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from the time of langmilr measurements of the
cwrent-potential sharacteristiz of a asall elecirode probe
immerged in s partiaslly lenized gas have besn used for the
quantitative study of plaseas. The nlasma parameters of
interest are eleotron and lon tamperature, slectron and ion
concentration, and plasma potential.

Tha proposed probe theories may be divided inko twe
parts depending on whether the iong and elestrons come under
the influenve of the probe’'s potential in a eollisionless
plagaa or a colliglon domipated plasme. In & collisionless
plagaa the motion of the eharge carriers is described iy a
¥ree Fall theory wiile in a collision dominated plawma =
Viffuslon theory is nseded. Various theories deseribing the
behaviour of probes in these two reglons ave presented and
thelr assusptions and their reglons of validity discussed.
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comparable to the charge carriers’ thermal motion medifications
to the spimple probe theory aust be wmade. 1hia i3 uovessary
for Spsee probeg and the reguived modifications to Laogmuir's
theory for a collislonless plasns so uade.
The theory of the Resousncs probe is presented.
Parturbaticns o Lhe curreut-potentiul charasteristie
ooeur 4f the probe disturbo the piases or Af lngtabllities wre
present in the plasma. A guantitabive estimate of some of the
disturbances is poseille.
probe characteristica are dliscussed along with ideas ou probe
design and construstion.
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SHACLE A

in studying plasma kinetics one usually requires a
knowledge of electron and ion temperatures, electron and ion
concentrations, and plasma potential. These plasma parameters may
be measured by a variety of techniques. Some of these techniques
include optlcal and mass spectroscopy, microwave absorption, and
elsetriec probes.

This dissertation is concerned with the last of these
technlques; the use of electric probes inm partially ionized gases.
The technique is based on the measurement of probe curremt as a
function of probe potential.

The electriec probe has the advantage of belng able to
measure loeal plasua parameters and is thus suitable for measuring
the spablial distribution of the parameters. Providing certain
precautions are taken information on the plasma may be galned using
relatively simple measuring teechnlques.

langmulr was the first to use the eleetric probe for the
systesatic study of low pressure plasmas. lis smalysis involved
the idea of orbital motion of carriers im a space charge sheath
surrounding the probe and it is applicable only if there are no
colilsions within this sheath. An electrie probe used under these
eonditions is gemerally known as a Langmuir Probe. A diffieculty in
applying the theory is the necessity of knowing the thickness of



the gpace charge sheath. Algo, the theory does mot satisfactorily
explain the ecollection of positive ions.

More recont theories have overcome the fallings in
Langmuir's work sad they have been extended to cover the ease when
ml«suﬂirgomnmmuomtwhmmmm
influence of ﬂu probe’s slectrie field.

Floating double probe techniques have extended the use of
probes to the study of slectrodeless plasmas. It can be shown that
the single probe is just a apecial case of the double probe im whiech
mmrauormtwmhnlnmlmo.

A high frequency probe technigue has been developed that
enables carrier concentrations to be obtainsd form a measure of the
lmlamhmﬁum&muhmﬁﬁm
probe cireuit. The theoretical inmterpretation of high frequency probe
characteristios is, at the moment, undergoing much serutiny. It is
now gensrally believed that the resonant inerease in probe eurremt
does not ocour at the plasma's electron resonant frequency.

~ On the experimental side, it is essential that a probe
mmu;mummummnmuw
plasma as possibls. The effects of numerous typss of disturbances
mmmmmmm.wmmmu
assessing the sccuracy of probe measurements. Teshnigues have been
developsd that enable complete probe characteristics to be determined
in very short time intervals. This is useful when a knowledge of
instantansous plasma parameters is required in fluctusting plasmas.
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Care-must be taken in the interpretation of these instantansous
characteristics as they are only meaningful when the carriers have
reached equilibrius with the probe's lnstantensous sleectric fleld.

The following chapters are intended to give s systematic
outline of the developments made in probe theory from the time of
Lengmuir up to the present date., The last chapter indicates a
number of exparimentel techniques that are available for the
practical measurement of probe characteristics.
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2.1, lntroduskion
2.1+1+ The probe and plasaa.

For the purposes of the following discussion a probe
may be congidered as a spherical, oylindriecal or plane electrode
m-m-mwmoammﬂwwmm
plasma in vhich it is Lamersed.

A plagma is taken to mean any partially lonized gas in
which the concentration of negatively charged carriers is roughly
equal to the concentration of positively charged mrrisers. Such a
plasma is readily realizable in a hot or cold eathode discharge, an
after-glow, and in lonized gas layers surrounding the Esrth. The
dimensions of the probe and its supperts should be such as to produce
negligible disturbing effeets on the plasma being imvestigated.

In developing a gualitative theory of a probe immersed in
a plagma it is convenlent to consider ome particular type of plasma
in order that one maybetter visualise the physiesl problems imvolved.
For this reason consider the behaviour of a probe when immersed ia
the positive eolumn of a low pressure glow or are discharge. Figure 1
shows the variation of plasma potential with position im suech a
discharge.
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2.1.2. The probe charscteristic.

If a probe is placed in the positive coclumn and connected
mmummwmxnormmumzuvo
negative with respect to the plasma and a cuwrrent will flow from
the plamma to the probe. Under these conditions the probe will
attract positive ions and repel) electrons eollecting only those
mm»orwnutcthmd'. If a battery is placed between
the probe and cathode and the probe made less and less negative with
respect to the plasma more and more electrons would reach the probe
antil a point is reached vhen the rate of arrivel of elestrons just
equals the rate of arrival of positive ions. The probe potentlal ot
mm.mnam.-mm.smmmxnv‘;nu
usually a few volts below plasma potential and is the potemtial that
an isolated probe would aguire if immersed in the plassa. Vhen the
mbou-t.pmmvonmxnuunmummum
probe is at Plasma Potential and it neither sttracts mor repells
electrons or ions. mmmummuujmmqu
the random current in the plasma. As the probe is made positive with
respect to the plasma potential it attracts electrons and repells ions
and the elreuit curremt flows from the probe into the plasms, Figure
2 ghows the varistion of curremt with probe to cathode potential.

It is the aim of this dissertation to present a review of
the theories that will exactly describe the characteristic showm in
Figure 2 under various plassa conditions. It will then be possible
to obtain informstion on the plasma from experimentally determined
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probe characteristies.

~

2.1e3. Gheath formation.

A megative probe (with respect to the plasma) will repel
elactrons and attrast poi_tun ions to form a pozitive lon space
charge sheath, The positive charge in the sheath will just balance
the negative charge on the probe and so the field surrounding the
probe dees mot penstrate beyond the sheath edge.

The sheath surrounding a strongly negative probe may be
divided roughly into two regions. The inner region next to the
probe conslsts alwost exclusively of positive ions with perhaps one
wtwﬁ:thgdoMu. Cutglde this region is an outer
sheath inywhich ions and electrons are present in almost equal
guantities but in which the normal conditioms within the plasma have
been modified due to the withdrawal of positive lons. The variation
in potential with position from the surface of a probe is shown in
Figure 3.

Host of the potemtial drop cccurs across the inner sheath.
In Lengmuir's origincl probe theory mo account was taken of the
potential drop across the outer sheath. More recent theories have
shown that this pemetrating electric field is important when consider-
Lng the collsetion of positive loms by a negative probe.

2.1.4. Basie assumptions.

The following assumptions were made by Langmuir (1) in
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developing his probe theory.

(a) Oarrier densities are known st the sheath edge.

(b) Carrier veloeity distributions are known at the sheath edge.

(s) All the probe potential is developed asross the inner sheath.

(d) Gas pressures are sufficlently low for ecollisions withinthe
sheath to be negligible.

{e) Carriers are neutralized on reaching the probe.

(£) Carriers are not reflected at the probe's surfasce.

(g) The edge effects of plane probes are naglected; oylindrical
probes are assumed to be infinitely long compared with their
dismeter; the supports and lead wires to oylindrical and
spherieal probes are assumed to produce a megligible disturbance
to the potenmtial distribution in the suwrrounding plasma.

Assusption (d) implies that a carrier emtering the sheath
will be subject to the probe's field and will deseribe an orbit around
the probe without undergoing collisions. The path of the orbit will

depend on the potentlial drop across the sheath and on the veloeity o

the carrier on entering the sheath. There are three types of orbits:

those that terminate at the probe's surface; closed elliptical orbits;
hyperbolie orbits that pass close to the probe within the sheath.

The closed elliptical orbits arise from eollisions within the sheath.

As the number of such collisions has been assumed to be negligibly

small they will mot be considered.

The current to the probe may be ealeulated from a consider-
ation of the orbital motion of the earriers within the sheath,
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Alternatively the current flowing from the sheath edge to the probe
surface may be ealeulated by considering the sheath edge and the
probe surface to be the two electrodes of a space charge current
limited diode.

2.2. QRDiade squakiona

If a sharp boundary is assumed to exist between the sheath
mmmmmmuupmrmnu.ummoru
oylindrical and spherieal probe, adunpmxmdax.hm
case of a plans probe, expresglons for the probe eurrent may be
obtained in terms of the potential drop across the sheath. In
deriving these expressions a knowledge of the carrier velocity
distributions at the sheath edge is required.

2e2.1s Plane probe,

When the initial velocity of the slectrons leaving the
sheath edge is negligible in comparison with their final veloeity at
the positive probe the electron current density flowing to a plane
positive probe is

| "

vhere @ is the magnitude of the electronie charge, m is the electron
m-."uﬂhmhtaplmpmm. Mu.htlo sheath thick-
ness. Lquation (L.1) was obtalned by solving Polsson's equation and
applying the boundary conditions that at
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:".,7‘0
x=0, V"I’
x'x.. g_ao
If the velocity distribution of the slectrons at the sheath
edge corregponds to an eleetron temperature r. %% the electron

current density flowing to a plane positive probe is

' diz %
sl BT e e (o))

where at xﬂx..v"‘
x=0, V-ﬂt’
x':',g,so

The potential distribution inside the sheath region passes through a

mmo:v_<ejmmmmmonxoqm.z‘w.

In deriving equations (2.1) end (2.2) it has been assumed
that only electrons are present in the sheath and that all the positive
ions have been repelled.

The principhl use of these equations is in the estimation
of the sheath thickness. Hquation (2.2) should be used in preference
to equation (2.1) as it is more reasonable to assume that the carriers
are emitted from the sheath edge with a finlte initial veloeity rather
than with sero initial veloecity.

The assumptions and theory outlined above may be applied
dirsetly to the case of a negative probe and the collection of positive
ioms (3)°
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2.2.22 Q’lMlm Mho

When the lnltisl velocity of the slectrons leaving the
sheath edge is megligible in comparison with their final velocity
at ths positive probe the electron current demsity flowing to a
eylindrical positive probe is

ke [ vee(2.3)
3 97(( m) T',‘lls"'

m(u-.mu-ar(r/r,)ummmw
Langsuir and Blodgett (4) for values of (r/rp) from ons to infinity.
r.ndrpmmmmu&mbrﬁunmw. Figure 4
shows the variation of {z." with (r/r’) for values of &/r') from 1
to 20,

m:m’ff'ammhmmnMa
volts defined by the relation

oV, = kT, eesl2e4)
where k is Boltsmann's Constent and T, is the electron temperature
in degrees Kelvin., Langmuir and Blodgett (4) have considered the
effects of a tangemtial veloelity compoment at the sheath edge. They
MMH.V‘.‘thn'uWMWh
- the gheath edge and 1f V_ is the probe to plasma potemtial the

P
elsctron cannot reach the probe if

'.“ > " (:‘)2. sne (2. S)

The application of equation (2.3) therefore requires the probe to
mmv’huﬂmugumum
greater majority of the electrons emitted form the sheath edge should
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reach the probe.
The assumptions and theory presented above may be
applied directly to the case of a negative probe and the collection

of positive lons.
2243+ Gpherieal probe.

When the iniltlal veloelty of the electrons leaving the
sheath edge is megligible in comparigon with thelr final veloecity
at the positive probe the electron current demsity flowing %o a
spherieal positive probe is

5 L e (2:6)

J 7 oam\wm

L
vherewis a function of (r /r ) and has been tabubated Ly Blodgett
and Langmulr (4).

A complete analysis of gpace charge limited ourrents %o
plane, eylindrical and spherical probes has been made by Langmuir
and Compten (§) « The analysis includes a study into the effects
of the initial veloeity of the carriers emitted from the sheath
odge.

The diode equations emable the sheath radius and hemce
the current density at the sheath edge to be estimated (). If the
carrier temperature at the sheath edge is kmown the ecarrier
concentration can then be found.

