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Abstract: A solution to the problem of having to deal with a large number of

interrelated explanatory variables within a generalized additive model for location,

scale, and shape (GAMLSS) is given here using as an example the Greek-German

government bond yield spreads from the 25th of April 2005 to the 31th of March

2010. Those were turbulent financial years, and in order to capture the spreads
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behaviour, a model has to be able to deal with the complex nature of the financial

indicators used to predict the spreads. Fitting a model, using principal components

regression of both main and first order interaction terms, for all the parameters of the

assumed distribution of the response variable seems to produce promising results.

Key words: Box-Cox t ; financial spreads; kurtosis; skewness.

1 Introduction

The current paper extends mean and dispersion modelling, where both the location

parameter (often the mean) and the scale parameter (often the dispersion) of the

distribution of the response variable are modelled as functions of the explanatory

variables. Murray Aitkin is one of the pioneers of simultaneously modelling mean

and dispersion, Aitkin (1987). His paper “Modelling variance heterogeneity in normal

regression using GLIM” was one of the few early examples of modelling simultaneously

the distribution parameters of a response variable. He proposed the model yi =

β>xi + εi with εi ∼ N(0, σ2
i ) where var(εi) = σ2

i = exp(λ>zi) for i = 1, . . . , n,

and where β and λ are the coefficients and x and z, the explanatory variables for

modelling the mean and variance of the response variable yi, respectively. Here we

rewrite Murray Aitkin’s model as:

y
ind∼ N(µ,σ)

g1 (µ) = X1β1

g2 (σ) = X2β2, (1.1)
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where the elements of the response variable y are assumed to be independently (i.e

ind∼) normally distributed with mean vector µ and standard deviation vector σ, and

where both the predictors of the mean and standard deviation are linear functions of

the explanatory variables, here represented by the design matrices X1 and X2, respec-

tively. The functions g1 and g2 represent known link functions which for the normal

distribution are usually set to be the ‘identity’ and ‘log’ link functions, respectively.

Note that Murray Aitkin used the variance σ2 rather the standard deviation σ but

with a log link the two models are equivalent, since logσ2 = 2 logσ and therefore

any model for σ2 is proportional to a model for σ. In addition, plots for σ are more

attractive to human eye than plots for σ2; see for example Figure 3(c) and (d).

In this paper we consider the following generalization of the Aitkin model:

y
ind∼ D(µ,σ,ν, τ )

g1 (µ) = T(1,λ1)γ1

g2 (σ) = T(2,λ2)γ2

g3 (ν) = T(3,λ3)γ3

g4 (τ ) = T(4,λ4)γ4, (1.2)

where now D represents any theoretical distribution with up four parameters, and

where µ is a vector of location parameters, σ is a vector of scale parameters, and

ν and τ are vectors of shape parameters of the distribution of the response which

often (but not always) model skewness and kurtosis. In this paper, the matrices

T(i,λi) for i = 1, 2, 3, 4 represent the first λi principal components of the original

design matrices Xi for i = 1, 2, 3, 4. The model given in (1.2) is a special case of

generalized additive models for location, scale, and shape (GAMLSS), Rigby and

Stasinopoulos (2005), where the numbers of singular vectors λi included in each Ti
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(a crucial part of modelling the distribution parameters of the response) are the

‘tuning’ parameters of the model. A general definition of GAMLSS models can be

found in Chapter 3 of Stasinopoulos et al. (2017). There are more than 100 available

distributions D(µ,σ,ν, τ ) implemented in the package gamlss.dist in R, that can

be found in Rigby et al. (2019). A practical tutorial of using GAMLSS can be found

in Stasinopoulos et al. (2018).

This paper is organised as follows. Section 2 describes the motivating example for de-

veloping model (1.2). Section 3 shows how the principal component regression model

is implemented within GAMLSS. The model building process and the interpretation

of the model are shown in Section 4. Conclusions are discussed in Section 5.

2 Greek-German government bond yield spreads

The yields-to-maturity of euro government bonds were and are of great interest and

are used as indicators of the financial stability of the Euro zone. With the birth

of the European Monetary Union (EMU) many economists and market analysts ex-

pected that there would be a permanent reduction in the differences between yields-to-

maturity of euro denominated government bonds (with common characteristics, but

issued by different EMU countries). Specifically it was expected that each individual

EMU country’s government bond yields would converge to those of the correspond-

ing German government bond (which was considered the de facto benchmark bond).

