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Abstract

In todays Internet, online content and especially webpages have increased expo-

nentially. Alongside this huge rise, the number of users has also amplified consid-

erably in the past two decades. Most responsible institutions such as banks and

governments follow specific rules and regulations regarding conducts and security.

But, most websites are designed and developed using little restrictions on these

issues. That is why it is important to protect users from harmful webpages. Pre-

vious research has looked at to detect harmful webpages, by running the machine

learning models on a remote website. The problem with this approach is that the

detection rate is slow, because of the need to handle large number of webpages.

There is a gap in knowledge to research into which machine learning algorithms

are capable of detecting harmful web applications in real time on a local machine.

The conventional method of detecting malicious webpages is going through

the black list and checking whether the webpages are listed. Black list is a

list of webpages which are classified as malicious from a user’s point of view.

These black lists are created by trusted organisations and volunteers. They are

then used by modern web browsers such as Chrome, Firefox, Internet Explorer,

etc. However, black list is ineffective because of the frequent-changing nature

of webpages, growing numbers of webpages that pose scalability issues and the

crawlers’ inability to visit intranet webpages that require computer operators to

login as authenticated users.

The thesis proposes to use various machine learning algorithms, both super-

vised and unsupervised to categorise webpages based on parsing their features

such as content (which played the most important role in this thesis), URL infor-

mation, URL links and screenshots of webpages. The features were then converted



to a format understandable by machine learning algorithms which analysed these

features to make one important decision: whether a given webpage is malicious

or not, using commonly available software and hardware. Prototype tools were

developed to compare and analyse the efficiency of these machine learning tech-

niques. These techniques include supervised algorithms such as Support Vector

Machine, Näıve Bayes, Random Forest, Linear Discriminant Analysis, Quantita-

tive Discriminant Analysis and Decision Tree. The unsupervised techniques are

Self-Organising Map, Affinity Propagation and K-Means. Self-Organising Map

was used instead of Neural Networks and the research suggests that the new

version of Neural Network i.e. Deep Learning would be great for this research.

The supervised algorithms performed better than the unsupervised algorithms

and the best out of all these techniques is SVM that achieves 98% accuracy. The

result was validated by the Chrome extension which used the classifier in real

time. Unsupervised algorithms came close to supervised algorithms. This is

surprising given the fact that they do not have access to the class information

beforehand.
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1.1 Background and related work

When the World Wide Web started, there was not an immediate need to improve

the security of webpages. Web developers and designers focused on textual infor-

mation and did not make huge use of graphics, JavaScript files or stylesheets. If

the first Google search page [9] is taken as an example, it had very few features.

This allowed the Google search page to load faster over a slow Internet connec-

tion. With the rise of broadband speed, users started to spend more time online.

They started visiting more websites and the businesses took advantage of this

phenomenon by providing more information and services online. Government or-

ganisations too provided information online and allowed access to information 24

hours a day. Users, instead of visiting places physically, could now visit webpages

and got the information they wanted. This trend continued, and will continue to

grow, unless any radical transformation in information access takes place.

Due to the open nature of the Internet, there are no vetting processes and

individuals accessing various webpages have to rely on blacklists to determine

whether a webpage is malicious or not. This thesis provides an alternative method

using machine learning techniques to make this judgement without the help of a

blacklist.
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Security threats are increasing day by day and are very common [10]. Take for

example online payments. The payment processing capabilities allow customers

to carry out transactions online. Banks collaborate with businesses and provide

facilities so that their customers can pay for products online. Many malicous

websites take advantage of this and pose as ‘genuine websites’. Users think that

the websites are legitimate and provide personal information to buy products.

For example emails are sent to a user from the websites and the user thinks that

they were sent from legitimate businesses. These email have links to a malicious

webpage. The user clicks the link, visits the malicious webpage created by the

malicious attacker, which looks exactly like the bank’s webpage. The user tries

to log in but cannot. But in the meantime the malicious attacker gets hold of the

username and password which it then uses to get hold of the original account.

Modern browsers have a new way to secure themselves. They look at publicly

available blacklists of malicious webpages. These blacklists are updated after a

few days or a month. The problem is that the blacklists do not safeguard the

sudden changes within a webpage. Although the web crawler visits the webpages

every few days, the websites are capable of causing damages within a short a

period of time i.e. within those few days. At this point, users will already get

affected, because the browser thought of it as a secure webpage and accessed
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it, because it was not in the black list. On the other hand, a webpage may be

hacked and injected with malicious code visible only to some particular users or

a group of users from an organisation or a country. The blacklists will not be

able to blacklist those either. Some crawlers do not validate the JavaScript code

because JavaScript executes only in a browser. This allows client vulnerabilities

to pass through easily. Even though some of the scripts which are assumed

to be safe, but they can load remote malicious scripts and then execute them

on the computer. Some scripts create iFrames and then load external malicious

webpages. These external webpages get hold of the cookies and steal the identity.

The users then browse this malicious webpage, get their computers infected and

are then easily tracked by remote users from elsewhere. The users may also

run malicious executable files without even knowing that the executable file has

already access to the system.

Apart from the server side attacks, there are also client side attacks that

can only be detected within a browser itself. These client side attacks can be

categorised into the cross site scripting, clickjacking and download by attacks.

These three attacks are described in the next sections.
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1.2 Cross Site Scripting

1.2.1 Introduction

Cross site scripting injects malicious code from unexpected sources and causes

various problems for the user [11]. This malicious code can get hold of the cook-

ies, browsing history and then sends them over to the malicious webpage. There

have been many attempts to prevent these sort of attacks [12]. It not only af-

fects the user but also affects the server. The webpage is used as the vehicle to

transfer infections to multiple users. The malicious code then executes in the

user’s browser. The problem has been intensified with the addition of scripting

capabilities that did not exist at the initial stages of the Internet. With the ad-

dition of scripting capabilities, the users enjoy better user experience but have

now become prone to these additional security problems. These scripts can run

on the client’s browser as they do not execute on the web server. Even if the

web developer has built the webpage only using HTML, an attacker can inject

scripts to make it susceptible to scripts. These scripts can then get access to the

authentication cookies.
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1.2.2 Affects

The XSS vulnerability affects the users as well the webpages hosting the webpage

[11]. For example, a user visits a webpage and decides to buy from the webpage.

The user adds the items to the basket and wants to checkout. Then he fills in

a form to register. Each of these users are uniquely identifiable by the webpage

through the use of cookies. The malicious attacker will be able to look at the

cookies and impersonate the users and thus buy products, without the knowledge

of the users.

1.2.3 Types of XSS attacks

There are various types of XSS attacks out of which three are tackled in this

thesis. The first is reflection based attacks that take place with emails or Twitter

and Facebook messages containing links to the malicious webpage [11]. This link

directs the users to a malicious form that submits information to the attackers

webpage and thus the attacker gets access to the user cookies which are used

as identification mechanisms. The second is DOM Attack, i.e. attack based on

document object model where an attacker inserts script tags into the webpage.

This script tag has a source tag that links to the attacker’s webpage. Or the
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script in the JavaScript code writes something on the form based on the URL

on the webpage. In the third type of attack, malicious code is stored on the web

server which has been used as a target by the attacker.

1.2.4 Problems for the web administrators

Apart from the fact that the above incident anger users, the webpage owner too

faces technical issues. For example, if the administrator of an e-commerce website

browses the website for testing purposes, the attacker can get hold of the cookies

of the administrator, log in to the backend and manage products. They can add,

edit or reduce the prices of the products. When someone suspects that something

is wrong is with the e-commerce website, the administrators will look at the logs

only to find that the malicious activities were carried out by no other than the

administrator.

1.2.5 Administrator access

To avoid the above scenario, the administrator should not access the webpage

from a publicly available webpage to make sure that there are no contacts with

the malicious scripts [13]. This is very hard to implement and there should be

policies to enforce it. One way to do it, is to allow access to the administrators
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only from a certain location or URL, which will be unknown to public. Also the

IP address of that URL will also be blocked from external users. The firewall have

to be set up properly so that this does not happen. The basic assumption is that

the attacker will not be aware of how to even access as an administrator, even

if the malicious attacker gets access to the administrator cookies. But there are

ways to hide the actual IP address and replace with a fake IP address (in this case

the valid IP address that has access to the administrator section). The attacker

will obviously not have the response from the webpage but the purpose to inject

the webpage with malicious code can be successful. But if the administrators have

access to the public webpage, they can deploy a local version can be deployed

to a machine within a secure environment. So that even if the local version is

injected with malicious code the attacker will not be able to take any advantage.

1.2.6 DOM based attacks

Almost all HTML tags are wrapped by either ‘greater than’ and ‘less than’. To

inject the script tag, these two characters are needed. Several combination of

characters can generate > [1]. The combinations of letters that generate the

letters are dependent on browser version and the default language. The combi-

nations are quite vast (see Figure 1.1). A browser cannot be trusted because of
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Figure 1.1: Values for <[1].

these extensive possibilities and some precautions are suggested one of which is

to encode the data entered by the user and the data displayed to the user. This

is known as sanitisation. In terms of how the webpage is deployed to the user,

the operations team have to make sure that the firewall or any other forms of

preventative measures are kept up to date.

Apart from the server side prevention techniques, the users can prevent them-

selves from the XSS attacks by disabling the JavaScript. This would have been

acceptable at the beginning of the Internet when scripting were hardly in use.

But these days when scripting is essential, the appropriate approach would be

to detect the malicious XSS code and then stop it from executing. Kirda and

Jovonovic [14] have provided a client side solution to this problem. This was
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built as a windows application which allows a user to use it as a personal web

firewall i.e. not dependent on the web developers or the security. Not only it has

minimal user intervention, it also stops access to session and cookies which are

the main targets for XSS attackers. The firewall looks at each of the incoming

and outgoing connections and decides whether the connections are safe. It looks

at the referrer header, POST requests and also tries to mitigate advanced XSS

attacks.

1.3 Clickjacking

Another security threat that is difficult to detect is clickjacking [15]. This is a

relatively new threat that has become more prominent with the advancement of

modern browsers. Clickjacking does not not use security vulnerabilities, rather it

uses the browsers’ most common feature i.e. hyperlinks. The user is encouraged

to click a link to a page. But this particular webpage has two webpages one which

is displayed to the user and the other i.e the malicious page is hidden from the

user. The hidden webpage executes malicious the code even though the user will

think that the information is on the correct webpage. This technique is very hard

to detect by inspecting the source code and there have not been many successful
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Figure 1.2: Clickjacking shows a displayed page and a hidden page [2].

ways to prevent it from happening. There are two techniques that are used to

hide the hidden page. The first technique is to make the hidden page transparent

using the CSS display property, which is set to none. The second technique

places the object behind the original page using the CSS z-index property. The

z-index property is set to the lowest value so that it stays behind all the time.