2.3. Eroba cheracteristic ecuations.

The probe theory initially developed by Langmuir was
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first published in a series of articles in the Genmeral Hlectrie
Review during 1923 and 1924 (Z to J2). The theory presented in
thege articles is reviewed and developed in a paper by Mott-Smith
and Lengmuir in 1926 (L).

The theory is built up around the assumptions listed
in sub-gection 2.1.4.

2.3.1. Gylindrical probe - general distribution.

The orbital motion of carriers within the space charge
layer swrounding the probe will now be examined. Motions
perpendicular to the probe's axis need only be considered as
motion parmllel %o the probe's axis does nmot contribute to the
current.

The length of the oylindrical probe L is assumedl to be
very much greater than its radius r . V_ is the probe to plasma

P P
potential; the potential drop across the sheath region. If V_1is

positive negatively charged carriers are attracted and if V p :-
negative positively charged carriers are attracted by the probe.
ket u and v be the radial and tangential carrier veloeity
mmaummm.mm%mv’ummomu-
ing couponents at the probe surface. Let the generalized carrier
mase be{wherev|= m for slectrons and /= M for positive ions.
nnn.yhtmmmndmurw‘oh-’m%.-o

for electrons and e, =%e for pogitive lons. Figure 5 ghows the
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carrier veloeity components at the sheath edge and probe surface.
by the conservation of ensrgy

*"/«ui » ':) = M(“z + '2) - .’vp ooo(zo”)
By the conservation of momentum
d’(v,:’ = v & ees(2.8)

Bquations (2.7) and (2.8) may bte solved simultaneously
for the tangentisal and radial velocity components at the probe

surface,
% " '(f‘) eeel2.9)
r
5 =5 i 3[(%)1_ \] —‘l;.%ﬁ eeel(2.20)

For a carrier to contribute to the probe current its
radlal veloecity component at the probe surface must be greater than
gsero. It follows that a ecarrier, having a radial velocity
component at the sheath edge equal to u, must have a tangential
veloeity component at the sheath edge v given by

v & ( e )Q\A"—'Z-s_hdp) see(2411)

(31_\(‘,1

for the carrier to reach the probe.

It is seen from equation (2.11) that the lowest possible
value for u may be found by putting v equal to sero. The value of
u is then

ﬂz = 20' .oo(aln)

— B
T

The limiting values of v and u that a carrier can have in
order that it mey reach the probe are therefore
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R L
e (S
o M,

'R o 2.\J 5
S w Lo
v, = + 7 Vb ( = )

seelZa13)

for all values of Qa‘é‘p and

-
S veel2.24)

gz = (~4]
for values of QOVPS 0 and

= O

E } vee(2.15)

ua @m 0
for values of o°V’<0.

The probe current . may now be expressed in terms of the
carrier veloeity distribution fumction at the sheath edge. Let
f{u,v)dudv be the fraction of ecarriers at the sheath edge in the
veloelty rangs u to u * du and v %o v * dv and let & be the total

Motmiwummcwmummm i Ls then

Wa Vo

I = ﬁﬂr .u-.x glt(u.v)hiv eee(2416)

IA| vl

where the limits of Lntegration have been defined by equations
(2.23) to (2.25).

203424 &MM probs - general distribution.

ﬁmmznuo:nMnotmym
momentum to the motion of earriers within the sheath region around
a spherical probe the carrier current is given by
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“. 1

- I= 0}'“.5 }"‘%.M 0.0‘2017)

u,i.
where 4 is the radiial veloclty component and g is the resultant

of v and w, the other two rectanguiar vslocity components. The
miiuorqmamamw

% : 0( —{—1—(%‘,,)"1 (v(l = Q&m,\/’,)v’l. eeef2.18)
s -V

for all values of Q." and

T ()
e vee(2.19)

e
for values of .°v’> 0 and

e kb
‘2 - ) ...(2.2’0)
for values of a,(o

2343, Oylindrical probe - Maxwellian distribution.

if the earriers at the sheath edge are assumed to have a
Maxwellilan veloeity distribution the distribution function in

~equation (2.16) is given by

£(a,v)dndy = %Tn [2:%(-'41—. eesf2.2)

whers T is the carrier temperature in degrees Kelvin.
Substitute equation (2.21) imto (2.16) and integrate

_between the sppropriate limits. The carrier current is then given

by
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‘ ) % eeel2422)
3
v wpnld (2

i= ﬂﬁrl‘. (%TE!'L)"‘%(.’Z) eeel2.23)
mf()o where 77 is defined by

1= oY eoe(2.24)

[

and erf(x) is defined by

ert(x) = gJ:p (P)y oo (2:25)

K p &

24344+ Spherical probe - Maxwelllam distribution.

if the carriers at the sheath edge are assumed to have
a Maxwellian veloeity distribution the earrier current flowing teo
a spherical probe is glven by

I= Amr: He (mm)"t{ [ ‘]M,, [ ﬁ‘]}...aw)

M'Y((Gaﬂ

1= 4RriNe, (&L, Y"’-QAP("/Z) eea(2.27)

In genersl the sheath radius may be determined from the
diode eguations given in sub-gection 2.2. The application of these
equations requires that carriers of only one sign are present within
the sheath and that the probe to plasma potential is sufficliently
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great to enable the probe to colieet all the carriers entering

inte the sheath regicn. Assuming that these conditions are
satliafied and ry is determined its value may be used in conjunction
with equations given in subesections 2.3.3. and 2.3.4.

Due to the inevitable vaguensss of the space charge
sheath radius it is, perhaps, more convenient to consider under
what circumstances the probe curremt equetions givem in sub-sections
2e3e3 and 2.3.4 bacome indepsndent of r_.

2.‘01. c’m‘d mho

'~ When (r/rp) tonds to infinity equation (2.22) can be
shown to be independent of the sheath radius (13) and the resulticg
expression for the carrier curreat is

L= amegte (AT Vst0 s opr)tint). . om)

for )¢ 0.
Equation (2.28) may be further simplified ma{(-z when
the carrier current is

I=2xr e (zgm )’tn’i ('-ﬂ)l" ees(2.29)

20442+ Spherical probes

When (r/r’) tends to infinity equation (2.26) ean be
ghown to be independént of the sheath radius (J3) and the resulting
expression for the carrier current is
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"?.
W 47(!?,‘0,(2%.;/) (-7) eee(230)

for (0.
2443 Flane probe.

The carrier current flowing to a plans probe is clearly
independ@nt of the dimensions of the sheath. Expressions for the
probe current may be obtaimed from the spherical probe curremt
expressions by putting z.m-: equal to A, the area of the plane

probe, and letting r_tend to infinity. Equations (2.26) and (2.27)

o
then become,
= 2T s coelde
1 mo(m) (2.31)
for 7)¢0 and
5 mﬂ({-’%—;z’)hwh(-qz) ‘00(2032)
for 7)0.

2edeé4e Probe characteristics and their derivatives.

The resultant carrier curremt flowing to a probe is givem
by the sum of the positive ‘l.u and electron curremts., Expressions
for these have been derived in the previous sections, wheme /(= M
m.,‘nﬁpdunhummd‘?'lmc.'-om
electrons. If l'. L, and I. are the resultant, positive ilom, and
electron currents respectively.

L=i*L eoel2.33)
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~

Bguation (2.33), together with its first and second
derivatives are plotted in Figure 6. These characteristics have
been drawn assuming (r.(r’) tends to Lnfinity. BSquation (2.33)

is only really true when either I,,\)I‘ or I.»{, because in the
derivation of the currier curremt eguations carriers of only one sign
are assumed to be present in the sheath reglon. when cuarriers of
both signs sre present there will be a partial neutraliszation of

the space charge. 7To compensate for this there will be an inerease
in the effective sheath thicknsss.
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if the assumptions listed in sub-gection 2.l.4. are
applicable and if a Maxwelllan distribution of carrier velocities
ean be assumed Langmulr's probe theory, as presented in Chapter 2
may be used for the determination of plasma parameters.

Sxperimentally it is mot possible to apply a jotential
directly between the probe and the plasma; instead it is applied
betweon the probe and a reference poimt. The potential difference
between the undisturbed plasma, in the nelghbourhbood of the probe,
and the reference point is known as the plassa potential. Provide
ing that the plasma potential remains constant the potemtial
applisd between the probe and the reference point is egual to the
probe to plasma potential plus a constant. In interpreting probe
current characteristice as a function of probe to reference point
potential the equations derived im Chapter 2 must be corrected to
allow for the additional plasma potentiasl.

3.1s Hectron and positive ion temperatures.

Lenguulr's theory assumes that the carriers have a
Maxwellian distribution of velocities and they can, therefore, have
a temperature associated with their mean energy.

The necessity of assusing a Maxwelllian distribution is in
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the application of Boltsman's law in the case of a retarding probe.
To apply this law eguilibrius must exist between the energetiec
carriers and the retarding probe's slectric flield. This eguilibrium
state is disoussed in detall by Langmulr in his paper 'The theory
of collectors in gaseous discharges' (1) and in hls review article
'Blectrical discharges in gas' (§) .
if a Maxwellian distribution of veloeities exists and
Boltaman's law is applied a straight line plot should be obtained
if the logarithm of the probe current is plotted agalast the
- retarding probe potential. Langmuir and others have found that,
in practice, this straight line plot may extond over tares or four
magnitudes of electrom curremt. It has generally been concluded
from this that the electrons possess a Maxwellian distributioca of
velocities., Langmuir could not explain satisfactorily how the
electrons eould aguire a Maxwellian distribution of wveloeities in a
guanhapmmlmumnuw'lww.
in determining the electron temperature by obsarving the
variation of sleetron current with retarding probe potential one,
in practice, measures the resultant probe current and either assumes
that the jrobe current is entirely an electron curremt or, if this
assumption is mot justified, corrects for the positive ion current.
For probes of any shape the electron current flowing to

a negative probe is given by
V ese .
R il 4 2
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where Vp<0, e 1s the magnitude of the electron charge, and I
is the electron current {lowing to the probe when at plasma

potential (V,=0) I, is given by
I A l ‘ M ',2' e 02

In practice probe potentials ars measured with respect
to some reference poist. If V  is the plasua potemtial in the
neighbourhood of the probe and V is the probe to reference point
potential.

VeRLy vee(3e3)
Substituting vp =V =V, isto equation (3.1) and taking nstural
logarithms gives

nil = hl.o-_.!’ ¢ :1 eee(3e4)
kT kT

&
A plot of 1n I sgalnst V has a slope of o/kT_ or using equation
(2.4) in conjunction vith equation (3.4) the slope is L/V . The
mean electron energy expressed udnmawluo?‘ is related to
oV, by
.‘i.. = %" 0000.,)

As the probe is blaged more and more negative and positive
ion comtribution to the resultant probe curremt becomes significant
and has to be corrected for.  This can be done by extrapolating
the positive ion ourrent characteristic, for a strongly negative
grobe, back 4o plasss potential. In $he ease of o plane robe
exgrapolating the charscteristie back to plassa potentisl is quite
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straight forvard as ideally the positive ion current is constant and
independ@nt of probe potential. In practice, however the positive
ion current shows a linear dependgnece on the probe potential.
Langmulr () explained this limear dependance to be due to a change
in the effective collecting area as a result of the edgs effects of
the sheath region. A linear extrapolation may also be used in the
cage of a spherical probe. For a eylindrical probe, the simplest
method of extrapolation is to use equation (2.92). Iquation (2.29)
can only be used if the extrapolation need not be extended to
within 2k%./e of plasma potential. These extrapolations assume that
z/r’maumuvmmmuu.ammm.w
be assigned a temperature corresponding to their mean kinetlic
energy in the plasaa.

Experimentally it is vot eagy to investigate whether or
mot the lons possess s Maxwelllan distribution. Theoretically, on
the other hand, it is diffioult to ses how, in a confined discharge,
they can aguireidaxwelllian distribution as they are genersted with
roughly sero imitial veloeity (15). The ions gain their emergy in
the electric field created by the negative potential on the walls
of the vessel containing the discharge. An exchange of energy will
oecur between the lons and the neutral gas atoms and it is thought
that the mean lon energy in the bulk of the plasma is roughly egqual
to that of the neutral atoms. As the ions do mot wove randoaly
within the plasma but have a directed motlon towards the walls of
the vessel it seems unlikely that they possess a truely Maxwelllan
distribution of velocities.
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Msasurements of ion energies by Langmuir (J§) using a
perforsted collector show that loms possess a roughly Maxwelllan
digtribution of velocity corresponding to an ion temperature of
spproximately half the electrom temperature (15, 12, 18). By
using the idea of a penstrating electric fleld, Langmuir (17) was
able to explain how the ion temperature at the sheath edge was
very much greater than in the bulk of the plasma. In this theory
a small proportion of the potemtial drop between the probe and
plagma cccurs across a region surrounding the sheath: this region
is known as the extra sheath. The electrie field in the extra sheath
causes the lons to be accelerated towards the negative probe and
galn o mean energy equivalent to approximately 1/2 om arrival at
the sheath edge. A more detalled discusslon of this process is giwen
in Chapter 6.

