation damage. Such mechanisms induce different 

types of failures such Total Ionising Dose (TID), Single Event Effects (SEEs) and 

Displacement Damage Dose (DDD).  

Resulting particles from distinct radiation sources affect diverse electronic 

technologies in a variety of ways. Due to the reduction in size of the transistors 

and the reduction in critical charge of logic circuits, the natural resilience of 

previous technologies to information corruption is decreasing (Baumann, 2002; 

R. C. Baumann, 2005; Seifert et al., 2002; Shivakumar et al., 2002). Collision of 

energetic particles with sensitive regions of the semiconductor can alter stored 

information, potentially leading to logic errors. 

Transient faults (Breuer, 1973), the predominant faults in modern technologies, 

can be caused by environmental conditions like temperature, pressure, humidity, 

voltage, power supply, vibrations, fluctuations and electromagnetic interferences 

due to crosstalk between long parallel lines in a die. However, ionising particles 

are the major source of this type of fault. Transient errors in electronic devices 

due to ionising radiation in the space environment are well known (Adams and 

Gelman, 1984; Adams et al., 1982; Binder et al., 1975; Blake and Mandel, 1986; 

Waskiewicz et al., 1986) as is the impact of such radiation on application-specific 

electronics such as commercial (Dyer et al., 1990; Johansson et al., 1998; Olsen et 

al., 1993) and military (Taber and Normand, 1993) avionics, nuclear exposed 

environments (Mahout et al., 2000; Marshall, 1963), medical instrumentation 
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(Bradley and Normand, 1998), and other sea level domains (Hauge et al., 1996; 

Ziegler, 1996). 
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Figure 4-1.Taxonomy of radiation effects in silicon based electronics 
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4.3. Damage mechanisms 

The two fundamental damage mechanisms (Claeys and Simoen, 2002) to 

electronic elements due to radiation are atomic lattice displacements and 

ionisation damages. 

Atomic lattice displacement occurs when an energetic particle undergoes a 

nuclear collision with one or more atoms of the electronic device, changing its 

original position (see Figure 4-2 below) and thus the analog properties of the 

semiconductor junctions, potentially worsening in the long term the properties 

of the material and creating lasting damage. In silicon, an impacted atom can 

become displaced if it is part of the crystalline structure and the incident particle 

is capable of inducing a minimum energy (displacement threshold energy) of 

around 20eV (Miller et al., 1994). 

 

Figure 4-2. Atomic lattice displacement 

The	
  displaced	
  atom	
  is	
  referred	
  to	
  as	
  “primary knock-on atom”	
  (PKA)	
  and	
  its	
  new	
  

non-lattice	
   position	
   is	
   called	
   “interstitial”	
   while	
   its	
   absence	
   from	
   its	
   original	
  

lattice	
   position	
   is	
   named	
   “vacancy”.	
   Normally,	
   the	
   simplest	
   configuration	
   is	
   a	
  

vacancy and an adjacent interstitial generated as a result of a low energy particle 

hitting	
   the	
   material,	
   a	
   combination	
   referred	
   to	
   as	
   “Frenkel pair”.	
    However, in 

most cases the displaced atom has enough energy to knock out a neighbouring 



 

 
118 

atom	
   creating	
   a	
   more	
   complex	
   configuration	
   called	
   “cluster”,	
   altering	
   the	
  

properties of the bulk semiconductor material. In silicon, vacancies and clusters 

are of unstable nature and tend to be filled by near atoms leading to more stable 

defects.	
  In	
  general,	
  this	
  migration	
  leads	
  to	
  the	
  most	
  typical	
  process,	
  called	
  “defect 

reordering”	
   or	
   “forward annealing”	
   reducing	
   the	
   amount	
   of	
   damage	
   and	
   its	
  

effectiveness. Yet, in some cases, depending on the time, temperature and nature 

of	
   the	
   device,	
   “reverse	
   annealing”	
   can	
   take	
   place,	
   resulting	
   in	
   more	
   efficient	
  

defects. 

Ionisation damage is primarily induced by charged particles usually leading to 

transient effects causing temporary variation of the functionality of the system. 

Since no permanent damage is induced in the electronic circuit, this type of error 

is called soft error. Ionisation damage may also lead to small degradation and 

permanent errors, also called hard errors. A key factor in the damage process is 

the critical charge, or Qcrit, which is the smallest amount of charge that can cause 

a change of value in a cell. The effects provoked by the above damage 

mechanisms can vary depending on the type or combination of types of 

radiation, radiation flux, total dose, critical charge of the device and 

manufacturing technology.  These factors make modelling of faults difficult and 

time consuming. 

4.4. Radiation macro effects 

Three major macro effect categories may be used to classify the resultant effects: 

Total Ionising Dose (TID), Displacement Damage Dose (DDD) and Single Event 

Effects (SEE). As far as the type of degradation that these macro effects have, TID 

and DDD are considered as long term cumulative and SEE as short term. Table 

4-1 summarizes the characteristics of these radiation macro effects. 
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Table 4-1. Characteristics of radiation macroeffects 

Radiation 
Effect 

Type of 
degradation 

Source 
Damage 
Mechanism 

Microeffects 
Counter measures - Mitigation 
Techniques 

Sensitive 
Technologies 

Temperature 
dependency 

Total Ionizing 
Dose (TID) 

Long-term 
cumulative 

Trapped protons, 
trapped electrons and 
solar event protons 

Ionizing 
damage 

Small energy 
transfers 
deposited 
uniformly and 
delivered over a 
long time. 

-Partial mitigation: Additional 
shielding is only effective in 
particular technologies and 
environments 
Robust electronic design. High drive 
currents. High noise immunity, large 
gain margins, etc. 
Cold redundancy using spares. Not 
suitable for all technologies. 

Power MOS, 
CMOS, NMOS, 
PMOS, SOI, SOS, 
Bipolar, BiCMOS 

YES 

Displacement 
Damage Dose 
(DDD) - Bulk 
damage 

Long-term 
cumulative 

Trapped and solar 
protons and neutrons 

Atomic Lattice 
Displacement 
damage 

Accumulation of 
small energy 
transfers to 
atomic nuclei 
(Coulomb, 
nuclear 
interactions). 

-Shielding is not only ineffective, but 
it is also the root of the problem Bipolar, BiCMOS NO 

Single Event 
Effects (SEE) Short-term 

GCRs, particles from 
solar events, trapped 
protons, and 
secondary neutrons 

Ionizing 
damage 

Sudden large 
energy transfers 
at the 'wrong 
place and time'. 

 
-Additional shielding is NOT effective. 
- Ensure systems are not sensitive to 
transient effects. 
- Fault tolerant design techniques. 
- Error Detection and Correction for 
critical circuits. 
- System Autonomous re-boot. 

Power MOS, 
CMOS, NMOS, 
PMOS, Bipolar, 
SOI. SOS, 
BiCMOS 

YES 
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Total Ionising Dose is a measure of the cumulative effects of the prolonged 

exposure to ionising radiation. In the context of silicon devices, it is also called 

surface damage. MOS and bipolar electronic technologies are affected by TID and 

once the material is damaged, it will not return to its original state (Felix et al., 

2007). In today's devices, the formerly used bipolar transistors have been almost 

completely replaced by the MOSFETs (Metal Oxide Silicon Field Effect 

Transistors). 

 

Figure 4-3. Schematic of a MOS transistor 

The schematic of a typical MOS transistor is shown in Figure 4-3. Its basic 

architecture is based on an N-(P-) doped silicon substrate and two highly P-(N-) 

doped contacts, the source and the drain. The channel between the source and 

the drain is covered by the gate oxide. This thin silicon dioxide (SiO2) insulating 

layer is situated under the gate electrode and can attract charge carriers into the 

channel region. If no voltage is applied at the gate electrode, no current can flow 

between drain and source. By regularly applying low voltages at the gate, the 

current between drain and source is regularly switched on and off. 
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Figure 4-4. Schematic of the motion of electron holes in a silicon 
oxide 

When a highly energetic particle strikes the semiconductor material, as shown in 

Figure 4-4, electron hole pairs are generated but disappear quickly due to the 

low resistance of the gate and the substrate.  However, in the oxide, and due to 

their different mobility, electrons rapidly move either to the gate or to the 

channel whereas the holes slowly bounce from site to site until they become 

trapped21 by defects near the silicon oxide interface. Some of these holes may be 

trapped for a long time resulting in a positive charge in the oxide that can affect 

the characteristics of the transistor and generate shifts in its operating threshold. 

These voltage shifts are the most common form of radiation damage in MOS 

technology and can persist from hours to years. 

                                                        

21 In MOS structures oxide traps are defects in the SiO2 layer, interface traps are defects at the 
Si/SiO2 interface and border traps are defects near the interface (Fleetwood et al., 2008) 



 

 
122 

TID effects can lead to degradation within the electrical circuit (threshold shifts), 

decreased functionality, switching speed, device current, increased device 

leakage (higher power consumption) and even functional failures. The primary 

sources of TID are trapped protons and electrons, and solar protons (Barth et al., 

2004). 

Modern submicron electronics offer relative relief to these effects in the way of 

natural radiation hardening (Pouponnot, 2005; Velazco et al., 2007). Current 

gate oxides are around 100 times thinner than the approximately 100nm oxide 

layers employed in the early 1990s. Modern gate oxides are around 1nm thick, 

which allow electrons to tunnel through the potential barrier at the silicon oxide 

interface, neutralizing the trapped holes. Since there is not enough trapped 

charge, transistor threshold shifts cannot be generated. 

Circuit level radiation hardening techniques, i.e. changes in the geometry of 

transistors, have been used to mitigate TID effects but such techniques are 

expensive. Furthermore, TID effects might be partially reduced with the use of 

shielding material that absorbs most electrons and low energy protons. 

However, the amount of shielding is inversely proportional to its effectiveness in 

stopping the protons with higher energy (Dyer et al., 1996). TID is considered a 

severe problem (Claeys and Simoen, 2002) during the lifetime of satellites.  

Displacement	
   Damage	
   Dose	
   (DDD)	
   or	
   “Bulk”	
   damage (Barth et al., 2004; Yu 

Qingkui et al., 2005), occurs when high energy particles dislodge or displace 

atoms from the semiconductor lattice due to its long time exposure to non 

ionising energy loss (NIEL). DDD results in a similar long-term cumulative 

degradation to that caused by TID. The damage mechanism is the result of 

collisions with atoms, which become displaced from the lattice creating 

interstitials and vacancies. Consequently, DDD is an effect of concern for all 

semiconductor bulk based devices such as bipolar devices (BJT circuits and 

diodes), BiCMOS, electro optic sensors (CCDs, photo diodes, phototransistors), 

silicon detectors and solar cells, whereas CMOS is almost insensitive to it. 
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DDD accumulation primarily occurs when the semiconductor material is exposed 

to neutrons, trapped protons and solar protons over time. Likewise, secondary 

radiation produced in shielding materials can cause DDD effects. The overall 

effect of DDD in semiconductors is alteration in the minority carrier lifetimes, 

which results in lower currents between the collector and the emitter and 

therefore reduced transistor gain. An extended review of literature related to 

this type of damage can be found on (Srour et al., 2003). 

4.5. Single event effects (SEE) 

The term Single Event (SE) is used to lay emphasis on the fact that the effect is 

caused by an individual particle interacting with the material. In current 

semiconductor technologies single event effects represent a much larger 

problem than the combination of all long-term cumulative effects. 

SEEs are induced by the strike of a single energetic particle (ion, proton, electron, 

neutron, etc.) in sensitive regions of the material. The particle travels through 

the semiconductor material leaving an ionised track behind depositing sufficient 

energy to cause an effect on a localized area of the electronic device. Both TID 

and SEE take place as a result of ionising radiation; however, whilst the former is 

a long term effect that changes the electrical properties of the device, SEEs are 

the result of an instantaneous perturbation. 

Neutron and alpha	
   (α)	
   particles	
   are	
   the	
   most	
   common	
   sources	
   of	
   SEEs	
   in	
  

terrestrial environments whilst cosmic rays and heavy ions are most responsible 

for space applications. SEEs affect many different types of electronic devices and 

technologies resulting in data corruption, high current conditions and transient 

disturbances. If not handled well, unwanted functional interruptions and 

catastrophic failures could take place. 
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4.5.1. Physical mechanisms responsible for SEEs 

In	
   the	
   “technological	
   shrink	
   model”	
   of	
   sensitivity	
   to	
   upsets  (Baumann, 2002; 

Seifert et al., 2002; Shivakumar et al., 2002) the detailed physical mechanisms 

responsible for SEE are identified in four consecutive steps (Dodd and 

Massengill, 2003; Wirth et al., 2008) taking place before an SEE occurrence: 

x Prior charge deposition by the incident particle striking the semiconductor, 

x Transport of the released charge into the device, 

x Charge collection by the different sensitive regions, 

x Circuit response. 

4.5.1.1. Charge deposition 

Ionising radiation can release charge in the semiconductor in different 

ways.  SEEs can occur through the impact of the incident particles themselves 

(e.g., direct ionisation from galactic cosmic rays (GCRs) or solar particles). SEEs 

can also occur as a result of secondary particles generated via inelastic or elastic 

nuclear reactions (Howe et al., 2005; Reed et al., 2006; Warren et al., 2005) and 

Coulombic (Rutherford or inelastic Coulomb) scattering (Wrobel et al., 2006) 

between the incident particles and the stationary targets in the struck material 

(indirect ionisation). 

An incident particle can experience a number of interactions before its kinetic 

energy is expended. In every interaction the path of the particle can be altered 

and can lose some of the kinetic energy. To measure the energy transferred to 

the material the terms Linear Stopping Power and Linear Energy Transfer (LET) 

can be used. Equation 4.1 describes the rate at which a particle loses energy 

while moving through an absorber. The incremental energy (dE) may be 

expressed in units of MeV while the path length (dx) may be expressed in units of 

cm. 
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𝑆(𝐸) =   −
𝑑𝐸
𝑑𝑥  

Equation 4.1. Linear stopping power 

From these interactions, two types of stopping power can be distinguished 

(ECSS, 2007; Podgorsak, 2009): 

x Nuclear stopping power (also called radiation stopping power) resulting 

from energy loss per unit path length due to inelastic Coulomb interactions 

between the charge particle and the nuclei of the absorber. Only light 

particles, such as electrons and positrons, experience significant energy 

loss via nuclear stopping power. For heavier charged particles, such as 

protons	
  and	
  α	
  particles,	
  this	
  type	
  of	
  loss	
  is	
  insignificant. 

x Electronic stopping power (also called ionisation or collision stopping 

power) resulting from inelastic Coulomb interactions between the charge 

particle and orbital electrons of the absorber. Electronic stopping power 

describes the energy lost due to direct ionisation. Unlike nuclear stopping 

power, heavy and light particles experience this type of interaction that 

results energy transfer from the incident particle to the orbital electrons 

via excitation and ionisation (ECSS, 2007). 
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Figure 4-5. Electronic, nuclear and total stopping power of protons 
in silicon, computed with PSTAR from NIST laboratory (Berger et 

al., 2005) 

The electronic, nuclear and total stopping energy of different particles are 

presented in Figure 4-5 (for protons) and Figure 4-6 (for electrons). Figure 4-5 

shows that at all energies the electronic stopping power of protons dominates 

and that the nuclear stopping power is insignificant. Figure 4-6 shows that the 

nuclear stopping power of electrons dominates at higher energies. 
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Figure 4-6. Electronic, nuclear and total stopping power of electrons 
in silicon computed with ESTAR from NIST laboratory (Berger et al., 

2005)  

The total stopping power (S(E)tot) for a charged particle with Ek energy passing 

through an absorber of atomic number Z is in general the sum of nuclear 

stopping power and electronic stopping power as shown in Equation 4.2 

(Podgorsak, 2009): 

𝑆(𝐸)௧௢௧ =    𝑆(𝐸)௡௨௖௟௘௔௥ +  𝑆(𝐸)௘௟௘௖௧௥௢௡௜௖ 

Equation 4.2. Total stopping power for a charged particle 

Charge deposition is often characterized by mass stopping power, instead of 

Linear stopping power. Mass stopping power is defined as the Linear Energy 

Transfer (LET) (not equal to Linear Stopping Power, but approximated) and can 

be obtained by dividing S(E) (expressed in MeV/cm) by the density of the 

material p (expressed in mg/cm3). Nearly independent of the density of the 

material, LET (Equation 4.3) describes the linear rate of energy transfer to the 

material as the energetic particle traverses the absorber. 
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𝐿𝐸𝑇 =
1
𝑝
𝑑𝐸
𝑑𝑥     

Equation 4.3. Linear energy transfer 

The LET of an incident ion and thus the density of ionisation, typically increase to 

a maximum immediately before the particle comes to rest. This peak, the Bragg 

peak, occurs due to the increasing cross section as the particle loses energy.  

 

Figure 4-7. Bragg peaks: LET (MeV/cm2) of the standard 
components of a 16MeV/nucleon cocktail versus depth in silicon 

(μm)	
  (McMahan et al., 2004) 

Incident particles can cause different nuclear reactions depending not only on 

the striking energy but also on the target mat erial. Figure 4-7 shows a plot of 

the LET of the standard components of a 16MeV/nucleon cocktail as a function of 

depth in silicon. The LET of a given ion is dependent on its energy and the target 

material, and therefore is an important parameter to quantify the sensitivity of 

electronic devices. Theoretical and experimental values of LET for most ions in 

different materials have been published (Northcliffe and Schilling, 1970). In 

addition, stopping power for different particles can be calculated using the TRIM 

code (Ziegler et al., 2010), and the ESRAR, ASTAR and PSTAR programs (Berger 

et al., 2005). 
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The LET can	
  be	
  converted	
  into	
  charge	
  per	
  unit	
  length	
  (fC/μm	
  or	
  pC/μm).	
  This	
  is	
  

more suitable to situations that take into account the physical dimensions of the 

device and the charge stored at the critical nodes. For example, in silicon based 

technologies a particle with a LET of 97 MeV-cm2/mg corresponds to a charge 

deposition	
  of	
  approx.	
  1	
  pC/μm. 

 

Figure 4-8. Energetic particle strike and generation of electron hole 
pairs: a) direct ionisation due to heavy strike; b) indirect ionisation 

due to proton strike 

In passing through a semiconductor material, high energetic particles (direct 

ionisation Figure 4-8a) can deposit energy in the absorber through a one step 

process involving Coulomb interactions with the electrostatic field electrons in 

the target atom (Podgorsak, 2009). The energy introduced allows bound 

electrons to leave their atoms, releasing free electron hole pairs and converting 

their energy into charge (part b of Figure 4-8b). The particle rests in the 

semiconductor material once almost all its energy is lost. The formation of an 

electron hole requires an average energy of 3.6eV. The energy lost due to direct 

ionisation can be referred as the electronic stopping power.  

The	
  total	
  path	
  length	
  or	
  total	
  distance	
  travelled	
  is	
  referred	
  as	
  particle’s	
  range	
  and	
  

is highly dependent on the type of particle, its initial energy and the properties of 

the semiconductor material. 
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At sea level, direct ionisation is the main charge deposition mechanism for 

upsets caused by heavy ions and alpha particles, emitted due to the 

contaminants in packaging materials. Traditionally, since protons and neutrons 

are lighter, the charge released by them is not enough to produce upsets via 

direct ionisation. 

As suggested in 1997 the technological shrink model would soon be affected by 

direct ionisation of low energy particles (Duzellier et al., 1997). Recent 

experimental evidence (Heidel et al., 2008) of 65nm SOI SRAM sensitivity to 

direct ionisation from protons supported the latter suggestion with results that 

the low energy proton for the 65nm technology is different to those from 

previous generations. 

However, the most significant upset rates due to light particles are caused via 

indirect ionisation mechanisms. In fact,	
   in	
   today’s	
   semiconductor	
   technology,	
  

high-energy neutrons derived from cosmic rays are the primary contributor to 

soft error rates at sea level. 

In those mechanisms, the highly energetic particles (protons or neutrons) do not 

directly interact with the material. The three indirect ionisation mechanisms are: 

x Inelastic nuclear reactions that take place when the incident particle hits a 

target nucleus causing fragmentation and ejection of secondary particles; 

x Elastic nuclear reactions that take place when the incident particle 

transfers some of its energy to a target nucleus that recoils (Figure 4-8) 

with extra energy transferred from the incident particle; 

x Coulombic scattering, similar to elastic nuclear reactions, takes place when 

the incident particle gets close to a target nucleus that recoils due to 

Coulomb force with less momentum and smaller angle than with elastic 

nuclear reactions. 

Among these three mechanisms, inelastic nuclear reactions have the higher 

probability of depositing larger amounts of charge, and hence are the most 
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significant indirect mechanism in the formation of SEE.  If an inelastic nuclear 

reaction takes place, a collision with a target nucleus leads to the emission of 

reaction products that can, in turn, deposit energy via direct ionisation. 

Those resulting particles are much heavier than the incident particle, which 

involves higher charge deposition that may result in a SEE. Since the incident 

particles do not directly interact with the semiconductor material, the number of 

counts or neutrons per cm2 is used to measure the effect rather than the LET. 

4.5.1.2. Charge transport and collection 

Subsequent to the charge deposition, the released carriers are transported and 

collected by the semiconductor elementary structures. The transport of the 

charge is based on three main mechanisms (Dodd, 2005): 

x Charge collection by drift: The charge can drift in regions with an electric 

field. Reverse biased semiconductor p-n junctions are usually the most 

sensitive regions. If the ionised track affects one of those junctions, the high 

electrical field present in the region can collect the incident charge, which 

can result in significant transient currents. This is a fast mechanism in the 

order of 100ps. 

x Charge collection by diffusion: the charge may diffuse in neutral zones 

(bulk of the device), leading to considerable transient currents. This is a 

slow mechanism in the order of nanoseconds. 

x Recombination: The charge can recombine with free carriers in the lattice. 
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Figure 4-9. Funnelling effect and charge collection mechanisms 
(Messenger and Ash, 1992) 

As Figure 4-9 illustrates	
   the	
   charge	
   collection	
   can	
   be	
   extended	
   via	
   “field	
  

funnelling” (Chang-Ming Hsieh et al., 1983; Hsieh et al., 1981). If a high field 

region, such as the depletion region of a p-n junction, is traversed by a column of 

electron holes, the associated electric field can be disturbed, spreading down 

along	
  the	
  particle’s	
  track	
  deep	
  into	
  the	
  substrate,	
  consequently	
  reducing	
  the	
  net	
  

charge in the depletion region. 

Three different areas within the track can be distinguished: 1) the initial 

depletion region, 2) the funnel region, and 3) the bulk region. 

Within the external depletion region, positive potential areas attract the 

electrons and negative potential areas attract the holes. Rapid collection by drift 

will take place in the funnel region whilst the diffusion mechanisms will slowly 

collect the charge of the residual carriers in the bulk region.  The	
   “funnelling	
  

effect”	
   is	
   effective	
   in	
   the	
   range	
   of	
   a	
   few	
   nanoseconds.	
   The	
   generated	
   carrier	
  

density in the vicinity of the junction becomes similar to the substrate doping 
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concentration, and the electrical field is then re-established back to its original 

position (Figure 4-10). Therefore, field funnelling and consequently charge 

collection are highly dependent on the substrate doping concentration. 

 

Figure 4-10. Funneling effect and charge collection mechanisms 
after a particle strike on a p-n junction (Mavis, 2002) 

4.5.1.3. Circuit level response 

The collected charge transported in the device induces parasitic transient 

currents, which turn could induce disturbances in the external 

circuits.  Depending on a) the collected charge, b) the intensity of the resultant 

current transient, c) the details of the circuit application and d) the area affected, 

the excess of charge can be manifested as one of many types of SEE (or a 

combination of them). 

Semiconductor devices experience SEEs in two major forms: in the form of 

destructive effects, which result in permanent degradation or even destruction of 

the device affecting functionality, and in the form of non-destructive effects, 

causing no permanent damage. Table 4-2 presents different type of errors, their 

nature, characteristics and a solution to eliminate their effect. 
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Table 4-2. Type of errors and how to fix them 

Type of error Characteristics Nature Fix 

Soft 

Transient 
soft 

Functionality in place 
Incorrect logical value Non-destructive Reading or writing 

Firm,  
Static soft 

Functionality in place 
Incorrect logical value 
Reading does not fix it 

Non-destructive Writing 

Pseudo-hard Functionality lost 
No permanent damage Non-destructive 

Power-off cycle or 
Reducing the power 
supply voltage below 
the holding voltage  

Hard 
Functionality lost 
Physical-permanent 
damage  

Destructive Replacement of HW 

Soft errors are of temporal nature and imply that the physical functionality of the 

circuit is not affected even though its temporal integrity is. Soft errors have been 

defined (“JEDEC JESD89-3A,”	
  2007) as “an	
  erroneous	
  output	
  signal	
  from	
  a	
  latch	
  or	
  

memory cell that can be corrected by performing one or more normal functions of 

the	
  device	
  containing	
  the	
  latch	
  or	
  memory	
  cell”. 

Typical examples of this are undesired changes of logic value in sequential logic 

and undesired analog pulses that temporarily change the output of 

combinational logic. Soft errors can be further categorized into transient and 

static errors (Mavis and Eaton, 2002). 

Transient soft errors are “soft	
   errors	
   that	
   can	
  be	
   corrected	
  by	
   repeated	
   reading	
  

without	
  rewriting	
  and	
  without	
  the	
  removal	
  of	
  power” (“JEDEC	
  JESD89-3A,”	
  2007). 

On the other hand, static soft errors, or firm errors, are those that cannot be 

corrected by repeated reading but can be corrected by rewriting without the 

removal of power, resulting in a completely functional memory (Caywood and 

Prickett, 1983). 

When a soft error has occurred, it could result in a detected recoverable error 

(DRE), detected unrecoverable error (DUE) or silent data corruption (SDC) 

(Kadayif et al., 2010; Weaver et al., 2004). If fault tolerant techniques are 

implemented a soft error could potentially be recovered, either by hardware or 

software. This is a DRE, a more benign type of error, since recovery of the normal 
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operation is possible. DUE take place when the same fault tolerant techniques 

are able to discover and/or report an error, from which recovery is not possible. 

A SDC take place when an error is undetected and causes data corruption (SDC) 

(Constantinescu et al., 2008). In this case, the corrupted data could go unnoticed 

making this type of error benign, or could result in a visible error and/or 

catastrophic failure such as crashing a computer system.  

Hard errors, or Permanent errors, lead to loss of device functionality but, in 

contrast with transient soft and firm errors, the functionality of the device is 

permanently damaged. Repeated reading, writing or re-powering is not effective 

in recovering from this type of errors. In general, hard error effects can only be 

corrected via maintenance action, involving replacement of components. 

A further categorization between hard and soft errors is pseudo hard errors, 

sometimes referred to as power cycle soft errors (PCSE) (“JEDEC	
   JESD89-3A,”	
  

2007). These take place as a result of the ionising radiation from a particle strike, 

when the functionality of the device is lost but the device is not permanently 

damaged. Unlike soft errors, pseudo hard errors cannot be corrected by 

repetitive readings or writings. Instead, they can be corrected by removing the 

power from the device. Examples of this are non-destructive latchup and firm 

errors in FPGA where the area affected by the particle strike is the control path 

(Edwards et al., 2004). Although the data may not be corrupted, the device 

functionality is compromised. SRAM based FPGA devices are subject to this type 

of	
   error	
   if	
   the	
   “gate	
   array”	
   configuration	
   in	
   SRAM	
   is	
   corrupted.	
   These	
   systems	
  

contain	
  the	
  “gate	
  array”	
  configuration	
  area	
  within	
  ROM,	
  which	
  is	
  loaded	
  into	
  the	
  

SRAM during power up. Recovery can be achieved via repowering and 

reinitialization. 

A classification of SEEs is presented in Table 4-3. The numerous types of SEE can 

be categorized depending on the type of degradation, recoverability and 

technologies susceptibility. Long- and short- term radiation effects on different 

manufacturing technologies are presented in Table 4-4. 
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Table 4-3. Classification of single event effects 

Acronym Name 
Type of 
error 

Affected technology 

SET Single event transients Transient 
soft 

Combinatorial logic, operational 
amplifiers, analogic and mixed 
signal circuits 

SEU Single event upset Static soft RAM, PLC - Sequential logic 

 

SBU Single bit upset Static soft RAM, PLC - Sequential logic 
MCU Multiple Cell Upset Static soft RAM, PLC - Sequential logic 
MBU Multiple Bit Upset Static soft RAM, PLC - Sequential logic 

SEL Single event latchup 
(microlatchups) 

Pseudo-
hard CMOS, CPUs, PLC 

SEFI Single event functional 
interrupts 

Pseudo-
hard 

Complex devices with built-in 
state or control sections 

 

Logic SEFI 
Address error, recoverable 
bust error, temporary block 
error 

Pseudo-
hard 

Complex devices with built-in 
state or control sections 

Soft SEFI Resettable single event 
functional Interrupt Static soft Complex devices with built-in 

state or control sections 

Hard SEFI Reboot or Permanent single 
event functional interrupt 

Pseudo-
hard 

Complex devices with built-in 
state or control sections 

SEL Single event latchup Hard CMOS, BiCMOS 

 

Destructive 
SEL 

Address error, recoverable 
bust error, temporary block 
error 

Hard CMOS, BiCMOS 

Non-
destructive 
SEL 

Resettable single event 
functional Interrupt 

Pseudo-
hard CMOS, BiCMOS 

Micro-latchup Reboot or Permanent single 
event functional interrupt 

Pseudo-
hard CMOS, BiCMOS 

SEHE or SHE or 
SEHR Single event hard error Hard Memories and latches in logic 

devices 

SESB or SES Single event snapback Pseudo-
hard Power MOS, SOI 

SEBO or SEB Single event burnout Hard Power MOS and bipolar 

SEGR Single event gate rupture Hard Power MOSFETS, Flash memory 

SEDR Single event dielectric 
rupture or micro-damages Hard Non-volatile nMOS structures, 

FPGA (antifuse), linear devices 
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Table 4-4. Long and short term radiation effects on different 
manufacturing technologies - X1 - Except SOI 

Technology Function SET SEU SEFI SEHE SEL SESB SEBO SEGR SEDR TID DDD 

CMOS, SOI 

SRAM 
 

x 
 

x x1 x 
   

x 
 

DRAM/ 
SDRAM  

x x x x1 x 
   

x 
 

EEPROM/ 
Flash  
EEPROM 

x x x 
 

x1 
  

x x x 
 

Μcontroller 
/μP x x x x x1 

    
x 

 

FPGA x x x 
 

x1 x 
 

x x x 
 

Power MOS 
      

x x 
 

x 
 

Bipolar x x 
    

x x 
 

x x 

4.5.2. System level response 

Many different acronyms are used to describe the numerous SEEs in digital 

integrated	
  circuits.	
  Also	
  called	
  “reversible	
  errors”,	
  non-destructive effects can be 

classified as SET, SEU, MBU, MCU, and SEFI.  

4.5.2.1. Single event upsets (SEUs): conventional upset mechanisms 

SEUs are a particular type of SEE that take place when a single energetic particle 

strike causes a charge disturbance, large enough to directly modify the logic state 

of a sequential element, such as a register, latch, flip-flop or a memory cell. It is 

by far the most common effect affecting all kinds of memory devices, including 

SRAM, DRAM, FLASH memories, microprocessor registers, DSPs, FPGAs, logic 
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programmable state machines and other similar. SEUs can be categorized as 

static soft errors since the device functionality is not permanently affected (soft), 

and cannot be corrected by repetitive reading (static) but only through the 

rewriting of new data (R. C.	
  Baumann,	
  2005;	
  “JEDEC	
  JESD89-3A,”	
  2007). 

Between 1954 and 1957, there were reports of anomalies in electronic 

equipment during above ground nuclear bomb tests. Since these anomalies were 

random, and not related to any permanent hardware fault, these were attributed 

to	
   electronic	
   noise	
   from	
   the	
   bomb’s	
   electromagnetic	
   shock	
  wave.	
   Even	
   though	
  

the	
   actual	
   term	
   “Single	
   event	
  upset”	
  was	
   first	
   adopted	
   in	
  1979 (Guenzer et al., 

1979), SEUs were, in fact, predicted in 1962 (Wallmark and Marcus, 1962) when 

it was forecasted that terrestrial cosmic rays would lead to the eventual 

occurrence of upsets in microelectronics. Moreover, it was anticipated that this 

kind of upset would limit the volume of semiconductor devices to a minimum of 

about 10 µm per side. 

Evidence of a small rate of cosmic ray induced upsets in bipolar J-K flip-flops in 

the space environment (Binder et al., 1975) was presented in 1975 confirming 

the earlier predictions. Four anomalies were found in the analysis of 17 years of 

satellite operation. It was suggested that 100MeV heavy ions in the solar wind 

striking the electronics might be responsible. During the early years of 

computing there have been many reported cases of electronic anomalies, whose 

source was unknown at the time. As an example, in 1976, the Cray1 

supercomputer at Los Alamos presented an average of 25 memory parity soft 

errors per month. It was not until 2010 that a study was published, attributing 

the cause of these anomalies to high-energy neutrons from the cosmic ray 

background (Normand et al., 2010). 

As integration density of DRAM increased to 64k, a significant SEU rate, mainly 

caused by alpha particle contaminants in package materials was found in 

terrestrial environments. The first evidence of SEUs at sea level in computer 

electronics was reported by May and Woods from Intel Corporation in 1978. 
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Eventually, May and Woods attributed the anomalies to alpha particle from 

impurities in the packaging modules (May and Woods, 1979). 

SEUs at sea level and aircraft altitudes due to cosmic radiation were first 

predicted (Ziegler and Lanford, 1979) in 1979 by Ziegler and Lanford from IBM 

Corporation. In 1984 SEU appearances due to cosmic radiation were reported for 

the first time (Ziegler and Puchner, 2004). The use of low alpha activity materials 

(May, 1979) mitigated the soft error rate due to this radiation from impurities, 

leaving	
  cosmic	
  ray	
  as	
  the	
  primary	
  factor	
  of	
  “single	
  event	
  rate”	
  (SER)	
  (Pickel and 

Blandford, 1978), which is the amount of single events pet unit of time. 

However, the increased use of large-scale integration (LSI) technology decreased 

the volume of the sensitive elements, which implied a corresponding reduction 

of the critical charge and the number of ion pairs needed to induce a soft error. 

The resultant SER raise was attributed to a new source, protons from solar 

events and trapped protons in the Van Allen belts (Wyatt et al., 1979). 

The 1980s where characterized by extensive research and development of SEU 

hardened electronics (Desko et al., 1990; Rockett, 1988; Weaver et al., 1987) and 

research on the fundamental SEU mechanisms, mostly on memory circuitry 

(Adams and Gelman, 1984; Blake and Mandel, 1986), since SEUs in 

combinational logic were rare (May et al., 1984). In 1984 SEUs induced by 

atmospheric neutrons were predicted in avionics for the first time (Silberberg et 

al., 1984). 

During the 1990s, the prediction of atmospheric neutron induced SEU in avionics 

was rigorously demonstrated to occur during flight (Taber and Normand, 1992). 

Furthermore, the concern for SEU increased due to manufacturers reducing the 

number of SEU hardened components which led to an increased interest for 

commercially available off-the-shelf (COTS) components, even in space 

environments (Shirvani and McCluskey, 1998; Underwood, 1998). 



 

 
140 

Due to its high operating voltages, early SRAM cells were very robust, but with 

technology scaling, in the last decades, SEUs have become more of a concern, 

posing a major challenge for the design of memories. SEU susceptibility increases 

exponentially as voltage decreases and, in contrast, decreases quadratically as 

feature size decreases. Measurements of neutron accelerated induced upsets in 

0.25µm, 0.18µm, 0.13µm and 90nm SRAM showed a SER/bit increase of 8% per 

generation. The SER of a 90nm SRAM increased of a by 18% for a 10% reduction 

in voltage (Hazucha et al., 2003). In contrast, more recent results in technology 

nodes ranging from 250nm through 28nm have shown that the SEU rate per bit 

has been declining up to the 65nm node (Dixit and Wood, 2011). However, this 

long term trend has been reversed with results for 40nm SRAM presenting 30% 

higher bit SER than the previous 65nm technology (Dixit and Wood, 2011). Note 

that the results provided are based on bit SER. Nonetheless, for every generation 

the complexity and the number of bits per unit area are increasing and so is the 

System SER. Recent predictions using Monte-Carlo simulator CORIMS on neutron 

induced soft errors in SRAMS show that system SER will increase x7 from 130nm 

to 22nm technology (Ibe et al., 2010). 

Embedded DRAM has been widely used in System on Chip (SOC) systems thanks 

to its density and high performance. At the same technology node, the size of an 

embedded DRAM bit cell is a quarter of the size of an embedded SRAM cell. With 

scaling, the voltage reduction has also reduced Qcrit. However, by replacing 2D 

capacitors (very efficient at collecting radiation charge due to its high area 

junctions) for 3D capacitors, the collection efficiency has decreased considerably, 

hence increasing Qcrit. The Qcrit increase due to junction volume scaling is more 

significant than the Qcrit decrease due to voltage scaling. Because of these, the 

DRAM bit SER has decreased to around 4x to 5x per generation (R. Baumann, 

2005). Then again, the DRAM system SER has remained roughly constant over 

many generations. In contrast with SRAM, whose SEU susceptibility has 

increased over the years, the problematic earlier DRAM based on planar cells has 

evolved to become one of the most robust devices. 
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4.5.2.1.1. Cell upsets 

A cell upset takes place if the deposited charge is greater or equal than the 

critical charge of the cell, changing its original logical value. These could be single 

bit upsets (SBUs), multi cell upsets (MCUs) or multiple bit upsets (MBUs). 

Single bit upsets (SBUs) are single upsets in a memory cell caused by a single 

event, i.e. one event producing a single bit error, and are very common on 

SRAMs. 

A single particle can energize two or more memory cells, as shown by (Reed et 

al., 1997). Multi cell upsets (MCUs), first reported in SRAMs exposed to the harsh 

space radiation environment (Blake and Mandel, 1986), are multiple bit upsets 

for one event regardless of the location of the multiple bits, i.e. an FPGA where 

one routing bit gets an impact from a high energetic particle affecting several 

memory positions. Hence, MCUs involve both types of upsets, the ones that can 

be corrected by EDC/ECC as well as those that cannot. Traditionally, MCUs have 

represented a small fraction of the total number of observed SEU (0-5%) (Maiz 

et al., 2003). However, in the case of FPGA, high linear energy transfer (LET) 

heavy ion induced radiation experiments indicate that as geometries shrink the 

MCU probability significantly increases, accounting for up to 35% of the upsets 

induced (Quinn et al., 2005). As for SRAM devices, it has been predicted that: 1) 

the MCU ratio will increase x7 from 130nm down to 22nm; 2) the MCU maximum 

size (MxN bits rectangular area including failed bits) will exceed as many as 

1Mbits in the extreme case; and 3) for 22nm process the maximum bit 

multiplicity will exceed as many as 100bit (Ibe et al., 2010) 

Multiple bit upsets (MBUs) also referred to as single word multiple bit upset 

(SMUs) (Koga et al., 1993a, 1993b) are a subset of MCUs. And MBU is a multiple 

bit upset for one event that affects several bits in the same word. This type of 

deviation cannot be corrected by EDC/ECC. However, it is possible to partially 

avoid MBUs by using specific layout design of memory cells. 
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In contrast to cells, bit line upsets are only upset susceptible during a short 

period of time, the pre-charge period specific from read cycle states. However, 

susceptibility is dependent on the core cycle frequency. Therefore, bit line upset 

rates are becoming more important (Schindlbeck, 2005) since recent 

technologies make use of shorter core cycles, which in turn involve higher 

susceptibility to upset.  

Figure 4-11 shows the sensitive areas that are susceptible to cell and bit line 

upset. NMOS drains of transistors connected to capacitors are sensitive zones to 

cell upset. In contrast, the sensitive zones to bit line upsets are the NMOS drains 

of transistors connected to bit lines (Bougerol et al., 2008). 

 

Figure 4-11. Sensitive areas to SEU in a DRAM memory array 
(Bougerol et al., 2008) 
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Historically, the occurrence of MCU was attributed to the collection of charges 

generated by a nuclear spallation reaction as a result of the impact between a 

secondary ion and the device. As sensitive devices shrink, neighbouring cells 

present closer physical proximity, increasing the number of cells that can be 

affected by the impact of a single particle. Nonetheless, novel MCUs are being 

reported	
  such	
  as	
  “charge	
  sharing	
  among	
  neighbour	
  nodes” (Amusan et al., 2006; 

Eishi Ibe et al., 2006).  

4.5.2.2. Single event transient (SET): an emerging upset mechanism 

Without the peripheral logic that interconnects them, sequential logic including 

embedded SRAM and DRAM would be useless. In general, the scientific 

community is mostly concerned with the effects of SEUs on sequential logic even 

though combinational logic is not immune to radiation as single event transients 

do occur here as well (Baumann, 2002; Buchner et al., 1997; Xiaowei Zhu et al., 

2005). However, confusion seems to exist in the literature regarding the 

terminology used for single event transients. In analog circuits, a SET has also 

been	
   referred	
   to	
   as	
   “analog	
   single	
   event	
  upset”	
   (Ecoffet et al., 1994). In digital 

circuits, a transient that causes an incorrect state in the data output of a logic 

gate	
  has	
  been	
  referred	
  to	
  as	
  “digital	
  single	
  event	
  upset”	
  (Reed et al., 1996). 

 

Figure 4-12. Traditional propagation of an SET in combinational 
logic 
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Earlier publications often incorporate both phenomena, SET and SEU, together 

as SEU, perhaps because the effects of an SET can potentially be propagated 

down the logic line and change the state of a sequential logic element. In this 

case, the effects are identical to the effects produced by an SEU as shown in 

Figure 4-12. It is also possible that more than on logic element change their state. 

This is known as a single event multiple upset or SEMU and should not be 

confused with MBU/MCU.  

In contrast with SEUs, SETs were at the time not considered a serious threat to 

the reliability of semiconductors. 

For the purposes of this article, the following definition will apply to the term 

SET: Single Event Transients (SETs) are analog transient pulses resulting from a 

single ionising particle, that are large or big enough to momentarily change the 

output of non latched elements, such as combinational logic, clock line and global 

control lines to an incorrect logic value. The duration of such pulse is in the order 

of 100ps (Pouponnot, 2005). 

As seen previously in section 5.1.2, different semiconductor technologies show 

different charge collection and transport mechanisms that lead to different 

pulses. Depending on the device technology, circuit topology, impact location, 

particle energy device supply voltage and output load, the resultant SET would 

have unique characteristics in terms of amplitude, waveform, polarity, duration, 

etc. Pulses can vary from tenths of picoseconds to tenths of microseconds. The 

effects of a SET can further be propagated along the logical path, and potentially 

be latched into one or more flip-flop, latch or register at a distant location from 

the original charge collection area. Yet, there has not been too much interest in 

protecting combinational logic since this type of logic has a natural tendency to 

mask these transient faults. There are inherent masking mechanisms that 

mitigate the propagation of the glitches, preventing the latch from taking place. 

These three mechanisms, that can provide a certain level of natural resistance to 

soft errors, are logical masking, electrical masking, and latch-window masking 

(Shivakumar et al., 2002; Wirth et al., 2008). 
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Figure 4-13. Effects of logical and electrical masking on a pipeline 
stage (Ramanarayanan et al., 2009) 

Logical masking takes place when the particle strikes a portion of the 

combinational logic that, regardless of its output, has no effect on the output of 

the subsequent gate Figure 4-13. The result of the subsequent gate is solely 

determined by its other input values. For instance, the output of a NAND gate 

with	
  an	
  input	
  A	
  equals	
  to	
  ‘1’	
  and	
  an	
  input	
  B	
  equals	
  to	
  ‘0’	
  would	
  not	
  be	
  affected by 

a	
  glitch	
  on	
  the	
  A	
  input	
  since	
  regardless	
  of	
  the	
  value	
  that	
  A	
  has,	
  the	
  gate’s	
  output	
  

would	
  be	
  ‘1’. 

Electrical masking occurs when, as the signal propagates, due to the electrical 

properties of the subsequent logic gates, the pulse suffers from attenuation to a 

point that it is not of sufficient magnitude to upset any downstream state 

element (Figure 4-13). 
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Figure 4-14. Latch window masking; temporal relationship of 
latching a data SET as an error (Mavis and Eaton, 2002) 

Latch window masking, also called timing windows masking, occurs when the 

undesired pulse reaches a latch at the wrong time of the clock transition (Cha et 

al., 1993). That is, the pulse does not satisfy the compulsory setup and hold time 

of the flip-flop. The transient will get latched if the pulse reaches the latch within 

the	
  “window	
  of	
  vulnerability”	
  (Figure 4-14), hence causing data corruption. 

In terms of upset tolerance of single gates, there are two characteristics of 

interest: glitch generation and glitch propagation (Dhillon et al., 2005). The 

shape	
  and	
  the	
  magnitude	
  of	
  the	
  voltage	
  glitch	
  generated	
  at	
  the	
  gate’s	
  output	
  are	
  

determined by the glitch generation characteristics. The voltage magnitude of 

the glitch depends on the total capacitance of the node while the duration of the 

glitch	
   depends	
   on	
   the	
   gate’s	
   delay.	
   Faster	
   gates	
   lead	
   to	
   wider	
   glitches	
   and	
  

therefore better generation characteristics. 

Alternatively, the glitch propagation characteristics of a logic gate determine the 

glitch attenuation as it passes through the gate. Assuming a linear ramp at the 

output of a gate, where d is the gate propagation delay and wi is the glitch 

duration at the gate input, the glitch duration of the gate w0 can be approximated 

using Equation 4.4 (Dhillon et al., 2005) as: 
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𝑤଴ =   0      𝑖𝑓      𝑑 > 𝑤௜ 

𝑤଴ =   2(𝑤௜ − 𝑑)      𝑖𝑓      2𝑑 > 𝑤௜ > 𝑑 

𝑤଴ =   𝑤௜      𝑖𝑓      𝑤௜ > 2𝑑 

Equation 4.4. Approximation of the glitch duration of a gate [83] 

According to Equation 4, slower gates will induce more attenuation on glitches 

than faster gates. Therefore, fast gates have better glitch propagation 

characteristics. An increase in the gates capacitance would increase the delay of 

the gate, which in turn, would reduce the glitch propagation characteristics. SETs 

affecting the clock logic or the reset trees can lead to much larger problems (see 

Single event functional interrupts section). 

In the past, these masking effects are some of the reasons why SETs have not 

been a dominant contributor in the overall SER. In addition, designers have not 

been significantly concerned about errors in microprocessor logic because the 

number of flops on microprocessors was much fewer than the number of 

memory cells. Since flop protection techniques are more difficult to implement 

than memory protection mechanisms such as parity or ECC, from 90nm 

downwards, flop SEU rates are higher than SRAM SEU rates. 

SETs are particularly worrisome in safety-critical applications whose memory 

has been protected to decrease SEU rates. In this type of systems, SET rates can 

be the dominant reliability failure mechanism. 

4.5.2.3. Single event functional interrupt (SEFI) 

SEFI represent the most disruptive version of non-destructive SEE.  Although 

this type of anomaly was previously predicted for space environments (Koga et 

al., 1985), the term single event functional interrupt (SEFI) was first mentioned 

in 1996 (“EIA/JEDEC	
   STANDARD, Test Procedures for the Measurement of 

Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation”	
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1996). SEFI is defined as all non-destructive failure modes that lead to the 

malfunction (or interruption of normal operation) of a part or the totality of the 

device (Bougerol et al., 2008). This definition is in contrast with certain authors 

that define SEFI as the cause of a higher error rate than expected due to 

uniformly distributed upsets (Crain et al., 1999; LaBel et al., 1996). 

The causes and effects of SEFIs vary from the type of component and the 

technology used. In general, SEFIs are linked to an upset (SET or SEU) in a 

control area that configures a specific function, and leads to the loss of that 

function.  In contrast to SEUs and SETs that may or may not affect the operation 

of the device, every single type of SEFI leads to a direct malfunction.  Figure 4-12 

shows an SET affecting combinational logic, not affected by the logical and 

electrical masking mechanisms (as in Figure 4-13), that propagates to a register 

in a control area within the latch window (as in Figure 4-14). If the register 

affected is being used by a vital part of the system software, a SEFI could take 

place. 



 

 
149 

 
Table 4-5. Classification of SEFI 

Name Also called Typical Effect 
Recovery 
procedure 

Technology 
affected 

Examples 

Logic 
SEFI 

Address error, 
recoverable bust 
error, temporary 
block error 

Reading/writing of the 
wrong row, column; 512-
8k addresses in errors 

Rewriting of 
the right 
value 

Complex memories 
such SDRAM 

Fuse latch upsets 
(SEFLUs) 

Soft SEFI Resettable SEFI Functionality loss of up 
to a full memory bank 

Refresh 
cycles 

FPGA, 
microprocessors, 
complex memories 

Stuck block 
errors 

Hard 
SEFI 

Permanent SEFI, 
Reboot SEFI 

Complete loss of 
functionality 

Complete 
power cycle 
of the device 

FPGA, 
microprocessors, 
complex memories 

Events that 
induce data and 
functionality loss 
that cannot be 
recovered 
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As microcircuits become more complex they also become more susceptible to 

SEFIs; among those: SDRAMs (Harboe-Sorensen et al., 2007) with complex 

internal architecture (such as state machine), FLASH memories (Irom and 

Nguyen, 2007; Nguyen et al., 1999; Oldham et al., 2008), FPGA (Czajkowski et al., 

2006) and microprocessors (Czajkowski et al., 2005). Dependent on cause, 

consequences and recovery procedures, SEFIs can be classified as logic, soft or 

hard (see Table 4-5). 

Logic SEFIs (Bougerol et al., 2008): with regards to memories, it is also called 

“address	
  error”,	
  “recoverable	
  burst	
  error”	
  (R. Ladbury et al., 2006) or 

“temporary	
  block	
  error”	
  and	
  mainly	
  includes	
  row	
  and	
  column	
  errors.	
  The upset 

of a row or column register leads to the reading or writing of the wrong 

row/column. This type of SEFI typically causes between X and 8k addresses in 

errors where X is the number of addresses per row/column (Bougerol et al., 

2008). Rewriting of the right values is used as to recover functionality (Schagaev 

and Buhanova, 2001). 

Examples	
  of	
   logic	
  SEFIs	
  are	
   “fuse	
   latch	
  upsets”	
  also	
  called	
  SEFLUs (Bougerol et 

al., 2011, 2010) that lead to the wrong addressing of a whole row/column. 

Manufacturers are experiencing an increasing number of defective cells, 

therefore adding spare cells and exposing them to reliability tests. If during those 

tests, a cell is found defective, fuse latches are used to disable the particular 

row/column. Typical signatures of fuse latch upsets are multiples of X addresses 

where X is the number of addresses belonging to a column/row. 

Soft	
  SEFIs	
  also	
  called	
  “Resettable	
  SEFIs”	
  (Bougerol et al., 2008; Lawrence, 2007) 

are due to upsets in the device configuration area and usually induce the 

functionality loss of several thousands of addresses up to a full memory bank. 

Reconfiguration of the device with a mode register set command can be used as a 

recovery procedure of the functionality (but not the data). Examples of this are 

“block	
  SEFIs”	
  also	
  called	
  “stuck	
  block	
  errors”,	
  observed	
  in	
  the	
  IBM	
  Luna-ES rev C 

during heavy ion testing (“NASNGSFC	
   Landsat-7 Project Office, Private 

Communication,”	
  1995) where an entire row of 1024 addresses was stuck to a 
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specific value. Since simple writing was not sufficient, device refresh cycles were 

used to clear the problem. SEUs in selected areas of an FPGA such the JTAG bit 

serial configuration port can lead to inability of reconfiguration. 

Hard SEFIs (Bougerol et al., 2010; Harboe-Sorensen et al., 2007), also called 

Reboot SEFIs (Bougerol et al., 2008),	
   “permanent	
  SEFIs”	
  (Slayman, 2005),	
   “non	
  

resettable	
   errors”	
   (Lawrence, 2007, p. 512) or	
   “persistent	
   non	
   recoverable	
  

errors”	
  (R. Ladbury et al., 2006) can be induced by different phenomena and lead 

to the complete loss of memory functionality. Possible causes of this type of 

catastrophic SEFI are upsets in the internal state machine, counter registers or 

activation of special modes. An example of this is an SEU in one of the power on 

reset registers that can lead to the removal of the entire configuration area. 

Complete power cycle of the device is compulsory as a recovery procedure. 

Fortunately, the probability of SEFI is low compared to other types of SEEs 

(Slayman, 2005). The reasons for that are: 

x The ratio of the periphery logic area to memory array area is very low; 

x The critical charge for logic gates is usually higher than for SRAM cells. 

x The most part of the periphery logic is combinational, and therefore less 

susceptible to upsets due to the three inherent masking mechanisms. 

SEFIs can also be classified as high current SEFIs if they involve a certain 

increase in current (Koga et al., 2001a, 2001b). 

In addition to SEFIs in complex memories, the energetic particles can also strike 

other circuits such that the error detection and correction mechanisms affect the 

functioning of the whole circuit. In FPGAs, SEFIs can cause the device to stop 

from functioning normally and therefore require a power reset in order to 

resume normal operations. In microprocessors, SEFIs can induce upsets in the 

program counter, illegal branching and jumps to undefined states. 
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4.5.2.4. Single event latchup (SEL) and other destructive effects 

Also	
   called	
   “hard	
   errors”	
   or	
   “non	
   reversible	
   errors”,	
   “single event destructive 

effects”	
  are	
  events	
  that	
  momentarily	
  or	
  permanently	
  change	
  the	
  state	
  of	
  a	
  device	
  

or cell/node affecting their functionality. Destructive effects are persistent even 

after a reset or reconfiguration and a replacement of components may be 

required. 

4.5.2.4.1. Single event latchup 

A latchup is an unintended and potentially catastrophic state that affects CMOS 

devices, characterized by excessive current flow between a power supply and its 

ground rail. 

It can take place due to the interaction between parasitic structures, usually an 

npn- and a pnp- bipolar transistor. A low resistance path develops between 

ground and power supply of the device and remains after the triggering event 

has been removed. Once triggered, a latchup can amplify currents to a point 

where the device fails as a result of thermal overstress. This electrically induced 

effect typically occurs in improperly design circuits. However, it was 

demonstrated (Leavy and Poll, 1969) that a latchup could also be induced via 

ionising radiation (SEL), including high-energy protons, alpha particles, cosmic 

rays and heavy ions. The difference between a conventional latchup (electrical) 

and a single event latchup (SEL) is that latter phenomenon is triggered by an 

energetic particle instead of an electrical overvoltage.  
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A classification of different SEL is shown in Table 4-6: 

Table 4-6. Classification of SEL 

Name Type of error Nature Recovery procedure 

Traditional or 
destructive SEL Hard High current Replacement of components 

Non-destructive 
SEL Pseudo-hard Low current System restart 

Microlatchup Pseudo-hard Localized, high 
current 

Reducing the power supply 
voltage below the holding 
voltage or reset 

 Parasitic transistors of CMOS devices can be triggered by the strike of high-

energy protons, alpha particles, neutrons and heavy ions. An SEL may occur if 

enough energy, critical charge, is deposited by a given particle within a 

microscopic region of the device, regardless of the total flux. High currents can 

lead to metal traces to vaporize, bond wires to fuse open and silicon regions can 

be melted due to thermal runaway. Hence, the latched condition may potentially 

destroy the device, affect other surrounding devices and destroy the power 

supply (traditional or destructive SEL). In certain cases after one or several SEL 

can make the device more susceptible to future SEUs.  