Unfortunately, and contrary to expectations, during and after the financial crisis of

2007-2008 there was a departure from the (relatively) low yield differences, as these

differences exhibited higher levels and acute fluctuations. In this paper we use as our
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response variable the Greek spreads, that is, the difference between the 10-year Greek

government bond yields and the corresponding German bonds. The Greek-German

spreads for the period from the 25th of April 2005 to the 31th of March 2010 are

shown in Figure 1. There are 2188 observations. This figure shows that at the be-

ginning, the yield difference between the Greek 10-year government bonds and the

corresponding German bonds is at a low value and almost at a fixed rate. By the end

of 2008 the yield differences start rising, while also the series exhibits acute fluctua-

tions. After May 2010 (with the implementation of the bailout of Greece) the long

term Greek government bond market(s) virtually ceased to exist. In this paper we
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Figure 1: Showing the Greek-German 10 years bond yield spreads during the period

from 25th of April 2005 to the 31th of March 2010

will try to model the Greek-German spreads as a function of 67 financial indicators
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which we are using as explanatory variables. These variables fall into one or more of

following four categories i) sovereign risk, ii) debt level, iii) liquidity, and iv) volatility.

Those four categories of variables are believed to be important to explain spreads in

general.

3 Principal component regression within GAMLSS.

Principal component regression (PCR) has been a statistical tool for a long time.

Hotelling (1957) and Kendall (1957) recommended replacing the original explanatory

variables in a multiple regression model with their principal components. PCR is one

of the techniques examined by Hastie et al. (2009), pp 79, as a supervised statistical

learning tool. PCR can be seen as a three-stage procedure. In the first stage, the

principal component scores of a (suitably scaled) design matrix are taken. At the

second stage a regression is performed treating the principal components scores as

the new explanatory variables. At the third stage, to facilitate the interpretation of

the model, the fitted coefficients from the PCR can be transferred back to the original

design matrix coefficients.

Within a GAMLSS model, let Xi represent the four different design matrices, of

dimension n × ri for i = 1, 2, 3, 4 for the vectors of parameters µ, σ, ν and τ ,

respectively, where n is the number of observations. For simplicity and without loss

of generality we shall drop the subscript i and assume that the design matrices for

each parameter are identical to X and of dimensions n×r. Further we will assume that

the design matrix X contains columns of continuous variables which are appropriately

scaled (in our case, with zero mean and standard deviation equal to one). The
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dimensions n, the number of observations, and r, the number of continuous variables,

play an important role in what it follows, and often we have to distinguish between

the situations when n > r and when n ≤ r.

3.1 The PCR model

Let X = U∆V> be the singular value decomposition of the design matrix X, such

that, U>U = In and V>V = Ir and ∆ be a diagonal matrix containing the singular

values for X. When n > r the matrix U is rectangular with dimensions n×r while ∆

and V are squares matrices with dimensions r × r. When n < r the matrices U and

∆ are square matrices with dimensions n×n while V is rectangular with dimensions

r × n. The linear space generated by the columns of X is the same as the linear

space generated by the columns of U, i.e. M(X) = M(U), where M(A) denotes

the linear manifold generated by the columns of a matrix A. Also the linear space

generated by the rows of X is the same as the linear space generated by the rows of

V i.e. M(X>) = M(V). The principal components (or scores) T of the matrix X

are defined as T = XV = U∆, while the matrix P = V> is called the loadings, and

X = U∆V> = TP.

Let us consider for the moment the case in which n > r. Since the matrix of scores

T spans the same linear space as the original matrix X, i.e. M(X) = M(T), any

linear (unweighted normal error) regression of the response variable y into X or into

T should produce identical fitted values. Let us denote the coefficients for those two

regressions as β and γ, then we have β̂ =
(
X>X

)−1
X>y and γ̂ =

(
T>T

)−1
T>y

where β̂ = Vγ̂. In addition because the columns of the T are orthogonal, the

estimated γ parameters can be calculated fast using just a Euclidean cross product,



8 Stasinopoulos et al.

i.e. γ̂j = t>j y/||tj|| 22 = t>j y/δ2j for j = 1, . . . , r, where tj are columns of T, ||tj||2 =

(
∑n

i |tij|2)
1/2

the Euclidean norm and δj are the (diagonal) elements of ∆. Since the

x’s are scaled, the constant of the two regression models on X and on T are identical

and equal to the mean of y i.e. β0 = γ0 = ȳ.

