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Abstract

A new class of univariate time series models is developed, the Generalized Struc-

tural (GEST) time series model. The GEST model extends Gaussian structural

time series models by allowing the distribution of the dependent variable to come

from any parametric distribution, including highly skew and/or kurtotic distribu-

tions. Furthermore, the GEST model expands the systematic part of time series

models to allow the explicit modelling of any or all of the distribution parameters as

structural terms and (smoothed) functions of independent variables. The proposed

GEST model primarily addresses the difficulty in modelling time-varying skewness

and kurtosis (beyond location and dispersion time series models). The originality of

the thesis starts from Chapter 6 and in particular Chapter 7 and Chapter 8, with ap-

plications of the GEST model in Chapter 9. Chapters 2 and 3 contain the literature

review of non-Gaussian time series models, Chapter 4 is a reproduction of Chapter

17 in Pawitan (2001), which contains an alternative method for estimating the hy-

perparameters instead of using the Kalman filter, and Chapter 5 is an application

of Chapter 4 to smoothing Gaussian structural time series models.
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Chapter 1

Introduction

The movements in a time series may be described by formulating a time series model

which is intended to be taken as a full description of the conditional distribution of

an observation given the past. Many observable economic and financial variables are

characterized by high skewness and heavy tails. For example, since the early work

of Mandelbrot (1963) and Fama (1965), the failure of the Gaussian distribution to

accurately model (high frequencies) financial returns has been extensively discussed

in econometric and financial literature. The departure from normality constitutes

an important issue in managing market risk since it means that extreme movements

in the variables are more likely than a normal distribution would predict.

There are different approaches to capture the non-Gaussian movements of eco-

nomic and financial observations (e.g., Engle, 1982; Bollerslev, 1986; Baillie et al.,

1996; Giraitis et al., 2004; De Rossi and Harvey, 2009), in recognition of ’fat tail’

events.

Non-Gaussian parameter-driven time series models that rely on parametric the-

oretical conditional distributions offer a way of modelling observable economic and

financial observations such as the Standard and Poor 500 stock index. Previous

1
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non-Gaussian time series models are based on the structural model for the mean

and stochastic volatility model for the variance. For example, West et al. (1985)

approached the problem from a Bayesian perspective using Kalman filtering to

model response observations from an exponential family distribution, while Kita-

gawa (1987) and Kitagawa (1996) presented a comprehensive treatment of both

filtering and smoothing non-Gaussian data based on approximating non-Gaussian

densities by Gaussian mixtures. Durbin and Koopman (2000) modelled the mean of

an exponential family distribution with a state space model and separately modelled

the variance as a stochastic volatility model.

1.1 Background

For many years stationary Gaussian time series models were used for much of the

modelling of time series data (Box et al. (1994) and Brockwell and Davis (1996)).

These stationary Gaussian models have proved useful for representing a range of data

and have elegant properties. The Box-Jenkins methodology provided an important

step in the development of time series. Prior to their work a variety of techniques

were used and their work put the modelling of stochastic processes in a unified

framework.

Two lines of approach, referred to as observation-driven and parameter-driven

by Cox (1981), have been adopted for fitting Gaussian time series models. In the

observation-driven approach the conditional distribution of Yt, for t ∈ T , varies over

time as a function of past observations, whilst in the parameter-driven approach

the conditional distribution of Yt, for t ∈ T , varies over time as a function of past

parameters of the conditional distribution.

In addition, after the pioneering work of Kolmogorov (1941a,b), Wiener (1949),
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though still limited to stationary situations, Kalman (1960), and Kalman and Bucy

(1961), in two seminal papers, achieved remarkable optimal procedures which cov-

ered non-stationary situations, known as the Kalman filter (in the discrete-time set-

ting of state space models) and Kalman-Bucy filter (in the continuous-time setting

of state space models).

State space models, also termed as dynamic models, are based on parameter-

driven approach, where the observations yt are related to unobserved ”state”, γt, by

an observational model for yt given γt. The states, which may be, e.g., unobserved

trend and seasonal components or time-varying covariate effects, are assumed to

follow a stochastic transition model.

State space models are very flexible class of models for dynamic phenomena,

their applications range from engineering sciences, with aeronautics, electrical en-

gineering, speech recognition, over automatic monitoring/surveillance systems with

important applications in intensive care medicine, to genetics, with applications in

gene sequencing, biology, to environmetrics and geo-statistics. In econometrics and

finance, their application is used in the prediction of stock prices, modelling the

stochastic volatility, option pricing and portfolio optimization.

Furthermore, state space models are very general models that subsume a whole

class of special cases of interest in much the same way that linear regression does.

Although the model was originally introduced as a method primarily for use in

aerospace-related research in Kalman (1960) and Kalman and Bucy (1961), it has

been applied to modeling data from economics (Harrison and Stevens, 1976; Harvey

and Pierse, 1984; Harvey and Todd, 1983; Kitagawa and Gersch 1984, Shumway and

Stoffer, 1982), medicine (Jones, 1984) and the soil sciences (Shumway, 1988).

An early work on state space modelling with non-Gaussian data is reviewed in

chapter 8 of Anderson and Moore (1979). A more recent treatment of time series
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analysis based on the state space model is the text by Durbin and Koopman (2012),

and Shumway and Stoffer (2012), chapter 6, with application in R statistical software.

This thesis focuses on structural models for modelling time series data, and

generalizes and extends univariate structural models of Harvey (1989), to a non-

Gaussian framework. Although the above papers use the Kalman filter/smoother

for estimating the hyperparameters. This thesis uses a novel estimation method to

estimate the hyperparameters of the non-Gaussian structural models, instead of the

Kalman smoother.

1.2 Research motivation

Although non-Gaussian time series models relax the assumption of the conditional

Gaussian distribution, they usually model the conditional mean and occasionally the

conditional variance of the non-Gaussian distribution, but rarely both. Effectively,

the systematic part of the model is limited to modelling explicitly the mean or

variance which are usually two of the distribution parameters. However, economic

and financial variables are usually characterized conditionally by high skewness and

heavy tails. Hence, it seems reasonable that other features of the distribution (e.g.

skewness and kurtosis) are conditional on past information and potentially on linear,

nonlinear and smooth non-parametric functions of explanatory variables. Time series

models that go beyond the mean and variance are still challenging.

The main motivations of this research are (i) the analysis of non-Gaussian re-

sponse time series models, (ii) the generalization of time series models to structural

models for all the parameters of the response distribution.

The author presents a new parameter-driven (rather than data-driven) approach

to the modelling of the conditional distribution of observable economic and financial
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variables by explicitly modelling all the conditional distribution parameters denoted

by µt, σt, νt and τt stochastically within a unified framework that relaxes the as-

sumption of the exponential family distribution to allow the use of highly skewed

and/or platykurtotic or leptokurtotic parametric distributions. We call the proposed

model the Generalized Structural time series (GEST) model.

Within the GEST model, the dependent (response) variable Yt is assumed to

come from a parametric distribution with probability (density) function fYt(yt|θt),

where θt is a vector of unknown distribution parameters at time t. The distribution

fYt(yt|θt) can be any continuous or discrete distribution. The distribution parame-

ter vector θt is restricted in the current implementation to at most four parameters

denoted θt = (θ1,t, θ2,t, θ3,t, θ4,t) = (µt, σt, νt, τt), where µt is in general a location

parameter, σt a scale parameter, and νt and τt are shape parameters (often affect-

ing the skewness and kurtosis respectively). Each of the distribution parameters

(µt, σt, νt, τt) is modelled by a structural time series model and, if necessary, linear,

non-linear and/or smooth non-parametric models to account for explanatory vari-

ables. Each structural model of µt, σt, νt, τt is a random walk or autoregressive

model (not limited to order one), and/or a seasonal effect.

1.3 Framework

The proposed GEST model adapts the generalized additive model for location, scale

and shape (GAMLSS) model of Rigby and Stasinopoulos (2005) to focus on time

series modelling. Applications include modelling time series counts (e.g. discrete

counts) using for example a negative binomial conditional distribution and including

structural models for the location and/or scale of the distribution, and modelling

continuous time series data such as the Standard and Poor 500 stock index (hereafter
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S&P 500) using for example a skew t conditional distribution including structural

models for the location, scale, skewness and kurtosis distribution parameters.

This research deals with univariate time series models, and in particular, with the

analysis and modelling of non-Gaussian time series observations. In this context, the

GAMLSS framework is used, where the response variable can have any distribution

which may exhibit both positive or negative skewness and high or low kurtosis. One

or more of the parameters of the distribution are modelled using structural models.

GAMLSS models are regression type models in which the response variable is

assumed to come from a parametric distribution, Y ∼ fY (y|θ), where θ is a vector

of unknown parameters. The distribution fY (y|θ) can be any continuous, discrete or

mixed distribution. (A ”mixed” distribution is a continuous distribution with extra

discrete points. e.g. a gamma distribution with possible values at zero).

In this thesis the author follows the R implementation of GAMLSS and restricts

the parameter vector θ to at most four parameters and denote the parameters as

θ = (θ1, θ2, θ3, θ4) = (µ, σ, ν, τ), where µ is in general a location parameter, σ a

scale parameter, and ν and τ (if needed) are shape parameters. In several of the

four parameter distributions implemented within the package gamlss.dist in R,

ν and τ are parameters effecting the skewness and the kurtosis of the distribution

respectively. Within the GAMLSS framework all the parameters (µ, σ, ν, τ) can be

modelled as functions of the explanatory variables.

The GEST model contains two components, the first component considers the

explanatory or regression variables, and the second component is the structural time

series which contains the level, trend and seasonal effects across the time series. The

importance of GEST framework is that it contains a regression component that is

fixed and a time series component as a structural model that is allowed to change

from time point to time point. The model is applied to each of the parameters of
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the response variable distribution.

1.4 Thesis outline

The plan of the thesis is as follows. The thesis contains ten chapters and four appen-

dices. Chapter 2 provides a review of non-Gaussian data-driven time series models

in a chronological order. Chapter 3 provides a review of non-Gaussian structural

time series models in a chronological order.

Chapter 4 describes the estimation method of the random effects and hyperpa-

rameters for Gaussian random effect models, reproducing Chapter 17 of Pawitan

(2001). The reasons for reproducing Chapter 17, is that this estimation method is

an alternative method for estimating the hyperparameters in structural time series

models instead of using the Kalman filter. In addition, the Chapter 4 is an intro-

duction to Chapter 8, Section 8.3 and Section 8.4. If the reader is familiar with

Gaussian random effects model they can skip this chapter.

Chapter 5 contains the application of Chapter 4 to smoothing Gaussian struc-

tural time series models with some examples using the data from Commandeur and

Koopman (2007). The reason for this application is to test whether the random

effect estimation method agrees with the results with the Kalman filter. Also this

Chapter generalizes the estimation method of Pawitan (2001) Chapter 18, and Lee,

Nelder and Pawitan (2006) Chapter 9 in fitting a local level model, and has new

functions and extensions of the estimation method to a local level and trend, a lo-

cal level and seasonal, a local level with trend and seasonal, and a local level with

random coefficient of an explanatory variable. These new functions and extensions

are part of the original work of the thesis.

Chapter 6 introduces new functions for simulating and fitting Gaussian structural
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time series models in R. The reasons for developing these functions is to compare

between the simulated mean, µt, and the fitted mean, µ̂t, for Gaussian structural time

series observations, and to test whether the estimates of the hyperparameters of the

fitted model agrees with the true hyperparameters of the simulation. These fitting

functions have been used for fitting real data from Commandeur and Koopman

(2007) in Chapter 5 and in this chapter they are used for fitting simulated data.

These functions are part the originality of the thesis

Chapter 7 introduces the theory of a new stochastic process called the Generalized

Structural (GEST) stochastic process, provides new simulated examples of the GEST

process in R, fitting the non-Gaussian examples with the GEST model, and derives

two theorems for the properties of the GEST process.

Chapter 8 introduces the statistical framework of the GEST model, defines the

maximum likelihood estimation methods globally and locally, and gives the GEST

algorithm. The GEST process and the GEST model are the main and original

contributions of the thesis.

Chapter 9 provides the analysis of four data sets using the GEST model. Chapter

10 provides the conclusion with proposals for future developments.

Appendix A contains the derivations of Chapter 4. Appendix B contains the

derivation of skew Student t distribution. Appendix C contains the proof of the

GEST theorems. Appendix D provides the R commands for Chapter 5, 7 and 9.

Note that the derivations of the GEST theorems, the proof of the theorems, and the

derivation of the skew Student t distribution, have been contributed by Dr Robert

Rigby (one the supervisors of the author of this thesis).



Chapter 2

Review of non-Gaussian

data-driven time series models

Non-Gaussian time series modelling has developed rapidly during the last decade

mainly because of the progressive development in computer softwares, allowing more

complicated models and massive data to be fitted, often requiring non-Gaussian

models. The size of the data has increased and so has the demand for analysing

highly skewed and heavy tailed data.

This chapter reviews non-Gaussian data-driven time series models for the mean,

volatility, skewness and kurtosis by describing the methodology employed and the

conditional distribution (of the observation given the past information) used by the

authors to extend the traditional Gaussian data-driven time series models. The

review is illustrated in a chronological order.

2.1 ARMA models for the mean

The autoregressive moving average models with Gaussian innovations were developed

by Box and Jenkins in 1970, as a stochastic process for modelling and forecasting

9
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the mean equation in time series.

Model

The ARMA(p,q) model is defined by

yt|Ht ∼ NO(µt, σ)

µt = µ+

p∑
i=1

φiyt−i +

q∑
j=1

θjet−j

where φ> = (φ1, . . . , φp) are the autoregressive parameters and θ> = (θ1, . . . , θq) are

the moving average parameters, et = yt − µt are Gaussian innovations, and Ht past

information.

Distribution

� Gaussian conditional distribution.

2.1.1 Zeger and Qaqish, 1988

Model

� Developed autoregressive generalized linear model, in particular autoregressive

Poisson and Gamma models for modeling count time series data.

� The expected response variable at a given time depends on the covariates and

on past outcomes.

Their model is defined by
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yt|Ht ∼ EF (µt, σ)

g(µt) = ηt = x>t β + τt

τt =

p∑
j=1

φj{g(y∗t−j)− x>t−jβ} (2.1)

where g is a known ’link’ function relating µt to predictor ηt. For certain functions

g it may be necessary to replace yt−j with y∗t−j as in equation (2.1) to avoid the

non-existence of g(yt−j) for certain values of yt−j. The form of y∗t−j depends on the

particular function g.

Distribution

� Exponential Family conditional distribution.

The conditional distribution of yt given past information Ht is an Exponential

Family (EF) distribution with conditional mean µt and constant scale σ (and hence

dispersion σ2), where

E(yt|Ht) = µt

V (yt|Ht) = σ2v(µt)

where v(µt) is a known variance function of µt and Ht = {xt, . . . , x1, yt−1, . . . , y1}

represents the present and past covariates and past observations at time t.
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2.1.2 Li, 1994

Model

� Developed moving average Exponential Family models based on Zeger and

Qaqish, (1988).

� The conditional mean equation is similar to Zeger and Qaqish model, but the

τ is a moving average generalized linear model.

The moving average generalized linear model is defined by

yt|Ht ∼ EF (µt, σ)

g(µt) = ηt = x>t β + τt

τt =

q∑
j=1

θj{g(y∗t−j)− ηt−j} (2.2)

where g is a known ’link’ function relating µt to predictor ηt. Similarly, for certain

functions g it may be necessary to replace yt−j with y∗t−j as in equation (2.2) to avoid

the non-existence of g(yt−j) for certain values of yt−j. The form of y∗t−j depends on

the particular function g.

Ht = {xt, . . . , x1, yt−1, . . . , y1, µt−1, . . . , µ1}

Distribution

� Exponential Family conditional distribution.
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2.1.3 Polasek and Pai, 1998

Model

� Derived the complete conditional densities for the parameters of the ARMA

models with t innovations and the ARMA models with hyperbolic innovations.

� Used MCMC methods like the Metropolis-Hastings and Gibbs sampler for the

Bayesian estimation.

Distribution

� Student t and hyperbolic conditional distributions.

2.1.4 Benjamin, Rigby and Stasinopoulos, 2003

Model

� Introduced the generalized autoregressive moving average (GARMA) model.

� Extended the Gaussian autoregressive moving average (ARMA) model to Ex-

ponential Family observations.

� Extended the work of Zeger and Qaqish (1988) and Li (1994).

The GARMA(p, q) model is defined by

yt|Ht ∼ EF (µt, σ)

g(µt) = ηt = x>t β + τt

τt =

p∑
j=1

φj{g(y∗t−j)− x>t−jβ}+

q∑
j=1

θj{g(y∗t−j)− ηt−j} (2.3)
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hence,

g(µt) = ηt = x>t β +

p∑
j=1

φj{g(y∗t−j)− x>t−jβ}+

q∑
j=1

θj{g(y∗t−j)− ηt−j}

for Ht = {xt, . . . , x1, yt−1, . . . , y1, µt−1, . . . , µ1}. If θj = 0 for j = 1, 2, . . . , q,

this gives a model for counts from Zeger & Qaqish’s (1988) and if φj = 0 for j =

1, 2, . . . , p, this gives Li’s (1994). τt includes the autoregressive and moving-average

terms, with φ> = (φ1, . . . , φq) and θ> = (θ1, . . . , θp) are the autoregressive and

moving average parameters respectively. The moving-average error terms could for

example be deviance residuals, Pearson residuals, residuals measured on the original

scale (i.e. yt − µt) or residuals on the predictor scale (i.e. g(yt)− ηt).

The GARMA model can be used on a variety of time dependent responses which

also have time dependent covariates. For example, count data with a conditional

Poisson or Binomial distribution or continuous data with a conditional Gamma dis-

tribution (e.g. the volatility in a GARCH model). The GARMA model is flexible

and parsimonious, it includes many well known special cases.

Distribution

GARMA-Poisson

Poisson GARMA(p,q) model with link g : log.

ηt = log(µt)

= x>t β +

p∑
j=1

φj[log(y∗t−j)− x>t−jβ] +

q∑
j=1

θj[log(y∗t−j/ηt−j)]
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where y∗t−j = max(yt−j, c), where 0 < c < 1.

GARMA-binomial

Binomial GARMA(p,q) model with link g : logit.

ηt = logit(µt)

= x>t β +

p∑
j=1

φj
{

logit(y∗t−j)− x>t−jβ
}

+

q∑
j=1

θ{logit(y∗t−j)− ηt−j)}

where

y∗t =


c if yt = 0

yt if 1 ≤ yt ≤ Nt − 1

Nt − c if yt = Nt

GARMA-gamma

Gamma GARMA(p,q) model with link g: 1
µt

.

ηt =
1

µt

= x>t β +

p∑
j=1

φj

{
1

y∗t−j
− x>t−jβ

}
+

q∑
j=1

θj

{
1

y∗t−j
− ηt−j

}

GARMA-GARCH

Let εt be a Gaussian process with εt|Ht ∼ N(0, ht), and let yt = ε2t , where yt has a

conditional gamma distribution in GARMA(p,q) model with identity link since

yt|Ht ∼ htχ
2
1 ≡ Ga(µt, 2)



2.2. GARCH, EGARCH AND APARCH MODELS FOR VOLATILITY 16

where µt = E(yt|Ht) = ht and

µt = x>t β +

p∑
j=1

φj(yt−j − x>t−jβ) +

q∑
j=1

θj(yt−j − µt−j)

ht = βo +

p∑
j=1

φj(yt−j − βo) +

q∑
j=1

δjht−j

2.1.5 Briet, Amerasinghe and Vounatsou, 2013

Model

� Extended the generalized autoregressive moving average (GARMA) model of

Benjamin, Rigby and Stasinopoulos (2003), to generalized seasonal autoregres-

sive integrated moving average (GSARIMA) models.

� Included seasonality in the GARMA model for modelling of non-Gaussian, non

stationary and seasonal time series of count data.

� Implemented the package gsarima in R

Distribution

� Negative binomial conditional distribution.

2.2 GARCH, EGARCH and APARCH models for

volatility

The ARMA model assumes a constant variance. The autoregressive conditional

heteroscedastic (ARCH) model was introduced by Engle (1982) to model the changes
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in variance. Bollerslev (1986) extended the ARCH model to the generalized ARCH or

GARCH model. A good review on ARCH and GARCH models and their extensions

using a Gaussian distribution can be found in Poon and Granger (2002). This section

focuses on the generalization of the ARCH models to non-Gaussian distributions.

The ARCH and GARCH models as they were first introduced by Engle and

Bollerslev respectively, assumed a Gaussian distribution for the disturbances. The

normality assumption in the models was insufficient to capture the observed returns

in the tails and in the peak of the return series what is known as leptokurtosis.

The success of the ARCH/GARCH class of models is at capturing volatility

clustering in financial markets.

According to the ARCH model the conditional variance is equal to a linear func-

tion of the past squared errors.