Both high current and low current SELs can occur (K. LaBel et al., 1992). Modern 

devices may have many different latchup paths, making characterization of those 

latchup states a challenging task. In some cases, events resulting in localized high 

current (microlatchups) can remain functional. In order to restore the device to a 

normal operation, these effects can be tolerated by reducing the power supply 

voltage below the holding voltage e.g. power off-on reset (PCSE).  

Additionally, latent damages have been observed in several types of CMOS 

devices after non-destructive latchup events (Becker et al., 2002). Becker defines 
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latent damages as “structural	
   damages	
   that	
   cause	
   no	
   electrically	
   observable	
  

parametric or catastrophic device failure, but can be detected by surface analysis 

using optical or scanning	
   electron	
   microscopy”. These type of permanent 

structural damages are a potential reliability hazard since the interconnect 

cross-sections in the damaged area may be reduced by one or two orders of 

magnitude. 

Sometimes the SELs are not localized affecting the entire device, but the current 

may not be high enough to destroy the device (non-destructive SEL). Therefore, 

SELs are not invariably destructive and can also be categorized as pseudo hard 

errors. 

Temperature is an important factor in SEL susceptibility. Higher temperatures 

involve a cross section increment and reduction of SEL threshold (Johnston et al., 

1991). 

SELs can be mitigated through internal fabrication process modification. Silicon 

on insulator (SOI), silicon on sapphire (SOS) and the use of epitaxial substrates 

are immune to this type of effects (Miller and Mullin, 1991). However, those are 

very expensive and their availability normally limited to mission critical systems 

in space environments (Pouponnot, 2005). Additionally, different layout 

techniques, like guard drains and guard rings, are often used in CMOS processes. 

Alternatively, SEL can be circumvented externally through the use of current 

sensing, watchdogs, etc. Internal methods are trying to keep the event from 

occurring. With external mechanisms, the event still occurs, but there should be a 

recovery strategy to deal with them.  

4.5.2.4.2. Single event hard error (SHE or SEHR) or stuck bits 

Since the mid-1980s certain SRAM devices, when exposed to heavy ions, 

experienced semi-permanent stored bit patterns or stuck bits with no 

implication of total dose effects. This form of damage was not reported until 

1991 (Koga et al., 1991) and	
   was	
   later	
   studied	
   and	
   renamed	
   as	
   “single	
   hard	
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error”	
   (SHE)	
   (Dufour et al., 1992). SHE is an unalterable change of state of a 

memory element associated with semi-permanent damage due to high-localized 

dose deposition from a single ion track. This type of effect affects memories 

(SRAM, DRAM, Flash) and latches in logic devices rendering the cell 

unprogrammable (Dufour et al., 1992). 

The cell may have an indeterminate value, also appearing as a permanent fault at 

the system level. SHEs are considered semi-permanent since some of the stuck 

bits tend to disappear (in some cases after a day (Duzellier et al., 1993)).  

4.5.2.4.3. Single event snapback (SES or SESB) 

This type of effect induce high currents in most cases and is particularly difficult 

to differentiate from high current SELs (Beitman, 1988; Koga and Kolasinski, 

1989). While SESBs can take place in technologies immune to SEL, it does not 

require a four-region structure to arise. In this context, snapback has been 

confirmed to be particularly susceptible to SOI structures because of their 

internal design (Dodd et al., 2000). 

With regards to SESB and NMOS technology, the parasitic NPN bipolar transistor 

that exists between the drain and the source amplifies the avalanche current 

resulting from the impact of an ionising particle. The transistor then opens and 

remains open. 

Like SEL, SESB is also considered a potentially catastrophic event since it can 

lead to device destruction if not corrected within a short time of occurrence. The 

main differences between SEL and SESB lie in the amplitude of the current 

increase, their temperature dependence and recovery conditions. First, unlike 

destructive SEL, it is often possible to restore normal operation and bring the 

device out of the high current mode by changing the gate voltage without 

shutting off the power supply. Secondly, the amplitude of the current increase is 

much lower for SESB due to its localized nature. Finally, contrary to SEL, SESB is 
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weakly dependent on temperature (Johnston, 1996). These facts can be used to 

distinguish between SESB and SEL mechanisms. 

4.5.2.4.4. Single event burnout (SEB or SEBO) 

SEBO typically occurs in power metal oxide semiconductor field-effect 

transistors (power MOSFETs) and bipolar transistors since these devices contain 

parasitic bipolar transistors between the drain and the source (Hohl and 

Galloway, 1987; Waskiewicz et al., 1986). SEBO creates a permanent short 

between a source and a drain and involves high currents and localized 

overheating. If the device is not provided with current limitation capabilities, and 

the drain-source voltage exceeds the local breakdown voltage of the transistor, 

the SEBO can lead to the destruction of the device by melting of the silicon in the 

affected region (Stassinopoulos et al., 1992)(see Figure 4-15). 

 

Figure 4-15. IRF 150 power MOSFET burnout: a) Optical view of 
burnout area on the surface, b) Scanning electron microscope 

(SEM) sectional view of a burnout area with 1000x magnification 
(Stassinopoulos et al., 1992) 

SEBO has occurred in low voltage devices, however devices with high voltages 

are more prone to this type of error.  

With regards to temperature, it has been shown (Johnson et al., 1992) that 

higher temperatures decrease the SEBO susceptibility. The probability of SEBO 
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occurrence is low, but apart from the selection of immune device technology, 

there are no mitigation techniques. 

4.5.2.4.5. Single event gate rupture (SEGR) 

It was first observed in non-volatile memories in 1980 (Pickel and Blandford, 

1980) and later identified and confirmed in 1984 (Blandford et al., 1984). In 

1987 was reported in power MOSFETs (Fischer, 1987) but due to the scaling of 

CMOS technology SEGR has become a concern in low voltage circuits (Silvestri et 

al., 2009). This type of single event is often observed with SEB in power 

MOSFETs. SEGR is triggered by a single ionising particle in a high field region of a 

gate oxide, creating a localized gate rupture in such area (Sexton et al., 1997). 

This rupture manifests as a permanent conducting path between the gate and the 

drain (gate rupture – see Figure 4-16). As a result, the electrical performance is 

compromised and the functionality of the device may be affected. 

 

Figure 4-16. SEGR as a result of the impact of a highly energetic 
particle. Holes from the particle's track aggregate under the gate 
oxide increasing the high field of the gate oxide to the dielectric 

breakdown point (Allenspach et al., 1994) 
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Flash memories (Oldham et al., 2006) and non-volatile SRAM are SEGR 

susceptible during a write or clear operation due to the large voltage applied to 

the memory elements. SEGR is not typical of avionics and ground equipment. 

Like SEBO, the probability of occurrence is low, but should be taken into account 

in the component selection process.  

In order to mitigate SEGR, voltage derating and limiting the available energy to a 

device can be employed. 

4.5.2.4.6. Single event dielectric rupture (SEDR) 

Also	
   called	
   “micro	
   damages”,	
   SEDR	
   was	
   encountered	
   during	
   heavy	
   ion	
   SEE	
  

testing of antifuse FPGA (Katz et al., 1994) and eventually identified as ion 

induced rupture of antifuses. Similar to the SEGRs observed in power MOSFETs, 

SEDRs affect non-volatile NMOS devices and non-volatile FPGAs (Katz et al., 

1997; Swift and Katz, 1996). SEDRs are triggered by a single ionising particle, 

and lead to the formation of a conducting path in a high field region of a 

dielectric. 

4.6. Conclusion 

This chapter presents the long-term cumulative and short-term effects of 

radiation in embedded systems. First, we present an overview of the 

fundamental damage mechanisms and, resulting from such mechanisms we 

introduce the major macro effects. Secondly, we focus on the short-term 

degradation induced by ionizing particles, namely single event effects. Thirdly, 

we describe the physical mechanisms that are responsible for SEE including 

charge deposition, charge transport, charge collection, to finally fully describe 

the different circuit responses. As a result, an extensive taxonomy of SEE has 

been produced, describing their nature, type of degradation, susceptibility, fault 

rate trends and recoverability. 
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Radiation can have a major impact on all kind of embedded microelectronics 

potentially leading to catastrophic failures. As we move to denser semiconductor 

technologies at lower voltages, system SER will continue to rise and in particular 

the contribution of single event upsets, single event transients, multi-cell upsets 

and single event functional interrupts will increase. Error correcting codes are 

not efficient when dealing with certain multi-bit faults and errors in combination 

logic. In the case of safety-critical embedded systems, more efforts need to be 

directed towards research on mitigation techniques for the recent and future 

undesired effects. 
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Chapter 5 

FT models 
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5.1. Models 

We define M as the known model of a system that performs a given function F.  

Let’s	
   imagine	
   a	
   new	
   feature	
   of	
   extreme	
   reliability	
   in	
   that	
   model.	
   In	
   order	
   to	
  

express the existence of this new feature, the predicates P and Q are introduced 

to determine the state of the model. P and Q also defined the direction of the time 

arrow (see Figure 5-1).  

 

Figure 5-1. New feature of an FT system: reliability 

To analyse methods for achieving a required level of reliability with performance 

and power consumption constraints, we offer a combination of the following 

three models:  

x The model of the system Ms 

x The model of the faults Mfault that a RT FT system will be exposed to 

x The model of fault tolerance MFT or the new structure that implements FT 

As shown in Figure 5-1, Ms, Mfault and MFT are mutually dependent models.  Notice 

that in this approach development and manufacturing costs of a solution are not 

considered.  

Mfault is a description of all faults that a system must tolerate. In binary logic a 

typical permanent fault can manifest as "stuck at zero" or "stuck at one".   
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Table 5-1. Typical examples of HW faults 

Type of fault Description Impact 

Byzantine 
The behaviour of a component that 
gives conflicting values to other 
components 

The entire system is affected 

Subsystem fault A temporary or permanent incorrect 
behaviour of a subsystem  The entire system is affected 

Open fault Resistance on either a line or a block 
due to a bad connection 

The value associated to the line or the 
block is modified 

Bridging fault Signals S1 and S2 are connected 
unintentionally 

The value associated to the line or the 
block is modified to a different value 

Stuck-at fault The result value is fixed to 0 or 1 The result value is stuck to 0 or 1 

Bit-flip fault A state switch from 0 to 1, or vice 
versa, when it should not The result changes its original value 

Table 5-1 shows typical examples of HW faults. Hidden faults, also called Latent 

faults are behavioural faults that exist in the hardware over a long period of time, 

e.g.: Byzantine faults22 and fail-stop23 faults. Both types complicate the design of 

FT; all described faults should be tolerated within a limited and specified period 

of time. This period actually determines the availability of the system. Fault types 

differ by their impact, as well as the way they are handled.  

Thus, the fault model has its own hierarchy, including single-bit, element, 

behavioural and subsystem faults. One has to accept that the fault type is varying 

and some action hierarchy to tolerate them is also required. A detailed fault 

model is further developed and discussed in Sections 5.2, 5.3 and 5.4.  

                                                        

22 Byzantine faults occur when a faulty system continues to operate, producing incorrect results 
sometimes giving the impression that they are working correctly. Dealing with this type of fault is 
difficult 

23 Fail-stop (also known as fail-silent) faults take place when a faulty unit stops functioning 
producing no bad output. It either produces not output or produces correct results that clearly 
indicate that the unit has failed. 
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Fault encapsulation approaches can help to handle faults: due to deliberate 

design solutions it is possible to ensure that severe faults in the system do not 

escalate and remain simpler to handle; therefore making the fault handling 

practically possible to implement. 

RT FT system applications assume long operational life; however, fault-handling 

schemes are needed much more often towards the end of the device lifecycle. 

The appropriate techniques for tolerating faults of various types are presented 

on Table 5-1. As discussed in Section 3.6.1 to tolerate transient faults, time 

redundancy in hardware (e.g. instruction re-execution) might be effectively used 

and implemented. System software support is also needed, as the hardware 

cannot cover all possible faults. 

Faults, occurring at the bit level (stuck zero, stuck one and similar) should be 

efficiently handled ASAP (as soon as possible) and ALAP (as local as possible), i.e. 

at the same or nearest level. The term "level" in our case means the level in the 

hardware hierarchy on which the fault should be handled. For instance, when a 

"stuck-at zero" permanent fault has occurred in the register file (RF) with no 

corrective schemes available, the whole RF has to be replaced, if no other 

possible reconfigurations were predefined. In turn, when only one RF is 

integrated in the chip and no other reconfigurations are defined then the whole 

chip has to be replaced, etc. Pursuing these two principles allows limiting the 

fault spreading and its impact to a higher level either in the chip or the system as 

a whole. 

To tolerate bit-flip faults, hardware and system software information 

redundancies might be used, as well as hardware structural support. In this 

sense parity checking in registers, supported and implemented concurrently by 

hardware, is described as HW(δI). HW(δS) and HW(δT) are needed as supportive 

redundancies, HW(δS) describing the additional parity line and comparison logic, 

and HW(δT) describing the additional time needed to update the parity line and 

executing the comparison. Nonetheless, the main type of redundancy used in this 

approach is information. 
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An exact characterization of the distribution of faults for computer systems is 

extremely difficult due to the number of different factors that determine faults, 

such temperature, vibration, radiation exposure etc. Besides, discriminating 

between transient and permanent faults is difficult.  The transient-permanent 

fault ratio varies from 10 to more than 1000 depending on the technology, 

manufacturing scale, operating conditions, etc. In the case of memories a typical 

value of hard error rates is in the order of 10-100 FIT whereas for soft errors it 

can vary between 1000 and more than 5000. The upper bound belongs to 

aerospace and aviation, principally due to faults induced by alpha particles.  

 

Figure 5-2. Fault tolerance model of a computer system 

Figure 5-2 is a combination of Figure 3-2 and Figure 5-1 and presents various 

faults in the system and various possible solutions. Mfault illustrates the fact that 

the fault types are not separated. For example, Byzantine faults of the system 

might be "stuck at zero" faults of the hardware that were spread throughout the 

system. The latency of faults becomes crucial in determining the reliability of the 

system. Consequently different faults require different actions and mechanisms 

to tolerate them. 
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The system model of Figure 5-2 has overlapped SSW and HW ellipses to 

represent the duality of the system: hardware and system software. Both of them 

must be involved in the implementation of fault tolerance and real time features. 

The overlapped HW and SSW ellipses indicate that HW and SSW functions might 

be applied to tolerate specific types of hardware faults. Other fault types might 

also be tolerated by HW or SSW only. Mft is "a conceptual deliverer" of reliability 

for the RT FT system. It has to be effective during the whole operational lifetime 

of the computer itself. As hardware degrades over time, the fault tolerance 

mechanisms are more likely to be used towards the end of the lifecycle. FT 

systems are designed with the assumption that new types of faults do not appear 

during the operational lifetime of the system, i.e. the system must be designed to 

be fault tolerant for the set of faults and their types known at design time. All 

these solutions require careful analysis due to their impact on the system 

reliability. 

In contrast to the usual assumption in reliability modelling, one has to assume 

that a fault might exist in the system over an arbitrary long period of time (latent 

fault) and its detection and elimination is not possible "at once". Consequently 

we accept that FT is a process, and discuss it in the following sections. Using 

Dijkstra's approach (Dijkstra, 1965) of defining a function as a process described 

by its algorithm, we consider FT as a function that is also described and 

implemented by an algorithm. 

There are several options to achieve fault tolerance assuming the use of HW and 

SSW by using various types of redundancy mentioned above. However, the use of 

certain redundancy types might cause system performance degradation which is 

especially true for software measures (Kulkarni et al., 1987; Oh et al., 2002a). 

Further analysis of performance/reliability degradation should be taken into 

account.  

The introduced system redundancy might be used in a way to tolerate only 

certain fault types, thus degrading fault coverage, keeping performance at 

acceptable levels. Software based redundancy might preserve the same type of 
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fault coverage but with more time redundancy - delays (recovery time degrades, 

availability degrades). Alternatively, the fault coverage might not preserve the 

same level, thus the system degrades in terms of reliability. 

We assume that regardless of the accuracy of the model, new faults can appear in 

the system and for some of those our system may not be able to detect, diagnose 

or recover.  

5.2. Fault model 

It is unfeasible to describe all possible faults that may occur in a system. In order 

to make the evaluation of faults possible, they are assumed to behave according 

to some fault model. A fault model (FM) is as a way of summarising many fault 

descriptions at once (Dunn, 1991). Often it is desirable to discuss many different 

faults at the same time and to describe their common characteristics. Fault 

models are used to represent in a simple form the consequence of complex 

physical mechanisms that lead to faults.  In the case of electronic systems, the 

modelling of faults can be implemented at two different levels: at the level of 

hardware components that implement a system (e.g. memory subsystems, 

register banks, ALU) or at the system level, which is directly related with the 

information that the system manipulates (e.g. instructions and data program).  

The simplest FM is to consider the logic gate as a single unit with a constant 

failure rate, instead of considering different failure rates for the individual 

transistors that form the unit. As in 4.5.1, analysing the physics of faults to the 

atomic and molecular level would provide a clear understanding of the failure 

mechanisms. Such understanding is very helpful in the development of fault 

models. Primarily based on the work of (Avizienis et al., 2004), we further extend 

the classification of faults depending on the way they are originated or 

manifested. 
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Table 5-2. Classification of faults by origin 

Level of abstraction 

Structural faults 

Transistor level 
(component faults) 

Stuck-open or stuck-off 
Stuck-short or stuck-on 

Gate level (interconnect 
faults) 

Stuck-at (Armstrong, 1966; Galey et al., 1961): s-a-0, s-a-1 
Timing delay (Smith, 1985): path-delay (PDF) and gate-delay (GDF) faults 
Bridging (Mei, 1974) 

Functional faults 
Pattern sensitive faults 
(PSF) (Hayes, 1975) 

Passive PSF 
Active PSF 
Static PSF 

Coupling faults (CF)  

Phase of creation of occurrence 
(Landwehr et al., 1994)  

Development faults e.g. specification faults, implementation and manufacturing faults 

Operational faults e.g. aging faults 
e.g. alpha particle hits 

 

System boundaries 
(Avizienis et al., 2004) 

Internal e.g. design and implementation faults 
External e.g. radiation, temperature changes, power surges from external power supply 

Phenomenological cause 
Natural (Jennings, 1990) 
Human-made (Hugue and Purtilo, 2002) 

Capability/objective/intent 
(Brocklehurst et al., 1994) 

Malicious Deliberate 

Non-malicious Accidental 
Incompetence 

Nature 
(Avizienis et al., 2004) 

Hardware Cell	
  errors,	
  combinational	
  logic	
  errors	
  … 
Software Branch	
  errors,	
  missing	
  instructions,	
  missing	
  pointers	
  … 

Cause 

Specification mistakes 

Defects 
Implementation mistakes e.g. Pentium FDIV bug (Coe et al., 1995; Price, 1995) 

Manufacturing defects Global defects or Gross area defects (Koren and Koren, 1998) 
Spot defects (Koren and Singh, 1990) 

Operating environment – External 
disturbances 

Thermal stress 
Heat 
Electro-migration EM 
Voltage drop 

Noise 

Electrical 
overstress 

Hot carrier injection HCI (DAHC, CHE, SHE, SGHE) 
Negative Bias temperature instability (NBTI) 
Latchup 

Induced charging 
Oxide Breakdown 

Radiation 
See Table 4-1, Table 4-2, Table 4-3, Table 4-4,  
Table 4-5, Table 4-6 

EMP 
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5.3. Classification of faults by origin 

Faults can be classified differently depending on attributes related to their origin, 

including their cause, the level at which they take place, the phase of creation, 

nature, system boundaries, phenomenological causes and intention. Table 5-2 

shows a number of faults classified by their origin attributes.  

5.3.1. Level of abstraction and fault models 

Hardware defects can be the source of physical faults. In order to simplify the 

fault analysis process Logical faults can be used to model the manifestation of 

physical faults on the behaviour of a system. They can be subdivided into 

structural faults, which are related to structural models and modify the 

interconnection among components, and functional faults, which are related to 

functional models and change the functions of components and circuits.   

Component faults are a type of structural faults, which can be applied at the 

transistor level. Some of these are: 

x stuck-open or stuck-off: a transistor is always off and not controllable by 

gate input 

x stuck-short or stuck on: a transistor is always on and not controllable by 

gate input 

Another type of structural faults, interconnect faults, can be applied at the gate 

level. Among these:  

x stuck-at faults (SAF): single or multiple lines have a constant value of 0 (s-

a-0 faults) or 1 (s-a-1 faults) regardless of the value of the other signals in 

the circuit (Armstrong, 1966; Galey et al., 1961) 

x timing or delay faults: certain defects due to manufacturing or external 

reasons do not change the logic function of components, but can cause 

timing violations; faults due to propagation delays along a path (path-
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delay faults, PDF) or gate (transition or gate delay fault, GDF) (Smith, 

1985), exceeding the limits required for correct operation  

x bridging faults (BFs): two or more distinct lines are shorted (Mei, 1974) 

usually due to particles or shorted metal lines. Depending on the value the 

bridging could be AND bridging (also referred to as 0-dominant), OR 

bridging (also referred to as 1-dominant) or Indeterminate Bridging. It is 

obvious   that   the  probability   of  BF’s   occurring   increases  with  1)   shorter  

distances between metal lines due to the use of shrinking technology and 

2) the use of long parallel lines (Tehranipoor et al., 2012).  

Different types of functional faults that can be applied at the functional level are: 

x pattern sensitive faults (PSFs): where a fault signal depends on the signal 

values of nearby components (Hayes, 1975); typical in DRAM, there are 

three types of PSFs due to changes in the neighbourhood pattern: 

o Passive PSF: the value of a cell remains 

o Active PSF: the value of a cell changes 

o Static PSF: the value of a cell is being forced to a particular state 

(0/1) 

x coupling faults (CF): A subset of SPF, represent a specific pattern 

sensitivity between two memory cells (Nair et al., 1978); Two memory 

cells Cj and Cj are coupled if a transition from X to Y in one cell, say Ci, 

changes the state of the other cell, given that: 

𝑋 ∈ {0,1}        𝑎𝑛𝑑        𝑋 = 𝐴 

o Idempotent coupling faults: a transition 0 → 1, or  1 → 0 in Ci forces 

the contents of Cj to a specific value 𝑋 ∈ {0,1} 

o Inversion coupling faults: a transition 0 → 1, or  1 → 0 in Ci forces 

an inversion 0 → 1, or  1 → 0 of Cj. 
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5.3.2. Cause of faults 

5.3.2.1. Specification mistakes 

Specification mistakes, which take place during the planning and design phases, 

can be the source of faults (specification faults), including incorrect timing, power 

and environmental requirements. The effect of certain specification faults may 

be corrected via fault masking.  

5.3.2.2. Defects 

A hardware defect in electronics is the unintended difference between the 

implementation and the intended design. Implementation mistakes, such as the 

Pentium FDIV bug (Coe et al., 1995; Price, 1995), are a type of defects. 

Conversely, imperfections in the fabrication process of state of the art VLSI 

technologies result in manufacturing defects, whose severity increases 

proportionally with the size and density of the chip.  

Manufacturing defects are largely dependent on the specific technology and 

layout, and include processing and material defects such: dust particles on the 

chip, conducting layer defects (shorts and opens), oxide defects, scratches and 

gate oxide pinholes, defects caused by either extra or missing material (Koren 

and Koren, 1998). Manufacturing defects can be classified as global defects (or 

gross area defects), affecting large areas of a wafer and so can be easily detected 

during manufacturing, or as spot defects, which are random, affecting areas 

comparable to the single device size, and therefore more difficult to be detected 

(Koren and Singh, 1990). 

5.3.2.3. Operating environment  

Correct functioning of digital systems is based on the assumption that electrical 

and timing transistor parameters will remain bounded to certain margins 

(usually ±15%). These margin tolerance specified at initial manufacturing can be 

violated during operating time due to shifts induced by external disturbances. 



 

 
172 

These mechanisms can produce systematic degradation overtime or abrupt 

failures of basic components. Transistors can be degraded due to electrical 

overstress and radiation whereas oxide-breakdown, electrostatic discharge and 

ionizing radiation are usually the cause of abrupt failures.  

Hot carrier injection (HCI) has been one of the most common electrical overstress 

aging mechanism, adversely affecting both nMOS and pMOS transistors. It occurs 

when a charge carrier, an electron or a hole, gain enough kinetic energy to break 

an interface state. Different mechanisms can be responsible for HCI including 

substrate hot electrons (SHE) (Ning and Yu, 1974), channel hot electrons (CHE) 

(Cottrell et al., 1979), drain avalanche hot carriers (DAHC) (Takeda et al., 1983) 

and secondarily generated hot electrons (SGHE) (Matsunaga et al., 1980) 

Negative Bias temperature instability (NBTI) (Schroder and Babcock, 2003) is 

also a critical reliability concern for pMOS transistors (not so much for nMOS) 

and has been a persistent issue for generations below 130nm (Schroder at. All, 

2003, Alam, 2007). Interface traps are generated during negative bias conditions 

(𝑉௚௦ =   −  𝑉ௗௗ). Higher temperatures seem worsen NBTI, producing larger 

voltage, which if maintained over long periods (NBTI exhibits logarithmic 

dependence on time), may significantly increase delays (Kumar, 2006, Kaczer, 

2005).  

Another example of electrical-overstress mechanism is the latchup described in 

Section 4.5.2.4.1, which can also be triggered electrically (Gregory and Shafer, 

1973).  

As described in Sections 4.2, 4.3 and 4.4, non-ionizing radiation can be the cause 

of DDD while TID effects can be induced by ionizing radiation. Other degradation 

mechanisms can affect interconnection logic, e.g. electromigration (EM).  

In contrast with the previous long-term degradation mechanisms, the effect of 

noise can produce abrupt failures. Examples of these are faults induced by the 
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effects of noise including oxide breakdown, electrostatic discharge (ESD) and 

ionizing radiation.  

Oxide Breakdown is the destruction of an oxide layer of a semiconductor device, 

e.g. time dependent dielectric breakdown (TDDB), early-life dielectric breakdown 

(ELDB), and EOS/ESD-induced dielectric breakdown. 

The Ionizing radiation mechanisms and the faults related to it have already been 

discussed in Section 4.5 

5.3.3. Phase of creation and occurrence of faults 

Faults that take place during the manufacturing phase are development faults in 

contrast with operational faults that take place during the service delivery of the 

operation phase (Landwehr et al., 1994), e.g. faults due to radiation as in Chapter 

4.  

5.3.4. Nature/dimension 

According to their nature faults can be categorised as hardware (such as 

combinational and sequential logic defects due to aging, radiation, etc.) or 

software (branch errors, missing instructions and pointers, etc.). The scope of 

this thesis focuses exclusively on hardware faults and their effects. 

5.3.5. System boundaries 

With respect to the system boundaries, faults can also be classified as internal 

(originate inside the system boundary) or external (originate outside the system 

boundary). Internal faults are those that arise from within a system, often due to 

design flaws. These are usually repeatable for a given set of inputs in the system.  

In addition, they can also be the result of implementation faults, which if random, 

are difficult to repeat. External faults are those that originate from outside the 

system, propagating into the system. These are normally the result of 

interference cause by the physical environment including environmental faults 
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(e.g. radiation, temperature changes), accidental damage from an external 

system (e.g. power surges from an external power supply), etc.    

5.3.6. Phenomenological cause 

The key components of embedded systems have an inherent susceptibility to 

Natural (Jennings, 1990) and human-made (Hugue and Purtilo, 2002) faults. 

Natural faults are generally random in nature and are caused by natural 

phenomena, without human participation. These are normally a consequence of 

environmental overstress. Human-made faults are the result of human action, 

including design and interaction faults (operational misuses), and are usually 

due to mistakes in the design, implementation, or use of systems.  

5.3.7. Capability/Objective/Intent 

Following the previous classification, human-made faults can either be 

deliberately harmful (malicious faults) or can be triggered without purpose and 

awareness (non-malicious faults) (Brocklehurst et al., 1994). Accidental faults are 

due to mistakes and bad decisions as long as they are not made deliberately; 

these include interaction, design and implementation faults. It is obvious that all 

natural faults have no intention and therefore are accidental. Incompetence faults 

are faults due to mistakes or bad decisions that were the result of the lack of 

professional competence.   
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Table 5-3. Classification of faults by manifestation 

Response-timeliness 
(Qian, 2008) 

Omission faults 
Commission faults 

Dimension 
Hardware 
Software 
System 

Activation reproducibility 
(Avizienis et al., 2004) 

Solid  
Elusive E.g. pattern sensitive faults (effects of temperature, delay in timing due to parasitic capacitance) 

Extent 
Local  
Global  

Persistence/duration 
Permanent Easiest to diagnose; Once the component fails it will never work correctly again 

Temporary Transient 
Intermittent 

Value 
Determinate  
Indeterminate  

Plurality 
Single  
Multiple  

Correlation 
Independent  
Related  

Damage 
(see Table 4-2) 

Soft Transient-soft 
Static-soft 

Hard  
Pseudo-Hard  

Status 
Dormant 
Active  

Prospect 
(Laprie, 2008) 

Foreseen 
Unforeseen  
Foreseeable 

Seriousness 

Benign 

Malicious  
(Meyer and Pradhan, 1991) 

Symmetric Omissive 
Transmissive 

Asymmetric (Thambidurai and Park, 1988) Transmissive (Byzantine) 
Strictly Omissive  (Azadmanesh and Kieckhafer, 2000) 

Detectability 
(Pomeranz and Reddy, 1993) 

Detectable Recoverable DRE (Kadayif et al., 2010; Weaver et al., 2004). 

Undetectable Operationally redundant 
Unrecoverable can lead to DUE and SDC (Kadayif et al., 2010; Weaver et al., 2004). 

Partially detectable Under certain conditions, can be detectable and irredundant. Can lead to can lead to DUE and SDC  
Diagnosability   
Containability   
Recoverability   
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5.4. Classification of faults by manifestation 

Apart from their origin, faults can be classified based on attributes related to 

their manifestation, including their response, dimension, reproducibility, extent, 

persistence, value, detectability, etc. Table 5-3 shows a number of faults 

classified by their manifestation attributes.  

5.4.1. Response-timeliness 

Let a component C (see Figure 5-3) receive a nonempty input sequence 

(𝑉௜   ≠ 𝑛𝑢𝑙𝑙), consistent with the specification, at time Ti. For Vi , the response Vj at 

time Tj is correct iff: 

x 𝑉௝ = 𝑊௝  at time Tj, where Wj is the expected value according with the 

specification and 

x 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡 , where Td is the minimum delay time of the component, 

△t is unpredictable delay time such that  0   ≤  △ 𝑡 ≤ 𝑇௠௔௫  , given that Tmax  is 

the maximum unpredictable delay of C 

 

Figure 5-3. Input-response mechanism of a component C with single 
output 

Using the previous definition of correct response by (Qian, 2008), there can be 

four ways with regards to timeliness and expected value, by which a response 

can deviate from the specification, which leads to the following classification of 

faults: omission, timing, timely and commission faults: 
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Omission faults involve the absence of actions when these should be performed. 

A fault that causes a component C not to respond to a nonempty input sequence 

(𝑉௜   ≠ 𝑛𝑢𝑙𝑙) is an omission fault. The potential resulting failure would be an 

omission failure, whose response would have the following properties: 

x   𝑉௝ = 𝑛𝑢𝑙𝑙 ,   𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡   and 

x   𝑉௝ =   𝑊௝ ,      𝑇௝ =   ∞ 

A timing fault is a fault that causes a component C to respond with the expected 

value Wj to a nonempty input sequence (𝑉௜   ≠ 𝑛𝑢𝑙𝑙) either too early or too late. 

The corresponding failure would be a timing failure. Using the previous 

mathematical notation: 

x   𝑉௝ = 𝑊௝  ,   either  𝑇௝ < 𝑇௜ + 𝑇ௗ   or   𝑇௝ > 𝑇௜ + 𝑇ௗ + 𝑇௠௔௫  

A timely fault is a fault that causes a component C to respond to a nonempty 

input sequence (𝑉௜   ≠ 𝑛𝑢𝑙𝑙), within the specified time interval, but with a wrong 

value. The corresponding failure would be a timely failure: 

x   𝑉௝ ≠ 𝑊௝  ,   𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡 

Therefore, an omission fault is also timely fault with a null value produced on 

time.  

A commission fault of a component C is any violation from its specified behaviour, 

with the following properties: 

x    𝑉௝ ≠ 𝑊௝  ,   𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡   or 

x   𝑉௝ ≠ 𝑊௝  ,   𝑇௝ ≠ 𝑇௜ + 𝑇ௗ +△ 𝑡    or 

x   𝑉௝ = 𝑊௝  ,   𝑇௝ ≠ 𝑇௜ + 𝑇ௗ +△ 𝑡      

Consequently, a commission fault is a subset of all other three types of faults.  
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5.4.2. Consistency 

Before classifying faults with respect to consistency, the definition of correct 

response was extended by (Qian, 2008). Qian’s	
  definition	
  and	
  fault	
  classification	
  

are suitable for systems that are required to produce replicated responses for a 

given input sequence. Examples of such systems are: 

x TMR (Johnson, 1989; von Neumann, 1956) systems (see 3.4.1.1), a non-

faulty component is required to send its output to three other components 

or 

x A non-faulty component, which is part of some Byzantine agreement 

protocol, is required to send its output to other components 

 

Figure 5-4. Input-response mechanism of a component C with 
replicated output 

Figure 5-4 shows the response mechanism of a non-faulty component C with 

multiple r identical outputs, as a result of receiving an input sequence Vi at time 

Ti. The resulting outputs are defined as: 

x   𝑉௝ = ൛𝑉௝ଵ, 𝑉௝ଶ, 𝑉௝ଷ, … , 𝑉௝௥ൟ ,   where 𝑉௝௞,   1 ≤ 𝑘 ≤ 𝑟 , are r outputs 

x   𝑇௝ = ൛𝑇௝ଵ, 𝑇௝ଶ, 𝑇௝ଷ, … , 𝑇௝௥ൟ ,   where 𝑉௝௞,   1 ≤ 𝑘 ≤ 𝑟 , is produced at time 𝑇௝௞ 
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For a component C, with an input sequence  𝑉௜, received at time Ti, its replicated 

response is correct (correct replicated response) iff: 

x   𝑉௝ = 𝑊௝  ,   were Wj is the expected vector of replicated outputs; and 

x 𝑇௝௞ = 𝑇௝ = 𝑇௜ + 𝑇ௗ +△ 𝑡  for all k , 1   ≤   𝑘 ≤ 𝑟  

Therefore in a correct replicated response all individual responses must have the 

correct values “on time” (according to the specification),	
  but	
  not	
  necessarily	
  “at 

the same time”.	
  For instance, responses with same values, which take place at 

different times, nevertheless within the specified interval, would be part of a 

correct replicated response. Such interval is the skew interval and it is the period 

within which all individual responses are produced. It is defined as  ห𝑇௝ଵ −  𝑇௝௞ห. 

For any two outputs: 

x ห𝑇௝ଵ −  𝑇௝௞ห ≤ 𝑇௠௔௫   for all  1,k,    1≤ 1, 𝑘 ≤ 𝑟 

For replicated-response systems, two types of faults can be considered. A 

consistent fault takes place when individual responses of a component deviate 

from the specification in an identical manner whereas inconsistent faults are the 

ones that cause any other breach of the specification.  

An incorrect replicated response is a consistent fault iff: 

x   𝑉௝ଵ = 𝑉௝௞   , and   ห𝑇௝ଵ −  𝑇௝௞ห ≤ 𝑇௠௔௫    for all  1,k,    1≤ 1, 𝑘 ≤ 𝑟 

Note that a consistent fault causes a component to produce identical values (not 

necessarily correct values) within the skew interval, although	
   “not	
   on	
   time”. A 

few examples of consistent faults are faults with the following properties are: 

x some outputs being on time and the rest are produced early with correct 

values 

x some outputs being late and having correct values  but the rest are correct 

x all outputs having identically incorrect values 
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An inconsistent fault is an incorrect replicated response iff its individual 

responses do not satisfy the consistent failure conditions explained above. A 

byzantine fault (the behaviour of a component that gives conflicting values to 

other components) is a type of inconsistent fault.  

5.4.3. Maintainability: detectability, diagnosability and 

recoverability 

Fault detection, diagnosis and recovery are required to ensure resilience. Testing 

and diagnosis may be online, offline or a combination of both (Kaegi-Trachsel et 

al., 2009). Online testing and diagnosis are performed concurrently with system 

operation whilst offline methods require that the system or subsystem is taken 

out of service for a specific time. Often, online testing is used for detection while 

offline diagnosis locates and identifies the fault(s). As soon as the 

system/subsystem is repaired, offline testing can be used to verify that the repair 

was successful before placing it back to normal operation.  

Test vectors are used by automatic test pattern generation tools (ATPG) 

(Agrawal and Chakradhar, 1995; Roy et al., 1988) to attempt the detection of all 

or most modelled fault groups. A test vector is a string of n logical values (0,1, or 

irrelevant X) that are applied to the N corresponding primary inputs (PI) of a 

circuit, at the same time frame, in order to detect one or more faults (Roy et al., 

1988). The specification of a test vector should have two components: the input 

to be applied and the expected fault-free output (e.g. t=I/O=0010/11). A fault will 

be detected if the output under fault is different than the expected output. If a 

series of test vectors are applied in a specific order, the term test sequence is 

used, otherwise it is a test set (Roy et al., 1988). The term test pattern is often 

used to refer to any of these three terms.   
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Figure 5-5. Basic testing flow of a circuit under test (CUT) 

The testing process involves test pattern generation (ATPG), test pattern 

application in the CUT and output evaluation by an output response analyser 

(ORA) (Stroud, 2002). Figure 5-5 shows the basic testing flow of a circuit, whose 

output response after processing a test pattern is compared to the expected 

pattern (fault-free response pattern that a non-faulty circuit would exhibit). The 

quality of testing will depend on its fault coverage (defined in Section 2.5.2.3) 

and speed. 

Following (Abramovici et al., 1994), let x be a random input vector, and Z(x) the 

function of a circuit under test A with an input x. A fault f would transform A into 

a new circuit Af with function Zf(x). Let be T a test set T= {𝑡ଵ  , 𝑡ଶ, 𝑡ଷ …  𝑡௡}  formed 

by n ti test vectors where ti ≥	
  1. In Figure 5-5, the CUT A is tested by applying T 

and comparing the output response Zf(ti) with the expected pattern Z(ti). A fault 

is detected if the output response is different than the expected pattern: 

𝑍(𝑥) ≠ 𝑍௙(𝑥) 
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With regards to fault diagnosis, a test is said to distinguish two faults f1 and f2 

(distinguishable/diagnosable faults) if the output response of the faults are 

different from each other: 

𝑍௙ଵ(𝑡) ≠ 𝑍௙ଶ(𝑡) 

Conversely, two faults are functionally equivalent if all tests that detect f1 also 

detect f2:  

𝑓ଵ ∼ 𝑓ଶ          𝑖𝑓𝑓            𝑍௙ଵ(𝑡) = 𝑍௙ଶ(𝑡)            𝑓𝑜𝑟  𝑎𝑙𝑙  𝑡  

Functional equivalence can be easily analysed for logic gates. An example of 

equivalent faults is shown in Figure 5-6a. There is not an existing test that can 

distinguish between the s-a-0 faults occurring in the input and output of the AND. 

The same applies for all s-a-1 faults that occur in an OR gate.  

 

Figure 5-6. Fault diagnosis and equivalent faults. (a) example of 
equivalent faults. (b)Fault detection anddiagnosis vs vectors 

Figure 5-6b shows six faults, two of each class A, B and C, in a CUT. Note that 

detection, diagnosis together with containment and recovery are some of the 

goals of testing (as specified in Section 2.5.2.3).  

For fault detection at least one vector is needed (fault detection provides only 

whether the circuit is free of faults or not).  
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For fault diagnosis at least one vector that produces different responses for 

every fault class (fault diagnosis aims to determine time, location and type of the 

detected fault) is needed. 

 

Figure 5-7. Example of non-diagnostic detection equivalence 

For combinational circuits with multiple outputs, two types of equivalence can 

be differentiated (Sandireddy and Agrawal, 2005): 

x Diagnostic equivalence: two faults are f1 and f2 are diagnostically equivalent 

iff the functions of the two faulty circuits are identical at each output 

x Detection equivalence: two faults are f1 and f2 are detection equivalent iff all 

tests that detect f1 also detect f2, not necessarily with the same output 

Figure 5-7 shows an example circuit with two single s-a-0 faults in the input c 

and output Y lines. Both are detection equivalent faults but are not diagnostically 

equivalent.  

A fault f2 dominates f1  (𝑓ଶ > 𝑓ଵ) if the test set for f1 (T1) is a subset of the test for f2 

(T2). All tests pattern of f1 would detect f2. Therefore, f1 implies f2 and including f1 

in the fault list would be sufficient.  

If two faults dominate each other then they are equivalent: 

𝑓ଵ ∼ 𝑓ଶ        𝑖𝑓𝑓              𝑓ଵ > 𝑓ଶ    𝑎𝑛𝑑      𝑓ଶ > 𝑓ଵ 
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ATPG tools generate test patterns that target possible physical faults according 

to the fault model (Agrawal and Chakradhar, 1995; Roy et al., 1988). An increase 

in the complexity of circuits involves bigger fault dictionaries and patterns, 

slowing down the ATPG process. The implementation of quick detection and 

diagnostic mechanisms can improve the effectiveness of resilience. One way of 

creating compact sets a is fault collapsing, which is the process of reducing the 

number of faults by using redundancy, equivalence and dominance relationships 

among faults is called fault collapsing (Abramovici and Breuer, 1979). To lessen 

the burden of test generation, two main types of fault collapsing are used: 

x Fault equivalence collapsing: uses the notion of fault equivalence to remove 

most of the equivalent faults from the pattern. Faults of a logic circuit can 

be divided into N disjoint equivalence subsets Si, where all faults within a 

subset are mutually equivalent.  A fault set Si is collapsed if it contains one 

fault from each equivalence subset 

x Fault dominance collapsing: uses the notion of fault dominance to remove 

dominating faults from the equivalent collapsed faults. If fault f2 dominates 

f1, then f2 is removed from the fault list 

 

Figure 5-8. Dominance and equivalence relationships of circuit 
lines 
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Figure 5-8b shows the dominance and equivalence relationships of a given 

circuit (Figure 5-8a). 

Both equivalence and dominance relationships are transitive. For instance, 

Figure 5-8c if fault f2 dominates f3 and f3 dominates f5 then f2 will dominate f5. 

Collapsing algorithms use this transitivity property to reduce the fault patterns 

(Prasad et al., 2002). If fault detection is the only objective (e.g. fail-safe system 

that do not require diagnosis), then fault dominance collapsing can be used to 

further reduce the fault list. 

A fault f is detectable/testable if there is a test T that is able to test/detect f, 

otherwise f is an undetectable/untestable fault (Agrawal and Chakradhar, 1995). 

Undetectable faults can be partitioned into two subsets: partially detectable 

faults and redundant faults. A test set/sequence is said to be N-detectable if all 

faults are detected at least N times with N different test vectors (McCluskey and 

Tseng, 2000). The higher the value of N the higher is the fault coverage.   

A circuit is redundant if the function realized by the circuit without fault(s) is the 

same as the function realized by the circuit with one or more faults (Carter, 

1979). Redundant faults are undetectable faults that do not affect the circuit 

operation (operationally redundant). It can be argued why is it of interest to 

discover redundant faults if they do not affect circuit logical behaviour. 

Discovering and removing redundant faults from the tests is important for the 

following reasons: 

x In redundant circuits, the presence of undetectable faults can invalidate 

certain tests, raising problems such as (Friedman, 1967): 

� If f1 is a detectable fault and f2 is an undetectable fault, then f can 

become undetectable in the presence of g.  In that case, f1 is a second- 

generation redundant fault (Friedman, 1967) 

� If two undetectable single faults g1 and g2 are simultaneously present 

in a system, then they can become detectable 
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x Due to time and power consumption constrains, it is not feasible to 

perform a complete search of all possible faults in any given circuit. There 

are certain needs for minimizing the tests patterns that detect existing 

faults.  

x Additional current drains can be induced due to redundant faults such 

leakage faults (Mao et al., 1990; Xiaoqing et al., 1996) and gate oxide shorts  

(Hawkins et al., 2003; Segura and Hawkins, 2005) , which are especially 

undesirable in low-power devices.  

x Redundant defects may indicate a latent reliability problem.  

In the case of combinational circuits, all undetectable faults are redundant faults 

(Abramovici and Breuer, 1979). Testing sequential logic is significantly more 

difficult that testing combinational logic, whose response is a function of its 

initial state. In the case of sequential circuits, it has been shown that certain 

faults for which a test sequence does not exist, under certain conditions, faulty 

behaviour may be detected. These are partially/potentially detectable faults, 

faults that affect circuit operation under some states (partially irredundant), but 

are not manifested at the outputs for any input sequence under other states 

(therefore undetectable) (Pomeranz and Reddy, 1993).  

The testability features, observability and controllability (defined in 2.5.2.2, are 

important to increase the effectiveness of fault detection. Therefore observability 

and controllability would increase the number of testable and tested faults and 

so the fault coverage.  Conversely, lack of testability would increase the number 

of untestable and untested faults.  

In terms of diagnosis, different approaches can be followed: offline diagnosis 

based on fault dictionaries, effect-cause diagnosis also called online or dynamic 

diagnosis based approaches, or a combination of these two approaches (Smith, 

1997).  
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Finally, as in Table 5-3, faults can also be classified according to their 

diagnosability, containability and recoverability.  

5.5. FT modelling 

When system and fault modelling are developed together, the system behaviour 

in presence of faults and the control process of FT can be considered at the 

earliest stages of design. This enables us to take into account mutual 

dependencies of solutions for reliability, performance and power consumption 

making the resulting system more efficient and resilient.  

When a fault appears, extra redundancy is needed to cope with it. Such 

redundancy and the ability to use it are key in the implementation of 

reconfigurability.   

 

Figure 5-9. Performance, reliability and power concerns on the 
design of embedded systems 

At the same time, redundancy can be used for various purposes and can be 

involved as an essential part of reconfiguration. System reconfiguration 

purposes are: 

x performance improvement,  

x reliability enforcement,  

x energy –wise use  



 

 
188 

 

Figure 5-10. Reconfiguration purposes for fault tolerance 

Computers developed using this approach have been named PRE-smart 

computers (Schagaev, 2009; Schagaev et al., 2010). A inheritance of properties is 

shown on Figure 5-10.  Thus PRE (performance-, reliability- and energy-) wise 

systems might be designed rigorously, using reconfigurability and recoverability 

as system features introduced at conceptual level.  Success of PRE designs use of 

this approach for connected computers (networking, clusters multiprocessing) 

depends on careful trading of the redundancy introduced to achieve the required 

property.  

5.5.1. Trading P, R, E 

Describing a system in terms of Structure, Information and Time as parameters 

of redundancy, as well as other properties, (Schagaev, 2001) can help its 

reliability estimation. Redundancy might be weighted, say, in units or values, 

with or without relation to the steps of any supportive algorithm, that applies it 

to form and control configuration. While time and information units are clear 

(seconds and bits), structure units require some extra efforts. Note also that 

time, information and structure are considered as independent variables. 

Structural redundancy for our purposes might be measured using a graph 

notation:  
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dS: < dV, dE >  

where dS denotes introduced structural redundancy, while dV and dE denote 

extra vertices and edges added in the structure to represent a step of an 

algorithm.  

Our efforts towards a PRE goal can be measured quantitatively with a 

redundancy vector:  

dR = < dT, dS, dI >  

Time, information and structure as mentioned above are considered as 

independent variables.  

Furthermore, reconfigurability of the system can be used for various purposes 

(Figure 5-9). To be able to use redundancy and apply reconfigurability we need 

to consider the introduction of a supportive tool for reconfigurability, a 

syndrome. The syndrome provides a snapshot of the system state, namely a real-

time status of every element of the system in terms of reliability, performance 

and power awareness.  

Lets analyse how a generalized algorithm of fault tolerance might be 

implemented using mentioned redundancy types and reconfiguration introduced 

as a system property. 

As Figure 5-9 shows the just mentioned mutually contradictive requirements of 

performance, power consumption and reliability limit the design choice of 

embedded systems.  These constrains become even more serious when the 

system is implemented on a chip (SoC). In this case reliability, performance and 

power consumption of the elements are defined and limited by the same 

technology. 

With regards to reliability, the available redundancy hints a potential solution:  it 

is known that max (Pi,Pj,Pk,Pl) is achieved when all mentioned probabilities of 
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independent elements are equal.  For example, for SoC it technologically means 

that we need to introduce in the system different redundancy levels for each 

mentioned group of elements to equalize group reliabilities.  

5.5.2. GAFT: Generalized algorithm of fault tolerance syndrome 

support 

It is well known that fault tolerance of a computer system can be achieved by 

introducing static redundancy in hardware and system software (HW/SSW). It is 

also well known that using traditional approaches of fault tolerance (Anderson 

and Lee, 1981, p. 81; Avizienis, 1971; DeAngelis and Lauro, 1976) is expensive in 

terms of time, information or hardware overheads. To avoid this, the authors 

(Schagaev, 1987, 1986; Sogomonian and Schagaev, 1988) proposed to consider 

fault tolerance not only as a feature but also as a process that can be 

implemented algorithmically.  

 
Figure 5-11. GAFT: Generalized algorithm of fault tolerance 
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A three-step algorithm (Sogomonian and Schagaev, 1988) has been further 

developed. The outcome of this work is the Generalized Algorithm of Fault 

Tolerance (GAFT), a five-step fault-handling algorithm (Figure 5-11):  

x Detecting faults 

x Identifying faults 

x Identifying faulty components 

x Hardware reconfiguration to achieve a repairable state 

x Recovery of a correct state(s) for the system and user SW 

The different types of redundancy (information, time and structural either 

hardware- or software-based) can be used to implement every step of GAFT.  

The more complex the system implementation is, the more complex Fault 

detection and diagnosis will be. This is particularly true for multicore systems 

(MIMD processors that support vector instructions (SIMD) and pipelined 

implementations, which are particularly complex. In principle the complexity of 

GAFT implementations also depends on the complexity of the system, its faults 

and fault tolerance models.  

Hardware support is a faster mechanism than software support to achieve 

reliability and with a proper design there should be little performance 

degradation. However, the introduction of static redundancy in HW might be 

prohibitively expensive in terms of cost and power consumption. Therefore, a 

process that implements fault tolerance assuming dynamic interaction of 

existing redundancy types between elements can tackle these problems. 

GAFT might be used for comparison and overview of different design solutions of 

FT systems. It also allows controlling fault coverage at every step of system 

design, providing a tool to select efficient solutions and estimate overheads. 
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A substantial redundancy can cover multiple steps in GAFT, such as fault 

detection and fault recovery; take, for example, TMR systems, when a faulty 

channel output is overruled by two correct outputs.  

 

Figure 5-12. System recovery time according the level of 
implementation of checking and recovery schemes 

The implementation of the hardware checking and recovery (step A of GAFT) at 

different levels causes different timing for GAFT completion (Figure 5-12): 

microseconds for the instruction level, milliseconds for the procedure level, 

hundreds of milliseconds for the module level, seconds to tens of seconds at the 

task level and tens of seconds to minutes or even hours at the system level. 

Different implementations would have different properties in terms of timing, 

fault coverage, types of faults that can be tolerated, power consumption, 

complexity and cost. Therefore in order to achieve the required specifications, it 

is wise to combine different checking and recovery schemes in one system. 

For example, it might be beneficial to protect the processor and the memory by 

using hardware schemes at the level of instruction (duplicated processors, 

triplicate memory) and use higher-level schemes (procedure or module) for the 

other hardware components due to cost and power constraints. Processor and 

memory is used at every instruction execution. The implementation levels are 
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not mutually exclusive; for example the combination of hardware- and software-

based checking can significantly improve fault coverage. In general, the higher 

the implementation level the less hardware support is required, but with higher 

timing and software coding overhead. 

A good fault tolerant system tolerates the vast majority of transient faults within 

the interval of instruction execution, making them invisible for other instructions 

(and software). At the same time, our assumptions about transient “live” fault is 

arbitrary, thus transient faults with longer time range or permanent faults might 

be detected and recovered differently, for example, at the procedural or task 

level of system software. 

Taking into account that transient faults occur at an order of magnitude more 

often than permanent faults, transient fault tolerance must be done extremely 

effective. 

In turn, it is necessary to implement special schemes for HW reconfigurability 

and recoverability to eliminate the impact of permanent faults on the system. 

There are two types of reconfiguration in GAFT. First a hardware 

reconfiguration, that implies: 1) temporary isolation and substitution of the 

suspected/faulty unit for a healthy one, if possible; or 2) replacement of the 

faulty unit. The SW reconfiguration involves correction of data and/or code in 

order to restore the system to a working state.  

GAFT completion requires three fundamental processes, called in literature P1, 

P2 and P3 [Stepanyants01]. The error checking process P1 is responsible for 

checking the system state in terms of hardware fault existence/appearance. The 

second process, the error recovery process P2 prepares recovery states when it is 

scheduled by the system. When a transient fault is detected, its toleration 

assumes recovering the information that has been modified and restoring 

hardware states. The third one, the functional process P3 is the process of 

calculation	
   or	
   instruction	
   execution.	
   Let’s	
   assume	
   the	
   primary	
   function	
   of	
   the	
  

real time critical system as	
   “process	
   three”	
   or	
   P3. If the system ensures full 
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functionality and transparent application recovery for the process P3 (from a 

predefined set of faults in a given time frame) then the system is fault tolerant. 

That is, we define a system as fault tolerant if and only if it implements GAFT 

transparently for applications. 

5.5.3. System estates and actions to implement fault tolerance 

GAFT above presents an approach for achieving a new and complex property 

(fault tolerance) considering it as a process with several steps and phases. 

Further generalization and detailed analysis of system state change is presented 

below. At any given time, a single processing element (SPE) system can be in one 

and one only of five possible states: ideal, faulty, erroneous, degraded and failed. 

Figure 5-13 shows the five S states, the potential T transitions and the M 

mechanisms involved in fault tolerance. Two different areas can be 

differentiated: the green area at the bottom half represents the conventional 

environment with no FT capabilities whereas the red area at the top half 

represents the possible states and transitions in a dependable environment. 

 
Figure 5-13. System states sequence of actions for FT 
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Considering S1 as the initial state, a single event can change this ideal state. Note 

that with the exception of the transition T12, Figure 5-13 does not contemplate 

the cases where a single event can occur between transitions. If the deviation in 

the form of voltage transient introduced by such event affects combinational 

logic, the system would turn (Transition 1) into a faulty state S2. The voltage 

transient may propagate to sequential logic such a memory cell or latch, 

potentially flipping the bit, contaminating the data flowing within the system, 

and leading the system to an erroneous state S3 (soft error in Figure 5-13). 