Typically one would not regress all columns of T but only the first λ, i.e. Tλ. The

manifold M(Tλ) is the best linear approximation of the original manifold generated

by the columns of X, M(X), in λ-dimensions. The use of PCR this way is claimed

to be a computationally efficient model selection technique which also corrects for

multicolinearity. We will discuss some of the properties of the PCR model below.

3.2 Properties of the PCR model

3.2.1 Model selection technique

Let M denote the rank of the the matrix X. Assuming there are not any pathological

co-linearities in X, M will be equal to r if n > r and equal to n if n < r. M is the

maximum number of scores in the matrix T. Let λ take values in {0, 1, . . . ,M}. In a

typical PCR we choose a specific value of λ and fit only the first λ columns of T, i.e.

Tλ, and in this case λ plays the role of a tuning (or smoothing) parameter. The case

λ = 0 represents the null model (with only the constant fitted) and λ = M represents

the full (parameterised) least squares model. Determining which value to choose for λ

is a model selection problem. Note that terms with low eigenvalues (the last columns

of T) are eliminated from the model. This type of elimination is termed by Hastie

et al. (2009), as ‘hard-thresholding’ compared to ‘soft-thresholding’ provided by ridge

or lasso regression. One great advantage of PCR, (which it shares with ridge and
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lasso techniques), compared to a linear model on the original explanatory variables,

is the fact that it can work in situations where there are more explanatory variables

than observations i.e. when n ≤ r.

3.2.2 The β coefficients

For each tuning parameter value λ there will be different estimated β parameters,

β̂λ = Vλγ̂λ for λ = 1, . . . ,M . Note that the notation Vλ means the corresponding

first λ columns of V, and γ̂λ means the first λ values of γ̂. This series of the estimated

β parameter can be easily calculated and saved to an M ×M matrix B. Plotting the

rows of B against λ will show the path of how the coefficients β change by adding

an extra column of the score matrix T into the model. Those plots, see for example

Figure 2, are similar in nature to the ones produced by lasso or ridge regression models

when the fitted coefficients are plotted against the tuning parameter, see for example

the glmnet package of Hastie and Qian (2014).

3.2.3 Variance covariance matrices of γ and βλ

Because of the orthogonality of the columns of T, the variance covariance matrix

for the γ coefficients, Σγ is a diagonal matrix. The elements of the diagonal matrix

Σγ are σ̂2
λ/δ

4
λ for λ = 1, . . . ,M . The subscript λ in σ is to emphasise that the σ̂2

λ

is estimated using the residuals from the model using only the first λ columns of T,

i.e. Tλ. The variance covariance matrix for β̂λ is given by Σβ,λ = VλΣγ,λV
>
λ where

again the subscript λ emphasises that only the first λ columns of the matrices V and

Σγ are used.
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Figure 2: Showing the path of how the β coefficients are changing by adding different

principal components to the model. The design matrix X contains all explanatory

variables of the Greek spread data plus their first order interactions. Only the first

300 principal components are shown here. The vertical line indicates the number of

principal components chosen by using GAIC with k = log(1288). The model was

fitted using the function fitPCR() from gamlss.foreach package.
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3.2.4 Fitted values and residuals

For each tuning parameter value λ there will be different estimated fitted values,

ŷλ = Tλγ̂λ = Xβ̂λ for λ = 1, . . . ,M . The residuals also depend on the tuning

parameters λ, r̂ = y − ŷλ for λ = 1, . . . ,M .

3.2.5 Estimating λ

For a fixed λ, the observed t-statistic tλ = γ̂λ/se(γ̂λ) for λ = 1, . . . ,M , can be

used to access the significance of the coefficient γλ, (i.e. by checking whether the

observed tλ > α, where α is an appropriate value from the tail of the t distribution).