If the equations developed im Chapter 2 are to be applied to
the collection of positive iomns by a negative probe the ion
mnmnmmnpmumqmur/a.

3.2, Hectron and positive lon consentrations.

3.2,1. Glectron concentrations by random current method.

At plasma poteatisl m space charge shesth is formed
around the probe and the resultant probe current is equal to the
sum of the random electron and lon curremts crosslng a surface area
equal to that of the probe. u@%mnm

Tondom. .

umammm.mkpum. ion current the resultant



33

probe current msy be considered to be effectively dus to electrons.

LI = 2!.03. - ees(3.6)
whers '5. is the mean electiron velocity and is given by
%" (.;"f’.g)’h ces(3.7)
m
Substituting (3.7) imto (3.6) and solving for B, gives
= .
N, :‘f (xai"':') eoe(3e8)

Bquation (3.8) alternatively could heve been obtained from squations
(2.23), (2.27) and (2.32) for aylindrieal, spherical, and plane
probes respectively by putting V, qual to zero.

3e2,2, Electron eoncentrations when r/rp tends to infinity.

in the electron accelerating region the resultant probe
current is effectively only due to electrons and may be given by

&) &)
I = aie (kr \2[1+ v
eos .)
- (z"ﬁ".)( af) -
tnmmoctcmudphuw ,
- : W
I’ u.. (k_{‘\hi ("’,:_;')L 0000010)
AMm | xh ®

in the case of a2 eylindrieal mumv,)m/o. ihe errop
in equation (3.9) is less than 15 for V) 5T /e or less than 55 for
Vp> 3kle/e. The error in equation (3.10) is less than 1% for V)
m./corlmtha”_tbr%&m./o. H, is found from the slope
Of the plot of I against V, for a spherical probe, or 12 against
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VP for a eylindrical probe. In practice it is mot the variation
of Ir with VP that iz measured but the variation of Ir with Vv
where V is defined by eguatiom (3.3). This does mot, however,
affect the determination of 8..

3.2.3. Electron concentration when r /rp is large.

When 1 (¥ /r << °Othe method given in gub-section
3.2.2. cannot be used and one must resort to the original equations
glven in sub-gections 2.3.3. and 2.3.4. In the electron accelerating
region the resultant probe current iz then given by (L)

I!' = ?..i.t ...0.11)
&
for a cylindriesal probe and VpN) and by
Ir = :l.oi'!' eeelded2)
4

toranphwiodmbomv>0mrm'¢-d-nmdhw
B A T
\’: ""P Yls’f'
F = {1 -[1 -(&ﬂap[ -Yp %’]} seslDedd)
T YgiXpv
When ¥ 5>kt /e and 2 (r 2 /r o » 1 £ reduces

to (&), @

£ = ,‘tk[l . ;. -2 (:.;:.) ] eee(3415)

[-]
and viien V.55 K1 /e end 2(r X1 /v o¥ )2»1 ¥ reduces to
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F= l.ﬂ-i ri.v k& ooo(’o“)
kT, 2 r.k‘!.

§, 1s determined from the slope of the plot of L against
fop F. The great difficulty of this method is that it is
essential to knmow the sheath radius and plassa potential, As the
electron current from the sheath edge to the probe is governed by
orblital motion it camnot be considered to be equal to the diode
current and nr‘mthdmmmmmhu.
Because of the difficulties in determining the sheath radius and
Mmmwmaerqu.umm !
satisfactory.

3.2.4. Hlectron concentrations when r /r’ is approximately unity. ,

This method is applicable when r /r’ is aporoximately
unlty,and when V) ki /e equations (3.13) and (3.14) may be greatly
sizplified. Under these conditions the electron current flowing

i to a poasitive probe is space charge limited ruther than limited by
orbital motion. For a qundrlui probe { reduces to
£ =

| o e "

eeel3.17)

o b

R

for VOs-268, (1 = 7 )/e to within 5,
or for V_%-3kI (1 -}}:‘V- to within 1%.

Siallerly for a spherical probe F reduces to
2 )
‘(:.) .oc(’on’

r
P

- el
for Vo >-3k1, (1 - ?‘p‘ ¥e to within 55,




or for V >-52 (1 - ?:,J/- to within 1%.

Un substituting these limiting values of £ and F into
squations (3.11) and (3.12) one obtains

I = ANGS, ees(3.19)

4
m-vnmmmamodmumvamma.u
the surface area of the sheath.

Under theze conditions the shesth radius v, can ba
deteramined {rom the dlode equations. The electron comcentration
is then obtalned from the slope of the plot of probe current
againgt sheath radius providing the electron temperature is
known.

1t must be remembered that the sheath radius deduced
MNM equation i mot exactly the same as the sheath
radius M appears in the expression desoribing the orbital
motion of the electrons. The whole concept of a space charge
sheath boundary is one of great importance as well as one that
areates much difficulty in probe analysis.

3.2.5. Vrositive ilon concentrations.

In a neutral plasma the positive ion concentration is
approximately equal to the eleetrom concemtration and is best
sstimated from electron comcentmation measurements. If, on the
other hand, direct positive ion conceatration measursments are
deplred the methods svallable are essentially the same as listed
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in sub-gsections 3.2.2. to 3.2.4.

Using the method given in sub-section 3.2.2. Langmuir (18)(2)
deternined the positive ion concentration and found thet on average
N, was 2.21’. In his determination he assumed the ion temperature
at the sheath edge was r./z. The differsnce between the positive
lon and electron concentrations was originally thought to be due
to the presence of negative iong. It was later satisfactorily
explained wsing the idea of a penetrating electric field whioch
produced a directed motion of the ions in the extra sheath rogion.

In applying Langamuir's probe equations to the eollection
of positive lons the iom concentration at the sheath edge ¥ should
be replaced by 2.2N, where N, now refers to the ion concentration
outpside the uhfa,dluth reglon in the unperturbed plasma.

Langmuir's analysis cannot be used to describe the
eollection of positive ions without replacing T by ‘!./2 and ¥ by N,.
This then reduces his analysis to a semi-empirical level and the
acouracy of the resulting expressions is determined solely by the
accuracy of the experimentally determined values of T and N in terms
of 2. and N_.

3.3+ [hssma potential.

Plagma potential at a polnt is defined as the potential
at that point relative to the potential of an arbitrary reference
polnt; this reforence point Ls usually taken to be an elestrode.

M.mhxamudu.mmmug_
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potential with the ald of some biasing device no space charge
gheath surrounds the probe. 7The regultant current density at the
probe is equal to the sum of the random electron and ion current
dengities in the plasms.

3.3.1. Uigcontinuity method.

Figure 6 shows a discontinuity in the probe characteristic
at plasma potential. This discontinmuity or 'knse' is usually more
easily detectable Lif the gemi-logarithmic probe characteristic is
drawn. As a gensral rule the plasma potential is the point st
which the semi-logarithmic characteristic departs from a straight
line. In practice the exact location of the kmee ig uncertain due
to various digturbing effects (see chapter 4). A statistical method
of locating the knee has been suggested (13).

A variation of the method is to obtain the first or
second derivatives of the characteristie. Figure ¢ shows the

discontinaity at plasma potential very clearly.

3e3.2. FElectron accelerating method.

Thisz method is applleable to gphericel amd eylindrical
probes and iovolves the measurement of the resultant probe currest
in the electron ascelerating reglon. As in the method for
deteraining electron concentrations in sub-gection 3.2.2. the
eondition that r/rp tends to infinity must hold.
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Substituting V, = V = V, isto equations (3.9) and (3.10)

gives
\ o e -
2hm kI, kI,
for a spherical probe and
% " ul
I, = u..(& i Le el :v_‘) s
2m ) xh k!. l‘l'
for a cylindrical probe. Irail:mmnuhmm
(1 B g_- g‘)s ¢ eseldeaR)
: ] L]
that is when
V. =Y ¢ .k:' uaouo”)

-]

in equation (3.23) V is the intercept of the characteristic
on the probe voltage sxis (&), (30), Q).

The error in é4uation (3.20) is lees than 1% providing
V) (5k2 /e + V_) and the errer in equation (3.21) is less than 15
providing V) (3kf /e + V). The characteristics will be linear
only in these regions and it will probably be necessary to
extrapolate this linesr reglon back to I_ equal to sero.

3.3.3. Wn emitting probe method.

A nusber of Laovestigators have deteramined plasma
potentials using an elsctron emitting probe (1), (28), (21), and
(22). This probe is s designed that there is some means of
producing controlled electron emission from its surface.
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if electrons are being emitted from the probe and the
probe is held at a positive poteatial with respect to the surrounds
ing plasma none of the emitted electrons enter the surrounding
plasma. This is because they are attracted by the positive
potential on the probe. A positive electron eamitting probe has,
therefore, the same characteristic as a mon electron emitiing probe.

If electrons are belang emitted from the probe and the
probe is maintained at a megative potential with resgpect to the
plasaa the emltted =lectrons are repelled by the probe and enter
the surrounding plasma. The electron curremt flowing to a
negative electron emitting probe is therefore less than the current
flowing to a negative non electron emitting probe.

Plagma potential is given by the probe potential at

2 which the electron smitting probe cheracteristic parts from the

non electron emitting prpbe characteristic. Hrrore in the
deteraination of plasma potential by this method may ocour if the

electron emitting current is not kept small. 4 large electron
enission may serdously disturb the swrrounding space charge sheath
and plagma.

in the theory outlined in the previous sections it has
been agsumed that the m;lcu possess a Maxwellian distribution.
The justificstion for this is that a considerable amount of
information has been ebtained from probe measurements, and other
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observations, that is conslstant with such an assumption. liowever,
not sll observations in all types of plasma are consistant with a
Haxwellian distribution.

’robs theories assuming the following non-lMaxwellian
digtributions have been consldered inithe past (L), (23), (24).
(a) Velocities equal in magnitude and parallel in direction,

(b) Veloeities equal in magnitude but with direetions distributed
at random in space,

(e) A Maxwelllan distributiom with superimposed drift,

(4) 4 uniformly accelerated half-Maxwellian distribution,

(e) A pure Maxwellian distribution superimposed on an accelerated
half-idaxwelllsn distribution.

As 1t is diffieult to know which of these theories to
apply to the particular plasma belng investigated it is desirable
to bte able to determine the exact form of the eleectron
distribution from the probe's curremt-voltage characteristie.

Jedel. ilectron veloecity distribution.

The electron current flowing to a spherical probe is
glven by equation (2.17)., 4.
' I, = .mﬁl.cj Jw(mu)ﬁn eee(3.24)

“, %.
where the limits of u and q are defined by equations (2.18) and

(2.19) for v’<o. When r/r’ tends to iafinity equation (3.24)
may be simplified and integrated with respect to q to give
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I. = m-i!.oj u(uz * ?:zp)g((},u)dn esel(3.25)
&
pifferentiating equation (‘;'.25} twice respsct to V  glves &)
3%} = u.o(z)‘.(u,u) eeel3e26)
whers u = (._z;p)"z vee(3.27)

Bquation (3.26) was first derived by Langaulr and
Mott-Smith in 1926, They also considered the case of a eylindrical
probe. In 1930 Druyvesteyn (25) considered the determination of the
distribution function from the double differentistion of the
characteristic of any non-concave probe surface. iie ghows that the
second derivative of the current-voltage characteristic iz the same
for both plane and eylindrical probes and is gliven by

ﬁ:c = AR .g 1”(.) 00000”)
d\l’} “ [.) l;’l
whera e = (2.\1 ])"" eeel3:29)
a

pfle)ie is the fraction of slectrons per unit volume having a
resultant veloelty in the range ¢ to ¢ * de. It is then srgued
that the same expres:ion would be obtained for any non-goncave
probe surface. This is seen to be s0 in Figure 6 in the cass of
a Maxwelllan veloeity distribution for plane, eylindrical and
spherical probes.

Equation (3.28) expresses the distribution fumetion in
terms of ¢, the resultant velocity, while equation (3.26, expresses
the distribution funetion in termg ©f u, the velocity component
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normal to the probe'’s surface,
3.4.2, Hlectron energy distribution.