The ARCH(p) model is defined as

yt = µ+ et

E(e2|Ht−1) = σ2
t

= ω +

p∑
i=1

αie
2
t−i (2.4)

The GARCH(p,q) model is defined as

yt = µ+ et

E(e2|Ht−1) = σ2
t

= ω +

p∑
i=1

αie
2
t−i +

q∑
j=1

βjσ
2
t−j (2.5)

Hence, there is a tendency for extreme values to be followed by other extreme
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values. However the assumption of conditional normally distributed errors made

the ARCH/GARCH class incapable to model the excess kurtosis of the returns.

Several alternative error distributions were proposed to this class of models, which

are reviewed in this section

The reason for looking at the GARCH models with a non-Gaussian conditional

distribution is because financial returns rarely have a normal conditional distribution

and need a heavy tail distribution like the Student t distribution or skew Student t

distribution.

2.2.1 Bollerslev, 1987

Model

� Extended the ARCH model with conditional t distribution errors by allowing

the current conditional variance to be a function of past conditional variances

and past squared errors of a t distribution.

The GARCH(p,q)-t model is defined as

yt = µ+ et

E(e2|Ht−1) = σ2
t

= ω +

p∑
i=1

αie
2
t−i +

q∑
j=1

βjσ
2
t−j (2.6)

where et = yt − µ ∼ tv, and tv is a t distribution with degrees of freedom parameter

v > 0.

For a simple GARCH(1,1)-t model is
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yt = µ+ et

σ2
t = ω + αe2t−1 + βσ2

t−1 (2.7)

Distribution

� Student t conditional distribution

2.2.2 Nelson, 1991

Model

� Introduced the exponential GARCH (EGARCH) model.

� Considered the family of generalized error distribution, GED, for the GARCH

model.

Distribution

� Generalized error conditional distribution.

2.2.3 Forsberg and Bollerslev, 2002

Model

� Introduced a new parameterization of the normal inverse Gaussian distribution

to build the GARCH-NIG model instead of the normal or Student t distribu-

tion.
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Distribution

� Normal inverse Gaussian conditional distribution.

2.2.4 Mittnik, Paolella and Rachev, 2002

Model

� Presented a strict stationary GARCH model with stable Paretian innovations.

� Evaluated the GARCH processes driven by either stable Paretian or Student

t innovations and compared in the context of prediction.

Distribution

� Stable Paretian and Student t conditional distributions.

2.2.5 Wurtz, Chalabi and Luksan, 2006

Methodology

� Implemented ARMA with GARCH/APARCH errors within the package fGarch

in R statistical software using heavy tailed distributions.

Distribution

� Standardized Student t, skew standardized Student t, generalized error, and

skew generalized error conditional distributions. The standardized Student t

distribution has mean µ and variance exactly σ2.
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2.2.6 Ghalanos, 2012

Methodology

� Implemented GARCH, EGARCH, GJR-GARCH and APARCH within the

package rugarch in R statistical software using heavy tailed distributions, with

fitting, filtering, forecasting and simulation.

Distribution

� Standardized Student t, generalized error, generalized hyperbolic and sub-

families, generalized hyperbolic skew Student t, skew generalized error, and

Johnson’s SU conditional distributions.

2.2.7 Broda, Haas, Krause, Paolella, and Steude, 2013

Model

� Introduced the Stable Mixture GARCH models.

� The new model nests several models or distributions for modelling asset re-

turns, stable Paretian, mixtures of normals, normal-GARCH, stable-GARCH,

and normal mixture GARCH.

Distribution

� Stable Paretian conditional distribution.
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2.3 Models for skewness and kurtosis

One of the motivation behind modelling skewness and kurtosis in financial returns

is that it has a great advantage for risk management and asset allocation, as well

as a better description of the conditional distribution of the asset returns. Having

a model for skewness and kurtosis if needed will improve the financial institutions’

decisions in their asset allocations, in pricing and hedging the derivatives and in risk

management.

2.3.1 Hansen, 1994

Model

� Developed a general model for autoregressive conditional density estimation

using a skew Student t distribution with a GARCH-type dependence for four

parameters of the conditional distribution, conditional mean, conditional vari-

ance, conditional skewness and conditional kurtosis.

� Extended Engle’s ARCH model to permit parametric specifications for condi-

tional dependence beyond the mean and variance.

� The suggestion is to model the conditional density with a small number of

parameters, and then model these parameters as functions of the conditioning

errors.

Distribution

� Student t and a new skewed Student t conditional distributions.
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2.3.2 Harvey and Siddique, 1999

Model

� Proposed a model for time varying skewness based on skew Student t distri-

bution but with a fixed kurtosis with a GARCH-type dependence of the third

moment, from the motivation that some asset returns distribution appear to

be negatively skewed implying a higher probability of negative returns than

positive returns.

� Studied the conditional skewness of asset returns, and extended the traditional

GARCH(1,1) model by explicitly modeling the conditional second and third

moments jointly.

� Presented a framework for modeling and estimating time-varying volatility and

skewness using a maximum likelihood approach assuming that the errors from

the mean have a non-central conditional t distribution.

� Found a significant presence of conditional skewness and a significant impact

of skewness on the estimated dynamics of conditional volatility.

� Suggested that conditional volatility is much less persistent after including con-

ditional skewness in the modeling framework and asymmetric variance appears

to disappear when skewness is included.

Distribution

� Skew Student t conditional distribution.
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2.3.3 Rockinger and Jondeau, 2002

Model

� Proposed entropy densities with conditional skewness and conditional kurtosis,

where the mean equal to zero, the variance equal to one and well defined

skewness and kurtosis.

� Characterized the skewness and kurtosis domain over which entropy densities

are well defined.

� They showed that their technique can be used to estimate GARCH model with

time varying skewness and kurtosis.

Distribution

� Student t, generalized error distribution and skew Student-t (Hansen, 1994)

conditional distributions

2.3.4 Brooks, Burke, Heravi and Persand, 2005

Model

� Developed a model for autoregressive conditional kurtosis, using a Student t

distribution with a time varying degrees of freedom as a GARCH-type depen-

dence. The variance and the degrees of freedom are modelled explicitly, by

allowing the variance and degrees of freedom to vary over time.

Distribution

� Student t conditional distribution.
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2.3.5 Lanne and Pentti, 2007

Model

� Introduced a GARCH-in-Mean (GARCH-M) model allowing for conditional

skewness, using the z distribution of Barndorff-Nielsen et al. (1982) where a

normal inverse Gaussian distribution belonging to the same family. Barndorff-

Nielsen et al. (1982) showed that it can be represented as a variance-mean

mixture of normal distributions.

� Found that the GARCH-M with z distribution is more accurate than using

Student t distribution.

Distribution

� z conditional distribution.

2.3.6 Jondeau and Rockinger, 2003, 2009

Model

� Modeled the conditional volatility, skewness, and kurtosis of the returns as a

GARCH type model

� Characterized the maximal range of skewness and kurtosis for which a density

exists and showed that the skew Student t distribution of Hansen (1994) spans

a large domain in the maximal set.

� Developed a graphical tool to summarize the impact of past shocks on the

subsequent characteristics of the returns distribution.
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� Introduced the concept of news impact curve (NIC) of skewness and kurtosis,

which extends the well-known NIC of volatility developed by Engle and Ng

(1993).

Distribution

� Skew Student t conditional distribution, Hansen (1994).

2.3.7 Wilhelmsson, 2009

Model

� Proposed a new model for financial returns with time varying variance, skew-

ness and kurtosis based on the normal inverse Gaussian (NIG) distribution.

� Proposed a Value at Risk model with time varying variance, skewness and

kurtosis using the normal inverse Gaussian (NIG) distribution.

Distribution

� Normal inverse Gaussian (NIG) conditional distribution.



Chapter 3

Review of non-Gaussian structural

time series models

This chapter reviews non-Gaussian structural time series models for the mean,

volatility, skewness and kurtosis by describing the methodology employed and the

conditional distribution (of the observation given the past information) used by the

authors to extend the traditional Gaussian state space time series models. The

review is illustrated in a chronological order.

The introduction of state space models or dynamic linear models was pioneered

by Kalman in 1960 and Kalman and Bucy in 1961, their methods of filtering, smooth-

ing and forecasting were related primarily to aerospace related research for a Gaus-

sian data. From 1974 until mid eighties the state space modeling were applied in

economic related research by Harrison and Stevens, 1974; Shumway and Stoffer,

1982; Taylor, 1982; Harvey and Todd, 1983; Harvey and Pierse, 1984; Kitagawa

and Gersch, 1984. However most of economic data are not Gaussian data therefore

removing Gaussianity from state space models means the Kalman filter, smoother

and predictor lose their optimality properties and does not apply for non-Gaussian

27
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dynamic models. For this particular problem with availability of fast computers

several authors developed computer-intensive methods based on numerical integra-

tion to filter and smooth non-Gaussian state space models. Their techniques rely on

approximating the non-Gaussian distribution by one or several Gaussian distribu-

tions. Markov chain Monte Carlo (MCMC) methods refer to Monte Carlo integration

methods that use a Markovian updating scheme. For more discussion of these non-

Gaussian state space models see Fahrmeir and Tutz (2000) chapter 8, Durbin and

Koopman (2001, 2012) part 2, and chapter six of Shumway and Stoffer (2013).

3.1 Structural model for the mean

Most of state space models use Markov chain Monte Carlo (MCMC) methods, for ex-

ample Gibbs sampling, importance sampling and the Metropolis algorithm, to com-

pute the posterior distributions for the parameters of the states (hyperparamters).

This method is very computer intensive and time consuming for parameter esti-

mation. The problem with many early state space approaches is that the methods

involved approximations of unknown hyperparameters of unobserved state variables,

with convergence issues. For these reasons some authors later on attempted to solve

these issues.

State space models contain two classes of variables: the unobserved state vari-

ables which describe the development over time of the underlying system and the

observations. A simple Gaussian local level model is defined as:
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yt|Ht ∼ NO(µt, σ)

yt = µt + et

µt = µt−1 + ηt (3.1)

where the first equation is called the observation equation and the second equation

is the state equation, and et ∼ NO(0, σ2
e), ηt ∼ NO(0, σ2

η). The observation equa-

tion is a linear combination of unobserved variable or state and a white noise with

Gaussian distribution, where the state equation is Markov process (random walk)

with a white noise innovation. Both innovations are assumed normal in Gaussian

structural time series models. However in non-Gaussian state space models, the ob-

servations innovations are assumed non-Gaussian, whereas the state in some models

are assumed non-Gaussian and the others are assumed Gaussian. In the Gaussian

structural model, the Kalman filter and smoother are applicable and provide optimal

solutions to the process, but in the non-Gaussian model, the standard Kalman filter

is not appropriate.

3.1.1 West, Harrison and Migon, 1985

Model

� Introduced state space models for exponential family observations with Gaus-

sian state.

� Developed dynamic Bayesian models for application in nonlinear, non Gaussian

time series and regression problems, provided dynamic extensions of standard

generalized linear models.
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� They used conjugate priors and at each update the posterior density was ap-

proximated to retain the conjugate structure, or assuming conjugate prior-

posterior distributions for the natural parameter of the exponential family.

� Derived an approximate filter as an extension to Kalman filter for estimation

of time-varying states or parameters.

Distribution

� Exponential Family conditional distribution.

3.1.2 Harvey and Durbin, 1986

Model

� modelled the effects of seat belt legislation on British road casualties over the

period January 1969 to December 1984 using the Poisson distribution with a

local linear trend and seasonality model for the mean equation.

� The mean equation has three state components, a random walk trend, season-

ality, and intervention parameter which measures the effects of the seat belt

law.

yt = µt + γt +
k∑
j=1

δjxjt + λωt + et

µt = µt−1 + βt−1 + ηt

βt = βt−1 + ζt

γt =

s/2∑
j=1

γjt + wt (3.2)
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where µt is the trend at time t, βt is the slope at time t, xjt is the value of the

explanatory variable at time t and δj is its coefficient, ωt is the intervention variable,

and γt is seasonality. The innovations et, ηt, ζt, wt are normal with zero expected

values and unknown variances or hyperparameters.

Distribution

� Poisson conditional distribution

3.1.3 Kitagawa, 1987, 1989, 1990

Model

� Modelled non stationary time series data using non-Gaussian state-space ap-

proach, where, both the states and the observations are not Gaussian.

� Derived recursive formulas of prediction, filtering, and smoothing for the state

estimation and identification of the non-Gaussian state-space model.

� Proposed a numerical method based on piecewise linear approximation.

� Approximated non-Gaussian densities by a mixture of normal distributions.

At each update he collapsed the conditional density into a smaller number of

components.

Distribution

� Mixture of normal distributions conditional distribution.
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3.1.4 Fahrmeir, 1992

Model

� Introduced multivariate dynamic generalized linear models for time series anal-

ysis with exponential family observations and Gaussian state.

� Estimated the time-varying parameters by posterior modes to avoid a full

Bayesian analysis, which are based on numerical integration and are compu-

tationally critical for higher dimensions.

� Proposed a generalization of the extended Kalman filter for conditionally Gaus-

sian observations for approximate posterior mode filtering and smoothing. The

recursions also can be interpreted as a simplified version of Fisher scoring for

the posterior mode.

� Estimated the unknown hyperparameters by an empirical Bayes approach.

Distribution

� Exponential Family conditional distribution.

3.1.5 Shephard and Pitt, 1997

Methodology

� Used Markov chain Monte Carlo technique to carry out simulation smoothing

and Bayesian posterior analysis of parameters.

� Used importance sampling to estimate the likelihood function for classical in-

ference.
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Distribution

� Exponential Family conditional distribution.

3.1.6 Durbin and Koopman, 2000

Model

� Considered non-Gaussian distribution for the state equation and non-Gaussian

conditional distribution for the observations given the state.

� For the state, they used a heavy-tailed distribution to model structural shifts,

and for the observations they considered both exponential family and heavy-

tailed conditional distributions.

� Used importance sampling and antithetic variables simulation techniques.

� As an example they modeled van drivers killed in UK with a Poisson con-

ditional distribution and modelled gas consumption in UK with a Student t

conditional distribution.

Distribution

� Exponential Family and Student t conditional distributions.

3.1.7 Nakajima, Kunihama, Omori and Fruhwirth-Schnatter,

2012

Model

� Proposed a new state space approach to model the time-dependence in an

extreme value process.
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� Extended the generalized extreme value distribution to incorporate the time-

dependence using a state space representation where the state variables either

follow an autoregressive (AR) process or a moving average (MA) process with

innovations arising from a Gumbel distribution.

� Proposed an efficient algorithm to implement the Markov chain Monte Carlo

method where they exploited an accurate approximation of the Gumbel dis-

tribution by a ten-component mixture of normal distributions.

Distribution

� Ten-component mixture of normal conditional distribution.

3.2 Stochastic volatility model

Taylor (1982) introduced a stochastic volatility (SV) model for modelling time vary-

ing variance in a state space form with normal errors, but various extensions were

proposed with non normal errors, as many empirical studies in finance and econo-

metrics shown strong evidence of heavy tails for conditional mean errors in financial

time series data (see for example Mandelbrot, 1963; Fama, 1965; Chib et al., 2002;

Jacquier et al., 2004). SV models are alternative to the ARCH and GARCH models.

Ghysels, Harvey and Renault (1996) and Shephard (1996) have a good review of the

SV models with their applications.

Many generalizations of the standard SV models have been proposed, for example

SV with leverage effects and SV with heavy tailed errors. The SV model with

Student t and skew Student t are the most popular model to account for heavier

tailed returns.

Let
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yt = σtet.

Taylor defined the stochastic volatility in a state space form by squaring the

observations and taking the logarithms for the observations equations where the

stochastic variance is considered as an unobserved state process,

log y2t = log σ2
t + log e2t ,

log σ2
t = φ log σ2

t−1 + ηt. (3.3)

Letting Yt = log y2t and ht = log σ2
t then

Yt = ht + log e2t ,

ht = φht−1 + ηt. (3.4)

Or alternatively,

yt|σ2
t ∼ N(0, σ2

t ),

where
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σ2
t = σ2 exp(ht),

ht = φht−1 + ηt,

ηt ∼ N(0, σ2
η). (3.5)

Hence, the conditional variance is assumed to be lognormally distributed

σ2
t |Ht−1 ∼ LOGNO(lnσ2 + φht−1, σ

2
η).

Hence, the basic univariate stochastic volatility model specifies that conditional

volatility follows a log-normal autoregressive model with innovations assumed to be

independent of the innovations in the conditional mean equation.

If the innovations e2t in 3.4 has a log normal distribution, then a stochastic volatil-

ity model for Yt would have been a normal state space model, but Yt = log y2t is not

normal and assuming et is normal then e2t is distributed as a chi-squared random

variable with one degree of freedom and log e2t is distributed as the log chi-squared

with one degree of freedom.

Various approaches have been proposed to the fitting of stochastic volatility

either by Bayesian approaches using MCMC techniques or non-Bayesian approaches

using quasi-maximum likelihood estimation algorithm. They approximate the log

chi-squared density by a mixture of Gaussian densities to apply the Kalman filter

techniques.
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3.2.1 Shephard, 1994

Model

� Developed simulation techniques to extend the applicability of the usual Gaus-

sian state space filtering and smoothing techniques to a class of non-Gaussian

time series models.

� Fitted the stochastic volatility model with simulation.

Distribution

� Mixture of normal distributions conditional distribution.

3.2.2 Kim, Shephard and Chib, 1998

Model

� Proposed modelling log e2t , a log of the chi-squared random variable with one

degree of freedom, by a mixture of seven normal distributions to approximate

the first four moments of the observational error distribution.

� Sampled all the unobserved volatilities at once using an approximating offset

mixture model, followed by an importance reweighting procedure.

� Developed simulation-based MCMC methods for filtering, likelihood evaluation

and model failure diagnostics.

Distribution

� Mixture of normal distributions conditional distribution.
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3.2.3 Nagahara and Kitagawa, 1999

Model

� Proposed a non-Gaussian stochastic volatility model as an extension of the or-

dinary stochastic volatility model, assuming that the time series is distributed

as a Pearson type-VII distribution, where the scale parameter of the distri-

bution, which corresponds to the volatility of the process, is stochastic and is

described by an autoregressive model with a constant term.

� Applied a non-Gaussian filter for estimating the parameters of the stochastic

volatility model

� They suggested that the model can be further generalized to the case where

the shape parameter of the Pearson type-VII distribution is also time-varying.

Distribution

� Pearson type-VII conditional distribution.

3.2.4 Chib, Nardari and Shephard, 2002

Model

� They estimated the SV model with jump and Student t errors but without

leverage effects by extending Kim, Shephard and Chib (1998) model.

� Developed efficient and fast Bayesian Markov chain Monte Carlo (MCMC)

estimation algorithm for estimating stochastic volatility models with Student

t distribution.
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Distribution

� Student t conditional distribution.

3.2.5 Nagahara, 2003

Model

� Proposed a fast and efficient algorithm by using an analytic approximation

of successive conditional probability density functions for predicting, filtering

and smoothing recursively using the Pearson type-VII distribution.

Distribution

� Pearson type-VII conditional distribution which includes the normal and Stu-

dent t distributions.

3.2.6 Jacquier, Polson and Rossi, 2004

Model

� Developed a Bayesian MCMC method for estimating stochastic volatility with

fat tailed and correlated errors, providing the first likelihood-based procedure

for stochastic volatility with correlated errors.

� Extended the basic stochastic volatility model to allow for a leverage effect via

correlation between the volatility and mean innovations, and for fat-tails in

the mean equation innovation.

Distribution

� Student t conditional distribution.
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3.2.7 Omori, Chib, Shephard and Nakajima, 2007

Model

� Extended method that was developed for SV models without leverage to mod-

els with leverage.

� Approximated the joint distribution of the outcome and volatility innovations

by a suitably constructed ten-component mixture of bivariate normal distri-

butions.

� The resulting posterior distribution is summarized by MCMC methods and

the small approximation error in working with the mixture approximation is

corrected by a reweighting procedure.

� They described some extensions of their method for superposition models

(where the log-volatility is made up of a linear combination of heterogenous

and independent autoregressions) and heavy-tailed error distributions (Student

and log-normal).

Distribution

� Scale mixture of normal and Student t distributions conditional distribution.

3.2.8 Choy, Wan and Chan, 2008

Model

� Introduced the scale mixtures of uniform and the scale mixtures of normal

representation to the Student t density and show that the setup of a Gibbs
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sampler for the SV-t model can be simplified, where the full conditional distri-

bution of the log-volatilities has a truncated normal distribution which enables

an efficient Gibbs sampling algorithm.

� Modeled a heavy-tailed stochastic volatility SV-t with leverage effect by ex-

pressing the bivariate Student t distribution as a scale mixture of bivariate

normal distributions.

Distribution

� Student t and normal conditional distributions

3.2.9 Wang, Chan and Choy, 2011

Model

� Modeled a heavy-tailed stochastic volatility (SV) model with leverage effect,

using a bivariate Student t distribution to model the error innovations of the

return and volatility equations.

� Proposed an alternative formulation by first deriving a conditional Student t

distribution for the return and a marginal Student t distribution for the log-

volatility and then express these two Student t distributions as a scale mixture

of normal (SMN) distributions.