Traditionally the value of λ was chosen by including all scores before one of the γλ

was found to be not significant. That is, if the first coefficient which found to be

not significant is γ̂k then the chosen λ is λ̂ = k − 1. This methodology was criticised

among others by Jolliffe (1982) and Hadi and Ling (1998). They pointed out that it is

very likely that one or more of the components with lower eigenvalues can potentially

contribute more in the reduction of the sum of squares of the model than terms with

higher eigenvalues. The problem is that while the vectors of scores are ordered (from

the highest to the smallest) by having high variances in the linear subspace generated

by the rows of X, this does guarantee that those scores also have high correlation

with the response. Here are some alternatives method for choosing λ:

GAIC Use an information criterion approach and chose as tuning parameter λ the

one which minimises the generalized Akaike information criterion with penalty

k. The GAIC is defined as GAIC(λ, k) = −2`(µ̂λ, σ̂λ) + k(λ + 1) where `()

represents the log-likelihood function of the normal distribution. Note that this
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method does not necessarily solve the problem of important explanatory factors

with lower eigenvalues.

t-value In a t-value approach m scores are fitted, such as m ≤ M , but only scores

with t-values greater than, for example, α are included. Note that in this case

the tuning parameters are m and α not λ and the ‘lower eigenvalues’ problem

is corrected.

SPCR Supervised Principal Component Regression (SPCR) was introduced by Bair

et al. (2006). In this approach rather than performing principal component

analysis using all the variables, X, we use only a subset of those variables with

the strongest estimated correlation with the response say Xs. That is, we first

choose the matrix Xs, which is a subset of the original matrix X, containing

only columns of X which have a correlation, in absolute value, with y higher

than say a threshold parameter ρ. The SPCR methodology has two tuning

parameters ρ and λ. (In our R function fitPCR() we fix ρ and estimate λ using

GAIC).

PLS Partial Least Squares, (PLS), is a technique in which the orthogonal decom-

position of the design matrix X is done in such a way that the orthogonal

components with sequentially the highest correlation to the response variable

are chosen, see Wold (1975) Hastie et al. (2009) pp 80, Wehrens and Mevik

(2007). In practice it is found that while PLS reduces the degrees of freedom of

the fitted model, it does not necessarily perform better than PCR, see Wentzell

and Vega-Montoto (2003). Also the fit is more computationally demanding. We

will not pursue this method in this paper.
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3.2.6 Multicolinearity

Multicollinearity is defined as the problem of having highly correlated linear terms

in the model. High correlations between the explanatory variables result in unstable

fitted linear coefficients which makes the interpretation of the coefficients problematic.

The columns of the scores T (the ones with non-zero eigenvalues) are orthogonal and

therefore the parameters γ do not suffer from multicollinearity. Interpretation of the

model via the β coefficients could however be more problematic. Artigue and Smith

(2019) claimed that the ‘estimated coefficients are distorted by PCR in ways that

diminish the accuracy of the model when it is used to make predictions with fresh

data’. Note that there are other techniques in the literature (like lasso or elastic net)

which can correct for multicollinearity.

3.2.7 Prior weights and the function fitPCR()

We have implemented the simple PCR in R in the function fitPCR() within the

package gamlss.foreach. This function is very similar to the function svdpc.fit()

of the package pls in CRAN but with the additional feature of prior weights. Prior

weights are needed for a GAMLSS implementation of PCR. The prior weights were

implemented by: (a) scaling X using weighted means and standard deviations. (b)

transforming y and X to yw =
√

w ◦ y and Xw =
√

w ◦ X, respectively, (where

◦ symbolise the Hadamard element by element product ) and finally (c) taking the

singular value decomposition of Xw. The function fitPCR() is one of the two methods

we used to implement PCR in GAMLSS, the subject of the next section.
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3.3 The GAMLSS algorithms for PCR

There are two implementations of PCR within the GAMLSS framework. They differ

in the time they take to perform the singular value decomposition (s.v.d) within

the GAMLSS fitting algorithm. The GAMLSS algorithm is described in detail on

Chapter 3 of Stasinopoulos et al. (2017). [The algorithm requires, at each iteration,

a working (response) variable y(i) and working vector of weights w(i), which are both

functions of the first and second derivatives of the log-likelihood with respect to the

appropriate distribution parameters.] In the first implementation, the function pc(),

performs the s.v.d. on X at the beginning of the fitting algorithm as described in

the Algorithm 1. In the second method, the function pcr(), performs s.v.d. on Xw

each time within the backfitting algorithm of GAMLSS, see Algorithm 2. Note that,

in Algorithm 1, the weighted column vectors of the scores of X are not orthogonal

and therefore, estimating the γ’s, at stage 4, requires a proper weighted least squares

fit. In contrast in Algorithm 2, the γ’s are calculated quickly using crossproducts

but the recalculation of the s.v.d. of Xw each time slows down the performance and

introduces extra instability in the algorithm. Both Algorithms 1 and 2 show the case

in which the estimation of λ is achieved using GAIC. The algorithms would have to

be amended for the t-values approach. Supervised PCR can be done before the start

of Algorithms 1 and 2.