This hidden webpage has hyperlinks behind the original hyperlinks. The position

of these hyperlinks are exactly the same. So, when a user clicks the hyperlink

displayed on the webpage, the user actually clicks the hyperlink on the hidden

webpage. Just like the cross site scripting technique this click inject malicious

code into the webpage. Similar to XSS attacks the clickjacking technique can be

prevented by using NoScript. But this hinders the user experience and so is not

a pragmatic approach. Figure 1.2 shows an example of clickjacking.
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1.3.1 Types of clickjacking

There are various types of clickjacking out of which three are discussed in this

thesis. The first method of clickjacking launches a small window via JavaScript

and the user remains unaware of it. In the second method, the link executes a

search via a search engine and also sends the query to the attacker’s webpage.

And in the third method, the link sends a new cookie to the web browsers and

to steal the cookie. The third method which is a harder option, is to implement

clickjacking on someone else’s webpage. Such a webpage are likely to be already

popular as the attacker will want the users to visit the webpage and click the

hyperlinks. But if the webpage is already infected, the webpage will have a

hidden page with hyperlinks behind the displayed page. If such a a webpage

is affected, the web administrator will be able to detect assuming that regular

checks are carried out.

Clickjacking are also spread by email messages that support HTML format.

The displayed email will have hyperlinks with the malicious hyperlinks behind

the main hyperlinks. This will allow the attacker to carry out the same damage

to a user similar who downloads a malicious executable. The users may also

get infected because malicious JavaScript which get hold of cookies allow the
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attacker to impersonate the user (similar to the XSS example). The users may

also get infected by accepting a cookie from the attackers webpage and thus will

be traceable by the attacker.

1.3.2 Preventative measures

The easiest method to prevent clickjacking is to look at the status bar of the

browser before clicking any links [12]. If the hyperlink looks suspicious, then the

user should not click the link. The problem with this method is that the user

may not know this. Depending on the implementation of the hidden page, the

user may look at the source code and then decide whether the page is malicious

or not. If the hidden page is behind the displayed page, the users will not be

able to see the hidden page’s source code. Otherwise, they can see the source

code of the displayed page. Another option is to use text based browsers which

do not execute any scripts on the browser. Thus the user will be safe from any

attacks. This may not be the best option because the webpage nowadays are

more than likely to use scripts and therefore will be dysfunctional in the text

browser. Although HTML parsers can correctly see the HTML to track iframe,

display or opacity property, these tags are used extensively in many webpages,

thus triggering an alarm based on the existence of these, defeats the purpose. One
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suggestion is to create a plugin for the browser to detect the number of clickable

objects overlapping within an iframe and an z-index [2]. But the technique is not

full proof in HTML5 browsers which has sandboxing properties that allows to

avoid the barrier. This sandboxing attribute is present in iframes in the HTML5

specification [2].

1.4 Drive by downloads

Drive by download occurs when a file downloads on a user’s PC without the

knowledge of the user [16, 17]. This malicious executable then installs itself on

the user’s computer. This is a popular method which has been used by [18]

to spread malware infection on the Internet. It uses three components in its

attack: the web server, the browser and the malware. An attacker finds a web

server to serve the malware. The webpage exploits any incoming user. These

exploits use code to execute commands on the user’s browser. The web server

provides the malware which the browser downloads. The targeted browser has

a known vulnerability that the attacker exploits. Internet Explorer had many

instances of ActiveX loopholes that the attackers had used and are still using.

There are some potential solutions to these problems [18]. The first solution is to
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completely isolate the browser from the operating system so that any arbitrary

code are not at all executed on the browser. Another solution is for web crawlers

to visit webpage and see whether they are hosting any malware content. But

the attackers can avoid this by using a URL that does not have a corresponding

hyperlink. Crawlers by its nature only visits URLs that have a corresponding

hyperlink.

1.5 Novel features

With wide ranging new threats that appear every day, attackers will devise new

ways to avoid barriers raised by administrators and web developers. For improved

security, an automated tool is ever more important to detect the vulnerabilities.

One alternative approach to this automated approach is for web developers to

secure and enhance their webpages. But there is only a certain extent that a

developer can secure to secure a webpage. Web developers are bound by the web

frameworks they use [17, 19, 20]. If the web frameworks fail to take preventative

measures, the users’ machines get infected and the webpages become vulnerable.

This thesis takes the research further by applying several supervised machine

learning techniques such as Näıve bayes Classifier, K-Nearest Neighbour, Random
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Forest, Support Vector Machine, Linear Discriminant Analysis and Quadratic

Discriminant Analysis and three unsupervised machine learning techniques like

SOM, K-Means and Affinity Propagation. Moreover, the novel unsupervised

techniques of K-means and Affinity Propagation have not been applied to detect

malicious webpages by any other researchers in the past. The research uses a

combination of both supervised and unsupervised techniques to further improve

the efficiency of models.

1.6 Contributions

The aim of this thesis is to detect malicious webpages through machine learning

and the contributions (listed below) provide a clear pathway to meet it.

• Provide an different approach to blacklists to predict whether webpages are

safe, by analysing webpage content and other features in real time using

machine learning techniques.

• Speed up the execution time of the learning process of the machine learning

techniques by taking advantage of multiple computers.

• Create a mechanism to build Chrome browser extensions that can commu-

nicate with models from a local computer.
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1.7 Organisation

Chapter 2 provides an overview of the security problems faced by modern web-

pages and also gives an overview of the current methods to tackle malicious web-

pages using machine learning techniques. Chapter 3 describes a method to repre-

Figure 1.3: Organisation for Chapters

sent webpages in a form that is understandable by the machine learning models.

Chapter 4 provides the results of the simulations carried out using the supervised

machine learning techniques which include Support Vector Machine, K-Nearest
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Neighbour, Latent Discriminant Analysis, Quadratic Discriminant Analysis, De-

cision tree and Random Forest. Chapter 5 provides results of the simulations

carried out using the unsupervised machine learning techniques. This include the

K-means, Self-organising map and Affinity Propagation. Chapter 6 discusses the

findings from the supervised and unsupervised techniques and provides sugges-

tions for future work. Chapter 7 concludes the thesis.



CHAPTER 2

Overview of machine learning algorithms

and their usage to detect malicious

webpages
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2.1 Introduction

With wide ranging threats that are appearing each day, attackers will devise new

ways to avoid barriers raised by administrators and web developers. For improved

security, the security within a browser and the server needs to maintain safety

through an automated tool that will learn to detect the vulnerabilities. One

alternative approach to this automated approach is for web developers to secure

and enhance their websites themselves. But there is only a certain extent that a

developer can work to secure a webpage. Web developers are bound by the web

frameworks [19] they use. If the frameworks fail to take preventative measures,

the users’ machines get infected, the webpages become vulnerable. With the

expected rise of devices that access the Internet, it is now critical to improve the

security of webpages.

Machine learning has seen itself being used in many places. A simple view

of the machine learning process is that given a training set of data, the model

trains itself and then when the new sets of data are passed on to it, it predicts the

result. Recent improvements in hardware (especially in CPU and in GPU [21])

performance seen the use of machine learning increase by manifolds. Take for

example, the detection of malicious webpages. The security companies are trying
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to make use of such models and have seen some success. On the other hand,

malicious attackers are increasing in strength and are looking for any chance to

combat with new exploits. The problems are likely to rise in the future and new

methods will have to be developed to tackle this rising phenomenon.

One of the ways this problem of malicious webpages could be resolved is

through the use of client side detection methods. These methods are not very

efficient, because the client machine may not be fast enough and the amount of

computation required may not be enough. There are two types of classification

that are used to detect malicious webpages. One is lightweight [22] and another

is full fledged classification [23]. Full fledged classification involves many fea-

tures e.g. host information, WHOIS, URL structure, mysterious characters in

the dataset etc. The lightweight classification process use less features. This al-

lows the lightweight algorithm to run faster because of less computation. But the

disadvantage is that the detection rate is not as good as the full fledged implemen-

tation. Some researchers argue that the lightweight ones should be used on the

client as they are quite capable of detectin malicious webpages to a satisfactory

level [24, 25].
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2.2 Previous work in this domain

Kin and Thi [26] carried out one of the first work that used machine learning to

detect malicious webpages. This work ignored webpage content and looked at

URLs using a bag-of-words representation of tokens in the URL with annotations

about the tokens’ positions within the URL. The noteworthy result from this

work is that lexical features can achieve 95% of the accuracy of page content

features. Garera’s work [27] used logistic regression over 18 hand-selected features

to classify phishing URLs. The features include the presence of red flag key words

in the URL, features based on Google’s page rank, and Google’s webpage quality

guidelines. They achieve a classification accuracy of 97.3% over a set of 2,500

URLs. Though this thesis has similar motivation and methodology, it differs

by trying to detect all types of malicious activities. It also uses more data for

training and testing. Spertus [28] suggested an alternative approach and looked

at identifying malicious webpages and Cohen [29] has used the decision trees

for detection and Dumais et al. [30] has used inductive learning algorithms and

representations for text categorisation. This thesis has used similar techniques

but applied them to webpages which have more complex structures. Guan et al

[31] focused on classifying URLs that appear in webpages. Several URL-based
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features were used such as webpage timing and content. But this thesis has used

more features with better accuracy. Mcgrath and Gupta [32] did not construct

a classifier but nevertheless performed a comparative analysis of phishing and

non-phishing URLs. With respect to the data sets, they compare non-phishing

URLs drawn from the DMOZ Open Directory Project to phishing URLs from a

non-public source. The features they analyse include IP addresses, WHOIS thin

records (containing date and registrar-provided information only), geographic

information, and lexical features of the URL (length, character distribution, and

presence of predefined brand names). The difference to this thesis is the use of

different types of features i.e. content, screenshots, url and visual features of

webpages. These features affect whether a webpage is malicious or not. Prvos et

al. [33] performed a study of drive-by exploit URLs and used a patented machine

learning algorithm as a pre-filter for virtual machine (VM) based analysis. This

approach is based on heavyweight classifiers and is time consuming. Provos et.

al [33] used the following features in computer simulation content based features

from the page, whether inline frames are ‘out of place’, the presence of obfuscated

JavaScript, and finally whether iFrames point to known exploit websites. Please

note, an ‘IFrame’ is a window within a page that can contain another page. In

their evaluations, the ML-based pre filter can achieve 0.1% false positives and
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10% false negatives. This approach is very different to this thesis as the features

are very primarily focused on iFrames. Bannur et al.’s [34] research is most similar

to this thesis but it uses a very small dataset and this thesis uses other types of

visual features.