� Their approach separated the sources of outliers and allows for distinguishing

between outliers generated by the return process or by the volatility process,

hence, improving Choy et al. (2008) approach.

� Expressed the Student t distribution as a SMN distribution at different stages,

where the mixing parameters arose from the SMN representation play the role
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of identifying possible outliers.

Distribution

� Scale mixture of normal (i.e. Student t) conditional distribution.

3.2.10 Nakajima and Omori, 2009, 2012

Methodology

� In 2009 they proposed an efficient and fast Markov chain Monte Carlo estima-

tion methods for the stochastic volatility model with leverage effects, heavy

tailed errors and jump components, and for the stochastic volatility model with

correlated jumps.

� In 2012 they provided a Bayesian analysis of stochastic volatility with leverage

using generalized hyperbolic skew Student t distribution, and described an

efficient Markov chain Monte Carlo estimation method that exploits a normal

variance-mean mixture representation of the error distribution with an inverse

gamma distribution as the mixing distribution.

Distribution

� Generalized hyperbolic (GH) skew Student t conditional distribution

3.2.11 Tsiotas, 2012

Model

� Introduced generalised asymmetric stochastic volatility (ASV) models that

take account of volatility, asymmetry, skewness and excess kurtosis and using
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heavy-tailed conditional distributions.

� Used the Bayesian Markov chain Monte Carlo methods (Gibbs sampler and

Metropolis-Hasting algorithm) for ASV estimation.

Distribution

� Skew normal, Student t and skew Student t conditional distributions of Azzalini

(1985)

3.3 Models for skewness and kurtosis

All the above models are either modelling the structural mean or stochastic volatility,

but not modelled jointly as in the data-driven approach. One of the aims of the

author is to model skewness and kurtosis using the structural time series approach,

and build a general structural time series framework for modelling all the parameters

of the conditional distribution jointly and explicitly. This new class of model is the

main contribution of the author to the current literature, where the structural time

series models are extended by explicitly modelling the conditional mean, variance,

skewness and kurtosis jointly. The author considers the modelling and estimation of

non-Gaussian observational noise density by smoothing Gaussian state parameters.



Chapter 4

Random effect models

4.1 Introduction

This Chapter describes the estimation method of the random effects and hyperpa-

rameters for Gaussian random effect models, reproducing Chapter 17 of Pawitan

(2001). The reasons for following Chapter 17 is that this estimation method is an

alternative method for estimating the hyperparameters in structural time series mod-

els instead of using the Kalman filter. In addition, the Chapter 4 is an introduction

to Chapter 8, Section 8.3 and Section 8.4. If the reader is familiar with Gaussian

random effects model they can skip this chapter.

Random effect models provide a flexible framework for modelling Gaussian and

non-Gaussian time series data. They provide a unified methodology for treating a

wide range of problems in applied statistics and in particular in time series analysis.

They relate time series observations, yt, to a sequence of unknown or unobserved

vector of random effects, γt, typically it includes a trend and/or seasonality.

A correlated random effects model assumes that the correlation arises among

repeated measurements through time, they are also used in longitudinal studies,

44
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analysing the longitudinal relationships between the explanatory variables and the

response variable.

Lee, Nelder and Pawitan (2006), p.148 and p.233, show that linear mixed models

with correlated random effects over time can include many of state space models

of Harvey (1989), and the extended likelihood in random effect models can be used

instead of the Kalman filter for estimating the hyperparameters, (see Nelder 2000),

where the underlying signal is assumed to be a random or unobserved state.

For Gaussian linear state space models, optimal conditional mean estimates are

achieved by the linear Kalman filter and smoother. For nonlinear and non-Gaussian

state space models, several extensions have been proposed, for example Sage and

Melsa (1971), Anderson and Moore (1979), West, Harrison and Migon (1985), Kita-

gawa (1987), and Durbin and Koopman (2001). Although the Kalman filter was

derived for filtering and smoothing Gaussian data, it has a major drawback in

smoothing and filtering non-Gaussian data.

One general approach for modelling non-Gaussian state space models with non-

Gaussian distributions is via the use of random effect models. Fahrmeir and Kauf-

mann (1991), Fahrmeir (1992) and Fahrmeir (1996) propose the same approach as

an approximative method to model non-Gaussian state space models based on ran-

dom effects models and generalized linear mixed models as in Breslow and Clayton

(1993). Diggle, Liang and Zeger (1994) consider random effects models with first

order autoregressive model for time series data. Zeger and Diggle (1994) propose a

semiparametric model for longitudinal data, where the covariate entered parametri-

cally and the time effect entered nonparametrically.

Generalized linear mixed models were proposed as a general framework by Bres-

low and Clayton (1993). They include an unobserved vector of random effects in

a generalized linear model, assumed to arise from a normal distribution, and use
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an approximation of the marginal quasi-likelihood based on Laplace’s method, lead-

ing to equations based on penalized quasi-likelihood. Generalized additive mixed

models were introduced by Lin and Zhang (1999) which extended the generalized

additive models of Hastie and Tibshirani (1990) to accommodate overdispersion and

correlation in the data. Generalized additive models for location, scale and shape

were introduced by Rigby and Stasinopoulos (2005) as a general unified framework

for modelling all the parameters of the distribution with the random effects.

A simple random walk order 1 linear state space model is given by the observation

equation, yt = γt + et, where γt = γt−1 + bt is the linear transition equation or state

equation and et and bt are Gaussian noises. Given the observations, y1, . . . , yT ,

estimation (smoothing) of the unknown states γt is of primary interest to the author

using the random effects models.

The estimation of Gaussian linear mixed models is described and analysed here,

using the derivations from Pawitan (2001), chapter 17, with applications and illus-

trative examples to state space models in the next chapter, and generalizations that

follow in the later chapters. The estimation of Gaussian linear mixed models is also

discussed in Lee, Nelder and Pawitan (2006), chapter 5. The estimation of general-

ized liner mixed models is discussed in Fahrmeir and Tutz (2001), chapter 8, with

application to state space models.

All state space model examples in the next chapter are estimated using the Q

function derived from random effects estimation methods as an alternative to the

Kalman smoother. The examples are taken from Commandeur and Koopman (2007)

and the results are compared with their results.
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4.2 Gaussian linear mixed models

Random effect models can be used for analyzing Gaussian and non-Gaussian data

that are assumed to be clustered or correlated. The clustering can be due to repeated

measurements over time. Moreover, the estimation techniques of random effect

models can be used for Gaussian and non-Gaussian state space models. These

estimation methods are discussed here using Pawitan (2001).

Consider a Gaussian liner mixed model

y = Xβ + Zγ + e (4.1)

where y be an N -vector of outcome data, X and Z are (N x p) and (N x q) design

matrices for the fixed effects parameter β and the random effects γ respectively,

where e ∼ N(0,Σ), γ ∼ N(0, D), and γ and e are independent. The variance

matrices Σ = σ2
eIN and D = σ2

γIN are parameterized by an unknown variance

component parameter θ = (σ2
e , σ

2
γ).

Conditional on an unobserved random effects γ the outcome vector y is a multi-

variate normal with mean and variance:

E(y|γ) = Xβ + Zγ

V (y|γ) = Σ = σ2
eIN . (4.2)

Hence,
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y|γ ∼ N(Xβ + Zγ,Σ),

γ ∼ N(0, D), D = σ2
γIN , (4.3)

and the marginal probability density of y is given by:

f(y) =

∫
f(y|γ)f(γ)dγ

= |2πV |−
1
2 exp{−1

2
(y −Xβ)>V −1(y −Xβ)}. (4.4)

See Appendix A.1 for the derivation of the marginal probability density of y.

4.3 Estimation of the fixed parameters

The marginal log-likelihood of the fixed parameters (β, θ) is

logL(β, θ) = −1

2
log |V | − 1

2
(y −Xβ)>V −1(y −Xβ) (4.5)

where the parameter(s) θ = (σ2
e , σ

2
γ) enters through the marginal variance V .

The profile of the marginal log-likelihood of the variance parameter θ is

pl(θ) = −1

2
log |V | − 1

2
(y −Xβ̂)>V −1(y −Xβ̂) (4.6)

where β̂ are the fitted values computed by the weighted least square formula
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β̂ =
(
X>V −1X

)−1
X>V −1y (4.7)

Patterson and Thompson (1971) and Harville (1974) derived a restricted maxi-

mum likelihood (REML) adjusted so it takes into account the estimation of β, by

integrating out both β and γ from f(y|β, γ)f(γ).

The modified profile of the marginal log-likelihood for θ is given by

plm(θ) = −1

2
log |V | − 1

2
log |X>V −1X| − 1

2
(y −Xβ̂)>V −1(y −Xβ̂) (4.8)

where −1
2

log |X>V −1X| is the extra REML adjustment.

See Appendix A.2.

4.4 Estimation of the random effects

The joint (or extended) likelihood of all the parameters is based on the joint density

distribution of (y, γ):

L(β, θ, γ) = p(y|β, γ)p(γ|θ) (4.9)

The log-likelihood of the random effects γ, by omitting the constant which does

not depend on the parameters, is given by
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logL(β, θ, γ) = −1

2
log |Σ| − 1

2
(y −Xβ − Zγ)>Σ−1(y −Xβ − Zγ)

−1

2
log |D| − 1

2
γ>D−1γ (4.10)

The estimate γ̂ is the solution of

γ̂ = (Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ) (4.11)

See Appendix A.3.

4.5 Computing the hyperparameters via β̂ and γ̂

The profile of the marginal log-likelihood (4.6) for the variance component parameter

θ = (σ2
e , σ

2
γ) is not computationally desirable due to the terms involving V −1 and

the following alternative is more desirable because it is easier to compute.

pl(θ) = −1

2
log |Σ| − 1

2
(y −Xβ̂ − Zγ̂)>Σ−1(y −Xβ̂ − Zγ̂)

−1

2
log |D| − 1

2
γ̂>D−1γ̂ − 1

2
log |Z>Σ−1Z +D−1|

= logL(β̂, θ, γ̂)− 1

2
log |Z>Σ−1Z +D−1| (4.12)

where θ enters the function through Σ, D, β̂ and γ̂. Pawitan (2001) proves that

pl(θ) in (4.6) is equal to pl(θ) in (4.12). The profile of the marginal log-likelihood

(4.6) or (4.12) is the joint (or extended) log likelihood evaluated at (β̂, γ̂) with the
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extra term

−1

2
log |Z>Σ−1Z +D−1|,

where the matrix (Z>Σ−1Z + D−1) is the Fisher information of γ. The profile

likelihood (4.12) is simpler than (4.6), since the matrices involved are simpler than

V −1.

See Appendix A.4.

4.6 Estimation procedure

Computationally the whole estimation of θ, β and γ can be done through maximising

Q as an objective function, where

Q = −1

2
log |Σ| − 1

2
(y −Xβ − Zγ)>Σ−1(y −Xβ − Zγ)

−1

2
log |D| − 1

2
γ>D−1γ − 1

2
log |Z>Σ−1Z +D−1|

The score equations for β and γ yield the usual formulae for β̂ and γ̂ at fixed θ.

The following algorithm can be applied for estimating θ, β and γ, by starting

with an initial estimate for θ, then:

Numerically maximize Q(θ, β̂θ, γ̂θ) over θ until convergence, where within the

procedure the Q(θ, β̂θ, γ̂θ) is calculated by

(1) Given θ, compute β̂θ and γ̂θ using:

β̂θ = (X>V −1X)−1X>V −1y

γ̂θ = (Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ)
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(2) Fixing β and γ at the values β̂θ and γ̂θ, calculate Q(θ, β̂θ, γ̂θ), where

Q(θ, β̂θ, γ̂θ) = −1

2
log |Σ| − 1

2
(y −Xβ̂θ − Zγ̂θ)>Σ−1(y −Xβ̂θ − Zγ̂θ)

−1

2
log |D| − 1

2
γ̂>θ D

−1γ̂θ −
1

2
log |Z>Σ−1Z +D−1|.

See Appendix A.5 for an alternative method of estimation.

4.7 Several random effects

Pawitan (2001), page 452, extends the estimation procedure of one random factor

to two random factors, and Rigby and Stasinopoulos (2013) extends the estimation

procedure furthermore, of one random factor to N random factors.

The extension to more than one random factor has a similar computational pro-

cedure as one random factor with some extension on the estimations; if we have two

random factors γ1 and γ2, the conditional mean of y will be

E(y|γ1, γ2) = Xβ + Z1γ1 + Z2γ2

and variance Σ, where X,Z1, Z2 are appropriate design matrices and β is the fixed

effects parameter. γ1 and γ2 are independent normal with mean zero and variance

D1 and D2 respectively.

See Appendix A.6 for the derivations the Q function and the hyperparameters.



Chapter 5

Smoothing for Gaussian structural

time series models

5.1 Introduction

This Chapter contains the application of Chapter 4 to smoothing Gaussian struc-

tural time series models with some examples using the data from Commandeur and

Koopman (2007). The reason for this application is to test whether the random

effect estimation method agrees with the results with the Kalman filter. In addition,

this Chapter generalizes the estimation method of Pawitan (2001) Chapter 18, and

Lee, Nelder and Pawitan (2006) Chapter 9 in fitting a local level model, and has

new functions and extensions of the estimation method to a local level and trend, a

local level and seasonal, a local level with trend and seasonal, and a local level with

random coefficient of an explanatory variable.

State space models allow a natural interpretation of a time series as the result of

several components, such as trend, seasonal or regressive components. At the same

time, they have an elegant and powerful probabilistic structure. They can be used for

53
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modeling univariate or multivariate time series, also in presence of non-stationarity,

structural changes, irregular patterns. The state space model or dynamic linear

model was introduced in Kalman (1960) and Kalman and Bucy (1961). Although

the model was originally introduced as a method primarily for use in aerospace-

related research, it has been applied to modeling data from economics (Harrison

and Stevens, 1976; Harvey and Pierse, 1984; Kitagawa and Gersch, 1984; Durbin

and Koopman, 2001; Shumway and Stoffer, 2013). In last two decades there has been

an increasing interest for the application of non Gaussian state-space models in time

series analysis; see for example West and Harrison (1997), Durbin and Koopman

(2001), the overviews by Kunsch (2001) and Migon et al. (2005).

5.2 Local level model

A basic example of the state space model is the local level model, which is a simple

Gaussian signal plus noise model.

Let y> = (y1, y2, . . . , yn) be the observed vector of response variable. The random

walk process of the local level model is defined as:

yt = γt + et (5.1)

γt = γt−1 + bt

where et and bt are two independent Gaussian white noise series. et ∼ N(0, σ2
e),

bt ∼ N(0, σ2
b ).

The irregular and signal disturbances, et and bt respectively, are mutually inde-

pendent with mean zero and variances σ2
e and σ2

b respectively. The signal to noise

ratio, λ = σ2
b/σ

2
e plays the key role in determining how observations should be
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weighted for prediction and signal extraction.

Note that γt is a random walk which is not directly observable, and yt is the ob-

served data with observational noise et. The dynamic dependance of yt is governed

by the hidden state γt. The first equation is called the observation or measure-

ment equation, while the second equation is called the state equation. In the state

equation, time dependencies in the observed time series are dealt with by letting

the state at time t + 1 be a function of the state at time t. In state space models,

the unknown estimates are known as hyperparameters (variances). Unlike classical

regression analysis, when a state space model contains two or more hyperparam-

eters, the maximum likelihood estimation of these variances requires an iterative

procedure. The iterations aim to maximise the log-likelihood with respect to the

hyperparamters. Numerical optimization methods are employed (nlminb and op-

tim functions from R statistical software) and they are based on an iterative search

process to find the maximum in a numerically efficient way.

Random walk order (1),

yt = γt + et

bt = γt − γt−1 = Dγt,

in a random walk order (2),

yt = γt + et

γt = 2γt−1 − γt−2 + bt

bt = γt − 2γt−1 + γt−2 = D2γt
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where et ∼ N(0, σ2
e) and bt ∼ N(0, σ2

b ), this can be generalized to random walk order

J , i.e. rw(J).

Autoregressive order (J)

The autoregressive process of the local level model is defined as

yt = γt + et (5.2)

γt =
J∑
j=1

φjγt−1 + bt

The smoothing matrices D and D>D for a random walk of order (1) are defined

as

D =



−1 1 0

0 −1 1

.. .. ..

.. .. ..

0 −1 1



D>D =



1 −1 0

−1 2 −1

.. .. ..

−1 2 −1

0 −1 1
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The smoothing matrices D2 and D>2 D2 for a random walk of order (2) are defined

as

D2 =



1 −2 1 0

0 1 −2 1

.. .. .. .. .. ..

1 −2 1 0

0 1 −2 1



D>2 D2 =



1 −2 1 0

−2 5 −4 1

1 −4 6 −4 1

.. .. .. .. .. ..

1 −4 6 −4 1

1 −4 5 −2

0 1 −2 1
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The smoothing matrices D and D>D for an autoregressive of order (1) are defined

as:

D =



−φ 1 0

0 −φ 1

.. .. ..

.. .. ..

0 −φ 1



D>D =



φ2 −φ 0 0

−φ 1 + φ2 −φ 0

0 −φ 1 + φ2 −φ 0

.. .. .. .. .. ..

.. .. .. .. .. ..

0 −φ 1 + φ2 −φ

0 0 −φ φ2
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5.2.1 Examples of local level model

Norwegian road fatalities

Applying the local level model (i.e. a random walk order 1) to the log of the annual

number of road traffic fatalities in Norway from 1970 to 2003. The maximum likeli-

hood estimates of the hyperparameters are given in Table 5.1, and the fitted random

walk local level is plotted with the data in Figure 5.1. The R fitting commands and

output are given in Appendix D.

Table 5.1: The estimated hyperparameters of the Norwegian fatalities

Data Local level model σ2
e σ2

b LogLik/T LogLik
Norwegian The Q function 0.00326821 0.0047030 0.8468622 28.7933

fatalities Kalman filter 0.00326838 0.0047026 0.8468622 28.7933
Reference to data source: http://www.ssfpack.com/CKbook.html

and Commandeur and Koopman (2007), Appendix B.
Reference to Kalman filter results: Commandeur and Koopman (2007) p:18,19.
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Figure 5.1: Observed log Norwegian road fatalities in gray and the fitted local level
in red.
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UK drivers killed or seriously injured

The local level model (i.e. a random walk order 1) is applied to the log of the

monthly number of drivers killed or seriously injured (KSI) in the UK, from January

1969 to December 1984. The maximum likelihood estimates of the hyperparameters

are given in Table 5.2, and the fitted local level is plotted with the data in Figure

5.2. The R fitting commands and output are given in Appendix D.

Table 5.2: The estimated hyperparameters for UK drivers KSI

Data Local level model σ2
e σ2

b LogLik/T LogLik
UK drivers The Q function 0.00222155 0.011866 0.6451960 123.8776

KSI Kalman Filter 0.00222157 0.011866 0.6451960 123.8776
Reference to data source: http://www.ssfpack.com/CKbook.html

and Commandeur and Koopman (2007), Appendix A.
Reference to Kalman filter results: Commandeur and Koopman (2007) p.16.
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Figure 5.2: Observed log UK drivers KSI in gray and the fitted local level in red.
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5.3 Local level and trend model

The local linear trend model is obtained by adding a random slope to the local level

model. The random walk process of the local level and trend (or local linear trend)

model is defined as

yt = γt + et (5.3)

γt = γt−1 + ψt + bt

ψt = ψt−1 + dt

where ψt is a random walk slope and where et ∼ N(0, σ2
e), bt ∼ N(0, σ2

b ), and

dt ∼ N(0, σ2
d).

The autoregressive process of the local level and trend model is defined as

yt = γt + et (5.4)

γt =
J∑
j=1

φjγt−j + ψt + bt

ψt =
L∑
l=1

ρlψt−l + dt

where ψt is an autoregressive trend (or slope) and where et ∼ N(0, σ2
e), bt ∼ N(0, σ2

b )

and dt ∼ N(0, σ2
d).

The local linear trend model contains two state equations: one for modelling the

level, and one for modelling the slope. The slope is also referred to as the drift in

time series.
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5.3.1 Examples of local level and trend model

Finnish traffic fatalities

In this example the local level and trend model is applied to the log of the annual

number of road traffic fatalities in Finland as observed from 1970 to 2003, allowing

both the level and the slope to vary over time. The estimated hyperparameters are

given in Table 5.3.

Figure 5.3 shows the log of the annual number of road traffic fatalities in Finland

from 1970 to 2003, and the decomposition of the fitted local level and the fitted

slope. The stochastic slope is shown separately at the bottom of Figure 5.3. When

the slope is positive and increasing, the level of fatalities in Finland was increasing

as shown is Figure 5.3, from 1983 to 1987. On the other hand, when the slope

is negative and decreasing, the level of fatalities in Finland was decreasing too, as

shown is Figure 5.3, from 1971 to 1976, 1989 to 1992, and from 2000 to 2003. Figure

5.4 shows the log of the annual number of road traffic fatalities in Finland from 1970

to 2003, and the fitted local linear trend (local level and trend).

The R fitting commands and output are given in Appendix D.