4 Results

We have found PCR very useful in modelling the Greek spreads because it allowed

first order interactions between the 67 financial indicators to be modelled. At an early
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Algorithm 1 : perform s.v.d. before iterative y(j) and w(j) are defined

1: scale X and evaluate X = UDU> = TP

2: for y(j) and w(j) until convergence do

3: for λ = 1, 2, . . . ,M do regress y(j) on Tλ with weights w(j), i.e.

4: calculate γ̂λ = [TλWTλ]
−1 TλWy(j)

5: compute fitted values ŷ
(j)
λ = Tλγ̂λ

6: get the local GAICλ =
∑n

i wi(yi − ŷi,λ)2 + k ∗ dfλ

7: end for

8: The λ̂ that corresponds to the minimum GAIC is chosen

9: recalculate γ̂ λ̂ = [Tλ̂WTλ̂]
−1 Tλ̂Wy(j) and ŷ

(j)

λ̂
= Tλ̂γ̂

10: calculate β̂λ̂ = Vλ̂γ̂ λ̂

11: end for

Algorithm 2 : s.v.d. after iterative y and w are defined (with local GAIC)

1: for y(j) and w(j) until convergence do

2: evaluate Xw =
√

w ◦X = UwDwU>w = TwPw and y
(j)
w =

√
w ◦ y(j)

3: get γ̂λ = t>λ y
(j)
w /δw,λ λ = 1, 2, . . . ,M (The columns of Tw are orthogonal).

4: for λ = 1, 2, . . . ,M do

5: get β̂λ = Vλγ̂λ

6: get fitted values and residuals ŷ
(j)
λ = Xwβ̂λ, r̂

(j)
λ = y(j) − ŷ

(j)
λ

7: get σ̂λ =
∑n

i

[
r̂
(j)
λ

]2
/n

8: end for

9: get local GAIC(λ, k) = −2
∑n

i log NO (yi, µ̂λ, σ̂λ)+k(λ+1) for λ = 1, 2, . . . ,M

and the λ̂ corresponds to the minimum GAIC is selected

10: end for
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stage of the analysis, it became clear that including all the 67 financial indicators as

linear or in fact as non-linear smoothing terms (in the models for µ and σ) failed

to account properly for the actual trend in spreads. The inclusion of first order

interactions improved the model considerably. This is consistent with the sparsity

of effects principle which states that ‘a system is usually dominated by main effects

and low-order interactions’, Surhone et al. (2011). However if there are r different

linear (continuous) terms in a design matrix, the total number of columns including

main and first order interactions is r(r + 1)/2. In our case, we have 1288 cases and

67 explanatory variables therefore the design matrix will have (67 × 68)/2 = 2278

columns and clearly there are more variables than observations.

4.1 Normal distribution

The analysis started by assuming a normal distribution for the response variable.

Table 1 shows 18 different fitted models all using the normal distribution for the

response variable (Greek spreads). Models 1 to 5 and models 11 to 14 are models

where only the mean, µ, is modelled, while model 6 to 10 and models 15 to 18

have both the mean, µ, and the standard deviation, σ, modelled using explanatory

variables. Models 1 to 10 used the main effects of the 67 explanatory variables

while models 11 to 18 used the main effects plus the first order interactions. The two

different algorithms used, as described in Algorithms 1 and 2, are denoted in the table

as ‘pc’ and ‘pcr’, names corresponding to their R functions pc() and pcr(). Also the

two methods for the selection of the tuning parameter λ , GAIC and ‘t-values’ are

shown in Table 1 as ‘gaic’ and ‘t-val’, respectively.