Uruyvesteyn (25) showed that for a plane probe

1, = &J"“p(.).{x - 20V ]} de eee(3.309
‘ (zg!d)lh B”e

Equation (3.30) may be expressed in terms of electron energy by
replacing mo™/2 by oy and smfe) by F(U). Gquation (3.30) then

becomes )
& . gﬂg.”‘i:r(n)(z - ly.)“ eee(3.31)

Differentiating equation (3.31) twice with respsct to ]v,] gives
e = AN of2e j"rm eeel(3.32)

d\’; % 3; U= lvf\




The validity of the probe snslysis presented in chapters
2 and 3 depends on the probe not disturbing the plasma in which it
is immerged. The amalysls also requires a stable plasma. If the
probe disturbs the plasma or if insgtabilities occur in the plasma
errors may result in the interpretation of the probe characteristies.
The effect of these perturbations will now be examined.
Ferturbations may be classified as follows:
(a) Due to the probe supports;
(b) Due to the probe geometry;
~{e) Due to the probe surface;
(d) Due to plasma instabllities.

4.1. Perturbations due %o the probe supports.

The insulating probe supports aquirs a negative
potentlial with respect to the plasma. This negative potestial
will cause an snhancesent of the eleetric field on the side
closest o the anode and a redustion of the electric field on the
side closest to the gathode. The effest may be observed as a
loeal increase in the fstensity of the discharge on the anode
side of the probe supports (28), (22).




4e2. Perturbations due e the orobs geometry.
Une of the Btltm, ligted in sub-pection 2010‘.. that

must be aﬁlmﬁdtorh?nh'atmryto be valid is that the
earrier mean free path £ must be greater tham the shesth thickness

I' < i = .,o/p o.-(‘.l)
Mcla is the carrier mean free path at unit pressure and p is
the pressure. 7The eriterion for the application of the orbital
theory is

1‘X5> l‘p ...(4.2)

- >0 ! (..;_.._n‘ ML B
r rp

©
Combining (4.2) with (4.1) gives
L/e > = o0nr, eeslded)
The criterion for the application of the space charge theory is
5. ,\-\,, : 3 ooo(b‘)
»
Combining (4.4) with (4.1) gives
l,/p)r.:v,r’ ssilied)

In equations (4.3) and (4.5) there is mo indication
of the magnitude of § /(pr) necessary for the scourate
wpuodhnctthtwy, If no collisions ocour in the sheath
region and 1if V(w,) is of the order of 10 it can be shown that
the carrier concentr:iion, one mean free path from the probe's
surface, may be reduced by approximately 1. The variocus
parturbing effects of the probe's geometry on the carrier
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eonventration will mow be considered.
be.d. <bscuration effect.

If the earriers are moving randomly and if x{’rp is
very much less than unity and lo/ (prp) is greater than unity, the
concentration, due to the obsecuration of part of the plassa by a
gpherical probe, at a distance ?.o/p from the centre of the probe is
less than the unperturbed concemtration by a fraction (28)

| n(‘.’gf )1/‘7‘ voeldeb)

The perturbed conceniration ﬁ", one mean free path from the probe's
surface is thus

By = B [x -(;12)1] eeelda?)

v}
For the carrler perturbation to bz less than 15 one reguires

_3‘_ >5 eenldeB)

ol

4e2.2, Carrier drain effect.

If the probe area and/or the probe potential is large
the current taken by the probe may be an apprecliable fraction of
the plasma discharge ourrent. Langmuir (3) reports that the effect
of this is to reduce the carrier concentration and thereby seriously
perturb the probe characteristic. This perturbation is espeeially
moticeable in the nelghbourhood of plasma potential where the
characteristic shows & suoothing out of the knee. The outcome




T TR, -

= 47

of this is a diffiecaity in locating the plasma potential.
heRo3e Carrlier diffusion affect.

Davydv and Jmanovkajs (29) show that for the fractional
drop in carrier concentration, in the neighbourhood of the probe,
to be small one requires

22 55" eeel4e9)
3

for spherical and eylindriecal probes and
P | eeelded0)
P

for a plane dise probe of radius R. If thess conditions ere mot
satisfled moticeable diffusion currents ocowr and there resulis a
drop in carrier concentration.

A guantitative analysis has been given by Bolmk et als
(28). They sswume that the carrier motion to the probe takes place
by diffusion except for the last free path whem the current is
earried by free wotion. Assuming the diffusion coefficient D is

incorrectly given by

p = g sssbield)
‘ ‘
they show that the perturbed carrier concemtration is
N
% { | + [—'—r] (4e12)
Pl&",('."#’) voe

For the carrler perturbation to be less than 1% one requires
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9e5
h > .0.(‘0”)
*p
Swift (30) has considered the effect of the probe's

size on the electron concentration as a function of electroan
energy. Making the same assumptions as Hohm et als above but with
D given by

D = ig oeslbels)

the electron distribution one mean free path from the probe's

sufface is shown to be
$(u)

F(u) = {\-\' 1 el A ]} vos(4e25)
3?\"9(‘ ‘Pf'

where VP 18{0 and £(\) is the unperturbed electron energy

distribution function. When Vp = 0 the probe is at plasma
potential and Ny is given by

N
Ny = {\ { ' ] seeliel6)
7 7
3o 0+ 53)
For the carrier perturbation to be less than 1s one requires
s eeeldel?)

pr
P
if the electron concentration is deduced from the electron energy
distribution function obtalned from a measure of the second
differential given by equatiom (3.32) it is necessary to consider

the dependence of £, () on the probs potemtial. GSwift shows
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:‘-m = g \vp\J"[rg W =alv, l[ﬂ“) P—#’e]u il
Us M'\ evehiiell
where 4’ * [%_ % | + E ]
0 - ‘"””‘f(w)ouk

R,

Ve
\yeu the fraetional change produced by the disturbance and is

a function of Vp. The fractional error F in ths electron
conecentration obtained from the measurement of the distribution
function is given by

F = \Pfe F(w)k / ff(w eee(4e19)
Caleulations show th;t if £(U) is o Maxwellian or Druyvesteyn
distribution F is given to a good approximation by

F o= 0,650 eee(4e20)
For the carrier perturbation to bs less than 1% ome requires

t
-2
W’> Db eeeldo2l)

4e3. ELarturbations due to the orobe surfage.

Bxperimentally determined probe characteristics may
possess errors due to imaccuracies in current and potential
seasureasnts brought about by disturbing effeets at the probe
surface.

4e3.le FProbe current srrors.
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(a) Garrier reflsection.

in the electrom retarding region electron refleetion will
eause an a-parent reduction in electron curremt to the probe (lJ).
In the electron accelerating region reflected electrons will be
drmmuwo;tummmuaﬁ‘m.unm-uma
eurrent. For a positive ion accealerating probe reflected loms will
be drawn back to the probe and there iz mo change in positive lon
current.

- It L8 possible, however, that in the case of a carrier
accelerating probe carrier reflection may produse a partial
neutraligzation of the gpace charge sheath surrcundiag the probe.
If this cecurs the sheath must expand in order to restore its
original sereening effect. This inorease in sheath thickness
results in an inerease in the effective colleeting srea and hence
an increase in the probe current,

(b) OCarrier emission.

Depending on the probe poteatisl the ealssion of electrons
(thermionic or secondary) from the probe surface will aspear as an
increase in ion cuwrrent or decrease in electrom curremt (l). 4
slallar effect occours if the probe is contaninated with barium
oxide and negative oxygen ions are emitted (1) . The effscts of
secondary emission from the probe are difficult to differentiate
from the effects of electron reflection.

The emission of secondary eleetrons may be caused by the
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impingement of metastable atoms, photons, electromns and lons.
Measurements made by Boyd (32) imdicate that, for a platimum probe
in an argon discharge, slectron eaission may contribute to 10%
of the observed saturation ion current.

(e) irobe area.

Ungertainties in the surface area of the probe produce
errors in the estimation of the current density flowing to the
probe. The estimated area may be too large Lf ilunsulating patches
form ol the surface of the probe. These patehes may be caused by
the formation of an oxide layer of the probe material or the
deposition of some insulating material (33). These insulating
patehes may bLe removed by heating the probe by elther positive ion
bombarduent (34) or by electroa bombardment (22).

An under estimation of the probe area may result if the
effective collecting surface area has in some way inereased. This
nay ocour if the probe expands appreciably on heating (33), if the
probe comes into conmtact with the probe supports on which may have
been deposited sputtered material (27), or if mercury droplets
condense on the probe surface (35), (36). lrrors due to sputtering
of the probe materisl omto the probe supports msy be eliminated by
careful probe construction (27) and errors due to condensed mercury

;‘ Ray be eliminated by heating the probe immediately before esach
t | measurement.
(d) Gas impurities.



If oxide costed cathodes are used in the discharge being
investigated the presence of barium and barium oxide on or near
the probe may produce errors im the determination of plasma
parameters. It has been reported by Coulter and Higginson (31)
Mthcmanﬁoothcxmmummmhmnnﬂuh
a high energy peak in the deteraination of the electron energy
distribution funetion. Wehner and Medicus (33) have reported that
thbiildnyofhuluuthmhwﬂlm‘mnnﬂthnhm
work function of the probs and so cause electrons %o be ascelerated
towards the probe. This increased acesleration amay result in an
increase in lonlsation and hence an increase in probe current.

heleie FProbe potential errors.

The surface effeet that will produce errors im probe
potential measurements is that due to changes in the probe's work
function and has been reported by a number of Lavestigators (21),
(33) to(36). For accurate probe potential measursments it is
essential that the nature of the probe's surface remains constant
at the time of measurement. Verwelj (27) suggests that this may
be achieved by heating the probe by eleectron bombardment with a
current equal to or greater than the maximum current teken by the
probe in measuring the characteristic. Waymouth (34) claisms that
if the probe is held at a strongly negative potestial prior to each
measuresment the nature of the probe's surface will also remein
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congtant as a result of ion bombardment.

Medieus (37) has considered the effect on the probe
characteristic of slight variations of work function over the
surface of the probe. le assumed that the work funetion could be
represented by a Ganssien distribution sbout a mean value W. At auy
point the work function W is given by

W= ey eeolfe22)
where the area of the probe having a variation in work funetion in
Wwvhw*“hg&mw

dLb = 7%" wI-(g)‘]t eoel4e23)
mmwolanmermwetmwrtm‘
distribution.

By caleulating the current flowing to an ares di of the
probe and then integrating over the whole surface of the probe
Hedicus determined the probe characteristics and their second
derivatives for plane and spherical probes. lis anslysis shows that
a spread in work fumetion can csuse a rounding of the knee of the
plane probe characteristiec. both plane and spherical probe
characteristics a¥d Ldentiesl to the constant work funetiom probe
characterictics only in the region of strong electron retarding
potentials. The electron temparature can therefore only be obtalned
from the semi-logarithalc probe charasteristic remote from plasma
potential. Plassa potential can be determined accurately if the
spread in work funetion w, is known.
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4edo Perturbations dus to plasas ingtabilities.

This section is concerned with the effect of fluctuations
in eertain plasma parameters on the static probe characteristic.
The three parameters of intarest are the electron tempersture, the
electron concentration and the plagma potential.

Garscadden and Emeleus (38) have examined this sroblem
for a plasms having a Maxwellian electrom distribution with pure
slne - wave fluctuations. Let the amplitude of the fluctuations be
denoted by V,, ¥, and N, and let their angular frequency be Py, P,
and p,. Here it is convenient to express the electron temperature
in electron volts defined by equation (2.4). At any glven time
¢t the lastantaneous electron temperature, plagma potentisl and
probe to plassa potentisl is given by

V(6 = v, ¢ ?‘ sin pb eeslie2s)
N

V&) = v, ¢ f, sta pyt ceslhe25)

'p‘t) - " * V’lllpzt ooo“o“)

mwmuv'mv.om simultansously and
there exists szero phase difference between the fluctuation the
electron current flowing to a retarding probe is
I,* Ls) = 1 exp|=-[( Vl_ * !Ldl ’3‘_"]
{ = T V. sin pt )
L : ...(l..27)
" where V,(4)<0 for all t. The eurrent recordsd by a d.c.
instrument is the time averaged value of egquation (4.27) and may

be demoted by (1.
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shen only fluctuation in slectron temperature occur
(i is given by

pe Yl (_d_n\) eenlle2B)

@
vhere i  is given by equation (3.1) and 3, () 1s the modified

Bessel function of the flrst kind of sero order with pure

i

imaginery seguuect. As J, () is a function of v, it is clear from
equation (4.28) that u(x) agalost V) 1s mon-linear, Hovever, as
the probe approashes plasasa potential V  tends to sero and J ()

tends to unity and the mt-:mmm:wmmn agiroashes

the unperturbed characteristics the electren tempsrature can thus
be obtalned from the slope of the charscteristic inm the region of

plassa potential.