Table 5.3: The estimated hyperparameters for Finnish fatalities

Data local linear trend σ2
e σ2

b σ2
d LogLik/T LogLik

Finn. The Q function 0.00320085 1.00024e-08 0.00153302 0.7864746 26.740
fatal. Kalman filter 0.00320083 9.69606E-26 0.00153314 0.7864746 26.740

Reference to data source: http://www.ssfpack.com/CKbook.html
and Commandeur and Koopman (2007), Appendix B.

Reference to Kalman filter results: Commandeur and Koopman (2007) p.28.



5.3. LOCAL LEVEL AND TREND MODEL 63

Time

lF
in

f

1970 1975 1980 1985 1990 1995 2000

6.
0

6.
6

level_decomposition

Time

le
ve

l

1970 1975 1980 1985 1990 1995 2000

6.
0

6.
6

slope_decomposition

Time

sl
op

e

1970 1975 1980 1985 1990 1995 2000−0
.1

0
0.

05

Figure 5.3: Observed log Finnish fatalities and the fitted local level and trend de-
composed.
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Figure 5.4: Observed Finnish fatalities with the fitted local level and trend.
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UK drivers killed or seriously injured

The local level and trend model is applied to the log of the monthly number of

drivers killed or seriously injured (KSI) in the UK in the period January 1969 to

December 1984. The estimated variances are given in Table 5.4,

Figure 5.5 shows the log of the monthly number of drivers killed or seriously in-

jured (KSI) in the UK, from January 1969 to December 1984, and the decomposition

of the fitted local level and the fitted random walk slope.

The fitted slope is constant as shown in Figure 5.5, the variance of the slope is

almost zero, hence the fluctuation in the slope is almost negligible. This means the

addition of a random slope to the local level model is not effective in analysing the

observed log of the monthly number of drivers killed or seriously injured (KSI) in

the UK. Hence, the random slope is redundant in this case.

The R fitting commands and output are given in Appendix D.

Table 5.4: The estimated hyperparameters for UK drivers KSI

Data local linear trend σ2
e σ2

b σ2
d LogLik/T LogLik

UK The Q function 0.0021181 0.012128 1.0E-11 0.6247934 119.9603
KSI Kalman filter 0.0021181 0.012128 1.5E-11 0.6247935 119.9604

Reference to data source: http://www.ssfpack.com/CKbook.html
and Commandeur and Koopman (2007), Appendix A.

Reference to Kalman filter results: Commandeur and Koopman (2007) p.27.
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Figure 5.5: Observed log UK drivers KSI with the fitted local level and trend de-
composed.
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5.4 Local level and seasonal model

The random walk process of the local level and seasonal is defined as

yt = γt + st + et (5.5)

γt = γt−1 + bt

st = −
M−1∑
m=1

st−m + wt

where et ∼ N(0, σ2
e), bt ∼ N(0, σ2

b ) and wt ∼ N(0, σ2
w).

The random walk process of the local level with trend and seasonal is defined as

yt = γt + st + et (5.6)

γt = γt−1 + ψt + bt

ψt = ψt−1 + dt

st = −
M−1∑
m=1

st−m + wt

where et ∼ N(0, σ2
e), bt ∼ N(0, σ2

b ), dt ∼ N(0, σ2
d) and wt ∼ N(0, σ2

w).

The autoregressive process of the local level and seasonal is defined as

yt = γt + st + et (5.7)

γt =
J∑
j=1

φjγt−1 + bt

st = −
M−1∑
m=1

st−m + wt
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where et ∼ N(0, σ2
e), bt ∼ N(0, σ2

b ) and wt ∼ N(0, σ2
w).

The autoregressive process of the local level with trend and seasonal is defined

as

yt = γt + st + et (5.8)

γt =
J∑
j=1

φjγt−j + ψt + bt

ψt =
L∑
l=1

ρlψt−l + dt

st = −
M−1∑
m=1

st−m + wt

where et ∼ N(0, σ2
e), bt ∼ N(0, σ2

b ), dt ∼ N(0, σ2
d) and wt ∼ N(0, σ2

w).

5.4.1 Examples of local level and seasonal model

UK inflation

The local level and seasonal model is applied to UK inflation, as measured on a

quarterly basis for the years 1950-2001. The estimated variances are given in Table

5.5, while the stochastic level and stochastic seasonal are displayed separately in the

Figure 5.7. The R fitting commands and output are given in Appendix D.
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Table 5.5: The estimated hyperparameters for quarterly UK inflation.

Data local level & seasonal σ2
e σ2

b σ2
w LogLik/T LogLik

UK The Q function 3.3713e-05 2.1241e-05 4.34e-07 3.201381 665.8873
inf. Kalman filter 3.3717e-05 2.1197e-05 1.09e-07 3.198464 665.2805

Reference to data source: http://www.ssfpack.com/CKbook.html
and Commandeur and Koopman (2007), Appendix D.

Reference to Kalman filter results: Commandeur and Koopman (2007) p.44.

Time

UK
_in

flat
ion

1950 1970 1990

−0.
02

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Figure 5.6: The observed UK quarterly inflation with the fitted local level.
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Figure 5.7: Observed UK quarterly inflation with fitted stochastic level and stochas-
tic seasonal.
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UK drivers killed or seriously injured

The local level and seasonal is applied to the log of the monthly number of drivers

killed or seriously injured (KSI) in the UK in the period January 1969 to December

1984. The estimated variances are given in Table 5.6, while the stochastic level and

the stochastic seasonal are displayed separately in the Figure 5.9. The R fitting

commands and output are given in Appendix D.

Table 5.6: The estimated hyperparameters for UK derivers KSI

Data local level & seasonal σ2
e σ2

b σ2
w LogLik/T LogLik

UK The Q function 0.00351382 0.000945617 0.1E-9 0.9829963 188.735
KSI Kalman filter 0.00341592 0.000935947 0.5E-6 0.9369063 179.886

Reference to data source: http://www.ssfpack.com/CKbook.html
and Commandeur and Koopman (2007), Appendix A.

Reference to Kalman filter results: Commandeur and Koopman (2007) p.38.

Time

log_
uk_k

si

1970 1975 1980 1985

7.0
7.2

7.4
7.6

7.8

Figure 5.8: Observed UK drivers KSI with fitted local level.
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Figure 5.9: Observed log UK drivers KSI with fitted local level and seasonal decom-
posed.
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Johnson & Johnson quarterly earnings

The quarterly earnings series from the U.S company Johnson & Johnson is highly

nonstationary as given in Figure 5.10. There is both a trend signal that is gradually

increasing over time and a seasonal component that cycles every four quarters or

once per year. The autoregressive order 1 local level and seasonal model is fitted to

Johnson & Johnson earnings for comparison with the results of Shumway and Stoffer

(2011), then to log Johnson & Johnson earnings. The estimated hyperparameters

for the ar local level and seasonal model are given in Table 5.7. On the normal

scale, the estimated growth was φ1 = 1.035, corresponding to exponential growth

with inflation at about 3.5% per year. The fitted values are displayed separately in

Figure 5.10. On the log scale, the estimated growth was φ1 = 1.019, corresponding

to 1.9% growth with inflation per year. The estimated hyperparameters are given in

Table 5.7, while the fitted values are displayed separately in Figure 5.11. The fitted

values of seasonality is more illustrative and realistic on the log scale than on the

normal scale. The R fitting commands and output are given in Appendix D.

Table 5.7: The estimated hyperparameters for Johnson & Johnson quarterly earnings

Data local level & seasonal σ2
e σ2

b σ2
w φ1

q.jnj The Q function 3.8e-06 0.01963217 0.05032152 1.035
Kalman filter 2.5e-07 0.01951609 0.04879681 1.035

log(q.jnj) The Q function 2.1e-09 0.00358159 0.00099529 1.019
Reference to data source: the data are available in R as q.jnj in package FinTS.

Reference to Kalman filter results: Shumway and Stoffer (2011), p.351,352.



5.4. LOCAL LEVEL AND SEASONAL MODEL 74

Time

q.
jn

j

1960 1965 1970 1975 1980

0
5

15

level_decomposition

Time

le
ve

l

1960 1965 1970 1975 1980

5
15

seasonal_decomposition

Time

se
as

on
al

1960 1965 1970 1975 1980

−3
0

2

Figure 5.10: Johnson & Johnson quarterly earnings with the fitted AR(1) local level
and seasonal.
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Figure 5.11: log of Johnson & Johnson quarterly earnings with the fitted AR(1)
local level and seasonal.
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5.5 Local level with random coefficient of an ex-

planatory variable model

The local level with a random coefficient of an explanatory variable is defined as

yt = γt + βtxt + et (5.9)

γt =
J∑
j=1

φjγt−j + bt

βt = βt−1 + vt

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), and vt ∼ NO(0, σ2
v), where γt is the autore-

gressive local level and xt is the explanatory variable.

5.5.1 Example of local level with explanatory variable model

UK drivers killed or seriously injured

Random walk local level with a random coefficient of an explanatory variable is

applied to the log of the monthly number of drivers killed or seriously injured (KSI)

in the UK, from January 1969 to December 1984. The explanatory variable is the

log of the monthly petrol prices in the UK from January 1969 to December 1984.

The estimated variances are given in Table 5.8, while the fitted values for the local

level with a random coefficient of an explanatory variable are displayed separately

in the Figure 5.12. The R fitting commands and output are given in Appendix D.
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Figure 5.12: Observed log UK drivers KSI with fitted random walk local level with
a random coefficient of monthly UK log petrol prices.
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Table 5.8: The estimated hyperparameters for UK derivers KSI

Data level & r. coef. σ2
e σ2

b σ2
v β̂1 LogLik/T LogLik

UK Q function 0.00235670 0.0109746 1.302e-4 -0.26900 0.655216 125.801
KSI Kalman filter 0.00234791 0.0116673 * -0.26105 0.645636 123.962

Reference to data source: http://www.ssfpack.com/CKbook.html
and Commandeur and Koopman (2007), Appendix A.

Reference to Kalman filter results: Commandeur and Koopman (2007) p.52.
(*) not available in Commandeur and Koopman (2007).

5.6 Maximum likelihood estimation

Here the most general model, the autoregressive process of the local level with trend

and seasonal (6.3), is fitted with the following maximum likelihood estimation.

yt = γt + st + et (5.10)

where γt, ψt and st are given by (6.3) assumptions. [The other structural models

given earlier are all special cases of this model.]

Hence,

et = yt − γt − st

bt = γt −
J∑
j=1

φjγt−j − ψt−1

dt = ψt −
L∑
l=1

ρlψt−l

wt =
M∑
m=1

st−m+1

(5.11)
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where e ∼ NT (0, σ2
eW

−1), b ∼ NT−J(0, σ2
b IT−J), d ∼ NT−L(0, σ2

dIT−L), ω ∼

NT−M+1(0, σ
2
wIT−M+1). Note e = (e1, e2, . . . , eT )>, b = (bJ+1, bJ+2, . . . , bT )>, d =

(dL+1, dL+2, . . . , dT )>, ω = (wM , wM+1, . . . , wT )>.

Algorithm for estimating (σ2
e , σ

2
b , σ

2
d, σ

2
w,φ,ρ)

1. Given starting values for (σ2
e , σ

2
b , σ

2
d, σ

2
w,φ,ρ), estimate initial values for (γ,ψ, s).

2. Having estimated initial values for (γ,ψ, s), estimate initial values for (σ2
e , σ

2
b , σ

2
d, σ

2
w).

3. Maximize Q over (σ2
e , σ

2
b , σ

2
d, σ

2
w,φ,ρ) using a numerical algorithm, where (γ,ψ, s)

given (σ2
e , σ

2
b , σ

2
d, σ

2
w,φ,ρ) is obtained before calculating Q in the function eval-

uating Q.

4. Having the maximum values for (σ2
e , σ

2
b , σ

2
d, σ

2
w,φ,ρ) estimate the maximum

values for (γ,ψ, s).

Let Q be given by

Q = log f(y|γ, s) + log f(γ,ψ, s)− 1

2
log
∣∣A + D>M−1D

∣∣+
3T

2
log 2π

log f(y|γ, s) = −1

2
log
∣∣2πσ2

eW
−1∣∣− 1

2
(y − γ − s)> σ−2e W (y − γ − s)

log f(γ,ψ, s) = −1

2
log |2πM| − 1

2

(
γ>ψ>s>

)
D>M−1D (γ ψ s)>

where γ = (γ1, γ2, . . . , γT )>, ψ = (ψ1, ψ2, . . . , ψT )>, s = (s1, s2, . . . , sT )>, M =

matrix diagonal (σ2
b IT−J , σ

2
vIT−L, σ

2
wIT−M+1)

D =


Dγ Dγψ 0

0 Dψ 0

0 0 Ds
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Dγ =



−φJ −φJ−1 . . . . . . −φ1 1 0 0 . . . . . . 0 0

0 −φJ −φJ−1 . . . . . . −φ1 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 −φJ −φJ−1 . . . . . . −φ1 1



Dψ =



−ρL −ρL−1 . . . . . . −ρ1 1 0 0 . . . . . . 0 0

0 −ρL −ρL−1 . . . . . . −ρ1 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 −ρL −ρL−1 . . . . . . −ρ1 1



Ds =



1 1 . . . . . . . . . . . . 1 0 0 . . . . . . 0 0

0 1 1 . . . . . . . . . . . . 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 1 1 . . . . . . . . . . . . 1



Dγψ = (−IT−1 0)

with the first (J − 1) rows removed from Dγψ

A =


Σ−1 0 Σ−1

0 0 0

Σ−1 0 Σ−1
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Note that Dγ is on (T − J) x T matrix, Dψ is (T −L) x T , Dγψ is (T − J) x T, Ds

is (T −M + 1) x T , Σ−1 is (T x T ) and M is (3T x 3T ) matrix.



Chapter 6

R functions for simulating and

fitting Gaussian structural time

series models

This Chapter introduces new functions for simulating and fitting Gaussian structural

time series models in R. The reasons for developing these functions is to compare

between the simulated mean, µt, and the fitted mean, µ̂t, for Gaussian structural time

series, and to test whether the estimates of the hyperparameters of the fitted model

agrees with the true hyperparameters of the simulation. These fitting functions have

been used for fitting real data from Commandeur and Koopman (2007) in Chapter

5, and in this chapter they are used for fitting simulated data.

Gaussian structural time series models are implemented on CRAN, the Compre-

hensive R Archive Network, statistical software through the packages: dse (Gilbert,

2009), dlm (Petris et al., 2009), and KFAS (Helske, 2010), whereas exponential family

state space models are implemented in sspir package (Dethlefsen and Lundbye-

Christensen, 2006). A comparative review of the tools available in R for state space

82
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analysis is available in Tusell (2011).

In addition, StructTS() (Riply, 2002) is an R function included in the base pack-

age stats for fitting Gaussian structural time series models. It has three options,

level, trend, and BSM for fitting local level, local level and trend, local level and

seasonality (basic structural) models respectively. Petris, Petrone and Campagnoli

(2009) provide good analyses, concepts and techniques of modeling and forecasting

with dynamic linear models in a Baysian approach using the R package dlm for their

practical implementation. To the best of the author’s knowledge all these packages

apply for model fitting only not for a simulation purpose.

Sections 6.1 and 6.2 provide new simulation functions for simulating Gaussian

structural time series models. Sections 6.3 and 6.4 provide fitting functions for fitting

Gaussian structural time series models. The reason for developing the simulation

functions, is for testing the fitting functions which have been used for smoothing

Gaussian structural time series models in Chapter 5. The simulation and fitting

functions are implemented in R and the commands are given in Appendix D.

The simulation generates random values for variables in a specified probability

distribution by using the following two steps:

� Random number generation: generate a sequence of uniform random numbers

in [0,1]

� Random variate generation: transform a uniform random sequence to produce

a sequence with the desired probability distribution.

The default random number generator in R is the Mersenne-Twister, (Matsumoto

and Nishimura, 1998), which is a twisted generalised feedback shift register with

period 219937− 1 and equidistribution in 623 consecutive dimensions. The algorithm

is based on Mersenne primes, which take their names from the mathematician Marin

Mersenne who studied the prime numbers in the early 17th century.
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6.1 Local level simulation functions

6.1.1 Random walk local level order 1

In random walk local level model, the observations are assumed to be dependent

on an unobserved state vector that is generated by a random walk process, and on

Gaussian measurement error that is independent of the state vector. In local level

models, the state vector is the mean of the observations.

Let

yt = γt + et

γt = γt−1 + bt

i.e.

∆(γt) = γt − γt−1 = bt,

where et and bt are two independent Gaussian white noise series, et ∼ N(0, σ2
e),

bt ∼ N(0, σ2
b ), for t = 1, 2, . . . , T . This model can be simulated by the following

function,

mrwAll.sim(N=4000, mu=0, sige=3, sigb=1, order=1, plot=TRUE).

This produces a simulation of a random walk local level model with different or-

ders for the mean, i.e. random walk order 1, random walk order 2, random walk order

3, etc. It has six arguments which takes different inputs for different simulations,

N: the number of observations, mu: is the starting value of the mean, i.e. γ1, sige:

is the true value of the standard deviation of the observations measurement error,

sigb: is the true value of the standard deviation of the state vector innovations, or-

der: is the number of differences in the random walk, and plot=TRUE: is for plotting

both the observations and the unobserved random walk state vector (mean). Note
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that by increasing the orders in the random walk, the mean becomes more smooth,

also note that the simulations uses standard deviations of the innovations and not

variances.

Here a sequence of 4000 observations were simulated using the function mr-

wAll.sim with γ1 = 0 and hyperparameters σe = 3, σb = 1 and order 1 (order =

1). The simulated observations and random walk mean are plotted in Figure 1.1.

The simulated data is a gray color and the mean in a dark color.
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Figure 6.1: Simulation of a random walk local level with order 1, σe = 3 and σb = 1.
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Figure 6.2: Simulation of a random walk local level with order 1, σe = 10 and σb = 1.

6.1.2 Random walk local level order 2

Here we have an example for a random walk local level model with order 2, where

the simulated function is exactly the same with a different input (order=2),

mrwAll.sim(N=4000, mu=0, sige=1, sigb=.0001, order=2, plot=T).

This produces a random walk local level simulation of order 2. If the order is

increased the signal to noise ratio, λ = σ2
b/σ

2
e , should be small or the variance of the

mean vector should be small.

The simulation model is given by

yt = γt + et

γt = 2γt−1 − γt−2 + bt

∆2(γt) = ∆(∆γt) = bt,
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where ∆ is the difference operator.

Figure 6.3 gives an example simulation using the above command. A random

walk order 2 is smoother then random walk order 1, and becomes much smoother

as the order is increased.
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Figure 6.3: Simulation of a random walk local level with order 2, σe = 1 and
σb = .0001.
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6.1.3 Random walk local level order d

The simulation model is given by

yt = γt + et

∆d(γt) = bt,

where d is the order of the random walk, which can take any positive value.

This is simulated by specifying the order in the mrwAll.sim() function.

6.1.4 Random walk local level and trend

Random walk local level and trend also referred to as local linear trend model is

obtained by adding a random slope or a drift to local level model. Local linear

trend contains two state equations, one equation for modelling the mean level, and

the other equation for modelling the slope. In regression analysis the slope is fixed,

whereas in state space models the slope is stochastic, allowed to change over time.

The model is given by

yt = γt + et

γt = γt−1 + ψt + bt

ψt = ψt−1 + dt

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), dt ∼ NO(0, σ2
d). The following function is

used to simulate the local linear trend model,

mrwrd.sim(N=4000, mu=0, d=1, sige=50, sigb=.01, sigd=.09, plot=T).

The function mrwrd.sim() produces a simulation of a local level and trend model.
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It has the same arguments as mrwAll.sim() in addition to two input arguments,

d: for the starting value of the drift, i.e. ψ1, and sigd: for the true value of the

standard deviation of the drift.

In this example a sequence of 4000 observations were simulated using the function

mrwrd.sim() with initial value for the mean equal to 0, i.e. γ1 = 0, and initial value

for the drift is equal to 1, i.e. ψ1 = 1, and initial values for the hyperparameters

σe = 50, σb = .01, σd = .09. The simulation has two plots, one plot for the

observations with local mean and slope altogether, and a second plot for the slope

only, as shown in Figure 6.4.
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Figure 6.4: Simulation of random walk local level and trend.
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6.1.5 Autoregressive local level

In autoregressive local level model the observations are driven by an unobserved

autoregressive state vector instead of a random walk vector. This model has a big

advantage in extracting a stationary signal for the mean from stationary observa-

tions.

The model is given by

yt = γt + et

γt =
J∑
j=1

φjγt−j + bt

where et ∼ NO(0, σ2
e) and bt ∼ NO(0, σ2

b ).

The following functions simulate the autoregressive local level models of order 1

and 2 respectively,

mar.sim(N=1000, mu=0, sige=2, sigb=.5, phi=c(.5), plot=T)

mar.sim(N=1000, mu=0, sige=2, sigb=.5, phi=c(.5,.4), plot=T).

This produces two autoregressive local level simulations for a number of observa-

tions. The function mar.sim() has the same arguments as mrw.sim() with an extra

argument for the ar parameter (phi), for the mean which can take more then one

value depending on the order of the autoregressive model.