However, there are three masking effects that can prevent transition for this 

particular event from S2 to S3: logical masking, electrical masking and latch-

window masking. Logical masking happens when one of the other inputs of the 

affected gate is in controlling state so that the output does not vary (e.g., 1 for an 

AND gate, or 0 for a NAND gate). Electrical masking happens when the voltage 

transient impacts successive logic gates and propagates through the logic chain 

fading out before reaching the registered output.  Latch-window masking 

happens when the arrival of the pulse is outside the latching window, usually 

based on the setup time and hold time of the sequential logic. 

Nevertheless, if during the ideal state S1, as a result of the single event the 

voltage transient affects the sequential logic directly, the system state would 

transit straightforward to an erroneous state S3 (T6).  

The implementation and the coverage of faults within the system can be 

measured probabilistically, assuming existence of undetected faults. We consider 

that an undetected fault would lead (T9) to failure in the system (S6), unless the 

error is overwritten [(e.g.: a memory bit that has flipped can potentially be 

flipped back to the original value by another event before the fault detection 

mechanisms were activated or before the error leads to a failure) transiting back 

to an ideal state. The probability of overwritten errors is very small. 

The implemented action of fault detection and recovery mechanisms differs in 

terms of permanent and transient faults. Faults are initially detected by the by 
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the fault detection mechanisms (M1 in Figure 5-13). A detected fault that is not 

recoverable by the recovery mechanisms (M2) would lead to a failure (T11). In 

most cases, recovery will be possible in two forms: full recovery (T8) and 

graceful degradation (T4). Ideally, a full recovery would turn the system back to 

the initial state S1 or, if full recovery is not possible, SSW will make use of the 

reconfiguration mechanisms (M3) to turn into gracefully degraded state S5. In 

this state the system can continue operating properly. In some cases, depending 

on the severity of the failure, the operating quality may decrease. This becomes 

more obvious if a further fault or error takes place. Further graceful degradation 

may be possible depending on the levels of degradation introduced in the 

implementation. A good example of degradation support for memory can be 

found in (Bernstein et al., 1993, 1992). 

Recovery from a degraded state takes place once the deviation has been 

corrected. The recovery mechanisms should be able to return the system back to 

correct state using additional reconfiguration (M5).  

It is clear that a logic framework with holistic principles to follow might help to 

design and develop an efficient resilient architecture with required properties. 

These principles are explained in the following chapter.  



 

 
197 

 

5.6. Conclusion 

In this chapter we have introduced a detailed fault model and analysed it 

together with generalised methods and models of fault toleration. We have 

extended the model of faults defined by (Avizienis et al., 2004) and provided a 

classification suggesting methods for recognition and reaction.  Manifestation, 

detectability diagnosability and recoverability are discussed as one consistent 

flow proposing adequate solutions for diagnosis and recovery.  Note that the 

proposed fault model is generic and has not been customized for the latest 

version of the architecture proposed in the following chapter. In fact, the earlier 

version of the architecture was developed before this fault model. However, 

We have introduced the principle of reconfiguration of the system and how this 

might be used for various purposes - performance, reliability and energy wise 

gain, improving the efficiency of resilience. 

Using PRE- properties, a generalised algorithm of fault tolerance is developed 

further with a full explanation of system state changes and the actions required 

to implement GAFT. In contrast with the fault model, the system estate sequence 

of actions in Figure 5-13 can be directly applied to the newer version of the 

architecture. In this figure the detection, recovery and reconfiguration 

mechanisms correspond to the hardware and system software mechanisms 

available in the ERA architecture. 
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Chapter 6 

Hardware Support for Resilience 

Any new complex property of the system is studied and analysed as a process. 

This chapter describes how by introducing a) reconfiguration properties and 

processes into a system to adjust the system for reliability-, performance- and 

power- wise applications we can extract new structural elements. We present a 

necessary and detailed argumentation of the syndrome concept, its structural 

design, possible ways of implementation and its applications. The syndrome 

properties, its structure and its operations are described using a prototype of a 

resilient architecture as an example. Detailed explanations of the use and 

implementation of the syndrome is given within the context of GAFT. 

We present a hybrid HW-SSW co-design approach of a resilient architecture with 

the ability to reconfigure, achieving various levels of dependability in different 

environments.  The system is capable of increasing or decreasing the level of 

reliability and power consumption by changing the active and passive 

redundancy via reconfiguration.  

In today's MBU scenario, the introduced architecture has advantages to known 

architectures with a better compromise in area, performance, reliability, power, 

cost and efficiency. 
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6.1. ERA concept, system design and hardware elements  

The development of this new architecture follows the holistic principles 

proposed by the ERA paradigm (Schagaev, I., 2010): simplicity, redundancy, 

reconfigurability, scalability, reliability and resource awareness. To support 

those principles a new hardware architecture (HW) and system software (SSW) 

have been developed.  Brief introduction of this principles are: 

Simplicity: Complexity is difficult to implement and handle efficiently. In addition, 

big complex systems are more prone to faults, thus lowering reliability.  

Reliability: The highest reliability of individual components is preferable but 

always keeping in mind the cost-efficiency of its implementation. 

Redundancy: Deliberate introduction of hardware and software redundancy 

provides the required level of reconfigurability to reach performance and 

reliability goals.  

Reconfigurability: Apart from the simplicity, reliability and deliberate 

introduction of redundancy, it is essential to achieve balance between 

performance, reliability and power. Reconfigurability serves three main 

purposes: performance, reliability and power awareness. It allows the system to 

adapt: 1st by recovering from a permanent fault and 2nd by adjusting the 

requirements of the running application. 

Scalability: Scalability should be kept in mind when designing a system so that it 

can be extended if the requirements change.   

Power-awareness: Mission critical systems have significant limitations of 

hardware resources and power consumptions constraints (e.g. battery life). 

Thus, for wise resource use, reconfigurability must be introduced.  
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By following these principles the processes of design and development of a new 

architecture can be defined.  

 

Figure 6-1. System zones from a information processing point of 
view 

Figure 6-1 shows a computer system as three semantically different (from the 

point of view of information processing/transformation) elements. The 

principles mentioned above might be applied at the level of each element, which 

will help into designing a more efficient computer system.  

 

Figure 6-2. Information processing in ERA 
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In terms of information processing the hardware is based on a Single Processing 

Element (SPE) that is divided into three areas (Figure 6-1):  first, the information 

transformation area – further called active zone (AZ) and second the information 

storage area – called passive zone (PZ). The interconnection of these zones is the 

interfacing zone (IZ). 

All three zones must have different properties and will use different redundancy 

mechanisms to tolerate faults and to make system reconfigurability possible and 

efficient. The proposed architecture structure of each zone is shown in Figure 

6-2.  

Active Zone: The active zone consists of the microprocessor elements including 

the arithmetic unit and logic unit. Both units are separated for better fault 

isolation and easier implementation of hardware tests.  

Interfacing Zone: This includes all communication components such as the 

memory buses and the reconfiguration logic. A configurable bus allows the 

reconfiguration of the hardware to exclude failed hardware components and go 

into a degraded state, or to replace the failed component with a working one.  

Passive Zone: This includes basic storage systems, such as memory, that do not 

act by themselves but are handled by controllers or devices.  

Minimum deliberate redundancy has been introduced in the form of buffer, 

register files, replicated memory modules, majority schemes (in terms of HW) 

and interfacing logic. With regards to SSW, some extra elements required to 

support fault tolerance are: checkpoint monitor, recovery point monitor, process 

synchronization and reconfiguration monitor. These are named monitors to 

express their uninterruptable mode of operation. 

As mentioned above, hardware can be considered as three zones, (see Figure 6-1 

and Figure 6-2).  All elements in these zones have to be reconfigurable for their 
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own purposes as well as other zones requests. All zones might have different 

reconfiguration properties.   

Reconfiguration might have internal and external reasons. For example, when 

the system forms a configuration for a task execution it might deliberately and 

externally exclude some hardware elements from configuration due to a 

transient/permanent fault. On the other hand, checking schemes can enable the 

reconfiguration of hardware elements for reconfiguration due to task 

requirements (internal reasons). 

Interactions between zones define the level of reconfigurability and flexibility of 

the architecture. These new hardware reconfiguration abilities must be reflected 

and supported as new features of the architecture. 

6.2. ERA hardware configuration 

ERA is based on a first fault tolerant version of the system (ERRIC) resulting 

from the ONBASS project (ONBASS Consortium, 2004) that has been improved 

with the improvement of the reconfigurable memory and the addition of a 

syndrome hardware structure and a memory management unit by the author.  

With regards to system software, ERA has also benefited from the contribution of 

(Kaegi-Trachsel and Gutknecht, 2008).  

6.2.1. Active Zone 

The main principle used in the design of the processor is simplicity. The cost of 

P1 and P2 implementation of GAFT depends on the structure of the processor 

and might become prohibitively high. Antola (Antola et al., 1986, p. 1) proved 

that the overheads necessary to make a CPU fully fault tolerant might easily 

exceed 100%. Thus, to avoid duplication, there is a requirement to keep the 

redundancy level needed to implement fault tolerance, as low as possible. 
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Following the simplicity principle, the instruction set and its implementation 

within the processor is reduced to the absolute minimum required to support 

general purpose computing. This allows the careful introduction of redundancy 

that implements error detection, diagnosis and recovery features. Complicated 

memory addressing instructions are omitted, as they are not essential.  

The instruction set architecture (ISA) consists of only 16 instructions with only 

two of them for memory access. Such a simplified instruction set generally 

requires less hardware (the control unit in particular), which increases, by 

design, the reliability of a single processor.  Performance might also be increased 

as operating clock frequencies can be improved. Extra details on the instruction 

architecture are explained further in 7.2.  

The proposed microprocessor offers clear advantages in comparison to CISC 

architectures: fewer and simple addressing modes, hardwired design (no 

microcode), fixed and simple instruction formats. In turn, a simple instruction 

format allows fetching of two 16-bit instructions per machine cycle. The 

execution steps are similar to other RISC processors. There is no pipelining and 

all steps of one single instruction are executed within one memory cycle.  

Pipelines are one of the most vulnerable elements of modern microprocessors. 

The relative amount of area of the chip dedicated to pipelines is increasing with 

scaling design complexities. For instance, instructions can stall in the instruction 

queue and the longer they reside there, the higher the chances of getting struck 

by an energetic particle. A transient fault in a latch or a memory cell within the 

pipeline (e.g. SET or SEU) can propagate and become an error at the 

microarchitectural level (e.g. Register file or Instruction Register). Consequently, 

the effects of ionizing radiation in this area can lead	
   to	
   SEFI’s, severely 

decreasing the overall reliability.  

The absence of pipelining and caches greatly simplifies the processor design, 

which, in turn, simplifies the implementation of fault tolerance. A careful 

introduction of redundancy for checking and recovery allows the processor: 
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- To detect transient faults during the execution of the instruction  

- To abort the current instruction and  

- To re-execute it, all transparently to software 

There are known arguments that simple ISA’s do not have enough instructions to 

perform most of the application operations. These argue that a small ISA would 

result in higher compilation effort/time, and that the resultant programs would 

be bigger, which would increase the amount of memory needed. 

However, complex functions are well handled by the compiler instead of having 

specialized instructions within the ISA dedicated to very particular tasks.  

With regards to the size of the programs it is worth mentioning that:  

x A bigger ISA such as CISC involves longer operation codes, which in turn, 

increase the size of programs. Although the program size applications 

compiled with the proposed microprocessor are still larger than the same 

applications compiled in other architectures.  This is mainly due to the 

lack of certain instructions such the multiplication instruction, as the 

corresponding library calls would need additional setup code.  

x In an architecture based on a smaller ISA, register references require 

fewer bits 

x It is usually claimed that smaller ISA requires more memory.  ERA 

architecture has unique design property: size of all instructions is 16bit 

while size of a word is 32. Thus, the instruction density per word is 2 and 

the previous arguments above about bigger code size for RISC do not 

stand to ERA 

x Since the price of the memory is very low and keeps decreasing this 

argument also becomes less important 
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Figure 6-3. Architecture of the active zone of ERA 

The processor has a large register file with 32 general purpose registers with a 

width of 32 bits and no restrictions on their use, which simplifies software 

development (see Figure 6-3). All standard instructions expect exactly two 

arbitrary registers as input, and save the result of the operation in one of these 

two registers, thus overwriting one of the input values.  

Memory access is currently possible for 32 bit words at a time, and it has to be 

aligned. The main structure of the processor architecture is illustrated in Figure 

6-3. The instructions are fetched from memory into the instruction register and 

are decoded by the Control Unit, which also manages the execution of each 

instruction. Operands for each instruction being executed are fetched from either 

the register file or memory multiplexed into the Arithmetic or Logic Units  (AU 

and LU respectively).  

The output data from AU or LU goes either to memory through the data bus or is 

written back to the Register File. The current value and type of the data might 

also indicate an address for branch instructions. 

The hardware for fault detection and error recovery process, P1 and P2, are 

marked in blue and red respectively (Figure 6-3). The hardware for the data 

manipulation process P3 is marked green.  
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The simplified architecture presented in Figure 6-3 allows the implementation of 

GAFT at instruction level with reasonably small reliability (13%) (Schagaev, 

2008). As before, the three processes are essential for the guaranteed and 

successful execution of each instruction.  

Two processes P1 and P2 cope with fault checking and recovering of transient 

errors respectively.  P1 is initialized at the start of the instruction execution; P2 

is required and initiated when fault has been detected, but it is essential that the 

pre-modified state is stored at the start of execution of every instruction.  P1 and 

P3 can operate concurrently.  P1 and P2 have an influence on each other: the 

higher the fault detection coverage achieved by P1, the more successful recovery 

should be (Stepanyants, 2001). 

 

 

Figure 6-4.Check Generator and Checking Schemes 
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When data is written into the Register File, the Check Generator (marked in blue 

in Figure 6-3 and Figure 6-4) generates the checking information for the 32 bits 

data storing into the register file; this information allows the stored data to be 

verified later on. The Checking schemes (marked in blue in Figure 6-3 and Figure 

6-4) check the data integrity when data are read out from the Register File and 

when possible, correct the data before the ALU operation takes place. 

In order to implement the fault recovery process P2 an extra Register Buffer 

Rbuf(R*) is introduced (marked in red in Figure 6-3). The register buffer is 

allocated to keep the pre-modified state of operand for the currently executed 

instruction.   

When a fault is detected during instruction execution, it allows the processor to 

restore to the initial state before the execution of the instruction, enabling the 

instruction to be repeated. This allows the system to tolerate faults within 

instruction execution.   

The extra Register Rbuf(R*), the checking schemes and the reverse instruction 

sequencer combined make the implementation of P1 and P2 possible without 

any perceptible time overheads (13%). 

6.2.2. Passive Zone 

The proposed memory scheme may be regarded as a collection of 4 blocks or 

RAM, 16-bit wide (in the case of ERA the blocks have an identical size of 1Mb 

each: 16x64k). Using 16-bit memory modules instead of 32-bit memory modules 

increases reliability and reduces, when necessary, the energy required for 

execution.  Additionally, the scheme includes two flash-based ROM modules with 

replicated bootstrapping firmware and operating system software. 

Reliability is increased by means of added working states and configurations that 

are explained in 6.4.3 Energy-wise operation is improved by means of this 

architecture ability to activate only certain modules when required (e.g. using a 

single 16-bit memory module).  
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The proposed memory scheme allows different configuration schemes that will 

be explained in 6.4.3. and 6.5. 

6.2.3. Interfacing zone 

The principles of architecture design explained above relate to the interfacing 

zone as well.  The architecture needs something (logic) in the interfacing area to 

enhance the flexibility and resilience of system operation between active and 

passive zones, for wide range of applications where PRE-properties are key 

requirements. This motivates the ability to have a reconfigurable interfacing 

zone.  

One of the schemes that we propose is known as T-logic. T-logic is a hardware 

element that provides reconfigurability of the passive zone for performance, 

reliability and energy-wise operation. This logic should be able to provide 

minimal configuration – when one processor and memory remain active. T-logic 

is further explained in the following section. 

6.3. ERA reconfigurability 

As declared earlier performance, reliability and energy-awareness are required 

for the next generation of computer systems. Reconfigurability requires 

hardware and system software implementation and support. In order to be able 

to change the configuration when necessary (sometimes several times during a 

single mission) systems should have special elements with specific properties 

such as extreme reliability, performance and simplicity, supported by 

independence from faults of the system. 

For the purposes declared above we propose a hardware element called T-logic. 

The main function of a T-element is to connect and disconnect the system 

component, using “logic rotation” for various types of connections and 

configurations. Note,	
  that	
  we	
  use	
  the	
  term	
  “logic” since a physical movement or 

rotation is not feasible and it is clear that any mechanical device that involves 
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movement would therefore be less reliable.  The physical element that provides 

the functionality for this T-Logic concept is the Memory management unit 

defined in 6.6.1 and 6.6.2. 

T- elements are controlled by hardware through syndrome schemes. Both types 

of operation, during run time and during diagnostics, are assumed.  

Table 6-1. T-LOGIC rotation 

position Description 

 

The	
   “T” logic connects the active zone to a front element 
that is connected in redundant mode with a right element. 
This front element leads the rest of the elements that is 
connected to.  

 

The	
  “T-logic”	
  connects the active zone to a front element. In 
this case the element is working in serial mode.  

 

The “T-logic”	
   connects the element to two neighbouring 
elements in redundant mode. The element is leaded by the 
left side component that is connected to the active zone. 

 

The “T-logic”	
  connects the element to a left element.  system 
component will be leaded by side element that is connected 
to the active zone. 

 

Disconnected the element: The “T-logic”	
   is disconnected 
from the interconnection scheme. The energy consumption 
of the element is reduced to the minimum.   
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In order to connect and disconnect the system component there are several 

possible “rotations”	
   of	
   a T-element. Table 6-1 describes the basic T-Logic 

element and shows some of the possible states of a T-element. 

 The reconfigurable interconnection schemes can execute dynamic 

reconfiguration of a system, transparently from software. For example, when 

triple system element configuration (TMR) is used, T-elements might exclude 

faulty ones from operation, leaving only 2 elements active (DMR).  If further 

degradation, in terms of fault tolerance, takes place, the system can continue 

operating with up to a single element (Schagaev and Buhanova, 2001). 

 

Figure 6-5. Algorithm of reliability configuration using T-LOGIC 

Figure 6-5 illustrates how reconfiguration might be used for reliability purposes 

using T-elements. The figure shows a diagram that exemplifies a scheme with 3 

memory modules working in parallel that at some point during operation 

experiences two permanent failures in two out of three modules.  
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6.3.1. T logic for memory management 

ERA power consumption can also be controlled using T-elements. Existing 

electronic technologies posses the following drawback: increase in power 

consumption causes degradation of system reliability. Therefore, an ability to 

connect and disconnect a system element might be function and requirement in 

real time and other applications.  

Again, for illustrative purpose we use an example when ERA uses three system 

elements in redundant mode. If the task scheduled does not require a full size 

configuration, the architecture can be configured to operate using either two 

elements or a single element on its own.  

Hardware configuration should be implemented transparently to application 

programs.  Task defined requirements might be available for a run-time system. 

Excluding memories will not change the logic of the program.  

 
Figure 6-6. Energy-wise algorithm of configuration using T-LOGIC 

Figure 6-6 shows the power saving algorithm for a reconfigurable system.  The 

reconfigurable interconnection schemes improve the memory management 

flexibility. For instance, if the computer architecture has three elements and the 

task requires maximum capacity, the system will configure all memories in 

redundant mode so that it can provide maximum capacity.  



 

 
213 

 

6.3.2. T-Logic support of configurations in ERA 

Possible configurations of a system that uses “T”	
  logic	
  are	
  presented	
  in	
  the	
  Table 

6-2 below.  

Table 6-2. Possible system configurations using T-LOGIC 

configuration explanation 

 

“T”	
   configurators	
   connect	
   all	
   three	
   components	
   with 
the processor. Top system component acts as leading 
element. The rest system elements compare the 
results and participate in voting. Thus reliability of 
this system configuration is high.  

 

This system configuration serves for maximum energy 
saving.  In this	
   case	
   “T”	
   element	
   connects	
   only	
   one	
  
system component with processor, while the rest are 
idle. 

 

In this case, all three components are used for 
maximum hardware capacity. When performance of 
application is the main priority this configuration fits 
the purpose. 

The first row of the table illustrates a configuration with maximum reliability 

(three HW elements are available). The power saving of the system could be 

improved by disconnecting elements from the system and keep them idle 

(second row). The configuration for maximum capacity required by a task is 

shown in the third row. 
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6.4. Syndrome 

As mentioned earlier, the new property of the system must be supported by 

hardware and by SSW implementation of the required processes that define such 

property. We introduce a special hardware scheme called syndrome. The term 

syndrome is	
  new	
  Latin	
  and	
  was	
  originated	
  from	
  the	
  Greek	
  “syndrome” where: 

x “Syn-“, from combination, concurrence 

x “-Dramein”, base	
  meaning	
  “to run” 

For our purposes a syndrome is “a group of related or coincident things, events, 

actions, signs	
  and	
  symptoms	
  that	
  characterize	
  a	
  particular	
  abnormal	
  condition”. 

Further analysis and development of syndrome concept and application follows. 

6.4.1. Syndrome use 

The functions of the syndrome are not only passive, presenting a "snapshot-

status" of the system, but also active, serving as a tool to control the system 

configuration and to estimate system conditions. The syndrome can help to 

answer the question: 

WHAT PROVIDES THE FAULT TOLERANCE OF THE SYSTEM? ! ! !               Q1 

It is usually assumed that the core logic is ultra reliable and guarantees control of 

configuration and reconfiguration. Unfortunately, using the homogeneous 

redundancy may limit the increase in reliability since techniques based on the 

same type of redundancy are vulnerable to the same threats.  Hybrid techniques 

based on heterogeneous redundancy of components and techniques can be more 

effective.  

Thus even when checking schemes of memory or logic detect faults and reflect 

this situation in the syndrome, the information may not be useful if the system 

does not include as well: 
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x External elements responsible for exercising GAFT and making decision on 

configuration / reconfiguration if necessary 

x Internal elements capable of initiating the required sequence.   

Indeed, in a regular computing system when there are faults in the processing 

logic, to expect that the processor is able to perform self-healing and then control 

and monitor configuration of the rest of the system is unrealistic. We propose a 

possible solution as described below. 

 

Figure 6-7.	
  Processor	
  structure	
  with	
  “separation	
  of	
  concerns” 

Figure 6-7 shows conceptually the ERRIC’s active zone divided by two AU and LU 

elements. 

To be able to trust information regarding the status of an element, every 

checking signal about the condition of registers (not shown), memory units, AU 

and LU as well as control unit should be aggregated in syndrome. The 

implementation scheme of fault tolerance separates the passive zone and active 

zone of the proposed architecture. A clear separation of the functions of 
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processing (of data operation) and storing (memory) enables us to apply more 

flexible checking and recovery solutions.  The passive zone has the elements to 

store data, while active zone is used for the data manipulation. 

All processor registers (register file) may be protected by parity or other 

checking schemes. During instruction execution data is loaded from the register 

file into functional elements for operation and operands are checked.  If no fault 

is detected during instruction execution the operation is considered as successful 

and the result is stored back into the register file or sent out to memory.  

The memory context data might be protected by schemes such as error checking 

code, Hamming code, or recently proposed schemes (Gössel et al., 2008). If a 

fault is detected during the course of an instruction, the control unit (by 

executing GAFT) would attempt to:  

x Restore the damaged data  

x Repeat the execution of the instruction that presented the fault 

x Resume execution  

ERA provides a fast and reliable recovery scheme within instruction execution 

level, transparently to software.  

Taking into account the requirement of minimal redundancy the architecture 

presented on Figure 6-7 above seems efficient – there is no duplication or 

greater level of reservation applied for active zone. Active zone consists of two 

non-identical units: arithmetic and logic units respectively (AU and LU). 

In terms of power consumption this scheme is also efficient.  A question arises:  

HOW TO TOLERATE FAULTS IN THE ARITHMETIC OR LOGIC UNITS?     Q2 

The question Q2 above becomes crucial for the implementation of fault tolerance 

with minimum redundancy on any system. A possible solution is to apply well-
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known mathematical results about the equivalence of arithmetic polynomial for 

logic functions (Vykhovanets. 2004). That is, a theory where arithmetic functions 

are represented by Boolean functions. These two groups of results hint us a 

possible solution: an ISA that consist of logic and arithmetic instructions should 

be supported by a sequence of functional equivalence of logic operators 

implemented by arithmetic unit. For every arithmetic instruction a functionally 

equivalent sequence of logic instructions should be added. Both sequences 

should be stored in different segments of read-only memory. If a fault occur in 

the AU a signal sets a flag in the syndrome and sequence of logic operators is 

executed instead of arithmetic instructions to complete GAFT, and vice versa. 

Note that this equivalence and hardware redundancy is used only when a fault is 

detected and the recovery procedure is initiated. This enables the system to 

recover from transient errors and execute reconfiguration. After reconfiguration, 

the system can either continue functioning in normal mode or, in case of an 

unrecoverable permanent fault, it can provide fail stop sequence of actions. 

 
Figure 6-8. Syndrome purposes 



!
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The!syndrome!acts!as!a!control!centre!for!three!main!functions:!fault!monitoring,!

reconfigurability!and!recovery!(Figure!6?8).!These!three!functions!serve!for!the!

purpose!of!performance,!reliability!and!power!efficiency.!!

!

Figure+639.+Syndrome+for+reconfigurable+architecture+

From! a! low! level! point! of! view! the! syndrome! is! represented! as! a! special!

hardware!register!that!will!interact!with!the!system!via!hardware!interruptions!

schemes.!

Semantically,!the!structure!of!the!syndrome!is!subdivided!in!three!different!areas!

Figure! 6?9:! Fault! control! area,! Configuration! control! area! and! Power! Control!

area.!!

The! Fault! control! area! reflects! the! hardware! status! of! the! different! areas! of! a!

single! processing! element:! processor,! memory! and! interface.! Full! "Zero"!

syndrome!in!this!area!indicates!that!no!fault!has!been!detected!in!the!system.!If!a!

fault! in! a! specific! element! is! detected,! the! corresponding! bit! is! set! to! 1.! Each!

hardware! element! has! sits! own! representative! flag! within! syndrome.! For! the!

ROM!memory!group!that!consists!of!two!chips!syndrome!of!ROM!condition!has!

two!positions!with!zero!whenever!the!ROM!functions!correctly.!In!turn,!the!static!

RAM!memory!group!has!4!hardware!elements.!!

!



 

 
219 

The configuration area of syndrome reflects the memory mode that ERA is 

currently implementing. The Bit mode field defines whether the addressing 

mode is 16 or 32 bits, whereas the L/R field defines whether the memory banks 

are in linear or redundant mode.   

x Bit Mode:      0 = 16 bits  

   1 = 32 bits addressing mode 

x LR:               0 = Linear 

   1 = Redundant 

The power management area reflects the status of the modules in terms of 

power. Bits Power RAM Module One, Two, Three and Four represent whether 

the Memory module is powered or not: 

x 0 = Power Off 

x 1 = Power On  

The combination of those three areas: Fault, configuration and Power 

management control defines the state of the system, e.g.: a memory module could 

be in the following states: faulty, failed, stand-by, ideal and off state. Checking 

those 3 areas by a simple reading would determine the status of the memory 

module. When reconfiguration is set by software, the states of the syndrome 

might be mirrored in memory. Keeping those states only in SSW is not a 

universal solution, for example when external element requires an access to a 

syndrome and local memory has failed further use of available resources and 

elements becomes impossible.  

Without a doubt, the syndrome is one the most critical parts of the system. For 

reliability purposes, there are three copies of the 32-bit register syndrome 

connected to a voter within the processing element . Without this replication, a 

bit flip in the faults area of the syndrome would lead to redundant fault detection 

processing, whereas a bit flip in the configuration area would likely end up 

causing a catastrophic failure. 
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6.4.2. Location access and way of operation of the syndrome 

There are two major mechanisms that will be able to detect a fault: hardware 

logic and SSW.  Both, hardware logic (mismatch and voters) directly and SSW via 

instruction (testing and detection mechanisms) should have access to the 

syndrome: 

SSW events: For SSW to have access to the syndrome it is necessary to 

implement hardware elements that facilitate reading and writing its value. Note 

that the current ISA does not include instructions within the processor to do that, 

unless one of the registers is used as a syndrome. This is similar to the VAX V70 

processor that includes a status word placed in a fixed address of the memory. 

The register file could be hardened to avoid potential errors in it. At least the 

syndrome needs to be hardened. For instance, a SEU that causes a bit flip in the 

configuration area of the syndrome could mistakenly turn off one of the memory 

modules.  

Triplicating the syndrome increases complexity of logic. The voter would be 

vulnerable as it is a single point of failure (unless the voters are also triplicated).  

Another option that solves the complexity would be low-level hardening 

techniques and/or using different technologies (such flash memory) just for the 

syndrome register. However, that will increase the manufacturing costs. Since, 

the size of the syndrome is just three bytes, triplication seems the most efficient 

solution.  

As a consequence, a preferred way to access the syndrome that avoids changing 

the ISA and hardening the register file is the use of the input/output memory 

lines (mapped in a reserved address) and accessing a TMR Syndrome Scheme 

that is software independent. Regardless of the hardware implementation, only 

one syndrome is visible to the system software. An error in one of the syndrome 

registers is corrected by hardware without software intervention. However, for 

the purpose of risk analysis it may be useful that the SSW is aware of errors in 
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the syndrome. Errors within the syndromes are useful information in a potential 

contingency plan (e.g.: setting the fault tolerance of the system to a higher level 

in case of recent particle impacts). 

Automatic events via hardware detection mechanisms: Special HW 

interruptions are needed for this; if during the diagnosis of a memory chip the 

ALU, for instance, signals a problem, a diagnosis of the suspected element should 

be done first. 

The syndrome might be considered independent from other processor hardware 

elements. A method is needed for synchronizing the operation of the processor 

with the syndrome. One solution would be polling, where a loop that checks the 

status of the syndrome is arranged. It has a major disadvantage: the processor is 

busy reading the syndrome, instead of executing some useful code (wasteful in 

terms of processing power). 

Instead of polling the syndrome waiting for a change, a hardware interruption 

system is preferred. In this case, the syndrome subsystem is responsible for 

notifying its current state to the processor. When the syndrome needs the 

processor's attention, it sends an electrical signal through a dedicated pin in the 

interrupt controller.  In such case, the processor stops its current activity and 

jumps to execute a function (interrupt handler), which must be associated with 

the fault manifestation.  

By using hardware interruptions, in terms of total execution time, the syndrome 

will be accessed only when a fault is manifested. Most of the time the fault area of 

the syndrome will be 0 and the rest of the areas will only be altered when 

restarting of the system or when changing the memory mode. 

The same method might be applied to the control of other devices. Different 

levels of interruptions are then needed. Active zone hardware should have 

higher priority than passive zone elements. 
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If a hardware mechanism sets the syndrome bits, a trap (exception) takes place 

and the software diagnosis starts. SSW treats the fault and clears the syndrome 

accordingly. This scheme introduces a requirements to set and re-set syndrome 

register internally or externally, from the	
   “rest	
   of	
   the	
   system”	
   when	
   ERRIC is 

used in the form of CC – connected computer structure. 

If the syndrome was located within the active zone, in the case of a fault in such 

area, a neighbour processing element would have difficulties accessing to it. To 

resolve it there are three options: 

x To enable system flexibility in fault handling, one has to implement the 

syndrome independently from the active area where it can be accessed via 

hardware by neighbour single elements. 

x Software message passing: Instead of hardware access SSW will deal with 

the status of single elements, by sending un update (periodic updates) of 

the syndrome to the single element neighbours before changing the 

memory mode or when a fault has been detected (if feasible in this last 

case). A syndrome table in a similar fashion to the routing tables used by 

routers and the different routing algorithms could be shared by different 

processing elements. 

x Both, Hardware access and SW message passing are not mutually exclusive. 

A combination of both may be possible.  
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6.4.3. Syndrome: Passive Zone Configurations 

A total of 25 memory configurations are possible to operate in reliability, energy 

or performance wise modes. The characteristics of the proposed memory 

architecture are given in the following tables: Table 6-3 and Table 6-4.  

Table 6-3. 16bit addressing modes in RA 

 

Memory modes are subdivided into two major categories, depending on the 

number of bits read/written at once: 32 bits and 16 bits. At the moment there 

are 10 different usable memory configurations in 32-bit mode (defined in Table 

6-4.) and 15 different configurations in 16 bit mode memories (defined in Table 

6-3). 

In addition, two modes of operation, depending on the existing amount of 

redundancy can be selected: (1) Linear mode: where no module is replicated and 

(2) Redundant mode: with at least one module being replicated. In order to 

explain the available memory modes, let's consider the letters in the set {A, B, C, 

D, x} as a representation of information stored in the 16-bit memory modules, 

where: 

x A lowercase letter x represents a module that is not in use. 

x Identical letters represent identical information in different modules, i.e. 

information stored in a module is n times replicated into n modules: e.g. 

AA, AAA, BB and AAAA. In this case n-1 modules are connected in shadow 
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mode and perform all memory operations concurrently to their respective 

master memory module. A hardware voter in the memory controller 

compares the output of the memory modules and, in case of mismatch, 

triggers an interruption that sets the corresponding fault in the syndrome. 

x The pairs AB, BA and CD represent two 16-bit modules combined into a 

virtual 32-bit module.  

6.4.3.1. 32 bit mode 

The memory modules in ERA are 16-bit wide. Therefore, two memory chips are 

combined to allow 32-bit memory access. 

 

Table 6-4. 32 bit addressing modes in RA 

Table 6-4 reflects all the supported memory combinations in 32-bit mode. There 

is only one possible configuration in 32-bit Linear Mode (state 10 in Table 6-4.). 

Module 1 & 2 are combined and mapped in the memory space. Module 3 & 4 are 

combined as well and mapped contiguously in the memory. This configuration 

provides maximum space for the application but does not feature fault tolerance, 

and not even fault detection at the memory level. 
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In terms of fault tolerance, the maximum redundancy based on 32-bit addressing 

is the ABAB configuration (Table 6-4.). The information in the two modules AB is 

replicated on an extra pair AB. In every reading operation the data from both 

memory pairs is compared. If there is a mismatch, a checkpoint area in RAM will 

be the decisive factor in selecting which modules has a fault. 

Note that 32-bit modes that involve 3 working modules such as ABAx, ABxB, 

AxAB or xBAB are not initial modes (starting in this mode does not offer any 

advantage). Those four modes would typically involve that an error has occurred 

in one of the modules and diagnostics is taking place. 

6.4.3.2.  16-bit mode 

With the main purpose of critical energy saving a 16 bit addressing mode was 

introduced. This mode is using a single bank of memory. Hence, there is not 

duplication of memory. The four different memory configurations, currently 

allowed in this mode are presented in Table 6-3.  

When only one single mode is available due to permanent faults in the other 

three, the system could be restarted in a fresh 16-bit mode loading the different 

SSW binary codes from a ROM location into RAM. Note that this mode is an 

emergency mode and does not contemplate the possibility of hot switching from 

a 32-bit mode. Schemes to change from 32-bit to 16 bit/power saving mode and 

vice versa are defined by the runtime system. This saving energy mode can be 

enough to execute a program with performance degradation. 

6.5. Graceful Degradation 

If one of the memory modules fails, the system can be reconfigured to exclude 

such module from the current configuration. The ten admissible states in 32-bit 

mode are given in (Table 6-4.). In terms of fault tolerance, the maximum 

redundancy based on 32 bit addressing is the ABAB configuration. The transition 

between these states is completely dependent on soft/hard errors and the 
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efficiency of recovery mechanisms. However, a voluntary transition between 

different states is also allowed. 

 
Figure 6-10.  32 bit degradation phases 

 

Figure 6-11.  16 bit degradation phases 

In case of degradation, successful recovery mechanisms could produce a 

transition from a degraded phase to an initial phase. The group of states or 

phases can be distinguished:  
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x Phase 1: States with full checking and replication of every single bit. The 

single state in this phase is the initial state and has maximum redundancy 

for 32-bit: ABAB configuration (see Table 6-4.). 

x Phase 2: States in which at least 50% of the bits are replicated.  Transition 

to one of the four different states available in this phase is due to a fault in 

one of the memory modules of State 1. 

x Phase 3: States in which replication of bits does not exist. Six possible 

states in this phase could potentially lead to a failure.   

In a normal scenario with one processing element, if during the operation phase 

three, a working module experiences another error, reboot of the system is the 

only way forward.  In a multi-processing element scenario and depending on the 

resources available, reliability needed and current environment, SSW will have 

to decide whether to: 

x cold-switch the same element and restart using the 16-bit mode 

x keep using the healthy active area but make use of the neighbour memory 

elements or, 

x cold-switch the execution to another element 

6.5.1. Graceful Degradation – Markov analysis 

Regarding computational capability and availability of resources, a system can be 

modelled as being in one of many possible states. The number of states would be 

large, if fine distinctions are made, or it may be relatively small if similar states 

are grouped together. Different events can force the system moves from one 

state to another depending on resource availability and computational changes. 

By quantifying the probability of state transitions, State-space modelling can 

determine the probability of the system being in each specific state; this can be 

used to obtain some parameters of resilience (reliability, safety, maintainability, 

safety, etc.). 
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The sum of all input and output transition probabilities of each state should be 1. 

The state of the system is characterized by the vector (𝑆଴, 𝑆ଵ, 𝑆ଶ, 𝑆ଷ, … , 𝑆௡) . A 

transition probability matrix has N states. On the t’th time-step the system is in 

exactly one of the available states qt:  

𝑞௧   ∈    {𝑆ଵ, 𝑆ଶ, 𝑆ଷ, … , 𝑆௡}   

There are discrete time-steps, t=0, t=1, ... We are interested on how the system 

will behave after several time steps. Initial condition of the system: S0. Given 𝑞௧ , 

𝑞௧ାଵis conditionally independent of  {𝑞௧ିଵ, 𝑞௧ିଶ,… , 𝑞ଵ, 𝑞଴}, that is: 

𝑃൫𝑞௧ାଵ = 𝑠௝|𝑞௧ = 𝑠௜൯ = 𝑃൫𝑞௧ାଵ = 𝑠௝|𝑞௧ = 𝑠௜, 𝑎𝑛𝑦  𝑒𝑎𝑟𝑙𝑖𝑒𝑟  ℎ𝑖𝑠𝑡𝑜𝑟𝑦൯ 

The current state 𝑞௧ determines the probability distribution for the next state 

𝑞௧ାଵ.  In order to model of the system we do the following assumptions:  

 a) System starts in the perfect state 

 b) Only one fault can occur at a time 

 c) System does not contain repair – permanent faults 

In order to simplify we make a first-order Markov assumption: we say that the 

probability of an observation at time n only depends on the observation at time n 

only depends on the observation at time n-1. In a sequence {𝑞ଵ, 𝑞ଶ, … , 𝑞௡} 

𝑃(𝑞௡|𝑞௧ିଵ, 𝑞௧ିଶ, … , 𝑞ଵ, 𝑞଴) ≈ 𝑃(𝑞௧|𝑞௧ିଵ) 

Using the previous assumption, the joint probability can be expressed as: 

𝑃(𝑞ଵ, 𝑞ଶ, … , 𝑞௡) =ෑ 𝑃(𝑞௜|𝑞௜ିଵ)
௡

௜ୀଵ
 

Figure 6-12 presents Markov model of reliability for reconfigurable memory 

described above: 



 

 
229 

 

Figure 6-12. Markov model for the ERRIC memory system 

The figure shows the transition probability in the case of a four-module memory 

scheme with a TMR plus a spare configuration.. The circles in the figure 

represent one of the 15 possible states. The arrows reflect transitions from a 

source to a destination state.   

 

Figure 6-13. Reduced Markov model for the ERRIC memory system 

By merging states in the Markov model a simpler equivalent model is created. 

Figure 6-13 represents such simplification illustrating the probabilities of 

transition between the original TMR plus spare, a TMR, a DMR, a SMR and a FAIL 

states.  
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6.6. Implementation constraints 

As explained before in 6.2.1 taking into account the 16-bit instruction size and 

32-bit word size of memory organization, at the time of compilation the compiler 

schedules memory loads on the first 16-bit instruction of a 32-bit two-

instruction	
   “packet”.	
   	
   This	
   way,	
   memory	
   loads	
   and	
   instruction	
   fetches	
   never	
  

occur at the same time. When the memory configuration is set as 16-bit words 

each read or write precede instruction execution. In the case of a 32-bit memory 

configuration two instructions might be loaded from memory by one access.  

6.6.1. Memory Addressing 

Different	
   models	
   could	
   have	
   been	
   followed	
   to	
   implement	
   the	
   ERA’s	
   memory 

addressing scheme. We consider physical addressing and relative addressing.   

 

Figure 6-14.Theoretical memory configuration for reconfigurability 

Following the first case, as shown in Figure 6-14, the lowest 4 bits of a 32-bit 

memory address would represent which modules are used to represent the 

lower and the higher 16 bits. The encoding would be as follows: Bits 2 and 3 

correspond to M1 and represent the lower 16 bits whereas bits 0 and 1 

correspond to M2 and represent the higher 16 bits.  

However, by using this scheme, having the configuration of the modules 

physically mapped in program code would make reconfiguration difficult to 

implement. If the binary code reflects which bank the program should run on, 

then, in case of a fault that requires code to be transferred to another bank (bank 

switching), a translation would be needed. 
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Re-compiling of the program is highly unlikely due to the real time constraints of 

program execution. This also affects recovery time and, in fact, it excludes the 

chances of recovery in real time. 

Besides, if the contents of the memory banks are physically different this will 

affect the hardware checkers complexity; the checker function would need to 

compare equal values in case of data comparison and different values in case of 

address comparison. Thus, separation of concerns principle and a virtual 

memory approach are preferred.  

 

Figure 6-15. MMU and syndrome as memory controllers 

By removing M1 and M2 (Figure 6-14), the memory addresses used in a program 

code refer to a relative position, for instance, within a pair of modules AB. A 

reconfigurable memory controller (see Figure 6-15) links the relative address to 

the physical address within a specific memory bank. Such controller is used in a 

similar fashion to the translation of virtual addresses into physical addresses.  
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6.6.2. Interfacing Zone:  The syndrome as memory addressing 

controller 

As previously seen in Table 6-1 the T-logic ERA element performs configuration 

and reconfiguration of hardware by providing interconnection and dynamically 

excluding faulty components from the operational system. 

The T-logic interconnector provides flexibility of application of memory 

elements (32- and 16- bit configurations) and at the same time helps in fault 

containment.  This logic is used to form a hardware configuration scheme 

adjustable to the program requirements or when a hardware element itself (or 

architecture) detects hardware faults and thus can’t	
   be	
   involved	
   in	
   further	
  

calculations.  

Note	
  that	
  “isolation”	
  might be temporary or permanent, subject to the element’s 

“health”.	
   	
   The	
   final	
   decision	
   about	
  permanent	
   isolation	
  of	
   an	
   element	
  will	
   take 

place when testing and recovery procedures are complete.   

The four T-logic interconnectors, one for each memory bank, are physically 

included in the T-logic Management Unit or TLMU. TLMU (see MMU in Figure 

6-15) manages the connectivity of the memory, configures and reconfigures the 

working mode to a 16-bit single memory, 32-bit double memory with 

master/slave configuration or any of the 14 memory addressing schemes 

available (Table 6-3 and Table 6-4.). Using the T-logic scheme memory elements 

could be isolated, switched off for power reduction or doubled in capacity when 

the maximum storage volume is required, addressing PRE-wise computing. 

The Configuration and Power management flags of the syndrome describe the 

different states of the memory modules. Different values in the configuration 

area of the syndrome select the bank used and the mode. The output memory 

lines of the processor determine a location within a memory bank, whereas the 

Configuration and Power areas of the syndrome specify which banks are to be 

used and in which mode. 
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One example of a possible memory configuration (State 1 Table 6-4.) arranged 

by	
  “T”-logic is presented in Figure 6-15. The example reflects a 32-bit (Bit mode = 

1) ABAB configuration with 2x2 modules duplicated (Redundant = 1) working in 

pairs. 

By using this method we can increase the independence of software/hardware 

configurations for the PRE- purposes. Memory addresses within the code do not 

need to be arranged, as code integrity is a crucial requirement for safety critical 

systems. 

Let’s	
  define	
  the	
  following	
  scenario	
  where	
  it	
   is	
  required	
  to	
  switch	
  data	
  and	
  code	
  

from modules 1 and 2 to module 3 and 4. Let’s	
   assume	
   that	
   the work mode is 

ABxx 32-bit, which is fast but not very reliable. Assuming that the user (or an 

online fault detector manager using a fault model) requires a higher level of 

reliability, transfer from the current ABxx mode to an ABAB mode is required. An 

implementation of this example is based on the following algorithm (omitting the 

testing procedures):  

 i = 0; 

REPEAT 

 i++; 

 Starting at memory location [0] load the n following words into RF (32x32) 

 Change the value of the syndrome to the memory mode XXAB 

Copy the n previously stored words from the RF starting at [0] + i*32*32 

 i++ 

 Change the value of the syndrome to the memory mode ABXX 

UNTIL EOM (End of Memory) 

Change the value of the syndrome to the memory mode ABAB 

6.6.3. Access to the syndrome 

The design of the TLMU should allow the possibility of neighbour elements 

accessing the memory elements. Synchronization is therefore required to avoid 

several elements accessing a specific memory at the same time.  Since the 

syndrome should also be accessible by other elements it may be a good idea that 
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the syndrome is located in this interfacing area. Having access to the syndrome 

via TLMU would save logic since only one synchronization element (TLMU) will 

be used. 

6.7. System software support 

GAFT might be efficiently implemented by hardware and system software 

working in a holistic way. In order for a system to be FT it needs to satisfactorily 

complete three tasks: detection, determination and recovery. Due to the fact that 

these tasks can be easily decoupled, we will treat them independently. The 

occurrence of a fault is, in general, a rare event and therefore the error detection, 

determination and recovery mechanisms are executed with much less frequency 

than the checking mechanisms. 

We present below how with the support of both hardware-checking elements 

and system software it is possible to mitigate the accumulation of hardware 

faults that could lead to catastrophic errors.  In the case of radiation-induced 

faults, this combination can remove the effect of one or several SEU before a SEFI 

takes place. In turn, the SSW needs to be able to support the previously discussed 

syndrome. 

6.7.1. Hardware checking process via SW 

Consider a sequence of tests and programs T and P within a system as in Figure 

6-16.  

 

Figure 6-16. Ensuring HW integrity through program test execution 
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The initial test T is executed before any given task execution guaranteeing HW 

consistency, i.e. it guarantees that there is no fault at time t0 in the system. 

However, a permanent fault (e.g. a Hard SEL) that occurs immediately after the 

first test or during the program execution might be invisible for an arbitrary long 

time (latent period). Therefore, a second sequential test is required right after 

the program execution to guarantee that no permanent fault occurred since the 

last test.  

 

Figure 6-17. Regular sequence of program execution with test of 
HW integrity to detect permanent faults 

For periodic tasks, which are often used in control systems, we slightly adapt this 

scheme as shown in Figure 6-17. Nevertheless, what if a transient fault occurs 

during the execution of P? As mentioned in 3.5.2.1.1, at least three cases may 

take place: 

x The effect of the fault lasts until P finishes, T detects the error and the 

recovery mechanisms are able to restore normal functioning on time 

(detected recoverable error or DRE) 

x The effect of the fault lasts until P finishes, T detects de error but the 

recovery on time is not possible (detected unrecoverable error or DUE) 

x The effect of the fault might not last until P finishes and therefore T would 

not be able to detect the fault, which in turn would allow the fault to remain 

undetected, perhaps causing data corruption (silent data corruption or 

SDC). The corruption could go unnoticed (benign error) or could result in a 

visible error.  
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Figure 6-18. Ensuring HW integrity through program test execution 

to detect transient faults 

Transient faults can be detected using time redundancy, re-executing the same 

program P with comparison C of the result and the result state space. Figure 6-18 

illustrates this scenario.  

Note that for periodic tasks, the persistent state of the program, i.e. the program 

state which is used in the next computation as input data must also be compared, 

as transient faults might affect data that is no longer used in the current 

computation but that will be used in the next.  

Permanent faults however cannot be detected with the comparison scheme 

alone, as they might affect both executions of P. That is, the scenario in Figure 

6-17 can only detect permanent faults whereas the scenario in Figure 6-18 can 

only detect transient faults.  

 

Figure 6-19. Ensuring HW integrity through program test execution 
to detect both transient and permanent faults 

The combined power, in the form of information and time redundancy, 

illustrated in Figure 6-19 allows the detection of both transient and permanent 

faults. In this scenario, C is used to detect transient faults and T to detect 

permanent faults. Assuming that C triggers an error but T does not, it is clear that 
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a transient fault occurred. Another run of program P with comparison to the 

previous two runs can identify the run where the transient fault occurred. 

In the following analysis, we concentrate on the detection of merely permanent 

faults, using only T in the analysis. The detection of transient faults can be 

considered as included in the following analysis if the double execution of P with 

following C as a whole is treated as task P. 

A testing phase is required initially at boot up time to guarantee the correctness 

of the hardware and also a periodic test before and after the execution of a 

program. The coverage of the applied tests might vary in the number and type of 

faults that can be detected and also the set of tested hardware. 

Every hardware component has typically at least one assigned test but might 

also have more than one that could differ on the implementation level. Software 

based tests need a processor and memory for the test execution even if a 

peripheral device is tested.  

In order to guarantee that faults in other hardware components that are not 

subject of the test itself do not have an influence on the outcome of the test, the 

order of the tests must follow the principle of growing core: if a test of a hardware 

component ui has implicit dependencies on another hardware component uj, the 

test of uj must be executed first. 

If the resources needed by a task are known in advance, the testing procedures 

of the accessed hardware resources only (selective testing), by using the 

principle of growing core, would be enough. This way, the system stays fully 

operational even in the case of present faults in some hardware components that 

are not in use. Spare components can be used for the relocation of programs that 

were running on faulty hardware components.  

Yet, it may be useful to periodically test the full hardware as otherwise, faulty 

spare components can be considered as fully operational and might be used 
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again in a subsequent reconfiguration process. A full hardware test also allows 

the system software to monitor the current full state of the hardware and take 

appropriate actions when needed.  

Timely task completion in real time systems is a key requirement. Consequently, 

the testing overheads should be reduced as much as possible when/where 

necessary. 

 

Figure 6-20. Tasks & tests combined 

Figure 6-20 exemplifies a scenario of three tasks with their corresponding tests. 

Analysis of the checking process assumption in this case is based on a scheduler, 

which distributes time slices to the running processes. In this example, the 

processes run to completion and are called periodically by the scheduler. Three 

tasks are running, each with its own test (green boxes) at the end of the task 

execution. The test only checks the resources that the respective process needs, 

which results in different test execution times. The task execution is only 

considered as successful if the test at the end of the task is successful. If the test 

failed, the task is re-executed by using the same input data set as in the first try.  

If no spare components are available in the system, all programs depending on 

this component must be obviously terminated. If no essential program is affected 

by this component, the system can continue operating in a degraded mode.  

For diagnostic and monitoring purposes the test results should be available to 

the SSW in that unit or to external systems. Therefore, we propose to organise 

the test results of hardware in test syndromes. 
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6.7.2. Software support for reconfiguration 

For every hardware component, e.g. register file, ALU, internal bus or device 

controller, the checking procedures present their result in the form of a 

syndrome to the software indicating, in binary form, the state of the device. By 

grouping all syndromes together in one register, the software has a very effective 

way to check the integrity of the system. In case of a non-zero syndrome further 

analysis of the hardware conditions are required, especially when the duration of 

the malfunction is long. 

Depending on the checking scheme used, it is not only possible to signal a fault to 

the runtime, but also to provide him with extra information to ease recovery. For 

instance,	
  let’s	
  define	
  a	
  scenario	
  where	
  the testing schemes discover stuck bits in 

memory due to a Hard SEL. It would be sufficient to recover programs that 

access the affected location and not all programs that are using the affected 

memory module. 

Device drivers could for example provide their own testing schemes for their 

respective device. Especially for devices, one could think of having a combination 

of hardware and software based testing. I/O devices such as UARTs could 

effectively be tested by cross connecting the input and output wires using very 

simple additional hardware logic and sending various bit patterns over this 

loopback connection.  

In case of a detected hardware fault, the syndrome raises a hardware interrupt 

and SSW takes control of the reconfiguration process. The whole procedure is 

almost identical in the case of software-based schemes detecting the fault, with 

the difference that the interrupt that is raised is not hardware but software 

based. In the case of memory errors, if the current memory configuration does 

not use a redundant mode, software based checking is the only possible 

approach.  
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The general procedure of software support during reconfiguration is listed as 

follows:  

x The hardware checking scheme triggers the syndrome interrupt 

x In order to distinguish the fault type, the syndrome interrupt handler then 

either initiates a HW Built-In Self-Test (BIST) procedure of the device or 

runs a SSW based self-test. In the case of SSW tests, writing different 

memory patterns to the faulty memory address can be used to derive the 

fault type. The syndrome bit indicating the fault has to be cleared after 

recovery. If after the test and recovery, the syndrome still shows the fault, 

the memory module is considered faulty. The affected memory address is 

still present in one of the processor registers and based on the IRQ return 

address, the correct register number can be derived by decoding the 

memory instruction that triggered the fault. In general, all software based 

testing procedures that test memory must not use the stack (no procedure 

calls, no data pushed on the stack) until the proper functioning of the used 

stack locations is ensured. 

x In case of a transient fault, the event is logged and the program execution 

resumed. Logging the events is important as an accumulation of 

malfunctions in a module or a specified memory location could hint a 

potential permanent failure in the near future. 

x In case of a permanent fault, the current memory configuration is extracted 

from the syndrome, and the next degradation state is calculated according 

to the application needs and predefined degradation tables. 

x The new calculated memory configuration is written to the syndrome 

registers and the power of the faulty unit is removed. In some configuration 

transitions, the SSW has to adapt to the new situation and recover after 

excluding the faulty unit but before including the new one. 

x SSW clears the fault in the syndrome and resumes processing by returning 

from the interrupt. 
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Some of the presented transitions in 6.5 need software intervention to fully 

recover from a permanent fault and to establish a new working software state. 

We show here a few situations where SW support is needed: 

x Adding/Replacing a module of an already populated bank: if a memory 

module of a redundant memory mode (DMR or TMR) that is suspected of 

presenting faults is replaced by another module, memory content must be 

replicated to the new module before it is included in the configuration. A 

small routine following the algorithm described in 6.6.2 is sufficient to 

perform the copy without modifying the memory during the operation. 

Before performing that routine, SSW configures the syndrome to include a 

spare memory bank. After the copy operation, the spare module can be 

included in the working set. These actions must be performed for example 

when the system switches from Phase 2 to Phase 1 in Figure 6-10. 

x Failed module in the runtime system area: The area of memory that contains 

by convention all runtime system data structures is critical for system 

operation. When the recovery procedures are unable to overcome the 

situation, if the module has a replicated pair in redundant mode the 

affected module is replaced by its replicated version via syndrome. 