When only fluetustion im plasma potential oeeur (1) is

given by
a> = 1 (? ) ees(4e29)
-
. T,

As the right hand side of equation (4.29) is independdnt of " the
slope of the sesi-logarithmic characteristic is umaffected by
fluetuations in plasma potential. However the knee of the
characteristiec ocours at a potential V, balow plasms potential
given by

o = v ()] ta

©
Urauford (39) has earried out & more thorough anslysis of

this problem of fluetuations by taking into account the effect of
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cross modulation between the thres time varying parameters. The
mnml.hnnuuoplmwhﬁmmaua
Mtonotl.' sad\' thus

i "f , 0.'.] ooo(‘o’l)
The electron current in an unstable plasma will be time dependqnt

and may be represented by

I+l (t) = r[(u * 8 (%)), o+ o))y (v, * ¥ u))]
.00(4032)

Expanding by Taylor's theorem and averaging the fluctustions over
one pormd the time averaged elsctroa current bescomes
ay = 1+1 (@5, +@F, 0531,
Ie ar, : Y E : 3:5 5
@1 )K » i{(l.(t)'.(t»_}l‘
oV, I ‘ EI‘BV
00, 0)) T, w8 () F1
ST, w7 §
...(4.}3)
For a Maxwellian electron distribution in the region of electron
retarding probe potentials and assuming the separate fluctuations
are uncorrelated so that the ercss product terms vanish on average
ing, equation (4.33) reduses to

(:.3 =1+1 Q(v (t)> -1 Q(v (t)))
* 1 L3 (eH\- +
Q )>> 1 «(v (s))

OQO“‘"
When fluctuations in electron temperature are small ’

i ! : =
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compared with fluotuations in plasma potential and electron
density and the effects of eross wodulation are mot neglected

equation (4.33) reduses to %
(fb = ] ']; (9 “»)7. - -i. .I.XG.“);‘“)“

I. 2 ( .#:- ‘.v. ' G ..o“JS)
if 'l\l.(t) = I’:. sin (”‘ ’)‘) 0.0“0’6)
and Vo(t) = ¥, sia pt eoslhe3?)
and if p, = p; = p equation {4e35) reduces to

(I» = 1+ 1 e ) * Ga “.)\ oao“u’%)

® ) e

The instantaneous electron concemtration, probe potemtial, and
electron probe current are respeetively given by

B(8) = B, + B osin (et +)) eee(4e39)
"(t) - " *V, sinpt senldedd)

vhere V. (8) (O for all ¢
I *L(8) = an (8o oV \" exp ||V (8)|] casldedd)
e 2 2 (ﬁ) [ ]

+

@

Substituting equations (4.39) and (4.40) inmto egquation (4.41) and
time averaging gives

S = :.(?\) o(ﬁ )m\:,(% )

eealbed2)

5 € £ n

It;.um-quuon (4.42) reduces to equation (4.29)
originally derived by Garschadden and imelsus. Crawford also analyses

2
L T ———— I — e — e
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the effect of plasma fluctuations on the saturation electron
curreonts to plane, eylindrieal and spherical probes. OUnly the
saturation current to s plane probe is unaffected by plassa

fluctuations providing fluctuations in slectron teaperature can be
ignored,
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L

In Chapter 4 it was assationed that fluctuations in
plasma potential can cause perturbations to a Langmuir probe
charscteristic. The effect of these fluctuatlons may be partly
overcome by using a floating probe system. JSuch a system consists
of two or three probes connected together by a variable voltage
supply. By varying the potential between the probes the probe current
will also vary and by analysing the resulting probe characteristic
information concerning the plasma parameters can be obtained.

The floating probe system has the advantage over the
m probe, whoss potential is varied relative to one of the
discharge slectrodes, in that It can be used in an electrodeless
diseharge.

Figure 7 shows the basie double probe measuring eircuit
together with an idealised double probe characteristic. V, is the
differential voltage applied betwsen the two probes and I, is the
resultent current flowing im the external cireuit.

5.1 Erincipdbs of the floating double probe systeme

Providing the area ratioc of the two probes is mot very
great both the probes will be at a megative potemtial with respect
teﬁ-ph-atordlvduuor'd. The ion current flowimg to a
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nagative probe is practically independent (compared with the
electron current) of the probe to plasma poteatial; any dependence
that may ocouwr would be due to changes in sheath area.

If the probe potentisl is varled with respeet to the
plasma by applying a potential difference between the two probes
the probe to which a positive potemtial is applied will move closer
to plasma potential. The decrsase im probe to plassa potential
regults in an incresse in electron current to the first probe and
a decrease in electron curremt to the second probe. As the first
probe is made less and leoss negative with respect to the plasas a
point will eventually be reached where the second probe has become
80 negative that no electrons at all can reach it. Iin order %o
satiafy the floating conditions in this cese it is necessary that
wmnmmxdmummnmuuqmum
sun of the lon currents flowing to both the probes, hence

1
0 = I, . i ces(8al)

Making the second probe even more negative with respect to the
first probe cannot bring sbout a further reduction in electron
current as all the electrons are now repeslled by the negative probe.
This means that there csnnot be an increase in electron current to
the first srobe. This part of the double probe eharacteristic is
known as the Saturation region. If, however, the positive lon
sheath surrounding the strongly negative second probe increases in
area with increasingly more negative probe poteatial I,, inereases.
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in this region it is seen from equation (5.1) that am inerease in
Iy oust also result in an inorease im I, and the characteristic
possesees a slope in the ég ealled saturstion region. There will
also result a very slight decrease in L,,.

Se2

The analysis of the floating double probe gystem was
first given by Johnson and Malter (L), (4l). Figure & shows the
potential distribution in the plasma when a floating double probe
system has a urrm-ua potential V‘ applied between the two
probes. Mvﬂﬂ!ﬂhﬁmmhhﬂmmhmmm
mh-mmwnmvmmmv.umwamu
plagma potential in the neighbourhood of the two probes. Lotl,l
and I,z be the positive ion ocwrrents flowing to probes one and
two respectively. The positive lon currenmt flowing to a negative
probe is only slightly dependent on the probe to plasma potemtial.
Un the other hand the electron curremt varies exponmentially with
probe to plasma potential. Ml.lﬂldhﬂnmnmmn
flowing to probes one and two respectively.

s * e “’(!u> . ‘a:.‘x"’(:'.n) ees(5a)

kT, kT

Lo = I W(_:;'h) = Joog'y o Q.:.;) ceel5e3)

mvﬂmvﬂ<omﬁ end A, are the surface areas of probes
one and two respectively,
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Yo satiafy the floating conditions of the double probe
system it is necessary that the following equality holds

' " NN eeel(5ed)
1,, and I, will be assumed to remain constant with probe to
plasma potemtlial.

I, * I, = I, = Constant seslSe5)
In ectual faet I, s not a constant and its depondence on ¥, is
discugsed in the mext sub-section.

Substituting equations (5.2), (5.3) and (5.5) into
equation (5.4) gives -

L, = Juby o= k&) * 5 b w(&)
| e o les(se6)
; From Figure € it i3 seen that

'ﬂ = "1 . " v " ooo"o?)

Substituting equation (5.7) imto eguation (5.6), dividing both
sides by I.x and rearranging gives

i, =1 = dooz %2 q.‘c V, =V )| .eel5.8)
Ta (’ux‘:) [ﬁ’ ’ .]

‘ -]
Taking natural logarithms of both sides gives

ln[E‘.x. -1] ‘M[H] i e
q u #. n"“’.’)
uv'mmwmmmumm

umuummmum(&wwv‘.

5.3 Yaclation o€ 1 with V.
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A practical doubls probe characteristic shown ia Figure
9 usually has a slope im the saturation regions and it may be
difficult to estimate the polnts at which 1 ol and 1 oz Ure sero.
The current 1 a* flowing in the extermal cireuit is given by

by * g ~ 3y vee(5.10)

I, =k, -~ I, seelSell)
in the reglons where I.lar I.zmm Idhoqm&o- ,lnd
1,2 regpectively. it is found that im thege saturation regions
I, and I, vary spproximately limearly with V. 'vp1 and v’z
aloo vary, to a very good apmroximstion, linearly with V a
Hovever, once an appreciable electron current flows to the probe
the probe to plasma potential no longer varies linearly with 'd
and one cannot slaply extrebolate the lineer saturation region
beyond the saturation regiom in order to estimate the value of the
ion current outside this regiom. If equation (5.9) is to be
applied to a practical double probe characteristic it is necessary
to know how 5,1, depends on V, outside the saturation regions.

In Figure 9 let X correspond to the start of the
saturation region such thst the electron current contribution is
1/100th to 1/50th of the total lon current. Johnson and Malter

(&)mwmmnvumuamuv‘uamw

A' - A' —r% 00.(5012)
2 e (F-1)/G=1

where F and G are defined by

F =1 at X eeel5.13)
3.

L . e ¢

*
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G = I at 2 eoelBeld)
gio

and Ava is given by (V, = V ). The poist X is defined by an F

value of between 1/100th and 1/50th and the variation of AV,./AV,
 with G, for these two values of ¥, is shown in Figure 10. What is

the value of G in the unsaturated region? For a symmetrical doubke

probe arrangement Johngon and Malter (4Q) state that G = 0.5 at V,
= gevo whilst a wore recest amalysis by Burrows (42) shows that in
general for an asymmetrical double probe arrangement G = 0.5 at the
point of inflection of the characteristic. Figure 10 shows that for
G= 0.5 AV, /AV, = 0.850r

AV, = 0854V, oes(5.15)

n.mwotx,l..vqmummeumm
saturation reglom equation (5.15) enables S)I, to be estimated at
the poimt of imflection of the double probe characteristie.

5.4 Ghsstron temperaars byith

wﬂs.s)-quwummm

st’ - i = "W" ooo‘,ou)
a

f 3 e (3.;5)..(;:) ; vee(5:27)

Solving equation (5.16) for I, gives

’ . &I[ w(g_‘ ] ee(8026)
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Rearranging equation (5.10) amd differentiating with respect to V,
assunling ‘*f is independent of ¥ 4 Bives

ay o 4y eeel5.19)
., &

mmrm equation (5.1£) with respect to Yy substituting
iate equation (5.19) and putting V, equal to sero gives

5_1‘\ = Jl,e o eee(5020)
d!‘ diis KT, (o 1)
from egquation (5.18) it is seen that vhen V, equals sero o= 1is
glven by

F = K{x’ - 1) .(1 - 1) 000‘5021)

Id e G

where G is defined by equation (5.14) with ¥, =V, =0,

G = i ...“.22)

éﬁﬁ\l‘:o

awummmmmmumm.
V(u‘lau)mmmormmuwu
put equal to an Lquivalent resistance R . The electron temperaturs
is thus glven by ()
" = ‘ﬂ“z’:l.z“. 0--(5'23,
k

vhere K, = [x /(g:ﬂ%o ces(5024)

hmmdnmdonhmhwmtutcﬂhmd
to 0.5 at V, = 0 and equation (5.23) becomes

’. " l-l.{,‘o ese(5.25)
4k
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In deriving these expressions for I Johnson and Malter (42) have

assumed thet I,, is independent of V, and also that V, equel to

gero does mot fall within the saturation regions of the echarasteristie.
The problem of a aymmeirical double probe system in which

the saturation ion currest is wo longer independest of v‘ has been

congldered by Yamamoto and Ukunda (43). Under these conditions

they show that at ¥V, =0

) = ﬁ‘.:zy .- 9 e (5426)
.d'é Vy:0 “‘ V4:0 ’

where S is the slope of the saturation ion eurrent regions (which
are agsumed %o be equal). The electron temperature is then

glven by
T, = . s‘/(i’f) eee(5:27)
P4 ﬁo 2 :
whers R is defined by equation (5.24).
The analysis of a strongly asyametrical double probe
characteristic in which the saturation reglons do not necessarily

have aqual slopes has been made by Burrows ({2). Im this case it
is shown that ¥ 1s given by

!' = 9 {I,.-QJ’SA‘/ -
'&‘( ‘) (;; ;.) eeslSe28)

whore I, 1s the sum of the ion currents i the saturation
reglons, snmmm’-«mmmwuxu
defined by :

“flal, i
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where Vi is the differential potential corresponding to the polint
of inflection of the charagteristic. AV‘ is the potential
differsnce betwesn the two points on the characteristic at which
the characteristic just begins to deviate from the linear
saturation regions.

The maximus slectron current flowing in a floating
double probe cireult is egual to the sum of the saturatlon positive
ion eurrents., For a symmetrlical probe arrangement this is clearly
very much less than the total random electron current that would
flow to a probe held at plasma potential. The ratic of the
electron current flowing in the probe elrcuit to the random
electron current is a measure of the fraction of the total
electrons sampled by the gystem. For a aymmetrical probe arrange-
ment it can be shown (40) that this ratic is given by

;:: = 2m(gf) | eee(5:30)

where V,{ 0 and is the flosting potential pf probe 1, i.e. the probe

hMMﬂMI‘u"m. It can be shown that V, is
given by '

v -(% n(;:s) * ves(5030)

where T, zsmpﬁmmwa";uunmm
edge. Uy substituting typleel values into equations (5.30) and
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(5.31) Johnson and Malter (L) show that for a symmetrical double
probe system less tham 13 of the raendom slectron curremt is
ganpled, In the case of an asymmetrical double probe system (44)
in which the area ratic is F equation (5.30) becomes

Eﬂ. = (1+F) w(:&) veol(5.32)

Lo H.