In the above examples two series of 1000 observations were simulated using the

function mar.sim() with γ1 = 0 and hyperparameters σe = 2, σb = .5, φ1 = .5 for

an autoregressive local level with order 1, and γ1 = 0 and σe = 2, σb = .5, φ1 = .5,

φ2 = .4 for an autoregressive local level with order 2.
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Figure 6.5: Simulation of an AR(1) model, φ1 = .5
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Figure 6.6: Simulation of an AR(2) model, φ1 = .5, φ2 = .4
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6.2 Seasonality simulation functions

Seasonality models applies when there is a recurring pattern in time series data,

either daily, monthly or quarterly patterns. This regular pattern is refereed to as a

seasonal effect. In structural time series models, the seasonal effect can be modelled

or extracted by adding a seasonal state vector to local level model.

6.2.1 Seasonality

The seasonality model is defined as

yt = st + et

st = −
M−1∑
m=1

st−m + wt

where et ∼ NO(0, σ2
e), wt ∼ NO(0, σ2

w), and st is the seasonal effect.

The following function simulates the seasonality model,

mseas.sim(N=240, mu=0, sige=.1, sigw=.1, init=NULL, sigI=1,

frequency=12, plot=T).

This function produces a simulation of the seasonality model. The inputs are

the initial values for the seasonal effects, i.e. s1, s2, . . . , sM−1 were, by default (since

init=NULL), randomly generated from a normal distribution with mean 0 and stan-

dard deviation 1 (since sigI=1). sige: is the true value of the standard deviation

of the observations measurement error, sigw: is the true value of the standard de-

viation of the seasonal vector innovations. Frequency=4 for a quarterly data. For

monthly data, the input is Frequency=12.

In example above a sequence of 240 monthly observations were simulated using

the function mseas.sim() with two hyperparameters σe = .1, and σw = .1. The
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Figure 6.7: Simulation of seasonality of monthly observations.

simulation function returns a plot with y: the seasonality, as shown in Figure 6.7

6.2.2 Random walk local level and seasonal

The model is given by

yt = γt + st + et

γt = γt−1 + bt

st = −
M−1∑
m=1

st−m + wt

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), and wt ∼ NO(0, σ2
w), where γt is the random

walk local level and st is the seasonal effects.

The following function simulates the random walk local level and seasonal model,

mrw.seas.sim(N=240, mu=1, sige=1, sigb=.4, sigw=.04, init=NULL,

sigI=1, frequency=4, plot=T).

This function produces a simulation of the random walk local level and seasonal.
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The inputs are the same as mrwAll.sim(), with additional inputs for the random

walk local level and seasonal, which are the standard deviation of the seasonal ef-

fects, sigw= σw, the initial values for the seasonal effects, i.e. The initial values for

the seasonal effects, i.e. s1, s2, . . . , sM−1 were, by default (since init=NULL), ran-

domly generated from a normal distribution with mean 0 and standard deviation 1

(since sigI=1). Frequency=4 for a quarterly data. For monthly data, the input is

Frequency=12.

In example above a sequence of 240 quarterly observations were simulated using

the function mrw.seas.sim() with γ1 = 1 and three hyperparameters σe = 1, σb = .4

and σw = .04. The simulation function returns a plot with y: the observations, T:

random walk local level, S: seasonality, e: irregular component of the observations,

as shown in Figure 6.8
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Figure 6.8: Simulation of random walk and seasonality of quarterly observations.
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6.2.3 Autoregressive local level and seasonal

The model is given by

yt = γt + st + et

γt =
J∑
j=1

φjγt−j + bt

st = −
M−1∑
m=1

st−m + wt

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), and wt ∼ NO(0, σ2
w), where γt is the autore-

gressive local level and st is the seasonal effects.

The following function simulates the autoregressive local level and seasonal model,

mar.seas.sim(N=240, mu=0, sige=1, sigb=.2, sigw=.05, phi=c(.5),

init=NULL, sigI=1, frequency=4, plot=T)

This gives the autoregressive and seasonality simulation. This function is the

same as the random walk and seasonality simulation function mrw.seas.sim(),

but with an extra input parameter phi for the ar model. The current function

mar.seas.sim() allows order up to and including three.

In this example a sequence of 240 quarterly observations were simulated using

the function mrw.seas.sim with γ1 = 0 and three hyperparameters σe = 1, σb = .2,

σw = .05 and φ = 0.5. The initial values for the seasonal effects, i.e. s1, s2, . . . , sM−1

were, by default (since init=NULL), randomly generated from a normal distribution

with mean 0 and standard deviation 1 (since sigI=1).

The simulation function returns a plot with y: the observations, T: random walk

local level, S: seasonality, e: irregular component of the observations, as shown in

Figure 6.9
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Figure 6.9: Simulation of autoregressive and seasonality quarterly observations.
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6.3 Local level fitting functions

6.3.1 Random walk local level

The function to fit the random walk local level model in R is

RW(y, weights=rep(1,length(y)), order=1, sig2e=1, sig2b=1, plot=FALSE,

sig2e.fix = FALSE, sig2b.fix=FALSE, penalty=FALSE, delta=c(0.01, 0.01),

shift=c(0,0)).

The model fitted is given by

yt = γt + et

∆d(γt) = bt,

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), and d is the order of the random walk, which

can take any positive value.

The RW() function fits a random walk local level model, returns and also plots the

fitted values of the mean (i.e. γ̂t for t = 1, 2, . . . , T ) for the fitted model and estimates

the hyperparameters (σ2
e and σ2

b ). It returns the estimated hyperparameters, degrees

of freedom, global deviance, AIC, SBC, and marginal deviance. By calling plot(m1)

where m1 is the fitted model, it gives the summary of the randomised quantile

residuals along with the QQ plot.

The inputs of the function are: y a vector of observations; and if plot=TRUE, it

plots the data along with the fitted mean. The other arguments are set by default but

they can be changed, weights: prior weights for the observations, order: the order

of the random walk, i.e. the number of differences of γt in the random walk, sig2e:

the initial value for the variance in the observations error measurements (σ2
e), sig2b:
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the initial value for the variance in the state vector innovations (σ2
b ), sig2e.fix,

sig2b.fix: are used when the variances are fixed and not estimated. The optional

penalty arguments, delta and shift, are penalties on the hyperparameters, and

used when we maximize the Q function, for avoiding local optima incase the surface

of the maximum likelihood of the Q function is flat. Both penalties can be used for

tilting the surface of the maximum likelihood of the Q function. These options are

mainly used for non-Gaussian structural time series observations.

The following function:

RW.s(y, weights=rep(1,length(y)), order=1, sig2e=1, sig2b=1,

sige.fix=FALSE, plot=FALSE)

is a special case of the RW() function, without penalties on the hyperparameters.

It fits a random walk local level model, and returns the fitted values and estimated

hyperparameters. If the fit is just a basic fit without options (penalty, shift and

delta), then calling the function RW.s(y,plot=T) is adequate.
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Example of fitting the simulated data in Figure 6.1

In this example the simulated data in Figure 6.1 is fitted with the RW() function and

the fitted hyperparameters are compared with the true hyperparameters.

The R commands are:

set.seed(11111)

y1 <- mrwAll.sim(N=4000, mu=0, sige=3, sigb=1, order=1, plot=TRUE)

m1 <- RW(y1,plot=T)

The fitted mean of model m1 is identical to the simulated true mean in Figure

6.1, as shown in Figure 6.10, and the fitted hyperparameters of model m1 agrees with

the true hyperparameters, as shown in Table 6.1.

Table 6.1: The true hyperparameters and fitted hyperparameters of model m1.
Data Random walk local level σe σb

y1 true hyperparameters 3 1
fitted hyperparameters 3.0028 1.019

Time

y

0 1000 2000 3000 4000

−40
−20

0
20

40
60

Figure 6.10: Fitted simulated data in Figure 6.1.
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Example of fitting the simulated data in Figure 6.2

In this example the simulated data in Figure 6.2 is fitted with the RW() function and

the fitted hyperparameters are compared with the true hyperparameters.

set.seed(23322)

y2 <- mrwAll.sim(N=4000, mu=0, sige=10, sigb=1, order=1, plot=TRUE)

m2 <- RW(y2,plot=T)

The fitted mean of model m2 is identical to the simulated true mean in Figure

6.2, as shown in Figure 6.11, and the fitted hyperparameters of model m2 agrees with

the true hyperparameters, as shown in Table 6.2.

Table 6.2: The true hyperparameters and fitted hyperparameters of model m2.
Data Random walk local level σe σb

y2 true hyperparameters 10 1
fitted hyperparameters 9.9523 1.022

Time

y

0 1000 2000 3000 4000

−40
−20

0
20

40
60

80

Figure 6.11: Fitted simulated data in Figure 6.2.
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6.3.2 Autoregressive local level

The function to fit the autoregressive local level model in R is

AR(y, weights=rep(1,length(y)), order=3, sig2e=1, sig2b=1, phi1=0.5,

phi2=0.5, phi3=0.5, delta=0.1, plot=FALSE)

The model fitted is given in Section 6.1.5.

AR() fits an autoregressive local level model and returns both the fitted values

for ar local level model and estimates the hyperparameters of the fitted model. the

delta is an optional penalty with the same purpose as in RW().

6.3.3 Random walk local level and trend

The function to fit the random walk local level and trend model in R is

rw.tr(y, weights=rep(1,length(y)), sig2e=1, sig2b=2, sig2d=1,

plot=FALSE)

The model fitted is given in Section 6.1.4.

rw.tr() returns both the fitted values for random walk local level with trend

and estimates the hyperparameters of the model.

6.3.4 Random walk local level with random coefficient of an

explanatory variable

The function to fit the random walk local level with a random coefficient of an

explanatory variable model in R is

rw.exp(y, x, weights=rep(1,length(y)), sig2e=1, sig2b=1, sig2v=1,

plot=FALSE)

The model fitted is given by
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yt = γt + βtxt + et (6.1)

γt = γt−j + bt

βt = βt−1 + vt

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), and vt ∼ NO(0, σ2
v), where γt is the random

walk local level and xt is the explanatory variable.

This function needs two time series inputs, y for the observations, and x for the

explanatory variable values. In rw.exp() function the coefficient βt of the explana-

tory variable changes over time. It models the effect of the explanatory variable on

the time series observations. The function returns the fitted values for the local level

model and the fitted values of the coefficient of the explanatory variable, and esti-

mates the hyperparameters of the model. The argument sig2v is the initial value

of the variance for the random error in the coefficient βt , i.e. σ2
v .

6.4 Seasonality fitting functions

6.4.1 Seasonality

The function to fit the seasonal effect model in R is

seas(y, weights=rep(1,length(y)), sig2e=1, sig2w=1, frequency=4,

plot=FALSE)

The model fitted is given in Section 6.2.1.

This fits the seasonal effect model. The argument frequency represents the

frequency of the observations, where the time series is daily, monthly or quarterly

observations.
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6.4.2 Random walk local level and seasonal

The function to fit the random walk local level and seasonal model in R is

rw.seas(y, weights=rep(1,length(y)), sig2e=1, sig2b=1, sig2w=1,

frequency=4, plot=FALSE).

The model fitted is given in Section 6.2.2.

This fits the random walk local level with seasonal model. The argument fre-

quency represents the frequency of the observations, where the time series is for

example daily, monthly or quarterly observations. If the data has a quarterly sea-

sonal effect then we set frequency=4, for daily frequency=7 and for monthly fre-

quency=12.

6.4.3 Random walk local level with trend and seasonal

The function to fit the random walk local level with trend and seasonal model in R

is

rw.tr.seas(y, weights=rep(1,length(y)), sig2e=1, sig2b=1, sig2d =1,

sig2w=1, frequency=4, plot=FALSE)

The model fitted is given by

yt = γt + st + et

γt = γt−1 + ψt + bt

ψt = ψt−1 + dt

st = −
M−1∑
m=1

st−m + wt

where et ∼ NO(0, σ2
e), bt ∼ NO(0, σ2

b ), dt ∼ NO(0, σ2
d), and wt ∼ NO(0, σ2

w) where



6.4. SEASONALITY FITTING FUNCTIONS 105

γt is the random walk local level, ψt is the stochastic trend, and st is the seasonal

effect.

This gives estimation and fitting of the random walk local level with trend and

seasonality. It returns and plots (if plot=TRUE) the fitted values for the local level,

for stochastic trend and for seasonal effects.

6.4.4 Autoregressive local level and seasonal

The function to fit the autoregressive walk local level and seasonal model in R is

ar.seas(y, weights=rep(1,length(y)), order=3, sig2e=1, sig2b=1,

sig2w=.5, phi1=0.5, phi2=0.5, phi3=0.5, frequency=4, plot=FALSE)

The model fitted is given in Section 6.2.3

This gives estimation and fitting of autoregressive local level with seasonality.

The current function ar.seas() only allows order up to and including three.

6.4.5 Autoregressive local level with trend and seasonal

The function to fit the autoregressive local level with trend and seasonal model in R

is

ar.tr.seas(y, weights=rep(1,length(y)), order=1, sig2e=1, sig2b=1,

sig2d=1, sig2w=1, phi=0.5, plot=TRUE)

The model fitted is given by



6.4. SEASONALITY FITTING FUNCTIONS 106

yt = γt + st + et (6.2)

γt =
J∑
j=1

φjγt−j + ψt + bt

ψt =
L∑
l=1

ρlψt−l + dt

st = −
M−1∑
m=1

st−m + wt

This fits an ar local level with trend and seasonality model and returfs the fitted

values for local level, trend and seasonality and estimates the hyperparameters of

each component. The current function ar.seas() only allows order up to and

including three.

Note:

The fitted mean µ̂t (with or without trend and seasonality) given by the fitting

functions are exactly identical to the simulated mean µt (with or without trend and

seasonality) given by the simulation functions, for this reason the author did not

plot the fitted mean because is very identical to the simulated mean given in the

simulation examples.



Chapter 7

GEST process and simulation

7.1 Introduction

This Chapter introduces the theory of a new stochastic process called the Generalized

Structural (GEST) stochastic process, provides new simulated examples of the GEST

process in R, fitting the non-Gaussian examples with the GEST model, and derives

two theorems for the properties of the GEST process.

Current Gaussian structural time series models provide dynamic linear models

for the mean of the conditional normal distribution, or provide a separate model

for stochastic volatility. Non-Gaussian structural time series models provide a gen-

eralized dynamic linear model for the mean of the conditional exponential family

distributions, or a stochastic volatility model.

This chapter introduces a distributional stochastic process1 for Gaussian and

1A Stochastic process involves a random variable, e.g. Yt, which is time (or space) varying.
The main properties for distinction between processes are

� the state space as the set of all possible observed values. This space can be continuous or
discrete.

� the index t can be continuous or discrete.

� the nature of dependence of the random variables, Yt

107
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non-Gaussian continuous and discrete (count) time series data, including seasonal

time series data. The generalized structural time series (GEST) process extends

the traditional Gaussian structural time series models by explicitly modelling the

conditional (i.e. time varying) location, scale, skewness and kurtosis parameters

jointly. The method of estimation of the hyperparameters is demonstrated in the

next chapter.

The GEST process is a stochastic process which describes a time varying location

(e.g. mean), time varying scale (e.g standard deviation), and time varying shape

(e.g skewness and kurtosis parameters) as a random walk or autoregressive process

including seasonality.

The parameters of the conditional distribution are treated as signals, for example,

if the conditional distribution of the process is Gaussian, it means that the data has

two unobserved signals, a location signal and a scale signal, whereas for the skew

Student t distribution, there are four unobserved signals, a location signal, a scale

signal and two shape (skewness and kurtosis) signals.

This chapter defines the GEST stochastic process, gives its properties and sim-

ulates Gaussian and non-Gaussian structural time series models. The next chapter

introduces the GEST model for the signals of the assumed conditional distribution of

the process. The algorithm for fitting the GEST model, which is described in detail

in the next chapter, is based on the RS algorithm for fitting generalized additive

models for location, scale and shape (Rigby and Stasinopoulos 2005).

7.2 The GEST process

The GEST process assumes that the random variable Yt is derived from a probability

density function fYt(yt|θt) conditional on θt where θt
> = (θ1,t, . . . , θK,t) is a vector
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of distribution parameters for fYt().

Hence Yt|θt ∼ D(θt), for conditional distribution D, where each θk,t is generated

by a random process given by

gk(θk,t) = βk,0 + γk,t (7.1)

for t = 1, 2, . . . , T , where

γk,t =

Jk∑
j=1

φk,jγk,t−j + bk,t (7.2)

for t = J+1, J+2, . . . , T , where, for k = 1, 2, . . . , K, function gk() is a specified link

function, γk,t for t = 1, 2, . . . , T is an individual structural time series random process

and bk,t are random errors, independent from each other mutually and serially, and

normally distributed with expected values equal to zero and variance σ2
bk

. Thus

bk ∼ Nn−Jk(0, σ
2
bk

In−Jk), where b>k = (bk,Jk+1, . . . , bk,T ) for k = 1, 2, . . . , K.

There are several important points to be made here about a GEST process.

� The probability distribution fYt(yt|θt) can be a continuous or discrete distri-

bution.

� For most practical applications, K, the number of parameters θt in the dis-

tribution is less than or equal to four. These four parameters are denoted

as θt = (µt, σt, νt, τt) where µt is a time-varying location parameter, σt is a

time-varying scale parameter and νt and τt are time-varying shape param-

eters, which may be related to the time-varying skewness and time-varying

kurtosis of the distribution respectively.

� The link function gk() is used to ensure that the individual parameter is defined

on a permissible range. For example, a log link for sigma, i.e. g2(σt) =
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log(σt) = γ2,t, will ensure that σt = exp(γ2,t) is always positive.

� The φk,j in equation (7.2) are autoregressive parameters for the individual

predictors γk,t for k = 1, 2, 3, 4. Note that specific fixed values for φk,j for

j = 1, 2, . . . , Jk replaces autoregressive terms with random walk terms for γk,t.

For example setting Jk = 1 and φk,1 = 1 gives a random walk of order 1, while

setting Jk = 2, φk,1 = 2 and φk,2 = −1 gives a random walk of order 2, for

k = 1, 2, 3, 4.

� The process can be extended to include a seasonal effect (with M seasons)

gk(θk,t) = βk,0 + γk,t + sk,t

where γk,t is given by (7.2) and

sk,t = −
M−1∑
m=1

sk,t−m + wt

� Note that the generation of the GEST process requires four sets of values:

(i) the constant parameters βk,0 for k = 1, 2, . . . , K.

(ii) the AR parameters φk,j for j = 1, 2, . . . , Jk and k = 1, 2, . . . , K,

(iii) the standard deviations σbk of the white noises since bk,t ∼ N
(
0, σ2

bk

)
for

k = 1, 2, . . . , K,

(iv) the initial starting values for the distribution parameters.

The GEST process is very flexible and can take familiar patterns of real data

situation. The GEST process can be non-stationary and potentially explosive by

nature. This is not in general bad, since many physical, economic and financial

phenomena variables are themselves explosive. However, some statistical properties
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are difficult to establish unless additional assumptions about the nature of the GEST

process are made.

7.3 Properties of the GEST process

Two theorems are introduced here to show that under certain circumstances the

GEST process is stationary with well defined marginal mean and variance. In par-

ticular note Theorem 1 assumes: i) identity link function for µt and ii) log link

function for σt. Theorem 2 assumes: i) log link function for µt and : ii) log link

function for σt:

7.3.1 Theorem 1

Theorem 1 : Let µt and cσt (where c is a known constant) be, respectively, the condi-

tional mean and standard deviation (assumed to exist) of the distribution Yt|µt, σt, νt, τt ∼

D(µt, σt, νt, τt) where µt = β1,0 + γ1,t and log σt = β2,0 + γ2,t and where

γk,t =

Jk∑
j=1

φk,jγk,t−j + bk,t

for k = 1, 2, where b1,t and b2,t are mutually and serially independently normally

distributed with mean 0 and variances σ2
b1

and σ2
b2

respectively and where

γ1,t = Φ1(B)−1b1,t = ψ1(B)b1,t

γ2,t = Φ2(B)−1b2,t = ψ2(B)b2,t,
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assuming Φ1(B) and Φ2(B) are invertible, then the GEST process has a stationary

mean and variance given by

E[Yt] = β1,0

V [Yt] = S1σ
2
b1

+ c2 exp
(
2β2,0 + 2S2σ

2
b2

)
respectively, where Sk = 1 +

∑∞
j=1 ψ

2
k,j for k = 1, 2 and where ψk(B) = Φk(B)−1 =

1+ψk,1B+ψk,2B
2+ . . . and provided Φk(B) is invertible, where Φk(B) = 1−φk,1B−

φk,2B
2 − . . .− φk,JkBJ and B is the backshift time operator, Byt = yt−1.