2.3 Problems of using machine learning to op-

timise security of webpages

Current machine learning techniques that are being used to detect malicious

webpages have yet to progress to deal with the complexity of learning problems

because the majority of the research efforts in machine learning applications have

concentrated on supervised algorithms. Malicious webpages are characterised

with a large amount of evolving dynamic information. This evolving information

requires feature selection/extraction, not only to reduce the dimensionality for

machine learning, but also to capture the evolving characteristics. To discover

the evolving patterns in data, machine learning techniques have to be combined

into feature selection. New machine learning techniques and feature selection

techniques are required to identify continuous behaviour in data.
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2.4 Reasons for model representation

Applying machine learning techniques to web content requires them to be under-

standable to probabilistic reasoning. Initially, various natural language webpage

representations were considered from the computational linguistics community

[35]. Such representations used to address problems such as the part-of-speech

tagging and they are not useful for the types of clustering and classification prob-

lems that will be looked at in this work. Rather, a vector space representation

of web content has been used. In this representation, web content are cast as

vectors in a very high dimensional space. Since probabilistic models can be com-

putationally expensive to apply and may lack robustness in spaces with high di-

mensionality, some simple initial methods for dimensionality reduction has been

examined in Chapter 3.

2.5 Machine learning techniques

The features found in each webpage are used to create very high dimensional fea-

ture vectors. Most of the features are generated by the “bag-of-words” representa-

tion of the URL, page links, content and visual features. The high dimensionality
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of these feature vectors poses certain challenges for classification. Though only

a subset of the generated features may correlate with malicious webpages, it is

not possible to know which features are relevant in advance. More generally,

when there are more features than labeled examples, there are possibilities that

statistical models will be susceptible to over-fitting.

In this section, the discussion takes place on machine learning techniques

that will be used for classification. Though individual classifiers differ in their

details, the same basic protocol applies to all the models that are considered.

The classifiers are trained on labeled examples to learn a decision rule that can

ultimately be applied to unlabelled examples. Given an input x, the trained

classifiers return a real-valued output h(x) that sets a limit to obtain a binary

prediction. The reason why this thesis uses binary prediction is to make it easier

for a user to make a quick decision as to whether a webpage is malicious or not.

2.6 Supervised machine learning techniques

2.6.1 Support Vector Machine

SVM (see Figure 2.2) is widely regarded as one of the excellent models for bi-

nary classification of high dimensional data [36]. SVM and any other supervised
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Figure 2.1: Supervised architecture for classifying webpages

classifiers use a similar technique to classify webpages as is shown in Figure 4.1.

SVM is modelled as

y(x) =
N∑
n=1

λntnx
Txn + w0 (2.1)

The sign of this distance indicates the side of the decision boundary on which the

example lies. The value of y(x) is limited to predict a binary label for the feature

vector x. The model is trained by first specifying a kernel function K(x, x′)
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Figure 2.2: An example of Support Vector Machine classification where the soft
margin classifier learned with C = 5/16, at which point x is about to become a
support vector. On the right the soft margin classifier has learned with C = 1/10
all examples contribute equally to the weight vector. The asterisks denote the
class means, and the decision boundary is parallel to the one learned by the basic
linear classifier [3].

(this thesis uses RBF and linear kernels) and then computing the coefficients

αi that maximise the margin of correct classification on the training set. The

required optimisation can be formulated as an instance of quadratic programming,

a problem for which many efficient solvers have been developed [37].

2.6.2 Näıve bayes

Näıve bayes (see Figure 2.3) are mostly used in spam filters [38] and it as-

sumes that, for a given label, the individual features of URLs are distributed

independently of the values of other features [39]. Letting P (x|y) denote the
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Figure 2.3: An example of Näıve Bayes classification [4]. The left picture shows
a plot of two class data where a new sample represented by the solid triangle, is
being predicted. On the right the conditional density plots of predictor A created
using a nonparametric density estimate. The value of predictor A for the new
sample is shown by the vertical black line.

conditional probability of the feature vector given its label, the model assumes

P (x|y) =
∏d

j=1 P (xj|y). To calculate the conditional probability the thesis uses

a product of the probability densities for each individual predictor.

By using Bayes rules it is assumed that malicious and safe webpages occur

with equal probability. The posterior probability is computed so that the feature

vector x belongs to a malicious webpage as:

P (y = 1|x) =
P (x|y = 1)

P (x|y = 1) + P (x|y = 0)
(2.2)
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Finally, the right hand side of Equation 2.2 can be thresholded to predict a

binary label for the feature vector x. The Näıve bayes classifier is trained by

computing the conditional probabilities P (xj|y) from their maximum likelihood

estimates [39]. For real-valued features, P (xj|y) is modelled by a Gaussian distri-

bution whose mean and standard deviation are computed over the jth component

of feature vectors in the training set with label y. For binary valued features,

P (xj = 1|y) is estimated as the fraction of feature vectors in the training set

with label y for which the jth component is one. The model parameters in the

Näıve bayes classifier are estimated to maximise the joint log-likelihood of URL

features and labels, as opposed to the accuracy of classification. Optimising the

latter typically leads to more accurate classifiers, notwithstanding the increased

risk of over-fitting.

2.6.3 Decision Trees

A Decision Tree (see Figure 2.4 for an example) uses a tree-like graph or model

of decisions and their possible outcomes [40].

Decision Tree is a flow-chart like structure. The internal node represents

test on an attribute, each branch represents outcome of test and each leaf node

represents class label [41]. Classification rules are represented by paths from roots
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Figure 2.4: A leaf labeled as (n1, n0) means that there are n1 positive examples
that match this path, and n0 negative examples. Most of the leaves are “pure”,
meaning they only have examples of one class or the other; the only exception
is leaf representing red ellipses, which has a label distribution of (1, 1). Positive
distinguishes from negative red ellipses by adding a further test based on size.
However, it is not always desirable to construct trees that perfectly model the
training data, due to overfitting [5].

to the leaves.

2.6.4 Random Forest

Random Forests (see Figure 2.5) are an ensemble learning method for classifica-

tion (and regression) that operates by constructing a multitude of decision trees

during training time. The algorithm for inducing a Random Forest was developed

by Leo Breiman and Adele Cutler [42]. The term came from random decision
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forests that was first proposed by Tin Kam Ho of Bell Labs in 1995 [43].

Figure 2.5: An ensemble of five basic linear classifiers built from bootstrap sam-
ples with bagging. The decision rule is majority vote, leading to a piecewise
linear decision boundary. On the right if the votes are turned into probabilities,
it is seen that the ensemble is effectively a grouping model: each instance space
segment obtains a slightly different probability [3].

2.6.5 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis or QDA (see Figure 2.6) assumes that the mea-

surements from each class are normally distributed [44]. QDA does not assume

that the covariance of each of the classes is identical. Likelihood ratio test is used

when the normality assumption is true.

2.6.6 Linear Discriminant Analysis

Linear Discriminant Analysis or LDA (see Figure 2.7) finds a linear combination

of features which characterises or separates two or more classes of objects or



2.6. Supervised machine learning techniques 54

Figure 2.6: Linear decision boundaries using Quadratic Discriminant Analysis for
the 2 and 3 class case shows that the two clusters are now separate [5].

events. The resulting combination may be used as a linear classifier or to reduce

dimensions before later classification [45].

Figure 2.7: Linear decision boundaries using Linear Discriminant Analysis for the
2 and 3 class case shows that the two clusters are now separate [5].

LDA works when the measurements made on independent variables for each

observation are continuous quantities [46, 47].
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2.6.7 K-Nearest Neighbour

K-Nearest Neighbour (see Figure 2.8) classifies the label of a new point x̂ with

the most frequent label t̂ of the k nearest training instances [48]. It is modelled

Figure 2.8: The nearest neighbour decision boundary separates the two classes.

t̂ = arg max C

∑
i:xi∈Nk(x,x̂)

δ(ti,C) (2.3)

where:

• Nk(x, x̂)← k points in x closest to x̂
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• Euclidean distance formula:
√∑D

i=1(xi − x̂i)2

• δ(a, b)← 1 if a = b; 0 o/w

The model does not require any optimization and it trains itself using cross

validation to learn the appropriate k. k regularizes the classifier, as k → N

the boundary becomes smoother. O(NM) is used as space complexity, since all

training instances and all their features need to be kept in memory. K-Nearest

neighbor uses a very simple technique for classification, and cannot handle large

training dataset as shown in the results section.

2.7 Unsupervised machine learning techniques

So far, the discussion has focused on supervised machine learning techniques.

This section focuses on the unsupervised machine learning techniques where the

class information is not available beforehand.

2.7.1 Affinity Propagation

Affinity Propagation (see Figures 2.9 and 2.10) is an unsupervised machine learn-

ing technique created by Frey and Dueck [49] where each data point acts as cen-

troids. These data points choose the number of clusters. The following represent
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the centroid for datapoint i

ci ∈ {1, ..., N} (2.4)

The goal is to maximise the following function

S(c) =
N∑
i=1

s(i, ci) =
N∑
k=1

δk(c) (2.5)

The similarity of each point to the centroid is measured by the first term in and

the second term is a penalty term denoted as −∞. If some data point i has chosen

k as its exemplar that is ck 6= k, but k has not chosen itself as an exemplar i.e.

ck = k, then the following constraints could be presented.

δk(c)(c) =
N∑
i=1

s(i, ci) =
N∑
k=1

δk(c) (2.6)

δk(c) =


−∞ if ck 6= k but ∃ici = k

0 otherwise

(2.7)

A factor graph can represent the objective function and it is possible to use
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Figure 2.9: Affinity Propagation Factor Graphs for Affinity Propagation. Circles
are variables, squares are factors. Each node has N possible states. [5].

Figure 2.10: Example of Affinity Propagation. Each point is colored coded by
how much it wants to be an exemplar. This can be computed by summing up all
the incoming availability messages and the self-similarity term. The darkness of
the ik arrow reflects how much point i wants to belong to exemplar k [5].

N nodes, each with N possible values or with N2 binary nodes. Each variable

node ci sends a message to each feature node δk and each factor node δk sends
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a message to each variable node ci. The number of clusters is controllable by

scaling the diagonal term S(i, i), which shows how much each data point would

like to be an exemplar. Affinity Propagation has been developed very recently i.e.

in 2009 and it has a very good performance as shown later in the results section.