However, if the module is not replicated, resetting the system either via a 

hardware watchdog or a software initiated power cycle is the option as a 

last resort. The BIST mechanism automatically identifies the failed module 

and configures another still working module to bank 1. The runtime system 

can then restart all critical applications. 

x Fault in a memory module that is not replicated: this case is the most 

difficult to handle as the software must adapt to the smaller available 

memory space. 

Instead of graceful degradation, software can also decide to "upgrade" the 

system in terms of redundancy, i.e. going from a mode with less redundancy to a 

mode with higher redundancy. The inclusion of a spare module corresponds to 

the first point in the list above; if an already used module is moved to another 
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bank, software has to release all data structures residing on that module in case 

it is in non redundant use and repopulate it with data according to Point 1.  

Intentional change of the operating mode to a less redundant mode is of course 

also possible, and needs no special software measures. As soon as the module is 

reconfigured to a free bank, the runtime system can start using it. 

6.7.3. Hardware condition monitor by system software 

A hardware monitor, which is part of the runtime system, is responsible for 

keeping track of the hardware state. For every hardware component that is 

managed by the syndrome, the hardware monitor tracks the state in more detail 

than the syndrome alone can provide. It is also responsible for the execution of 

all software checking schemes and performs the actual hardware 

reconfiguration. Thus the hardware monitor must be accessible by the syndrome 

interrupt handler as well as the runtime system. This monitor should however 

not directly be accessible by applications; only drivers, which are part of the 

runtime system, can register checking procedures for their respective hardware 

component. 

When the system is turned on, the BIST procedures embedded in the system are 

executed. These run tests, using the principle of growing core, ensure the 

integrity of all devices. If a failure is detected, the syndrome sets the appropriate 

fault bits. The BIST is also responsible of initiating the system to a predefined 

working state, i.e. the most reliable mode with all working available resources.  

When the BIST finishes and gives control to the runtime system, the hardware 

monitor first mirrors the current state in software and then reconfigures the 

system according to the needs of the program. As the syndrome might trigger an 

interrupt right after boot up, the syndrome interrupt handler has to ensure that 

the stack pointer is valid and if not initialise it. 
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Figure 6-21. Hardware state diagram 

Every hardware component managed by the syndrome is in exactly one state of 

Figure 6-21. This state diagram shows also all possible transitions between 

states, allowing the hardware monitor to reconfigure the system in a consistent 

manner. In fact, all of the previously presented cases in the degradation 

scenarios where software intervention is required are clearly identifiable in 

Figure 6-21. Intervention is only required if the state transition goes from Stand-

by to one of the active cases (marked in blue). 

After boot up, all devices are either in state OFF or in one of the blue operation 

modes. As the BIST automatically configures the memory configuration with the 

highest reliability possible, the initial states of all devices must be acquired by 

reading the syndrome. Here is a short list of all possible states and a short 

description: 

x OFF: the device is currently not in use, powered or isolated for fault 

containment 
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x Stand-by: the device is powered on but not in use. In case of 

reconfiguration, all transitions go through this state. 

x Active: the device is in use in a non-redundant mode. In case of permanent 

fault, the runtime system would switch execution to a bank in non-

redundant mode.  

x Duplicated: the device uses a DMR configuration. 

x Triplicated: the device uses a TMR configuration. 

x Suspected: As soon as a fault in the hardware is detected, the state of the 

affected hardware component is set to suspected and the testing 

procedures are initiated to diagnose the fault. If a device is often in this 

state, this could be a hint that the device might fail in the near future. For 

reliability purposes it might be sensible to replace the component with a 

spare one.  

x Faulty: depending on the analysis outcome from the diagnosis 

mechanisms, the state is then set either to Faulty if a permanent fault was 

diagnosed or back to the previous state if it was only a transient fault. 

The state transition diagram of Figure 6-21 is not directly applicable to all 

devices. A memory bank, for example should during the transition not go 

through stand by to make sure that the stored data in the attached memory 

modules are not lost. 

Despite the state, periodical hardware checks should be performed on every 

single hardware component. Even Stand-by states must also be tested. This 

ensures that hidden faults are detected preventing a possible spread. Thus any 

state can transition to a suspected one.  

It is even possible to restore faulty components to a working condition, as for 

instance environmental changes could allow a component to function correctly 

again. 
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6.8. Programming Language for the Prototype 

In 5.5.2 we introduced the three main processes of GAFT: P1 testing and 

checking, P2 recovery preparation, and P3 recovery that were explained further 

in 6.7. These concepts have been synthesized into programing language 

extensions and runtime support.  The language extensions use Oberon-07 as a 

basis, which has been developed during the ONBASS project (ONBASS 

Consortium, 2004) and used in the implementation of the Minos OS (Kaegi-

Trachsel and Gutknecht, 2008).  

The simplicity, strong type safety, and built-in safe features of the Oberon 

language makes it especially suitable for safety critical systems.  In order to 

support all GAFT steps, the language has been modernised with new naming 

conventions and enumerations and new features have been added to the 

extensions including: reconfiguration at the runtime system level, memory 

partitioning, activities and message passing, and object orientation, etc. As in all 

languages of the Oberon family all these features need runtime support. 

Language and runtime system are hence closely connected.  

6.9. Conclusions 

A resilient architecture was proposed including the hardware and the system 

software elements that can provide efficient performance, reliability and energy-

smartness.  

The principles of designed followed and the structural properties of active, 

passive and interfacing zones are introduced. Active zone of hardware was also 

described with emphasis on recoverability after malfunctions and 

implementation of checking schemes. A processor with a reduced instruction set 

and a careful introduction of redundancy including checking-schemes and re-

execution at the instruction level can provide higher and efficient reliability.  
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Reconfigurability of a real-time architecture at the system level was proposed 

and analysed in the context of each zone.  With regards to the interfacing zone, a 

new element (T-logic), as a basic unit of reconfiguration, and its different 

configurations were proposed. We analysed and described how the flexibility of 

the T-elements has a positive effect in reliability and power-smart functioning of 

the system.  

System-level reconfigurability can be achieved using a new hardware element 

called Syndrome that can provide essential knowledge about hardware 

conditions. We showed the relation of this element with the active, passive and 

interfacing zones and how it can be used to implement GAFT. Functions of the 

Syndrome for reliability, performance and energy-smart functioning were 

described and explained.  

Taking into account that memory use has, by design, a high impact on system 

reliability and power consumption, passive zone reconfigurability was analysed 

and described in detail, including the control of configuration and the phases of 

hardware degradation.  

A Markov model of reliability for passive zone was developed and analysis 

indicates the reliability gain of the different schemes permitted by the proposed 

reconfigurable architecture. 

System software support of testing and reconfiguration (dealing with system 

syndrome) was fully described. Shown that in combination of novel hardware 

architecture and system software all key properties of performance, reliability 

and energy-wise functioning can be improved. 
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Chapter 7 

Implementation: Hardware 
Prototype, Simulation and Testing  

There	
  is	
  always	
  a	
  gap	
  between	
  “what	
  we	
  design	
  and	
  analyse”	
  and	
  “what	
  we	
  can	
  

implement”.	
  While analysis of the technological domain and trends as well as a 

new theory of resilient systems were organised in the previous six chapters, as a 

next step, there	
  is	
  a	
  need	
  to	
  demonstrate	
  “proof	
  of	
  the	
  concept”	
  and	
  do-ability of 

the proposed ideas on the existing hardware prototype. Thus implementation 

efforts can be summarised as two-fold: 

x  Development and debugging of existing manufactured ERA prototype; 

x Design and development of a software simulator for the developed ERA 

hardware 

The hardware prototype must work properly, being able to execute the basic 

functions that will be further incremented, so that the system is prepared for 

industrial use. In applications, ERA will work as stand alone system using 

interface with PC or Mac to upload and run programs in a form of bit stream as 

we use FPGA Altera for this.  System software and programs for ERA also have to 

be developed and therefore there is a need for a software simulator for the ERA 

architecture.  
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As long as ERA is designed for embedded and safety critical applications we need 

to have a simulator as close as possible to the architecture and ERRIC’s	
  binary 

code. Therefore, all our efforts in this chapter are organised around the 

simulation of the instruction set and the hardware element.  

7.1. Instruction Execution  

Figure 7-1 shows the execution flow of the proposed microprocessor. As we 

mentioned in 6.2.1, the execution steps are similar to other RISC processors and 

since there is no pipelining all steps of one single instruction are executed within 

one memory cycle. 

 
Figure 7-1. Simple version	
  of	
  the	
  Prototype’s	
  Instruction	
  Execution	
  

flow 

The fetching step loads an instruction from main memory storing it into the 

Instruction Register (IR). Since every instruction is 16-bit wide this step is 

required every second instruction. Decoding and Execution of the Instruction 

follows. After execution of the first instruction, the second instruction from the 
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Instruction Register (IR) can be executed without access to memory.  This eases 

the speed gap between processor and memory and reduces their dependency. 

Finally, storage of the result takes place if the instruction execution has affected 

the content of registers, processor flags or any other processor state.  

The processor has two internal fetching states (F1 and F2) that are required by 

the memory controller.  Again, simplicity is not only applied to the processor but 

also to the memory controller. Both are designed to avoid possible stalling due to 

pending memory operations. This can be achieved by interleaving instruction 

fetches and memory operations.  

 
Figure 7-2. Instruction Execution Flow (Extended version) 
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The fetching step always loads two 16-bit instructions from memory into the 

internal IR.  In sequential instruction execution, the compiler can schedule 

memory instructions in every second instruction slot where no instruction has to 

be loaded by the processor.  An example of this notion is illustrated Figure 7-2, 

which is an extended version of the instruction execution flow in Figure 7-1. In 

the F1 state, the processor fetches an instruction from memory; therefore since 

the memory unit is busy during this cycle, it cannot execute at the same time an 

instruction that involves memory. Only when the processor is in the fetching 

state F2, the processor is able to execute a memory instruction. It is the 

compiler’s	
   responsibility to schedule the instruction in the proper order. We 

choose to simplify the hardware design at the expense of adding complexity to 

the compiler. By doing so, we reduce the amount of redundancy and therefore 

increase system reliability. If the instruction executed is a branch instruction the 

processor is switched automatically to the F1 state. The reason for that is that 

the memory controller can only load 32-bit aligned addresses and therefore, the 

jump destination locations must also be 32-bit aligned.  All this factors force the 

compiler to fill the memory gaps with NOP instructions.  
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7.2. Instruction Set 

As mentioned in 6.2.1, in the ultra reduced instruction set employed, each one of 

the 16 instructions is encoded into 16 bits and only two of them are memory 

instructions (load/store) 

The instructions are designed as two register instructions. They expect exactly 

two arbitrary registers as input, and save the result of the operation in the first 

register, thus overwriting one of the input values. The compiler has to keep in 

mind that the content of the first register is overwritten. Again we increase the 

simplicity	
  of	
  design	
  at	
   the	
  expense	
  of	
   compiler’s	
   complexity.	
  The impact of the 

size of the register file on overall performance of processor is a question of 

further research.  

 
Figure 7-3. Instruction Format 

Figure 7-3 illustrates the instruction format divided in four different areas. Bits 

15 and 14 (in red) indicate the format of the operation, which could be 8-, 16- or 

32-bit. Bits 13 to 10 (in grey) contain one of the 16 different operation codes. 

Bits 9 to 5 (in blue) and 4 to 0 (in green) contain the first and second operand, 

which could be any of the 32 general-purpose registers in the RF.  

The following Table 7-1 lists the current ISA with a short description of every 

instruction together with their assembler representation: 
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Table 7-1. Explanation of  instructions of current ISA  

Name Format 
Code 

Op. 
Code Op1 Op2 Op2 

NOP 01 0000 Ignored Ignored Execute no action except increasing the PC 

STOP 00 0000 0 0 Stop instruction Execution 

TRACE 00 0000 Ri>0 Rj> Output Ri to debugger. Operand1 or Operand2 must be 
> 0 

RETI 11 0000   Return from interrupt (Address in R31) 

LD 11 0001 Ri Rj Load 32-bit memory at address Ri into Register Rj(Rj := 
∗Ri) 

LDA 00 0010 Ignored Rj Load the value from the next 32 bit word (rel. to PC) 
and store it in Rj(Rj := constant). Operand 1 is ignored 

ST 11 0011 Ri Rj Store content of register Ri to the memory at address 
Rj(∗Rj	
  :=	
  Ri) 

MOV XX 0100 Ri Rj Move content of register Ri to reg- ister Rj(Rj := Ri) 

ADD XX 0101 Ri Rj Arithmetically add the content of Ri to the content of Rj 
and store the result in Rj (Rj := Rj + Ri) 

SUB XX 0110 Ri Rj Arithmetically subtract the content of Ri to the content 
of Rj and store the result in Rj (Rj := Rj - Ri) 

ASR XX 0111 Ri Rj Shift the content of register Ri arithmetically one bit to 
the right and store the result in Rj 

ASL XX 1000 Ri Rj Shift the content of register Ri arithmetically one bit to 
the left and store the result in Rj 

OR XX 1001 Ri Rj Perform a bitwise logical OR of register Ri with register 
Rj and store the result in Rj 

AND XX 1010 Ri Rj Perform a bitwise logical AND of register Ri with 
register Rj and store the result in Rj 

XOR XX 1011 Ri Rj Perform a bitwise logical XOR of register Ri with 
register Rj and store the result in Rj 

LSL XX 1100 Ri Rj Shift the content of register Ri logically one bit to the 
right and store the result in Rj 

LSR XX 1101 Ri Rj Shift the content of register Ri logically one bit to the 
left and store the result in Rj 

CND XX 1110 Ri Rj Arithmetic comparison of Ri with Rj and store the 
result in Rj 

CBR XX 1111 Ri Rj Jump to address in Rj if Ri is non zero and save PC in Ri 

The current architecture comprises 7 control, 5 logic and 4 arithmetic 

instructions. Whilst most entries in Table 7-1 are self-explanatory some of them 

need further explanation.  A special case of code operation is Opcode 0 which in 

combination with the format represents four different instructions: STOP, NOP, 

TRACE and RETI. TRACE is used for debug purposes and RETI is used to exit an 

interrupt handler.  
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The compiler needs to be aware that constants cannot be directly encoded in the 

instructions. LDA is another special instruction that loads a constant to the 

specified register. The next aligned 32 bits aligned after the active program 

counter store the constant to be loaded. Placing two instructions into one 32-bit 

word increase code density and performance. As explained earlier, the processor 

executes the first instruction on the left before executing the second one on the 

right.  Since the program counter has the same value for both instructions it 

would be problematic to jump directly to a second instruction, which is not 32-

bit aligned and has no unique address. Therefore, it is responsibility of the 

compiler to insert NOPs at the right places to prevent cases where instruction 

reordering fails to fill the gap. .  

Table 7-2. CND operation flags 

Relation Bit Mask 

< 010 

≤ 110 

= 100 

>= 101 

> 001 

≠ 011 

The CND instruction performs an arithmetic comparison of the Registers Ri and 

Rj storing the result in Rj. The functioning is similar to other platforms: the 

comparison involves checking of three conditions saving these as flags in the first 

three bits of Rj: 

x Bit 0: R1 > R2 

x Bit 1: R1 < R2 

x Bit 2: R1 = R2 
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Table 7-2 shows the relations of the comparison operations and their 

corresponding bitmasks. By applying an appropriate mask to the flags, the result 

for every possible comparison operation can be used as an argument in a 

conditional jump or saved as a Boolean value.  

At the moment there is no support for unsigned operations. All arithmetic 

operations treat the values in the operands as signed values. All instructions 

accept the same register for both arguments with the exception of conditional 

jump instruction.  

More detailed information on the CPU logical structure and the Instruction Set 

Architecture can be found in Appendix B. 
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7.3. ERA hardware prototype 

Figure 7-4 presents the current custom hardware prototype of the ERA device. 

The prototype is provided with two flash based ROM modules 128Mb each (8Mb 

x 16bit) with replicated bootstrapping firmware and operating system software. 

 

Figure 7-4. ERA prototype board 

The proposed memory scheme may be regarded as a collection of 4 blocks of 

RAM, 16-bit wide, with identical size of 1Mb each (16x64k). Using 16-bit 

memory modules instead of 32-bit memory modules increases reliability and 

reduces when necessary energy required for execution.  

Reliability is increased by means of added working states and configurations.  

Energy-wise operation is improving by means of this architecture ability to 
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activate only modules required - by means of using a single 16-bit memory 

module, when necessary.  

Table 7-3 presents a basic memory map with memory locations occupied by the 

ERA devices: ROM (2 banks) RAM (4 banks), USB, Ethernet, and UART interface. 

The 4 RAM modules are 1 Megabit each (64k x 16bit).  The flash based ROM 

modules are 128Mbit each (8Mb x 16bit). 

Table 7-3. Device’s	
  memory	
  map 

Memory Range Device Details Device 

0700FFFFH 
- 

07000000H 
ISSI-IS61WV6416BLL SRAM logic module 2 (U7, U8) 

0600FFFFH 
- 

06000000H 
ISSI-IS61WV6416BLL SRAM logic module 1 (U5, U6) 

057FFFFFH 
- 

05000000H 
Sharp-LH28F128BFHT ROM logic module 1  (U9, U10) 

04000000H FTDI-FT245BM USB 

0300FFFFH 
- 

03000000H 
SMSC-LAN91c11i Ethernet 

02000002H 
- 

02000000H 
RS232 UART Interface 

01000000H Normal LEDs (1-2) 

00000000H KNITTER Switch (3-4) 

The SRAM modules representing the units 8,7,5 and 6 are located in the highest 

part of the memory, followed by the ROM modules (units 9 and 10). The USB, 

Ethernet,	
  Serial	
  Ports,	
  LED’s	
  and	
  switches	
  of	
   the	
  ERA	
  board	
  are	
  mapped	
   in	
   the	
  

lower part of memory.  

7.3.1. Architectural Comparison 

Nowadays the embedded processor market is dominated by the ARM 

architectures with their RISC processors. Other relevant hardware architectures 

are the LEON designs that include FT versions of their SPARC processor.  
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Although 64-bit versions are available for the x86 and ARM architectures, in 

order to keep consistency, we have chosen to make a comparison of 32-bit 

version	
  processors	
  including	
  Intel	
  x86’s	
  architectures.	
   

Table 7-4. Comparison of Hardware architectures 

 ERRIC x86 SPARC v8 ARM7TDMI 
(ARMv5-TE) 

ARM7TDMI 
Thumb 

ISA type MISC CISC RISC RISC RISC 

Integer Registers 32x32 bits 8x32 bits 31x32 bits 15x32 bits 8x32 bits + SR, 
LR 

Floating Point 
Registers 0 

Optional 8x32 
bits or 8x64bit 

(8x80 bits 
internal) 

32x32 bits or 
16x64 bits or 

8x128 bits 

Optional 32x32 
bits or 16x64 bits 

Optional 32x32 
bits or 16x64 bits 

Vector Registers 0 Optional 8x64 
bits or 8x128 bits 0 Optional 32x32 

bits or 16x64 bits 0 

Address Space 32 bits flat 32 bits, flat or 
segmented 32 bits flat 32 bits flat 32 bits flat 

Instruction Size (bytes) 2 1 – 15 4 4 2 
Multi-Processor 

capable No Yes Yes Yes No 

Processor Modes 1 3 2 7 7 

Data Aligned Yes No Yes Yes Yes 

MMU Yes Yes Optional Optional Optional 

Memory Addressing 
Modes 

1 7 2 6 6 

Memory Addressing 
Sizes 

32-bit 8,16,32 8,16,32, 64 8,16,32 8,16,32 

ISA size 16 
332: 138 Integer 

& Logic, 92 
Floating Point 

72 53 37 

I/O 
Memory 
mapped 

Instructions, 
Memory mapped Memory mapped Memory mapped Memory mapped 

Pipeline Length No Pipeline 
Atom: 16 

i7: 14 
Pentium4: 20-31 

Leon3: 7 
SPARC64V:15 

Ultra-SPARC T2: 8 
3 3 

Specialities 
Very simple 
ISA, built-in 

FT 

Big ISA and 
memory 
operands 

Register Window, 
Delayed Control 

Transfer 

Conditional 
Instruction 
Execution 

32-bit ARM  
instructions 

partly required.  

Table 7-4 provides an overview of these hardware architectures and their 

diverse features. The table is based on data gathered from (Gaisler, 2002; Heise, 

2009; Hennessy and Patterson, 2006; Seal, 2000; SPARC International, Inc., 

1992).  
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SPARC and ARM processors are based on a simple Reduced Instruction Set 

Architecture and therefore more similar to the ERRIC processor, whilst the x86 is 

based on a Complex Instruction Set with a much larger number of instructions.  

The	
   table	
   clearly	
   shows	
   the	
   simplicity	
   of	
   ERRIC’s	
   ISA	
  with	
   its	
   16	
   instructions,	
  

which is by large margin smaller than the RISC and CISC architectures. Simple 

and less powerful instructions come with the cost of longer code compared to 

the other platforms.   

The x86 is a register-memory architecture that allows using memory locations 

directly in instructions. Conversely, ERRIC, ARM and SPARC as load and store 

architectures must first load the argument into a register. The enormous number 

of instructions of x86 has lead to the situation where the instruction decoder of 

an	
   Intel	
   Atom	
   CPU	
   occupies	
   more	
   chip’s	
   real	
   state	
   than	
   the	
   complete	
   ARM	
  

Cortex-A5 (Heise, 2009).  

As	
  an	
  example	
  let’s	
  examine	
  the	
  load	
  from	
  memory.	
  	
  Prior	
  to	
  the	
  memory	
  access,	
  

e.g. in the case array accesses, the absolute memory address must be explicitly 

calculated and stored in a register. In the SPARC architecture the offset to the 

base address can first be stored in a distinct register and then added on the fly in 

the load instruction itself. ARM processors even permit to encode an offset to a 

base address given in a register directly in the instruction itself. 

The instruction set of ARM Thumb is a subset of the standard 32-bit ARM ISA. 

The	
  Thumb’s	
  version	
  targets	
  resource constraint environments where only a 16-

bit data bus is available. The address space of	
  the	
  Thumb’s	
   is still 32-bit and all 

registers are 32-bit wide. Nonetheless, while R0	
  −	
  R7	
  are	
  directly	
  accessible,	
  R8	
  −	
  

R16 are hidden. ERRIC’s	
  ISA, although even more constraint than the Thumb’s, is 

intended to be used as a full instruction set, generic enough to encode all 

language features. Compared to ARM’s, the ERRIC is much simpler and counts 

with less than half the number of instructions. However, with ERRIC more 

elaborate instructions need to be emulated, e.g. relative memory accesses or 

procedure calls. The latter in particular is very efficiently implemented on the 

ARM	
   by	
   the	
   ”load	
  multiple”	
   and	
   ”store	
  multiple”	
   instructions, which allows to 



 

 
260 

efficiently putting all procedure arguments on the stack. In contrast, ERRIC has 

to individually store all arguments on the stack. 

Table 7-5. Supported Adressing Modes 

Data addressing mode ERRIC x86 SPARC 
v8 ARM ERM 

Thumb 
Register X X (X) X X 
Register + offset (displacement or based) - X X X X 
Register + register (indexed) - X X X X 
Register + scaled register (scaled) - X - X - 
Register + offset and update register - - - X - 
Register + register and update register - - - X - 

Table 7-5 illustrates the different data addressing modes supported by the 

compared architectures. In some cases, such as SPARC, the architecture does not 

directly provide an absolute addressing mode. In order to emulate absolute 

addressing, the SPARC microprocessor uses a register + register mode with a 

nullified second register. It even provides a register, which is always nullified, so 

that the absolute addressing emulation does not incur any performance penalty. 
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Figure 7-5. Addressing modes of the x86 architecture 

CISC addressing modes are more powerful than RISC ones. Figure 7-5 

summarizes the x86 addressing modes. The offset part of a memory address, can 

be either a static displacement or through an address computation made up of 

one or more elements. The resulting offset is called effective address and can 

constitute either positive or negative values except for the scaling factor. 
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ERRIC provides only absolute memory addressing. Since the addresses must be 

explicitly computed before the data can be loaded,	
  ERRIC’s	
  code	
  requires	
  more	
  

instructions. 

Table 7-6. Offset Sizes Encoded in instructions 

Offset size encoded in 
instructions (in bits) ERRIC x86 SPARC v8 ARM ERM 

Thumb 
Unconditional jump 

call 
0 8-32 signed, relative or 

absolute, direct or indirect 30 24 11 

Conditional branch 0 8-32 signed 19 24 8 

Table 7-6 compares the offsets sizes that are directly encoded in the instruction. 

Unless mentioned differently, the offset is always relative to the current 

instruction pointer. ERRIC does not allow encoding the offset in an instruction. 

Instead, the offset is always given as an absolute address in a register. Therefore, 

ERRIC’s	
   requires	
   an	
   additional	
   ”load	
   constant”	
   instruction,	
   which	
   involves	
  

another extra 8 bytes (Load + NOP + 4 Byte constant). With regards to safety of 

code, absolute jumps are desirable to relative jumps. The reason for that is that 

calculated jumps (relative) are more prone to faults than absolute jumps. 

In the following page Table 7-7 presents an overview of the instructions that are 

required in the compared architectures to be able perform basic operations 

(such as load, stores, etc.). If an instruction is not available in the ISA, a sequence 

of instructions is given. In Table 7-7, a ”-” sign means that in order to simulate 

the specific functionality more than a short instruction sequence is required.  

All floating-point instructions are omitted, as the ERRIC architecture does not 

include a floating-point unit and all of them are emulated in software. 
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Table 7-7. Comparison of  Selected Instuctions 

Instructions ERRIC x86 SPARC v8 ARM7TDMI 
(ARMv5-TE) 

ARM7TDMI 
Thumb 

Load word  LD MOV LD LDR LDR 
Load byte signed - MOVSX LDSB LDRSB LDRSB 

Load byte unsigned 
LD, 

LDA, 
AND-24 

MOV LDUB LDRB LDRB 

Store word ST MOV ST STR STR 
Store byte - 25 MOV STB STRB STRB 

ADD ADD ADD ADD ADD ADD 

ADD (trap if overflow) - ADD,  
INTO 

ADDcc, 
 TVS 

ADDS,  
SWIVS 

ADD,  
BVC+4,  

SWI 
Sub  SUB SUB SUB SUB SUB 

Sub (trap if overflow) - SUB,  
INTO 

SUBcc,  
TVS 

SUBS,  
SWIBS 

SUB, 
BVC+4, 

 SWI 

Multiply - MUL,  
IMUL MULX MUL MUL 

Divide - DIV,  
IDIV DIVX - - 

AND AND AND AND AND AND 
OR OR OR OR ORR ORR 

XOR XOR XOR XOR EOR EOR 
NOT - NOT - - - 

Shift local left LSL 26 SHL SLL LSL LSL 
Shift local right LSR 26 SHR SRL LSR LSR 

Shift arithmetic right ASR26 SAR SRA - - 
Compare CND CMP SUBcc r0 CMP CMP 

Conditional Branch CBR CALL CALL BL BL 
Call CBR CALL CALL BL BL 

Trap CBR INT n TIcc,  
SIR SWI SWI 

Return from Interrupt RETI IRET 
DONE,  
RETRY, 

RETURN 
MOVS pc, r14 -27 

NOP NOP NOP SETHI r0, 0 MOV r0, r0 MOV r0, r0 

                                                        

24 A sequence LD, LDA, AND must be used if the 8-bit data is aligned. Otherwise an LD and a 
specific number of shift operations must be used 

25 In order to store an 8-bit value the destination address must be loaded, the appropriate bits 
must be cleared using a bit mask, the argument must be shifted and the written back to memory. 
It seems clear that omitting the use of 8-bit values would be more efficient 

26 Only one bit 

27 Since Interrupts are always handled in 32-Bit mode and therefore a pure 16-bit Thumb CPU 
would not support them  
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7.4. ERA testing and debugging 

In order to test the ERRIC processor we must first ensure that the FPGA board 

and the rest of the elements are working properly. Therefore, testing of the ERA 

prototype board has been performed via two separate processes: first the testing 

of the board physical elements and second the functional testing of the soft core.  

7.4.1. Testing of the board 

First, we test the separate elements of the board using a test case for each 

element. The test cases employed are written using VHDL and are included in 

Appendix A. The VHDL code is then compiled, using the Quartus II software 

provided by Altera, to produce a bit stream. The function of the single element of 

the board is tested by first loading the bit stream file and then by checking the 

required function. ` 

As an example, lets examine one of the scenarios corresponding to the tests of 

the basic functions of read and write of Units 5 and 7 (see U5 and U7 in Table 

7-3) SRAM memory modules IS64WV6416BL. It also tests the link between the 

Unit 1 components (FPGA) and the static memory.  What follows is the 

consequent VHDL code: 
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY eurrica IS PORT ( 
 
SW3  : IN STD_LOGIC; 
SW4  : IN STD_LOGIC; 
        Data_0 : INOUT STD_LOGIC; 
        Data_1 : INOUT STD_LOGIC; 
        Data_2 : INOUT STD_LOGIC; 
        Data_3 : INOUT STD_LOGIC; 
        Data_4 : INOUT STD_LOGIC; 
        Data_5 : INOUT STD_LOGIC; 
        Data_6 : INOUT STD_LOGIC; 
        Data_7 : INOUT STD_LOGIC; 
        Data_8 : INOUT STD_LOGIC; 
        Data_9 : INOUT STD_LOGIC; 
        Data_10 : INOUT STD_LOGIC; 
        Data_11 : INOUT STD_LOGIC; 
        Data_12 : INOUT STD_LOGIC; 
        Data_13 : INOUT STD_LOGIC; 
        Data_14 : INOUT STD_LOGIC; 
        Data_15 : INOUT STD_LOGIC; 
 
        SRAM1_L_CE  : OUT STD_LOGIC; 
        SRAM1_L_WE  : OUT STD_LOGIC; 
        SRAM1_L_OE  : OUT STD_LOGIC; 
 
        SRAM2_L_CE  : OUT STD_LOGIC; 
        SRAM2_L_WE  : OUT STD_LOGIC; 
        SRAM2_L_OE  : OUT STD_LOGIC; 
 
        A0:   OUT STD_LOGIC; 
        A1:   OUT STD_LOGIC; 
        A2:   OUT STD_LOGIC; 
        A3:   OUT STD_LOGIC; 
        A4:   OUT STD_LOGIC; 
        A5:   OUT STD_LOGIC; 
        A6:   OUT STD_LOGIC; 
        A7:   OUT STD_LOGIC; 
        A8:   OUT STD_LOGIC; 
        A9:   OUT STD_LOGIC; 
        A10:  OUT STD_LOGIC; 
        A11:  OUT STD_LOGIC; 
        A12:  OUT STD_LOGIC; 
        A13:  OUT STD_LOGIC; 
        A14:  OUT STD_LOGIC; 
        A15:  OUT STD_LOGIC; 
 
        D0:  OUT STD_LOGIC; 
D1 : OUT STD_LOGIC); 
END eurrica; 
 
ARCHITECTURE behavior of eurrica IS 
 
BEGIN 
 
   D0 <= not SW3;  
   D1 <= SW4; 
 
   A0 <= '1'; 
   A1 <= '0'; 
   A2 <= '1'; 
   A3 <= '0'; 
   A4 <= '1'; 
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   A5 <= '1'; 
   A6 <= '0'; 
   A7 <= '0'; 
   A8 <= '1'; 
   A9 <= '0'; 
   A10 <= '0'; 
   A11 <= '1'; 
   A12 <= '0'; 
   A13 <= '1'; 
   A14 <= '1'; 
   A15 <= '0'; 
 
sm: PROCESS(SW3) 
 
 BEGIN 
 
if (SW3= '1') then 
-- write 
   SRAM1_L_CE <= '0'; 
   SRAM1_L_WE <= '0'; 
   SRAM1_L_OE <= '0'; 
 
   SRAM2_L_CE <= '0'; 
   SRAM2_L_WE <= '0'; 
   SRAM2_L_OE <= '0'; 
   Data_0  <= SW4; 
   Data_1  <= SW4; 
   Data_2  <= SW4; 
   Data_3  <= SW4; 
   Data_4  <= SW4; 
   Data_5  <= SW4; 
   Data_6  <= SW4; 
   Data_7  <= SW4; 
   Data_8  <= SW4; 
   Data_9  <= SW4; 
   Data_10 <= SW4; 
   Data_11 <= SW4; 
   Data_12 <= SW4; 
   Data_13 <= SW4; 
   Data_14 <= SW4; 
   Data_15 <= SW4; 
else 
-- read 
   SRAM1_L_CE <= '0'; 
   SRAM1_L_WE <= '1'; 
   SRAM1_L_OE <= '0'; 
 
   SRAM2_L_CE <= '0'; 
   SRAM2_L_WE <= '1'; 
   SRAM2_L_OE <= '0'; 
end if; 
 
END PROCESS; 
END Behavior; 
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Table 7-8. Test results of reading and writing functions of U5 and 
U7 SRAM memory modules and their interconnecting elements 

 Net  EP2C20Q240C8 Tests 
 
 
 
 
 
 

U5/U7 

DATA_0 155 0 0 0 +4v  
DATA_1 156 0 0 0 +4v 
DATA_2 157 0 0 0 +4v 
DATA_3 159 0 0 0 +4v 
DATA_4 161 0 0 0 +4v 
DATA_5 162 0 0 0 +4v 
DATA_6 164 0 0 0 +4v 
DATA_7 165 0 0 0 +4v 
DATA_8 166 0 0 0 +4v 
DATA_9 167 0 0 0 +4v  

DATA_10 168 0 0 0 +4v 
DATA_11 170 0 0 0 +4v 
DATA_12 171 0 0 0 +4v 
DATA_13 173 0 0 0 +4v 
DATA_14 174 0 0 0 +4v 
DATA_15 175 0 0 0 +4v 

 
 
 
 

U5/U7 

ADDR_0 8 +4v +4v +4v +4v 
ADDR_1 9 0 0 0 0 
ADDR_2 11 +4v +4v +4v +4v 
ADDR_3 13 0 0 0 0 
ADDR_4 14 +4v +4v +4v +4v 
ADDR_5 15 +4v +4v +4v +4v 
ADDR_6 16 0 0 0 0 
ADDR_7 18 0 0 0 0 
ADDR_8 20 +4v +4v +4v +4v 
ADDR_9 21 0 0 0 0 

ADDR_10 37 0 0 0 0 
ADDR_11 38 +4v +4v +4v +4v 
ADDR_12 39 0 0 0 0 
ADDR_13 41 +4v +4v +4v +4v 
ADDR_14 42 +4v +4v +4v +4v 
ADDR_15 44 0 0 0 0 

U5 
SRAM1_L_CE 233 0 0 0 0 
SRAM1_L_WE 232 +4v +4v 0 0 
SRAM1_L_OE 231 0 0 0 0 

U7 
SRAM2_L_CE 230 0 0 0 0 
SRAM2_L_WE 228 +4v +4v 0 0 
SRAM2_L_OE 226 0 0 0 0 

 LED1 125 off off on on 
 LED2 178 on off on off 
 Switch_3 7 0(off)  0(off) 1(on) 1(on) 
 Switch_4 119 0(off)  1(on) 0(off) 1(on) 

Results (PASS) 9 9 9 9 
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The link configuration is shown on the second column of Table 7-8. The SW3 is to 

control write data and read data into memory.  SW4 specifies the data to test.  

When	
  SW3	
  is	
  off	
  (‘0’),	
   it	
  performs	
  reading	
  operation.	
  When	
  it	
   is	
  on	
  (‘1’),	
   it	
   is	
  to	
  

perform writing operation.   The address of the SRAM for testing is specified by 

(A0-A15).  The LED1 and LED2 indicate the correct operation of SW3, and SW4.  

The data input and output from the SRAM (U5, and U7) is check by Voltage 

meter.	
  Voltage	
  “0”	
  means	
  represents ‘0’ logic state,	
  and	
  Voltage	
  “+4”	
  represents a 

‘1’ logic state. Initially,	
  all	
   the	
  memory	
   is	
   set	
   to	
   ‘0’. The testing is to change the 

settings of SW3, and SW4 and check against the input and output voltages from 

the data line of U5, and U7.  If they are matching, then the test is passed, and the 

links are correct and the memory modules are performed required functions.    

The	
   first	
   column	
  on	
  Tests	
   is	
   checking	
  memory	
   reading	
  with	
   initial	
   value	
  of	
   ‘0’.	
  	
  

The	
   Voltage	
   on	
   the	
   data	
   line	
   shows	
   the	
   correct	
   results	
   ‘0’.	
   Then	
   the	
   second	
  

column	
  is	
  to	
  change	
  the	
  input	
  value	
  to	
  ‘1’	
  (SW4=1), because the write control is 

not	
  changed,	
  so	
  the	
  result	
  should	
  still	
  be	
  ‘0’.	
  	
  The	
  output	
  is	
  correct	
  and	
  the	
  data	
  

still	
  keep	
  on	
  ‘0’.	
  	
  	
  The	
  third	
  column	
  is	
  to	
  write	
  ‘0’	
  into	
  the	
  memory	
  (SW3	
  is	
  setting	
  

to write and SW4 is setting to 0) and the result shown on data lines are correct, 

and	
  fourth	
  column	
  is	
   to	
  write	
   ‘1’	
   (SW3	
  is	
  setting	
  to	
  write	
  and	
  SW4	
  is	
  setting	
  to	
  

‘1’)	
   into	
   the	
  memory	
  modules.	
   The	
   output	
   should	
   be	
   “+4V”	
   on	
   data	
   line.	
   	
   The	
  

measures by voltage meter show the correct results.   

Once every element of the board has been tested we assume that the board 

elements are working correctly.  

7.4.2. Functional testing of the ERRIC processor 

The next step is to confirm that ERRIC processor is working correctly.  Similarly 

to the testing of the board, the testing of the processor is based in several test 

cases. Again, since the ERRIC processor can only process binary data the test 

cases consists of bit stream files. However, instead of VHDL, the functional test 

cases are obtained by using an assembler on an ERRIC’s specific pseudo code. A 

detailed explanation of such assembler is provided in the following section 7.5. 
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There are several unit test cases for the 16 different instructions of the ERRIC 

processor.  The resulting bit stream file from the assembling process is loaded 

into the FPGA through the JTAG interface. Then the codes are executed.  The 

input is the number controlled by push bottom of the Altera board and the 

calculation results is shown out on 7 segment indicators. 

What follow is an example of a test case for a specific SUB instruction: 

-- testing for SUB 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00011000011000110000010000100011;  --4  SUB R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 

The function of this sequence of code is a loop to continue loading input data, do 

the SUB calculation, and output results.  First, the input port memory address is 

loaded into R1, output port memory address is loaded into R2. Then load the 
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input data, do the SUB operation on the loaded data, and then output the results.  

After the operation, it jumps back to the next loop ready to the next tests.  

The following picture (Figure 7-6) is shows both the simulation results and the 

physical testing results.  It performs a 3-3 operation, the subtract function gives 

the results 0.  The results in simulation and indication on testing board (7 

Segment digital) are matched to prove that the tests are passed.  The number 

shows in the square on the following pictures are matched the 7 segments of 

testing Altera board in all the following tests. 
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Figure 7-6. Simulation Results of Unit Test of the SUB instruction using Quartus II Simulator 
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7.5. ERA’s	
  assembler 

The system software for ERA assembler-level programming consists of the 

following components: 

x An Assembler that performs the compilation of source programs written 

in ERA assembler into executable or object code. 

� Program name: Assembler.exe 

� Call form: assembler [ options ] source.era 

� Result: source.obj or source.code 

x A Linker that takes several files with object code as input and produces the 

single result object or executable file depending on the existence of 

external references in the result. 

� Program name: Linker.exe 

� Call  form:  linker [options] [entry_point] source1.obj…sourceN.obj 

� Result: source1.code 

x A Runner that takes an ERA executable file as input, loads it into the 

memory (using the interface of the Model component) and executes it in 

the simulation mode. 

� Program name: Runner.exe 

� Call form: runner [ options ] source.code 

� Result: an output on the console or printing device 

x A Preparator, an extra component which supports transition from the 

model to the real ERA board. The Preparator takes the ERA executable file 

as input and produces the pure binary file which is completely ready to 

load to the real memory. 

� Program name: Preparator.exe 

� Call form: preparator source.code 

� Result: source.bin 
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The overall configuration of the assembler (except the Preparator) is shown on 

the picture below. 

 
Figure 7-7. Flow of ERRIC testing (top) and flow of ERRIC testing 

with the help of a disassembler 

As an example, below is the source code of a program implementing the simple 

in-place sorting algorithm. The program is written in the ERA assembler. The 

assembler’s	
  syntax	
   for	
  every	
  ERA	
   instruction	
  was	
  described	
   in 7.2. The sorting 

algorithm itself is specified in a Pascal-like language like as follows: 

procedure Sort ( a : array of int; size : int ) 
begin 
    for i := 1 to size 
       for j := i to 0 by -1 
          if a[j-1] < a[j]  
          then 
             w := a[j-1]; 
             a[j-1] := a[j]; 
             a[j] := w; 
          end 
       end 
    end 
end Sort;  
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Additional remarks concerning ERA assembler syntax: 

x For debugging purposes two pseudo-instructions have been added to the 

ERA assembler: DATA and TRACE. DATA instruction just denotes literal 

data which will go directly to the object code. TRACE instruction causes 

registers specified in the instructions to be output to the console or to a 

printing device. 

x Labels are specified as identifiers enclosed in angle brackets. The value of a 

label is the address of the instruction or data immediately following the 

label. 

x Comments have the form // sequence of any characters until end of line 

The ERA program implementing the sorting algorithm looks like as follows: 

// i: R1;  j: R2;  intermediate values: R3, R4, R5 
 
    R1 := 1;        // i := 1 
<LoopOuter> 
    R3 := Size; 
    R3 := *R3;      // R3: Size 
    R4 := 1; 
    R3 -= R4; 
    R3 ?= R1;       // Compare Size-1 and i 
    R4 &= R3;       // Extract > sign using R4=1 as mask for > 
    R3 := OutOuter; 
    if R4 goto R3;  // if i>Size goto OutOuter 
 
    // Organize inner loop 
    R2 := R1; NOP;  // j := i 
<LoopInner> 
    R3 := 0;        // w := 0 
    R3 ?= R2;       // Compare j with 0 
    R4 := 4;        // Mask for equality 
    R3 &= R4;       // Extract equality sign 
    R4 := OutInner; 
    if R3 goto R4;  // if j=0 exit the inner loop 
 
    // Otherwise, compare two array elements 
    // to decide if we need to exchange them. 
    // R10: address of j-th element 
    // R11: a[j] 
    // R12: a[j-1] 
    R10 := Array;    
    R10 += R2;      // array base address+j 
    R11 := *R10;    // R11 := a[j] 
    R12 := R10; 
    R13 := 1; 
    R12 -= R13;     // a+j-1 
    R12 := *R12;    // R12 := a[j-1] 
 
    R3  := R12;     // w := a[j-1] 
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    R3  ?= R11;     // Compare a[j-1] and a[j] 
    R4  := 5;       // Mask for >= 
    R4  &= R3;      // Extract > and = signs 
    R3  := OutExchange; 
    if R4 goto R3;  // if a[j-1] >= a[j] do not perform exchange 
 
    // Otherwise, perform exchange 
    R3 := R10; 
    R4 := 1; 
    R3 -= R4;       // R5: address of (j-1)th element 
   *R3 := R11;      // a[j-1] := a[j] 
   *R10:= R12;      // a[j] := a[j-1] 
<OutExchange> 
    // Decreasing j (inner loop) 
    R3 := 1; 
    R2 -= R3;       // j := j-1 
    R4 := LoopInner; 
    if R3 goto R4;  // goto LoopInner 
<OutInner> 
    // Increasing i (outer loop) 
    R3 := 1; 
    R1 += R3;       // i := i+1 
    R4 := LoopOuter; 
    if R3 goto R4;  // goto LoopOuter 
    NOP; 
 
<OutOuter> 
    R15 := Size; 
    R15 := *R15; 
    R16 := Array; 
    TRACE R15,R16; 
    STOP; NOP; 
<Size> 
    DATA  20 
<Array> 
    DATA 537 
    DATA 242 
    DATA 114  
    DATA 436  
    DATA 337  
    DATA 296  
    DATA 285  
    DATA 655  
    DATA 639  
    DATA 436  
    DATA 912  
    DATA 520  
    DATA 624  
    DATA 551  
    DATA 600  
    DATA 741  
    DATA 612  
    DATA 943  
    DATA 871  
    DATA 735 
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Here is the screen snapshot demonstrating the compilation and execution 

process for the sorting example shown above. 

C:\Z\ERA Demo>assembler sort.era 
ERA Assembler, Version 1.0.0.0 of 26 March 2014, 13:57:19 
ERA Model, Version 1.0.0.0 
Copyright (c) London Metropolitan University, 2013 
source file 'sort.era'is being assembled 
assembling is successfully completed 

C:\Z\ERA Demo>runner sort.code 
ERA Model, Version 1.0.0.0 of 26 March 2013, 14:10:37 
Copyright (c) London Metropolitan University, 2013 
code file 'sort.code'is being executed 
537 242 114 436 337 296 285 655 639 436 912 520 624 551 600 741 612 943 
871 735 
114 242 285 296 337 436 436 520 537 551 600 612 624 639 655 735 741 871 
912 943 
execution is successfully completed 

C:\Z\ERA Demo> 

Another example of a simpler program is illustrated in Table 7-9. The table 

shows the location of data variables and code within the memory structure 

together with an explanation of the specific line of code and their effect.  The R31 

register, set by the program loader, always keeps the base address of the global 

data and the program code. The register uses negative offsets for the data and 

non-negative offsets for the code and local data. More examples on how the 

assembler transforms source code into machine code can be found in Appendix 

C.
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Table 7-9. Example of code trnsformed into assembly code by the assembler 
Example 1. 
Global data and code 
Source code Memory structure Code Assembler. 

Code 
Comments 

 char ch; 
 short int i; 
 int j; 
 
 

 

  Programming convention 1: 
 
R31register always keeps the base address 
of the global data (with negative offsets) 
and the program code (with non-negative 
offsets). 
 
Initially R31 is set by the progam loader. 

 ch := ‘0’; 

 LDA R1 NOP 
R1 := ‘0’; Get  the  value  of  ‘0’  into  R1 

‘0’ 
LDA R2 ADD R31,R2 R2:=-6; 

R2+=R31; Get the address of ch into R2 (as R31+offset) -3 

ST R1,R2  *R2:=R1; Store the value from R1 to ch (pointed to by R2) 

 i := 10; 

 LDA R1 NOP 
R1:=10; Get the value of 10 into R1 

10 
LDA R2 ADD R31,R2 R2:=-4; 

R2+=R31; Get the address of i to into R2 (as R31+offset) -2 
ST R1,R2  *R2:=R1; Store the value from R1 to i (pointed to by R2) 

 j := i; 

 LDA R1 ADD R31,R1 
R1:=-2; Get the offset of j into R1; get the address of j 

into R1 (as R31+offset) -1 
LDA R2 ADD R31,R2 R2:=-4; 

R2+=R31; 
Get the offset of i into R1; get the address of I 
into R2 (as R31+offset) -2 

LD R2,R2 ST R2,R1 R2:=*R2; 
*R1:=R2; 

Get the value pointed to by R2 (i.e., i) to R2. 
Store the value from R2 to j (pointed to by R1) 
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7.6. ERA’s simulator: Dissimera 

Reading binary code is a painful experience. In order to test and troubleshoot 

any error of design, bug or incompatibility between the assembler and the VHDL 

code, a new tool has been develop: a Disassembler and a Simulator in a combined 

tool that will ease this process. In addition it will allow the simulation of the state 

of the processor at any given time. Dissimera’s	
  main	
  goal	
  is	
  to	
  simulate	
  the	
  basic	
  

core features of ERA in a reliable and accurate manner. 

The fundamental characteristics of this tool are: 

x Disassembling of instructions: Binary-to-ASM and Binary-to-PSEUDOCODE 

that will complement the assembler. 

x Ability to discern data from instructions 

x Simulation of the ERA architecture including: Program Counter (PC), 

Instruction Registry (IR), Register FILE (RF) and memory contents. 

x Step-by-Step Execution. 

x Breakpoints. 

x Overflow warning 

x Logging. 

x Ability to compare results of simulation execution with the results of Altera 

execution. 

7.6.1. Architecture 

The main two functions of Dissimera, Disassembling and Simulation, are 

embedded into a single software product. The architecture of such software is 

based on three main modules: the Interface module, the parsing module and the 

simulation module.  The programming language used to implement those is ANSI 

C and currently targets 80x86 machines.  
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Figure 7-8. Design of the Interface of the current version of the 
simulator 

The Dissimera disassembler reads the output of the assembler introduced in 7.5. 

Dissimera uses such output, in binary code, as an input, to start the simulation 

process.  

The Interface module (IM) is based on an NCurses API with MIT license to 

implement the interface under a Windows Console. The IM is built independently 

from	
  the	
  Dissimera’s	
  engine	
  (composed	
  by	
  the	
  parsing	
  and	
  simulation	
  modules)	
  

with the intention of improving scalability. It is integrated in a way that 

escalating to a newer interface or migration to a different operating system will 

not be problematic.  

Figure 7-8 illustrates	
  the	
  different	
  elements	
  of	
  the	
  current	
  design	
  of	
  Dissimera’s	
  

interface.	
  The	
  current	
  version	
  is	
  based	
  on	
  a	
  single	
  ERRIC’s	
  processor	
  with	
  a 32-
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bit mode. The Paddr1 and MAIN1 elements contain the addresses and binary 

contents of the 32-bit memory unit that contains the running code. Paddr2 and 

MEM also contain a copy of the addresses and binary content but allow the user 

to browse the memory contents during and after execution and check the 

program results. IDHEX shows the Instructions in assembler or the data in 

hexadecimal numbering.  ADDRF and RF contain the name and value of the 32 

registers that compose the register file. PC is the program counter or instruction 

pointer. The Instruction Register or IR stores the 32-bit value with the decoded 

instructions that are about to be executed. The status of execution and a log with 

extra details is shown in the STATUS element. An example of log execution can 

be seen in 7.6.2.  

The parser module (PM) involves three different processes. The first process is 

the lexical analysis by which the input binary code is fragmented into meaningful 

symbols (tokens) in the context	
  of	
  ERA’s	
  pseudo-code language. The next process 

is the syntactic analysis of these tokens that define allowable expressions 

according to the rules of a formal grammar, based on the ISA format introduced 

in 7.2.  . Finally, a semantic analysis works out the implications of the validated 

tokens and takes appropriate action.   

These three processes need extra attention. How can we determine the type of a 

specific value? i.e. How can Dissimera be certain that a 16-bit binary value is 

either code or data?  

 
Figure 7-9. Memory allocation of a program in ERA 
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Figure 7-9 depicts what we already mentioned, the program loader sets R31 with 

the base address of the global data (negative offsets) and program code (positive 

offsets). However, in the case of local data, by just examining a single binary 

value it is not possible to determine its type. E.g.: According to ERA’s ISA rules, a 

1100010011100001 value can be interpreted:  

x as a C4E1h data value, or  

x as an LD R7 R1 instruction that loads the 32-bit value of the memory 

address contained in R7 into the register R1 (i.e.: R1:=*R7).  

The type of a value is determined by its context. Dissimera uses the execution 

context to determine that, by performing two top-down runs before the 

assembly code is presented on the screen. During the first run the code is 

fragmented and the starting point of execution is determined. The 

determination of type takes place in the second run. Dissimera proceeds to 

silently execute instruction-by-instruction, marking the values as code tokens 

and decoding them consecutively performing the appropriate jump 

instructions and following the Program Counter. Once all the code lines are 

executed the rest of the tokens are marked as local data tokens. This second 

run also includes error detection mechanisms for bad syntax and buffer 

overflow. Note that both runs are transparent in terms of user interface. Once 

the parsing module has finished these processes, the UI contains now the 

results of disassembling and the simulation process can start. 

The simulation module (SM) is in charge of program execution. This stage 

benefits from the two previous runs using the output of the parsing stage as an 

input. Hence, the SM is able to differentiate from code tokens and local and global 

data tokens.  
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Below, Figure 7-10 presents a screenshot of the current version of Dissimera and 

the IM, PM and SM modules. 

 

Figure 7-10. Screenshot of the current version of Dissimera 

Initially, the execution starts at the address set by program counter (loaded with 

the content of R31). The PC holds the memory address of the next instruction to 

be executed and is incremented just after fetching the 32 bits from memory 

containing two instructions. After the processors fetches the memory location 

stored in the PC, the instruction is loaded in the Instruction Register (IR).  The 

instructions are fetched sequentially from memory unless a CBR instruction 

changes the sequence placing a new value in it. Dissimera offers several run 

modes:  

x Normal Mode: It is the standard mode. The simulator continuously executes 

instructions of a program until a STOP instruction is found.  

x Debugging Mode: which includes the ability to place breakpoints within the 

code and the ability to perform step-by-step execution. In addition, this 

mode allows for step-back execution. Simulation can return to a previous 

state. All this features benefit the debugging of the system.  



 

 
282 

Dissimera can be used as a tool for analysis and debugging of ERA programs, and 

more importantly, as a tool for testing and debugging of the hardware 

architecture. Figure 7-11 depicts two different testing methodologies for ERRIC. 

Initially, several test programs are developed using the pseudo-code language 

introduced in 7.5. The assembler is then used to obtain the tests programs in 

binary code compatible with ERRIC. 

 

Figure 7-11. Flow of ERRIC testing (top) and flow of ERRIC testing 
with the help of a disassembler 

These tests programs are	
   introduced	
   into	
   ERRIC’s	
   soft-core processor through 

the	
   JTAG	
   Interface	
   of	
   ERA’s	
   board.	
   The	
   tests	
   programs	
   are	
   executed	
   with	
   the	
  

Quartus II Software and upon execution a memory dump with the results of 

execution is produced.  

After the Soft Processor simulation, the same initial tests programs generated by 

the assembler are introduced into Dissimera together with the memory dump of 

execution results produced by Quartus II. Here, the PM of Dissimera performs 

the disassembling of the binary code. After full execution of the ERA program by 

the SM, using	
  the	
  Dissimera’s	
  IM,	
  the memory dump of the MEM element can be 

compared and analysed with the previous results of Quartus II.  In case of 
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mismatch, debugging via step-by-step execution of both simulators can help in 

the detection and location of design and implementation errors.  