Ukunds and Jamssoto (44) point out that the whole of the eleetron
energy distribution may be sampled Af the ratio (1 ¢ F) is equal
u,wthm:»horrmmurmmn
currents. Under these clrcumstances the snaller probe behaves
essentially as a single probe. N“Mnott.wm
equivalent resistance method (sub-section 5.4) has beem shown to
be comsistant with the single probe method deseribed im sub-section
3.1 (&2), (45), (48) and (42).

5.6 Eloating probe systems for deteraining alectron energy
distributions

The determination of the electron energy distribution
depends on the determination of the second differemtisl of the !
elootron current as a function of probe to plasma potential. To
carry out these measurements it is necessary for the wholk of the
eloctron energy distribution %o be sampled and for the probe to
plasua potential to be deterained.

Sebel. Double probe method.
The whole of the electron energy distribution may be sampled,
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using a floating double probe system, by having the area ratio of
the two probes F very large, say FO 1000 (44). If F is sufficlently
great it can be ghown that ui“ is varied there is a negligible
change in the probe to plasma potential of the larger probe and it
may therefore be taken as a reference electrode. The double probe
characteristic under these conditlons should correspond to the
single probe charscteristic but unfortunately measurements carried
out by Okunda and Yamsmoto (44) do mot confira thig. They clalam
the reason for this is due to excessive electron draln from the

plasma.

S5.6.2., Triple probe method.

Hormally the floating double probe characteristiec gives
me indication as to the variation of the electron current with
probe to plasma potential as there is no lixed reference potential
ﬂumumwmupm. This problem may be
overcome by the introduction of a third probe whose potential is
alvays kept constant with respect to the plasma (43), and (44).
h-mm.xunmmumuummm
potential of the third probe.

The cireuit for the floating triple probe is shown in
Figure 11. The method of measuring the characteristic is to apply
a potential !‘ between the probes 1 and 2, of large area ratio.
The tapping of the potential divider is then adjusted so that there
is sero curremt flowing to probe 3. Frobe 3 is then at floating
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potential and the potential of probe 1 with respeet to floating
mumldmmahmﬁmmnmcmtorl‘
against V obtained. The eleetron emergy distribution is them
obtalned from a measure of d°1,/dV" assusing I, is entirely
electronic.

Both the double and the triple probe techniques
deseribed above rely on the electron snergy distribution being
found from the second differential of the experimentally determined
mhth&m&atte. Crawford ot als (48) have devised a double
single-probe technique which involves only s single differentiation
of the characteristic. The method consists of holding two
identical single probes at slightly different potemtials with
regpect to the plasma and measuring directly the difference in
elsctron current to the probes as a funetion of potentlal difference
between the two probes. mumhmﬁhsMM
of a1 /d¥. The advantage of thls method over tho single probe |
method is that is is the difference im potential between the two
probes that is important and any flustuations in plagma potemtial
elearly cancel ose another oub.

o I S o e R P e B e e




Here a coliisionless plassa is taken to be ome im which
there are po collislons betwesn positive lons and other particles
once the ions move towards a probe under the influence of the
probe's electrostatiec fleld.

- Langmulr found that his simple orbital theory would mot
account satlsfactorily for the observed positive lom characteristics
and was foreed to replace his theoretical expression :

I, = ANe ( &)'h = Q.40 AN e (&)‘h (% §

P 4
by the semi-empirical expression

I, = 2.20 u,.(%)"‘ = 0.62 Ao (&)’"...(6.2)
27l 1
for the positive ion curremt to a eylindrical snd spherical probe
Mr'wtpaﬁhaﬂmmbm:'}-e.

The replacement of T, by T, and the change in the
numerieal constant is the result of the penstrating elestrostatic
field beyond the boundary of the space charge sheath into the so
called Extra-sheath regiom.

Considerabls experimental evidence supports Langmuir's
belief that it is the electron temperature rather tham the ion
temperature that controls the ion cwrrent to a negative probe. It

has been shown, however, that the lon temperature does Lnfluence,
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to some extent, the ion current to a negative probe. The effect
ef this is efpecially important in plasmas where the lom temperature
is comprable to the electron temperature.

6ol Effective collecting area of a probe.

According to Langmulr's probe theory the effective
collecting srea A' of a probe, whem r /rp tends to infinity, is
given by

A' = A, for a plane probe,

A' = 4ThZ, for a spherical probe, and eee(6:3)

A' = 2ﬂh‘b. for a eylindrical probe
where h.), is defined as the impact parameter. If the ions possess
a Mazwelllian lon energy distribution h, is given by

.0. 5 (1 ?) 000(60‘)
7‘"" -
where V_ is related to the ion teaperature by
oV, = kI, ees(6e5)

ud?, { =2V, and b is given by
\ ;
.. = P’ (1 - ;.) &> ooo‘606)

*

mmuumwun. = h. = h where h is
glven by

. I
s ;l) eee(6e7)
4

h is a messure of the distance to wilgh the slectrostatie
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field extends frem the probe. It wuld appear from equation (6.7)
that i an lon approached the probe at a distance less than h i%
would be collected by the probe. Langmuir (J) and Bohm et als (28)
have pointed out that for am iom, approaching the probe at a
distance less than h, to be celliected by the probe ié is necessary
that the flsld surrounding the probe satisflies certalm conditions.
Bquation (6.7) represenis only the maximum possible value for the
effective collecting radius and i¢ Ls concelvable that under certain
conditions the effective collecting radius 1s less than h. This s
seen te be 0 in equation (3.19) when practically all of the potential
drop occurs across & thim gpace charge sheath surrcunding the probe.
in this case there are no long range forces and the lncrease ia ion
eurrent vish v’unuunmaﬁuammwmqmu-
£6.7)s The probe current caleulated from the value of h given by
equation (6.7) only represenis an upper limit.

When the random lon euwrrent demsily is large l'/l"
approaches unity and I can be calculsted from the space charge
equations. When the random lon curremt densiiy and the probe redius
Le small and the lonms have high initial velocities l'/l" is large
and I 1s governed by orbital motion and equation (6.7) defines the
effective collecting radius of the probe. For the orbital theory
to apply the potential distribution in the spuce surrcunding the
probe must satisfy (1) the Lmequality

2 2 2
'1 ><'2l - l‘al \ '»—:-5 : '1 ese ‘6.‘)
l” - 3 "1
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where r9<r1<r and Vl is the potential at Fye
For an ion te approsch within s redius r the impact
paraseter will be givem by

h'r(l-l
v

*

)"" ces(6e9)

Bohm ot als (2§) srgue that h must inerease monotomically with »
in order that the ions, ap roaching the probe with an Lapact
paramseter h, shall reach ths probs. BExpressing this mathematically
the eritsrion becomss '

“)/0 for '>" eeel6e10)
dr

Uifferentiating equation (6.9) gives an expression for the fisld
distribution surrcunding the probe that sust be satiefied for h
represent the effective collecting radlus of the probe.

%—. g S (‘ e *Q) ...(6.11)

*

Allen ot ale (43) wshow that when thers exists a
distribution of lon snergles the poteatial dlstribution must

: L
A >(£¢) R TRTY

4f this inequalily does not hold, wanieh may well be the
case in a dence phasma, an abeorption radius r, will exist tust is
lesa than he

0.2 sifecka of a sanstraking Lisid.
44 geveloping the theory of the cviiection of positive
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ions all the potential drop between the probe and plasma has been
asssumed to occur across the shesth region. This assumption is
inconslstant with experimeatal observations and Lt has beem found
nscessary to assuse that a small fraction of the applied potemtial
drop penetrates some distance lato the neutral plasma. The region
ovér which this ocours is kmown as the Sxtra sheath.

The case of when the lons are assumed to have zero energy
outside the extra sheath regiom and a monvenergetic value of oV,
at the sheath edge has been consldered by Bohm (50) and by Sehults
et al (51). Boyd (32), (52) has considered the more general case
of vhen the ilons have an energy distribution at the sheath edge.

in the monoenergetic case it is assumed that the flield at
the sheath edge is effectively sero and that the ioms fall through
the extra sheath region and aguire an energy eV, on reaching the
sheath edge. The sheath edge may be defined ss the point at which
the resultant charge density o is sero. At the sheath edge dp /dx
may also be taken to be sero (jl). The ionm veloeity in the sheath
reglon of a plane probe is

B, = (;)"’* (v - 1)"‘ ese(6a13)

where V<0, mmwum.tﬁoh;mon
density j, is thus

¥ ~lq
N =g, (l)“('. - v) oo (6:24)
e \Z

and the slectron concenmtration is



T

l' = H” axp (1) ees(6e15)
'.
The resultant charge density is therefore
N =
= ” (u) ('. o ') - “. W(') oco(6o1‘)

2e v

@
Bquating both p ndd,o/axv.n gsero at the sheath edge where also V
and dV/8X are zero gives
=
"5

*

®ae (6017)

In Boyd's analysis (52) the ions are assumed to have an
energy distribution £(E) at the sheath edge. If B, is the total
ion concentration at the sheath edge the comtribution to the loa
current, at the sheath edge, by ioms in the energy range B to E *+
di is

N, £(8) .(a.)"" 5 as eee(6018)
]
lere B is taken to be the energy asssoclated with the velocity
component normal to the sheath edge. At a point just inmside the
sheath edge where the potential is SV ( 2 0) with respect to the
sheath edge the lons have an energy (E - SV) and a veloeity
(20/) (8 =SV) . If these loms contribute dl, to the ion
concentration the contribution , by the lons in the emergy range
E to B + dE at the sheath edge, to the lon curremt just indélde the
sheath is :

an_ e (3:‘)"‘ (2 - §v) vee(6019)
H
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As the ion current at the sheath edge is egqual to the iom curreat
just inside the sheath equations (6.18) and (6.,19) are equal. Egw -
ting and solving for dN_ gives

@, =3 £(E)s " (8 -h)“'ha eee(6020)
Hence the total lon concemtration at the polnt 3V just inside the
sheath edge is s

W, = §_| @ " -5 eee(6420)
0
The electron concentration at the same point is
5 " % W(%l) eeef6s21)
For & stable positive ion sheath to form B, 2 N
tience o0
y r(l)g"‘ (& =-8v) "’-a)/' .ngS%_) eool6e22)
& e

where the sheath edge has been defined as the polnt where N, g!g’.
If SV is ssall and negative (6.22) reduces to -

" >/ -:-l ooo(‘c”)

wvhere V., is the reciprocal of the mean iuverse ion energy and is

given by : ) -1
" = s\o"l’ daE see (6.2‘)
f £(8)as

6.3 [Eosltive lon chevacteristics.

The interpretation of probe characteristics requires a
knowledge of the state of the plasma belng iavestigated. The state
of the plassa determines the distance over which sn electrie field
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ecan influence carriers. A convenlent measure of this distance is
the Debye length )V, and is defined by the relation

)\D -( k7 )‘/7. = ( v )'/z  thae)

4ni 4TCH o
Assuning )‘a is also a messure of the sheath thickness the following
table summarises the range of plasma states over which the various
proposed theories should be applicable.

TABLE 1
dtate of Ion energy Author and
plasma reference
590 Haxwelllan distribution of Langmuir
N ion energy with V_ at sheath | (Chapters 2 and
D edge equal to that in 3)
neutral plagma. Urbital
theory.
14 3 Frobe potential V Allen et als
45\-' sufficiently negafive for (49)
D A |>> v, -
b, r 15 egqual to C and 0,01 Bernstein et al
4;‘.’4 to’/g'l Vv, monoensrgetie. (53).
b
r | Haxwelllan distribution of Langmuir
> ion with V, at (Chapter 2 and
° S dp e 2
ia plasma. Space |
charge theory.
r
- >0 v,/v equal to 0, U.01 and Bohm ot als
Ny 0e5 ™V, wmonoenergetic. (28)
¥y 5 06 ,/' ml'u Uul to Luu:)
N
b~ L]
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6:3.1. r‘/M small for a spherieal probe.

The theories te be presented im this sub-section are
those proposed by Allen et als (43) and by Bermstein et al (53)
and sre based on the numerical solution of Folssom's equatiom in
gpherical coordinates. The ehief problem is to derive an expression
for the ion concentration in terms of position and potential.
Bernstein et ol expression for N, is oblained from a detalled
analysis of the ion's orbital motion around a spherical probe.