2.7.2 Self-Organising Map

A SOM (see Figure 2.11) consists of a fixed lattice (typically 2-dimensional) of

processing elements. Each processing element has an associated (initially ran-

dom) prototype vector. In a SOM different parts of the Neural Network respond

similarly to certain input patterns. The weights of the neurons in the SOM

are set to either to small random values or sampled evenly from the subspace

spanned by the two largest principal component eigenvectors. The SOM is then

fed by a large number of example vectors that represent, as close as possible,

the kinds of vectors expected during mapping [50]. The examples are usually

administered several times. The training utilises competitive learning. When a

training example is fed to the network, its Euclidean distance to all weight vectors

is computed. The neuron with weight vector most similar to the input is called

the best matching unit (BMU). The weights of the BMU and neurons close to it

in the SOM lattice are adjusted towards the input vector. The magnitude of the
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Figure 2.11: SOM architecture shows the input nodes (on the left) which do
no computation, and the weights are modified to change the activations of the
neurons. However, the nodes with the SOM affect each other in that the winning
node also changes the weights of neurons that are close to it [6].

change decreases with time and with distance from the BMU.

2.7.3 K-Means

K-Means (see Figure 2.12) is a hard-margin, geometric clustering algorithm,

where each data point is assigned to its closest centroid [51]. It is modelled

using hard assignments rnk ∈ {0, 1} s.t. ∀n
∑

k rnk = 1, i.e. each data point is as-

signed to one cluster k. The geometric distance is calculated using the Euclidean

distance, l2 norm:

||xn − µk||2 =

√√√√ D∑
i=1

(xni − µki)2 (2.8)



2.7. Unsupervised machine learning techniques 61

Figure 2.12: A single layer Neural Network can implement the K-Means solution.
[6]

where:

• µk is cluster centroid

• D is the no of points

• x is the one of the points.

The Mini-Batch K-Means algorithm uses mini batches to reduce the computation

time while still attempting to optimise the same objective function [52]. Mini-

batches are subsets of the input data, randomly sampled in each training iteration.

These mini-batches drastically reduce the amount of computation required to

converge to a local solution. In contrast to other algorithms that reduce the

convergence times of K-Means, Mini Batch K-Means produces results. Mini batch
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K-Means converges faster than K-Means, but the quality of the results is reduced.

In practice, the difference in quality can be quite small, as shown later.

2.8 Online learning

Online learning algorithms solve online classification problem over a sequence of

pairs that are generally represented by a feature vector and a label [53]. After

predicting, the algorithm receive the actual label and record the error rate. The

algorithm then predicts the hypothesis for the next time step. The models are

presented in order of increasing complexity with respect to the objective functions

and the treatment of the classification margin. Whenever there are mistakes, the

classical algorithm updates its weight vectors. Because the update rule is fixed,

the model cannot account for the severity of the misclassification. As a result, the

algorithm can overcompensate for mistakes in some cases and under compensate

in other cases.
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2.9 Gaps in the current state of research and

the approach of this thesis

Other work that detect malicious webpages using machine learning techniques are

focused either on blacklists [33] or URL information [8] or content or execution

trace. Moreover, other work have focused on a single or up to few features at

most, but this thesis uses contents, URLs, links and screenshots from webpages

which allow to understand the webpages in a comprehensive manner. It also

looks at using unsupervised machine learning techniques and tries to improve the

performance of the classifiers by using multiple machines.

2.10 Summary

This Chapter looked at the machine learning techniques used in the thesis. These

techniques are used in Chapters 4 and 5. In Chapter 5 the SOM technique was

improved using multicore machines whereas in Chapter 4 the techniques were

improved using a combination of features. The incorporation of web content

opens various areas to explore. Up to this point, other work have used linear

classification because it scales easily to large scale problems. However, content
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contains high level structure and semantics that are potentially useful.

With the knowledge gained through this literature review process, the thesis,

in the next Chapter, describes the features used in the simulation and provides

a comprehensive framework that converts webpages into a format readable by

machine learning models.



CHAPTER 3

Representation of web content for

machine learning techniques
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Computing is not about computers any more. It is about living.

Figure 3.1: Text from the first webpage

The hire charge is computed on a daily basis.

Figure 3.2: Text from the second webpage

3.1 Vector space representation

Data mining problems generally use the vector space to represent web content

[54]. Each webpage either uses a Boolean or a numerical vector where each

dimension in the vector corresponds to a distinct term in the webpage content. A

given webpage has in each component a numerical value specifying some function

f of how often the term corresponding to the dimension appears in the webpage.

By varying the function f , alternative term weightings [55] can be produced. A

term is a sequence of alpha numeric characters which is separated either by white

space or tabs or newline characters or punctuation marks. Also, all upper case

letters in a webpage are converted to lower-case to ignore capitalisation. Figures

3.1and 3.2 shows example webpages. The first webpage contains a famous quote

from Nicholas Negroponte.

Table 3.1 shows the results of parsing these two webpages into single-word
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Term Vector for webpage 1 Vector for webpage 2
a 0 1
about 2 0
any 1 0
basis 0 1
charge 0 1
computed 0 1
computers 1 0
computing 1 0
daily 0 1
hire 0 1
is 2 1
it 1 0
living 1 0
more 1 0
no 0 1
not 1 0
on 0 1
the 0 1

Table 3.1: A simple vector representation of the sample webpages

terms, and then representing them as vectors with simple term frequencies (i.e.,

term counts) in each component. Such a representation is known as a bag of

words [56], since the relative position of terms in the webpage, and hence the

language structure, is not recorded in the resulting vectors.

In this thesis, the terms that defined the dimensions of the vector space are

word stems. For example, the words “computed”, “computers” and “computing”

would be converted to ‘comput”. Porter [57] has developed a popular algorithm

for word stemming and this algorithm has been incorporated into WAC’s HTML
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Comput is not about comput ani more It is about liv.

Figure 3.3: Stemmed text from the first webpage

The hire charg is comput on a daili basi

Figure 3.4: Stemmed text from the second webpage

parser (WAC is the name of the tool developed for this thesis). The two sample

webpages presented earlier would look like if the contents were stemmed using

Porter’s stemming algorithm. Table 3.2 shows the vector representation of the

stemmed version of the webpages. Stemming may be useful to help reduce similar

terms in most cases but in other cases the results of stemming can be counter

productive. Frakes [58] compared various stemming methods to unstemmed rep-

resentations and showed that both representations perform equally in many cases.

Some researchers have defined the dimensions of a vector space with multi

word phrases such as “Prime Minister David Cameron” and “personal computer”.

These multi-words appear frequently as sequences of words [59], or by apply-

ing NLP to detect meaningful phrases [60] or manually look for specific phrases

[28, 61]. Going back to stemming, previous results using multi-word terms are

mixed. Some researchers report that using terms can help improve accuracy

for classification tasks [29] whereas others have found them to be as effective as
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Term Vector for webpage 1 Vector for webpage 2
a 0 1
about 2 0
ani 1 0
basi 0 1
charg 0 1
comput 2 1
daili 0 1
hire 0 1
it 1 0
is 2 1
liv 1 0
more 1 0
not 1 0
on 0 1
the 0 1

Table 3.2: A vector representation of the stemmed version of the stemmed web-
pages

single-word terms [30].

3.2 Frequency based vectors

This thesis uses frequency based vectors where ξ(ti, d) denotes the number of

occurrences of term ti in webpage d. The function f can be applied to ξ(ti, d)

and produce the value for the i-th component of the vector for webpage d. The

identity function f(α) = α is applied to the term counts [62]. Other common

functions applied to terms were defined by [63, 64, 65]. But TFIDF is probably the

most popular function applied to webpages. This function uses term frequencies
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(TF) in each webpage used as part of the weighting function alongside the inverse

webpage frequency (IDF) of each term in the entire collection. IDF is usually

defined as

IDF(t) = log(
N

n
), (3.1)

where N is the total number of webpages in the collection and Nt is the number

of webpages in which term t appears at least once. The TFIDF weight for a term

t in a webpage d is the product of the term frequency and the inverse webpages

frequency for that term, returning:

TFIDF(t, d) = ξ(t, d).IDF(t). (3.2)

.

3.3 Alternative representations

Although TFIDF weighting has been used in the part primarily for retrieval, con-

nections between this weighting scheme and probabilistic classification using the

näıve bayes algorithm have been recently explored [66]. Parametric distribution

such as bounded Gaussian or Poisson distribution can capture the probability of
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words appearing different numbers of times in webpages [67, 68]. Alternatively,

a simple Boolean representation of webpages can be used, that records whether

or not a given term appears in a webpage. In this case, the following are found

f(n) =


1 α > 1

0 otherwise

(3.3)

Most rule-base methods [29, 69] use a underlying Boolean model, as the an-

tecedents of the classification rules only considers word presence and absence in

webpages. Boolean vector representation has also been used in probabilistic clas-

sification models [70]. Although it may look like a bad approach, sometimes it

has its uses in various applications. Neither the parametric distribution of the

Boolean representations have been used in the thesis though.

3.4 Reduce dimensionality

The World Wide Web is one of the most diversified environments filled with

content. To deduce vector space representations from this content would be a

humongous task. This problem asks for a solution that is scalable and reduc-

ing dimensionality is one that has been used extensively by many researchers.
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One way to tackle it is to look at English Literature where many words such

as prepositions, conjunctions and pronouns provide structure in language rather

than content. These words can thus be removed from the vectors. Words listed

in [71] can also be removed. Where there are common words that appear once or

twice among webpages play insignificant role and can also be removed [72].

3.5 Features

3.5.1 Webpage content

The semantic features included the TFIDF vectors which were derived from the

webpages and the whole process has been described in Sections 3.1 - 3.4 in detail.

In summary, the webpages have all their HTML tags removed, then the stop

words were removed and then the remaining text were used in the simulations.

3.5.2 URLs

URLs identify webpages and have been used in the thesis as unique identifiers.

Many malicious webpages have suspicious looking characters in their URLs and

in their contents. Sometimes the URLs have spelling mistakes too. The lexical

features of URLs were fed into the machine learning techniques. If there were
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spelling mistakes or suspicious characters in the URL, then they were regarded

as suspicious.

3.5.3 Webpage links

Webpages have many links that give out further information e.g. webpages that

link to malicious webpages are likely to be malicious. The simulations extracted

all the links from each webpage and they were fed into the models too.

3.5.4 Visual features

All the features that have been mentioned so far are text based e.g. source code,

stripped HTML, domain names, URL etc. A complimentary feature was the

use of image based features. First, screenshots of webpages were downloaded

by passing the URLs to PhantomJS (a headless webkit browser with JavaScript

API). It took each URL, saved a screenshot of the webpage and converted them to

PNG file format. Images were then converted to a format understandable by the

models. There are two popular techniques that are generally used i.e. Speeded Up

Robust Features (SURF) and Scale Invariant Feature Transform (SIFT) [73]. The

simulation used SURF because it had less stringent licensing options compared

to SIFT [74]. The idea is that malicious webpages will look similar because are
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likely to be have less input from designers whereas safe webpages will have better

designs.