Appendix C1 gives the proof for Theorem 1. Note that Theorem 1 is not affected

by the form of the model for νt and τt. Also Theorem 1 applies to any distribution D

in which µt and cσt are respectively the mean and standard deviation of D. In par-

ticular Theorem 1 applies to the normal, NO(µ, σ), skew Student t, SST (µ, σ, ν, τ),

Power Exponential, PE(µ, σ, ν), t-family parameterized so σ is the standard devi-

ation, TF2(µ, σ, ν), and Johnson’s Su, JSU(µ, σ, ν, τ), distributions, where c = 1.

It also applies to the logistic, LO(µ, σ), Gumbel, GU(µ, σ), and Reverse Gumbel,

RG(µ, σ), where c 6= 1 (see Stasinopoulos et al., 2008, for the parametrization of the

probability density functions of the distributions).

7.3.2 Theorem 2

Theorem 2 : Let the distribution of Yt|µt, σt, νt, τt ∼ D(µt, σt, νt, τt) have a mean µt

and variance v(µt, σt) where log µt = β1,0 + γ1,t, and log σt = β2,0 + γ2,t and where

γ1,t = Φ1(B)−1b1,t = ψ1(B)b1,t

γ2,t = Φ2(B)−1b2,t = ψ2(B)b2,t,
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as defined in Theorem 1, assuming Φ1(B) and Φ2(B) are invertible, then the follow-

ing give marginal means and variances of the related process:

a) E[Yt] = E[µt] = exp
(
β1,0 + 1

2
S1σ

2
b1

)
b) V [Yt] = V [µt] + E[v(µt, σt)]

c) V [µt] = exp (2β1,0)
[
exp

(
2S1σ

2
b1

)
− exp

(
S1σ

2
b1

)]
d) E[µrt ] = exp

(
rβ1,0 + 1

2
r2S1σ

2
b1

)
e) E[σrt ] = exp

(
rβ2,0 + 1

2
r2S2σ

2
b2

)
for r > 0.

Appendix C2 gives the proof for Theorem 2 together with a corollary for Theorem

2 providing the marginal variance of Yt for four conditional distributions for Yt, the

negative binomial type I and type II, NBI(µ, σ), NBII(µ, σ), the gamma, GA(µ, σ),

and inverse Gaussian, IG(µ, σ), distributions (see Stasinopoulos et al., 2008, for the

parametrization of the probability (density) functions of the distributions).

7.4 Simulation of the GEST process

This section provides simulations of the GEST process in R, for Gaussian and non-

Gaussian continuous and discrete (count) time series data, with conditional distri-

butions for up to four parameters. Any of the 80 distributions in the gamlss package

in R, (Stasinopoulos and Rigby, 2007), can be used to model the conditional distri-

bution of the response variable. Here, for illustration, the normal, Poisson, negative

binomial type 1, Student t and skew Student t conditional distributions are consid-

ered. The fitting of the GEST process, including estimation of the hyperparameters,

is presented in the next chapter.



7.4. SIMULATION OF THE GEST PROCESS 114

7.4.1 GEST process with normal distribution

For the conditional normal distribution, the simulations of the GEST process are

a generalization of the simulations presented in the previous chapter, because the

GEST process provides dynamic linear models for both the mean and the standard

deviation jointly. The advantage of the GEST process is the ability of generating

different scenarios of a normal stochastic process with both dynamic mean and dy-

namic standard deviation, as a random walk or autoregressive process, including

seasonality.

Gaussian random walk local level model

The Gaussian random walk local level model is defined as:

yt = γt + et

γt = γt−1 + bt

where et and bt are two independent Gaussian white noise, where et ∼ NO(0, σ2
e)

and bt ∼ NO(0, σ2
b ). This model can be written in a distributional form as:

Yt|µt, σ ∼ NO(µt, σ)

µt = γt

γt = γt−1 + bt

Note that, in Gaussian local level models the variance is assumed constant,

whereas in the GEST process the variance can be modelled explicitly by the log
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of standard deviation.

Let the parametric conditional distribution D of the response variable Yt be the

Gaussian distribution and assume an identity link for the mean (µt) and a log link

for the standard deviation (σt).

GEST process for Yt with random walk order 1 local level for

µt and a constant for log(σt)

The GEST process for Yt with random walk order 1 local level for the mean (µt)

and a constant for the log standard deviation (log(σt)) is defined as:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0 + γ1,t

log(σt) = β2,0

γ1,t = γ1,t−1 + b1,t (7.3)

for t = 1, 2, . . . , T , where b1,t ∼ NO(0, σb). Note that, in a random walk process the

constant β1,0 is confounded with the initial value of the random walk γ1,1. In the

autoregressive (ar) process the constant β1,0 is the reversion line around which the

ar process moves as a stationary process, whereas the random walk process is not a

stationary process, and its variance increases as the time increases.

Also

σ̂Yt = exp(β̂2,0)× σ̂e = σ̂t × σ̂e,

where σ̂e is the fitted standard deviation for the errors in the mean local level model.

Below is the first example of the GEST stochastic process for 1000 random ob-
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servations, generated by assuming that the conditional distribution fYt(yt|θt) of the

process is Gaussian NO(µt, σt). The mean parameter of the distribution of the

NO(µt, σt), for t = 1, 2, . . . , T , is simulated using a random walk order one process.

Note that, in the simulation function gest.sim() of the GEST process, N: is the

number of observations, mu.init: is the initial value of the mean process, which

is the value for β1,0 confounded with the initial value of the random walk γ1,1,

sigma.init: is the initial value of the sigma process, which is the value for σt =

exp(β2,0), mu.sigb: is the true value of the standard deviation for the errors in the

mean local level, and sigma.sigb: is the true value of the standard deviation for

the errors in the sigma local level. In this example, b1,t ∼ NO(0, .1) and sigma is

fixed σt = 1 and log(σt) = β2,0 = 0 in model (7.3).

The output from plot=TRUE in the above command is given in Figure 7.1, which

gives, for t = 1, 2, . . . , T , the simulated series yt together with: the simulated mean

process µt and its corresponding predictor process η1,t = µt [since µ has the default

identity link for a NO(µ, σ) distribution] labelled mu.eta in Figure 7.1, the simulated

sigma process σt = exp(β2,0), a constant in this example, and its corresponding

predictor process η2,t = log(σt) = β2,0 [since σ has the default log link for a NO(µ, σ)

distribution] labelled sigma.eta in Figure 7.1.

The R commands for simulating Figure 7.1 is given in Appendix D.
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Figure 7.1: A GEST process simulation from a normal distribution with a constant
sigma.
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GEST process for Yt with random walk order 1 local level for

µt and random walk order 1 local level for log(σt)

The GEST process for Yt with random walk order 1 local level for the mean (µt) and

random walk order 1 local level for the log standard deviation (log(σt)) is defined

as:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0 + γ1,t

log(σt) = β2,0 + γ2,t

where

γ1,t = γ1,t−1 + b1,t

γ2,t = γ2,t−1 + b2,t.

Below is the second example of a GEST stochastic process by assuming that the

fYt(yt|θt) of the process is Gaussian NO(µt, σt) and both µt and log(σt) follow a

random walk order 1 process. We simulate each of the distribution parameters of

the NO(µt, σt) for t = 1, 2, . . . , n, using a random walk order one process, where

b1,t ∼ N(0, 0.1) and b2,t ∼ N(0, 0.05).

The R commands for simulating Figure 7.2 is given in Appendix D, and the

resulting output from plot=T is given in Figure 7.2.
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Figure 7.2: A GEST process simulation from a normal distribution with stochastic
(random walks order 1) mu and sigma.
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GEST process for Yt with an autoregressive order 1 local level

for µt and random walk order 1 local level for log(σt)

The GEST process for Yt with an autoregressive order 1 local level for the mean

(µt) and random walk order 1 local level for the log standard deviation (log(σt)) is

defined as:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0 + γ1,t

log(σt) = β2,0 + γ2,t

where

γ1,t = φγ1,t−1 + b1,t

γ2,t = γ2,t−1 + b2,t.

Below is the third example of a GEST stochastic process for 1000 observations

generated by assuming that the fYt(yt|θt) of the process is Gaussian NO(µt, σt). The

mean (µt) of the distribution parameters of theNO(µt, σt), for t = 1, 2, . . . , T , follows

an autoregressive order one process, and the log standard deviation (log(σt)) follows

a random walk order 1 process. The additional input values in the gest.sim() are

the value for φ, the ar(1) parameter, mu.phi, and mu.type: the type of the process

from which the mean is generated. Hence, b1,t ∼ N(0, 0.1), b2,t ∼ N(0, 0.05), φ = 0.5

and mu.type="AR".

The R commands for simulating Figure 7.3 is given in Appendix D, and the
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resulting output from plot=T is given in Figure 7.3.
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Figure 7.3: A GEST process simulation from a normal distribution with ar(1) for
the mean level and rw(1) for log standard deviation.
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GEST process for Yt with a random walk local level and sea-

sonal for µt and a constant for log(σt)

The GEST process for Yt with a random walk local level and seasonal model for the

mean (µt) and a constant log standard deviation (log(σt)) is defined as:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0 + γ1,t + s1,t

log(σt) = β2,0

where

γ1,t = γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt.

Below is the fourth example of a GEST stochastic process for 240 monthly ob-

servations generated by assuming that the fYt(yt|θt) of the process is Gaussian

NO(µt, σ). The mean is simulated using a random walk order 1 local level and

seasonal process, and log standard deviation is constant. The additional input val-

ues in the gest.sim() are mu.sigS: the true value of the standard deviation for the

errors in the seasonal process, frequency: is the recurring pattern of the data, if

the observations are quarterly, then frequency=4, daily is 7, and monthly is 12, and

mu.type: the type of the process from which the mean is generated from. Hence,

b1,t ∼ N(0, 0.1), wt ∼ N(0, 0.01), frequency=12, and mu.type="levelSeasonal".

The R commands for simulating Figure 7.4 is given in Appendix D, and the
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resulting output from plot=T is given in Figure 7.4.
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Figure 7.4: A GEST process simulation from a normal distribution with local level
and seasonal for the mean and a constant for log standard deviation.
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GEST process for Yt with a random walk local level and sea-

sonal for µt and a random walk order 1 local level for log(σt)

The GEST process for Yt with a random walk local level and seasonal model for the

mean (µt) and a random walk order 1 local level for log standard deviation log(σt)

is defined as:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0 + γ1,t + s1,t

log(σt) = β2,0 + γ2,t

where

γ1,t = γ1,t−1 + b1,t

γ2,t = γ2,t−1 + b2,t

s1,t = −
M−1∑
m=1

s1,t−m + wt

Below is the fifth example of a GEST stochastic process for 240 monthly observa-

tions generated by assuming that the fYt(yt|θt) of the process is Gaussian NO(µt, σt).

The mean is simulated using a random walk order 1 local level and seasonal pro-

cess and the log standard deviation is simulated with a random walk order 1 local

level, where b1,t ∼ N(0, 0.1), b2,t ∼ N(0, 0.06), wt ∼ N(0, 0.01), frequency=12, and

mu.type="levelSeasonal".

The R commands for simulating Figure 7.5 is given in Appendix D, and the

resulting output from plot=T is given in Figure 7.5.
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Figure 7.5: A GEST process simulation from a normal distribution with rw(1) local
level and seasonal for the mean and rw(1) for log standard deviation.
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7.4.2 GEST process with Poisson distribution

The Poisson distribution was defined by the French mathematician Simeon D. Pois-

son (1781-1840). The sample space of a Poisson distribution is the set of non-negative

integers. More specifically, let Y be a random variable, which is Poisson distributed,

denoted as Y ∼ PO(µ). The probability density function of the random variable Y

is defined as:

f(y) = P [Y = y] = e−µ
µy

y!
, µ > 0,

where y = 0, 1, 2, ....

The Poisson distribution plays a similar central role for discrete distributions as

the normal distribution for continuous distributions. It is used when events occur

randomly in a time interval or in a given space, in the analysis of count data.

From Lindsey (1993), a Poisson Process2 is a stochastic process, where the

response is treated as an independent Poisson variable, which is time varying. In

the Poisson process the response variable is the count of events per unit of time that

occur randomly and independently. The GEST Poisson process is doubly stochastic

in discrete time.

2The properties that characterize a Poisson process are the following:

� The probability of an event in (t, t + δt) is wδt + o(δt); that is, the probability of an event
occurring in a small interval is proportional to its length

� The occurrence of events in (t, t+δt) is independent of what happens before t; the occurrence
of events in disjoint intervals are independent

� The probability of more than one event occurring in (t, t + δt) is o(δt); the probability of
re-occurrence of the event in a small interval is insignificant.

Note that the time intervals between events in a Poisson process follow the exponential distri-
bution. Assume a random variable Nt counts the number of events in (0,t). This variable follows
a Poisson distribution with mean µ = E(Nt) = w t, where w is called intensity or rate and in this
case is constant. If the rate w is time varying, i.e. w(t), then it is referred as nonhomogeneous
Poisson process. In addition, if w(t) is stochastic it is called doubly stochastic or a Cox
Process.
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Let the parametric conditional distribution D of the response variable Yt be the

Poisson distribution and assume a log link for the mean (µt). The GEST Poisson

process for Yt with random walk local level is defined as:

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t

γ1,t = γ1,t−1 + b1,t

Below is an example of the GEST stochastic process for 1000 random obser-

vations, generated by assuming that the conditional distribution fYt(yt|θt) of the

process is Poisson PO(µt). The log mean (log(µt)) of the distribution PO(µt) for

t = 1, 2, . . . , T is simulated using a random walk order one process.

Figure 7.6 plots, for t = 1, 2, . . . , 1000, the simulated process yt, the simulated

mean µt, and the simulated mean predictor η1,t = log(µt) (labelled mu.eta). The

simulated process yt is also fitted using the GEST model. Figure 7.8 shows the

simulated mean µt in gray and the fitted µt in red.

Figure 7.8 shows the simulated time-varying mean, log(µt), for the GEST Poisson

process (gray line) and the fitted GEST model (red line) for this process.

The R commands for simulating Figure 7.6 is given in Appendix D, the resulting

output from plot=T is given in Figure 7.6, and the fitted GEST process with the

GSET model is given in Figure 7.8.
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Figure 7.6: A GEST process simulation from a Poisson distribution
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Figure 7.8: The simulated mean mut of yt (in gray) and the fitted GEST model for
the µt (in red).
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7.4.3 GEST process with negative binomial type I distribu-

tion

The negative binomial type I distribution (NBI) is a mixed Poisson distribution

obtained as the marginal distribution of Y when Y |δ ∼ PO(µδ) and δ ∼ GA(1, σ
1
2 ),

i.e. δ has a gamma distribution with mean 1 and scale parameter σ
1
2 (and hence has

dispersion σ). The negative binomial distribution can be highly positively skewed,

unlike the Poisson distribution, which is close to symmetric for moderate µ and even

closer as µ increases. The extra σ parameter allows the variance to change for a

fixed mean, unlike the Poisson distribution for which the variance is fixed equal to

the mean. Hence the negative binomial allows modelling of the variance as well as

of the mean.

The probability function of the negative binomial distribution type I, denoted

here as NBI(µ,σ), is given by

pY (y|µ, σ) =
Γ(y + 1

σ
)

Γ( 1
σ
)Γ(y + 1)

(
σµ

1 + σµ

)y (
1

1 + σµ

)1/σ

for y = 0, 1, 2, ..., where µ > 0 and σ > 0.

The mean of Y is E(Y ) = µ and the variance of Y is V ar(Y ) = µ+ σµ2. (From

Stasinopoulos et al. (2013), p 168 and p 222).

The sigma is the dispersion of the negative binomial type I distribution, if the

sigma is equal to zero, the NBI is identical to Poisson, if the sigma is greater than

zero, there is an over-dispersion in the data.

Let the parametric conditional distribution D of the response variable Yt be the

negative binomial type I distribution and assume a log link for the mean, µt, and a

log link for σt.
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The GEST process for Yt with a random walk order 1 local level model for the

log mean (log(µt)) and a random walk order 1 local level model for the log sigma

(log(σt)) is defined as:

Yt|µt, σt ∼ NBI(µt, σt)

log(µt) = β1,0 + γ1,t

log(σt) = β2,0 + γ2,t

where

γ1,t = γ1,t−1 + b1,t

γ2,t = γ2,t−1 + b2,t

Below is an example of the GEST stochastic process for 1000 random obser-

vations, generated by assuming that the conditional distribution fYt(yt|θt) of the

process is negative binomial type I, NBI(µt, σt). The log mean (log(µt)) and the log

sigma (log(σt)) of the NBI(µt, σt) distribution for t = 1, 2, . . . , T , are generated by a

random walk order one process.

Figure 7.9 plots, for t = 1, 2, . . . , 1000, the simulated process yt, the simulated

mean µt, the simulated mean predictor η1,t = log(µt) (labelled mu.eta), the simulated

standard deviation σt, and the simulated standard deviation predictor η2,t = log(σt)

(labelled sigma.eta).

Figure 7.10 shows the the simulated process yt, the simulated µt in gray and the

fitted µt in red, and the simulated σt in gray and the fitted σt in red.



7.4. SIMULATION OF THE GEST PROCESS 132

The R commands for simulating and fitting Figure 7.9 are given in Appendix D,

and the resulting output from plot=T is given in Figure 7.9.
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Figure 7.9: A GEST process simulation from a NBI distribution
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Figure 7.10: The actual simulation (in gray) for µt and σt for the GEST process and
the fitted GEST model (in red) for the µt and σt.
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7.4.4 GEST process with Student t distribution

The Student t family distribution is suitable for modelling leptokurtic data, that

is, data with higher kurtosis than the normal distribution. The pdf of the t family

distribution, denoted here as TF(µ,σ,ν), is defined by

fY (y|µ, σ, ν) =
1

σB
(
1
2
, ν
2

)
ν

1
2

[
1 +

(y − µ)2

σ2ν

]− ν+1
2

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0 and ν > 0, where B(a, b) =

Γ(a)Γ(b)/Γ(a + b) is the beta function. The mean and variance of Y are given by

E(Y ) = µ and V ar(Y ) = σ2ν/(ν − 2) when ν > 2. (From Stasinopoulos et al.

(2013), p 205).

Rigby and Stasinopoulos (2012) reparameterized the Student t family distribu-

tion, such that the mean is µ and the standard deviation is σ for degrees of freedom

parameter ν(> 2). The reparameterized Student t family distribution is denoted

here as TF2(µ, σ, ν).

Let the parametric conditional distribution D of the response variable Yt be the

reparameterized Student t family, TF2, distribution and assume an identity link for

the mean (µt), a log link for the standard deviation (σt) and a log shifted link the

degrees of freedom (νt). The time varying degrees of freedom is the kurtosis signal

of the Student t distributional process. If the kurtosis is higher than 30, then the

TF process looks the same as a Gaussian process.

The GEST process for Yt with a random walk order 1 local level model for the

mean (µt), the log sigma (log(σt)) and the log shifted degrees of freedom (log(νt−2))

is defined as:
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Yt|µt, σt, νt ∼ TF (µt, σt, νt)

µt = β1,0 + γ1,t

log(σt) = β2,0 + γ2,t

log(νt − 2) = β3,0 + γ3,t

where

γ1,t = γ1,t−1 + b1,t

γ2,t = γ2,t−1 + b2,t

γ3,t = γ3,t−1 + b3,t.

Below is an example of the GEST stochastic process for 1000 random observa-

tions, generated by assuming that the conditional distribution fYt(yt|θt) of the pro-

cess is Student t, TF2(µt, σt, νt). The mean (µt), log sigma (log(σt)) and log shifted

degrees of freedom (log(νt−2)) of the distribution TF2(µt, σt, νt), for t = 1, 2, . . . , T ,

are simulated with a random walk order one process. Note that the link function

log(νt − 2) is used because, for the TF2 distribution, ν > 2, ensures it has a finite

mean µt and finite standard deviation σt.

The R commands for simulating Figure 7.11 is given in Appendix D, and the

resulting output from plot=T is given in Figure 7.11.
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Figure 7.11: A GEST process simulation from a TF2 distribution.
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Figure 7.12: The simulated µt, σt, and 1/νt (in gray) of the GEST process and the
fitted GEST model (in red) for µt, σt, 1/νt using a TF2 distribution.
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7.4.5 GEST process with skew Student t distribution

The skew Student t distribution, SST, is one of the appropriate distribution to model

data with positive or negative skewness and high or low kurtosis, where the tails are

heavier then the Gaussian distribution. The SST(µ, σ, ν, τ) has mean µ, standard

deviation σ, skewness parameter ν, and kurtosis parameter τ(> 2). (See Appendix

B for model detail).

Let the parametric conditional distribution D of the response variable Yt be the

skew Student t distribution, SST(µt, σt, νt, τt), and assume an identity link for the

mean (µt), a log link for the standard deviation (log(σt)), a log link for the skewness

parameter (log(νt)), and a log shifted link for the kurtosis parameter (log(τt − 2)).