In the following page, Figure 7-12 Figure 7-13 show the caller graph of 

Dissimera’s	
  main	
   function.	
   A	
   full	
   documentation	
   on	
   the	
   current	
   version	
   of	
   this	
  

software, including the implementation details of the IM, PM and SM, libraries 

used and dependency graphs, together with the source code are included in 

Appendix D. 
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Figure 7-12. Caller	
  Graph	
  of	
  Dissimera’s	
  main	
  function	
  	
  1/2 
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Figure 7-13. Caller	
  Graph	
  of	
  Dissimera’s	
  main	
  function	
  	
  2/3 
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7.6.2. Disassembler Log Sample  

A Dissimera log is divided in four-line units. What follows is an example of a Log 

File related to the execution of the disassembler. Each unit represents 

information on 32-bit. The first line of each unit shows the instruction memory 

address and the hexadecimal value of each 16-bit half. The second line contains 

the binary values of each half. The third line and fourth lines include information 

on the assembly instructions of the first and second half respectively, and their 

pseudo-code meaning.  

fname = test.txt  

Number of Bytes = 80 bytes  

Number of 32-bit instruction-data = 20  

 
 1           C800               C000  
   11 0010 00000 00000   11 0000 00000 00000 
    LDA R0 R0  meaning R0:=CONSTANT   meaning  R0:=1    meaning  R0:=1  
 
 3           C801               C000  
   11 0010 00000 00001   11 0000 00000 00000 
    LDA R0 R1  meaning R1:=CONSTANT   meaning  R1:=10    meaning  R1:=10  
 
 5           C807               C000  
   11 0010 00000 00111   11 0000 00000 00000 
    LDA R0 R7  meaning R7:=CONSTANT   meaning  R7:=111    meaning  R7:=111  
 
 7           C807               C4E0  
   11 0010 00000 00111   11 0001 00111 00000 
    LDA R0 R7  meaning R7:=CONSTANT   meaning  R7:=111    meaning  R7:=111  
 
 9           C4E1               C802  
   11 0001 00111 00001   11 0010 00000 00010 
    LD R7 R1  meaning R1:=*R7    meaning  R1:=-939014944  
    LDA R0 R2  meaning R2:=CONSTANT   meaning  R2:=10    meaning  R2:=10  
 
 11           C803               C000  
   11 0010 00000 00011   11 0000 00000 00000 
    LDA R0 R3  meaning R3:=CONSTANT   meaning  R3:=11    meaning  R3:=11  
 
 13           C804               C000  
   11 0010 00000 00100   11 0000 00000 00000 
    LDA R0 R4  meaning R4:=CONSTANT   meaning  R4:=100    meaning  R4:=100  
 
 15           C805               C000  
   11 0010 00000 00101   11 0000 00000 00000 
    LDA R0 R5  meaning R5:=CONSTANT   meaning  R5:=101    meaning  R5:=101  
 
 17           C806               DC41  
   11 0010 00000 00110   11 0111 00010 00001 
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    LDA R0 R6  meaning R6:=CONSTANT   meaning  R6:=110    meaning  R6:=110  
 
 19           CC07               CC22  
   11 0011 00000 00111   11 0011 00001 00010 
    ST R0 R7  meaning *R7:=R0   meaning  MEM[111]=1    meaning  MEM[111]=1  
    ST R1 R2  meaning *R2:=R meaning  MEM[10]=-939014944  meaning  MEM[10]=-939014944  
 
 20           D0A4               0000  
   11 0100 00101 00100   00 0000 00000 00000 
    MOV R5 R4  meaning R4:=R5 meaning R4:=101 
    NOP-STOP R0 R0  meaning STOP instruction 

7.7. Conclusion 

In the development of reliable architectures there is a need for providing 

accurate testing and debugging of hardware and software. In this chapter we 

first show the implementation details of hardware architecture that are relevant 

for simulation.  

We	
  show	
  ERRIC’s	
   instruction	
   execution	
   flow	
  and	
  explained	
  how	
   it	
   can	
   achieve	
  

the decoding and execution of two instructions per single fetch and its 

implications on system compilers.  

We also provide an overview of the hardware prototype and its memory 

mapping together with an architectural comparison to other relevant RISC and 

CISC architectures.  We introduced Minimal Instruction Set Architecture that 

simplifies the instruction decoder design and the overall	
   system’s	
   reliability.	
  

ERA’s	
   ISA	
   has	
   16	
   instructions,	
   does	
   not	
   have	
   a	
   pipeline	
   and	
   provides	
   only	
  

absolute memory addressing. We argue how far from being a drawback, this 

simplicity is sufficient to perform safety-critical code improving efficiency 

reliability.  

We provide the details of a testing and debugging methodology of a hardware 

prototype. Finally we showed the features and implementation of an assembler, 

and a disassembler/simulator as a proof of concept of the architecture. These 

custom tools are useful, not only for testing and debugging of the hardware 

prototype, but for the system and application software.  
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Chapter 8 

Conclusion 

Initially, the main objective of this research was to find new ways to improve the 

fault tolerance of current architectures. We first reviewed the classic theories of 

reliability and fault tolerance and found that a) the more components a system 

has the higher the probability of system failure and b) the reliability of a system 

is often dominated by the reliability of its least reliable component. We 

concluded that some of the keys to improve reliability would be simplicity of 

implementation and careful introduction of redundancy.  

The terms Reliability, Fault-Tolerance and Dependability do not cover all the 

attributes of safety-critical applications or, after being redefined over the years, 

are ambiguous. As a consequence, in Chapter 2 we provided a novel concept of 

Resilience that encompasses several attributes adapting them to the safety-

critical domain. A resilient system, over a specified time interval, under specified 

environmental	
   and	
   operating	
   conditions	
   (performability),	
   “must	
   be	
   ready”	
   (in	
  

terms of availability) to perform its intended function (reliability), guaranteeing 

the absence of improper system alterations (integrity). It must have the ability to 

conduct servicing and inspections (testability) so that in case of failure quick 

restoration to a specified working condition must be achieved (maintainability) 

can be provided or can discontinue its operation in a safe way (safety). 
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Furthermore, a resilient system must have the ability to anticipate changes and 

evolve (evolvability) while executing (adaptability), successfully accommodating 

changes by reconfiguring elements of the system if necessary (reconfiguration).  

Since one of the keys to improve resilience was the careful choice of redundancy 

and the manner in which this should be applied, we decided to review the 

different types of redundancy and how such redundancy is translated into 

functional mechanisms to either avoid or tolerate faults. In Chapter 3 we 

provided a full classification of fault-tolerant mechanisms based on the type of 

redundancy employed and study their benefits and drawbacks. Fault avoidance 

techniques do not guarantee complete removal of faults and present drawbacks 

such	
   as	
   cost,	
   speed	
   of	
   operation	
   and	
   chip’s	
   area.	
   Therefore,	
   fault	
   tolerance	
  

mechanisms are needed to further improve the resilience of safety-critical 

systems. In order to select a specific set of redundancy techniques for the 

implementation of FT we should first define the different requirements of the 

particular application. Once the domain and requirements are defined we should 

select the techniques that are more suitable for such requirements and the level 

at which the redundancy should be applied.  

We realised that in order to improve the existing mechanisms, before 

researching what it is required from them, we should study and analyse how 

failures originate, what causes them, under what circumstances, in which 

contexts, and how often they happen.   In Chapter 2 we introduced the concept of 

vicious cycle that explains our interpretation of the reasons behind the 

performance and reliability problems that jeopardize the continuation of 

Moore’s	
   Law.	
    We also reviewed the fault-failure lifecycle and defined the 

necessary concepts of fault, error, failure and catastrophic failure.  

Since the majority of hardware faults in current electronics are induced by 

ionizing radiation we studied the damage mechanisms at the physical level, the 

sources of error and the micro- and macro- effects of such mechanisms. . As a 

result Chapter 4 provides an extensive taxonomy of radiation effects describing 

their nature, type of degradation, susceptibility, fault rate trends and 
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recoverability. From the study of this taxonomy we conclude that as we moved to 

denser technologies at lower voltages, system SER will continue to rise and in 

particular the contribution of SEU, SET, MBU and SEFI will increase. We also 

conclude that current mitigation techniques are not efficient when dealing with 

certain types of SEE and/or with the upcoming rates.  

In Chapter 5 we explained how any fault tolerant system involves a Model of the 

System, a Model of Faults and a Model of Fault Tolerance. Consequently, we add 

value to such system by developing a comprehensive Fault Model suggesting 

methods for recognition and reaction against faults. We discuss fault 

manifestation, detectability diagnosability and recoverability and propose 

adequate solutions for diagnosis and recovery. We have introduced the principle 

of reconfiguration of the system and how this might be used for various 

purposes:  performance, reliability and energy wise gain, improving the 

efficiency of resilience. In addition, we introduced GAFT and extend it by 

providing the different states and actions required to achieve fault tolerance and 

therefore improve system resilience.  

In Chapter 6, using know-how and conclusions acquired in the previous chapters 

we introduced a hybrid HW-SSW co-design approach of a resilient architecture 

with the ability to reconfigure, achieving various levels of dependability in 

different environments. As part of the architecture, we first introduced the 

syndrome as a new property of the system and analysed it as a process and as a 

tool for reconfiguration that can provide efficiency of reliability, performance 

and power consumption.  

We	
   also	
   introduced	
   the	
   ERRIC’s	
   microprocessor	
   and	
   the	
   ERA	
   architecture	
  

defining their active, passive and interfacing zones of information processing.  

We keep the redundancy level needed to implement fault tolerance, as low as 

possible. With regards to the active zone, the instruction set and its 

implementation are reduced to the minimum; coprocessors, pipelining and 

floating-point units are removed which simplifies the processor design and 

reduces the complexity and fault rates. We explained the checking schemes and 
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re-execution of instruction mechanisms within ERRIC and how they can improve 

reliability.  

With regards to the Interfacing zone, we introduced the T-Logic as basic unit of 

reconfiguration and discuss its various configurations. We introduced the 

syndrome and explained implementation details and how, in combination with a 

Memory Management Unit and a Reconfigurable Memory Scheme, it can act as a 

control centre of three functions: fault monitoring, reconfigurability and 

recovery.  As part of the passive zone, the reconfigurable memory scheme can 

operate 25 memory configurations and support graceful degradation.  We 

quantify the probability of state transitions and provide a Markov model of 

reliability	
   for	
   ERA’s	
   configurable	
   memory.	
   Finally	
   we	
   described the system 

software support for testing and reconfiguration.  We showed that by combining 

this novel hardware architecture with the system software, all key properties of 

performance, reliability and energy-wise functioning could be improved. 

In Chapter 7 we provided the	
   implementation	
   details	
   of	
   ERA’s	
   hardware	
  

prototype.  Having a software simulator of a hardware platform at hand is very 

useful to speed up software development and debugging of applications. We 

developed an accurate hardware simulator with graphical user frontend called 

Dissimera.	
   Dissimera’s	
   main	
   goal	
   was	
   not	
   speed	
   but	
   to	
   simulate	
   reliably	
   and	
  

accurately the basic core features of ERA with fully reproducible results. The 

simulator is built extendable; once core simulation is achieved, we will escalate 

from there adding new features with an agile methodology. The development of 

such disassembler/simulator gives us the possibility of 1) testing and locating 

errors of design of the soft core processor; 2) understand the smallest details of 

the ERRIC functionality; 3) Simulation of the current version of the processor 

and the FT version of the processor; 4) testing and debugging of errors in 

application and system software. Finally we introduced a testing framework that 

in combination with Dissimera’s,	
   with	
   ERA’s	
   assembler	
   and	
   with	
   commercial	
  

hardware	
  simulators	
  can	
  properly	
  test	
  and	
  debug	
  not	
  only	
  the	
  ERA’s	
  hardware	
  

prototype	
  but	
  ERRIC’s	
  application	
  and	
  system	
  software. 
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8.1. Next steps 

Arithmetic and logic units are both implemented through the use of logic 

components. It is known that an arithmetic instruction can be translated into 

several logic operations. Applying this principle, if an arithmetic unit is suspected 

of not being able to provide correct service, arithmetic instructions can be 

translated into logic ones that can be executed by the logic unit of the ALU. 

Further research could be done on determining if logic operations can be 

translated into a set of arithmetic ones and how can this be implemented. What 

would it be the complexity of such translation. Performance would be affected 

(graceful degradation), but this technique would allow a running program to 

finish before recovery or fail-safe restart takes place.  

The impact of the size of the register file on overall performance of processor is 

also a question of further research as in 6.2.1. 

With regards to Dissimera, although basic functionality has been achieved, the 

implementation of Dissimera is still a working progress: 

x The design is completed and the user interface is fully defined. 

x Assembling of pseudo code using ERA assembler/preparator (100% 

completed). 

x Disassembling of binary into human readable code (assembly code) (100% 

completed). 

x The simulator is capable of parsing the binary file resulting from the 

previous step and is then capable of classifying data and instructions 

(100% completed). 

x Simulation of main memory, register file, program counter and instruction 

registry is almost completed (90%). 

For future revisions of Dissimera we are working on a low-level fault-injection 

scheme that would support testing of the architecture. We also plan to include 
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support for: syndrome, extra memory configurations including 16-bit memory 

configurations.   

We are very interested in finding ways to exploit the functionality that the 

syndrome can provide. We believe that for safety-critical missions such as 

embedded systems in satellites or space further research is needed. We would 

like to pursue more research in dependency matrix mapping of symptoms and 

failure modes. We would like to apply the context sensing (e.g. altitude, latitude, 

temperature, dynamic events such as solar flares and weather forecasting) and 

experience to system software in combination with the syndrome.  

8.2. Personal contributions 

I am responsible for the definition of Resilience in Chapter 2. Some of the 

attributes are based on individual authors but the combination of those and the 

particular definition is my own work. 

The author is responsible for the two taxonomies: taxonomy of mitigation 

techniques (Chapter 3), the taxonomy of single event effects (Chapter 4).  

The individual contributions of the author in Chapter 5 are the implementation 

of the Fault Model. GAFT is based on previous work from (Sogomonian and 

Schagaev, 1988). The author is responsible for extending GAFT by adding the 

system state changes and the actions to implement fault tolerance. 

The ERRIC microprocessor including the active zone, checking schemes, the 

instruction set architecture and the T-Logic as a concept is the result of previous 

work from the ONBASS project. The memory management unit that allows 

implementation of these as a concept is my contribution. The syndrome was a 

simple idea of Prof. Schagaev that I took on and further developed. I am 

responsible for the extension of the syndrome concept and its implementation, 

including the structure, location, access and functionality.  The graceful 

degradation and Markov Models are also my contribution.  
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As stated earlier, the instruction set was designed before the thesis was started. 

The assembler is contribution of ETH Zurich. My main personal contribution in 

Chapter 7 is the framework for testing including 1) the testing of the custom 

FPGA-based board, 2) the functional testing of the novel architecture and the 

development of the disassembler and simulator (Dissimera). 
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1 CPU Logical Structure 
 

Logically, the Processor Unit consists of the following components: 

x Central processor unit itself (CPU) 

x Common  purpose  registers  (R0,  …  R31) 

x Special purpose registers (IR, PC) 

x Random access memory (RAM). 

Below is the short characteristics of the components mentioned. 

 

Processor has only two special register IR and PC, and they are not accessible for 
programmers.  The memory image in the example below o shows mapping and using of 
the general purpose registers (R0,…,R31) for SB, FP etc.  

 

1.1 Common Purpose Registers 
• 32  common  registers  (R0…R31)  are  of  32  bits  each. 
• Every register can contain either a value or an address of a memory location. 
• An address in a register can address any byte of memory.  
• The CPU performs all actions on the operands taken from common registers. There 

are instructions for loading values from the memory to a register, and for storing a 
value from a register to the memory. 

 

 
 

1.2 Special Purpose Registers 
• PC register (Program Counter) contains 32-bit address of the leftmost (high) 

byte of the instruction which is being currently executed. After the current 
instruction is completed, the address in PC is normally increased by 2 addressing 
the next instruction (because every instruction occupies 2 bytes, see later). The 
exception is CBR instruction which can alter this behavior setting the new 
address on the PC taking it from a common register. There are no other ways to 
modify the contents of the PC register. 

R0 

R1 

R31 

.  .  . 
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1.3 Supported Values 
• The CPU operates with 8-, 16-, and 32-bit values. 
• The values of all formats are considered either as signed integers (arithmetic 

ADD and SUB instructions, and arithmetic shift ASL, ASR instructions) or as bit 
scales (logical shift LSL, LSR instructions and logical AND, OR, and XOR 
instructions). 

• Positive integer values are represented in the direct code (with 0 in the sign bit). 
Negative integers are represented in the two's complement code. See ISO-
XXXX for details. 

8-bit Values 
• The range of possible 8-bit integer values is [-128..127]. 
• Alignment requrements 
• The format of 8-bit signed integers is shown below: 

 
16-bit Values 
• The range of possible 16-bit integer values is [-32768..32767]. 
• Alignment requirements 
• The format of 16-bit signed integers is shown below: 

Bits 31- 17 are not used

31 0

15-bit absolute 
value

Value sign:
0 for positives,
1 for negatives

151617

Bits 31- 17 are not used

31 0

15-bit absolute 
value

Value sign:
0 for positives,
1 for negatives

151617

 
Here  is a mistake. 16 bit value takes 0-15 bits and  15th bit is sign. We count from 
0, not from 1, thus 15th bit is a bit number 16.
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32-bit Values 
• The range of possible 32-bit integer values is [-2147483648..2147483647 ] 
• Alignment requirements 

• The format of 32-bit signed integers is shown below: 

31 0

31-bit absolute 
value

Value sign:
0 for positives,
1 for negatives

3031 0

31-bit absolute 
value

Value sign:
0 for positives,
1 for negatives

30

 
Non-supported Values 

• Long (64-bit) integer and floating point values are not directly supported by the 
CPU. If necessary, the support can be provided by using special software 
routines using predefined library. 

• The floating-point types should be conceptually associated with the 32-bit single-
precision and 64-bit double-precision IEEE 754 values and operations as 
specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 
Standard 754-1985 (IEEE, New York). 
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2 Instruction Set 
2.1 Common Instruction Format 
• Every instruction occupies 16 bits (two bytes). 

• Format code (bits 15-14 of the instruction) encodes format of operands: 
00 is for 8 bit (lowest 8 bits of operands participate in the operation), 
01 is for 16 bit (lowest 16 bits of operands participate in the operation), 
10 is reserved, 
11 is for 32 bits (entire 32 bits of operands participate in the operation). 

• Instruction code (bits 13-10 of the instruction) encodes the operation kind of the 
instruction.  There  are  16  main  kinds  of  instructions  coded  by  0x0,  0x1,  …  0xF. 

• Two operands (bits 9-5 and 4-0 of the instruction) always contain register codes 
(numbers within the range of 0..31). 

• Alignment requirements 

• The  overall  instruction’s  layout  is  shown  below: 

Operand 2:
5 bits

Operand 1:
5 bits

Instruction
code: 4 bits

Format
code:
2 bits

13 09 410 51415

Operand 2:
5 bits

Operand 1:
5 bits

Instruction
code: 4 bits

Format
code:
2 bits

13 09 410 51415
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2.1 LD Instruction   
• LD Ri, Rj    Load from the memory 
• The LD instruction copies the value of a 32-bit memory word pointed to by 

Ri  register, to the Rj  register. 
• The suggested assembly statement for the LD instruction is: 

 
         Rj := *Ri 

• The instruction format is as follows:  
 

1 1 0 0 0 1 i j1 1 0 0 0 1 i j
 

 

• The contents of the register Ri is considered as a 32-bit address 
of a 32-bit memory word. 

• Instruction format is always 16 bit, i.e., the entire 32-bit word is copied from the 
memory to the register contains 2 isntructions. 

• When the instruction is completed, the original contents of the register Rj is lost. 

• Registers Ri and Rj can be the same register. If not, the contents of the Ri 
register (i.e., the address) does not change. 

• The effect of the LD instruction is shown below: 

Ri

Rj

Ri

Rj

Memory
Before LD

After LD
Memory

Ri

Rj

Ri

Rj

Memory
Before LD

After LD
Memory
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2.2 LDA Instruction (Load address from memory) 
x The LDA instruction takes the value from the next 32-bit word, then adds it 

to the current value of the Ri register, and stores the result to the Ri 
register.  (LDA Ri, Rj ???) 

 
Eugene, your semantics is different with ours.  For your LDA version, it is efficient for 
indexed addressing and can facilitate procedural calls.  However, it slows down the 
direct addressing which is more often in programs.   When you need directly addressing 
constants or variables, you need to load a ZERO into Ri and then perform the operation. 
For us, the semantics of LDA Rj  is to load the next 32-bit word into register Rj.  For 
index addressing, it can be achieve by two instructions ( LDA Rj;  ADD Ri, Rj ).   Here, 
it is the choice between RISC instruction and complex instructions. I do agree, as  we 
stand  for  two  operand  instruction  set  with  explicit  “manifestation”  of  them,  and  I  
believe we can progress here immediately if Eugene agree with this approach. 
Probably write couple of more sentences why we are choosing this approach will 
be good, three variables two actions sum and access, while semantic of 
instruction should remind what we are doing – i.e. read or write, not add or delete. 
 
x The instruction format is as follows:  

 

1 1 0 0 1 0 i j1 1 0 0 1 0 i j
 

 
• The contents of the register Ri is considered as a 32-bit address of a 32-bit 

memory word. 
• The next 32-bit word (pointed to by the PC register) is considered as a constant 

that loaded.  
• When the instruction is completed, the original contents of the register Rj is lost. 
• Alignment requirements for the LDA instruction are as follows: 

- The LDA instruction must occupy the left two bytes of the 32-bit word (not 
necessary please see the example code and early comments). 
- The right two bytes must be left empty. (not necessary, see early comments) 
- The constant must occupy the entire 32-bit word next to the word with the LDA 
instruction. 

• After the instruction has completed its execution, the next instruction to execute 
is fetched by the address PC+2 (but not PC+1 as for all other instructions).   
For 32 bit memory, PC is increased only after 32 bits code (2 instructions) or 32 
bits data have been processed.  Each time, two instructions will be fetched.    

 
Proper alignment is necessary for dealing with subroutine.   
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• The suggested assembly statement for the LDA instruction: 
HAO, PLS WRITE AS WE DISCUSS, CORRECT AS WE DISCUSS. USING AS 
MUCH AS POSSIBLE THE SAME FIGURES EUGENE DID. 

•         Rj := Address 
 

• The scheme of how code is being processed is shown below: 

 

 
• The effect of the LDA instruction is shown below 

 

LDA i  

Constant 

Current instruction 

Before LDA 

Next instructions  

PC 

.  .  . 

LDA j       

Address 

Current instruction 

Before LDA 

PC 

.  .  . 

After LDA 

Address 

PC 

Current instructions 

Next instructions 

.  .  . 

LDA i j      
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Fig. XX.   The Effect of the LDA instruction (LMU version) 

 
----------------------------------------------------------------------------------------------- 
Eugene’s  version  of  LDA 
•  

        Rj := Ri + constant 
        Rj := Ri - constant 

• The scheme of how code is being processed is shown below: 

Before LDA 

LDA j      

Address 

After LDA 

Data 
Section 

Code 
Section 

PC 

Rj 

Memory 

LDA j      

Address 

Data 
Section 

Code 
Section 

PC 

Rj Address 
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LDA i j     Empty

Constant

Current instruction

Before LDA

Next instructions

PC

.  .  .

LDA i j     Empty

Constant

Current instruction

Before LDA

Next instructions

PC

.  .  .  

After LDA
LDA i j     Empty

Constant

PC

Current instructions

Next instructions
.  .  .  

• The effect of the LDA instruction is shown below 
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Before LDA

LDA i j     Empty

Constant

Ri

Rj

Memory

Ri

Rj

Memory

After LDA

Ri

Rj

Memory

Co
ns

ta
nt

After LDA

Ri

Rj

Memory

Co
ns

ta
nt

 
 
 

CPU has 32 general registers.   It is acceptable to use four of them for procedural calls.    
It might be interesting to compare with other CPUs for dealing with procedural calls and 
see how many registers will be involved for other CPUs.  

common ones. Therefore, we need the LDA instruction to work both with common 
registers and with SB/FP. It makes LDA to complicated to implement. 

So the overall conclusion is that 1) the common semantics of the LDA instruction 
presented at the beginning of this section is the most desired one, and 2) we do not 
need any special purpose registers.  
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2.3 ST Instruction 
• The ST instruction copies the value of the register Ri to the memory by 

address taken from the register Rj. 
• The instruction format is as follows:  

 

1 1 0 0 1 1 ji1 1 0 0 1 1 ji
 

 

• The contents of the register Ri is treated as an arbitrary value. The contents of 
the register Rj is considered as a 32-bit address of a 32-bit memory word.  

• Instruction format is always 32, i.e., the entire 32-bit register is copied to the 
memory. 

• Memory state is not considered in the instruction, and the memory state does not 
change. 

• The contents of Ri and Rj registers do not change. 

• Suggested assembly statement for the ST instruction is: 
 
       *Rj := Ri 

• The effect of the ST instruction is shown below: 

Ri

Rj

Ri

Rj

MemoryBefore ST

After ST Memory

Ri

Rj

Ri

Rj

MemoryBefore ST

After ST Memory
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2.4 MOV Instruction 
 
• The MOV instruction copies the value from register Ri to the register Rj. 
• Memory state is not considered in the instruction, and the memory state does not 

change. 
• The instruction format is as follows: 

 

0 1 0 0 i jFormat 0 1 0 0 i jFormat
 

 

x Suggested assembly statement for the MOV instruction is: 
 
        Rj := Ri 

x Additional assembly directives specifying the current instruction format: 
 
        .format 8    or    .format 16      or    .format 32 

x Memory state is not considered in the instruction, and the memory state does not 
change. 

x The effect of the MOV instruction is shown below: 

Ri

Rj

Ri

Rj

Format 8: Before

Format 8: After

Ri

Rj

Ri

Rj

Format 16: Before

Format 16: After

Ri

Rj

Ri

Rj

Format 32: After

Format 32: Before

Ri

Rj

Ri

Rj

Format 8: Before

Format 8: After

Ri

Rj

Ri

Rj

Format 16: Before

Format 16: After

Ri

Rj

Ri

Rj

Format 32: After

Format 32: Before

 
• Instruction format 8: the lowest byte is copied; three highest bytes of Rj remain 

the same.  The  original  value  of  Rj’s  lowest  byte  is  lost. 
 
Instruction format 16: two lowest bytes are copied; two highest bytes of Rj remain 
the same. The  original  value  of  Rj’s  two  lowest  bytes  is  lost. 
 
Instruction format 32: the entire 32-bit register is copied. The original value of Rj 
is lost. 

• Memory state is not considered in the instruction, and the memory state does not 
change. 
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2.5 ADD Instruction 
• The  ADD  instruction  denotes  the  two’s  complement  arithmetic  addition. 

The contents of registers Ri and Rj are arithmetically added, and the result 
is put into the register Rj. 

• The instruction format is as follows: 
 

0 1 0 1 i jFormat 0 1 0 1 i jFormat
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change. 

• Both operands can refer to the same register. 

• If the addition gives a result which cannot be put into the format specified in the 
instruction, then overflow happens: ?????  

• SIGNS MUST BE CHANGED ACCORDINGLY IN BOTH INSTRUCTIONS 
ARITHMETIC INSTRUCTIONS. PLS CORRECT. 

• Suggested assembly statement for the ADD instruction: 
        Rj += Ri 

• Additional assembly directives specifying the current instruction format: 
 
       .format 8   or   .format 16   or   .format 32 

• The effect of the ADD instruction is shown below: 

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

+
Rj

+
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

+

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

+
Rj

+
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

+
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2.6 SUB Instruction 
• The  SUB  instruction  denotes  the  two’s  complement  arithmetic  subtraction. 

The contents of register Ri is subtracted from the contents of the register 
Rj, and the result is put into the register Rj. 

• The instruction format is as follows:  
 

0 1 1 0 i jFormat 0 1 1 0 i jFormat
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change. 

• Both operands can refer to the same register. 

• If the subtraction gives a result which cannot be put into the format specified in 
the instruction, then …… happens: ????? 

• Suggested assembly statement for the SUB instruction: 
 
        Rj -= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• The effect of the SUB instruction is shown below: 

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

-
Rj

-
Rj

Format 16: Before Format 16: After

Ri

Rj

-
Rj

Format 32: Before Format 32: After

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

-
Rj

-
Rj

Format 16: Before Format 16: After

Ri

Rj

-
Rj

Format 32: Before Format 32: After
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2.7 ASR Instruction 
• The ASR instruction arithmetically shifts the contents of the register Ri one 

bit right, and puts the result into the register Rj.  
• The instruction format is as follows: 

 

0 1 1 1 i jFormat 0 1 1 1 i jFormat
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change. 

• Both operands can refer to the same register. 

• Suggested assembly statement for the ASR instruction: 
 
        Rj >>= Ri; 

• Additional assembly directives specifying the current instruction format: 
 
       .format 8   or   .format 16   or   .format 32 

• Arithmetic shift means that the sign bit does not participate in the operation but 
remains on its usual place. 

• The leftmost bit of the operand gets the value of 0. The rightmost bit of the 
operand is always lost. 

• The contents of the Ri register does not change. 

• The effect of the ASR instruction for format 16 is shown below. The operation for 
formats 8 and 32 is performed in the similar way. 

• The effect of the ASR instruction for the case of 16-bit operands is shown below: 

S X X X X X X X X X X X X X X XRi

Rj S 0 X X X X X X X X X X X X X X

.  .  .

.   .   .

.   .   .

15 01631

LostS X X X X X X X X X X X X X X XRi

Rj S 0 X X X X X X X X X X X X X X

.  .  .

.   .   .

.   .   .

15 01631

Lost

 
 

What to do with the high bits of the result for 8 and 16 formats? 
• Copy them from the source register. 

• Remain them as they were (no modifications). 

• Set them to 0s. BEST OPTION, 
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2.8 ASL Instruction 
• The ASL instruction arithmetically shifts the contents of the register Ri one 

bit left, and puts the result into the register Rj.  
• The instruction format is as follows: 

 

1 0 0 0 i jFormat 1 0 0 0 i jFormat
 

 
• Memory state is not considered in the instruction, and the memory state does not 

change. 
• Both operands can refer to the same register. 
• Suggested assembly statement for the ASL instruction: 

 
        Rj <<= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• Arithmetic shift means that the sign bit does not participate in the operation but 
remains on its usual place. 

• The leftmost bit of the operand is always lost. The rightmost bit of the operand 
gets the value of 0. 

• The contents of the Ri register does not change. 
• The effect of the ASL instruction for format 16 is shown below. The operation for 

formats 8 and 32 is performed in the similar way. 

S X X X X X X X X X X X X X X XRi

Rj S 0X X X X X X X X X X X X XX

.  .  .

.   .   .

.   .   .

15 01631

Lost

S X X X X X X X X X X X X X X XRi

Rj S 0X X X X X X X X X X X X XX

.  .  .

.   .   .

.   .   .

15 01631

Lost

 
 
What to do with the high bits of the result for 8 and 16 formats? 

• Copy them from the source register. 
• Remain them as they were (no modifications). 
• Set them to 0s. BEST OPTION 
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2.9 OR Instruction 
• The  OR  instruction  applies  logical  addition  (“OR”)  operator  to  every  pair  of  

bits taken from registers Ri and Rj, respectively, and puts the result into 
the register Rj.  

• The instruction format is as follows: 
 

1 0 0 1 i jFormat 1 0 0 1 i jFormat
 

 
• Memory state is not considered in the instruction, and the memory state does not 

change.  
• Both operands can refer to the same register. If not, the contents of the Ri 

register does not change. 
• Suggested assembly statement for the OR instruction: 

 
        Rj |= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• In this instruction, the contents of registers Ri and Rj are considered as two bit 
scales. The operation is performed on every pair of bits independently. 

• The rule for the OR operation performed on each pair of bits is defined as 
follows: 

                                         

X Y Result
0 0 0
0 1 1
1 0 1
1 1 1

 
• The mechanism of the OR instruction – for one pair of bits - is shown below. 

Here, k�[0..31] for format 32, k�[0..15] for format 16, and k�[0..7] for format 8. 

X .   .   .Ri

Rj

.   .   .

k 031

Y .   .   ..   .   .

k

031

OR
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2.10 AND Instruction 
• The  AND  instruction  applies  logical  multiplicative  (“AND”)  operator  to  

every pair of bits taken from registers Ri and Rj, respectively, and puts the 
result into the register Rj.  

• The instruction format is as follows:  
 

1 0 1 0 i jFormat 1 0 1 0 i jFormat
 

 
• Memory state is not considered in the instruction, and the memory state does not 

change. 
• Both operands can refer to the same register. If not, the contents of the Ri 

register does not change. 
• Suggested assembly statement for the AND instruction: 

 
        Rj &= Ri 

• Additional assembly directives specifying the current instruction format: 
 
       .format 8   or   .format 16   or   .format 32 

• In this instruction, the contents of registers Ri and Rj are considered as two bit 
scales. The operation is performed on every pair of bits independently. 

• The rule for the AND operation performed on each pair of bits is defined as 
follows: 

                                       

X Y Result
0 0 0
0 1 0
1 0 0
1 1 1

 
• The mechanism of the AND instruction – for one pair of bits - is shown below.  

Here, k�[0..31] for format 32, k�[0..15] for format 16, and k�[0..7] for format 8. 

X .   .   .Ri

Rj

.   .   .

k 031

Y .   .   ..   .   .

k

031

AND

X .   .   .Ri

Rj

.   .   .

k 031

Y .   .   ..   .   .

k

031

AND
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2.11 XOR Instruction 
• The  XOR  instruction  applies  logical  exclusive  OR  (“XOR”)  operator to every 

pair of bits taken from registers Ri and Rj, respectively, and puts the result 
into the register Rj.  

• The instruction format is as follows: 
 

   

1 0 1 1 i jFormat 1 0 1 1 i jFormat
 

 
• Memory state is not considered in the instruction, and the memory state does not 

change.  
• Both operands can refer to the same register. If not, the contents of the Ri 

register does not change. 
• Suggested assembly statement for the XOR instruction: 

 
        Rj ^= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• In this instruction, the contents of registers Ri and Rj are considered as two bit 
scales. The operation is performed on every pair of bits independently. 

• The rule for the XOR operation performed on each pair of bits is defined as 
follows: 

                               

X Y Result
0 0 0
0 1 1
1 0 1
1 1 0

 
• The mechanism of the XOR instruction – for one pair of bits - is shown below.  

Here, k�[0..31] for format 32, k�[0..15] for format 16, and k�[0..7] for format 8. 

X .   .   .Ri

Rj

.   .   .

k 031

Y .   .   ..   .   .

k

031

XOR

X .   .   .Ri

Rj

.   .   .

k 031

Y .   .   ..   .   .

k

031

XOR
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2.12 LSL Instruction 
• The LSL instruction logically shifts the contents of the register Ri one bit 

left, and puts the result into the register Rj.  
• The instruction format is as follows: 

 

1 1 0 0 i jFormat 1 1 0 0 i jFormat
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change.  

• Both operands can refer to the same register. If not, the contents of the Ri 
register does not change. 

• Suggested assembly statement for the LSL instruction: 
 
        Rj <= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• In this instruction, the contents of registers Ri and Rj are considered as two bit 
scales. The operation is performed on every bit independently. 

• The leftmost bit of the operand is always lost. The rightmost bit of the operand 
gets the value of 0. 

• The effect of the LSL instruction for format 16 is shown below. The operation for 
formats 8 and 32 is performed in the similar way. 

X X X X X X X X X X X X X X X XRi

Rj X 0X X X X X X X X X X X X XX

.  .  .

.   .   .

.   .   .

15 01631

Lost

15 01631

X X X X X X X X X X X X X X X XRi

Rj X 0X X X X X X X X X X X X XX

.  .  .

.   .   .

.   .   .

15 01631

Lost

15 01631  
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2.13 LSR Instruction 
• The LSR instruction logically shifts the contents of the register Ri one bit 

right, and puts the result into the register Rj.  
• The instruction format is as follows: 

 

1 1 0 1 i jFormat 1 1 0 1 i jFormat
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change.  

• Both operands can refer to the same register. If not, the contents of the Ri 
register does not change. 

• Suggested assembly statement for the LSR instruction: 
 
        Rj >= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• In this instruction, the contents of registers Ri and Rj are considered as two bit 
scales. The operation is performed on every bit independently. 

• The rightmost bit of the operand is always lost. The leftmost bit of the operand 
gets the value of 0. 

• The effect of the LSR instruction for format 16 is shown below. The operation for 
formats 8 and 32 is performed in the similar way. 

X X X X X X X X X X X X X X X XRi

Rj 0 X X X X X X X X X X X X X X X

.  .  .

.   .   .

.   .   .

15 01631

Lost

15 01631

X X X X X X X X X X X X X X X XRi

Rj 0 X X X X X X X X X X X X X X X

.  .  .

.   .   .

.   .   .

15 01631

Lost

15 01631  
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2.14 CND Instruction 
 

• The CND instruction arithmetically compares the contents 
of registers Ri and Rj and puts the result of the comparison 
(as a set of 1-bit signs) to the register Rj. 

• Signs occupy four lowest bits of the result (see next slides for details and for the 
meaning of the signs). 

• The instruction format is as follows:  

 

1 1 1 0 i jFormat 1 1 1 0 i jFormat
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change.  

• Both operands can refer to the same register. If not, the contents of the Ri 
register does not change. 

• Suggested assembly statement for the CND instruction: 
 
        Rj ?= Ri 

• Additional assembly directives specifying the current instruction format: 
 
        .format 8   or   .format 16   or   .format 32 

• The effect of the CND instruction is shown below: 
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Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

?
Rj

?
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

?

Ri

Rj

Ri

Rj

Format 8: Before Format 8: After

?
Rj

?
Rj

Format 16: Before Format 16: After

Ri

Rj Rj

Format 32: Before Format 32: After

?
 

 

• The result of the instruction (i.e., the contents of the Rj register) is as follows: 
 

Z N C
31 01234

Bits 31- 4 are not used

• Bit 3: Reserved (always 0)

• Bit 2 (Z): 1, if Ri = Rj,
0, otherwise

• Bit 1 (N): 1, if Ri < Rj,
0, otherwise

• Bit 0 (C): 1, if Ri > Rj,
0, otherwise

Z N C
31 01234

Bits 31- 4 are not used

• Bit 3: Reserved (always 0)

• Bit 2 (Z): 1, if Ri = Rj,
0, otherwise

• Bit 1 (N): 1, if Ri < Rj,
0, otherwise

• Bit 0 (C): 1, if Ri > Rj,
0, otherwise  

• Signs are mutually exclusive: i.e., the semantics of signs assumes that the only 
one sign is set as the result of the comparison. 

• The result of the comparison can be used in an arbitrary way. Perhaps the most 
important one is to use it for organizing conditional jumps (see CBR instruction). 

• Signs can be checked using logical instructions (e.g., AND) together with 
appropriate masks.  
 
For example, the ≤ condition can be treated as either < or = conditions, and the 
corresponding mask is binary 110. Similarly, the ≥ condition is either > or = 
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conditions, and the mask is binary 101. Finally, the inequality ≠ condition is either 
≤ or ≥ conditions, and the mask for selecting is binary 011. 
 
Therefore, all six possible comparison results (<, ≤, >, ≥, =, ≠) can be extracted 
using AND instruction with the following masks: 
 
 Relation Mask 
   <   010  
   ≤   110 
   >   001 
   ≥   101 
   =   100 
   ≠   011 
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2.15 CBR Instruction 
• The CBR instruction checks the contents of the Ri register. If it is non-zero, 

then  
1) the address of the next instruction (i.e., current value of the PC 
register + 2) is stored in the Ri register, and  
2) the value of the Rj register is set to the PC register. This means that the 
next instruction will be fetched by the address taken from the Rj register. 

• The instruction format is as follows: 
 

1 1 1 1 1 1 i j1 1 1 1 1 1 i j
 

 

• Memory state is not considered in the instruction, and the memory state does not 
change. 

• Format code  does  not  affect  the  instruction’s  execution. 
• The contents of the Rj register does not change. 

• Suggested assembly statement for the CBR instruction: 
 
       if Ri goto Rj 

• The effect of the CBR instruction (for the case when Ri is non-zero) is shown 
below: 

Ri

Rj

Ri

Rj

MemoryBefore CBR

After CBR

PC

Memory

PC
+2

Addr
Addr+2

Ri

Rj

Ri

Rj

MemoryBefore CBR

After CBR

PC

Memory

PC
+2

Addr
Addr+2
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2.16 NON/STOP Instruction 
• The NOP instruction performs no actions, except moving the PC register to 

the next instruction. 
• The NOP instruction format is as follows: 

 

0 1 0 0 0 00 1 0 0 0 0
 

 
• Memory state is not considered in the instruction, and the memory state does not 

change. 
• The value of the operand part of the instruction (bits from 9 to 0) does not affect 

the execution. 
• The NOP instruction is used as a placeholder (for example to meet alignment 

requirements), or as a  “stub”  while  code  editing  or  automatic  code  generation. 
• Suggested assembly statement for the NOP instruction: 

 
      skip 

• The STOP instruction causes the program execution to interrupt. 
• The STOP instruction format is as follows: 

 

0 0 0 0 0 00 0 0 0 0 0
 

 
• Memory state is not considered in the instruction, and the memory state does not 

change. 
• The value of the operand part of the instruction (bits from 9 to 0) does not affect 

the execution. 
• Suggested assembly statement for the STOP instruction: 
•         stop 
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Appendix B 

Board elements Testing 
 

 
The board elements tests are illustrated by the scenario based approach.  

Each time, a test case is used to test each element.  The function of the FPGA 

is tested by loading the bit stream file and by checking the required 

functions.   

 

The board elements tests are illustrated by the scenario based approach.  

Each time, a test case is used to test each element.  The function of the FPGA 

is tested by loading the bit stream file and by checking the required 

functions.   

 
 
 
Scenario 1 
 

x Units: U5, U7 static memory modules  

x SRAM tests Modules ISSI - IS64WV6416BLL 

x Tests the links between U1 (FPGA) components and static memory 

x Tests the basic functions of reading and writing from and into U5, U7 
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY eurrica IS PORT ( 
 
SW3  : IN STD_LOGIC; 
SW4  : IN STD_LOGIC; 
        Data_0 : INOUT STD_LOGIC; 
        Data_1 : INOUT STD_LOGIC; 
        Data_2 : INOUT STD_LOGIC; 
        Data_3 : INOUT STD_LOGIC; 
        Data_4 : INOUT STD_LOGIC; 
        Data_5 : INOUT STD_LOGIC; 
        Data_6 : INOUT STD_LOGIC; 
        Data_7 : INOUT STD_LOGIC; 
        Data_8 : INOUT STD_LOGIC; 
        Data_9 : INOUT STD_LOGIC; 
        Data_10 : INOUT STD_LOGIC; 
        Data_11 : INOUT STD_LOGIC; 
        Data_12 : INOUT STD_LOGIC; 
        Data_13 : INOUT STD_LOGIC; 
        Data_14 : INOUT STD_LOGIC; 
        Data_15 : INOUT STD_LOGIC; 
 
        SRAM1_L_CE  : OUT STD_LOGIC; 
        SRAM1_L_WE  : OUT STD_LOGIC; 
        SRAM1_L_OE  : OUT STD_LOGIC; 
 
        SRAM2_L_CE  : OUT STD_LOGIC; 
        SRAM2_L_WE  : OUT STD_LOGIC; 
        SRAM2_L_OE  : OUT STD_LOGIC; 
 
        A0:   OUT STD_LOGIC; 
        A1:   OUT STD_LOGIC; 
        A2:   OUT STD_LOGIC; 
        A3:   OUT STD_LOGIC; 
        A4:   OUT STD_LOGIC; 
        A5:   OUT STD_LOGIC; 
        A6:   OUT STD_LOGIC; 
        A7:   OUT STD_LOGIC; 
        A8:   OUT STD_LOGIC; 
        A9:   OUT STD_LOGIC; 
        A10:  OUT STD_LOGIC; 
        A11:  OUT STD_LOGIC; 
        A12:  OUT STD_LOGIC; 
        A13:  OUT STD_LOGIC; 
        A14:  OUT STD_LOGIC; 
        A15:  OUT STD_LOGIC; 
 
        D0:  OUT STD_LOGIC; 
D1 : OUT STD_LOGIC); 
END eurrica; 
 
ARCHITECTURE behavior of eurrica IS 
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BEGIN 
 
   D0 <= not SW3;  
   D1 <= SW4; 
 
   A0 <= '1'; 
   A1 <= '0'; 
   A2 <= '1'; 
   A3 <= '0'; 
   A4 <= '1'; 
   A5 <= '1'; 
   A6 <= '0'; 
   A7 <= '0'; 
   A8 <= '1'; 
   A9 <= '0'; 
   A10 <= '0'; 
   A11 <= '1'; 
   A12 <= '0'; 
   A13 <= '1'; 
   A14 <= '1'; 
   A15 <= '0'; 
 
sm: PROCESS(SW3) 
 
 BEGIN 
 
if (SW3= '1') then 
 
-- write 
 
   SRAM1_L_CE <= '0'; 
   SRAM1_L_WE <= '0'; 
   SRAM1_L_OE <= '0'; 
 
   SRAM2_L_CE <= '0'; 
   SRAM2_L_WE <= '0'; 
   SRAM2_L_OE <= '0'; 
   Data_0  <= SW4; 
   Data_1  <= SW4; 
   Data_2  <= SW4; 
   Data_3  <= SW4; 
   Data_4  <= SW4; 
   Data_5  <= SW4; 
   Data_6  <= SW4; 
   Data_7  <= SW4; 
   Data_8  <= SW4; 
   Data_9  <= SW4; 
   Data_10 <= SW4; 
   Data_11 <= SW4; 
   Data_12 <= SW4; 
   Data_13 <= SW4; 
   Data_14 <= SW4; 
   Data_15 <= SW4; 
else 
-- read 
   SRAM1_L_CE <= '0'; 
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   SRAM1_L_WE <= '1'; 
   SRAM1_L_OE <= '0'; 
 
   SRAM2_L_CE <= '0'; 
   SRAM2_L_WE <= '1'; 
   SRAM2_L_OE <= '0'; 
 
end if; 
 
END PROCESS; 
 
END Behavior; 
-------------------------------------------- 
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The scenario of the first test is to set the specified links between the FPGA 

and the static memory modules (U5, U7) and tests writing and reading 

function. The link configuration is shown on the second column of the table. 

The SW3 is to control write data and read data into memory.  SW4 specifies 

the	
  data	
  to	
  test.	
  	
  When	
  SW3	
  is	
  off	
  (‘0’),	
  it	
  performs	
  reading	
  operation.	
  When	
  

it	
  is	
  on	
  (‘1’),	
  it	
  is to perform writing operation.   The address of the SRAM 

for testing is specified by (A0-A15).  The LED1 and LED2 indicate the 

correct operation of SW3, and SW4.  The data input and output from the 

SRAM	
  (U5,	
  and	
  U7)	
  is	
  check	
  by	
  Voltage	
  meter.	
  Voltage	
  “0”	
  represents a ‘0’ 

logic value,	
  and	
  Voltage	
  “+4”	
  represents a ‘1’ logic value.   Initially, all the 

memory	
  is	
  set	
  to	
  ‘0’.	
  	
  	
  The	
  testing	
  is	
  to	
  change	
  the	
  settings	
  of	
  SW3,	
  and	
  SW4	
  

and check against the input and output voltages from the data line of U5, 

and U7.  If they are matching, then the test is passed, and the links are 

correct and the memory modules are performed required functions.    

 

The first column on Tests is checking memory reading with initial value of 

‘0’.	
   	
   The	
   Voltage	
   on	
   the	
   data	
   line	
   shows	
   the	
   correct	
   results	
   ‘0’.	
   Then	
   the	
  

second	
   column	
   is	
   to	
   change	
   the	
   input	
   value	
   to	
   ‘1’	
   (SW4=1),	
   because	
   the	
  

write	
  control	
  is	
  not	
  changed,	
  so	
  the	
  result	
  should	
  still	
  be	
  ‘0’.	
  	
  The	
  output	
  is	
  

correct	
  and	
  the	
  data	
  still	
  keep	
  on	
  ‘0’.	
  	
  	
  The	
  third	
  column	
  is	
  to	
  write	
  ‘0’	
   into 

the memory (SW3 is setting to write and SW4 is setting to 0) and the result 

shown	
  on	
  data	
  lines	
  are	
  correct,	
  and	
  fourth	
  column	
  is	
  to	
  write	
   ‘1’	
  (SW3	
  is	
  

setting	
   to	
  write	
   and	
  SW4	
   is	
   setting	
   to	
   ‘1’)	
   into	
   the	
  memory	
  modules.	
  The	
  

output	
  should	
  be	
  “+4V”	
  on	
  data line.  The measures by voltage meter show 

the correct results.   
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Scenario 1 results 
Net EP2C20Q240C8 Tests 

 
 
 
 
 
 

U5 
/U7 

DATA_0 155 0 0 0 +4v  
DATA_1 156 0 0 0 +4v 
DATA_2 157 0 0 0 +4v 
DATA_3 159 0 0 0 +4v 
DATA_4 161 0 0 0 +4v 
DATA_5 162 0 0 0 +4v 
DATA_6 164 0 0 0 +4v 
DATA_7 165 0 0 0 +4v 
DATA_8 166 0 0 0 +4v 
DATA_9 167 0 0 0 +4v  
DATA_10 168 0 0 0 +4v 
DATA_11 170 0 0 0 +4v 
DATA_12 171 0 0 0 +4v 
DATA_13 173 0 0 0 +4v 
DATA_14 174 0 0 0 +4v 
DATA_15 175 0 0 0 +4v 

 
 
 
 

U5 
/U7 

ADDR_0 8 +4v +4v +4v +4v 
ADDR_1 9 0 0 0 0 
ADDR_2 11 +4v +4v +4v +4v 
ADDR_3 13 0 0 0 0 
ADDR_4 14 +4v +4v +4v +4v 
ADDR_5 15 +4v +4v +4v +4v 
ADDR_6 16 0 0 0 0 
ADDR_7 18 0 0 0 0 
ADDR_8 20 +4v +4v +4v +4v 
ADDR_9 21 0 0 0 0 
ADDR_10 37 0 0 0 0 
ADDR_11 38 +4v +4v +4v +4v 
ADDR_12 39 0 0 0 0 
ADDR_13 41 +4v +4v +4v +4v 
ADDR_14 42 +4v +4v +4v +4v 
ADDR_15 44 0 0 0 0 

U5 
SRAM1_L_CE 233 0 0 0 0 
SRAM1_L_WE 232 +4v +4v 0 0 
SRAM1_L_OE 231 0 0 0 0 

U7 
SRAM2_L_CE 230 0 0 0 0 
SRAM2_L_WE 228 +4v +4v 0 0 
SRAM2_L_OE 226 0 0 0 0 

 LED1 125 off off on on 
 LED2 178 on off on off 
 Switch_3 7 0(off)  0(off) 1(on) 1(on) 
 Switch_4 119 0(off)  1(on) 0(off) 1(on) 

Results (PASS) 9 9 9 9 
 
Scenario 2  
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x U6 and U8 testing 

x SRAM tests Modules ISSI - IS64WV6416BLL 

x Tests the links between U1 (FPGA) components and static memory  

x Tests the basic functions of reading and writing from and into U6, U8 
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY eurrica IS PORT ( 
 
SW3  : IN STD_LOGIC; 
SW4  : IN STD_LOGIC; 
 
        Data_16 : INOUT STD_LOGIC; 
        Data_17 : INOUT STD_LOGIC; 
        Data_18 : INOUT STD_LOGIC; 
        Data_19 : INOUT STD_LOGIC; 
        Data_20 : INOUT STD_LOGIC; 
        Data_21 : INOUT STD_LOGIC; 
        Data_22 : INOUT STD_LOGIC; 
        Data_23 : INOUT STD_LOGIC; 
        Data_24 : INOUT STD_LOGIC; 
        Data_25 : INOUT STD_LOGIC; 
        Data_26 : INOUT STD_LOGIC; 
        Data_27 : INOUT STD_LOGIC; 
        Data_28 : INOUT STD_LOGIC; 
        Data_29 : INOUT STD_LOGIC; 
        Data_30 : INOUT STD_LOGIC; 
        Data_31 : INOUT STD_LOGIC; 
 
        SRAM2_H_CE  : OUT STD_LOGIC; 
        SRAM2_H_WE  : OUT STD_LOGIC; 
        SRAM2_H_OE  : OUT STD_LOGIC; 
 
        A0:   OUT STD_LOGIC; 
        A1:   OUT STD_LOGIC; 
        A2:   OUT STD_LOGIC; 
        A3:   OUT STD_LOGIC; 
        A4:   OUT STD_LOGIC; 
        A5:   OUT STD_LOGIC; 
        A6:   OUT STD_LOGIC; 
        A7:   OUT STD_LOGIC; 
        A8:   OUT STD_LOGIC; 
        A9:   OUT STD_LOGIC; 
        A10:  OUT STD_LOGIC; 
        A11:  OUT STD_LOGIC; 
        A12:  OUT STD_LOGIC; 
        A13:  OUT STD_LOGIC; 
        A14:  OUT STD_LOGIC; 
        A15:  OUT STD_LOGIC; 
 
        LED1:  OUT STD_LOGIC; 
LED2 : OUT STD_LOGIC); 
END eurrica; 
 
ARCHITECTURE behavior of eurrica IS 
 
BEGIN 
   LED1 <= not SW3;  
   LED2 <= SW4; 
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   A0 <= '1'; 
   A1 <= '0'; 
   A2 <= '1'; 
   A3 <= '0'; 
   A4 <= '1'; 
   A5 <= '1'; 
   A6 <= '0'; 
   A7 <= '0'; 
   A8 <= '1'; 
   A9 <= '0'; 
   A10 <= '0'; 
   A11 <= '1'; 
   A12 <= '0'; 
   A13 <= '1'; 
   A14 <= '1'; 
   A15 <= '0'; 
 
sm: PROCESS(SW3) 
 
 BEGIN 
 
if (SW3 = '1') then 
 
-- write 
 
   SRAM2_H_CE <= '0'; 
   SRAM2_H_WE <= '0'; 
   SRAM2_H_OE <= '0'; 
 
   Data_16  <= SW4; 
   Data_17  <= SW4; 
   Data_18  <= SW4; 
   Data_19  <= SW4; 
   Data_20  <= SW4; 
   Data_21  <= SW4; 
   Data_22  <= SW4; 
   Data_23  <= SW4; 
   Data_24  <= SW4; 
   Data_25  <= SW4; 
   Data_26 <= SW4; 
   Data_27 <= SW4; 
   Data_28 <= SW4; 
   Data_29 <= SW4; 
   Data_30 <= SW4; 
   Data_31 <= SW4; 
 
 
 
else 
 
-- read 
 
   SRAM2_H_CE <= '0'; 
   SRAM2_H_WE <= '1'; 
   SRAM2_H_OE <= '0'; 
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end if; 
 
END PROCESS; 
 
END Behavior; 
 
-------------------------------------- 
 



Appendix B 

 366 

 
The scenario of the second test is to set the specified links between the 

FPGA and the static memory modules (U6, U8) and tests writing and 

reading function. The link configuration is shown on the second column of 

the table. The SW3 is to control write data and read data into memory.  

SW4	
  specifies	
  the	
  data	
  to	
  test.	
   	
  When	
  SW3	
  is	
  off	
  (‘0’),	
   it	
  performs	
  reading	
  

operation.	
   When	
   it	
   is	
   on	
   (‘1’),	
   it	
   is	
   to	
   perform	
   writing	
   operation.	
   	
   	
   The	
  

address of the SRAM for testing is specified by (A0-A15).  The data input 

and output is linked to D16-D31.  The LED1 and LED2 indicate the correct 

operation of SW3, and SW4.  The data input and output from the SRAM (U6, 

and U8) is check by Voltage meter. Voltage	
  “0”	
  represents a ‘0’ logic value, 

and	
  Voltage	
  “+4”	
  represents a ‘1’ logic value.   Initially, all the memory is set 

to	
   ‘0’.	
   	