3.6 Summary

In this Chapter a framework has been built to extract various features from

webpages to feed into the models. The features include content, source code,

URLs and visual features from webpages which were extracted using crawlers

and parsers. This framework lays foundation for the next two Chapters where

various machine learning techniques (both supervised and unsupervised) use these

features.



CHAPTER 4

Computer simulation results using

supervised models to detect malicious

webpages
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Figure 4.1: Architecture for classifying webpages using supervised techniques

4.1 Introduction

This Chapter focuses on the supervised models and discusses the results from

these models. These models are popular in text classification.

Chapter 3 mentioned that this thesis used the bag of words approach, due

to its simplicity and to avoid computational complexity. Figure 4.1 shows how

supervised models have been used to classify the webpages. It is very similar to
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unsupervised models but the only difference is in the training phase, where the

labels are used to train it.

4.2 Results

Figure 4.2 shows the architecture of the tool that carried out the simulation for

this thesis. The simulation was carried out on a machine running on Intel Xeon

E3-1220 CPU with 4 Cores each having a speed of 3.1 GHz. The machine had 12

GB of RAM. First, 100,000 webpages were downloaded using a crawler based on

gevent which uses libevent [75]. Out of these, 70% were used in training and the

rest i.e. 30% were used in test. These downloaded webpages were then converted

into feature vectors. Then a tool named Web Application Classifier (WAC) took

these vectors as inputs, used the machine learning algorithms described in the

previous section to create the predictive models. These predictive models read

vectors of the new webpages to produce an output that indicated whether a

webpage is safe or not. Browsers like Chrome were able to connect to these

predictive models stored inside WAC to indicate whether a webpage is malicious

or not. Chapter 3 described the features that were gathered after the webpages

were preprocessed and cleansed before placing inside the predictive models.
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Figure 4.2: The architecture of Web Application Classifier (WAC)
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4.2.1 Data sources

The downloaded webpages were divided into two sets i.e. malicious and safe. The

source for the list of safe webpages were gathered from primarily from Alexa. The

malicious ones were gathered from various sources primarily from [76]. Two types

of representation of each webpage were created. One contained all the HTML

code and other only had English characters.

4.2.2 Evaluation of the supervised machine learning tech-

niques

It is possible to use each classifier without considering the others. But this can be

potentially misleading in two ways. First, if two classifiers are highly correlated

with the response and with each other, then the univariate approach will iden-

tify both as important. Some models will be negatively impacted by including

this redundant information. Pre-processing approaches such as removing highly

correlated classifiers can alleviate this problem [77]. Second, the univariate impor-

tance approach will fail to identify groups of classifiers that together have a strong

relationship with the response. For example, two classifiers may not be highly

correlated with the response; but, their interaction may be correlated. Univariate
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correlations will not capture this predictive relationship. A good idea would be

to further investigate these aspects of the classifiers instead of using the rankings

as the only method to understand the trends. Knowing which relationship to

look at sometimes requires domain knowledge about the data.

When there are two classes, one approach to use is the area under the ROC

curve [78] to quantify classifier relevance. Here, the classifier data are used as

inputs into the ROC curve. If the classifier could perfectly separate the classes,

there would be a cutoff for the classifier that would achieve a sensitivity and

specificity of 1 and the area under the curve would be one. Figures 4.11, 4.12,

4.13, 4.11, 4.15, 4.14, 4.16, 4.17 and 4.18 show the area under the curve for all

the supervised classifiers.

Machine learning models which were discussed previously were used on differ-

ent combinations of features. First the webpages were classified from just content

features, then other types of features were added and the gain was re-examined.

It was found that the highest accuracy is obtained by combining URL, page-link,

semantic TFIDF and SURF features. This combination of features was used as

the optimal feature configuration. Finally the machine learning techniques were

trained on data sets with varying ratios of malicious and safe webpages. As men-

tioned in earlier, 70% of the labeled webpages were used for training and 30% for
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testing. The ratio of malicious to safe webpages is the same in testing as train-

ing for the supervised machine learning techniques. The supervised classification

performance were evaluated in terms of precision and recall.

4.2.3 Supervised techniques

Figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 show visual representations of

webpages which are safe and malicious, after supervised classification was carried

out. There are clear separations between the two types of webpages and the

diagrams illustrate the nature of decision boundaries of various classifiers. The

intuition conveyed by these figures does not resemble the larger datasets. In high-

dimensional spaces, linear classifiers easily separate classes. Table 4.1 shows the

results of the supervised techniques. The accuracy for all the supervised models

improved as the number of webpages increased. Overall, SVM outperformed the

rest. When SVM is considered, the accuracy values for the word-based document

representation are remarkably low in case of a small number of webpages. As

soon as the number of webpages exceeds 500, the accuracy increases. With other

models, a similar trend is observed at the beginning. But then as the number

of webpages increased, the accuracy also increased. The results suggest that the

models were able to generalise better as more patterns emerged from various
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sources.

Figure 4.3: Visual representation of QDA model show clear boundaries between
malicious and safe webpages

Figure 4.4: Visual representation of Linear SVM model show clear boundaries
between malicious and safe webpages
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Figure 4.5: Visual representation of RBF SVM model show clear boundaries
between malicious and safe webpages

Figure 4.6: Visual representation of Nearest Neighbour model show clear bound-
aries between malicious and safe webpages
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Figure 4.7: Visual representation of decision tree model show clear boundaries
between malicious and safe webpages

Figure 4.8: Visual representation of Random Forest model show clear boundaries
between malicious and safe webpages



4.2. Results 85

Figure 4.9: Visual representation of LDA model show clear boundaries between
malicious and safe webpages

Figure 4.10: Visual representation of QDA model show clear boundaries between
malicious and safe webpages
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Figure 4.11, 4.12, 4.13, 4.11, 4.15, 4.14, 4.16, 4.17 and 4.18 show the Receiver

Optimistic Characteristic of the supervised machine learning techniques and it is

clear that SVM performs the best out of the four. K-Nearest Neighbour performs

the worst, because it had less access to training data due to memory constraints.

The supervised models were also run against one of the most popular datasets

provided by [8]. The data file is SVM based and therefore the data was converted

into recognisable for it for to be fed into the machine learning models. All the

supervised machine learning models scored over 90%. Table 4.2 shows the results

of the simulations.

Figure 4.11: K-Nearest Neighbour’s ROC curve is just above average.
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Figure 4.12: SVM Linear’s ROC curve very close to 1.

Figure 4.13: RBF SVM’s ROC curve is also close to 1.
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Figure 4.14: Näıve Bayes’s ROC curve is just behind the SVM.

Figure 4.15: Random Forest’s ROC curve is just above average.
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Figure 4.16: LDA’s ROC curve is quite close to one.

Figure 4.17: QDA’s ROC curve is average.
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Figure 4.18: Decision Tree’s ROC curve is good.

The previous ROCs do not have cross validation and it is important to see

what effect cross validation can have on the results. Figures 4.19, 4.20, 4.21, 4.19,

4.23, 4.22, 4.24, 4.25 and 4.26 provide ROCs with cross validation. The figures

show that the results are not very different to that without cross validation.

Table 4.1: Results of comparisons of supervised machine learning techniques that
detect malicious webpages

No. of webpages RBF SVM Linear SVM NB KNN RF DT QDA LDA
50 80 79 77 74 77 67 56 58
100 82 83 78 75 77 70 67 67
500 86 92 78 79 77 75 67 68
5000 93 97 84 91 78 77 68 68

100000 93 98 89 95 80 79 68 68
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Figure 4.19: K-Nearest Neighbour’s cross validated ROC curves are just above
average.

Figures 4.27, 4.28, 4.29, 4.27, 4.31, 4.30, 4.32, 4.33 and 4.34 provide confusion

matrices for all the supervised techniques.

4.2.4 Online learning

Online learning uses a different approach than the traditional batch processing

which cannot learn incrementally [79]. The problem tackled in this thesis used

data from an incoming list of malicious webpages and safe webpages. This allowed

the predictive models inside WAC to train automatically as new data came in.
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Figure 4.20: SVM Linear’s cross validated ROC curves are very close to 1.

Figure 4.21: SVM Poly’s cross validated ROC curves is also close to 1.
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Figure 4.22: Näıve Bayes’s cross validated ROC curves are just behind the SVM.

Figure 4.23: Random Forest’s cross validated ROC curve are just above average.
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Figure 4.24: LDA’s cross validated ROC curve are quite close to one.

Figure 4.25: QDA’s cross validated ROC curves are average.
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Figure 4.26: Decision Tree’s cross validated ROC curves are good.

Generally the batch machine learning techniques optimise Equation 4.1.

f(θ) =
1

N

N∑
i=1

f(θ, zi) (4.1)

where zi = (xi, yi) in the supervised case and f(θ, zi) is some kind of loss func-

tion. For example, it is possible to use f(θ, zi) = log p(yi|xi,θ) to maximise the

likelihood.
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Figure 4.27: K-Nearest Neighbour’s confusion matrix.

Figure 4.28: Linear SVM’s confusion matrix.
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Figure 4.29: RBF SVM’s confusion matrix.

Figure 4.30: Näıve Bayes’s confusion matrix.
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Figure 4.31: Random Forest’s confusion matrix.

Figure 4.32: LDA’s confusion matrix.
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Figure 4.33: QDA’s confusion matrix.

Figure 4.34: Decision Tree’s confusion matrix.
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4.3 Chrome extension

4.3.1 Introduction

Recent developments in the web browsers allow users to take benefits from various

browser extensions. Unfortunately some of the extensions have been the major

reasons for security issues. But most of the extensions are useful. Chrome exten-

sion are known for their secure environment [80, 81]. There have been research

on Chrome applications extensively [82]. The thesis covered various machine

learning techniques but no implementations for practical case so far has been

presented. This section goes through the details of a Chrome extension that uses

the most successful model of the all the supervised models described before.

4.3.2 Architecture of the Chrome extension

The Chrome extension has been built using the architecture shown in Figure 4.37

using the following steps.

• Step 1: Grab the webpages as soon as the user loads the webpage

• Step 2: Extract the features and then send the features to the predictive

models. The predictive models then send a response
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• Step 3: Content Script notifies the background script with the response

• Step 4: Background script shows the response.

4.3.3 Chrome extension’s user interface

The user interface for the Chrome extension has various options. Figure 4.35

shows the possibilities for the Chrome extension. The first option is to display an

icon in the top right hand corner. The second option is to add the user interface

to the context menu. But this option is not suitable because the user has to

interact only after the webpage has loaded. The last option is to present a user

interface in the Chrome context menu, with an options page, or use a content

script that changes how pages look. This last option involves interaction from

the user and so will take time to give feedback to the user. So the first option is

the most suitable one.