The GEST process for Yt with a random walk order 1 local level model for the mean,

log sigma, log skewness parameter and log shifted degrees of freedom parameter is

defined as:

Yt|µt, σt, νt, τt ∼ SST (µt, σt, νt, τt)

µt = β1,0 + γ1,t

log(σt) = β2,0 + γ2,t

log(νt) = β3,0 + γ3,t

log(τt − 2) = β4,0 + γ4,t
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where

γ1,t = γ1,t−1 + b1,t

γ2,t = γ2,t−1 + b2,t

γ3,t = γ3,t−1 + b3,t

γ4,t = γ4,t−1 + b4,t.

Below we generate an example of a GEST stochastic process by assuming that

the fYt(yt|θt) of the process is a skew Student t, SST(µt, σt, νt, τt). We simulate

each of the predictors of the distribution parameters of the SST(µt, σt, νt, τt), for

t = 1, 2, . . . , T , using a random walk order one process. Note the link function

log(τt − 2) is used because, for the SST distribution, τ > 2, ensures it has a finite

mean µt and finite standard deviation σt. The initial values of the distribution

parameters were β1,0 = 0, β2,0 = 1, β3,0 = 1, β4,0 = 5 and the variances of the

bk,t innovations were chosen to be σ2
b1

= 0.0001, σ2
b2

= 0.0009, σ2
b3

= 0.0004, and

σ2
b4

= 0.0004.

Figure 7.13 shows the simulated process yt and the generated time-varying mean

µt, time-varying standard deviation σt, time-varying skewness parameter νt, and

time-varying kurtosis parameter τt. [The reciprocal of τt can be plotted for clarity,

because very large values of τt in the plot make it difficult to see smaller values of

τt]. Note for the SST distribution νt < 1 produces a negatively skewed distribution,

while νt > 1 produces a positively skewed distribution. The kurtosis increases as

τt > 2 decreases or 1/τt increases.

Figure 7.14 shows the generated (black line) time-varying mean µt, time-varying

standard deviation σt, time-varying skewness parameter νt, and time-varying re-

ciprocal of the kurtosis parameter 1/τt. [The reciprocal of τt is plotted for clarity,
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because very large values of τt in the plot make it difficult to see smaller values of τt].

It also shows the fitted GEST process (red lines) estimated using the GEST model

introduced in chapter 8.

Figure 7.13: A GEST process simulation from a skew Student t-distribution (SST)
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s

Figure 7.14: The actual realisations (in black) for µt, σt, νt and 1/τt for the GEST
process and the fitted GEST model (in red) for µt, σt, νt and 1/τt.
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The gest.sim() function

The following function is the simulation function of the GEST process in R. The

function gest.sim() produces a simulation of Gaussian and non-Gaussian struc-

tural time series data. It allows any of the 80 distributions available in the gamlss

package in R (Stasinopoulos and Rigby, 2007), with up to four distribution param-

eters, denoted µ, σ, ν and τ . It simulates the predictor for the parameters, µt, σt, νt

and τt (usually representing location, scale, skewness and kurtosis parameters), as a

random walk or autoregressive process, including optionally seasonality. It generates

a data for a given conditional distribution, after simulating its parameters.

The general form of the function is

gest.sim(N=1000, family=NO, mu.type= c("level", "AR", "levelSeasonal",

"ARSeasonal", "Seasonal"), sigma.type= c("level", "AR", "levelSeasonal",

"ARSeasonal", "Seasonal"), nu.type= c("level", "AR", "levelSeasonal", "AR-

Seasonal", "Seasonal"), tau.type= c("level", "AR", "levelSeasonal", "AR-

Seasonal", "Seasonal"), mu.init=1, sigma.init=1, nu.init=1, tau.init=1,

mu.sigb=.01, sigma.sigb=.01, nu.sigb=.01, tau.sigb=.01, mu.sigS=.01,

sigma.sigS=.01, nu.sigS=.01, tau.sigS=.01, mu.phi=.5, sigma.phi=.5, nu.phi=.5,

tau.phi=.5, mu.order=1, sigma.order=1, nu.order=1, tau.order=1, frequency=12,

mu.Sinit=NULL, sigma.Sinit=NULL, nu.Sinit=NULL, tau.Sinit=NULL, plot=FALSE,

main=NULL)

The function gest.sim() has multiple options for each simulated parameter: the

type of the process for the predictor of each parameter (µt, σt, νt, τt), if it is a random

walk, autoregressive (ar), seasonal, random walk and seasonal, or autoregressive

and seasonal process (e.g mu.type); the conditional distribution of the observations

(family); initial values for the parameter predictors (e.g. mu.init); the true values

of the standard deviations for the innovations of the predictors of the parameters,
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(e.g. mu.sigb for local level for the predictor of the mean, and mu.sigS for the

seasonal for the predictor of the mean); the true value for the ar process parameter

φ for the parameter predictors (e.g. mu.phi); the order of the random walk or ar

process for the parameter predictor (e.g. mu.order).



Chapter 8

GEST model and estimation

8.1 Introduction

This Chapter introduces the statistical framework of the GEST model, defines the

maximum likelihood estimation methods globally and locally, and gives the GEST

algorithm. Also, it introduces a general framework for modelling univariate time

series.

The Generalized Structural (GEST) time series model is a univariate parameter-

driven model for non-Gaussian time series. It extends the univariate Gaussian struc-

tural time series models to a flexible non-Gaussian structural framework, with the

potential of modelling variety of phenomena, including continuous or discrete vari-

ables with possibly a positive or negative skewness and/or high or low kurtosis.

The GEST model assumes a parametric conditional distribution for the response

variable given the past, and allows some or all of the predictors of the distribution

parameters to vary stochastically, resulting in a general stochastic model.

The dependent variable, conditional on the past history of the variable, is allowed

to come from a parametric distribution with up to four parameters, often represent-

144
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ing the location (e.g. mean), scale (e.g. standard deviation), skewness and kurtosis

respectively. The predictors for the distribution parameters are modelled jointly

and explicitly by a structural model and/or a constant, linear, non-linear, smooth

non-parametric, or varying coefficient model to account for the effect of explanatory

variables.

The GEST model extends the generalized additive model for location, scale and

shape (GAMLSS) model, Rigby and Stasinopoulos (2005), to focus on structural

time series modelling. Its applications include modelling time series counts (e.g.

discrete counts) using for example a negative binomial conditional distribution, in-

cluding structural models for the location and/or scale of the distribution, and mod-

elling continuous time series data using for example a skew Student t conditional

distribution including structural models for the location, scale, skewness and kurtosis

distribution parameters.

Section 8.2 defines the GEST model and presents its characteristics. Section 8.3

provides two methods of estimation of the GEST model’s hyperparameters. Section

8.4 explains in detail the local estimation of the hyperparameters. Section 8.5 derives

the effective degrees of freedom of the GEST model.

8.2 The GEST model

The GEST model assumes that, conditional of the past, the response variable Y

comes from a parametric distribution with probability (density) function fY (y|θ),

where θ is a vector of unknown distribution parameters. The distribution parameter

vector θ is restricted to at most four parameters denoted θ = (θ1, θ2, θ3, θ4) =

(µ, σ, ν, τ), where µ is in general a location parameter, σ a scale parameter, and ν

and τ are shape parameters (often affecting the skewness and kurtosis respectively).
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Each of the distribution parameters (µ, σ, ν, τ) is modelled by a structural time

series model and/or linear, non-linear or smooth non-parametric models to account

for explanatory variables. Each structural model is a random walk or autoregressive

model (not limited to order one), and/or a seasonal effect.

Definition : Let Yt be the response variable for t = 1, 2, . . . , T then the GEST

model is defined as:

Yt|µt, σt, νt, τt ∼ D(µt, σt, νt, τt)

g1(µt) = η1,t = x>1,tβ1 + γ1,t

g2(σt) = η2,t = x>2,tβ2 + γ2,t (8.1)

g3(νt) = η3,t = x>3,tβ3 + γ3,t

g4(τt) = η4,t = x>4,tβ4 + γ4,t

for t = 1, 2, . . . , T , where D represents the conditional distribution of the response

variable, gk is a known link function (e.g., identity or log link function), βk is a

parameter vector of length pk and the xk,t are explanatory variable vectors and the

γk,t for k = 1, 2, 3, 4 are defined as:

γk,t =

Jk∑
j=1

φk,jγk,t−j + bk,t, (8.2)

for t = Jk + 1, Jk + 2, . . . , T , where bk,t are random errors, independent from each

other mutually and serially, and normally distributed with expected values equal to

zero and variance σ2
bk

, thus bk ∼ Nn−Jk(0, σ
2
bk

In−Jk), where b>k = (bk,Jk+1, . . . , bk,T )

for k = 1, 2, . . . , K.
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Characteristic of the GEST model

Regarding the GEST model, it is important to note that:

� The response variable distribution D(µt, σt, νt, τt) can be any continuous or

discrete distribution.

� Typically the linear term x>k,tβk could include the constant, continuous or

categorical explanatory variables and possibly a linear term in time or a fixed

seasonal effect, for k = 1, 2, 3, 4.

� The explanatory variables can be different for each distribution parameter µt,

σt, νt and τt.

� To account for non-linearities in the relationship between the parameters of

the distribution and the explanatory variables, model (8.1) can be extended

to include non-linear and smooth non-parametric models for the distribution

parameters µt, σt, νt and τt as in Rigby and Stasinopoulos (2005). For example

equations in (8.1) can be amended to ηk,t = x>k,tβk +
∑Jk

j=1 sj(xj) + γk,t where

the sj() are smooth functions e.g. P-splines of Eilers and Marx (1996).

� A distribution parameter model can be extended to include a seasonal effect

(with M seasons)

gk(θk,t) = ηk,t = x>k,tβk + γk,t + sk,t

where γk,t is given by (8.2) and

sk,t = −
M−1∑
m=1

sk,t−m + wt.
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� The random effects (8.2) γk,t can be extended to include persistent explanatory

variable effects,

γk,t =

Jk∑
j=1

φk,jγk,t−j + v>k,tδk + bk,t (8.3)

where δk is a parameter vector of length qk and explanatory variable vector vk,t

is of length qk. This term is used in the analysis of the S&P 500 stock index

returns, (see Chapter 9), for modelling the leverage effect using asymmetric

stochastic volatility (see for example Asai and McAleer, 2005; Omori et al.,

2007).

� The GEST model integrates regression-type and time-series-type models for

all the distribution parameters (µt, σt, νt and τt) of the assumed parametric

conditional distribution D of the response variable, allowing the location, scale,

skewness and kurtosis parameters of the conditional distribution D to change

over time. Also the distribution D can be any parametric (continuous or

discrete) distribution and is not necessarily restricted to the assumption of the

exponential family distribution.

Below two examples of the GEST model are provided by specifying two different

distributions, namely the Gaussian distribution and the skew Student t distribution.

Example 1: Conditional normal distribution

In the GEST model let the parametric conditional distribution D of the response

variable Yt be the Gaussian distribution and assume an identity link for the mean

(µt) and a log link for the standard deviation (σt). Then the GEST model for Yt is
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defined as:

Yt|µt, σt ∼ NO(µt, σt)

µt = x>1,tβ1 + γ1,t

log(σt) = x>2,tβ2 + γ2,t

where the unobserved state, γk,t for k = 1, 2, is defined by equation (8.2). For a con-

stant mean model µt = b1, we have the standard stochastic volatility model. Clearly

the Gaussian GEST model does not allow explicit modelling of the conditional skew-

ness and kurtosis since the conditional skewness and kurtosis of the Gaussian GEST

model above are constants.

Example 2: Conditional skew Student t distribution

To allow explicit modelling of skewness and kurtosis of Yt we need to assume a

more flexible distribution with more than two parameters. The skew Student t

distribution, page 269, denoted here as SST (µt, σt, νt, τt), has four parameters, µt is

exactly the mean, σt > 0 is exactly the standard deviation, while νt > 0 controls the

skewness (νt < 1 implies negative skewness, while νt > 1 implies positive skewness)

and τt > 2 controls the kurtosis (a lower τt implies heavier tails). Hence the SST

distribution allows modelling of the mean, standard deviation, skewness and kurtosis.

The SST distribution is widely used in financial data analysis but its definition and

derivation are more obscure (the reader can consult Appendix B on page 269 for the

definition and the derivation of the SST distribution).

It is beneficial to have a skew Student t distribution parametrization such that

µt is the mean and σt is the standard deviation, so that the changes in the mean

and standard deviation can be interpreted separately from the changes in the shape
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of the distribution (resulting from changes in νt and τt).

Assuming an identity link for the mean (µt) and log links for the standard devia-

tion (σt), skewness parameter (νt), and a log shifted link for the kurtosis parameter

(τt) of the conditional SST distribution of the response variable Yt, the GEST model

for Yt is defined as:

Yt|µt, σt, νt, τt ∼ SST (µt, σt, νt, τt)

µt = x>1,tβ1 + γ1,t

log(σt) = x>2,tβ2 + γ2,t

log(νt) = x>3,tβ3 + γ3,t

log(τt − 2) = x>4,tβ4 + γ4,t

where the unobserved state, γk,t for k = 1, 2, 3, 4, is defined by equation (8.2).

8.3 Estimation of the GEST model

8.3.1 Introduction

The GEST model, defined by equation (8.1), has four distinct sets of parameters:

(a) β> =
(
β>1 ,β

>
2 ,β

>
3 ,β

>
4

)
the constants or coefficients of the covariates,

(b) γ> =
(
γ>1 ,γ

>
2 ,γ

>
3 ,γ

>
4

)
the structural terms or the random effect vectors,

(c) φ> =
(
φ>1 ,φ

>
2 ,φ

>
3 ,φ

>
4

)
, the AR coefficients for autoregressive structural terms,

(d) σ>b = (σb1 , σb2 , σb3 , σb4), the standard deviations of the normal errors bk,t for

k = 1, 2, 3, 4, in the structural terms,

where φ and σb are referred to as the hyperparameters of the GEST model.
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GEST algorithm for estimation of β and γ given fitted hyperparameters

(A) initialise (θ1,θ2,θ3,θ4) = (µ,σ,ν, τ ), and set initial γk = 0 for k = 1, 2, 3, 4

(B) start the outer cycle in order to fit each of the distribution parameter vec-

tors θk, for k = 1, 2, 3, 4 sequentially until convergence [where θ1 = µ =

(µ1, µ2, . . . , µT )>, θ2 = σ, θ3 = ν, θ4 = τ ],

(a) start the following inner cycle (or ”local scoring”) for each iteration of the

outer cycle in order to fit one of the distribution parameter vectors, θk

(i) evaluate the current iterative response variable zk and current iterative

weights Wk (where zk = ηk + W−1
k uk, W=− ∂2`

∂η∂η> , or −E
[

∂2`
∂η∂η>

]
or
(
∂`
∂η

)2
, and u = ∂`

∂ηk
).

(ii) start the Gauss-Seidel (or ”backfitting”) algorithm

(I) estimate βk by regressing the current partial residuals ε0k =

zk − γk against design matrix Xk using current weights Wk.

(II) estimate the hyperparameters σ2
b and φ by maximising their lo-

cal likelihood function Q, and then estimate γk using the equa-

tion γ̂k =
[
Σ−1 + σ−2b D>D

]−1
Σ−1ε.

(iii) end the Gauss-Seidel algorithm on convergence of βk and γk

(iv) update θk and ηk = g(θk).

(b) end the inner cycle on convergence of θk.

(C) end the outer cycle when the global deviance (= −2 * l) of the estimated model

converges.
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It is important to emphasise here that the outer cycle fits a specific distribution

parameter vector (e.g. µ), by fixing the other distribution parameter vectors (e.g.

σ,ν and τ ) to their current maximum values, and the inner cycle uses a ”local

scoring” or Newton algorithm resulting in an iterative reweighted backfitting. Fur-

thermore, the Gauss-Seidel algorithm in (B)(a)(ii) above is called the ”backfitting”

algorithm by Hastie and Tibshirani (1990) and Hastie et al. (2009).

The joint distribution for all the components of the GEST model is derived by

using the conditional probability law:

p(A|B) =
p(A ∩B)

p(B)

where p(A|B) is the conditional probability, p(A ∩ B) is the joint probability and

p(B) is the marginal probability.

Hence,

p(A ∩B) = p(A|B) ∗ p(B). (8.4)

The joint distribution for (y,β,γ) and (φ,σb) is given by:

f(y,β,γ,φ,σb) = f(y,β,γ|φ,σb) ∗ f(φ,σb)

= f(y,β,γ|φ,σb) ∗ f(φ) ∗ f(σb) (8.5)

assuming φ and σb have independent priors. Applying the equation (8.4) to (8.5)

and assuming that β and γ have independent priors (given φ and σb), implies the
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following:

f(y,β,γ,φ,σb) = f(y|β,γ,φ,σb) ∗ f(β,γ,φ,σb)

= f(y|β,γ,φ,σb) ∗ f(β,γ|φ,σb) ∗ f(φ) ∗ f(σb)

= f(y|β,γ) ∗ f(β|γ,φ,σb) ∗ f(γ|φ,σb) ∗ f(φ) ∗ f(σb)

= f(y|β,γ) ∗ f(β) ∗ f(γ|φ,σb) ∗ f(φ) ∗ f(σb)

assuming the prior for β is independent of φ and σb (as well as γ).

Hence,

f(y,β,γ,φ,σb) = f(y|β,γ)f(γ|φ,σb)f(φ)f(σb)f(β) (8.6)

where

f(y|β,γ) =
T∏
t=1

f(yt|µt, σt, νt, τt)

is the likelihood function, based on the assumed conditional distributionD(µt, σt, νt, τt)

for Yt in equation (1.1), f(γ|φ,σb) is a product of four independent multivariate nor-

mal prior distributions for γk for k = 1, 2, 3, 4 (assuming prior independence between

the γk given φ and σb),

f(γ|φ,σb) =
4∏

k=1

f(γk|φ,σb).

The terms f(φ), f(σb) and f(β) are independent prior distributions for the φ,

σb and β parameters respectively.
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Assuming a uniform prior for β in (8.6) gives

f(y,β,γ,φ,σb) = f(y|β,γ)f(γ|φ,σb)f(φ)f(σb). (8.7)

Note that, in a fully Bayesian inference, the posterior distribution of γ,β,φ and

σb can be obtained by using Markov chain Monte Carlo sampling as in Fahrmeir

and Tutz (2001).

In addition, assuming a uniform prior for β, from equation (8.7) we have the

posterior distribution of β and γ,

f(β,γ|φ,σb,y) =
f(y,β,γ,φ,σb)

f(φ,σb,y)

∝ f(y,β,γ,φ,σb)

∝ f(y|β,γ)f(γ|φ,σb). (8.8)

Maximizing equation (8.8) gives posterior mode estimates of β and γ, given

φ,σb and y. By taking the log of equation (8.8), maximizing (8.8) is equivalent to

maximizing the extended (or joint) log likelihood function (Lee et. al. (2006)) for

the parameters β and γ, given fixed φ and σb, defined by:

le = log f (y|β,γ) + log f (γ|φ,σb) (8.9)

where

log f (y|β,γ) =
T∑
t=1

log f(yt|µt, σt, νt, τt) (8.10)
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is the log likelihood function and le is the log of the extended or joint log likelihood

functions.

The maximization of the extended likelihood in (8.9), given fitted hyperparame-

ters, can be achieved by using the GEST algorithm described above on page 151.

The estimation of β and γ given fitted hyperparameters (φ,σb) is based on

the RS algorithm which maximizes the extended likelihood function (see Rigby and

Stasinopoulos (2005) Appendices B2 and C, equations (17) and (19)).

The GEST algorithm provides posterior mode estimates of the sets of parameters

of β> =
(
β>1 ,β

>
2 ,β

>
3 ,β

>
4

)
, and γ> =

(
γ>1 ,γ

>
2 ,γ

>
3 ,γ

>
4

)
by maximizing the extended

log likelihood for fitted or fixed hyperparameters σ2
bk

and φk,j for k = 1, 2, 3, 4.

8.3.2 Estimation of β and γ given fixed hyperparameters φ

and σb

The estimation of β and γ given fixed hyperparameters (φ,σb) is based on the

RS algorithm which maximizes the extended likelihood function (see Rigby and

Stasinopoulos (2005) Appendices B2 and C equations (17) and (19)).

The maximization of the extended likelihood in (8.9), given fixed hyperparam-

eters, can be achieved by using the GEST algorithm described above on page 151.

In the local estimation procedure for the random effects hyperparameters, step

(B)(a)(ii)(II) page 151, in the GEST algorithm for estimation of β and γ given

fitted hyperparameters, is replaced by (B)(a)(ii)(II*).

(B)(a) (ii)(II*) estimate γk by smoothing the current partial residuals εk = zk−Xβk

over time with weights Wk [using equation (8.20) with σ2
e set to 1].



8.3. ESTIMATION OF THE GEST MODEL 156

8.3.3 Global (i.e. external) estimation of hyperparameters

φ and σb

There are two estimation methods of the random effect hyperparameters, a global (

i.e. external) and a local (i.e. internal) method. When the random effects hyperpa-

rameters are unknown, they can be estimated by maximizing the marginal likelihood,

which is obtained by integrating out γ from f(y,γ|β,φ,σb), or by integrating out

both γ and β from f(y,β,γ|φ,σb) for Restricted Maximum Likelihood Estimation,

REML.