   	
   The	
   testing	
   is	
   to	
   change	
   the	
   settings	
  of	
   SW3,	
   and	
   SW4	
  and	
   check	
  

against the input and output voltages from the data line of U6, and U8.  If 

they are matching, then the test is passed, and the links are correct and the 

memory modules are performed required functions.    

 

The first column on Tests is checking memory reading with initial value of 

‘0’.	
   	
   The	
   Voltage	
   on	
   the	
   data	
   line	
   shows	
   the	
   correct	
   results	
   ‘0’.	
   Then	
   the	
  

second	
   column	
   is	
   to	
   change	
   the	
   input	
   value	
   to	
   ‘1’	
   (SW4=1),	
   because	
   the	
  

write	
  control	
  is	
  not	
  changed,	
  so	
  the	
  result	
  should	
  still	
  be	
  ‘0’.	
  	
  The	
  output	
  is	
  

correct	
  and	
  the	
  data	
  still	
  keep	
  on	
  ‘0’.	
  	
  	
  The	
  third	
  column	
  is	
  to	
  write	
  ‘0’	
  into	
  

the memory (SW3 is setting to write and SW4 is setting to 0) and the result 

shown	
  on	
  data	
  lines	
  are	
  correct,	
  and	
  fourth	
  column	
  is	
  to	
  write	
   ‘1’	
  (SW3	
  is	
  

setting	
   to	
  write	
   and	
  SW4	
   is	
   setting	
   to	
   ‘1’)	
   into	
   the	
  memory	
  modules.	
  The	
  

output	
  should	
  be	
  “+4V”	
  on	
  data	
  line.	
  	
  The	
  measures	
  by	
  voltage	
  meter	
  show	
  

the correct results.   
 
 

Scenario 2 results U6 
 

Net EP2C20Q240C8 Tests 
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U6 
 

DATA_16 177 0 0 0 +4v  
DATA_17 184 0 0 0 +4v 
DATA_18 185 0 0 0 +4v 
DATA_19 186 0 0 0 +4v 
DATA_20 187 0 0 0 +4v 
DATA_21 188 0 0 0 +4v 
DATA_22 189 0 0 0 +4v 
DATA_23 191 0 0 0 +4v 
DATA_24 192 0 0 0 +4v 
DATA_25 194 0 0 0 +4v  
DATA_26 195 0 0 0 +4v 
DATA_27 197 0 0 0 +4v 
DATA_28 199 0 0 0 +4v 
DATA_29 200 0 0 0 +4v 
DATA_30 203 0 0 0 +4v 
DATA_31 208 0 0 0 +4v 

       
 
 
 
 
 

U6 
 

ADDR_0 8 +4v +4v +4v +4v 
ADDR_1 9 0 0 0 0 
ADDR_2 11 +4v +4v +4v +4v 
ADDR_3 13 0 0 0 0 
ADDR_4 14 +4v +4v +4v +4v 
ADDR_5 15 +4v +4v +4v +4v 
ADDR_6 16 0 0 0 0 
ADDR_7 18 0 0 0 0 
ADDR_8 20 +4v +4v +4v +4v 
ADDR_9 21 0 0 0 0 
ADDR_10 37 0 0 0 0 
ADDR_11 38 +4v +4v +4v +4v 
ADDR_12 39 0 0 0 0 
ADDR_13 41 +4v +4v +4v +4v 
ADDR_14 42 +4v +4v +4v +4v 
ADDR_15 44 0 0 0 0 

       

U6 
SRAM1_H_CE 230 0 0 0 0 
 SRAM1_H_WE 228 +4v +4v 0 0 
SRAM1_H_OE 226 0 0 0 0 

       
 LED1 125 off off on on 
 LED2 178 on off on off 
       
 Switch_3 7 0(off)  0(off) 1(on) 1(on) 
 Switch_4 119 0(off)  1(on) 0(off) 1(on) 
 Results (PASS) 9 9 9 9 
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Scenario 2 results U8 

 
Net EP2C20Q240C8 Tests 

 
 
 
 

U8 

DATA_16 177 0 0 0 +4v  
DATA_17 184 0 0 0 +4v 
DATA_18 185 0 0 0 +4v 
DATA_19 186 0 0 0 +4v 
DATA_20 187 0 0 0 +4v 
DATA_21 188 0 0 0 +4v 
DATA_22 189 0 0 0 +4v 
DATA_23 191 0 0 0 +4v 
DATA_24 192 0 0 0 +4v 
DATA_25 194 0 0 0 +4v  
DATA_26 195 0 0 0 +4v 
DATA_27 197 0 0 0 +4v 
DATA_28 199 0 0 0 +4v 
DATA_29 200 0 0 0 +4v 
DATA_30 203 0 0 0 +4v 
DATA_31 208 0 0 0 +4v 

       
 
 
 
 
 

U8 

ADDR_0 8 +4v +4v +4v +4v 
ADDR_1 9 0 0 0 0 
ADDR_2 11 +4v +4v +4v +4v 
ADDR_3 13 0 0 0 0 
ADDR_4 14 +4v +4v +4v +4v 
ADDR_5 15 +4v +4v +4v +4v 
ADDR_6 16 0 0 0 0 
ADDR_7 18 0 0 0 0 
ADDR_8 20 +4v +4v +4v +4v 
ADDR_9 21 0 0 0 0 
ADDR_10 37 0 0 0 0 
ADDR_11 38 +4v +4v +4v +4v 
ADDR_12 39 0 0 0 0 
ADDR_13 41 +4v +4v +4v +4v 
ADDR_14  +4v +4v +4v +4v 
ADDR_15  0 0 0 0 

     42  

U8 
SRAM2_H_CE 216 0 0 44 0 
SRAM2_H_WE 232    +4v +4v  0 0 
SRAM2_H_OE 117 0 0 0 0 

       
 LED1 125 off off on on 
 LED2 178 on off on off 
       
 Switch_3 7 0(off)  0(off) 1(on) 1(on) 
 Switch_4 119 0(off)  1(on) 0(off) 1(on) 
 Results (PASS) 9 9 9 9 

 
Comments:   The  SRAM2_H_WE is configured to connect U1 pin 232. 
 

 
 
 
  
Scenario 3 
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x U9, and U10- the Read Only Memory (ROM) modules testing 

x Tests ROM Modules SHARP - LHF12F17 

x Tests the links between U1 (FPGA) components and ROM 

x Tests the basic functions of reading and writing of U9, U10 
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
ENTITY eurrica IS PORT ( 
SW3  : IN STD_LOGIC; 
SW4  : IN STD_LOGIC; 
-- Data Bus 
        Data_0 : INOUT STD_LOGIC; 
        Data_1 : INOUT STD_LOGIC; 
        Data_2 : INOUT STD_LOGIC; 
        Data_3 : INOUT STD_LOGIC; 
        Data_4 : INOUT STD_LOGIC; 
        Data_5 : INOUT STD_LOGIC; 
        Data_6 : INOUT STD_LOGIC; 
        Data_7 : INOUT STD_LOGIC; 
        Data_8 : INOUT STD_LOGIC; 
        Data_9 : INOUT STD_LOGIC; 
        Data_10 : INOUT STD_LOGIC; 
        Data_11 : INOUT STD_LOGIC; 
        Data_12 : INOUT STD_LOGIC; 
        Data_13 : INOUT STD_LOGIC; 
        Data_14 : INOUT STD_LOGIC; 
        Data_15 : INOUT STD_LOGIC; 
        Data_16 : INOUT STD_LOGIC; 
        Data_17 : INOUT STD_LOGIC; 
        Data_18 : INOUT STD_LOGIC; 
        Data_19 : INOUT STD_LOGIC; 
        Data_20 : INOUT STD_LOGIC; 
        Data_21 : INOUT STD_LOGIC; 
        Data_22 : INOUT STD_LOGIC; 
        Data_23 : INOUT STD_LOGIC; 
        Data_24 : INOUT STD_LOGIC; 
        Data_25 : INOUT STD_LOGIC; 
        Data_26 : INOUT STD_LOGIC; 
        Data_27 : INOUT STD_LOGIC; 
        Data_28 : INOUT STD_LOGIC; 
        Data_29 : INOUT STD_LOGIC; 
        Data_30 : INOUT STD_LOGIC; 
        Data_31 : INOUT STD_LOGIC; 
-- U9 control signals 
        ROM1_L_CE  : OUT STD_LOGIC; 
        ROM1_L_OE  : OUT STD_LOGIC; 
        ROM1_L_WE  : OUT STD_LOGIC; 
        ROM1_L_WP  : OUT STD_LOGIC; 
-- U10 control signals 
        ROM1_H_CE: OUT STD_LOGIC; 
        ROM1_H_OE: OUT STD_LOGIC; 
        ROM1_H_WE: OUT STD_LOGIC; 
        ROM1_H_WP: OUT STD_LOGIC; 
 
-- Address Bus 
        A0:   OUT STD_LOGIC; 
        A1:   OUT STD_LOGIC; 
        A2:   OUT STD_LOGIC; 
        A3:   OUT STD_LOGIC; 
        A4:   OUT STD_LOGIC; 
        A5:   OUT STD_LOGIC; 
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        A6:   OUT STD_LOGIC; 
        A7:   OUT STD_LOGIC; 
        A8:   OUT STD_LOGIC; 
        A9:   OUT STD_LOGIC; 
        A10:  OUT STD_LOGIC; 
        A11:  OUT STD_LOGIC; 
        A12:  OUT STD_LOGIC; 
        A13:  OUT STD_LOGIC; 
        A14:  OUT STD_LOGIC; 
        A15:  OUT STD_LOGIC; 
        A16:  OUT STD_LOGIC; 
        A17:  OUT STD_LOGIC; 
        A18:  OUT STD_LOGIC; 
        A19:  OUT STD_LOGIC; 
        A20:  OUT STD_LOGIC; 
        A21:  OUT STD_LOGIC; 
        A22:  OUT STD_LOGIC; 
        LED1:  OUT STD_LOGIC; 
LED2 : OUT STD_LOGIC); 
END eurrica; 
ARCHITECTURE behavior of eurrica IS 
BEGIN 
   LED1 <= not SW3;  
   LED2 <= SW4; 
   A0 <= '1'; 
   A1 <= '0'; 
   A2 <= '1'; 
   A3 <= '0'; 
   A4 <= '1'; 
   A5 <= '1'; 
   A6 <= '0'; 
   A7 <= '0'; 
   A8 <= '1'; 
   A9 <= '0'; 
   A10 <= '0'; 
   A11 <= '1'; 
   A12 <= '0'; 
   A13 <= '1'; 
   A14 <= '1'; 
   A15 <= '0'; 
   A16 <= '1'; 
   A17 <= '1'; 
   A18 <= '1'; 
   A19 <= '1'; 
   A20 <= '1'; 
   A21 <= '1'; 
   A22 <= '1'; 
sm: PROCESS(SW3) 
 BEGIN 
if (SW3 = '1') then 
-- write 
 
-- U9 control signals 
   ROM1_L_CE <= '0'; 
   ROM1_L_OE <= '1'; 
   ROM1_L_WE <= '0'; 
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   ROM1_L_WP <= '1'; 
 
-- U10 control signals 
   ROM1_H_CE <='0'; 
   ROM1_H_OE <='1'; 
   ROM1_H_WE <='0'; 
   ROM1_H_WP <='1'; 
 
   Data_0  <= SW4; 
   Data_1  <= SW4; 
   Data_2  <= SW4; 
   Data_3  <= SW4; 
   Data_4  <= SW4; 
   Data_5  <= SW4; 
   Data_6  <= SW4; 
   Data_7  <= SW4; 
   Data_8  <= SW4; 
   Data_9  <= SW4; 
   Data_10 <= SW4; 
   Data_11 <= SW4; 
   Data_12 <= SW4; 
   Data_13 <= SW4; 
   Data_14 <= SW4; 
   Data_15 <= SW4; 
   Data_16 <= SW4; 
   Data_17 <= SW4; 
   Data_18 <= SW4; 
   Data_19 <= SW4; 
   Data_20 <= SW4; 
   Data_21 <= SW4; 
   Data_22 <= SW4; 
   Data_23 <= SW4; 
   Data_24 <= SW4; 
   Data_25 <= SW4; 
   Data_26 <= SW4; 
   Data_27 <= SW4; 
   Data_28 <= SW4; 
   Data_29 <= SW4; 
   Data_30 <= SW4; 
   Data_31 <= SW4; 
else 
-- read 
-- U9 control signals 
   ROM1_L_CE <= '0'; 
   ROM1_L_OE <= '0'; 
   ROM1_L_WE <= '1'; 
   ROM1_L_WP <= '0'; 
-- U10 control signals 
 
   ROM1_H_CE <='0'; 
   ROM1_H_OE <='0'; 
   ROM1_H_WE <='1'; 
   ROM1_H_WP <='0'; 
 
end if; 
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END PROCESS; 
 
END Behavior; 
---------------------------------------------------------- 
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The scenario of testing ROM is similar with testing RAM, except that the WP 

is	
   set	
   to	
   ‘0’	
   and	
   allows	
   read	
   and	
  write.	
   	
   	
   The	
   specified	
   links	
   between	
   the	
  

FPGA and the ROM modules (U9, U10)  is shown on the second column of 

the following table.  The SW3 is to control write data and read data into 

memory.	
  	
  SW4	
  specifies	
  the	
  data	
  to	
  test.	
  	
  When	
  SW3	
  is	
  off	
  (‘0’),	
  it	
  performs	
  

reading	
   operation.	
  When	
   it	
   is	
   on	
   (‘1’), it is to perform writing operation.   

The address of the ROM for testing is specified by (A0-A22).  The LED1 and 

LED2 indicate the correct operation of SW3, and SW4.  The data input and 

output (D0-D31)	
   is	
  check	
  by	
  Voltage	
  meter.	
   	
   If	
  Voltage	
   “0”	
  means	
   ‘0’, and 

Voltage	
  “+4”	
  means	
  ‘1’.	
  	
  	
  Initially,	
  all	
  the	
  memory	
  is	
  set	
  to	
  ‘0’.	
  	
  	
  The	
  testing	
  is	
  

to change the settings of SW3, and SW4 and check against the input and 

output voltages from D0-D31.  If they are matching, then the test is passed, 

and the links are correct and the memory modules are performed required 

functions.   

  

 

The first column on Tests is checking memory reading with initial value of 

‘0’.	
   	
   The	
   Voltage	
   on	
   the	
   data	
   line	
   shows	
   the	
   correct	
   results	
   ‘0’.	
   Then	
   the	
  

second column is to change the input value	
   to	
   ‘1’	
   (SW4=1),	
   because	
   the	
  

write	
  control	
  is	
  not	
  changed,	
  so	
  the	
  result	
  should	
  still	
  be	
  ‘0’.	
  	
  The	
  output	
  is	
  

correct	
  and	
  the	
  data	
  still	
  keep	
  on	
  ‘0’.	
  	
  	
  The	
  third	
  column	
  is	
  to	
  write	
  ‘0’	
  into	
  

the memory (SW3 is setting to write and SW4 is setting to 0) and the result 

shown	
  on	
  data	
  lines	
  are	
  correct,	
  and	
  fourth	
  column	
  is	
  to	
  write	
   ‘1’	
  (SW3	
  is	
  

setting	
   to	
  write	
   and	
  SW4	
   is	
   setting	
   to	
   ‘1’)	
   into	
   the	
  memory	
  modules.	
  The	
  

output	
  should	
  be	
  “+4V”	
  on	
  data	
  line.	
  	
  The	
  measures	
  by	
  voltage	
  meter	
  show	
  

the correct results. 
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Scenario 3 results  
 

Net EP2C20Q240C8 Tests 
 
 
 
 
 
 
 
 

U9 
/U10 

DATA_0 PIN_155 0 0 0 +4v  
DATA_1 PIN_156 0 0 0 +4v 
DATA_2 PIN_157 0 0 0 +4v 
DATA_3 PIN_159 0 0 0 +4v 
DATA_4 PIN_161 0 0 0 +4v 
DATA_5 PIN_162 0 0 0 +4v 
DATA_6 PIN_164 0 0 0 +4v 
DATA_7 PIN_165 0 0 0 +4v 
DATA_8 PIN_166 0 0 0 +4v 
DATA_9 PIN_167 0 0 0 +4v  

DATA_10 PIN_168 0 0 0 +4v 
DATA_11 PIN_170 0 0 0 +4v 
DATA_12 PIN_171 0 0 0 +4v 
DATA_13 PIN_173 0 0 0 +4v 
DATA_14 PIN_174 0 0 0 +4v 
DATA_15 PIN_175 0 0 0 +4v 
DATA_16 PIN_177 0 0 0 +4v  
DATA_17 PIN_184 0 0 0 +4v 
DATA_18 PIN_185 0 0 0 +4v 
DATA_19 PIN_186 0 0 0 +4v 
DATA_20 PIN_187 0 0 0 +4v 
DATA_21 PIN_188 0 0 0 +4v 
DATA_22 PIN_189 0 0 0 +4v 
DATA_23 PIN_191 0 0 0 +4v 
DATA_24 PIN_192 0 0 0 +4v 
DATA_25 PIN_194 0 0 0 +4v 
DATA_26 PIN_195 0 0 0 +4v 
DATA_27 PIN_197 0 0 0 +4v 
DATA_28 PIN_199 0 0 0 +4v 
DATA_29 PIN_200 0 0 0 +4v 
DATA_30 PIN_203 0 0 0 +4v 
DATA_31 PIN_208 0 0 0 +4v 

       
 
 
 
 
 

U9 
/U10 

ADDR_0 PIN_8 +4v +4v +4v +4v 
ADDR_1 PIN_9 0 0 0 0 
ADDR_2 PIN_11 +4v +4v +4v +4v 
ADDR_3 PIN_13 0 0 0 0 
ADDR_4 PIN_14 +4v +4v +4v +4v 
ADDR_5 PIN_15 +4v +4v +4v +4v 
ADDR_6 PIN_16 0 0 0 0 
ADDR_7 PIN_18 0 0 0 0 
ADDR_8 PIN_20 +4v +4v +4v +4v 
ADDR_9 PIN_21 0 0 0 0 
ADDR_10 PIN_37 0 0 0 0 
ADDR_11 PIN_38 +4v +4v +4v +4v 
ADDR_12 PIN_39 0 0 0 0 
ADDR_13 PIN_41 +4v +4v +4v +4v 
ADDR_14 PIN_42 +4v +4v +4v +4v 
ADDR_15 PIN_44 0 0 0 0 
ADDR_16 PIN_46 +4v +4v +4v +4v 
ADDR_17 PIN_47 +4v +4v +4v +4v 
ADDR_18 PIN_49 +4v +4v +4v +4v 

 ADDR_19 PIN_50 +4v +4v +4v +4v 
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 ADDR_20 PIN_51 +4v +4v +4v +4v 
 ADDR_21 PIN_52 +4v +4v +4v +4v 
 ADDR_22 PIN_54 +4v +4v +4v +4v 
       
       

U9 

     ROM1_H_CE PIN_111 0 0 0 0 
ROM1_H_WE PIN_114 +4v  +4v  +4v +4v 
ROM1_H_OE PIN_113 0 0 0 0 
ROM1_H_WP PIN_116 0 0 +4v +4v 

       
 
 

U10 

     ROM1_L_CE PIN_105 0 0 0 0 
ROM1_L_WE PIN_109 +4v  +4v  +4v +4v 
ROM1_L_OE PIN_106 0 0 0 0 
ROM1_L_WP PIN_110 0 0 +4v +4v 

       
 LED1 125 off off on on 
 LED2 178 on off on off 
       
 Switch_3 7 0(off)  0(off) 1(on) 1(on) 
 Switch_4 119 0(off)  1(on) 0(off) 1(on) 
 Results 9 9 9 9 
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The functional testing of the ERRIC 
 
The sequences of the code to test ERRIC processor are illustrated below. 
They are loaded with the bits stream file into the FPGA through JTAG 
interface.  Then the codes are executed.  The input is the number controlled 
by push bottom of the Altera board and the calculation results is shown out 
on 7 segment indicators. 
 
-- testing for ADD, Load, CND, CBR 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00010100011000110000010000100011;  --4  ADD R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
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The function of first sequences of code is a loop to continue loading input 

data, do the ADD calculation, and output results.  To achieve these 

functions, the instructions - ADD, Load, CND, CBR must function correctly.  

First, the input port memory address is loaded into R1, output port 

memory address is loaded into R2. Then load the input data, do the ADD 

operation on the loaded data, and then output the results.  After the 

operation, it jumps back to the next loop ready to the next tests.  

 

The following picture is showed both the simulation results and the 

physical testing results.  It performs 3+3 function, the ADD function gives 

the results 6.  The results in simulation and indication on testing board (7 

Segment digital) are matched to prove that the tests are passed.  The 

number shows in the circles on the pictures are matched the 7 segments of 

testing Altera board in all the following tests. 
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Results of functional testing of ADD, LOAD, CND, CBR instruction 



                                                                                             
 

 
 

 
-- testing for SUB 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00011000011000110000010000100011;  --4  SUB R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is a loop to continue loading input data, do 
the SUB calculation, and output results.  First, the input port memory address is 
loaded into R1, output port memory address is loaded into R2. Then load the 
input data, do the SUB operation on the loaded data, and then output the results.  
After the operation, it jumps back to the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing results.  It performs 3-3 function, the subtract function gives the results 
0.  The results in simulation and indication on testing board (7 Segment digital) 
are matched to prove that the tests are passed.  The number shows in the square 
on the following pictures are matched the 7 segments of testing Altera board in 
all the following tests. 
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Testing results of SUB 
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-- testing for ASL 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00100000011000110000010000100011;  --4  ASL R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 

The function of this sequence of code is a loop to continue loading input data, do 
the ASL calculation, and output results.  First, the input port memory address is 
loaded into R1, output port memory address is loaded into R2. Then load the 
input data, do the ASL operation on the loaded data, and then output the results.  
After the operation, it jumps back to the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing results.  It performs arithmetically left shift function	
  on	
  input	
  data	
  ‘3’,	
  the	
  
function	
  gives	
  the	
  results	
  ‘6’.	
  	
  The	
  results	
  in	
  simulation	
  and	
  indication	
  on	
  testing	
  

board (7 Segment digital) are matched to prove that the tests are passed.  The 
number shows in the square on the following pictures are matched the 7 
segments of testing Altera board in all the following tests. 
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The results of testing ASL instructions 
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-- testing for ASR 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00011100011000110000010000100011;  --4  ASR R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is to test arithmetic shift right instruction.  
It is a loop to continue loading input data, do the ASR calculation, and output 
results.  First, the input port memory address is loaded into R1, output port 
memory address is loaded into R2. Then load the input data, do the ASR 
operation on the loaded data, and then output the results.  After the operation, it 
jumps back to the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing results.  It performs arithmetically right shift function on input data 
“0..011”,	
   the	
   function	
   gives	
   the	
   results	
   “..0..01”.	
   	
   The	
   results	
   in	
   simulation	
   and	
  

indication on testing board (7 Segment digital) are matched to prove that the 
tests are passed.  The number shows in the square on the following pictures are 
matched the 7 segments of testing Altera board in all the following tests. 
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The results of ASR 
 



Appendix B 

 389 

 
-- testing for AND 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00101000011000110000010000100011;  --4  AND R3 R3 ; LD (R1) R3 
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is to test logic AND  instruction.  It is a loop 
to continue loading input data, do the logically AND function, and output results.  
First, the input port memory address is loaded into R1, output port memory 
address is loaded into R2. Then load the input data, do the AND operation on the 
loaded data, and then output the results.  After the operation, it jumps back to 
the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing	
   results.	
   	
   It	
   performs	
   logical	
   AND	
   function	
   on	
   input	
   data	
   “0..011”,	
   the	
  

function	
  gives	
  the	
  results	
  “0..011”.	
   	
  The	
  results	
   in	
  simulation	
  and	
  indication	
  on	
  

testing board (7 Segment digital) are matched to prove that the tests are passed.  
The number shows in the square on the following pictures are matched the 7 
segments of testing Altera board in all the following tests. 
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The testing results of AND instructions 
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-- testing for OR 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00100100001000110000010000100011;  --4  OR R3 R3 ; LD (R1) R3 
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is to test logic OR  instruction.  It is a loop 
to continue loading input data, do the logically OR function, and output results.  
First, the input port memory address is loaded into R1, output port memory 
address is loaded into R2. Then load the input data, do the OR operation on the 
loaded data, and then output the results.  After the operation, it jumps back to 
the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing results.  It performs logical OR function	
   on	
   input	
   data	
   “0..011”	
   and	
  
“0..0..00”,	
   the	
   function	
  gives	
   the	
  results	
  “0..011”.	
   	
  The	
  results	
   in	
  simulation	
  and	
  

indication on testing board (7 Segment digital) are matched to prove that the 
tests are passed.  The number shows on the following pictures are matched the 7 
segments of testing Altera board in all the following tests. 
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The testing results of the OR instruction 
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-- testing for XOR 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00101100001000110000010000100011;  --4  XOR R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is to test logic XOR  instruction.  It is a loop 
to continue loading input data, do the logically XOR function, and output results.  
First, the input port memory address is loaded into R1, output port memory 
address is loaded into R2. Then load the input data, do the XOR operation on the 
loaded data, and then output the results.  After the operation, it jumps back to 
the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing	
   results.	
   	
   It	
   performs	
   logical	
   XOR	
   function	
   on	
   input	
   data	
   “0..001”	
   and	
  

“0..000”,	
   the	
   function	
   gives	
   the	
   results	
   “0..001”.	
   	
   The	
   results	
   in	
   simulation	
   and	
  

indication on testing board (7 Segment digital) are matched to prove that the 
tests are passed.  The number shows on the following pictures are matched the 7 
segments of testing Altera board in all the following tests. 
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The testing results of the XOR instruction 
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-- testing for LSL 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00110000011000110000010000100011;  --4  LSL R3 R3 ; LD (R1) R3  
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is to test logic left shift instruction.  It is a 
loop to continue loading input data, do the logically left shift function, and 
output results.  First, the input port memory address is loaded into R1, output 
port memory address is loaded into R2. Then load the input data, do the logic 
left shift operation on the loaded data, and then output the results.  After the 
operation, it jumps back to the next loop ready to the next tests.  
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The following picture is showed both the simulation results and the physical 
testing	
   results.	
   	
   It	
   performs	
   logical	
   left	
   function	
   on	
   input	
   data	
   “0..001”,	
   the	
  

function	
  gives	
  the	
  results	
  “0..010”.	
   	
  The	
  results	
   in	
  simulation	
  and	
  indication	
  on	
  

testing board (7 Segment digital) are matched to prove that the tests are passed.  
The number shows on the following pictures are matched the 7 segments of 
testing Altera board in all the following tests. 
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The testing result of LSL 
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-- testing for LSR 
WIDTH=32;  
DEPTH=64;   
ADDRESS_RADIX=HEX;   
DATA_RADIX=BIN; 
 
CONTENT BEGIN 
 00  :   00000000000000000000000000000000;  --0        ------------ 
 01  :   00001000000000100000100000000001;  --1  LDA R2   ; LDA R1 
 02  :   00100000000000000000000000000000;  --2  (input)  port1(addr) 
 03  :   01000000000000000000000000000000;  --3  (output) port2(addr) 
 04  :   00110100011000110000010000100011;  --4  LSR R3 R3 ; LD (R1) R3   
 05  :   00001100010000110000110001000011;  --5     --     ; ST (R2) R3 
 06  :   00111000101000010000100000000101;  --6  CBR R5  R1 ; LDA R5 
 07  :   00000000000000000000000000000100;  --7    --4-- Address 
 08  :   00001000000001100000100000000101;  --8  --LDA R6 ; LDA R5 
 09  :   00000000000000000000000000010110;  --9  --      22(jump1) 
 0a  :   00000000000000000000000000010101;  --10 --      21(jump2) 
 0b  :   00001000000010000000100000000111;  --11 --LDA R8    ;  LDA R7 
 0c  :   00000000000000000000000000011100;  --12  --     28(jump3)  
 0d  :   01000000000000000000000000000000;  --13  --(output)   port2(addr) 
 0e  :   00001000000010100000100000001001;  --14 --LDA R10   ;  LDA R9    
 0f  :   00000000000000000000000000001011;  --15   --    B 
 10  :   00000000000000000000000000001010;  --16   --    A 
 11  :   00001000000011000000100000001011;  --17 --LDA R12   ;  LDA R11 
 12  :   11000000000000000000000000000000;  --18 --     Mask(<=) 
 13  :   00100000000000000000000000000000;  --19 --     Mask(>) 
 14  :   00000000000000000000100000001101;  --20 --     LD (PC) R13 
 15  :   00000000000000000000000000000010;  --21 --     2 
 16  :   00000000000000000001000001001110;  --22 --     MV  R2  R14 
 17  :   00000000000000000001010000101110;  --23 --     ADD R1  R14 
 18  :   00111100011100000001000111010000;  --24 -- CND R3 R16 ; mv  R14 R16 
 19  :   00111000101100000010100101110000;  --25 -- CBR R5 R16;  AND R11 R16 
 1a  :   00111101101011110000010010001111;  --26 -- CND R13 R15; LD  R4  R15 
 1b  :   00111001111001110010100110001111;  --27 -- CBR R7 R15 ; AND R12 R15 
 1c  :   00111000110000010000110101001000;  --28 -- CBR R6 R1;   ST  R10 R8 
 1d  :   00111000110000010000110100101000;  --29 -- CBR R6 R1;   ST  R9  R8 
 1e  :   10001110100000000010000000000000; 
 [1f..2d]  :   10101110000000000010000000000000; 
 2e  :   11011110000000000010000000000000; 
 [2f..3a]  :   01011000100000000010000000000000; 
 3b  :   11011110000000000010000000000000; 
 [3c..3d]  :   01111000100000000010000000000000; 
 3e  :   00110100000000000010000000000000; 
 3f  :   11111111111111110010000000000000; 
END; 
 
 
The function of this sequence of code is to test logic right shift instruction.  It is a 
loop to continue loading input data, do the logically left shift function, and 
output results.  First, the input port memory address is loaded into R1, output 
port memory address is loaded into R2. Then load the input data, do the logic 
left right operation on the loaded data, and then output the results.  After the 
operation, it jumps back to the next loop ready to the next tests.  



Appendix B 

 402 

 
The following picture is showed both the simulation results and the physical 
testing	
   results.	
   	
   It	
   performs	
   logical	
   left	
   function	
   on	
   input	
   data	
   “0..011”,	
   the	
  

function	
  gives	
  the	
  results	
  “0..001”.	
   	
  The	
  results	
   in	
  simulation	
  and	
  indication	
  on	
  

testing board (7 Segment digital) are matched to prove that the tests are passed.  
The number shows on the following pictures are matched the 7 segments of 
testing Altera board in all the following tests. 
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The testing results of LSR 
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Example 1. 
Global data and code 
Source code Memory structure Code Ass.Code Comments 

  char ch; 
  short int i; 
  int j; 
 
 

R31

Memory

i

j

.  .  .

.  .  .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

R31

Memory

i

j

.  .  .

.  .  .

ch -3
-2
-1

Offset

Global
data

Global
code

0
1
…

 

  Programming convention 1: 
 
R31 register always keeps the base 
address of the global data (with 
negative offsets) and the program 
code (with non-negative offsets). 
 
Initially R31 is set by the progam 
loader. 

  ch := ‘0’; 

 LDA R1 NOP 
R1 := ‘0’; Get  the  value  of  ‘0’  into  R1 

‘0’ 
LDA R2 ADD R31,R2 R2:=-6; 

R2+=R31; 
Get the address of ch into R2 (as 
R31+offset) -3 

ST R1,R2  *R2:=R1; 
Store the value from R1 to ch 
(pointed to by R2) 

  i := 10; 

 LDA R1 NOP 
R1:=10; Get the value of 10 into R1 

10 
LDA R2 ADD R31,R2 R2:=-4; 

R2+=R31; 
Get the address of i to into R2 (as 
R31+offset) -2 

ST R1,R2  *R2:=R1; 
Store the value from R1 to i (pointed 
to by R2) 

  j := i; 

 LDA R1 ADD R31,R1 
R1:=-2; 

Get the offset of j into R1; get the 
address of j into R1 (as R31+offset) -1 

LDA R2 ADD R31,R2 R2:=-4; 
R2+=R31; 

Get the offset of i into R1; get the 
address of I into R2 (as R31+offset) -2 

LD R2,R2 ST R2,R1 R2:=*R2; 
*R1:=R2; 

Get the value pointed to by R2 (i.e., i) 
to R2. 
Store the value from R2 to j (pointed 
to by R1) 
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Example 2. 
Jumps Without Context Switch: Gotos Within Routine Code 
Source code Code base Offset Code Assembly Code Comments 

     
Label is treated as the 
relative address of the 
instruction which follows 
directly after the label 

 
 
 Stmts before 
 goto L; 
 Stmts between 
L: 
 Stmts after 
 

R31 ---> 0 Code before 
Code before 

 
... . . . 

N LDA R1 ADD R1,R31 
R1 := L; 
R1 += R31; 

Calculate physical address 
of the target instruction: 
codebase+label N+1 L 

N+2 CBR R1,R1  if R1 goto R1; 

Unconditional branch: we 
use  R1  as  the  “condition”  
because it is guaranteed 
non-null. 

N+3 Code between 
Code between 

 
... . . . 

L Code after <L> 
  Code after ... . . . 
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Example 3. 
Jumps with Context Switch: Procedure Call 
Source code Code structure Comment 
 
 . . . 
proc P; 
  var x, y, z, t : int; 
begin 
  . . . 
  Q(x,7,&y,z+t); 
  . . . 
end P; 
 
proc Q(a,b:int;c:int&;d:int); 
begin 
  . . . 
  return; 
end Q; 
  . . . 
 

R31
Memory

.  .  .

.  .  .

Offset

Global
code

0
…
P
P+1
…

.  .  .

Q
Q+1
…

.  .  .

Сode of
proc P

Сode of
proc Q

R31
Memory

.  .  .

.  .  .

Offset

Global
code

0
…
P
P+1
…

.  .  .

Q
Q+1
…

.  .  .

Сode of
proc P

Сode of
proc Q

 
 

This example illustrates different ways of 
passing parameters: 
 
1. The value of a standalone variable 
2. A constant 
3.  An  address  of  a  variable  (“passing  by 
    reference”) 
4. The value of an expression (evaluate 
    and pass) 
 
 
Procedure value is treated as the relative 
address (of common code base R31) of 
the  first  procedure’s  instruction. 

Source code Memory structure before call to Q Memory structure after call to Q  
  

 
 
 

Programming 
convention 2: 
 
R30 register always keeps 
the base address of the 
current stackframe which 
stores local data of the 
latest procedure call 
(together with some 
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Stackfrm Size
Dynamic Link

Return Addr

x
y
z
t

R30
Stackfrm Size
Dynamic Link

Return Addr

x
y
z
t

R30

 
 

a
b
c
d

Stackfrm Size
Dynamic Link

Return Addr

x
y
z
tR30

Stackfrm size
Dynamic Link
Return Addr

a
b
c
d

Stackfrm Size
Dynamic Link

Return Addr

x
y
z
tR30

Stackfrm size
Dynamic Link
Return Addr

 

additional information). 
 
The  R30’s  contents  
changes when calling a 
routine and returning from 
a routine (see example 
below). 
 
R30 is set by the program 
loader and initially points 
to the global data 
(i.e., R30=R31). 
 
Programming 
convention 3: 
 
R29 register is used for 
passing the return value (if 
any) from the callee to the 
caller. 

 Code for calling routine 
 
... 
Q(x,7,&y,z+t); 
... 

 
// Create the stackframe for Q (permanent part of the call) 
R1 := *R30;          // get the size of the stackframe 
R1 += R30;           // R1 points to the start of the new stackfrm 
R2 := 1; R2 += R1;   // R2 points to the 2nd word of the new stackframe 
*R2 := R30;          // Store dynamic link: pointer to the old stackframe 
 
// Evaluate and store actual arguments (this part can vary) 
// First actual: x 
R2 := 3; R2 += R30;  // Get the address of x (based by R30) 
R2 := *R2;           // Get the value of x 
R3 := 3; R3 += R1;   // Get the address for the 1st actual 
*R3 := R2;           // Store the value of the 1st actual 
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// Second actual: constant 7 
R2 := 7;             // Get the value of the 2nd actual 
R3 := 4; R2 += R1;   // Get the address for the 2nd actual 
*R3 := R2;           // Store the value of the 2nd actual 
// Third actual: address of y 
R2 := 4; R2 += R30;  // Get the address of y 
R3 := 5; R3 += R1;   // Get the address for the 3rd actual 
*R3 := R2;           // Store the address of y as the 3rd actual 
// Fourth actual: z+t 
R2 := 5; R2 += R30;  // Get the address of z 
R2 := *R2;           // Get the value of z 
R3 := 6; R3 += R30;  // Get the address of t 
R3 := *R3;           // Get the value of t 
R2 += R3;            // Get the sum z+t 
R3 := 6; R3 += R1;   // Get the address for the 4th actual 
*R3 := R2;           // Store the sum z+t as the 4th actual 
 
// Jump to the code of proc Q (permanent part of the call) 
R30 := R1;           // Make new stackframe the current one 
R2 := Q; R2 += R31;  // Get the address of the procedure Q 
if R2 goto R2;       // Return address is stored in R2; 
 

 Code for the routine being called (Routine’s “standard prologue”) 
  

R1 := <own-stackframe-size>; 
*R30 := R1;          // Store the size of the own stackframe 
R1 := 2; R1 += R30;  // The address for storing return address 
*R1 := R2;           // Store return address 
 . . .               // The routine code itself 
 

 Code for returning from a routine (Routine’s “standard epilogue”) 
 
return; 

 
R1 := 2; R1 += R30;  // Get the address of the RetAddr in the current stkfrm 
R1 := *R1;           // Get the return address itself 
R2 := 1; R2 += R30;  // Get the address of the dynamic link 
R2 := *R2;           // Get the dynamic link itself 
R30 := R2;           // Restore the address of the previous stackframe 
if R1 goto R1;       // Return to the caller 
 

 
 



Appendix C 406 

 
 
 
 
Example 4. 
Dynamic Data Structures 
Source code Memory structure Code Assembly 

Code 
Comments 

struct S 
{ int a; 
  int b; 
  int c; }; 
 
. . . 
 
S* p = new S; 
 
. . . 
 
 

R3

Memory

b
c

.  .  .

.  .  .

a 1
2
3

OffsetR3

Memory

b
c

.  .  .

.  .  .

a 1
2
3

Offset

 

   

p->a = 7;  LDA R4 ST R4,R3 R4 := 7; 
*R3 := R4; 

Get the address of a field (R3) 
and store the value of 3 by this 
address 7 

p->b = p->c;  LDA R4 ADD R3,R4 R4:=1; 
R4+=R3; 

Set 1 (as field b’s  offset)  to  R4, 
and then get the address of b 
as R3+1 

  
1 

  LDA R5 ADD R3,R5 R5:=2; 
R5+=R3; 

Set 2 (as field c’s  offset)  to  R5, 
and then get the address of c 
as R3+2 

  
2 

  
LD R5,R5 ST R4,R5 R5:=*R5; 

*R4:=R5; 
Load c to R5 and then store it 
by the address of b (from R4) 
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Abstract 
 
What follows is a detailed   documentation   of   the   simulator’s   source   code   for the 

ERA architecture. can help others to: 

1) understand the simulator and its design at a low level, and  

2) co-participate in the development/upgrade of the tool.  

Alternatively, a dynamic website has been deployed at a temporary location at:  

http://victorccc.com/index.html. 

By the time this document is read, this website will include newer developments. 

Hence, it is recommendable to have a look at it to see the latest updates. 

 

http://victorccc.com/index.html0
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Introduction 
 
Reading binary code is a painful experience for any programmer. In order to test and 

troubleshoot any error of design, bug or incompatibility between linker and the 

VHDL code I have decided to develop a Disassembler and a Simulator in a 

combined tool that will ease this process. In addition it will allow the simulation of 

the state of the processor at any given time.  

The fundamental characteristics of this tool will be: 

x Disassembling of instructions: Binary-to-ASM and  and 

Binary-to-PSEUDOCODE  that  will  complement      Zouev’s  assembler. 

x Ability to discern data from instructions 

x Simulation of the ERA architecture including: Program Counter (PC), 

Instruction Registry (IR), Register FILE (RF), memory contents and 

Syndrome Structure. 

x Step by Step Execution. 

x Breakpoints. 

x Overflow warning  

x Logging.  

x Ability to compare results of simulation execution with the results of Altera 

execution.  
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Figure 1. Flow of ERRIC testing  (top) and Flow of ERRIC testing with the help of a disassembler 

The development of such disassembler/simulator gives us the possibility of 1) 

testing and location of errors of design of the soft core processor; 2) understand the 

smallest details of the ERRIC functionality; 3) Simulation of the current version of 

the processor and the FT version of the processor and 4) Fault Injection.  

Basic disassembling (1) and ability to differentiate data from instructions are already 

implemented. The rest of the features will be developed in the next two months. I 

believe that this tool could have an application in a learning environment. It could be 

easily modified to be used in any computing architecture or software engineer 

module to explain how computers work at the very low level.  

 



3 

Interface and current state 
 

The design is completed and the user interface is fully defined (see Figure 2 and 

Figure 3 below): 

  Figure 2. Design of the Interface of the current version of the simulator v0.1a 
 
 
 

The implementation is still a working progress. Nonetheless, several parts have 
already been completed : 

     1) The design is completed and the user interface is fully defined.  
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     2) Assembling of pseudo code using ERA assembler/preparator (100% 
completed). 

     3) Disassembling of binary into human readable code (assembly code) (100% 
completed). 

     4) The simulator is capable of parsing the binary file resulting from the 
previous step and is then capable of classifying data and instructions (100% 
completed). 

     5) Simulation of main memory, register file, program counter and instruction 
registry is almost completed (90%). 

 

 

 
Figure 3. Interface of the current version of the simulator v0.1a 
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Log sample 
 
Example of Log file related to the execution of the disassembler 
 
fname = log.txt 
 
 Number of Bytes = 68 bytes  
 Number of 32-bit instruction-data = 17  
  
 0          C800               C000  
   11 0010 00000 00000   11 0000 00000 00000 
    LDA   R0  R0           NOP-STOP  R0  R0 
 
  
 1          0000               0001  
   00 0000 00000 00000   00 0000 00000 00001 
    NOP-STOP   R0  R0           NOP-STOP  R0  R1 
 
  
 2          C801               C000  
   11 0010 00000 00001   11 0000 00000 00000 
    LDA   R0  R1           NOP-STOP  R0  R0 
 
  
 3          0000               000A  
   00 0000 00000 00000   00 0000 00000 01010 
    NOP-STOP   R0  R0           NOP-STOP  R0  R10 
 
  
 4          C802               C000  
   11 0010 00000 00010   11 0000 00000 00000 
    LDA   R0  R2           NOP-STOP  R0  R0 
 
  
 5          0000               000A  
   00 0000 00000 00000   00 0000 00000 01010 
    NOP-STOP   R0  R0           NOP-STOP  R0  R10 
 
  
 6          C803               C000  
   11 0010 00000 00011   11 0000 00000 00000 
    LDA   R0  R3           NOP-STOP  R0  R0 
 
  
 7          0000               000B  
   00 0000 00000 00000   00 0000 00000 01011 
    NOP-STOP   R0  R0           NOP-STOP  R0  R11 
 
  
 8          C804               C000  
   11 0010 00000 00100   11 0000 00000 00000 
    LDA   R0  R4           NOP-STOP  R0  R0 
 
  
 9          0000               0064  
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   00 0000 00000 00000   00 0000 00011 00100 
    NOP-STOP   R0  R0           NOP-STOP  R3  R4 
 
  
 10          C805               C000  
   11 0010 00000 00101   11 0000 00000 00000 
    LDA   R0  R5           NOP-STOP  R0  R0 
 
 
 11          0000               0065  
   00 0000 00000 00000   00 0000 00011 00101 
    NOP-STOP   R0  R0           NOP-STOP  R3  R5 
 
  
 12          C806               C000  
   11 0010 00000 00110   11 0000 00000 00000 
    LDA   R0  R6           NOP-STOP  R0  R0 
 
  
 13          0000               006E  
   00 0000 00000 00000   00 0000 00011 01110 
    NOP-STOP   R0  R0           NOP-STOP  R3  R14 
 
  
 14          C807               DC41  
   11 0010 00000 00111   11 0111 00010 00001 
    LDA   R0  R7           ASL  R2  R1 
 
 
 15          0000               006F  
   00 0000 00000 00000   00 0000 00011 01111 
    NOP-STOP   R0  R0           NOP-STOP  R3  R15 
 
  
 16          0000               C000  
   00 0000 00000 00000   11 0000 00000 00000 
    NOP-STOP   R0  R0           NOP-STOP  R0  R0 
 
 
 
 Size of File        = 68 bytes 
 Number of Elements  = 17  
 
 
 
 1           C800               C000  
   11 0010 00000 00000   11 0000 00000 00000 
    LDA R0 R0  meaning R0:=CONSTANT   meaning  R0:=1    meaning  R0:=1  
 
 
 3           C801               C000  
   11 0010 00000 00001   11 0000 00000 00000 
    LDA R0 R1  meaning R1:=CONSTANT   meaning  R1:=10    meaning  R1:=10  
 
 
 5           C802               C000  
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   11 0010 00000 00010   11 0000 00000 00000 
    LDA R0 R2  meaning R2:=CONSTANT   meaning  R2:=10    meaning  R2:=10  
 
 
 7           C803               C000  
   11 0010 00000 00011   11 0000 00000 00000 
    LDA R0 R3  meaning R3:=CONSTANT   meaning  R3:=11    meaning  R3:=11  
 
 
 9           C804               C000  
   11 0010 00000 00100   11 0000 00000 00000 
    LDA R0 R4  meaning R4:=CONSTANT   meaning  R4:=100    meaning  R4:=100  
 
 
 11           C805               C000  
   11 0010 00000 00101   11 0000 00000 00000 
    LDA R0 R5  meaning R5:=CONSTANT   meaning  R5:=101    meaning  R5:=101  
 
 
 13           C806               C000  
   11 0010 00000 00110   11 0000 00000 00000 
    LDA R0 R6  meaning R6:=CONSTANT   meaning  R6:=110    meaning  R6:=110  
 
 
 15           C807               DC41  
   11 0010 00000 00111   11 0111 00010 00001 
    LDA R0 R7  meaning R7:=CONSTANT   meaning  R7:=111    meaning  R7:=111  
 
 
 17           0000               C000  
   00 0000 00000 00000   11 0000 00000 00000 
    NOP-STOP R0 R0  meaning STOP instruction  
    NOP-STOP R0 R0  meaning NOP instruction 
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Todo List 
 
Global fParseFile  (char *iniFileName, s_item *pCode) 

To load, not only the code list, but also the RAM. Disabling the comment for "pRAM[i-1]=pCode[i].HLLL;" will 
be the only thing left to do.   

File viewbin.cpp   
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Bug List 
Global main  (int argc, char *argv[]) 

 
File viewbin.cpp   

 



10 

File Index 
File List 
Here is a list of all files with brief descriptions: 

D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disside.h (Header file for the Visual Interface of 
Dissimera ) ..................................................................................................................................... 11 
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/dissimera.h (General Header file for Dissimera ) 
 ........................................................................................................................................................ 46 
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disstools.h (Header file for the general tools of 
Dissimera ) ..................................................................................................................................... 73 
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/viewbin.cpp (Main source file for the Dissimera 
simulator )  ..................................................................................................................................... 77 
 



11 

File Documentation 
D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disside.h File 
Reference 
 
Header file for the Visual Interface of Dissimera.  
#include <curses.h> 
#include <panel.h> 
#include <windows.h> 
Include dependency graph for disside.h: 

 
 
This graph shows which files directly or indirectly include this file: 

 
 

Data Structures 
x struct s_coord 
x struct s_panel 
x struct s_winborder 
x struct s_window 

Defines 
x #define ESCAPE_KEY  27 
x #define CTRL_LEFT_KEY  443 
x #define CTRL_RIGHT_KEY  444 
x #define CTRL_UP_KEY  480 
x #define CTRL_DOWN_KEY  481 
x #define KEY_F1  265 
x #define KEY_F2  266 
x #define KEY_F3  267 
x #define KEY_F4  268 
x #define KEY_F5  269 
x #define KEY_F6  270 
x #define KEY_F7  271 
x #define KEY_F8  272 
x #define KEY_F9  273 
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x #define KEY_F10  274 
x #define KEY_F11  275 
x #define KEY_F12  276 
x #define KEY_PGDOWN  338 
x #define KEY_PGUP  339 
x #define NUMPANELS  30 
x #define NUMWINDOWS  30 
x #define BUFFERWIN  250 
x #define P_NULL  -1 
x #define P_TOPBAR  0 
x #define P_SUBTOPBAR  1 
x #define P_ADDR1  2 
x #define P_SUBADDR1  3 
x #define P_PADDR1  4 
x #define P_MAIN1  5 
x #define P_SUBMAIN1  6 
x #define P_PMAIN1  7 
x #define P_IDHEX  8 
x #define P_SUBIDHEX  9 
x #define P_PIDHEX  10 
x #define P_ADDRRF  11 
x #define P_SUBADDRRF  12 
x #define P_RF  13 
x #define P_SUBRF  14 
x #define P_PC  15 
x #define P_SUBPC  16 
x #define P_IR  17 
x #define P_SUBIR  18 
x #define P_ADDR2  19 
x #define P_SUBADDR2  20 
x #define P_PADDR2  21 
x #define P_MEM  22 
x #define P_SUBMEM  23 
x #define P_PMEM  24 
x #define P_STATUS  25 
x #define P_SUBSTATUS  26 
x #define P_BOTTBAR  27 
x #define P_SUBBOTTBAR  28 
x #define E_NORMALRUN  -1 
x #define E_NOP  -1 
x #define E_STEPBSTEP  1 

Functions 
x int fInitWindows (s_window *p_window) 
x int fInitPanels (s_panel *p_panel) 
x void fHighlight_line (WINDOW *pwin, int pline, unsigned int pbackgcolor) 
x void fUnHighlight_line (WINDOW *pwin, int pline) 
x int fUpdateCursors_Main (s_window *p_window, int p_iLastIntr, int p_iNewInstr, unsigned int pbackgcolor) 
x int fSetTerm () 

It sets a long buffer and Size of the terminal (maximizing it).  
x void fIniP_TopBar (s_window *p_window, s_panel *p_panel) 
x void fIniP_ADDR1 (s_window *p_window, s_panel *p_panel, unsigned short int p_numInstr) 
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x void fIniP_MAIN1 (s_window *p_window, s_panel *p_panel) 
x void fIniP_IDHEX (s_window *p_window, s_panel *p_panel) 
x void fIniP_ADDRRF (s_window *p_window, s_panel *p_panel) 
x void fIniP_RF (s_window *p_window, s_panel *p_panel) 
x void fIniP_PC (s_window *p_window, s_panel *p_panel) 
x void fIniP_IR (s_window *p_window, s_panel *p_panel) 
x void fIniP_ADDR2 (s_window *p_window, s_panel *p_panel) 
x void fIniP_MEM (s_window *p_window, s_panel *p_panel) 
x void fIniP_STATUS (s_window *p_window, s_panel *p_panel) 
x void fIniP_BOTTBAR (s_window *p_window, s_panel *p_panel) 
x int fSetIDE (s_panel *p_panel, s_window *p_window, unsigned short int p_numInstr) 
x void fHighlightPanel (short int pwin, char pflag, s_window *p_window) 
x short fmovePanel (int pkey, short *pActiveP, s_panel *p_panels, s_window *p_window) 
x int fBootHardware (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item 

*plRAM, unsigned pPC) 
x int fLoadPanels (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item *plRAM, 

unsigned pPC) 
x int fExecuteCode (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item 

*plRAM, unsigned *pPC, s_exec *p_exec, int p_nIexec) 
x int fHandleKeyDown (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item 

*plRAM, unsigned *pPC, s_exec *p_exec) 
x int fHandleKeyUp (s_panel *p_panels, s_window *p_window, s_item *pCode, unsigned *pRF, s_item 

*plRAM, unsigned *pPC, s_exec *p_exec) 
 

Detailed Description 
Header file for the Visual Interface of Dissimera.  
 
 \author        Victor Castano 
 \version  0.1a 
 \date          08\03\2012 It contains the variables and functions related to the interface  
Definition in file disside.h. 
 

Data Structure Documentation 

struct s_coord 
Definition at line 104 of file disside.h. 
 
Data Fields: 

unsigned int h  
unsigned int w  
unsigned int x  
unsigned int y  

struct s_panel 
Definition at line 111 of file disside.h. 
Collaboration diagram for s_panel: 
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Data Fields: 

s_coord coord  
short int cursorcomp  
short int down  

unsigned char hide  
char label  

int labelcolor  
short int left  

PANEL * panel  
short int right  
short int up  

struct s_winborder 
The parameters elements are 
x ls: character to be used for the left side of the window 
x rs: character to be used for the right side of the window 
x ts: character to be used for the top side of the window 
x bs: character to be used for the bottom side of the window 
x tl: character to be used for the top left corner of the window 
x tr: character to be used for the top right corner of the window 
x bl: character to be used for the bottom left corner of the window 
x br: character to be used for the bottom right corner of the window  
Definition at line 137 of file disside.h. 
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Data Fields: 
chtype bl  
chtype br  
chtype bs  
chtype ls  
chtype rs  
chtype tl  
chtype tr  
chtype ts  

struct s_window 
Definition at line 145 of file disside.h. 
Collaboration diagram for s_window: 

 
 
 
Data Fields: 

s_coord coord  
short int cursor  

WINDOW * win  
 

Define Documentation 

#define BUFFERWIN  250 
 
Definition at line 50 of file disside.h. 
Referenced by fIniP_ADDR1(), fIniP_IDHEX(), and fIniP_MAIN1(). 

#define CTRL_DOWN_KEY  481 
 
Definition at line 26 of file disside.h. 
Referenced by fmovePanel(), and main(). 
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#define CTRL_LEFT_KEY  443 
 
Definition at line 23 of file disside.h. 
Referenced by fmovePanel(), and main(). 

#define CTRL_RIGHT_KEY  444 
 
Definition at line 24 of file disside.h. 
Referenced by fmovePanel(), and main(). 

#define CTRL_UP_KEY  480 
 
Definition at line 25 of file disside.h. 
Referenced by fmovePanel(), and main(). 

#define E_NOP  -1 
 
Definition at line 99 of file disside.h. 

#define E_NORMALRUN  -1 
 
Definition at line 98 of file disside.h. 

#define E_STEPBSTEP  1 
 
Definition at line 100 of file disside.h. 

#define ESCAPE_KEY  27 
 
Definition at line 22 of file disside.h. 
Referenced by main(). 

#define KEY_F1  265 
 
Definition at line 27 of file disside.h. 

#define KEY_F10  274 
 
Definition at line 36 of file disside.h. 
Referenced by main(). 