In the case of a central field the ion's orbit must lie
in a plane passing through the centre of the probe. Iits motion is
characteriszed completely by its energy &, its angular momentua J,
and the orientation of the plame of the orbit M. 4s all orient-
ations are equally probable the distribution function msy be
denoted by £(8,J). £(£,J) remaine constant along the ion's trajestory
as long as no eollisions occur. Therefore

£2(8,J) = comst. for r v E eee(6:27)
E and J are functions of veloelty and position and may be expressed
in terms of the coordimates w, O( and u of a eylindrical coordinate
gystem. u is the radial veloeity component and w is the veloecity
component perpendieulsar to u.  is the asimuthal angls defining
the angle of oriemtation of the orbit. The elememtary veloeity
space is

du dw w @ eee(6028)
u and v may be expressed in terms of & and J as follows

i = ; () +ov eee(6029)
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where V (0,
J = v - eeel6.30)
The elementary veloeity spsce now becomes
eeelbe3l)

SR " 1N S—
e [2!!(! -oV) - 1: ]"Z

r
The ion concentration st a radius r is thus

B, = 20| | L) o di
| lzrzﬂ[m‘ S . I;]"‘ eeel6e32)

r
where the imtegration over all possible values of Xfrom O to 27(

has been carried out, 7The limits of integration of £ and J can be
deduced from a study of the limiting values of £ and J for the
various permitted iom orbits. This involves a consideration of the
ion's motion towards the probe as well as the reflected motion of
some of the lons at some radius r . The distribution funetion is
independant of J in the case of a Maxwelllan distribution and so the
distribution funetion may be written as f£(8). The integration in
equation (6.32) is insensitive to the form of the distribution
function and so for simplicity a momoenmergetic distribution will be
assused, This is conveniently represented by the Dirse $- function.
#0s) = PN S(E-w,) een(6033)

@ ni,,"‘

whers V, is the ion emergy in the undisturbed plasma at a distance
r30 . The ion concentration at a point » is found by substituting
equation (6.33) into eguation (6.32) and iategrating betwesn the
appropriate limits.
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B, = h[(l-:)”ti(l-v-fi)ll] s
2 v, & =
vhere V< 0 and
2 1)
s ‘(?:'_:) 5 vesl(6.35

The positive sign corresponds to r >,r° and the negative sigm to
r{r, vhere r  is defined by

(1 -;ﬂ -1, \)-v 0 ees(6a36
. . x’.ﬂ

3 (1-&"5' \. Q oot(ﬁo”)
dl. v, IP.C

Subseript ¢ corresponds to V udlrnluuaﬁr-r..
The electron concentration at r where the potential ia V
is

L TR tzp(;') eee(6.38)

mvamn,' w0
The next step is to substitute the above expressions for
B, and N_ into Folesion's equation

1 4 (rin) = -‘Ko(l,-l.) seel6e39)
r dr dr

iquation (6.38) then rsduces to

A

OO'(‘O&)
where the fol.owing transforms have been made
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The positive sign applies when § z;ommugnu-mgsgo
where goh defined by

1+ % - L o eeelBe42)
)

d i * - C = 0 000‘600)
= > W

aﬁ,K e ﬁg

mumotxugmamm«.m\/smuomuw
integrating equation (6.40) and is shown im Figures 12 and 13 (53).
The positive iom current characteristic, that Ls the dependence of
on X, may be determined for (3= 0,10 by cross plotting the
curves in Figure 12 for any desired value of £= g (the probe
radius).

When the pogitive lon energy is very much less than the
eleetron ensrgy 3 tends to sero and equation (6.40) reduces to

} A&\ ¢ o it

T .;) X &

Rearranging we have




The computed positive ion current-voltage characteristics
of a spherical probe for V*'/Ve: 0 (49)(55)

Figure 15

12 1iiez

p= v?/ve,Xz -v/ve

0.5 X 1.0
Dependence of (rA/r )2 on X for a spherical probe
for3= 0., (28)
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el [.-x’ .= (gzﬁ )} eoel(604B) |
£ ac\ as
if the following transforms are made
T ). (6.46)
;' €/2‘ ese

equation (6.45) becomes

L o= x* ["X* 2(112‘*' ﬁ.’.‘.)] eeel6:47)

T4 cac ad
Bquation (6.47) was originally derived by Allen et als using a
more straight forwvard analysis and assuming V., is effectively sero.
Instead of substituting equation (6.34) and (6.38) imto the expression
for the resultant charge density in the right hand gide of equation
(6.39) the expression given by (6.16) is used with V, = 0, Eguation
(6.39) immediately reduces to equation (6.47) when the following
transforas are made

¢ =2bhy, € =2hpy

X =V, : eeel6ed8)

‘\. ‘-(:!.-).311.
o(2u)¥

The dependence of 'X on € for cosmstant I./iy may be obtained by
integrating squation (6.47) and is shown in Figure 14 (48)(55).
The positive ion current characteristics may be determined by crogs
plotting the curves in Figure 14 for any desired value of €= QP.
These characteristics are shown in Figure 15 and may be used for
thmuuotl’. The procedure is to plot the

experimental sharacteristic in the form 1/, agalnst Xand to estimate
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the value of e’ by cogparison with the theoretical curves. Unce
€ , has been determined l'. is determined from eguations (6.25) and

(6.4¢) providing V, and r, &re knovn.

6.3.2. r’AD tending te infinity for a spherical probe.

This sub-section deals with the case when the sheath
roglon surrcunding a spherical probe is very thin. In the first
instant the probe potentlal is assumed to be stromgly negative and
the sheqth region is assumed to be so thin that any variation in
thickness with probe poteatial produces a negligible change in the
~ effective collecting area of the prote. As a firet approxizatiéa
m-oMnuumhguuwhomtohmdum
surface area of the probe. In the second instant the dependence
of the positive ion curremt on both slightly megative and strongly
nogative probe potentials is consldered.

m:.m’.u\v’pem‘m-aanm
Mm»dtmmmhwon.umow
on the gheath radius and the mean radial velocity component at the
m\dp' m:.m’mmmmmummmammh
probe potential is negligible A X A and I, is given bty

I, = Mied, ose{6049)
mu,ui’,n&umuwww. In Langauir's
original analysls &, and ¥, were computed assusing no extra sheath
region and that the ion concentration and ion temperature at the
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sheath edge were the same as in the undisturbed plasmu. In this case

v, = 3, = (u,)""s (.v, i ees(6050)
4 > 2%

When an extra sheat. region is assumed to exist it has been
gshown (sube-gection (6.2)) that if V/V. is very small the potential
drop developed across the extra sheath region is of the order of V /2.
 This is also the ion's radial emergy component (assumed to be mono-
energetic) at the sheath edge. Ln this case :

v, = (20?,)“: (:II‘ )"" eeelBe51)
;& i

The electron concenmtration in the meighbourhood of a negative
spherical probe is, in general, givem by (54)

M o= N %%%-x)-(m" )*.( X m{.‘*(xi)g)

]

1-s 1-:2
ees(6.52)
m'xmxpmaqumn (6.41) and 3 is given by
z = r/r = ees(6e53)
wa gl = Yy* exp(-y )ay veul6a54)
X

Mmmbtahuanmmvu.m«pm)&hvm
much greater than’X, the potential ip the extra sheath region, and
equation (0.52) reduces to

“. = .“ WG‘) 000‘6055)

4As plasme neutrality exists in the extra sheath reglon up te the
sheath edge 5, at the gheath edge is
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3, = “,.o w(.*) 010‘6055.)

where N, = N_ and V = -V /2. Un substituting equations (6.51) end
(6.55') into (6.49) one obtains

U ’
I, = 0.& u,oa(::'i‘)h ees(6056)

which is in excellient sgreement with Langmulr's semi-empirieal
equation (6.2).

in the extra sheath region dV/dr and & ?/&'2 are

approxisately sero and under these conditions equation (6.47) reduces
to the plasma solution

, §.2.%

I’ L S 000‘6057)

I
The sheath edge is taken as the point where d%Wd¢ tends to infinity.
Differentiating equation (6.57) shows this to occur as X tends to §.
Under these conditions equation (6.57) reduces to egquation (6.56/
providing r.%rp. This solution ip valld providing L /L, is greater
than, or egual to, 1w® (48).

So far no account has been taken of the positive lon energy
in the undisturbed plasma. Hohm et als (28) first took account of
the ion energy by considering the effect of the energy on the
abgorption radius. umm.mrpaa‘ will be
absorbed by the probe. The effective collecting redius which results
in ions reaching a radius r, ls

ho= r‘(lazﬁ)"' seel6e58)

v,
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and the effective collecting area is therefore

A= e (1-;.&) vee(659)
»

The positive lon current flowing to a negative probe is
I’ - "3*“1’-‘, 3 oo‘(éoW)

vhere equation (6.60) is evelusted at a madius r=h. For momo~
energetic long
;¢ = ('?*)lh .-.(6.&}
' &

ml,wummwxm. The positive ion concentmation
~ outside the sheath region is given by

m@;\) : ees(6o62)

and fohm et als also show

t. B H' 1": : lﬁz f (1 J))lh] oot“ow)
3 v v, r* . A

it should be moted that equation (6.63) is identical with equation
(6.34) derived by Bernstein et al (51). The positive sign is taken
when r5r, and the negative when rr.. ibe dependence of r, on
',/7 Ls found as follows. mm(s&)m(&mu

_‘)K. ).,,.(7)[;-7) (.)] es(6:64)

“Ml"t‘ and V = V.. Equation (6.64) then reduces to

2 wg:)» (z - ;:)"‘ een(6465)
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Equation (6.65) may be solved for V, in teras of V,/V. and it ean
be shown that when

VA, ® 001, V¥, = 28V,

VA, = 050, V, = -0mV, }
Substitute the values of V/V. and V, given by equation (6.66) iato
~ equation (6.64). Bet r = r, and plot the dependence of (1"/3'.)2 on
V/V,. Figure 16 shovs this dependence for V,/V_ = 0.50. The sheath
edge is defined as the radlus where dV/dr, tends to infinity. Using
this definition one finds that for

VA, 2001, (e )? = 4 }

VN, =050, (x-‘\/rm)2 = 1.17
Mmmminmmr'whmwurp.
Making this assumption and combining equations (6.59) %o (6.61),
(6.66) and (6.67) gives for

VA, = 001, I, = 0.5 ui,'.tv 'h
]

0..(6‘“)

eee(6.67)

eeelBe6E)

A, = 0.0, I, = 0.5 u,oo@i')"‘

Lam (§4) was the firet to iavestigate the variation of
positive lon current with probe potential. iis analysis also takes
tmmm-m.rwmmdmmmm. For
very small probe potentials the eleectron and positive ion
concentrations in the extra sheath region are given by equations
(6.52) and (6.32) respectively. Equating N, and N at the probe's
surface gives
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o = sl (el - )" =fy

Equation (6.69) is valid only for small probe potentials when mo
space charge developes around the probe. It clearly breaks down when
the probe becomes so negative that plasma neutrality no longer
exists. That is, |V | sust be less than the potential at vhich

dV/dr tends to infinity. The value of this limiting potential for

a given value of V,/V_ may be obtained by differentiating (6.69)

vith respect to ¥ and then setting di,/dV, = 0. This meximua value
of |v'] may be denoted by V) ... and its dependence on V,/V, is shown
in Table 2.

Tabls 2 ~ TaBLE 3
i .1 ¥ ¢
-t | nuths |k (Tl | e e | &
LR Ia g
LR G50 UeS0 | 1431 | 172 A 000000 1000
10l | Ge54 |Ue68 | 118 | 140 UoLU3 N 1,020
00, U.“ 00” : 1.10 1.21 : 7 QOW low
1.0 | 033 Ue75 | 1,07 | 1,14 UUL5% 1.061
2,0 | 0.21 UeT4 | 1,84 | 1.08 UeUR3RT l.082
5.0 | 010 0,72 | 1.02 | 1.04 0,03125 | 1.102
30,0 UG8 0.71 | 1.0) 1.02 0.0?77! 1.210
o0 | 0N .69 | 1,00 | 1,00 U.d3189 | 1.5%
9225473 ) 1,562

We will nov consider the case when |V |%>0. Ia the extra
sheath region the electron concentration given by equation (6.55)
‘-vhoquulhmhu concentration given by equation (6.34).
After gome rearrangement

I, = m’n,..(g_g_,_)"z.({)k - {)"‘. -.(;.)] ees(6a70)
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This is an expression for the positive lon current crossing a surface
of radius r ahd potential V {SU) in the extra shesth region. It is
only valid for |V, J>|V|>0 vhere V,, is the potential at which
dV/dr tends to infinity. The radius at which V = V . is denoted by
Tyge The depondence of V“/V. and rpj*/r“ on V,/V' is shown in
Table 2 where j Lo defined as

’ = I* oo e (6071)
Tri,0 o (ﬂ,)ﬁ (1 -t )"’L
“ V.