Figure 4.35: The three pictures demonstrates various examples of Chrome exten-
sions [7]
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Figure 4.36: A chrome extension with its various parts and their relationships to
each other[7]

4.3.4 Chrome extension composition

The extension has various files out of which the required files are manifest files

combined with one or more HTML files. Also, there are JavaScript files and image

files. The JavaScript files have code that can determine the functional aspects of

the extension. The image files are needed for the user interface. Before building

and distributing the extension the files mentioned above were then put in a single

folder. A zip program builds a special zip file with a .crx extension. The manifest

file, called manifest.json, stores information about the extension. For examples it

stores the list of important files and lists the capabilities that the extension may

use.
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Table 4.2: Results based on a different dataset provided by [8]

Classifier Accuracy - no. of true positives (%)
Näıve bayes 91
Support Vector Machine (RBF) 97
Support Vector Machine (Linear) 92
K-Nearest Neighbour 85
Decision Tree 86
Random Forest 83
LDA 85
QDA 82

4.3.5 Chrome extension’s architecture

The Chrome extension has a background page which is an invisible page contain-

ing the main logic. If the extension needs to interact with webpages that the

user loads, then the extension uses a content script. Each action of an extension

has a background page (see Figure 4.36) which is defined by background.html

and has JavaScript code that controls the behaviour of the browser action. Ex-

tensions can contain ordinary HTML pages that display the extension’s UI. The

extension interact with webpages via a content script (see Figure 4.36) which is

some JavaScript executing in the context of a loaded page within a web browser.

Content scripts aren’t completely cut off from their parent extensions. A content

script can exchange messages with its parent extension whenever necessary.
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Figure 4.37: The Chrome extension uses 4 steps to decide whether a webpage is
malicious or not.
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Figure 4.38: The Chrome extension shows that the webpage is safe.
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Figure 4.39: The Chrome extension shows that the webpage is malicious.
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4.3.6 Results from the Chrome extension

The content script looks at the loading document and sends the loaded source

code to the predictive classifier. The classifier then parses, creates the features

and then responds with whether it thinks that the webpage is safe or malicious.

The background script receives the response and shows whether it is malicious

(see Figure 4.39) or safe (see Figure 4.38). ‘Heavyweight’ classifiers are more

accurate but has a poor prediction time as they load the same page within their

‘environment’, but use more features and so has a higher accuracy. ‘Lightweight’

classifiers does the opposite i.e. use less features and use the features only avail-

able via the browser. The Chrome extension gets all the features from the browser

and sends them to the classifier which uses more features, thus have a quick pre-

diction time and yet higher accuracy.

4.4 Summary

This Chapter dealt with all the supervised models and have shown that the results

are encouraging. Also, it has been shown that the best performing supervised

model can be used for practical purposes as a Chrome extension. This extension

determined whether a webpage is malicious or not in real time. The next Chapter
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deals with simulations with unsupervised machine learning techniques.



CHAPTER 5

Computer simulation results using

unsupervised machine learning

techniques to detect malicious webpages
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One of the issues that was encountered in the last Chapter (although this was not

mentioned) is the execution time to train the supervised models. This Chapter

initially deals with this particular problem by using MapReduce to improve the

efficiency of an unsupervised machine learning technique i.e. Self-Organising Map

and then uses various other unsupervised machine learning techniques to cluster

webpages.

5.1 SOM

One of the most used algorithm for unsupervised categorisation technique is SOM

[83]. This Chapter makes use of SOM to group webpages into clusters and the

approach is made more effective by eliminating one of its fundamental problems

i.e. slow speed, by using MapReduce programming model [84]. SOM has been

widely used both in the data mining and artificial intelligence community [85, 86].

Although this topic of clustering documents via SOM has been handled in [87] it

was based solely on the users’ navigational behaviour. The most comprehensive

coverage of SOM has been done in [88], but the documents have been journals and

not webpages. Although both journals and webpages are quite similar in content

presentation, there is one fundamental difference i.e. additional HTML tags are
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present in webpages. Therefore, in order to capture or understand the readable

contents from webpages, some special measures are needed i.e. the webpages are

parsed first and the content is chosen from large amounts of HTML tags.

To improve SOM’s speed multiple computers have been used in [89], which

used a Beowulf cluster based on Linux boxes. The time for processing the SOM

reduced to a large extent. But this system is prone to hardware failures. Con-

tinuing from Chapter 2, the update formula for a neuron of a SOM with weight

vector Wv(t) is

Wv(t+ 1) = Wv(t) + Θ(v, t)α(t)(D(t)−Wv(t)) (5.1)

where α(t) is a decreasing learning coefficient and D(t) is the input vector. θ(v, t),

the neighbourhood function is dependent on the distance between the BMU and

neuron v. The SOM maps associate output nodes with groups or patterns in the

input data set. One single neuron wins whose weight vector is closest to the input

vector. SOM does not use a threshold value but rather selects a winning output

neuron when a pattern is entered. In general, Neural Networks are trained in a

supervised mode, but the SOMs are trained in an unsupervised mode. Neural

network can only be applied to certain types of problems i.e. it takes values
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between −1 and +1 and the inputs are within the range. SOM’s inputs are

normalised either with Multiplicative Normalisation or Z-axis normalisation [50].

5.1.1 SOM’s training process

A initial higher learning rate results to a quicker training process because it

decays over time, but SOM may fail if it is too high. This is because the random

movements of the weight vector exceed the allowed threshold for any pattern

to be determined. The other method is to use a relatively high learning rate

and reduce it as the training progresses. This trains the SOM very quickly at

the beginning and is then controlled while the training continues. SOM uses

the weighted connections between the input layer and the output layer as its

storage. With each iteration, the weights are calibrated. These calibrations

produce a SOM network that returns better results, when the same training data

is presented to it next time. More data is presented to SOM network as iterations

continue, and the weights are calibrated. But at some point the calibration stops

because the particular set of weights are no needed and at this point, the entire

matrix is reset to new random values, and a new learning cycle begins. The final

weight matrix is then taken as the best weight matrix from each of the cycles. As

mentioned before, the SOM trains in an unsupervised fashion and the output is
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Figure 5.1: Architecture for classifying webpages using unsupervised techniques

normally anticipated, but the expectation is that outputs new groups. Summing

up the above discussion, when SOM is applied to webpages, the process depicted

in Figure 5.1 is used. The webpages are first converted into feature vectors and

are then fed into SOM network which then produces a predictive model. This

predictive model is then used by each single webpage to place them into one of

the two categories i.e. safe/malicious.
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5.2 Datasets

For this thesis, DMOZ Open Directory Project [90] and Yahoo’s random URL

generator [91] have been used as the sources for safe webpages. For unsafe web-

pages, OpenDNS [92] and Spamscatter [93] have been used. From these sets of

webpages, the real-valued features in each feature has been normalised and lie be-

tween 0 and 1. Values outside this range in the testing set were converted to zero

or one as appropriate. The normalisation equalised the range of the features in

each feature set, both real-valued and binary. One further complication arose due

to undefined, or missing, features which were handled by using an extra binary

feature which defined to indicate whether the feature was defined.

5.3 Webpage clustering and WAC

Webpage clustering assigns webpages to a set of categories. Rather than trying

to simply assign webpages to pre-defined categories using a labelled set of data

for training, clustering algorithms discover distinct categories using an unlabelled

set of data. Webpages in the dataset are then assigned (often as a by-product of

the clustering process) to these newly discovered categories. Webpage clustering
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can be defined as following: a set of D of m webpages, denoted by d1....dm.

Each partitioned webpage is assigned to a soft partition in which each webpage

is probabilistically assigned to multiple clusters. Hard partitions can simply be

thought of as a case assigned to the single cluster for which it has the greatest

probability. The clustering task has two important components. The first is

determining how many clusters to partition the data into (i.e. choosing K). The

second is how to assign each webpage to these respective clusters.

WAC categorises a webpage into various clusters and thus will allow to classify

them as malicious or safe. The algorithm for the WAC system is shown in Figure

5.2. The next sections will look at how to parallelise SOM implementation.

5.4 How MapReduce works

MapReduce is a programming model used by Google [9] in many of its products.

Google has also developed an implementation for this model. This model takes

large amount of input and distributes the processing among huge numbers of

cheap computers. This allows it to complete processing within short period of

time compared to processing running on a single processor. But the implemen-

tation which deals with parallelising computations, distributing data and also
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Figure 5.2: Steps involved in the WAC tool.

tackling failures with hardware are quite complex and so an abstraction level has

been created in MapReduce. This abstraction layer reduces the complexity to

the developer.

MapReduce [84] is resistant to hardware failures which are normal for normal

workstations (without RAID support). Figure 5.3 shows the overall flow of a

MapReduce operation. A MapReduce program initially shards the input files

into M pieces (which is equivalent M map tasks) of typically 16 megabytes to 64
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Figure 5.3: Overall view of MapReduce. The master node assigns the workers
(also referred as nodes).
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megabytes per piece. It then starts up many copies of the program on a cluster

of machines. One of the copies is referred as master. The rest are workers that

are assigned work by the master. There are M map tasks and R reduce tasks to

assign. The master picks idle workers and assigns each one a map task or a reduce

task. A worker who is assigned a map task reads the contents of the corresponding

input shard. It parses key/value pairs out of the input data and passes each pair

to the user-defined Map function. The intermediate key/value pairs produced

by the Map function are buffered in memory. Periodically, the buffered pairs

are written to local disk, partitioned into R regions by the partitioning function.

The locations of these buffered pairs on the local disk are passed back to the

master, who is responsible for forwarding these locations to the reduce workers.

When a reduce worker is notified by the master about these locations, it uses

remote procedure calls to read the buffered data from the local disks of the map

workers. When a reduce worker has read all intermediate data, it sorts it by the

intermediate keys so that all occurrences of the same key are grouped together.

If the amount of intermediate data is too large to fit in memory, an external sort

is used.The reduce worker iterates over the sorted intermediate data and for each

unique intermediate key encountered, it passes the key and the corresponding set

of intermediate values to the user’s Reduce function. The output of the Reduce
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function is appended to a final output file for this reduce partition. When all

map tasks and reduce tasks have been completed, the master wakes up the user

program. At this point, the MapReduce call in the user program returns back to

the user code.

5.5 Hadoop

Hadoop is based on HDFS (Hadoop File System) and the implementation takes

ideas from Google File System [94]. It has been used in large organisations such

as Facebook [95], Twitter [96], Linkedin [93] etc. This is a distributed file system

for applications that use computationally intensive applications and works with

large amounts of data. This file system is extensively used by Google as the

primary storage mechanism.