#define KEY_F11  275 
 
Definition at line 37 of file disside.h. 

#define KEY_F12  276 
 
Definition at line 38 of file disside.h. 
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#define KEY_F2  266 
 
Definition at line 28 of file disside.h. 

#define KEY_F3  267 
 
Definition at line 29 of file disside.h. 

#define KEY_F4  268 
 
Definition at line 30 of file disside.h. 

#define KEY_F5  269 
 
Definition at line 31 of file disside.h. 
Referenced by main(). 

#define KEY_F6  270 
 
Definition at line 32 of file disside.h. 

#define KEY_F7  271 
 
Definition at line 33 of file disside.h. 

#define KEY_F8  272 
 
Definition at line 34 of file disside.h. 

#define KEY_F9  273 
 
Definition at line 35 of file disside.h. 
Referenced by main(). 

#define KEY_PGDOWN  338 
 
Definition at line 43 of file disside.h. 
Referenced by main(). 

#define KEY_PGUP  339 
 
Definition at line 44 of file disside.h. 
Referenced by main(). 

#define NUMPANELS  30 
 
Definition at line 48 of file disside.h. 
Referenced by fInitPanels(), and main(). 
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#define NUMWINDOWS  30 
 
Definition at line 49 of file disside.h. 
Referenced by fInitWindows(), and main(). 

#define P_ADDR1  2 
 
Definition at line 57 of file disside.h. 
Referenced by fHighlightPanel(), fIniP_ADDR1(), fIniP_MAIN1(), and fUpdateCursors_Main(). 

#define P_ADDR2  19 
 
Definition at line 81 of file disside.h. 
Referenced by fHighlightPanel(), fIniP_ADDR2(), fIniP_IR(), fIniP_MEM(), fIniP_PC(), and fIniP_RF(). 

#define P_ADDRRF  11 
 
Definition at line 69 of file disside.h. 
Referenced by fIniP_ADDRRF(), fIniP_IDHEX(), and fIniP_RF(). 

#define P_BOTTBAR  27 
 
Definition at line 92 of file disside.h. 
Referenced by fIniP_BOTTBAR(), and fIniP_STATUS(). 

#define P_IDHEX  8 
 
Definition at line 65 of file disside.h. 
Referenced by fHighlightPanel(), fIniP_ADDRRF(), fIniP_IDHEX(), fIniP_IR(), fIniP_MAIN1(), fIniP_PC(), 
fLoadPanels(), and fUpdateCursors_Main(). 

#define P_IR  17 
 
Definition at line 78 of file disside.h. 
Referenced by fBootHardware(), fIniP_IR(), and fIniP_PC(). 

#define P_MAIN1  5 
 
Definition at line 61 of file disside.h. 
Referenced by fHighlightPanel(), fIniP_ADDR1(), fIniP_IDHEX(), fIniP_MAIN1(), fIniP_STATUS(), 
fIniP_TopBar(), fLoadPanels(), fUpdateCursors_Main(), and main(). 

#define P_MEM  22 
 
Definition at line 85 of file disside.h. 
Referenced by fHighlightPanel(), fIniP_ADDR2(), and fIniP_MEM(). 
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#define P_NULL  -1 
 
Definition at line 52 of file disside.h. 
Referenced by fIniP_ADDR1(), fIniP_BOTTBAR(), fIniP_MEM(), fIniP_STATUS(), fIniP_TopBar(), 
fInitPanels(), and fmovePanel(). 

#define P_PADDR1  4 
 
Definition at line 59 of file disside.h. 

#define P_PADDR2  21 
 
Definition at line 83 of file disside.h. 

#define P_PC  15 
 
Definition at line 75 of file disside.h. 
Referenced by fBootHardware(), fIniP_ADDRRF(), fIniP_IR(), fIniP_PC(), and fIniP_RF(). 

#define P_PIDHEX  10 
 
Definition at line 67 of file disside.h. 

#define P_PMAIN1  7 
 
Definition at line 63 of file disside.h. 

#define P_PMEM  24 
 
Definition at line 87 of file disside.h. 

#define P_RF  13 
 
Definition at line 72 of file disside.h. 
Referenced by fBootHardware(), fIniP_ADDR2(), fIniP_ADDRRF(), fIniP_PC(), and fIniP_RF(). 

#define P_STATUS  25 
 
Definition at line 89 of file disside.h. 
Referenced by fIniP_ADDR1(), fIniP_ADDR2(), fIniP_BOTTBAR(), fIniP_IDHEX(), fIniP_IR(), 
fIniP_MAIN1(), fIniP_MEM(), and fIniP_STATUS(). 

#define P_SUBADDR1  3 
 
Definition at line 58 of file disside.h. 
Referenced by fIniP_ADDR1(). 

#define P_SUBADDR2  20 
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Definition at line 82 of file disside.h. 
Referenced by fIniP_ADDR2(). 

#define P_SUBADDRRF  12 
 
Definition at line 70 of file disside.h. 
Referenced by fIniP_ADDRRF(). 

#define P_SUBBOTTBAR  28 
 
Definition at line 93 of file disside.h. 
Referenced by fIniP_BOTTBAR(). 

#define P_SUBIDHEX  9 
 
Definition at line 66 of file disside.h. 
Referenced by fIniP_IDHEX(), and fLoadPanels(). 

#define P_SUBIR  18 
 
Definition at line 79 of file disside.h. 
Referenced by fIniP_IR(). 

#define P_SUBMAIN1  6 
 
Definition at line 62 of file disside.h. 
Referenced by fIniP_MAIN1(), and fLoadPanels(). 

#define P_SUBMEM  23 
 
Definition at line 86 of file disside.h. 
Referenced by fIniP_MEM(). 

#define P_SUBPC  16 
 
Definition at line 76 of file disside.h. 
Referenced by fIniP_PC(). 

#define P_SUBRF  14 
 
Definition at line 73 of file disside.h. 
Referenced by fIniP_RF(). 

#define P_SUBSTATUS  26 
 
Definition at line 90 of file disside.h. 
Referenced by fBootHardware(), fIniP_STATUS(), fLoadPanels(), fmovePanel(), and fSetIDE(). 
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#define P_SUBTOPBAR  1 
 
Definition at line 55 of file disside.h. 
Referenced by fIniP_TopBar(), and main(). 

#define P_TOPBAR  0 
 
Definition at line 54 of file disside.h. 
Referenced by fIniP_ADDR1(), fIniP_ADDR2(), fIniP_ADDRRF(), fIniP_IDHEX(), fIniP_MAIN1(), 
fIniP_MEM(), fIniP_RF(), and fIniP_TopBar(). 

 

Function Documentation 

int fBootHardware (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF, 
s_item * plRAM, unsigned pPC) 

 
Definition at line 1050 of file disside.h. 
Referenced by main(). 
{ 

     unsigned int   lSizeCode = 0; 

     unsigned int   i=0; 

     unsigned int   lIR=0; 

     char           lstInstr[64]=""; 

     char           lstreg[64]=""; 

      

     waddstr(p_window[P_SUBSTATUS].win, " Booting Hardware ...  "); 

     wrefresh(p_window[P_SUBSTATUS].win);     

 

 

     //Obtaining number of Elements 

     lSizeCode = fSizeCode(pCode); 

 

///////////////////////////////////////////////////////////////////  

/*    

     //Loading the MEMORY PANEL 

     for (i=1; i<=lSizeCode; i++) 

     {     

          fB16tostring(pCode[i].HL,lstInstr);  

          mvwaddnstr(p_window[P_MEM].win, i, 0,lstInstr,-1); 

          fB16tostring(pCode[i].LL,lstInstr);  

          mvwaddnstr(p_window[P_MEM].win, i, 18, lstInstr,-1); 

     } 

     wrefresh(p_window[P_MEM].win); 

*/ 

     //Loading the Register File 

     for (i=0; i<32; i++) 

     { 

          fB32tostring(pRF[i],lstreg);  

          mvwaddnstr(p_window[P_RF].win, i+1, 1,lstreg,-1); 

     } 

     wrefresh(p_window[P_RF].win); 

 

      

     //Loading Program Counter 

     strcpy(lstreg, ""); 

     sprintf(lstreg, "%08X", pPC); 

     mvwaddnstr(p_window[P_PC].win, 1, 14, lstreg,-1); 

     wrefresh(p_window[P_PC].win); 

 

     //Loading Instruction Register 

     strcpy(lstreg, ""); 
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     sprintf(lstreg, "%08X", lIR); 
     mvwaddnstr(p_window[P_IR].win, 1, 14, lstreg,-1); 
     wrefresh(p_window[P_IR].win); 
/////////////////////////////////////////////////////////////////// end comment       
      
     waddstr(p_window[P_SUBSTATUS].win, "Hardware Booted\n"); 
     wrefresh(p_window[P_SUBSTATUS].win);     
 
     return 0; 
} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

int fExecuteCode (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF, 
s_item * plRAM, unsigned * pPC, s_exec * p_exec, int p_nIexec) 

 
Definition at line 1175 of file disside.h. 
Referenced by main(). 
{ 
     // p_nIexec represents the number of instructions to be executed  
     //        (-1 means normal execution, 0 means no execution) 
     // fExecuteCode function returns the number of instructions executed.  
     //       -1 as a result means an error has occured during execution. 
      
     //s_item            item; 
     unsigned int        lsize=0; 
     unsigned int        i=0; 
     unsigned short int  lEOLOAD=0;          // Variable that will represent which load is active 
High (1) Load or Low (2) Load 
     bool                lEOCODE=0;          // Variable that will represent whether the END OF 
CODE has been reached 
     s_instruction       lInstr;             // Local var that stores the instruction: either 
High or Low 
     int                      lnInstEx=0;         // Number of instructions executed  
           
     //Obtain number of Elements 
     //lsize=pCode[0].linenum; 
     lsize=fSizeCode(pCode); 
 
     fptraza(gflog, 1, "\n Executing code"); 
     fptraza(gflog, 1, "\n Size of Array       = %d bytes", lsize*4); 
     fptraza(gflog, 3, "\n Number of Elements  = %d \n", lsize); 
           
     //Check if the Code list is empty 
     if (lsize <=0) 
     { 
          return -1;     //Empty code list 
     } 
      
     /*   Browse the list of Code (High and Low part) starting by the first element 
          By default every item was set as T_32BITDATA, we are now browsing only instruction by 
instruction  
          in order to mark instructions from the data 
     */ 
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     i=*pPC+1; // Position in the code list is 1+ due to the first element being used for 
configuration 
     do  
     { 
          fshowItem(&pCode[i]); 
          //pCode[i].type=T_INSTRUCTIONS;         // The item is definitely an instruction load 
          lEOLOAD=1; 
          do //Browse firts the high and then the low part (specified by lEOLOAD) 
          {                              
               if (lEOLOAD==1)      
               { 
                    lInstr=pCode[i].InstrA; 
               } 
               else 
               { 
                    lInstr=pCode[i].InstrB; 
                    fptraza(gflog, 1, "\n"); 
               } 
 
               fshowInstruction(&lInstr); 
               p_exec->uiLastInstr=*pPC; 
 
 
               switch (lInstr.i_code) 
               { 
               case 0:   //The NOP instruction performs no actions, except moving the PC register 
to the next instruction. 
                    switch (lInstr.f_code)         
                    { 
                    case 0:                            // x00b STOP instruction 
                         fptraza(gflog, 1, " meaning STOP instruction "); 
                         lEOCODE=true;            // End of CODE 
                         break; 
                    case 1:                            // x01b NOP instruction 
                         //break;                 //Assuming that 01 and 11 for f_code are a NOP 
instruction (check with Igor, Thomas and Eugene 
                    case 3:                            // QUESTION: x11b According to the 
Document Instruction Set this is not possible but it seems to be a NOP instruction 
                         fptraza(gflog, 1, " meaning NOP instruction "); 
                         break; 
                    default: 
                         fptraza(gflog, 1, "THIS IS NOT POSSIBLE - a 01??? in the format code?"); 
                    } 
 
                    break; 
               case 1:   // The LD instruction copies the value of a 32-bit memory word pointed 
to by Ri into Rj  
                    fptraza(gflog, 1, " meaning R%d:=*R%d ", lInstr.Op2, lInstr.Op1); 
                    //Loading Rj with the vaule from the memory location                   
                    pRF[lInstr.Op2]=plRAM[lInstr.Op1].HLLL;       
                    fptraza(gflog, 1, "   meaning  R%d:=%d ", lInstr.Op2, 
plRAM[lInstr.Op1].HLLL); 
                    break; 
               case 2:   // The LDA instruction takes the value from the next 32-bit word and stores 
the result into Rj 
                         // constant stored in the Next 32bit location 
                    fptraza(gflog, 1, " meaning R%d:=CONSTANT", lInstr.Op2);    
                    fptraza(gflog, 1, "   meaning  R%d:=%d ", lInstr.Op2, pCode[i+1].HLLL);                    
                    pRF[lInstr.Op2]=pCode[i+1].HLLL;   //Loading Rj with the next 32bit word 
                    fptraza(gflog, 1, "   meaning  R%d:=%d ", lInstr.Op2, pRF[lInstr.Op2]);                    
                     
                    if (lEOLOAD ==1)  
                    { 
                         lnInstEx++; // Not sure if this is correct. Does LDA execute the low 16 
bits???? 
                         lEOLOAD++;     // Jumping the load 
                    } 
                    i++; // Jumping to the following instruction (the one after the data) 
                     
                    break; 
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               case 3:   // The ST instruction copies the value of Ri to the memory by address 
taken from Rj 
                    fptraza(gflog, 1, " meaning *R%d:=R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, "   meaning  MEM[%d]=%d ", pRF[lInstr.Op2], 
pRF[lInstr.Op1]); 
                    plRAM[pRF[lInstr.Op2]].HLLL = pRF[lInstr.Op1];         // MEM(Rj)=Ri 
                    fptraza(gflog, 1, "   meaning  MEM[%d]=%d ", pRF[lInstr.Op2], 
plRAM[pRF[lInstr.Op2]].HLLL); 
                    break; 
               case 4:   // The MOV instruction copies the value from Ri to the Rj 
                         // Assuming that format code is fixed to 11  
                    fptraza(gflog, 1, " meaning R%d:=R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d:=%d", lInstr.Op2, pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2]=pRF[lInstr.Op1];   // Rj=Ri 
                    break; 
               case  5:      //  The  ADD  instruction  denotes  the  two’s  complement  arithmetic  addition. 
                         // The contents of Ri and Rj are arithmetically added, and the result 
is put into Rj.                          
                         // Assuming that format code is fixed to 11  
                    fptraza(gflog, 1, " meaning R%d+=R%d", lInstr.Op2, lInstr.Op1);   
                    fptraza(gflog, 1, " meaning R%d=R%d+R%d", lInstr.Op2,lInstr.Op2, 
lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d=%d+%d", lInstr.Op2,pRF[lInstr.Op2], 
pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] + pRF[lInstr.Op2];        // Rj=Rj+Ri 
                    break; 
               case  6:      /*      The  SUB  instruction  denotes  the  two’s  complement  arithmetic  
subtraction. 
                              The content of Ri is subtracted from the contents of Rj, and the 
result  
                              is put into the register Rj 
                         */ 
                    fptraza(gflog, 1, " meaning R%d-=R%d", lInstr.Op2, lInstr.Op1);    
                    fptraza(gflog, 1, " meaning R%d=R%d-R%d", lInstr.Op2,lInstr.Op2, 
lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d=%d-%d", lInstr.Op2,pRF[lInstr.Op2], 
pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] - pRF[lInstr.Op2];        // Rj=Rj+Ri 
                    break; 
               case 7:   // The ASR instruction arithmetically shifts Ri one bit right, and puts 
the result into Rj.  
                    fptraza(gflog, 1, " meaning R%d >>= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op1]);                     
                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1;                // one bit right 
shitfing of Rj 
                    fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case 8:   /*   The ASL instruction arithmetically shifts the contents of Ri one 
bit left, and puts  
                         the result into the register Rj. */ 
                    fptraza(gflog, 1, " meaning R%d <<= R%d", lInstr.Op2, lInstr.Op1); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 
                    fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1;                // one bit left 
shitfing of Rj  
                    fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case 9:   /*   The OR instruction  applies  logical  addition  (“OR”)  operator  to  every  
pair  
                              of bits taken from Ri and Rj, respectively, and puts the result into 
Rj. */ 
                    fptraza(gflog, 1, " meaning R%d |= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2,  pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] | pRF[lInstr.Op1]; 
                    fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case  10:  /*        The  AND  instruction  applies  logical  multiplicative  (“AND”)  operator  
to  
                              every pair of bits taken from Ri and Rj, respectively, and puts the  
                              result into Rj */ 
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                    fptraza(gflog, 1, " meaning R%d &= R%d", lInstr.Op2, lInstr.Op1); 

                    fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op1]); 

                    pRF[lInstr.Op2] = pRF[lInstr.Op2] & pRF[lInstr.Op1]; 

                    fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op2]); 

                    break; 

               case  11:  /*        The  XOR  instruction  applies  logical  exclusive  OR  (“XOR”)  operator  
to every  

                              pair of bits taken from Ri and Rj, respectively, and puts the result 

into Rj. */ 

                    fptraza(gflog, 1, " meaning R%d ^= R%d", lInstr.Op2, lInstr.Op1);  

                    fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]); 

                    pRF[lInstr.Op2] = ( pRF[lInstr.Op2] || pRF[lInstr.Op1] ) && !(pRF[lInstr.Op2] 

&& pRF[lInstr.Op1]); 

                    fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]); 

                    break; 

               case 12: /*    The LSL instruction logically shifts the contents of Ri one bit left, 

and  

                              puts the result into the Rj.  */ 

                    fptraza(gflog, 1, " meaning R%d <= R%d", lInstr.Op2, lInstr.Op1); 

                    fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op1]);                 

                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 

                    pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1;                // one bit logicleft 

right shitfing of Rj 

                    fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op2]); 

                    break; 

               case 13: 

                    /*   The LSR instruction logically shifts the contents of Ri one bit right, 

and  

                         puts the result into the register Rj.   */ 

                    fptraza(gflog, 1, " meaning R%d >= R%d", lInstr.Op2, lInstr.Op1); 

                    fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op1]);                 

                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 

                    pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1;                // one bit logic right 

shitfing of Rj 

                    fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op2]); 

                    break; 

               case 14: 

                    /*   The CND instruction arithmetically compares the contents Ri and Rj  

                         and puts the result of the comparison (as a set of 1-bit signs) to Rj. 

*/ 

                    fptraza(gflog, 1, " meaning R%d ?= R%d", lInstr.Op2, lInstr.Op1);  

                    // Victor When executing we can check the result and show it 

                    break; 

               case 15: 

                    /*   The CBR instruction checks the contents of Ri. If it is non-zero,  

                         then:           

                              1)   the address of the next instruction (i.e., current value of  

                                   the PC register + 1) is stored in the Ri register, and  

                              2)   the value of Rj is set to the PC register. This means that  

                                   the next instruction will be fetched by the address taken Rj  

                    */ 

                    fptraza(gflog, 1, " meaning if R%d GOTO R%d", lInstr.Op1, lInstr.Op2);  

                    break; 

               default: 

                    return -1; //This should never happen; 

               } 

           

               lEOLOAD++; 

               lnInstEx++; 

 

          } while (lEOLOAD <= 2);  // Loop finishes when every part of the load (High and Low) 

has been processed 

 

          i++; 

          (*pPC)++;  

 

     }while (lnInstEx<p_nIexec && lEOCODE==FALSE); 

      

     p_exec->nInstrEx=lnInstEx; 

     return lnInstEx;     
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}     
Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

int fHandleKeyDown (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF, 
s_item * plRAM, unsigned * pPC, s_exec * p_exec) 

 
Definition at line 1390 of file disside.h. 
Referenced by main(). 
{ 
 
     return 0; 
} 

Here is the caller graph for this function: 

 
 

int fHandleKeyUp (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF, 
s_item * plRAM, unsigned * pPC, s_exec * p_exec) 

 
Definition at line 1399 of file disside.h. 
Referenced by main(). 
{ 
 
     return 0; 
} 

Here is the caller graph for this function: 
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void fHighlight_line (WINDOW * pwin, int pline, unsigned int pbackgcolor) 
 
Definition at line 193 of file disside.h. 
Referenced by fUpdateCursors_Main(). 
{ 
     mvwchgat(pwin, pline, 1, pwin->_maxx-2,  pbackgcolor, 0, NULL); 
     wrefresh(pwin); 
} 

Here is the caller graph for this function: 

 
 

void fHighlightPanel (short int pwin, char pflag, s_window * p_window) 
 
Definition at line 879 of file disside.h. 
Referenced by fmovePanel(), and main(). 
{ 
     if (pflag==1) 
     // Enable highlighting of current Panel 
     { 
          //wattrset(p_win, COLOR_PAIR(2) | A_BOLD); 
          wattron(p_window[pwin].win, COLOR_PAIR(2) | A_BOLD); 
          box(p_window[pwin].win, 0 , 0); 
          wrefresh(p_window[pwin].win);  
          wattroff(p_window[pwin].win, COLOR_PAIR(2) | A_BOLD); 
     } 
     else            
     { 
          // Disable highlighting of current Panel 
          wattron(p_window[pwin].win, COLOR_PAIR(0)); 
          box(p_window[pwin].win, 0 , 0); 
          wrefresh(p_window[pwin].win); 
          wattron(p_window[pwin].win, COLOR_PAIR(0)); 
 
     } 
 
     //Refreshing the subwindows if there is any 
     switch(pwin) 
     {     
          case P_ADDR1: 
          case P_MAIN1: 
          case P_IDHEX: 
          case P_ADDR2: 
          case P_MEM: 
               wrefresh(p_window[pwin+1].win); 
               wattroff(p_window[pwin+1].win, COLOR_PAIR(2) | A_BOLD); 
               wrefresh(p_window[pwin+1].win); // Refreshing the Subwindow or pad in this case 
(next window) 
               break; 
          default: 
               break; 
     } 
 
     return; 
} 

Here is the caller graph for this function: 
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void fIniP_ADDR1 (s_window * p_window, s_panel * p_panel, unsigned short int p_numInstr) 
 
Definition at line 304 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     // We first Create and Initialize the Window 
     i = P_ADDR1; 
                     
     coord.x=0; coord.y=3; coord.h=40; coord.w=6; 
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);    
     wrefresh(p_window[i].win); 
      
 
     // Creating subwindows within the window 
     p_window[P_SUBADDR1].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     if ( p_window[P_SUBADDR1].win == NULL) 
     { 
          addstr("Unable to create new subwindow"); 
          refresh(); 
          endwin(); 
          return; 
     } 
     //wrefresh(p_window[P_SUBADDR1].win); 
     p_window[P_SUBADDR1].win = newpad(BUFFERWIN, coord.w-2); 
     if ( p_window[P_SUBADDR1].win == NULL) 
     { 
          addstr("Unable to create new pad"); 
          refresh(); 
          endwin(); 
          return; 
     } 
 
      
     //Creating and Setting-Up a new Panel 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " ADDRESS 1 PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_TOPBAR; 
     p_panel[i].down=P_STATUS; 
     p_panel[i].left=P_NULL; 
     p_panel[i].right=P_MAIN1; 
     p_panel[i].cursorcomp=0; 
     ////////p_panel[i].panel = new_panel(p_window[P_SUBADDR1].win); 
      
     //wrefresh(p_window[i].win); 
           
     //Writing HEX Addresses on pad 
     unsigned short lhexadd=0; 
     char           lsaddr[10]; 
     for (lhexadd=0; lhexadd<p_numInstr-1; lhexadd++) 
     { 
          sprintf(lsaddr,"%04x", lhexadd); 
          mvwaddnstr(p_window[P_SUBADDR1].win, lhexadd,0,lsaddr,-1); 
          //prefresh(p_window[P_SUBADDR1].win,0,0,coord.y+1,coord.x+1,coord.h+1,coord.w); 
          //wrefresh(p_window[P_SUBADDR1].win); 
     } 
      
     //wrefresh(p_window[i].win); 
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     prefresh(p_window[P_SUBADDR1].win,0,0,coord.y+1,coord.x+1,coord.h+1,coord.w); 
      
     //char ch=getch(); 
//   wrefresh(p_window[i].win); 
//   prefresh(p_window[P_SUBADDR1].win,1,0,coord.y+1,coord.x+1,coord.h+1,coord.w); 
     /* 
     ch=getch(); 
     prefresh(p_window[P_SUBADDR1].win,2,0,coord.y+1,coord.x+1,coord.h+1,coord.w); 
     ch=getch(); 
     prefresh(p_window[P_SUBADDR1].win,3,0,coord.y+1,coord.x+1,coord.h+1,coord.w); 
     */ 
     return; 
} 

Here is the caller graph for this function: 

 
 

void fIniP_ADDR2 (s_window * p_window, s_panel * p_panel) 
 
Definition at line 672 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
     unsigned short      lhexadd=0; 
     char                lsaddr[10]; 
      
     i = P_ADDR2; 
 
     coord.x=108; coord.y=3; coord.h=40; coord.w=6; 
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
      
     // Creating subwindows within the window 
     p_window[P_SUBADDR2].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panelp_panel[i].coord = coord; 
     sprintf(ls_label, " Address Memory PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_TOPBAR; 
     p_panel[i].down=P_STATUS; 
     p_panel[i].left=P_RF; 
     p_panel[i].right=P_MEM; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
      
     //Writing HEX Addresses on panel 
     for (lhexadd=0; lhexadd<coord.h-2; lhexadd++) 
     { 
          sprintf(lsaddr,"%04x", lhexadd); 
          mvwaddnstr(p_window[i].win, lhexadd+1,1,lsaddr,-1); 
     } 
     prefresh(p_window[i].win,108,0,3,0,40,6); 
     //wrefresh(p_window[i].win); 
 
     return;    
} 



30 

Here is the caller graph for this function: 

 
 

void fIniP_ADDRRF (s_window * p_window, s_panel * p_panel) 
 
Definition at line 499 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     char                lsreg[5]="R0"; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
     unsigned short int  j = 0;     
      
     i = P_ADDRRF; 
           
     coord.x=68; coord.y=3; coord.h=34; coord.w=5; 
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
      
     // Creating subwindows within the window 
     p_window[P_SUBADDRRF].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panel 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " Address Registers PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_TOPBAR; 
     p_panel[i].down=P_PC; 
     p_panel[i].left=P_IDHEX; 
     p_panel[i].right=P_RF; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
 
 
     //Writing Register names on panel 
     for (j=0; j<32; j++) 
     { 
          sprintf(lsreg,"R%d", j); 
          mvwaddnstr(p_window[i].win, j+1,1,lsreg,-1);            
     } 
     wrefresh(p_window[i].win); 
 
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_BOTTBAR (s_window * p_window, s_panel * p_panel) 
 
Definition at line 792 of file disside.h. 
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Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_BOTTBAR; 
                     
     coord.x=0; coord.y=54; coord.h=3; coord.w=149; 
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
 
     // Creating subwindows within the window 
     //CORREGIRRRRRRRRRRRRRRRRRRRRR 
     p_window[P_SUBBOTTBAR].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panelp_panel[i].coord = coord; 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " BOTTBAR "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
 
     p_panel[i].up=P_STATUS; 
     p_panel[i].down=P_NULL; 
     p_panel[i].left=P_NULL; 
     p_panel[i].right=P_NULL; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
      
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_IDHEX (s_window * p_window, s_panel * p_panel) 
 
Definition at line 436 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_IDHEX; 
      
     coord.x=41; coord.y=3; coord.h=40; coord.w=26;                    
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);              
     wrefresh(p_window[i].win); 
      
     // Creating subwindows within the window 
     p_window[P_SUBIDHEX].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     if ( p_window[P_SUBIDHEX].win == NULL) 
     { 
          addstr("Unable to create new subwindow"); 
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          refresh(); 
          endwin(); 
          return; 
     } 
      
     //wrefresh(p_window[P_SUBIDHEX].win); 
     //wrefresh(p_window[i].win); 
     p_window[P_SUBIDHEX].win = newpad(BUFFERWIN, coord.w-2); 
     if ( p_window[P_SUBIDHEX].win == NULL) 
     { 
          addstr("Unable to create subpad"); 
          refresh(); 
          endwin(); 
          return; 
     } 
           
 
     //Creating and Setting-Up a new Panel 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " Instruction/Data Decoding PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_TOPBAR; 
     p_panel[i].down=P_STATUS; 
     p_panel[i].left=P_MAIN1; 
     p_panel[i].right=P_ADDRRF; 
     p_panel[i].cursorcomp=0; 
 
     //testing 
     /* 
     char           lstInstr[64]=""; 
     strcpy(lstInstr, "Victor1"); 
     mvwaddnstr(p_window[P_SUBIDHEX].win, 0,0,lstInstr,-1); 
     prefresh(p_window[P_SUBIDHEX].win,0,0,coord.y+1,coord.x+2,coord.h+1,coord.w+3); 
     */ 
 
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_IR (s_window * p_window, s_panel * p_panel) 
 
Definition at line 637 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_IR; 
      
     coord.x=73; coord.y=40; coord.h=3; coord.w=35;                    
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
           
     // Creating subwindows within the window 
     p_window[P_SUBIR].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      



33 

     //Creating and Setting-Up a new Panelp_panel[i].coord = coord; 
     sprintf(ls_label, " Instruction Register "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_PC; 
     p_panel[i].down=P_STATUS; 
     p_panel[i].left=P_IDHEX; 
     p_panel[i].right=P_ADDR2; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
      
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_MAIN1 (s_window * p_window, s_panel * p_panel) 
 
Definition at line 384 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_MAIN1; 
      
     coord.x=6; coord.y=3; coord.h=40; coord.w=35;                     
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
     wrefresh(p_window[i].win); 
      
     // Creating subwindows within the window 
     p_window[P_SUBMAIN1].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     if ( p_window[P_SUBMAIN1].win == NULL) 
     { 
          addstr("Unable to create new subwindow"); 
          refresh(); 
          endwin(); 
          return; 
     } 
      
     //wrefresh(p_window[P_SUBMAIN1].win); 
     p_window[P_SUBMAIN1].win = newpad(BUFFERWIN, coord.w-2); 
     if ( p_window[P_SUBMAIN1].win == NULL) 
     { 
          addstr("Unable to create subpad"); 
          refresh(); 
          endwin(); 
          return; 
     } 
 
     //Creating and Setting-Up a new Panel 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " MAIN PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_TOPBAR; 
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     p_panel[i].down=P_STATUS; 
     p_panel[i].left=P_ADDR1; 
     p_panel[i].right=P_IDHEX; 
     p_panel[i].cursorcomp=0; 
                
     return; 
} 

Here is the caller graph for this function: 

 
 

void fIniP_MEM (s_window * p_window, s_panel * p_panel) 
 
Definition at line 719 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_MEM; 
      
     coord.x=114; coord.y=3; coord.h=40; coord.w=35; 
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
           
     // Creating subwindows within the window 
     p_window[P_SUBMEM].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panelp_panel[i].coord = coord; 
     sprintf(ls_label, " MEMORY PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_TOPBAR; 
     p_panel[i].down=P_STATUS; 
     p_panel[i].left=P_ADDR2; 
     p_panel[i].right=P_NULL; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
      
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_PC (s_window * p_window, s_panel * p_panel) 
 
Definition at line 601 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 



35 

     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_PC; 
      
     coord.x=73; coord.y=37; coord.h=3; coord.w=35;                    
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
 
     // Creating subwindows within the window 
     p_window[P_SUBPC].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panel         
     p_panel[i].coord = coord; 
     sprintf(ls_label, " Program COUNTER "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_RF; 
     p_panel[i].down=P_IR; 
     p_panel[i].left=P_IDHEX; 
     p_panel[i].right=P_ADDR2; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
      
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_RF (s_window * p_window, s_panel * p_panel) 
 
Definition at line 547 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
     int                      x=0; 
     int                      y=0; 
 
      
     i = P_RF; 
 
 
     coord.x=73; coord.y=3; coord.h=34; coord.w=35;                    
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);         
      
     // Creating subwindows within the window 
     p_window[P_SUBRF].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panel 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " REGISTER FILE PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
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     p_panel[i].up=P_TOPBAR; 
     p_panel[i].down=P_PC; 
     p_panel[i].left=P_ADDRRF; 
     p_panel[i].right=P_ADDR2; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
      
//   getyx(p_window[i].win,y,x); 
//   wmove(p_window[i].win,2,2); 
 
 
 
 
     /* 
     //Highlighting current cursor 
               fHighlight_line(p_window[*pActiveP]. 
                    g_wins[gactiveP].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD);   // Main/present 
panel 
               fHighlight_line(g_wins[P_ADDR1].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD);    // 
ADDR1 Panel 
               fHighlight_line(g_wins[P_IDHEX].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD);    // 
IDHEX Panel 
               */ 
 
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_STATUS (s_window * p_window, s_panel * p_panel) 
 
Definition at line 754 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_STATUS; 
      
     coord.x=0; coord.y=43; coord.h=11; coord.w=149;                   
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0); 
     wrefresh(p_window[i].win); 
      
     // Creating subwindows within the window 
     p_window[P_SUBSTATUS].win=derwin(p_window[i].win, coord.h-2, coord.w-4, 1, 1); 
     // Enabling Scroll in the subwindow 
     scrollok(p_window[P_SUBSTATUS].win,TRUE); 
     wbkgd(p_window[P_SUBSTATUS].win,COLOR_PAIR(2)); 
 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " STATUS "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_MAIN1; 
     p_panel[i].down=P_BOTTBAR; 
     p_panel[i].left=P_NULL; 
     p_panel[i].right=P_NULL; 
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     p_panel[i].cursorcomp=0; 
     //p_panel[i].panel = new_panel(p_window[i].win); 
      
     return;    
} 

Here is the caller graph for this function: 

 
 

void fIniP_TopBar (s_window * p_window, s_panel * p_panel) 
 
Definition at line 261 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     unsigned short int  i = 0;          
      
     i = P_TOPBAR; 
                               
     coord.x=0; coord.y=0; coord.h=3; coord.w=149;                     
     p_window[i].coord = coord; 
     p_window[i].win = newwin(coord.h, coord.w, coord.y, coord.x); 
     box(p_window[i].win, 0, 0);    
     wrefresh(p_window[i].win); 
      
     // Creating subwindows within the window 
     p_window[P_SUBTOPBAR].win=derwin(p_window[i].win, coord.h-2, coord.w-2, 1, 1); 
     //wbkgd(p_window[P_SUBTOPBAR].win,COLOR_PAIR(3)); 
      
     //Writing welcome message on panel 
     mvwaddnstr(p_window[P_SUBTOPBAR].win, 0,0," Welcome to the ERA 
disassembler/simulator\n",-1); 
     wrefresh(p_window[P_SUBTOPBAR].win); 
     wrefresh(p_window[i].win); 
      
     //Creating and Setting-Up a new Panel 
     p_panel[i].coord = coord; 
     sprintf(ls_label, " TOP BAR PANEL "); 
     sprintf(p_panel[i].label, ls_label); 
     p_panel[i].labelcolor = lcolor; 
     p_panel[i].hide= lhide; 
 
     p_panel[i].up=P_NULL; 
     p_panel[i].down=P_MAIN1; 
     p_panel[i].left=P_NULL; 
     p_panel[i].right=P_NULL; 
     p_panel[i].cursorcomp=0; 
     p_panel[i].panel = new_panel(p_window[i].win); 
 
     return; 
} 

Here is the caller graph for this function: 

 
 

int fInitPanels (s_panel * p_panel) 
 
Definition at line 170 of file disside.h. 
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Referenced by fSetIDE(). 
{ 
     unsigned int i=0; 
 
     for (i=0; i<NUMPANELS; i++) 
     { 
          p_panel[i].coord.h=0; 
          p_panel[i].coord.w=0; 
          p_panel[i].coord.x=0; 
          p_panel[i].coord.y=0; 
          p_panel[i].cursorcomp=0; 
          p_panel[i].down=P_NULL; 
          p_panel[i].up=P_NULL; 
          p_panel[i].left=P_NULL; 
          p_panel[i].right=P_NULL; 
          p_panel[i].hide=0; 
          strcpy(p_panel[i].label," "); 
          p_panel[i].labelcolor=0; 
          p_panel[i].panel=NULL; 
     } 
     return 0; 
} 

Here is the caller graph for this function: 

 
 

int fInitWindows (s_window * p_window) 
 
Definition at line 154 of file disside.h. 
Referenced by fSetIDE(). 
{ 
     unsigned int i=0; 
 
     for (i=0; i<NUMWINDOWS; i++) 
     { 
          p_window[i].coord.h=0; 
          p_window[i].coord.w=0; 
          p_window[i].coord.x=0; 
          p_window[i].coord.y=0; 
          p_window[i].cursor=0; 
          p_window[i].win=NULL; 
     } 
     return 0; 
} 

Here is the caller graph for this function: 

 
 

int fLoadPanels (s_panel * p_panels, s_window * p_window, s_item * pCode, unsigned * pRF, 
s_item * plRAM, unsigned pPC) 

 
Definition at line 1104 of file disside.h. 
Referenced by main(). 
{ 
     unsigned int   lSizeCode = 0; 
     unsigned int   i=0; 
     char           lstInstr[64]=""; 
     char           lsIcode[20]=""; 
     s_coord                  coord = {0,0,0,0}; 
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     //Obtain number of Elements 
     lSizeCode = fSizeCode(pCode); 
 
     waddstr(p_window[P_SUBSTATUS].win, " Loading Panels ....   "); 
     wrefresh(p_window[P_SUBSTATUS].win);     
 
     //Browsing the list 
     for (i=0; i<lSizeCode; i++) 
     { 
          //Loading coordinates of the MAIN 1 window 
          coord=p_window[P_MAIN1].coord; 
 
          // Printing binary in MAIN 1 
          fB16tostring(pCode[i].HL,lstInstr);  
          //mvwaddnstr(p_window[P_PMAIN1].win, i, 0,lstInstr,-1); 
          mvwaddnstr(p_window[P_SUBMAIN1].win, i, 0,lstInstr,-1); 
          fB16tostring(pCode[i].LL,lstInstr);  
          mvwaddnstr(p_window[P_SUBMAIN1].win, i, 17,lstInstr,-1); 
          //mvwaddnstr(p_window[P_PMAIN1].win, i, 18, lstInstr,-1); 
          prefresh(p_window[P_SUBMAIN1].win,0,0,coord.y+1,coord.x+2,coord.h+1,coord.w+3); 
                               
          strcpy(lstInstr, ""); 
 
          //Loading coordinates of the IDHEX window 
          coord=p_window[P_IDHEX].coord; 
 
          // Printing Instruction  
          if (pCode[i].type==T_INSTRUCTIONS) 
          { 
               fGetStInstruction(pCode[i].InstrA, lstInstr); 
               mvwaddnstr(p_window[P_SUBIDHEX].win, i, 0, lstInstr,-1); 
                
               fGetStInstruction(pCode[i].InstrB, lstInstr); 
               mvwaddnstr(p_window[P_SUBIDHEX].win, i, 13, lstInstr,-1); 
          } 
          else 
          { 
               sprintf(lstInstr, "%08X", pCode[i].HLLL); 
               //mvwaddnstr(p_window[P_SUBIDHEX].win, i, 8, lstInstr,-1); 
               //mvwaddnstr(p_window[P_SUBIDHEX].win, i, 8, "xxx",-1); 
               int k=0; 
               k=mvwaddnstr(p_window[P_SUBIDHEX].win, i, 8, "xxx",-1); 
               if (k!=OK) 
               { 
                    addstr("Unable to create subpad"); 
                    refresh(); 
                    endwin(); 
                    return -1; // Testing  
               } 
          } 
           
          //Refreshing SUBIDHEX window 
          prefresh(p_window[P_SUBIDHEX].win,0,0,coord.y+1,coord.x+1,coord.h+1,coord.w); 
          prefresh(p_window[P_SUBMAIN1].win,0,0,coord.y+1,coord.x+2,coord.h+1,coord.w+3); 
     } 
 
     waddstr(p_window[P_SUBSTATUS].win, "Panels Loaded\n"); 
     wrefresh(p_window[P_SUBSTATUS].win);     
 
     return 0; 
} 

Here is the call graph for this function: 
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Here is the caller graph for this function: 

 
 

short fmovePanel (int pkey, short * pActiveP, s_panel * p_panels, s_window * p_window) 
 
Definition at line 920 of file disside.h. 
Referenced by main(). 
{ 
     short int ltempP=*pActiveP;   // Backing up Active panel parameter 
     char      lstMessage[255]=""; // Message for the status window (sprintf) 
 
     switch(pkey) 
     {     
          case CTRL_LEFT_KEY: // CTRL+LEFT 
               if (p_panels[ltempP].left != P_NULL) 
               { 
                    ltempP=*pActiveP; 
           
                    // Disable highlighting of current Panel 
                    fHighlightPanel(ltempP, 0, p_window); 
                     
                    // Switching to the left Panel 
                    *pActiveP=p_panels[ltempP].left; 
                          
                    // Remembering the way in in orther to return back (right in this case) 
                    p_panels[*pActiveP].right=ltempP; 
           
                    // Enable highlighting of current Panel 
                    fHighlightPanel(*pActiveP, 1, p_window); 
               } 
               else 
               { 
                    beep();         
               } 
               break; 
          case CTRL_RIGHT_KEY: // CTRL+RIGHT KEY 
               if (p_panels[ltempP].right != P_NULL) 
               { 
                    ltempP=*pActiveP; 
           
                    // Disable highlighting of current Panel 
                    fHighlightPanel(ltempP, 0, p_window); 
                                         
                    // Switching to the right Panel 
                    *pActiveP=p_panels[ltempP].right; 
                          
                    // Remembering the way in in orther to return back (left in this case) 
                    p_panels[*pActiveP].left=ltempP; 
           
                    // Enable highlighting of current Panel 
                    fHighlightPanel(*pActiveP, 1, p_window); 
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               } 
               else 
               { 
                    beep();         
               } 
               break; 
          case CTRL_UP_KEY: // CTRL+UP KEY 
               if (p_panels[ltempP].up != P_NULL) 
               { 
                    ltempP=*pActiveP; 
           
                    // Disable highlighting of current Panel 
                    fHighlightPanel(ltempP, 0, p_window); 
                     
                    // Switching to the upper Panel 
                    *pActiveP=p_panels[ltempP].up; 
                          
                    // Remembering the way in in orther to return back (down in this case) 
                    p_panels[*pActiveP].down=ltempP; 
           
                    // Enable highlighting of current Panel 
                    fHighlightPanel(*pActiveP, 1, p_window); 
               } 
               else 
               { 
                    beep();         
               } 
               break; 
          case CTRL_DOWN_KEY: // CTRL+DOWN KEY 
               if (p_panels[ltempP].down != P_NULL) 
               { 
                    ltempP=*pActiveP; 
           
                    // Disable highlighting of current Panel 
                    //fHighlightPanel(p_window[ltempP].win, 0); 
                    fHighlightPanel(ltempP, 0, p_window); 
                     
                    // Switching to the down Panel 
                    *pActiveP=p_panels[ltempP].down; 
                          
                    // Remembering the way in in orther to return back (up in this case) 
                    p_panels[*pActiveP].up=ltempP; 
           
                    // Enable highlighting of current Panel 
                    //fHighlightPanel(p_window[*pActiveP].win, 1);               
                    fHighlightPanel(*pActiveP, 1, p_window); 
               } 
               else 
               { 
                    beep();         
               } 
               break; 
           
          default: 
               break; 
     } 
 
     // Updating the status subwindow with the new move 
     if (*pActiveP!= ltempP)  // Preventing from showing the message when moving to the same panel 
     { 
          sprintf(lstMessage," Moving to the%s \n",p_panels[*pActiveP].label); 
          waddstr(p_window[P_SUBSTATUS].win, lstMessage); 
          wrefresh(p_window[P_SUBSTATUS].win);     
     } 
      
          //   ltempP=*pActiveP; 
               // Disable highlighting of current Panel 
          //   fHighlightPanel(p_window[ltempP].win, 0); 
           
               // Highlighting MAIN panel 
          //   *pActiveP=P_IDHEX; 
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          //   fHighlightPanel(p_window[*pActiveP].win, 1); 
 
 
          /* 
               //Highlighting current cursor 
               fHighlight_line(p_window[*pActiveP]. 
                    g_wins[gactiveP].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD);   // Main/present 
panel 
               fHighlight_line(g_wins[P_ADDR1].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD);    // 
ADDR1 Panel 
               fHighlight_line(g_wins[P_IDHEX].win,gCinstr+1,COLOR_PAIR(3)|A_BOLD);    // 
IDHEX Panel 
          */                   
 
return *pActiveP; 
} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

int fSetIDE (s_panel * p_panel, s_window * p_window, unsigned short int p_numInstr) 
 
Definition at line 830 of file disside.h. 
Referenced by main(). 
{ 
     unsigned short int  i = 0; 
     s_coord                  coord = {0,0,0,0}; 
     char                ls_label[255]=""; 
     int                      lcolor=1; 
     unsigned char       lhide=0;       // TRUE if panel is hidden 
     //s_winborder                        lwinb={'â”‚',  'â”‚',  'â”€',  'â”€',  'â”Œ',  'â”� ',  'â””',  'â”˜'};; 
      
     fInitWindows(p_window); 
     fInitPanels(p_panel); 
 
     // Initializing panels 
     fIniP_TopBar(p_window, p_panel); 
     fIniP_ADDR1(p_window, p_panel, p_numInstr); 
     fIniP_MAIN1(p_window, p_panel); 
     fIniP_IDHEX(p_window, p_panel); 
 
     fIniP_ADDRRF(p_window, p_panel); 
     fIniP_RF(p_window, p_panel); 
     fIniP_PC(p_window, p_panel); 
     fIniP_IR(p_window, p_panel); 
     fIniP_ADDR2(p_window, p_panel); 
     fIniP_MEM(p_window, p_panel); 
 
     fIniP_STATUS(p_window, p_panel); 
     fIniP_BOTTBAR(p_window, p_panel); 
      
     //Writing PC and IR 
     //coord.x=73; coord.y=37; coord.h=3; coord.w=35;                  
//   mvaddnstr(38,69,"PC",-1); 
//   mvaddnstr(41,69,"IR",-1); 
 
     waddstr(p_window[P_SUBSTATUS].win, " All panels Initialized\n"); 
     wrefresh(p_window[P_SUBSTATUS].win);     
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     // Refreshing all panels 
     /* 
     refresh(); 
     update_panels(); 
     doupdate(); 
     */ 
 
 
     return 0; 
} 

Here is the call graph for this function: 
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Here is the caller graph for this function: 

 
 

int fSetTerm () 
 
It sets a long buffer and Size of the terminal (maximizing it).  
 
Author: 

Victor Castano  
Date: 

08\03\2012 
This function uses windows specific libreries/functions. Hence, the code is only portable with minor 
modifications  
 
Returns: 

int 0 for correct execution  
Definition at line 228 of file disside.h. 
Referenced by main(). 
{ 
     HWND hWnd; 
     HANDLE hOut; 
    CONSOLE_SCREEN_BUFFER_INFO SBInfo; 
     COORD NewSBSize; 
     SMALL_RECT DisplayArea = {0, 0, 0, 0}; 
     char lsNamewnd[255] ="ERA Disassambler v0.1 June-2011 - Victor Castano"; 
           
     hOut = GetStdHandle(STD_OUTPUT_HANDLE); 
     GetConsoleScreenBufferInfo(hOut, &SBInfo); 
 
     SetConsoleTitle(lsNamewnd); 
     hWnd = FindWindow(NULL, lsNamewnd); 
      
     NewSBSize = GetLargestConsoleWindowSize(hOut); 
     // The following two lines will overwrite the detected  
     // maximum resolution for the console. Comment if appropiate  
     NewSBSize.X=192; 
     NewSBSize.Y=58; 
     DisplayArea.Right = NewSBSize.X-1; 
    DisplayArea.Bottom = NewSBSize.Y-1; 
 
     SetConsoleScreenBufferSize(hOut, NewSBSize); 
     SetConsoleWindowInfo(hOut, TRUE, &DisplayArea); 
     ShowWindow(hWnd, SW_MAXIMIZE); 
     //printf("\n right = %d, bottom = %d", DisplayArea.Right, DisplayArea.Bottom); 
     //getchar(); 
      
     return 0; 
} 

Here is the caller graph for this function: 

 
 

void fUnHighlight_line (WINDOW * pwin, int pline) 
 



45 

Definition at line 199 of file disside.h. 
Referenced by fUpdateCursors_Main(). 
{ 

     //wattron(p_win, COLOR_PAIR(0)); 

     mvwchgat(pwin, pline, 1, pwin->_maxx-2,  COLOR_PAIR(0), 0, NULL); 

     wrefresh(pwin); 

} 

Here is the caller graph for this function: 

 
 

int fUpdateCursors_Main (s_window * p_window, int p_iLastIntr, int p_iNewInstr, unsigned int 
pbackgcolor) 

 
Definition at line 207 of file disside.h. 
Referenced by main(). 
{ 

     fUnHighlight_line(p_window[P_MAIN1].win,p_iLastIntr+1);     // Main Panel 

     fUnHighlight_line(p_window[P_ADDR1].win,p_iLastIntr+1);     // ADDR1 Panel 

     fUnHighlight_line(p_window[P_IDHEX].win,p_iLastIntr+1);     // IDHEX Panel  

 

     fHighlight_line(p_window[P_MAIN1].win,p_iNewInstr+1,pbackgcolor);     // Main Panel 

     fHighlight_line(p_window[P_ADDR1].win,p_iNewInstr+1,pbackgcolor);     // ADDR1 Panel 

     fHighlight_line(p_window[P_IDHEX].win,p_iNewInstr+1,pbackgcolor);     // IDHEX Panel 

     return 0; 

} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 
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D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/dissimera.h File 
Reference 
 
General Header file for Dissimera.  
#include "disstools.h" 
Include dependency graph for dissimera.h: 

 
 
This graph shows which files directly or indirectly include this file: 

 
 

Data Structures 
x struct s_instruction 
x Structure that represents the instruction. struct s_item 
x Structure that represents either a data or a instruction word. struct s_exec 

Structure that represents the state of the execution. Defines 
x #define MAX_LIST_SIZE  2000 

Size of the array of 32bit instructions.  
x #define RAM_ELEMENTS  2000 

Size of the RAM = 2000x32bits=64000bits=7.8125 kilobytes.  
x #define STBUFFER  1000 

Size of the terminal buffer.  
x #define T_INSTRUCTIONS  1 

Type of load: T_INSTRUCTIONS 1 = 2x16 Instructions.  
x #define T_32DATA  3 

Type of load: T_32DATA 3 = 32 bit Data.  
x #define T_SPECIAL  8 

Type of load: T_SPECIAL 8 = Configuration load (such position 0)  
x #define F_STOP  0 
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Stop Instruction FormatCode = 00 InstructionCode = 0000.  
x #define F_NOP  3 

Nop Instruction.  
x #define I_NOPSTOP  0 

NOP/STOP instruction.  
x #define I_LD  1 

LD instruction.  
x #define I_LDA  2 

LDA instruction.  
x #define I_ST  3 

ST instruction.  
x #define I_MOV  4 

MOV instruction.  
x #define I_ADD  5 

ADD instruction.  
x #define I_SUB  6 

SUB instruction.  
x #define I_ASR  7 

ASR instruction.  
x #define I_ASL  8 

ASL instruction.  
x #define I_OR  9 

OR instruction.  
x #define I_AND  10 

AND instruction.  
x #define I_XOR  11 

XOR instruction.  
x #define I_LSL  12 

LSL instruction.  
x #define I_LSR  13 

LSR instruction.  
x #define I_CND  14 

CND instruction.  
x #define I_CBR  15 

CBR instruction.  
x #define LSDEBUB  0 

LSDEBUB tobedone.  
x #define LNDEBUG  1 

LSDEBUB tobedone.  
x #define LNORMAL  2 

LSDEBUB tobedone.  

Functions 
x int fInitRegisterFile (unsigned int *pRF) 

It initializes the register file structure.  
x int fInitExec (s_exec *p_exec) 
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It initializes Execution structure.  
x int fInitRAM (unsigned int pNumelem, unsigned int *pRAM) 

It initializes RAM structure.  
x void fInitItem (s_item *item) 

It initializes an Item structure.  
x void fIniItemList (int pNumelem, s_item *pItemlist) 

It initializes the Code/Data list specified whose number of elements is pNumelem.  
x int fGetICODE (char codenum, char *sIcode) 

It returns an output parameter sIcode with the ASCII equivalent of the instruction code.  
x int fGetStInstruction (s_instruction p_instr, char *pstInstr) 

It returns an output parameter *pstInstr with the ASCII equivalent of the instruction.  
x void fset_type (s_item *item, char type) 

It sets the type of the item/load.  
x short int SwapTwoBytes (short int w) 

It converts two bytes from Little Endian to Big Endian.  
x int SwapFourBytes (int dw) 

It converts four bytes from Little Endian to Big Endian.  
x void fB16tostring (unsigned int n, char *pschar) 

It prints a 16 digit binary integer n as a binary in text.  
x void fB32tostring (unsigned int n, char *pschar) 

It prints a 32 digit binary integer n as a binary in text.  
x unsigned int fASL (unsigned int pnum) 

ERA arithmetic shift left operation (keeping the sign bit)  
x unsigned int fASR (unsigned int pnum) 
x s_item parseItem (unsigned int numline, unsigned int instr32) 

It will return an structure of the 2x16bit instructions filled.  
x int fParseFile (char *iniFileName, s_item *pCode) 

It parses the bin file that results of Eugene's assembler/preparator.  
x int fSizeCode (s_item *pCode) 
x int fshowItem (s_item *item) 

fuction that shows an item on the screen using fptraza.  
x int fshowInstruction (s_instruction *pInstr) 

It shows the instruction included as an input parameter.  
x int fParseCode (s_item *pCode, unsigned *pRF, s_item *plRAM, unsigned *pPC) 

It browses the Code list and discriminates between data and instructions.  
 

Detailed Description 
General Header file for Dissimera.  
 
 \author        Victor Castano 
 \version  0.1a 
 \date          08\03\2012 It contains a collection of variables and functions related to the simulator  
Warning: 

 
Definition in file dissimera.h. 
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Data Structure Documentation 

struct s_instruction 
Structure that represents the instruction.  
Definition at line 159 of file dissimera.h. 
 
Data Fields: 

unsigned char f_code Format Code (2bits)  
unsigned char i_code Instruction Code (4bits)  
unsigned char Op1 First operand (5bits)  
unsigned char Op2 Second operand (5bits)  

struct s_item 
Structure that represents either a data or a instruction word.  
Position 0 of the array of s_items is deliberately left empty for future configuration purposes. It seems that 
5+4+4=13 elements would be more than enough for future configuration. For instance: Number of elements 
in the array. I know, I know. Redundant data. But It will be easier to handle. If needed I will swap the array 
for a dynamic list (at the moment this is just to test instructions on EURRICA.  
Definition at line 175 of file dissimera.h. 
Collaboration diagram for s_item: 

 
 
 
Data Fields: 

unsigned short int HL Higher load (16) of the 32 bits.  
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unsigned int HLLL 32 bit instruction/data  
s_instruction InstrA  
s_instruction InstrB  

unsigned short int linenum the x coordinate  
unsigned short int LL Lower load (16) of the 32 bits.  

unsigned char type Type of load: 1=2x16 Instructions, 
2=Instruction+Data , 3=32 bit Data, 
8=Configuration load (such as position 0) By 
default every load will be treated as Data  

struct s_exec 
Structure that represents the state of the execution.  
In the future it will include timing and stats.  
Definition at line 193 of file dissimera.h. 
 