If Vg, is substituted for V in equation (6.70) and r is put equal to

.rnmcbunuuupumnm the ion current crossing the
transition boundary of the extra sheath region. Using the value for
Vg given in Table 2 for V/V. = (.50 equation (6.70) becomes

I’ = (.52 Aa‘... (':';‘)"1 ...(6.72)
]

When ¥ vr Wr equation (6.72) becomes idemtical to eguation (6.68).
lote that unlike in the derivation of Hohm's equation the derivation
of equation (6.72) has not required the ealeulstion of r, in terms
of V /N . &

Lanm next considers the transition between the extra
sheath region and the sheath region. This region falls between

r-r.mr'r“m:'.uuuntu
l" ' "(.:.J'h 000(6'7’)
Mr’/xn»l, ra*T, adu:: is given by

‘: = rn ‘* ooo“o?‘)
Tex “
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The dependencs of j_on V,/V_ is shown in Tsble 2. In the sheath
reglon dV/dr and d°V/ar” can no longer be neglected snd Lam equates
I, to V) by the following equation
I, = |v,[%2e . g eeel6e75)
*ratan]”

where t(:‘/:ﬁ) is a universal function and is tabulated in terms of
§/3, in Teble 3. F() can be found experiuentally from the slope of
the plot of x:“ against |v’|; the corresponding value of J/j_1is
then given by Table 3. Froviding V, and V_ are known j can be found

from Table 2 and then ¥, from equation (6.71). When r ¥r, and is

offectively independent of V, j/j, is ualty. If V.V, is sere
Table 2 shows § = 1.72. Substituting this value of § into eguation
(6.71) and then solving for I, gives equation (8.56).




liere we consider the case where ths carriers come under
the influence of the probe's field at a distance of several carrier
mean free paths from the probe, in deriving expressions for I.nd
N, in terms of I_ and I it is necessary to approach the problem
from ambipolar diffuslon considerations.
7e1. sabisclar diffusion egqualicns.

in the presence of an electric fleld and carrier density
gradient the carrier {lux densities are

F, = <D grad N =~ u BE N SY

N, = =D, gead N * u« KB eeel7e2)
where D is ¢he carrier diffusion coefficlent and W is the carrier
mobility. D and 4 are conveniently related to onme another by
Einstein's relation

D =2 ugl = ¥ 00e(7.3)
u-.)t:muﬁ-umwormuu

wmmuum;m-mmmmtmnynmm

the increase in the number of electrons im unit volume per second.
Assuming N, = N, =N and that N remains constant

dv T = awl, = §2) eoelTe4)
Combining equation (7.4) with equations (7.1) end (7.2)
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vl = =B VN - div (88) = ¥ essl¥s8)
divl, =<p V3% o+ aiv (88) = N2/ eee(7:6)
Elininating £ between equations (7.5) and (7.6) gives
Ve w = 0 X))
n‘
where D‘ » 3‘__&’ 2 n"/“'., ...(7.8)

M g
7.2 Liade equationss

‘The embipolar diffusion equations take account of the
carrier coneentration gradients that must exist in the neighbourhood

of a carrler absorbing probe. If these diffusion effects are small
the motion of the carriers is deteramined solely by the slectrie
field. Therefors, for a strongly negative or a strongly positive
probe, when ecarriers of only one sign reash the probe, the probe
current may be calculated from the diode space charge egquation
derived from mobility considerations.

7e2.1e Plane probe,

If it is assumed that the carriers in the sheath have a
drift veloeity very much less than their thermal velosity their
motion is mobility controlled and the carrier current is

is= Alo,ug eeel7:9)
Assuning dV/dx = O st the sheath edge and that _«( is a constant
independent of the field the integration of lolsson's eguation gives
(58)
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7.2.2. Gxlindrical orobe.

Making the same assumptions as in the last subesection the
eurrent flowing to a eylindrical probe is :

-0 A '_: eoslVell)

an YA
where thlmhv (5)

T @RS
w1 TR R L
when 2 {r /rp( 10 equation (7.12) simplifies to (52)

2

Y' 7 }. (h) eeel7:13)
“ o

7e2e3+ fGenaral diode eguations

welnstein and Keaty (56) have derived a general space
charge equation which ean be applied to plane, eylindricsl and
spherieal diodes. They assume the motion of ilons is mobllity
controlled and that the fleld at the sheath edge is approximately sero.

Miyajims and Yamasmoto (59) have developed a gemeral space
charge theory for plane diodes that is applicable at all pressures.
Thelr equations reduce to the low pressure and the high pressure
case when the carrier transit time through the sheath satisfies
certain spocified conditions.
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Ciobanu and Iovitzu ‘opeseu (&) have considered the case
where lons pass through a sheath and suffer many collisions which
result in a resonant charge transfer. They derive a generalised
Polssén's egquation applicable to plane, eylindricsl and spherieal
diodes, which ean be reduced to the low pressure case but whieh in

~ general requires to be solved by numerical integration.

7.3 Exabe gharackerishics.

The potential distribution surrounding a spherical probe
in a collision dominated plasma Ls shown in Figure 17. Table 4
indleates the state of the plasms for which the various probe theories,
to be congidered, may be applisd. The theories fall into two distinot
groupss (1) whem mo collisions ocour im the sheath regiom and (ii)
when colilisions occur in the sheath region.

The theories im group (1) involve deriving expressions for
the current im the collision dominated extra sheath region and in the
free fall sheath region and then matching them at the boundary of the
two regions, Theories in this group may be classified as ‘Diffusion
plus Free fall' theories. ;

The theories in group (ii) involve the simultanscus solution
of Foissom's egquation with the ion flux and eleectron flux ambipolar
diffusion equations. Theories ln this group aasy be classified as
'Uiffusion' theories.

Te3el. Uiffusion plus free fall theories.
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The theoriea presented in this subsection are due to
Davydv and Zmannskaja (29), Waymouth (gl) and Boyd (§2). They all
assume the sheath thickness is less than a carrier mean free path
thick and is also very much less than the probe radius.

Sheat) ;

The carrier flux density at the probe's surface is
r. = -R'va G‘ oao(?ol‘)

ro " - .s'v €,

ees(7.15)
where B 1s the carrier concentration at the sheath edge, 5’ and ¥

*

are given by

Ve "(.‘LV 3 v, "(_’_‘_}_Y ees{7.16)
' 2R an
‘ and €. = 1 for vp> g 0.0(7.17)
€. = w(fzﬂ) for Vp(ﬁ 000‘7015)
‘ v
| and €, = 1 forV <0 eeel7.19)
& I‘ m (- ;‘) MVP)Q ...(7;3&)}
*

LN -adv‘ntuto the positive ion and electron energy at the
sheath edge. If the carrier mobility and diffusion coefficlents are
assumed to be congtant in space Elnstein's relation, sguation (7.3),
showg that V, and V_ at the sheath edge are identical with V, and V
in the undisturbed plasus.

in this sub-section it is assumed that no collisions ocew

| o
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in the sheath region. Boyd (§3) sbows that if his eriterion for
the formation of a stable positive ion sheath is apuplied (see
: equstion (6424))uo eollisions will ocour in the sheath providing

| p,(g_) W vee(Te2))
| rs

When no ecllisions occur in the sheath region the sheath thickness
may be estimated using the diode equaticns given im subesection (2.2)

fxira sheath regiop.

This is a region of guasi-neutrality and the motion of the
carriers is described by ambipolar diffusion. The carrier flux density

at the sheath edge is

r. = [. a' 2‘ = _/0‘6 “'E‘] eeslT.22)
dr rg

I" = [. ﬁ' dli’ * /U: ﬂ'ﬁ] eeelT.23)
a -

The theories of Davydv et al (29) and Waymouth (§L) iavolve
matohing equations (7.14) and (7.15) with equations (7.22) and (7.23).
Boyd's analysis (§2) is concerned solely with the eollscticn
of positive ions by a strongly negative probe, lie assumes that the
ions' diffusion motion is negligable in comparison with their mobility
motion. He further assumes that the lons' drift veloecity is
proportional to the slectrie field strength in the outer regions of
the extra sheath where the fisld is assumed to be small. Um the other
hand in the imner regions of the extra sheath (the abnormsl sheath




- 1 1:03

region), whers the slectric ficld stremgth is high, the loms' drift
velocity is proporticnal to the square root of the fleld strength.

We will now caleculate the carrier concentration as a
function of redius from the centre of a spherical probe and az a
function of the applied potential across the sgheath reglon.

From equations (7.14), (7.15), (7.22) and (7.23) we have

~BF €, = [. Dy AN, - 3‘3] seslVedl)
ar =
47, €, = [- D, &N, + A u,ﬂ] eee(7425)
ar
rl

witing B, =8 =¥ and eliminating 5 between equations (7.24) and
(7.25) gives

i (a) = 4 ees(7426)
e \ @ b Ts
where S * e * eesl7:27)
-5 = T cee(7.28)
MWV 1)
& = C. vee(7.29)
| A
‘( The gensral solution of eguation (7.7) is
| B = ] (Asinwr * B cos “l’) eeel7e30)
* )
where '2 = z esel7:31)
%

in the absence of the probe, i.e. vhen r tends to sero, there is mo
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dlﬁurbmoatrﬂ&mdnﬂﬁﬁo. Mo B =0atr = R,
Applying these boundary conditions gives
A = “0' B = U andw = Y

R
in the presence of a probe if rp<< R/ 7 5 »/remains unaltered and
w s still given uy

vse (Z ) *an

D R
a

In the extra sheath region r/R &1 and o0 sin (¢/R) ¥ (r/R) and

eop (r/R)¥1. Eguation (7.30) then simplifies to

N = 4 fﬁ_ 000(7032)
wr

[ Differentiating with respect to »

2 = 000‘7033)
g p

Substituting equations (7.32) and (7.33) into eguation (7.26) and
solving for (B/A) gives

- , esel7e34)
A L ;
owd = K so B = S w_ _g and equation (7.32) becomes
" ¢ " oN
N o= ‘lo [1-:-‘ (‘S"‘")] ese(7:35)
r i*g

We will now exanine the form of equation (7.35) for a nusber of
lisiting conditicns.
When r = r,

5} = 000‘70”‘)

Y



<1 o8
and n' = B icv ,<<<a ess(7:350)
(1+ %)
a. s N ir Vp»w eeslTe35e)
(1 + e.)

Wwhen VP = 0 the sgheath region vanighes and . rp. iguation
{7.35a) then becomes

sp‘ uo[l’ l‘i -'; * f:.) ol 000(703%)
v, +v,) My

Making use of equation (7.3) and the relation

| '8
ﬂ p3 3p

reduces equation (7.35d) to
‘p kS no [1 * 3—2—:&»(!‘ * Eﬁ— )]‘.i 000(7035.}

el .
When V_S)V, and 2“ is of the same order as La equation (7.35e)
reduces to

-1

4,

nQ when (¥_/p) «r,
ﬁp = 4B ! = 4B : ese(7:35¢2)
3p rp 3 r’

This last equation is identical with equation (4.16) when (f/pr))
| 48 very much less than unity. Equation (7.35) was derived by
| Waymouth (§l). When certain simplifying assumptions are made this
equation reduces to the forms (7.35a) to (7.35f) and these are shown
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to be identical with egustions derived earlier by Davydv et al (329).
in the amalysis of Davydv et al they have assused that
VoD Voo g e o
nlge P,
and the fraction of electrons reflected at the probe’'s surface and
escape 1.8 +» They show the carrier concentration at the sgheath

edge is given by

B = ] U =7 ; i for \/ '< J oo.‘?o’b)
3 [+ 3
[D *p g 'X,]
[ 3 @
were 1, = & (G -$) exp(V. V) ] vee(7:37)
No|2¢8 « @ <8)¢(vind)

and N X x.(va) sxp (=¥ /¥, ) ] for V>0
'_8 1+ ¢’(v‘¥/v5 o.-""o”)

where i = (1 -8 2.-:?1 vee(7439)
1+$ D"ri.')(

and vhere %, and @ (x) are defined by

x = ;’ﬂ 000‘70‘9)
oM,
% :
¢ = 3 fm—-’)« vee(7.42)

v

¢(©) = 0 and ¢(w0) = 2
It 1s readily shown that whem V & 0 and § = 0 equation (7.37) reduses
to 1, =0 and equation (7.36) then reduses to (7.35b) providing
VOV,
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serturbation of plasms potential.
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