5.6 Beowulf cluster and its problems

This Beowulf cluster implementation is a parallel computation model used only

on Linux based machines [97]. Any programs written and then run on a cluster

usually runs faster. But the program has to take care of the hardware failures and

the parallelism involved in the cluster. There is no room for fault-tolerance, error
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detection and work restart capabilities. This is probably a good solution for time-

boxed applications that demands reliable and timely execution of a particular

task e.g. finds the Euclidean distance between two points. Moreover this cluster

does not consider manageability which forces the programmer to manage each

resource separately in the cluster rather than a single file system. Firstly, the

parallel applications under a Beowulf cluster use message passing model rather

than shared memory. Secondly, Beowulf cluster focuses on developers and does

not take architectural model, testing and binary compatibility into account. This

leads to writing the application possibly being written again to take advantage of

clustering in order to make any significant changes to the program. And lastly,

the developer is often responsible for system design and administration, which

takes time and energy away from work on the actual application.

5.7 The chosen solution

Comparing the two algorithms, MapReduce has an upper hand in terms of par-

allelism. One of the downside of MapReduce is that it restricts the programming

model. But the counter argument is that it provides a good model for manag-

ing problems dealing with large datasets. And in particular problem with large
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Figure 5.4: WAC implementation incorporating Map and Reduce

datasets, MapReduce provides fast execution without worrying about the un-

derlying hardware infrastructure and rather are focused on the application i.e.

solving the problem. Based on these facts mentioned in [98] it has been decided

to use Hadoop which is a similar implementation to [84].

WAC has used SOM algorithm at first but in order to take advantage of the

MapReduce, the algorithm had to be revised slightly. No changes have been made

to the algorithm, but the way the calculations have been done has changed. An

intermediate step has been added which acts as a buffer has been used. This

buffer allows the system to be run the computation in parallel.
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The main strength of the WAC system is that no matter how many webpages

are in a website, each page is assigned a tag (see Figure 5.4 for WAC’s architec-

ture). Tags are used in blogs, forums, pictures and videos on-line for identifying

and grouping of the similar content. Also, the distribution content inside the web-

pages of a website is vividly clear to the user as the topographic map represents

‘concentration’ and ‘hollowness’.

5.8 Results

WAC consists of various tools which have been built . These tools have been

integrated so that the product produces the output as a SOM. The reason WAC

was designed with various tools is because it is easier to test the system separately

and find bugs in the system separately. WAC consists of:

1. Crawler: This tool downloads all the webpages from a target webpage and

stores the files in the local file system. This is done using a crawler that

‘visit and downloads’ the home page of the target webpage and retrieves all

the links. Then the crawler repeats the same process i.e. downloads all the

webpages referred by the links and so on. A list of the ‘crawled webpages’

is maintained so that the same is Webpage is not downloaded twice.
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2. HTML Parser: Generally, HTML pages have tags around each element

which are not necessarily part of the original content, and are not meant

for users but for web browsers. These browsers use these tags to understand

the layout and the formatting of the content. After the HTML Pages have

been downloaded from the Web, the webpages are parsed using this tool.

Parsing involves removing the tags from the HTML pages and retrieve text

that is understandable and readable to a normal user.

3. SOM Creator: This is the heart of the WAC system and creates the SOM

based on the techniques mentioned in [88] apart from the use of search. This

creates a SOM which the users can browse where tags are tags are attached

to the map at place of higher concentration of documents or commonly

known as clusters.

4. SOM Displayer: This tool displays the SOM on a grid that allows user

to click on nodes and the documents assigned to the node are shown. As

the clicks on one of the link, a Web Browser opens showing the Webpage

connected by the hyperlink.
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Class Use
Mapper This class takes an input pair of values and

produces an intermediate key/value pairs. The
programming model groups the values and for-
wards the values to the reduce class.

Reducer This class receives the intermediate values to a
corresponding intermediate key. Generally, one
or none output is produced per reduce method
call. Sometimes the computer’s main memory
is not enough for large datasets. So an iterator
is used instead for easy handling.

Driver This class is the main program that contains
the main method of the program. It sets the
input and output folders and the configurations
needed for jobs to run.

Table 5.1: Description of MapReduce Classes

5.8.1 Java Classes

The design of the implementation is composed of three classes i.e. Mapper,

Reduce and the Driver classes. See Table 5.1 for more details. At the end of the

job run, the results are aggregated by the reduce class and are used to display the

final SOM. The same program can be theoretically run on many machines without

any modification to the program and the test results demonstrate it clearly.
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5.8.2 Software

The system has been implemented using the Java Programming Language [99].

Data has been downloaded from websites by the crawler (part of WAC) and the

pages have been stored in the File System. The creation of SOM has been ac-

celerated by using MapReduce. The algorithm used four machines. Each system

consisted of 2 GHz processor and 2GB of RAM. The systems in cluster were

networked using 100 Mbps Ethernet links. Table 5.2 shows how the implemen-

tations compare with the increasing number of nodes. The MapReduce model is

used where the number of nodes is more than 1. Figure 5.5 shows the trend as

the number of nodes increases. The system is faster than earlier implementation

on a single processor and is now more scalable. Compared to Beowulf cluster,

the system is more easily manageable and usable. Beowulf has the disadvantage

of providing wrong results if one of the machines breaks down. On the other

hand WAC also has the advantage of being interoperable in various operating

systems as the system itself is written with Java. So, as long as the machine

has a Java virtual machine, the WAC tool can operate without any problems on

any Operating System. [84] has used MapReduce with great success at [9] and

the success has been rediscovered in WAC as well with the revised ‘MapReduced
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Number of
Nodes Webpages Time to com-

plete the test
Performance
improvement

1 979 292 N/A
2 979 284 ≈ 2%
3 979 261 ≈ 18%
4 979 244 ≈ 19%

Table 5.2: Results for SOM

SOM algorithm’. The algorithm has been used as part of WAC, which now takes

less time for categorisation.

5.9 Results from all the unsupervised techniques

Going back to the last Chapter, the same webpages are now fed into some un-

supervised machine learning techniques i.e. Mini Batch K-Means, K-Means and

Affinity Propagation. Figures 5.6, 5.7 and 5.8 show that the three unsupervised

machine learning techniques clearly separate the malicious and safe webpages.

The parameters for the Affinity Propagation had to be readjusted to get the de-

sired number of clusters. Table 5.3 shows the results of the simulations. The table

uses silhouette coefficient as the main factor to determine the effectiveness of the

unsupervised algorithms. Silhouette coefficient (which can take values between -1

and +1) is a useful measure that combines the ideas of cohesion and separation.
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Figure 5.5: Chart shows the improvements.
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In general, a good classification will have higher separation and lower cohesion

which corresponds to silhouette coefficient being close to 1. It is clearly under-

standable that Affinity Propagation performs the best out of all the unsupervised

machine learning techniques because the silhouette coefficient is closest to 1 in

its case. The other two unsupervised machine learning techniques performed well

and are very similar in performance when are compared to each other. The Mini

Batch K-Means used less time and memory than its counterpart K-Means but

still achieved the same accuracy. This is important in a practical context where

resources such as CPU time and memory are limited. This can become a serious

issue when there are large amounts of data involved. The issue with the unsuper-

vised machine learning techniques that the results can vary and is not something

that can be relied upon yet when compared to the supervised machine learning

techniques as discussed in the previous Chapter.

5.10 Combined use of supervised and unsuper-

vised machine learning techniques

The last Chapter showed the use of supervised techniques and it was decided

to use the two techniques together to determine the malicious webpages. The



5.11. Summary 129

Table 5.3: Results of comparisons of unsupervised machine learning techniques
that detect malicious webpages

Classifier Silhouette Coefficient
Mini Batch K-Means 0.877
Affinity Propagation 0.963
K-Means 0.877

images of the webpages were clustered using unsupervised techniques and then

fed into the models. Surprisingly, the efficiency did improve by a few percent.

5.11 Summary

The unsupervised techniques have shown that they are not far away from the

supervised techniques and are good enough at classifying webpages. Also, the

combination of both the supervised and the unsupervised techniques improved

the efficiency of the models. This Chapter has also showed that the performance

of machine learning techniques can be improved using multiple machines.
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Figure 5.6: Visual representation of Mini Batch K-Means model shows clear
boundaries between malicious and safe webpages

Figure 5.7: Visual representation of Affinity Propagation model shows clear
boundaries between malicious and safe webpages. The red dots are outliers.
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Figure 5.8: Visual representation of K-Means model shows clear boundaries be-
tween malicious and safe webpages



CHAPTER 6

Discussion and future work
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The past two decades have radically changed the modern life, especially due to

the fact that webpages have become an essential part of daily life. Webpages

have become a vital and convenient way for people to conduct business, gather

new information, discover new worlds and perform many other functions via

desktops, tablets and smartphones which all have one thing in common - browsers

to view webpages. The convenience of the Internet has a dramatic impact in

improving the lives yet also left the users exposed to malicious webpages. The

Internet does not have the quintessential properties found in the physical world

to assess any webpages and lacks rules that are present in organisations such

as banks and governments. Malicious attackers have benefitted from this and

now a click to a malicious webpage’s URL is enough to lead users to harm. The

research community has dealt these threats by developing blacklisting services

that compile a list of ‘malicious’ websites and also built client-side systems that

analyse webpages as they are visited. These services are helpful, but are only

useful for detecting known threats and fails to keep up with boundless stream of

new malicious websites. Client-side systems are slow and may accidentally expose

their users to threats. Not only are they available on browsers but webpages are

also used largely inside mobile applications either in IOS, Android or Windows

Mobile operating systems. As a result, the applications are now vulnerable to
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these diversified attacks. To address the limitations of existing approaches, this

thesis has developed an approach that is realtime, accurate, scalable and fast.

6.1 Contribution to knowledge

The central finding of this thesis is that machine learning techniques can alleviate

the disadvantages of blacklists and heavyweight & lightweight classifiers. This

has been achieved by constructing a realtime, accurate, middleweight and fast

classification system. Before, malicious webpage detection generally used super-

vised and batch machine learning techniques. However, this thesis demonstrated

that the approach of using a larger feature set especially the visual features had

clear advantages over fewer feature sets. Moreover, the thesis demonstrated the

benefits of online learning over standard batch learning for malicious URL detec-

tion (see Chapter 4). Online learning overcame the limitations of batch learning

because of its ability to process large-scale data sets with fewer computational

resources and to incorporate fresh training data incrementally. The thesis con-

structed a system for real-time feature collection, classification and showed the

supervised and unsupervised classification techniques can work together to build

better classifiers. In a future where there will be more data, the results from the
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thesis demonstrated that scalable and adaptive detection is feasible, representing

a significant advance over previous work.