By using AIC (or BIC) modelling simultaneously µ and σ proved to be superior to
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modelling just only the µ. The best model overall proves to be model 15 where the

Algorithm 1 was used and where the number of principal components was chosen

using the ”t-values” approach. Figure 3(a) shows the data, the fitted values and the

residuals (lower part of the plot) from model 7, the best model without interactions.

Figure 3(b) shows the data, the fitted values and residuals from model 15 the best

model with first order interactions. It is apparent that the interaction model 15

managed to capture the trend of the Greek spreads well, while model 7 failed to do

so. Figure 3(c) and (d) show the fitted σ’s from model 7 and 15 respectively. Note

that in the fitted values for σ, at model 15, they are two days (23 and 24 of March

2009) where the predicted σ’s have large values (> 1), but in which the observed

spreads have values relatively close to the fitted µ and therefore giving relatively

small residuals.

4.2 Different distributions

Next, using model 15 as a basis, we tried fitting different distributions. Figure 4

shows the ordered AIC for the different fitted distributions. The x-axis is scaled from

0 to 1, (zero for the ‘worst’ fitted model and one for the ‘best’). The ordering of the

distributions is done using the formula, OD = (AICmax−AICD)/(AICmax−AICmin),

where AICD is the GAIC of distribution D, and AICmin and AICmax are the AIC’s

of the best and worst fitted distribution, respectively. Hence the length of the bar

of a distribution in the plot indicates its AIC compared to the two extremes. Rigby

et al. (2019) provides more information about the different distributions fitted and

the notation used in the plot. The worst fitting distribution for the Greek spreads is

WEI3 (Weibull parametrisation type 3, where µ is the mean of the distribution), while
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Figure 3: Showing results for the normal distribution analysis. Both top panels (a)

and (b) show the actual data (Greek spreads during the period from 25th of April

2005 to the 31th of March 2010 ) and the fitted values from the best model with

no interactions, (model 7), on the left, and the best model with interactions, (model

16), on the right. The curves below the data show the difference between the actual

data and the fitted values for the mean model. Panels (c) and (d) show the fitted

values for σ for the best models without and with interactions, i.e. models 7 and 16,

respectively.
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the Box-Cox t-distribution, BCT, comes as best. The BCT distribution, Rigby and

Stasinopoulos (2006), is a four parameter distribution with µ, a location parameter,

approximately the median, σ approximately the coefficient of variation, and ν and τ

representing skewness and kurtosis parameters, respectively. Note that all the param-

eters of the distributions displayed in Figure 4 were fitted using a PCR model. Trying

to simplify the BCT model, we have refit it, firstly, with parameter τ as a constant

and secondly, with both ν and τ parameters as constants. The BCT model, with

all parameters fitted as PCR produced better AIC and BIC, using 190 parameters.

We decided to select the model with both ν and τ as constant because it displayed

as good residuals and had fewer fitted parameters, 158. Figure 5(a) shows the worm

plot, van Buuren and Fredriks (2001), of the residuals from the normal (model 15 of

Table 1), Figure 5(b) from the BCT model with PCR for all the parameters, Figure

5(c) from the BCT with τ as a constant, and finally Figure 5(d) shows the worm plot

from the BCT model, with both ν and τ as constants. In Figure 5(d) all points of

the worm plot were within the point-wise acceptance region of the worm plot. This

model had 106 principal components for the µ model and 46 for the σ model with ν

and τ constants.

4.3 Interpretation of the results

The BCT model can be simplified further by noting that the fitted parameter for

τ is rather large and that as τ → ∞ the BCT distribution becomes the BCCG

distribution. The Box, Cox, Cole and Green (BCCG) distribution, has three param-

eters and it is generated similarly to the BCT distribution but its modified Box-Cox

transformation assumes that the original variable is normal rather than t distributed,
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Figure 4: Plot showing the ordering, from zero (worst) to one (best), in terms of AIC

of the different distributions fitted to Greek spreads data. The Box-Cox t distribution

is best.
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Figure 5: Showing worm plots from (a) the normal distribution model 15 from Table

(1), (b) from the BCT model with all parameters modelled with a PCR model, (c)

BCT with parameters τ as a constant, (d) BCT with both ν and τ as constants.
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respectively, [see Section 19.4.1 in Rigby et al. (2019)]. The re-fitted BCCG distribu-

tion model with PCR model for µ and σ but not for ν had also a smaller GAIC value

than the equivalent BCT model, i.e. -7153.21 with 158 degrees of freedom compared

to -7135.03 with 154 degrees of freedom. The number of degrees of freedom for the