Data Fields: 

unsigned int nInstrEx Number of Instructions Executed.  
unsigned int uiLastInstr Last Instruction Executed.  

 

Define Documentation 

#define F_NOP  3 
 
Nop Instruction.  
 
Definition at line 132 of file dissimera.h. 
Referenced by fGetStInstruction(). 

#define F_STOP  0 
 
Stop Instruction FormatCode = 00 InstructionCode = 0000.  
 
Definition at line 131 of file dissimera.h. 
Referenced by fGetStInstruction(). 

#define I_ADD  5 
 
ADD instruction.  
 
Definition at line 139 of file dissimera.h. 

#define I_AND  10 
 
AND instruction.  
 
Definition at line 144 of file dissimera.h. 
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#define I_ASL  8 
 
ASL instruction.  
 
Definition at line 142 of file dissimera.h. 

#define I_ASR  7 
 
ASR instruction.  
 
Definition at line 141 of file dissimera.h. 

#define I_CBR  15 
 
CBR instruction.  
 
Definition at line 149 of file dissimera.h. 

#define I_CND  14 
 
CND instruction.  
 
Definition at line 148 of file dissimera.h. 

#define I_LD  1 
 
LD instruction.  
 
Definition at line 135 of file dissimera.h. 

#define I_LDA  2 
 
LDA instruction.  
 
Definition at line 136 of file dissimera.h. 

#define I_LSL  12 
 
LSL instruction.  
 
Definition at line 146 of file dissimera.h. 

#define I_LSR  13 
 
LSR instruction.  
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Definition at line 147 of file dissimera.h. 

#define I_MOV  4 
 
MOV instruction.  
 
Definition at line 138 of file dissimera.h. 

#define I_NOPSTOP  0 
 
NOP/STOP instruction.  
 
Definition at line 134 of file dissimera.h. 

#define I_OR  9 
 
OR instruction.  
 
Definition at line 143 of file dissimera.h. 

#define I_ST  3 
 
ST instruction.  
 
Definition at line 137 of file dissimera.h. 

#define I_SUB  6 
 
SUB instruction.  
 
Definition at line 140 of file dissimera.h. 

#define I_XOR  11 
 
XOR instruction.  
 
Definition at line 145 of file dissimera.h. 

#define LNDEBUG  1 
 
LSDEBUB tobedone.  
 
Definition at line 152 of file dissimera.h. 

#define LNORMAL  2 
 
LSDEBUB tobedone.  



53 

 
Definition at line 153 of file dissimera.h. 

#define LSDEBUB  0 
 
LSDEBUB tobedone.  
 
Definition at line 151 of file dissimera.h. 

#define MAX_LIST_SIZE  2000 
 
Size of the array of 32bit instructions.  
 
Definition at line 121 of file dissimera.h. 
Referenced by main(). 

#define RAM_ELEMENTS  2000 
 
Size of the RAM = 2000x32bits=64000bits=7.8125 kilobytes.  
 
Definition at line 122 of file dissimera.h. 

#define STBUFFER  1000 
 
Size of the terminal buffer.  
 
Definition at line 123 of file dissimera.h. 

#define T_32DATA  3 
 
Type of load: T_32DATA 3 = 32 bit Data.  
 
Definition at line 128 of file dissimera.h. 
Referenced by fInitItem(). 

#define T_INSTRUCTIONS  1 
 
Type of load: T_INSTRUCTIONS 1 = 2x16 Instructions.  
 
Definition at line 126 of file dissimera.h. 
Referenced by fLoadPanels(), and fParseCode(). 

#define T_SPECIAL  8 
 
Type of load: T_SPECIAL 8 = Configuration load (such position 0)  
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Definition at line 129 of file dissimera.h. 
Referenced by fParseFile(). 

 

Function Documentation 

unsigned int fASL (unsigned int pnum) 
 
ERA arithmetic shift left operation (keeping the sign bit)  
 
Author: 

Victor Castano  

Date: 
08\03\2012 

It shifts the content of register Ri arithmetically one bit to the left and store the result in Ri.  
Memory state is not considered in the instruction, and the memory state does not change.  
Both operands can refer to the same register.  
Suggested assembly statement for the ASL instruction: Rj <<= Ri  
Additional assembly directives specifying the current instruction format: .format 8 or .format 16 or 
.format 32  
Arithmetic shift means that the sign bit does not participate in the operation but remains on its usual 
place. 
The leftmost bit of the operand is always lost.  
The rightmost bit of the operand gets the value of 0. 
The contents of the Ri register does not change. 
The effect of the ASL instruction for format 16 is shown below.  
The operation for formats 8 and 32 is performed in the similar way.  
Parameters: 
pnum  is contents of the register Ri that should be arithmeticaly shifted to the left  

Returns: 
void  

Definition at line 537 of file dissimera.h. 
{ 

     unsigned int i=0; 

     unsigned int j=0; 

      

     // If bit in position 0 (the most left position) is 1 ... (negative number) 

     // preparing mask to keep the sign 

     if(pnum&(0x80000000>>i)) 

     { 

          j=0x80000000;   

     } 

     else 

     { 

          j=0x00000000; 

     } 

 

     i=pnum & (0X3FFFFFFF);   // selecting bits 14-0 

     i=i<<1;                       // Shifting them one to the left 

     i=i|j;                        // Or with the mask (keeping the sign if needed) 

      

     return i; 
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} 

unsigned int fASR (unsigned int pnum) 
 
Definition at line 561 of file dissimera.h. 
{ 
     unsigned int i=0; 
     unsigned int j=0; 
      
     // If bit in position 0 (the most left position) is 1 ... (negative number) 
     // preparing mask to keep the sign 
     if(pnum&(0x80000000>>i)) 
     { 
          j=0xC0000000;   
     } 
     else 
     { 
          j=0x40000000; 
     } 
      
     // To be 
finishedddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddd 
     //i=pnum & (0X3FFFFFFF); 
     //i=i<<1; 
     //i=i|j; 
 
//   colorprintI32(i); 
//  fptraza(gflog, 1,"  i = %d\n",i); 
 
     return i; 
} 

void fB16tostring (unsigned int n, char * pschar) 
 
It prints a 16 digit binary integer n as a binary in text.  
 
Author: 

Victor Castano  

Date: 
08\03\2012  

Parameters: 
n  is the integer with the number  
*pschar  is the string with the binary number to be returned  

Returns: 
void  

Definition at line 467 of file dissimera.h. 
Referenced by fLoadPanels(). 
{ 
    unsigned int    i=0; 
     char           lsnum[20]=""; 
    for(i = 0; i<16; i++)  
     { 
        if(n&(0x8000>>i)) 
          {  
               strcat(lsnum, "1");  
          } 
          else                 
          { 
               strcat(lsnum, "0"); 
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          } 
 
          //if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          //if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/ 
        //if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/ 
    } 
     strcpy(pschar, lsnum); 
} 

Here is the caller graph for this function: 

 
 

void fB32tostring (unsigned int n, char * pschar) 
 
It prints a 32 digit binary integer n as a binary in text.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
Parameters: 
n  is the integer with the number  
*pschar  is the string with the binary number to be returned  

Returns: 
void  

Definition at line 497 of file dissimera.h. 
Referenced by fBootHardware(). 
{ 
    unsigned int    i=0; 
     char           lsnum[40]=""; 
 
    for(i = 0; i<32; i++) { 
        if(n&(0x80000000>>i)) strcat(lsnum, "1"); else strcat(lsnum, "0"); 
          //if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          //if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/ 
        //if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          //if(i == 15) fptraza(gflog, 1,"      "); /*put a space between bytes*/ 
          //if(i == 17) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          //if(i == 21) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          //if(i == 26) fptraza(gflog, 1," "); /*put a space between bytes*/ 
    } 
 
     strcpy(pschar, lsnum); 
} 

Here is the caller graph for this function: 

 
 

int fGetICODE (char codenum, char * sIcode) 
 
It returns an output parameter sIcode with the ASCII equivalent of the instruction code.  
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Author: 
Victor Castano  

Date: 
08\03\2012  

Parameters: 
codenum  is the number of elements  
*sIcode  is the output parameter with the ASCII equivalent of the instruction code  

Returns: 
int 0 for correct execution  

Definition at line 307 of file dissimera.h. 
Referenced by fGetStInstruction(), fshowInstruction(), fshowItem(), and parseItem(). 
{ 
     strcpy(sIcode," "); 
     switch (codenum) 
     { 
     case 0: 
          strcpy(sIcode, "NOP-STOP"); //The NOP instruction performs no actions, except moving 
the PC register to the next instruction. 
          break; 
     case 1: 
          strcpy(sIcode, "LD");         //The LD instruction copies the value of a 32-bit memory 
word pointed to by Ri register, to the Rj register. 
          break; 
     case 2: 
          strcpy(sIcode, "LDA"); 
          break; 
     case 3: 
          strcpy(sIcode, "ST"); 
          break; 
     case 4: 
          strcpy(sIcode, "MOV"); 
          break; 
     case 5: 
          strcpy(sIcode, "ADD"); 
          break; 
     case 6: 
          strcpy(sIcode, "SUB"); 
          break; 
     case 7: 
          strcpy(sIcode, "ASL"); 
          break; 
     case 8: 
          strcpy(sIcode, "ASR"); 
          break; 
     case 9: 
          strcpy(sIcode, "OR"); 
          break; 
     case 10: 
          strcpy(sIcode, "AND"); 
          break; 
     case 11: 
          strcpy(sIcode, "XOR"); 
          break; 
     case 12: 
          strcpy(sIcode, "LSL"); 
          break; 
     case 13: 
          strcpy(sIcode, "LSR"); 
          break; 
     case 14: 
          strcpy(sIcode, "CND"); 
          break; 
     case 15: 
          strcpy(sIcode, "CBR"); 
          break; 
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     default: 
          return 1; //This would never happen; 
     } 
      
     return 0; 
} 

Here is the caller graph for this function: 

 
 

int fGetStInstruction (s_instruction p_instr, char * pstInstr) 
 
It returns an output parameter *pstInstr with the ASCII equivalent of the instruction.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
Parameters: 
p_instr  is structure with the instruction and the operands  
*pstInstr  is the output parameter with the ASCII equivalent of the instruction code and 

parameters  

Returns: 
int 0 for correct execution  

Definition at line 377 of file dissimera.h. 
Referenced by fLoadPanels(). 
{ 
     char lstInstr[20]=""; 
     char lsIcode[20]=""; 
      
     if( p_instr.i_code == 0) 
     { 
          if (p_instr.f_code == F_NOP)sprintf(lstInstr, "NOP"); 
          if (p_instr.f_code == F_STOP) sprintf(lstInstr, "STOP"); 
     } 
     else 
     { 
          fGetICODE(p_instr.i_code, lsIcode); 
          sprintf(lstInstr, "%s R%d R%d", lsIcode, p_instr.Op1, p_instr.Op2);         
     } 
 
     strcpy(pstInstr, lstInstr); 
 
     return 0; 
} 

Here is the call graph for this function: 
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Here is the caller graph for this function: 

 
 

void fIniItemList (int pNumelem, s_item * pItemlist) 
 
It initializes the Code/Data list specified whose number of elements is pNumelem.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
Parameters: 
pNumelem  is the number of elements  
pItemlist  the list of elements  

Returns: 
void  

Definition at line 287 of file dissimera.h. 
Referenced by main(). 
{ 
     int i=0; 
 
     for (i=0; i<pNumelem; i++) 
     { 
          fInitItem(&pItemlist[i]); 
     } 
 
     return; 
} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

int fInitExec (s_exec * p_exec) 
 
It initializes Execution structure.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
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Parameters: 
*p_exec  is a reference to the execution structure  

Returns: 
int 0 for correct execution  

Definition at line 226 of file dissimera.h. 
Referenced by main(). 
{ 
     p_exec->nInstrEx = 0; 
     p_exec->uiLastInstr = 0; 
 
     return 0; 
} 

Here is the caller graph for this function: 

 
 

void fInitItem (s_item * item) 
 
It initializes an Item structure.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
Parameters: 
*item  is a reference to the RAMs tructure  

Returns: 
void  

Definition at line 261 of file dissimera.h. 
Referenced by fIniItemList(), fParseFile(), and parseItem(). 
{ 
     item->linenum=0; 
     item->type=T_32DATA;               // By default every load will be treated as a 32bit data 
     item->HLLL=0; 
     item->InstrA.f_code=0; 
     item->InstrA.i_code=0; 
     item->InstrA.Op1=0; 
     item->InstrA.Op2=0; 
     item->InstrB.f_code=0; 
     item->InstrB.i_code=0; 
     item->InstrB.Op1=0; 
     item->InstrB.Op2=0; 
     item->HL=0; 
     item->LL=0; 
     return; 
} 

Here is the caller graph for this function: 
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int fInitRAM (unsigned int pNumelem, unsigned int * pRAM) 
 
It initializes RAM structure.  
 
Author: 

Victor Castano  

Date: 
08\03\2012  

Parameters: 
pNumelem  is the number of elements to be initialized  
*pRAM  is a reference to the RAM structure  

Returns: 
int 0 for correct execution  

Definition at line 243 of file dissimera.h. 
{ 
     unsigned int i=0; 
 
     for (i=0; i<pNumelem; i++) 
     { 
          pRAM[i]=0; 
     } 
     return 0; 
} 

int fInitRegisterFile (unsigned int * pRF) 
 
It initializes the register file structure.  
 
Author: 

Victor Castano  

Date: 
08\03\2012  

Returns: 
int 0 for correct execution  

Definition at line 207 of file dissimera.h. 
Referenced by main(). 
{ 
     unsigned char i=0; 
 
     for (i=0; i<32; i++) 
     { 
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          pRF[i]=0; 
     } 
     return 0; 
} 

Here is the caller graph for this function: 

 
 

int fParseCode (s_item * pCode, unsigned * pRF, s_item * plRAM, unsigned * pPC) 
 
It browses the Code list and discriminates between data and instructions.  
 
Author: 

Victor Castano  
Version: 

0.1a  
Date: 

08\03\2012  
Parameters: 
*pCode   
*pRF   
*plRAM   
*pPC   

Returns: 
int 0 for correct execution 

fParseCode browses the Code list and discriminates between data and instructions It browses 
instructions starting in the address 0 and jumps from one to the next setting up the load to 
T_INSTRUCTIONS leaving the rest as DATA. Any data stored after the STOP instruction will not be 
browsed.  
Definition at line 786 of file dissimera.h. 
Referenced by main(). 
{ 
     //s_item            item; 
     unsigned int        lsize=0; 
     unsigned int        i=0; 
     unsigned short int  lEOLOAD=0;                    // Variable that will represent which load 
is active High (1) Load or Low (2) Load 
     bool                lEOCODE=0;                    // Variable that will represent whether 
the END OF CODE has been reached 
     s_instruction       lInstr;                       // Local var that stores the instruction: 
either High or Low 
      
      
     //Obtain number of Elements 
     lsize=pCode[0].linenum; 
     fptraza(gflog, 1, "\n Size of File        = %d bytes", lsize*4); 
     fptraza(gflog, 3, "\n Number of Elements  = %d \n", lsize); 
           
     //Check if the Code list is empty 
     if (lsize <=0) 
     { 
          return -1; 
     } 
      
     /*   Browse the list of Code (High and Low part) starting by the first element 
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          By default every item was set as T_32BITDATA, we are now browsing only instruction by 

instruction  

          in order to mark instructions from the data 

     */ 

      

     i=*pPC+1; // Position in the code list is 1+ due to the first element being used for 

configuration 

     do  

     { 

          fshowItem(&pCode[i]); 

          pCode[i].type=T_INSTRUCTIONS;      // The item is definitely an instruction load 

          lEOLOAD=1; 

          do //Browse firts the high and then the low part (specified by lEOLOAD) 

          {                              

               if (lEOLOAD==1)      

               { 

                    lInstr=pCode[i].InstrA; 

               } 

               else 

               { 

                    lInstr=pCode[i].InstrB; 

                    fptraza(gflog, 1, "\n"); 

               } 

 

               fshowInstruction(&lInstr); 

 

               switch (lInstr.i_code) 

               { 

               case 0:   //The # instruction performs no actions, except moving the PC register 

to the next instruction. 

                    switch (lInstr.f_code)         

                    { 

                    case 0:                            // x00b STOP instruction 

                         fptraza(gflog, 1, " meaning STOP instruction "); 

                         lEOCODE=true;            // End of CODE 

                         break; 

                    case 1:                            // x01b NOP instruction 

                         //break;                 //Assuming that 01 and 11 for f_code are a NOP 

instruction (check with Igor, Thomas and Eugene 

                    case 3:                            // QUESTION: x11b According to the 

Document Instruction Set this is not possible but it seems to be a NOP instruction 

                         fptraza(gflog, 1, " meaning NOP instruction "); 

                         break; 

                    default: 

                         fptraza(gflog, 1, "THIS IS NOT POSSIBLE - a 01??? in the format code?"); 

                    } 

 

                    break; 

               case 1:   // The LD instruction copies the value of a 32-bit memory word pointed 

to by Ri into Rj  

                    fptraza(gflog, 1, " meaning R%d:=*R%d ", lInstr.Op2, lInstr.Op1); 

                    //Loading Rj with the vaule from the memory location                   

                    pRF[lInstr.Op2]=plRAM[lInstr.Op1].HLLL;       

                    fptraza(gflog, 1, "   meaning  R%d:=%d ", lInstr.Op2, 

plRAM[lInstr.Op1].HLLL); 

                    break; 

               case 2:   // The LDA instruction takes the value from the next 32-bit word and stores 

the result into Rj 

                         // constant stored in the Next 32bit location 

                    fptraza(gflog, 1, " meaning R%d:=CONSTANT", lInstr.Op2);    

                    fptraza(gflog, 1, "   meaning  R%d:=%d ", lInstr.Op2, pCode[i+1].HLLL);                    

                    pRF[lInstr.Op2]=pCode[i+1].HLLL;   //Loading Rj with the next 32bit word 

                    fptraza(gflog, 1, "   meaning  R%d:=%d ", lInstr.Op2, pRF[lInstr.Op2]);                    

                    if (lEOLOAD ==1) lEOLOAD++;   // Jumping the load 

                    i++; // Jumping to the following instruction (the one after the data) 

                    break; 

               case 3:   // The ST instruction copies the value of Ri to the memory by address 

taken from Rj 

                    fptraza(gflog, 1, " meaning *R%d:=R%d", lInstr.Op2, lInstr.Op1); 

                    fptraza(gflog, 1, "   meaning  MEM[%d]=%d ", pRF[lInstr.Op2], 

pRF[lInstr.Op1]); 
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                    plRAM[pRF[lInstr.Op2]].HLLL = pRF[lInstr.Op1];         // MEM(Rj)=Ri 
                    fptraza(gflog, 1, "   meaning  MEM[%d]=%d ", pRF[lInstr.Op2], 
plRAM[pRF[lInstr.Op2]].HLLL); 
                    break; 
               case 4:   // The MOV instruction copies the value from Ri to the Rj 
                         // Assuming that format code is fixed to 11  
                    fptraza(gflog, 1, " meaning R%d:=R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d:=%d", lInstr.Op2, pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2]=pRF[lInstr.Op1];   // Rj=Ri 
                    break; 
               case  5:      //  The  ADD  instruction  denotes  the  two’s  complement  arithmetic  addition. 
                         // The contents of Ri and Rj are arithmetically added, and the result 
is put into Rj.                          
                         // Assuming that format code is fixed to 11  
                    fptraza(gflog, 1, " meaning R%d+=R%d", lInstr.Op2, lInstr.Op1);   
                    fptraza(gflog, 1, " meaning R%d=R%d+R%d", lInstr.Op2,lInstr.Op2, 
lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d=%d+%d", lInstr.Op2,pRF[lInstr.Op2], 
pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] + pRF[lInstr.Op2];        // Rj=Rj+Ri 
                    break; 
               case  6:      /*      The  SUB  instruction  denotes  the  two’s  complement  arithmetic  
subtraction. 
                              The content of Ri is subtracted from the contents of Rj, and the 
result  
                              is put into the register Rj 
                         */ 
                    fptraza(gflog, 1, " meaning R%d-=R%d", lInstr.Op2, lInstr.Op1);    
                    fptraza(gflog, 1, " meaning R%d=R%d-R%d", lInstr.Op2,lInstr.Op2, 
lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d=%d-%d", lInstr.Op2,pRF[lInstr.Op2], 
pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] - pRF[lInstr.Op2];        // Rj=Rj+Ri 
                    break; 
               case 7:   // The ASR instruction arithmetically shifts Ri one bit right, and puts 
the result into Rj.  
                    fptraza(gflog, 1, " meaning R%d >>= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op1]);                     
                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1;                // one bit right 
shitfing of Rj 
                    fptraza(gflog, 1, " meaning R%d >>= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case 8:   /*   The ASL instruction arithmetically shifts the contents of Ri one 
bit left, and puts  
                         the result into the register Rj. */ 
                    fptraza(gflog, 1, " meaning R%d <<= R%d", lInstr.Op2, lInstr.Op1); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 
                    fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1;                // one bit left 
shitfing of Rj  
                    fptraza(gflog, 1, " meaning R%d <<= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case  9:      /*      The  OR  instruction  applies  logical  addition  (“OR”)  operator to every 
pair  
                              of bits taken from Ri and Rj, respectively, and puts the result into 
Rj. */ 
                    fptraza(gflog, 1, " meaning R%d |= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2,  pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] | pRF[lInstr.Op1]; 
                    fptraza(gflog, 1, " meaning R%d |= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case  10:  /*        The  AND  instruction  applies  logical  multiplicative  (“AND”)  operator  
to  
                              every pair of bits taken from Ri and Rj, respectively, and puts the  
                              result into Rj */ 
                    fptraza(gflog, 1, " meaning R%d &= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] & pRF[lInstr.Op1]; 
                    fptraza(gflog, 1, " meaning R%d &= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
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               case  11:  /*        The  XOR  instruction  applies  logical  exclusive  OR  (“XOR”)  operator  
to every  
                              pair of bits taken from Ri and Rj, respectively, and puts the result 
into Rj. */ 
                    fptraza(gflog, 1, " meaning R%d ^= R%d", lInstr.Op2, lInstr.Op1);  
                    fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]); 
                    pRF[lInstr.Op2] = ( pRF[lInstr.Op2] || pRF[lInstr.Op1] ) && !(pRF[lInstr.Op2] 
&& pRF[lInstr.Op1]); 
                    fptraza(gflog, 1, " meaning R%d ^= %d", lInstr.Op2, pRF[lInstr.Op1]); 
                    break; 
               case 12: /*    The LSL instruction logically shifts the contents of Ri one bit left, 
and  
                              puts the result into the Rj.  */ 
                    fptraza(gflog, 1, " meaning R%d <= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op1]);                 
                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] << 1;                // one bit logicleft 
right shitfing of Rj 
                    fptraza(gflog, 1, " meaning R%d <= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case 13: 
                    /*   The LSR instruction logically shifts the contents of Ri one bit right, 
and  
                         puts the result into the register Rj.   */ 
                    fptraza(gflog, 1, " meaning R%d >= R%d", lInstr.Op2, lInstr.Op1); 
                    fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op1]);                 
                    pRF[lInstr.Op2] = pRF[lInstr.Op1]; // Rj = Ri 
                    pRF[lInstr.Op2] = pRF[lInstr.Op2] >> 1;                // one bit logic right 
shitfing of Rj 
                    fptraza(gflog, 1, " meaning R%d >= %d", lInstr.Op2, pRF[lInstr.Op2]); 
                    break; 
               case 14: 
                    /*   The CND instruction arithmetically compares the contents Ri and Rj  
                         and puts the result of the comparison (as a set of 1-bit signs) to Rj. 
*/ 
                    fptraza(gflog, 1, " meaning R%d ?= R%d", lInstr.Op2, lInstr.Op1);  
                    // Victor When executing we can check the result and show it 
                    break; 
               case 15: 
                    /*   The CBR instruction checks the contents of Ri. If it is non-zero,  
                         then:           
                              1)   the address of the next instruction (i.e., current value of  
                                   the PC register + 1) is stored in the Ri register, and  
                              2)   the value of Rj is set to the PC register. This means that  
                                   the next instruction will be fetched by the address taken Rj  
                    */ 
                    fptraza(gflog, 1, " meaning if R%d GOTO R%d", lInstr.Op1, lInstr.Op2);  
                    break; 
               default: 
                    return 1; //This would never happen; 
               } 
               lEOLOAD++; 
          } while (lEOLOAD <= 2);  // Loop finishes when every part of the load (High and Low) 
has been processed 
          i++; 
          (*pPC)++; 
     }while (!lEOCODE); 
 
     return 0;  
} 

Here is the call graph for this function: 
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Here is the caller graph for this function: 

 
 

int fParseFile (char * iniFileName, s_item * pCode) 
 
It parses the bin file that results of Eugene's assembler/preparator.  
 
Author: 

Victor Castano  
Date: 

08\03\2012 
This function loads data into 1) the code list and 2) the RAM (not yet)  
Parameters: 
*iniFileName  is the bin file to be parsed  
*pCode  is the code list returned  

Todo: 
To load, not only the code list, but also the RAM. Disabling the comment for "pRAM[i-1]=pCode[i].HLLL;" 
will be the only thing left to do.  

Returns: 
int 0 for correct execution  

Definition at line 662 of file dissimera.h. 
Referenced by main(). 
{ 

     FILE                *fp; 

     unsigned int        instr32=0; 

     unsigned short int  i=0; 

     unsigned long       lSize; 

           

     fp=fopen(iniFileName,"rb"); 

     if (!fp) 

     { 

          fptraza(gflog, 1,"Unable to open file!"); 

          return -1; 

     } 

     fptraza(gflog, 1,"fname = %s\n", iniFileName); 

 

     // ========================================= 

     //The following would browse a file an put it into a buffer 

     // ========================================= 

     // obtain file size 

     fseek (fp , 0 , SEEK_END); 

     lSize = ftell (fp); 

     rewind (fp); 

     //fptraza(gflog, 1,"\n Number of Bytes = %d bytes \n 32-bit-instructions = %d \n 16-bit 

instructions = %d \n",lSize, lSize/4, lSize/2); 

     fptraza(gflog, 1, "\n Number of Bytes = %d bytes \n Number of 32-bit instruction-data = %d 

\n",lSize, lSize/4); 

      

     fInitItem(&pCode[0]);         // Initializing the first config element in position 0 

     pCode[0].type=T_SPECIAL; // Setting the load as special 

           

     //Browse the file and store the contents into 1)Code List and 2)RAM 

     rewind (fp); 

     for(i = 1; i <= lSize/4; i++)                          // Position 0 of the array is 

deliberately left empty for future configuration purposes  

     {     
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          pCode[i].linenum=i; 

          fread(&pCode[i].HLLL, sizeof(int), 1, fp); 

          pCode[i].HLLL = SwapFourBytes(pCode[i].HLLL); 

           

          // Store elements into code list 

          pCode[i] = parseItem(i, pCode[i].HLLL); 

 

          // Store elements into RAM 

          //pRAM[i-1]=pCode[i].HLLL; 

 

          pCode[0].linenum++;                                    // Increase the number of 

elements in the array of Code 

          fptraza(gflog, 1,"\n\n"); 

     } 

 

     // terminate 

     fclose(fp); 

      

     return 0; 

} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

void fset_type (s_item * item, char type) 
 
It sets the type of the item/load.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
Parameters: 
*item  is the structure with the item  
type  is the type of Load  

Returns: 
void  

Definition at line 407 of file dissimera.h. 
{ 

     item->type = type; 

     return; 

} 

int fshowInstruction (s_instruction * pInstr) 
 
It shows the instruction included as an input parameter.  
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Author: 

Victor Castano  
Version: 

0.1a  
Date: 

08\03\2012  
Parameters: 
*pInstr   

Returns: 
int 0 for correct execution  

Definition at line 760 of file dissimera.h. 
Referenced by fExecuteCode(), and fParseCode(). 
{ 

     unsigned int    numchar=0; 

     char lsIcode[20]=" "; 

           

     fGetICODE(pInstr->i_code, lsIcode); 

     numchar=fptraza(gflog, 1,"    %s R%d R%d ", lsIcode, pInstr->Op1, pInstr->Op2); 

     return numchar; 

} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

fshowItem (s_item * item) 
 
fuction that shows an item on the screen using fptraza.  
 
\author        Victor Castano 

\version  0.1a 

\date          08\03\2012 

  
Parameters: 
*item   

Returns: 
int 0 for correct execution  

Definition at line 733 of file dissimera.h. 
Referenced by fExecuteCode(), and fParseCode(). 
{ 

     char lsIcodeA[20]=" "; 

     char lsIcodeB[20]=" "; 

      

     fptraza(gflog, 1, "\n\n\n %d  ", item->linenum); 

     fptraza(gflog, 1,"         %04X               %04X \n   ",item->HL, item->LL); 

     colorprintI16(item->HL); 

     fptraza(gflog, 1,"   "); 
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     colorprintI16(item->LL); 
     fptraza(gflog, 1,"\n"); 
 
     fGetICODE(item->InstrA.i_code, lsIcodeA); 
     fGetICODE(item->InstrB.i_code, lsIcodeB);          
     //numchar=fptraza(gflog, 1,"    %s R%d R%d           %s R%d R%d\n", lsIcodeA, 
item->InstrA.Op1, item->InstrA.Op2, lsIcodeB, item->InstrB.Op1, item->InstrB.Op2); 
     return 0; 
} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

int fSizeCode (s_item * pCode) 
 
Definition at line 715 of file dissimera.h. 
Referenced by fBootHardware(), fExecuteCode(), and fLoadPanels(). 
{ 
     unsigned int size=0; 
 
     size = pCode[0].linenum;       
     return size; 
} 

Here is the caller graph for this function: 

 
 

s_item parseItem (unsigned int numline, unsigned int instr32) 
 
It will return an structure of the 2x16bit instructions filled.  
 
Author: 

Victor Castano  
Date: 

08\03\2012  
Parameters: 
numline   
instr32   

Returns: 
s_item: an structure containing the 2x16bit instructions 
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If the input parameter numline is 0 then linenum will not be filled within the structure. It is important to 
discriminate data from instructions. This is not trivial: setting up the load to T_INSTRUCTIONS 
leaving the rest as DATA. Any data stored after the STOP instruction will not be browsed. When the 
current load is an instruction we can determine which one is the next instruction  
Definition at line 606 of file dissimera.h. 
Referenced by fParseFile(). 
{ 

     s_item              item; 

     unsigned int   l_instr32 = instr32;    //Backup of instruction due to bit operations 

modifying original 

      

     //Initialize item 

     fInitItem(&item); 

      

     if (numline!=0) 

     { 

          item.linenum = numline;        

     }     

 

      

     //fptraza(gflog, 1," \n LIne: %d \n", item.linenum); 

     fptraza(gflog, 1," \n %d ", item.linenum-1); 

 

     //Loading the structure 

     item.HLLL=instr32;   

     item.HL = (short int)((l_instr32 & 0xFFFF0000)>>16); 

     item.LL= (short int)(instr32 & 0x0000FFFF); 

     fptraza(gflog, 1,"         %04X               %04X \n   ",item.HL, item.LL); 

     colorprintI16(item.HL); 

     fptraza(gflog, 1,"   "); 

     colorprintI16(item.LL); 

     fptraza(gflog, 1,"\n"); 

     item.InstrA.f_code = (char)((item.HL & 0xC000)>>14); 

     item.InstrB.f_code = (char)((item.LL & 0xC000)>>14); 

     item.InstrA.i_code = (char)((item.HL & 0x3C00)>>10); 

     item.InstrB.i_code = (char)((item.LL & 0x3C00)>>10); 

     item.InstrA.Op1 = (char)((item.HL & 0x03E0)>>5); 

     item.InstrB.Op1 = (char)((item.LL & 0x03E0)>>5); 

     item.InstrA.Op2 = (char)((item.HL & 0x001F)); 

     item.InstrB.Op2 = (char)((item.LL & 0x001F)); 

 

     char lsIcodeA[20]=" "; 

     char lsIcodeB[20]=" "; 

     fGetICODE(item.InstrA.i_code, lsIcodeA); 

     fGetICODE(item.InstrB.i_code, lsIcodeB); 

     fptraza(gflog, 1,"    %s   R%d  R%d           %s  R%d  R%d\n", lsIcodeA, item.InstrA.Op1, 

item.InstrA.Op2, lsIcodeB, item.InstrB.Op1, item.InstrB.Op2); 

 

     return item; 

 

} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 
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int SwapFourBytes (int dw) 
 
It converts four bytes from Little Endian to Big Endian.  
 
Author: 

Victor Castano  
Date: 

08\03\2012 
Eugene's bin files from assembler-preparator seem to be in Big Endian format. This function and the 
function SwapTwoBytes will help to convert from Little Endian to Big Endian.  
Parameters: 
dw  is the int with the four bytes in Little Endian format  

Returns: 
int with the two bytes in Big Endian format  

Definition at line 446 of file dissimera.h. 
Referenced by fParseFile(). 
  { 
      register int tmp; 
      tmp =  (dw & 0x000000FF); 
      tmp = ((dw & 0x0000FF00) >> 0x08) | (tmp << 0x08); 
      tmp = ((dw & 0x00FF0000) >> 0x10) | (tmp << 0x08); 
      tmp = ((dw & 0xFF000000) >> 0x18) | (tmp << 0x08); 
      return(tmp); 
  } 

Here is the caller graph for this function: 

 
 

short int SwapTwoBytes (short int w) 
 
It converts two bytes from Little Endian to Big Endian.  
 
Author: 

Victor Castano  
Date: 

08\03\2012 
Eugene's bin files from assembler-preparator seem to be in Big Endian format. This function and the 
function SwapFourBytes will help to convert from Little Endian to Big Endian.  
Parameters: 
w  is the short int with the two bytes in Little Endian format  

Returns: 
short int with the two bytes in Big Endian format  

Definition at line 427 of file dissimera.h. 
{ 
      register short int tmp; 
      tmp =  (w & 0x00FF); 
      tmp = ((w & 0xFF00) >> 0x08) | (tmp << 0x08); 
      return(tmp); 
} 
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D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/disstools.h File 
Reference 
 
Header file for the general tools of Dissimera.  
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdarg.h> 
Include dependency graph for disstools.h: 

 
 
This graph shows which files directly or indirectly include this file: 

 
 

Functions 
x int fptraza (FILE *file, short int level, char *format,...) 
x void colorprintI16 (short int n) 
x void colorprintI8 (unsigned char n) 
x void colorprintI32 (unsigned int n) 

Variables 
x FILE * gflog = NULL 
x short int gTLEVEL = 0 
 

Detailed Description 
Header file for the general tools of Dissimera.  
It contains the generic variables and functions that could be used in  
other projects, not only in Dissemera. 
 
 \author        Victor Castano 
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 \version  0.1a 

 \date          08\03\2012 It contains the generic variables and functions that could be used in other 
projects, not only in Dissemera.  
Definition in file disstools.h. 
 

Function Documentation 

void colorprintI16 (short int n) 
 
Definition at line 56 of file disstools.h. 
Referenced by fshowItem(), and parseItem(). 
{ 
    unsigned int i; 
    for(i = 0; i<16; i++) { 
        if(n&(0x8000>>i)) fptraza(gflog, 1, "1"); else fptraza(gflog, 1, "0"); 
          if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/ 
        if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/ 
    } 
} 

Here is the call graph for this function: 

 
 

Here is the caller graph for this function: 

 
 

void colorprintI32 (unsigned int n) 
 
Definition at line 84 of file disstools.h. 
{ 
    unsigned int i; 
    for(i = 0; i<32; i++) { 
        if(n&(0x80000000>>i)) fptraza(gflog, 1,"1"); else fptraza(gflog, 1,"0"); 
          if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/ 
        if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          if(i == 15) fptraza(gflog, 1,"      "); /*put a space between bytes*/ 
          if(i == 17) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          if(i == 21) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          if(i == 26) fptraza(gflog, 1," "); /*put a space between bytes*/ 
    } 
} 

Here is the call graph for this function: 
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void colorprintI8 (unsigned char n) 
 
Definition at line 69 of file disstools.h. 
{ 
    unsigned int i; 
    for(i = 0; i<8; i++) { 
        if(n&(0x80>>i)) fptraza(gflog, 1, "1"); else fptraza(gflog, 1, "0"); 
          if(i == 1) fptraza(gflog, 1," "); /*put a space between bytes*/ 
          if(i == 5) fptraza(gflog, 1," "); /*put a space between bytes*/ 
        if(i == 10) fptraza(gflog, 1," "); /*put a space between bytes*/ 
    } 
} 

Here is the call graph for this function: 

 
 

int fptraza (FILE * file, short int level, char * format,  ...) 
 
Definition at line 31 of file disstools.h. 
Referenced by colorprintI16(), colorprintI32(), colorprintI8(), fExecuteCode(), fParseCode(), fParseFile(), 
fshowInstruction(), fshowItem(), and parseItem(). 
{ 
     int i = 0; 
     va_list args; 
     char buf[255]; 
 
     if (gTLEVEL > level) 
     { 
          return i; 
     } 
   
     va_start(args, format); 
     vsprintf(buf, format, args); 
     va_end(args); 
 
     i= fprintf(file, buf, args); 
 
     return i; 
} 

Here is the caller graph for this function: 
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Variable Documentation 

FILE* gflog = NULL 
 
Definition at line 24 of file disstools.h. 
Referenced by colorprintI16(), colorprintI32(), colorprintI8(), fExecuteCode(), fParseCode(), fParseFile(), 
fshowInstruction(), fshowItem(), main(), and parseItem(). 

short int gTLEVEL = 0 
 
Definition at line 27 of file disstools.h. 
Referenced by fptraza(). 
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D:/ERA/Visual Studio 2008/Projects/Simulator/viewbin/viewbin.cpp 
File Reference 
 
Main source file for the Dissimera simulator.  
#include "dissimera.h" 
#include "disside.h" 
Include dependency graph for viewbin.cpp: 

 
 

Defines 
x #define _CRT_SECURE_NO_DEPRECATE 

Functions 
x int main (int argc, char *argv[]) 

Main fuction of the disassembler/simulator DISSEMERA.  

 

Detailed Description 
Main source file for the Dissimera simulator.  
 
 \author        Victor Castano 
 \version  0.1a 

 \date          08\03\2012 This project started as a Little utility to transform a bin file (ready for 
altera)into a human readable version and ended up as a disassembler/simulator of the ERA 
architecture. It contains the main function and it is the starting running point of the application. 
Todo: 

 
 
           13/09/2011  
           - Crear una variable (global??) que tenga la ventana activa en todo momento 
           - Otra variable con modo edit on cuando se presione enter 
           - Cada ventana deberia tener el valor del cursor actual 
 
           14/09/2011  
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           - Crear un array de ventanas que se puede pasar como parametro por referencia 

             a las funciones que modifiquen las ventanas 

           - Ventana activa 

           - Played with fInitExec(&g_exec) 

           - note tested 

 

           19/09/2011  

           - Fixed pad and windows 

           - Worked on Status Panel Scroll 

 

           20/09/2011  

           - Will: F10 , F5 and F9 (rollback) compilation. 

           - Will: Scroll down 1 and 3 panels at once. Bug: 
 

Warning: 
 

See also: 
dissimera.h for documentation of variables and functions of the dissasembler/simulator  
disside.h for documentation of variables and functions of the User Interface  

Definition in file viewbin.cpp. 
 

Define Documentation 

#define _CRT_SECURE_NO_DEPRECATE 
 
Definition at line 40 of file viewbin.cpp. 

 

Function Documentation 

int main (int argc, char * argv[]) 
 
Main fuction of the disassembler/simulator DISSEMERA.  
 
Author: 

Victor Castano  

Version: 
0.1a  

Date: 
08\03\2012  

Bug: 
 

Warning: 
 

Parameters: 
argc  argument count: contains the number of arguments passed to the program  
argv  argument vector: is a one-dimensional array of strings. Each string is one of the 

arguments that was passed to the program.  
Definition at line 57 of file viewbin.cpp. 
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{     
     char           gSlogname[255]="log.txt";     // gSlogname 
     unsigned int   gPC=0;                             // Program counter  
     unsigned int   gIR=0;                             // Instruction register 
     //unsigned int gNI=0;                             // Next Instruction 
     unsigned int   gRF[32];                      // Brief description after the member // 
Register File  
     s_item              gLcode[MAX_LIST_SIZE];        // List of Code  
     s_item              glistRAM[MAX_LIST_SIZE]; // List of RAM 
     s_window       g_wins[NUMWINDOWS]; 
     s_panel             g_panels[NUMPANELS]; 
     s_exec              g_exec; 
     short int      gactiveP=P_MAIN1; 
     short int      gCinstr=0; 
     short int      gtempP=P_MAIN1; 
     int                 gkey=0; 
 
 
     gflog = fopen(gSlogname, "w"); 
     if (gflog == NULL) 
     { 
          perror("failed to open log file"); 
          return EXIT_FAILURE; 
     } 
      
     //Setting up the terminal to max. resolution 
     fSetTerm(); 
      
     //Initializating the Register File 
     fInitRegisterFile(gRF); 
      
     // Initializating the RAM 
     //fInitRAM(RAM_ELEMENTS, gRAM); 
 
     // Initializating the list of code 
     fIniItemList(MAX_LIST_SIZE, gLcode); 
     fIniItemList(MAX_LIST_SIZE, glistRAM); 
 
     //Initializating the Execution structure 
     fInitExec(&g_exec); 
      
     //   Parsing the bin file from Eugene's bin file (after assembling/preparation) and  
     //   1) loading data into the code list and 2) loading the RAM 
     fParseFile(argv[1], gLcode); 
 
     // Making an identical copy of the code list into a RAM list 
     memcpy(glistRAM, gLcode, MAX_LIST_SIZE*sizeof(s_item)); 
 
     //   Parsing the array of code and discriminating data and instructions 
     //   - gPC should be 0 for ERA in order to start in memory location 0 
     fParseCode(gLcode, gRF, glistRAM, &gPC); 
 
     // Initializating Hardware:Register FILE PC and IR; 
     fInitRegisterFile(gRF); 
     gPC=0; 
     gIR=0; 
      
     //Setting up Curses 
     initscr(); 
     cbreak(); 
     noecho(); 
     keypad(stdscr, TRUE); 
     curs_set(0); 
      
     /* Initialize all the colors */ 
     start_color(); 
     init_pair(0, COLOR_WHITE, COLOR_BLACK); 
     init_pair(1, COLOR_BLUE, COLOR_BLACK); 
     init_pair(2, COLOR_GREEN, COLOR_BLACK); 
     init_pair(3, COLOR_RED, COLOR_BLUE); 
     init_pair(4, COLOR_RED, COLOR_BLACK); 
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     init_pair(5, COLOR_MAGENTA, COLOR_BLACK); 
     init_pair(6, COLOR_YELLOW, COLOR_BLACK); 
     init_pair(7, COLOR_WHITE, COLOR_CYAN); 
 
     // Setting up the IDE frame 
     fSetIDE(g_panels, g_wins, gLcode[0].linenum); 
 
     // Loading Panels with data/instrucions 
     fLoadPanels(g_panels, g_wins, gLcode, gRF, glistRAM, gPC); 
 
     // Loading Hardware with content 
     fBootHardware(g_panels, g_wins, gLcode, gRF, glistRAM, gPC); 
//   getch(); 
 
      
     // Active window by default is MAIN (highlighting) 
     gactiveP=P_MAIN1; 
     //fHighlightPanel(g_wins[gactiveP].win, 1); 
 
     fHighlightPanel(gactiveP, 1, g_wins); 
 
     //Highlighting current Instruction 
 
     fUpdateCursors_Main(g_wins, g_exec.nInstrEx, gPC,COLOR_PAIR(3|A_BOLD)); 
           
     do 
     {     
          switch(gkey) 
          { 
               case CTRL_LEFT_KEY:  // CTRL+LEFT 
                    fmovePanel(gkey, &gactiveP, g_panels,g_wins); 
                    break; 
               case CTRL_RIGHT_KEY: // CTRL+RIGHT KEY 
                    fmovePanel(gkey, &gactiveP, g_panels,g_wins); 
                    break; 
               case CTRL_UP_KEY:   // CTRL+UP KEY 
                    fmovePanel(gkey, &gactiveP, g_panels,g_wins); 
                    break; 
               case CTRL_DOWN_KEY: //CTRL+DOWN KEY 
                    fmovePanel(gkey, &gactiveP, g_panels,g_wins); 
                    break; 
               case KEY_F5:        // F5 Execution 
                    // Execution code still needed 
                    break; 
               case KEY_F9:        // F9 Rollback 
                    fExecuteCode(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec, 13);                  
                    break; 
               case KEY_F10:       // F10 Execution/Debugging step by step 
                    fExecuteCode(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec, 13);                  
                    break; 
               case KEY_DOWN: //DOWN KEY 
                    fHandleKeyDown(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec); 
                    break; 
               case KEY_UP:   //UP KEY 
                    fHandleKeyUp(g_panels, g_wins, gLcode, gRF, glistRAM, &gPC, &g_exec); 
                    break; 
               case KEY_PGDOWN://PAGE DOWN  
                    break; 
               case KEY_PGUP: //PAGE UP  
                    break; 
               default: 
                    beep(); 
                    break;               
          } 
 
          // Show current window on TOP panel 
          werase(g_wins[P_SUBTOPBAR].win); 
          mvwaddnstr(g_wins[P_SUBTOPBAR].win, 0,1,g_panels[gactiveP].label,-1); 
          wrefresh(g_wins[P_SUBTOPBAR].win); 
           
     }while((gkey = getch()) != ESCAPE_KEY); 
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     endwin(); 
                
     return 0; 

}Here is the call graph for this function: 
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Index 
 
_CRT_SECURE_NO_DEPRECATE 

viewbin.cpp, 78 
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disstools.h, 74 
colorprintI8 
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disside.h, 16 
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CTRL_UP_KEY 

disside.h, 16 
D:/ERA/Visual Studio 

2008/Projects/Simulator/viewbin/disside.h, 11 
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2008/Projects/Simulator/viewbin/dissimera.h, 46 
D:/ERA/Visual Studio 

2008/Projects/Simulator/viewbin/disstools.h, 73 
D:/ERA/Visual Studio 

2008/Projects/Simulator/viewbin/viewbin.cpp, 77 
disside.h 

BUFFERWIN, 15 
CTRL_DOWN_KEY, 15 
CTRL_LEFT_KEY, 16 
CTRL_RIGHT_KEY, 16 
CTRL_UP_KEY, 16 
E_NOP, 16 
E_NORMALRUN, 16 
E_STEPBSTEP, 16 
ESCAPE_KEY, 16 
fBootHardware, 21 
fExecuteCode, 22 
fHandleKeyDown, 26 
fHandleKeyUp, 26 
fHighlight_line, 27 
fHighlightPanel, 27 
fIniP_ADDR1, 28 
fIniP_ADDR2, 29 
fIniP_ADDRRF, 30 
fIniP_BOTTBAR, 30 
fIniP_IDHEX, 31 
fIniP_IR, 32 
fIniP_MAIN1, 33 
fIniP_MEM, 34 
fIniP_PC, 34 
fIniP_RF, 35 

fIniP_STATUS, 36 
fIniP_TopBar, 37 
fInitPanels, 37 
fInitWindows, 38 
fLoadPanels, 38 
fmovePanel, 40 
fSetIDE, 42 
fSetTerm, 44 
fUnHighlight_line, 44 
fUpdateCursors_Main, 45 
KEY_F1, 16 
KEY_F10, 16 
KEY_F11, 16 
KEY_F12, 16 
KEY_F2, 17 
KEY_F3, 17 
KEY_F4, 17 
KEY_F5, 17 
KEY_F6, 17 
KEY_F7, 17 
KEY_F8, 17 
KEY_F9, 17 
KEY_PGDOWN, 17 
KEY_PGUP, 17 
NUMPANELS, 17 
NUMWINDOWS, 18 
P_ADDR1, 18 
P_ADDR2, 18 
P_ADDRRF, 18 
P_BOTTBAR, 18 
P_IDHEX, 18 
P_IR, 18 
P_MAIN1, 18 
P_MEM, 18 
P_NULL, 19 
P_PADDR1, 19 
P_PADDR2, 19 
P_PC, 19 
P_PIDHEX, 19 
P_PMAIN1, 19 
P_PMEM, 19 
P_RF, 19 
P_STATUS, 19 
P_SUBADDR1, 19 
P_SUBADDR2, 19 
P_SUBADDRRF, 20 
P_SUBBOTTBAR, 20 
P_SUBIDHEX, 20 
P_SUBIR, 20 
P_SUBMAIN1, 20 
P_SUBMEM, 20 
P_SUBPC, 20 
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P_SUBRF, 20 
P_SUBSTATUS, 20 
P_SUBTOPBAR, 21 
P_TOPBAR, 21 

dissimera.h 
F_NOP, 50 
F_STOP, 50 
fASL, 54 
fASR, 55 
fB16tostring, 55 
fB32tostring, 56 
fGetICODE, 56 
fGetStInstruction, 58 
fIniItemList, 59 
fInitExec, 59 
fInitItem, 60 
fInitRAM, 61 
fInitRegisterFile, 61 
fParseCode, 62 
fParseFile, 66 
fset_type, 67 
fshowInstruction, 67 
fshowItem, 68 
fSizeCode, 69 
I_ADD, 50 
I_AND, 50 
I_ASL, 51 
I_ASR, 51 
I_CBR, 51 
I_CND, 51 
I_LD, 51 
I_LDA, 51 
I_LSL, 51 
I_LSR, 51 
I_MOV, 52 
I_NOPSTOP, 52 
I_OR, 52 
I_ST, 52 
I_SUB, 52 
I_XOR, 52 
LNDEBUG, 52 
LNORMAL, 52 
LSDEBUB, 53 
MAX_LIST_SIZE, 53 
parseItem, 69 
RAM_ELEMENTS, 53 
STBUFFER, 53 
SwapFourBytes, 71 
SwapTwoBytes, 71 
T_32DATA, 53 
T_INSTRUCTIONS, 53 
T_SPECIAL, 53 

disstools.h 
colorprintI16, 74 
colorprintI32, 74 
colorprintI8, 75 

fptraza, 75 
gflog, 76 
gTLEVEL, 76 

E_NOP 
disside.h, 16 

E_NORMALRUN 
disside.h, 16 

E_STEPBSTEP 
disside.h, 16 

ESCAPE_KEY 
disside.h, 16 

F_NOP 
dissimera.h, 50 

F_STOP 
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fASR 
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fBootHardware 
disside.h, 21 

fExecuteCode 
disside.h, 22 

fGetICODE 
dissimera.h, 56 

fGetStInstruction 
dissimera.h, 58 

fHandleKeyDown 
disside.h, 26 

fHandleKeyUp 
disside.h, 26 

fHighlight_line 
disside.h, 27 

fHighlightPanel 
disside.h, 27 

fIniItemList 
dissimera.h, 59 

fIniP_ADDR1 
disside.h, 28 

fIniP_ADDR2 
disside.h, 29 

fIniP_ADDRRF 
disside.h, 30 

fIniP_BOTTBAR 
disside.h, 30 

fIniP_IDHEX 
disside.h, 31 

fIniP_IR 
disside.h, 32 

fIniP_MAIN1 
disside.h, 33 

fIniP_MEM 
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disside.h, 34 
fIniP_PC 

disside.h, 34 
fIniP_RF 

disside.h, 35 
fIniP_STATUS 

disside.h, 36 
fIniP_TopBar 

disside.h, 37 
fInitExec 

dissimera.h, 59 
fInitItem 

dissimera.h, 60 
fInitPanels 

disside.h, 37 
fInitRAM 

dissimera.h, 61 
fInitRegisterFile 

dissimera.h, 61 
fInitWindows 

disside.h, 38 
fLoadPanels 

disside.h, 38 
fmovePanel 

disside.h, 40 
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fParseFile 
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disside.h, 44 
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fUnHighlight_line 

disside.h, 44 
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I_LDA 
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dissimera.h, 51 
I_LSR 

dissimera.h, 51 
I_MOV 

dissimera.h, 52 
I_NOPSTOP 

dissimera.h, 52 
I_OR 

dissimera.h, 52 
I_ST 

dissimera.h, 52 
I_SUB 

dissimera.h, 52 
I_XOR 

dissimera.h, 52 
KEY_F1 

disside.h, 16 
KEY_F10 

disside.h, 16 
KEY_F11 

disside.h, 16 
KEY_F12 

disside.h, 16 
KEY_F2 

disside.h, 17 
KEY_F3 

disside.h, 17 
KEY_F4 

disside.h, 17 
KEY_F5 

disside.h, 17 
KEY_F6 

disside.h, 17 
KEY_F7 
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KEY_F8 
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KEY_F9 
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disside.h, 17 
KEY_PGUP 
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dissimera.h, 52 
LNORMAL 

dissimera.h, 52 
LSDEBUB 

dissimera.h, 53 
main 

viewbin.cpp, 78 
MAX_LIST_SIZE 

dissimera.h, 53 
NUMPANELS 

disside.h, 17 
NUMWINDOWS 

disside.h, 18 
P_ADDR1 

disside.h, 18 
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disside.h, 18 
P_ADDRRF 

disside.h, 18 
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disside.h, 18 
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disside.h, 18 
P_IR 

disside.h, 18 
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disside.h, 18 
P_MEM 

disside.h, 18 
P_NULL 

disside.h, 19 
P_PADDR1 

disside.h, 19 
P_PADDR2 

disside.h, 19 
P_PC 

disside.h, 19 
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disside.h, 19 
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disside.h, 19 
P_PMEM 

disside.h, 19 
P_RF 

disside.h, 19 
P_STATUS 
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disside.h, 19 
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disside.h, 19 
P_SUBADDRRF 

disside.h, 20 
P_SUBBOTTBAR 

disside.h, 20 
P_SUBIDHEX 

disside.h, 20 
P_SUBIR 

disside.h, 20 
P_SUBMAIN1 

disside.h, 20 
P_SUBMEM 

disside.h, 20 
P_SUBPC 

disside.h, 20 
P_SUBRF 

disside.h, 20 
P_SUBSTATUS 

disside.h, 20 
P_SUBTOPBAR 

disside.h, 21 
P_TOPBAR 

disside.h, 21 
parseItem 

dissimera.h, 69 
RAM_ELEMENTS 

dissimera.h, 53 
s_coord, 13 
s_exec, 50 
s_instruction, 49 
s_item, 49 
s_panel, 13 
s_winborder, 14 
s_window, 15 
STBUFFER 

dissimera.h, 53 
SwapFourBytes 

dissimera.h, 71 
SwapTwoBytes 

dissimera.h, 71 
T_32DATA 

dissimera.h, 53 
T_INSTRUCTIONS 

dissimera.h, 53 
T_SPECIAL 

dissimera.h, 53 
viewbin.cpp 

_CRT_SECURE_NO_DEPRECATE, 78 
main, 78 
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