One of the major contributions of this thesis was to explore a range of machine

learning technique that used a wide range of features and the use of unsupervised

machine learning techniques. The simulations show that a classifier can mine in-

formation contained in the URL, links, content and visual features from webpages.

Beyond URL features, the most significant drops in error rates were obtained from

the SURF visual features. The SURF visual features are more expensive to com-

pute, but the SURF features provide a way to include visual information without

a huge computational cost. Simulations on an up-to-date URL feed illustrate that

the proposed approach can identify malicious webpages at about 98% accuracy

and silhouette coefficient of up to 0.97. The features considered from webpage

content more than halve the error rate that is obtained from URL features alone.

The level of performance worsens but does not significantly deteriorate on un-

balanced data sets with different ratios of malicious and safe webpages. It is

interesting to see that the unsupervised machine learning techniques performed

very well in their performance despite the fact that they do not have access to

the class information about the data. This is an encouraging sign that perhaps

in the future, they will overtake supervised machine learning techniques through
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Deep Learning methods. This will have huge repercussions because there will be

very less time involved in the training phase and data labelling. The classifiers

will get close to decision making similar to human brains.

One of the major success of this thesis is improving the performance of the

classifiers through the use of multicore and multiple machines. The Chapter on

unsupervised algorithms demonstrates that the multi machine machine approach

do indeed improve the run time of the classifiers. MapReduce proved to be a very

worthy option when dealing with multi machine approach.

The final significant contribution of this thesis is the use of Chrome extension

in the browser. This allows to detect whether a webpage is malicious or not very

quickly often under a second. The lightweight classifiers are very fast but are less

accurate whereas heavyweight classifiers are more accurate but take more time.

This extension enables the classifier to be ‘middleweight’ with very high accuracy

and yet less prediction time. This has the advantages of both the lightweight

and the heavyweight classifiers. Chrome which is now becoming one of the most

popular browsers in the market, has a large reach to the users in the world and this

extension will certainly enable users feel more secure about browsing webpages.

The indicator next to the address bar in the Chrome browser indicates to the

user whether the webpage is malicious or not. The user can immediately decide
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to act on the information.

The thesis has dealt with various types of malicious activities and it did not

categorise the malicious activities. This caters for new malicious activities i.e.

when they appear the models will categorise them.

6.2 Limitations

There are few limitations in this thesis, one of which is that malicious webpages

are affected outside of features that have used in this thesis. In some cases, they

can get affected with a combination of features. This thesis uses classification ac-

curacy as the sole indicator. Despite these limitations, the thesis’s contribution is

encouraging: there are improved accuracy through additional features i.e. visual

features. A further improvement would be to improve the execution time for clas-

sifying the webpages using GPU [84] and MapReduce [98]. Latest devices have

access to GPUs, and this will improve the classification time. An extensive look

at Deep Learning is needed in the future that will essentially detect webpages as

malicious or not.
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6.3 Future Work

This thesis opens up many areas for further research. To succeed, the approach

of the thesis to malicious webpage relies heavily on features and large sources of

training data. There are a number of ways to expand the work of this thesis, few

of which are mentioned in the sections below.

More broadly, research is needed to determine other features of webpages

automatically. Deep Learning [100] would be one possible solution. Realisti-

cally, Deep Learning is only part of the larger challenge of building intelligent

machines. But Deep learning cannot represent causal relationships or perform

logical inferences or integrate abstract knowledge. It can play a part in Bayesian

inference or deductive reasoning. At present, the approach to detecting mali-

cious webpages relies on a source of labeled examples. Instead, is it possible to

use Deep Learning to build features and build a classifier to be used by already

built Chrome extension. However, trusting the Deep Learning technique presents

interesting challenges. Addressing these challenges would empower blacklisting

without building the features which takes huge amount of time. The findings of

this thesis have a number of important implications for future practice.

One improvement would be to move the classifiers to the browser and write
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them in JavaScript, because the and GPUs are becoming powerful day by day.

Browsers on the phones are now becoming more popular [101] and in the near

future it would be possible to build the extension for mobile users as well. An-

other area to look at would be to construct the machine learning models within

the Chrome browser using JavaScript. This is not possible at present because

JavaScript is interpreted and the performance of the machine learning models

will be painfully slow. But Chrome has a compiled version of JavaScript which

runs on top of V8 [102]. This will make it a possibility in the future because

the performance of the compiled JavaScript will be significantly faster than the

interpreted versions. This would mean that the current implementation in thesis

of a separate classifiers and the browser will all integrate together. This will al-

low the browser to be a standalone executable. The users will have access to an

intelligent browser that will detect a malicious webpage on its own.

Looking ahead, it can be said that the combination of systems and machine

learning will play a very important role in future research challenges. With more

access to big data in the coming days it will be difficult to analyse it manually.

Machine learning provides a methodical way to understand and build models

from big data. Also, domain expertise and an understanding of limitations are

important in developing a machine learning approach to solve problems. There



6.3. Future Work 140

are two ways these solutions can work to detect malicious webpages. The first

being the centralised way where all the classifiers can stay at a centralised loca-

tion. The other option is that the classifiers will be stored in local computers and

mobile phones. This thesis, with its focus on detecting malicious webpages, can

cater both approaches and is thus a successful application of this insight.



CHAPTER 7

Conclusion
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This thesis has looked at identifying malicious webpages in real time using various

second and third generation machine learning techniques, and has been success-

ful in providing a robust framework with a real working tool in achieving its

goal. The thesis set out to determine the effectiveness of several supervised and

unsupervised machine learning techniques that used various types of features

such as content, URL, links and screenshots from more than 100,000 webpages.

The supervised machine learning techniques did well compared to the unsuper-

vised machine learning techniques. But the unsupervised techniques were not

very far off and came very close. The results from the Chrome extension that

took advantage of the best classifier of the supervised machine learning tech-

niques, demonstrated that it has the advantages of both the heavyweight and the

lightweight classifiers. Moreover, it avoids the disadvantages of the heavyweight

and the lightweight classifiers. One of the most significant outcome from this

thesis is that the visual features played a very important role in single handedly

identifying a webpage to be either malicious or not. This is very significant and

paves the way for Deep Learning techniques to detect a webpage to be malicious

just like a human being.

The thesis also looked at improving the run time efficiency of the machine

learning techniques. It used the MapReduce programming model to improve the



143

performance of the Self-Organising Map by distributing its execution over several

machines. This reduced its execution time and opened up the possibility to use

GPUs in the future.
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1. Comparing machine learning techniques to detect malicious webpages (Ex-

pert Systems with Applications, USA, 2014)

2. Clustering Web Pages using MapReduced SOM (Journal of Communication

and Computer, USA, May 2010)

3. Effective Web Technologies for a Web Design Agency (KTP Conference,

University of Brighton, 2010)

4. Using Machine Learning to Optimise the Performance and Security of Web

Applications (Third International Conference on Internet Technologies and

Applications, Glyndwr University, North Wales, 2009)
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The tables below have a summary of the used notation and abbreviations.

Symbol Meaning
θ Parameter vector.
θ Random parameter vector.
M Matrix.
[N × n] Dimensionality of a matrix with N rows

and n columns.
MT Transpose of the matrix M .
diag[m1, . . . ,mN ] Diagonal matrix with diagonal

[m1, . . . ,mN ]
M Random matrix.

θ̂ Estimate of θ.

θ̂ Estimator of θ.
τ Index in an iterative algorithm.

Table B.1: General Notation.
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Symbol Meaning
Ω Set of possible outcomes.
ω Outcome or elementary event.
E Set of possible events.
E Event.
Prob{E} Probability of the event E.
(Ω,E, P rob{·}) Probabilistic model of an simulation.
Z Domain of the random variable z.
P (z) Probability distribution of a discrete random vari-

able z. Also Pz(z).
F (z) = Probz ≤ z Distribution function of a continuous random vari-

able z. Also Fz(z).
p(z) Probability density of a continuous r.v.. Also pz(z).
E[z] Expected value of the random variable z.
Ex[z] =

∫
X
z(x, y)p(x)dx Expected value of the random variable z averaged

over x.
Var[z] Variance of the random variable z.
L(θ) Likelihood of a parameter θ.
l(θ) Log-Likelihood of a parameter θ.
lemp(θ) Empirical Log-likelihood of a parameter θ.

Table B.2: Probability Theory notation.
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Symbol Meaning
x Multidimensional input variable.
X ⊂ <n Input space.
y Multidimensional output variable.
Y ⊂ < Output space.
xi ith realization of the random vector x.
f(x) Target regression function.
w Random noise variable.
zi = 〈xi, yi〉 Input-output sample: ith case in training set.
N Number of available samples.
DN = z1, z2, . . . , zN Training set.
Λ Class of hypothesis.
α Hypothesis parameter vector.
h(x, α) Hypothesis function.
Λs Hypothesis class of complexity s.
L(y, f(x, α)) Loss function.
R(α) Functional risk.
α0 arg minα∈ΛR(α).
Remp(α) Empirical functional risk.
αN arg minRemp(α).
GN Mean integrated squared error (MISE).
l Number of folds in cross-validation.

Ĝcv Cross-validation estimate of GN .

Ĝloo Leave-one-out estimate of GN .
Ntr Number of samples used for training in cross-validation.
Nts Number of samples used for test in cross-validation.
αiNtr

i = 1, . . . , l Parameter which minimizes the empirical risk of DNtr .
D(i) Training set with the ith sample set aside.
αN(i) Parameter which minimizes the empirical risk of D(i).

Ĝboot Bootstrap estimate of GN .
D∗N Bootstrap training set of size N generated by DN with

replacement.
Nb Number of bootstrap samples.

Table B.3: Learning Theory notation.
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Symbol Meaning
xij jth element of vector xi.
Xij ijth element of matrix X.
q Query point (point in the input space where a prediction is

required).
ŷq Prediction in the query point.

ŷ−ji Leave-one-out prediction in xi with the jth sample set aside.

eloo
j = yj − ŷ−jj Leave-one-out error with the jth sample set aside.
K(·) Kernel function.
B Bandwidth.
β Linear coefficients vector.

β̂ Least-squares parameters vector.

β̂−j Least-squares parameters vector with the jth sample set aside.
hj(x, α) jth, j = 1, . . . ,m, local model in a modular architecture.
ρj Activation or basis function.
ηj S et of parameters of the activation function.

Table B.4: Data analysis notation.

Abbreviation Meaning
DT Decision Tree
KNN K-Nearest Neighbour
LDA Latent Discriminant Analysis
MAP Maximum a posteriori
MLE Maximum likelihood estimate
NB Näıve bayes
QDA Quantitative Discriminant Analysis
RF Random Forest
ROC Receiving operating characteristic
SOM Self-Organising Map
SVM Support Vector Machine

Table B.5: List of abbreviations.
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