PCR µ model was decreased by 1 while for the σ model this was increased by 6. In

addition the worm plot from the BCCG model (not shown here) appears as good as

the one from the BCT model shown in Figure 5(d). As a consequence the BCCG

distribution model is adopted as the final model:

y
ind∼ BCCG(µ,σ,ν, τ )

g1 (µ) = T(1,105)γ1

g2 (σ) = T(2,52)γ2

g3 (ν) = β30 = −2.317 (4.1)

The fitted value for the skewness parameter, ν, is ν̂ = −2.317 with a standard error

0.579 indicating a right skew distribution for the spreads. Since a BCCG distribution

with ν = 0 is the log-normal, we can conclude at this point, that the log-normal

distribution is not supported here. The shape of the fitted distribution changes dra-

matically at different periods of time. Figure 6 demonstrated the different shapes

of the fitted BCCG distribution split into four time intervals. Figure 6(a) shows the

different shapes of fitted distributions from the 25th of April 2005 to the 18th of July

2006. Note that the distributions shown are separated by 7-day intervals. Figure

6(b) shows the fitted distribution from the 19th of July 2006 to the 11th of October

2007. Figure 6(c) shows the fitted distribution from the 14th of October 2007 to the

5th of January 2009. Finally figure 6(d) hows the fitted distribution from the 6th of

January 2009 to the 31th of March 2010. Note how the quantile range of the fitted
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distributions of the response is changing over time reflecting both the decrease in

value but also the volatility of the Greek spreads.

The interpretation of the PCR models for µ and σ in (4.1) is rather challenging

because of the large number of coefficients involved. For example, in order to interpret

the model for µ, we have to examine the corresponding 2278 β coefficients rather than

the 105 fitted γ̂’s, because it is the β coefficients relating the explanatory variables

and their interactions to µ. Rotating the 105 PC, a trick often done with a smaller

number of PCs, see Jolliffe (2002), is also unlikely to help the interpretation. The

corresponding fitted β̂ coefficients for the µ and the σ models are shown in Figure 7

(a) and (b), respectively. Our strategy is to choose a cut off point and identify which

β̂ coefficients have an absolute value greater than the cut off point. Since the design

matrix is standardised this should point us to the most influential factors in determine

µ and σ. For the µ model we have chosen a cutoff point of 0.04, identifying 27 different

terms, while for the σ model we have chosen a cutoff point of 0.45 resulting to 10

different terms. Those cutoff values are shown as vertical lines in Figures 7(a) and

(b) respectively. For the µ model all 27 influential terms are one way interactions.

Prominently featuring are interactions including:

country risk factors: Greek, French, Italian and German 10 year bond spreads,

Euro Generic Govt Bond 10 Year, ,

liquidity factors: like: FTSE Euro Corporate Bonds, British Banker Association

(BBA ) index, EONIA overnight index average, benchmark rate, JP Morgan

EMBI index , Credit Default Swap (CDS), US Generic Govt 10 Year Yield

volatility factors Dow Jones EURo stock, Chicago Board Options Exchange,



24 Stasinopoulos et al.

0

50

100

150

200

0.15 0.20 0.25 0.30 0.35
y

B
C

C
G

(y
)

(a) 25 April 2005 to 18 July 2006

0

100

200

300

0.20 0.25 0.30 0.35
y

B
C

C
G

(y
)

(b) 19 July 2006 to 11 Oct 2007

0

20

40

60

0.5 1.0 1.5 2.0
y

B
C

C
G

(y
)

(c) 14 Oct 2007 to 5th Jan 2009

0

10

20

30

1 2 3 4
y

B
C

C
G

(y
)

(d) 6 Jan 2009 to 31 Marc 2010

Figure 6: Showing the fitted distributions of the BCCT model (at an interval of 7

days): (a) from the 29th of April 2005 to the 18th of July 2006 (b) from the 19th of

July 2007 to 11th of October 2007, (c) from the 14th of October 2007 to the 5th of

January 2009 and (d) from the 6th of January 2009 to the 31 of March 2010. Note

the different ranges of the response variable over time.
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Stock exchange indexes Euro Stock 50 price, Austrian Trade Index, Benchmark

Stock Market Index of Euronext, Paris Bourse stock exchange, DAX, Amster-

dam Exchange Index

For the σ model there is one main effect of the Netherlands 10 year bond spread (coun-

try risk). The interactions appearing in σ are coming from: FTSE Euro Corporate

Bonds (Liquidity), Greece Index (Country Risk), Euro Generic Government Bond

2 Year (Country Risk), Austrian Trade Index, Portuguese Republic index (country

risk), Kingdom of Spain Index 10 Year (country risk), Chicago Board Options Ex-

change (Volatility), Credit Default Swap (CDS) Index (Liquidity),
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Figure 7: Showing the fitted beta coefficients from (a) the µ model and (b) for the σ

model.

5 Conclusions

We have shown that by including first order interactions of continuous explanatory

variables and by using principal component regression for all the distribution param-
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eters of the response we were able to model rather complex economic relationships.

The methodology in doing so is rather general and can be applied in a variety of data

sets not necessary economic in nature.

The following comments are important here. The scope for the original data collection

was to explore empirically the relationship of the Greek spreads against relevant

economic indicators. Unfortunately the GAMLSS-PCR approach, used here, has

rather complex intepretation. If the scope of the analysis is prediction, then a more

dynamic model, including lags for the explanatory variables and possibly also of the

response, is needed. We will explore that in future work. Also because of the time

series nature of the data a small time series component (i.e. autocorrelation) remains

in the residuals even after fitting µ and σ. This requires further investigation.

To conclude we would like to mention a story imprinted in the memory of the first

author of this paper encountered while he was working in the Centre of Applied

Statistics at University of Lancaster under Murray Aitkin in the nineteen-eighties.

On this occasion both Murray and he were walking together towards the printer room

to collect computer output. On arrival, when Murray saw the big pile of printout

waiting for him, he cried ”Oh no, I forgot to put the convergence criterion in the

macro”. It was a GLIM macro (he still uses GLIM today) and he was testing his

mean and variance modelling idea which later became his Aitkin (1987) paper. It

was this basically simple idea of recursively fitting the mean and variance which led

some years later to the creation of GAMLSS. We are indebted to him. Thank you,

Murray for your kindness and your openness to share ideas. We are also looking

forward to your ninetieth birthday celebrations.
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Table 1: A table of deviance, AIC and BIC from the fitted normal distribution

models. The notation ”pc” and ”pcr” refer to algorithms 1 and 2, respectively, and

the corresponding R functions pc() and pcr().

Models df Deviance AIC BIC

1. linear, µ 69.00 -2727.75 -2589.75 -2233.65

2. pc, t-val, µ 48.00 -2700.59 -2604.59 -2356.87

3. pcr, t-val, µ 69.00 -2727.75 -2589.75 -2233.65

4. pc, gaic, µ 52.00 -2673.38 -2569.38 -2301.02

5. pcr, gaic, µ 52.00 -2673.38 -2569.38 -2301.02

6. linear, µ, σ 136.00 -5441.82 -5169.82 -4467.95

7. pc, t-val, µ, σ 77.00 -5341.63 -5187.63 -4790.24

8. pcr, t-val, µ, σ 106.00 -5392.65 -5180.65 -4633.60

9. pc, gaic, µ, σ 82.00 -5227.46 -5063.46 -4640.27

10. pcr, gaic, µ, σ 80.00 -5224.72 -5064.72 -4651.85

11. pc, t-val, µ, inter. 139.00 -5319.57 -5041.57 -4324.21

12. pcr, t-val, µ, inter. 201.00 -5411.75 -5009.75 -3972.42

13. pc, gaic, µ, inter. 169.00 -5240.37 -4902.37 -4030.19

14. pcr, gaic, µ, inter. 169.00 -5240.37 -4902.37 -4030.19

15. pc, t-val, µ, σ, inter. 221.00 -8217.34 -7775.34 -6634.79

16. pcr, t-val, µ, σ, inter. 276.00 -8152.55 -7600.55 -6176.16

17. pc, gaic, µ, σ, inter. 185.00 -7042.32 -6672.32 -5717.57

18. pcr, gaic, µ, σ, inter. 174.00 -7075.67 -6727.67 -5829.68
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