Both methods considered here (global and local) are in general approximative

methods. [However, the Gaussian random effect mean models in chapter 4 provide

the exact estimation method of normal random effect hyperparameters for the mean].

For non-Gaussian observations, the integral of both γ and β is intractable, and noto-

riously difficult. Breslow and Clayton (1993) used a Laplace integral approximation

to estimate the random effect hyperparameters in generalized linear mixed models

(GLMM) models. Lee and Nelder (1996) proposed the extended likelihood rather

than the marginal likelihood in hierarchical generalized linear models which allows

random effects to be not normally distributed, and estimate the hyperparameters by

maximizing the adjusted profile likelihood. Pinheiro and Bates (2000), and Rigby

and Stasinopoulos (2005), Section A.2.3. both used a Laplace integral approximation

to estimate the random effect hyperparameters.

More information on the Laplace approximation can be found in Tierney and

Kadane (1986) and Evans and Swartz (2000, p.62), Severini (2000, Section 2.11).
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Restricted maximum likelihood estimation of the hyperpa-

rameters (φ,σb):

The restricted maximum likelihood estimation of the hyperparameters (φ,σb) is

defined by:

L(φ,σb) =

∫ ∫
f(y,β,γ|φ,σb)dγdβ

=

∫ ∫
f(y|β,γ)f(γ|φ,σb)dγdβ (8.11)

where

f(y|β,γ) =
T∏
t=1

f(yt|β,γ)

denotes the conditional density function of the responses y given β and γ, and

f(γ|φ,σb) is the density function of the random effect γ given φ and σb, where φ

and σb are hyperparameters, β are the regression parameters, and γ are the random

effects parameters. The likelihood f(y|β,γ)f(γ|φ,σb) is known as the joint or

extended likelihood in hierarchical generalized linear models (Lee and Nelder, 1996).

However, this integration is intractable for a non-Gaussian response variable and

becomes more difficult as the number of random components increases. The integral

approximation of Laplace gives the following approximative marginal log likelihood:

l(φ,σb) = log f(y|β̂, γ̂) + log f(γ̂|φ,σb)−
1

2
log

∣∣∣∣∣D̂β,γ2π

∣∣∣∣∣ (8.12)

where (β̂, γ̂) are the fitted values of (β,γ) given by maximising the extended likeli-
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hood over (β,γ) for given (φ,σb), and D̂β,γ is the second derivative of the extended

likelihood with respect to (β,γ) evaluated at (β,γ) = (β̂, γ̂).

Note l(φ,σb) can be maximized numerically over (φ,σb).

For a normal distribution D̂β,γ is defined as:

D̂β,γ =



X>1 W11X1 X>1 W11 0 0

X>1 W11 W11 +G1 0 0

0 0 X>2 W22X2 X>2 W22

0 0 X>2 W22 W22 +G2


.

Maximum likelihood estimation of β and hyperparameters

(φ,σb):

The maximum likelihood estimation of β and hyperparameters (φ,σb) is defined by:

L(β,φ,σb) =

∫
f(y,β,γ|φ,σb)dγ

=

∫
f(y|β,γ)f(γ|φ,σb)dγ (8.13)

where

f(y|β,γ) =
T∏
t=1

f(yt|β,γ)

denotes the conditional density function of the responses y given β and γ, and

f(γ|φ,σb) is the density function of the random effect γ given φ and σb, where φ

and σb are hyperparameters, β are the regression parameters, and γ are the random

effects parameters. The likelihood f(y|β,γ)f(γ|φ,σb), as on page 154 (8.8), is

known as the joint or extended likelihood in hierarchical generalized linear models
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(Lee and Nelder, 1996).

However, this integration is also intractable for a non-Gaussian response variable

and becomes more difficult as the number of random components increases. The

integral approximation of Laplace gives the following approximative marginal log

likelihood :

l(β,φ,σb) = log f(y|β, γ̂) + log f(γ̂|φ,σb)−
1

2
log

∣∣∣∣∣D̂γ2π

∣∣∣∣∣ (8.14)

where γ̂ is the fitted value of γ given by maximising the extended likelihood over γ

for given (β,φ,σb), and D̂γ is the second derivative of the extended likelihood with

respect to γ evaluated at γ = γ̂.

Note l(β,φ,σb) can be maximized numerically over (β,φ,σb).

For a normal distribution D̂γ is defined as:

D̂γ = W + G,

where

W =

 W11 0

0 W22

 ,

and

W11 = E

[
∂2`

∂η1∂η1

]
W22 = E

[
∂2`

∂η2∂η2

]
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and

G =

 σ−2b1 D>1 D1 0

0 σ−2b2 D>2 D2

 .

where

D1 = D2 =



−1 1 0

0 −1 1

.. .. ..

.. .. ..

0 −1 1


For a GEST model with no fixed effects parameters β,

l(β,φ,σb) = l(φ,σb),

which can be maximised numerically over φ and σb.

For example, for a three parameter Student t distribution, Yt|µt, σt, νt ∼ TF (µt, σt, νt),

the external estimation of the random effects parameters maximizes

l(φ,σb) = log f(y|γ) +
3∑

k=1

log f(bk)−
1

2
log |W + G|+ 3

2
T log 2π

where

log f(bk) = −1

2
(T − J) log(2πσ2

bk
)− 1

2
σ−2bk γ

>
k D>k Dkγk

and
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W =


W11 0 0

0 W22 W23

0 W32 W33

 ,

G =


σ−2b1 D>1 D1 0 0

0 σ−2b2 D>2 D2 0

0 0 σ−2b3 D>3 D3

 ,

where, if D̂γ is replaced by its expected value,

W11 = E

[
∂2`

∂η1∂η1

]
W22 = E

[
∂2`

∂η2∂η2

]
W33 = E

[
∂2`

∂η3∂η3

]
W23 = E

[
∂2`

∂η2∂η3

]
= E

[
∂2`

∂σ∂ν

]
∗ ∂σ
∂η2
∗ ∂ν
∂η3

W32 = E

[
∂2`

∂η3∂η2

]
= E

[
∂2`

∂ν∂σ

]
∗ ∂ν
∂η3
∗ ∂σ
∂η2

.

For a four parameter distribution, for example the skew Student t distribution,

page 269, Yt|µt, σt, νt, τt ∼ SST (µt, σt, νt, τt), the external estimation of the random

effects parameters, assuming no fixed effects parameters, maximizes:

l(φ,σb) = log f(y|γ) +
4∑

k=1

log f(bk)−
1

2
log |W + G|+ 4

2
T log 2π

where
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log f(bk) = −1

2
(T − J) log(2πσ2

bk
)− 1

2
σ−2bk γ

>
k D>k Dkγk

and

W + G =



W11 + σ−2b1 D>1 D1 W12 W13 W14

W21 W22 + σ−2b2 D>2 D2 W23 W24

W31 W32 W33 + σ−2b3 D>3 D3 W34

W41 W42 W43 W44 + σ−2b4 D>4 D4


,

where, if D̂γ is replaced by its expected value,

W12 = E

[
∂2`

∂η1∂η2

]
= E

[
∂2`

∂µ∂σ

]
∗ ∂µ
∂η1
∗ ∂σ
∂η2

W13 = E

[
∂2`

∂η1∂η3

]
= E

[
∂2`

∂µ∂ν

]
∗ ∂µ
∂η1
∗ ∂ν
∂η3

W23 = E

[
∂2`

∂η2∂η3

]
= E

[
∂2`

∂σ∂ν

]
∗ ∂σ
∂η2
∗ ∂ν
∂η3

W24 = E

[
∂2`

∂η2∂η4

]
= E

[
∂2`

∂σ∂τ

]
∗ ∂σ
∂η2
∗ ∂τ
∂η4

W34 = E

[
∂2`

∂η3∂η4

]
= E

[
∂2`

∂ν∂τ

]
∗ ∂ν
∂η3
∗ ∂τ
∂η4

.

The equation for estimating γk (within the GEST algorithm for estimating γ

given fixed hyperparameters φ and σb, from section 8.3.2)

is given by:

γ̂k =
[
Wkk + σ−2bk D>k Dk

]−1
Wkk εk (8.15)
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(See Rigby and Stasinopoulos (2005) Appendices B2 and C, with a special case of

equation (17), where Z = I and subscript j is omitted), where εk = zk −Xβk are

the current partial residuals for k = 1, 2, 3, 4.

To estimate (φ,σ2
b) and hence obtain γ̂k, the following algorithm is used:

The algorithm for estimating α = (φ,σb)

1. Select starting values for α = (φ,σb).

2. Maximize l(φ,σb) over α using a numerical algorithm, where, within the nu-

merical algorithm, γk for k = 1, 2, 3, 4, given α, are estimated using the GEST

algorithm for fixed hyperparameters from section 8.3.2.

3. Use the maximizing values for α to calculate the maximizing values for γk.

Note that this method is computationally time-consuming. The local method

described below is faster and has been found to produce almost identical results in

several examples.

8.3.4 Local (i.e. internal) estimation of hyperparameters φ

and σb

The local estimation procedure is based on ideas from Pawitan (2001), section 17.5,

page 445-448, for normal linear mixed models estimation method, and on Rigby

and Stasinopoulos (2013), as a generalization to several random effects. The local

estimation method is described in Pinheiro and Bates (2000), Venables and Ripley

(2002), p.297-298, Wood (2006), Section 6.4. The GEST model is based on the

Pawitan procedure because the random effects γt are assumed normal, and uses the

local estimation procedure rather than the global method because the local is much
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faster than the global method and both methods have been found to produce very

similar results in several examples. In addition, the local method has been called

penalized quasi likelihood (PQL). The local method of the GEST model which is

described below uses penalized likelihood.

During the fit of each one of µ, σ, ν, and τ , the corresponding structural pa-

rameters [i.e. σ2
bk

and φk for k = 1, 2, 3, 4 where φ>k = (φk,1, φk,2, . . . , φk,Jk)], are

estimated by the internal (i.e. local) marginal maximum likelihood estimation pro-

cedure outlined below.

To simplify the notation the subscript k is dropped so θt now represents any one

of the parameters (µt, σt, νt, τt):

g(θt) = ηt = x>t β + γt (8.16)

for t = 1, 2, . . . , T , where γt is defined by (8.2) with subscript k omitted, i.e.

γt =
J∑
j=1

φjγt−j + bt, (8.17)

for t = J + 1, J + 2, . . . , T .

On the predictor scale (8.16), in the structural model fitting part of the back-

fitting algorithm [i.e. step (B)(a)(ii)(II) of the GEST fitting algorithm for fitting γ

page 151] the following local approximate internal model is used:

ε = γ + e

where ε = z−Xβ are the current partial residuals, e ∼ NT (0,Σ) and Σ = σ2
eW

−1,
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where z = η + W−1u is the current pseudo response variable (or iterative response

variable), W is a diagonal matrix of current weights given by one of the following

− ∂2`
∂η∂η> , −E

[
∂2`

∂η∂η>

]
or
(
∂`
∂η

)2
, i.e. the observed information, the expected infor-

mation or the squared score function, depending respectively on whether a Newton-

Raphson, Fisher scoring or quasi-Newton algorithm is used, and u = ∂`
∂η

.

The algorithm, given later in this Section, maximises the local likelihood function

Q, given below, directly over the structural model parameters α = (σ2
b ,φ), where

φ> = (φ1, φ2, . . . , φJ), using a numerical algorithm.

For t = 1, 2, . . . , T ,

εt = γt + et

where γt is given in (8.17). Hence,

et = εt − γt

bt = γt −
J∑
j=1

φjγt−j.

for t = J + 1, J + 2, . . . , T .

In summary for the local level (autoregressive and random walk) structural

model:

g(θ) = η = Xβ + γ

with local approximate internal model given by
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ε = γ + e

ε = z−Xβ

z = η + W−1u

Dγ = b

ε|γ ∼ N(γ,Σ)

b ∼ N(0, σ2
b IT−J)

(8.18)

where e ∼ NT (0,Σ) and Σ = σ2
eW

−1, Σ−1 = σ−2e W, u = ∂`
∂η

, z is the current

pseudo response variable and ε are the current partial residuals, W=− ∂2`
∂η∂η> , or

−E
[

∂2`
∂η∂η>

]
or
(
∂`
∂η

)2
. Note that η,γ, z,u, ε and e are vectors of length T , whilst

b = (bJ+1, bJ+2, . . . , bT )> is a vector of length T − J .

Note that Pawitan (2001) shows a computational equivalence between the usual

estimation of random effects and their parameters (i.e. integrating out the random

effects and maximizing over the fixed and random parameters) and maximizing an

objective function Q (in the form of an adjusted profile extended likelihood for

the random effects parameters). Given the absence of fixed effects locally, the Q

function, maximized over the random effects γ given the random effects parameters

α = (σ2
b ,φ), gives the local likelihood function of α. Here locally the random effects

are γ with parameters α and, generalizing Lee et al. (2006), p277-279, the local

function Q is given by

Q = log f(ε|γ) + log f(γ)− 1

2
log
∣∣Σ−1 + σ−2b D>D

∣∣+
T

2
log 2π (8.19)
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where T is the number of observations, ε = z−Xβ is the vector of current partial

residuals, e ∼ NT (0, σ2
eW

−1), where e = (e1, e2, . . . , eT )>, Σ = σ2
eW

−1 and D is

defined below. Note that assuming diffuse uniform priors for (γ1, . . . , γJ) in Q gives

f(γ) =
T∏

t=J+1

f(γt|γt−1) ≡
T∏

t=J+1

f(bt) = f(b)

where γt−1 = (γ1, γ2, . . . , γt−1), b = (bJ+1, bJ+2, . . . , bT )>, b ∼ NT−J(0, σ2
b IT−J).

Maximising Q over α = (σ2
b ,φ) gives estimates of σ2

b and φ. Then, γ is estimated

effectively by smoothing the partial residuals using

γ̂ =
[
Σ−1 + σ−2b D>D

]−1
Σ−1 ε. (8.20)

Step (B)(a)(ii)(II): the algorithm for estimating α = (σ2
e , σ

2
b ,φ)

1. Select starting values for α = (σ2
e , σ

2
b ,φ).

2. Maximize Q over α using a numerical algorithm, where γ̂ given α is estimated

by (8.20) before calculating Q in the function evaluating Q.

3. Use the maximizing values for α to calculate the maximizing values for γ.

In step 2, Q is given by

Q = log f(ε|γ) + log f(γ)− 1

2
log
∣∣Σ−1 + σ−2b D>D

∣∣+
T

2
log 2π

log f(ε|γ) = −1

2
log
∣∣2πW−1∣∣− 1

2
σ−2e (ε− γ)>W (ε− γ)− 1

2
T log σ2

e

log f(γ) = log f(b) = −1

2
(T − J) log

(
2πσ2

b

)
− 1

2
σ−2b γ

>D>Dγ>
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since b = Dγ ∼ N(0, σ2
bIT−J), where γ = (γ1, γ2, . . . , γT )>,Σ−1 = σ−2e W and

D =



−φJ −φJ−1 . . . . . . −φ1 1 0 0 . . . . . . 0 0

0 −φJ −φJ−1 . . . . . . −φ1 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 −φJ −φJ−1 . . . . . . −φ1 1


,

and the maximizing of Q over γ given α gives equation (8.20).

Note that D is a (T − J) x T matrix and Σ is T x T .
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8.4 Local estimation functions of the hyperparam-

eters

Here the local level structural model is generalized in Section 8.4.1 to a local level

with leverage structural model, in Section 8.4.2 to a local level with seasonal struc-

tural model, in Section 8.4.3 to a local level with trend structural model, in Section

8.4.4 to a local level with trend and seasonality structural model, and in Section

8.4.5 to a local level with random coefficient of an explanatory variable structural

model.

Note that in Section 5.6 of Chapter 5 of this thesis, the Q function is based on

the normal data using the response variable y, this chapter uses pseudo response

variable ε which is approximated locally using a normal distribution, hence, the local

Q function given by equation (8.19), where ε has replaced y

8.4.1 Local level with persistent effect

Here

g(θ) = η = Xβ + γ,

where the model for random effect γt includes explanatory variables vt which have

a persistent effect (e.g. the leverage effect) on the distribution parameter,

γt =
J∑
j=1

φjγt−j + v>t δ + bt

for t = J + 1, J + 2, . . . , T . Hence,

Dγγ = Vδ + b,

where Dγγ replaces Dγ = b in the local approximate internal model given by (8.18),
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and where Dγ is given below.

Maximizing Q over (σ2
e , σ

2
b ,φ) gives estimates of σ2

e , σ
2
b ,φ, where

Q = log f(ε|γ) + log f(γ)− 1

2
log
∣∣A + σ−2b D>D

∣∣+
T

2
log 2π

log f(ε|γ) = −1

2
log |2πΣ| − 1

2
(ε− γ)>Σ−1 (ε− γ)

log f(γ) = −1

2
log
∣∣2πσ2

b

∣∣− 1

2
σ−2b

(
γ>, δ>

)
D>D

(
γ>, δ>

)>
since b = Dγγ −Vδ = D(γ>, δ>)> ∼ N(0, σ2

bIT−J), where γ = (γ1, γ2, . . . , γT )>,

D =

(
Dγ, −V

)
,

Dγ =



−φJ −φJ−1 . . . . . . −φ1 1 0 0 . . . . . . 0 0

0 −φJ −φJ−1 . . . . . . −φ1 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 −φJ −φJ−1 . . . . . . −φ1 1


,

A =

 Σ−1 0

0 0

 .

Note that Dγ is a (T − J) x T matrix, D is (T − J) x (T + q) and A is (T + q) x

(T + q).

The equation for estimating γ and δ is given by:

 γ

δ

 =
[
A + σ−2b D>D

]−1
A

 ε

0

 , (8.21)
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where 0 is a vector of zeros of length q.

Here are some examples of local level without and with a persistent effect:

(i) Stochastic volatility model without a persistent effect:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0

log(σt) = β2,0 + γ2,t

γ2,t = φ1γ2,t−1 + b2,t (8.22)

(ii) Asymmetric stochastic volatility model with instantaneous effect, since the

effect of yt−1 on σt only lasts for one time point:

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0

log(σt) = β2,0 + γ2,t + β2,1yt−1

γ2,t = φ1γ2,t−1 + b2,t (8.23)

(iii) Asymmetric stochastic volatility model with a persistent effect, since the

effect of yt−1 on σt persists:
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Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0

log(σt) = β2,0 + γ2,t

γ2,t = φ1γ2,t−1 + δ1v1,t−1 + δ2v2,t−1 + b2,t (8.24)

where v1,t−1 = arcsinh(yt−1) (if yt−1 < 0) and v2,t−1 = arcsinh(yt−1) (if yt−1 >= 0)

to account for the leverage effect. The use of the transformed sinh(yt−1) rather than

just yt−1 was found to reduce occasional extreme spikes in the fitted volatility.

8.4.2 Local level with seasonal effect

Here

g(θ) = η = Xβ + γ + s.

The local approximate internal model is given by

ε = γ + s + e

ε|γ, s ∼ N(γ + s,Σ)

γt =
J∑
j=1

φjγt−j + bt

st = −
M−1∑
m=1

st−m + wt

b = Dγγ ∼ N(0, σ2
b IT−J)

ω = Dss ∼ N(0, σ2
wIT−M+1).
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Hence D(γ>, s>)> ∼ N(0,M), where γ = (γ1, γ2, . . . , γT )>, s = (s1, s2, . . . , sT )>,

D = matrix diagonal (Dγ,Ds) and M = matrix diagonal (σ2
b IT−J , σ

2
wIT−M+1).

Hence

f(ε) =

∫
f(ε|γ, s)f(γ, s)dγds

f(ε|γ, s) =
1

|2πΣ| 12
exp

[
−1

2
(ε− γ − s)>Σ−1(ε− γ − s)

]
f(γ, s) =

1

|2πM| 12
exp

[
−1

2
(γ>, s>)D>M−1D(γ>, s>)>

]
.

Maximize Q over (σ2
e , σ

2
b , σ

2
w,φ) gives estimate of σ2

e , σ
2
b , σ

2
w,φ where

Q = log f(ε|γ, s) + log f(γ, s)− 1

2
log
∣∣A + D>M−1D

∣∣+ T log 2π

log f(ε|γ, s) = −1

2
log |2πΣ| − 1

2
(ε− γ − s)>Σ−1 (ε− γ − s)

log f(γ, s) = −1

2
log |2πM| − 1

2

(
γ>s>

)
D>M−1D

(
γ>s>

)>
where

D =

 Dγ 0

0 Ds

 ,
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Dγ =



−φJ −φJ−1 . . . . . . −φ1 1 0 0 . . . . . . 0 0

0 −φJ −φJ−1 . . . . . . −φ1 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 −φJ −φJ−1 . . . . . . −φ1 1


,

Ds =



1 1 . . . . . . . . . . . . 1 0 0 . . . . . . 0 0

0 1 1 . . . . . . . . . . . . 1 0 . . . . . . 0 0

0 0 0 . . . . . . 0 1 1 . . . . . . . . . . . . 1


,

A =

 Σ−1 Σ−1

Σ−1 Σ−1

 = σ−2e

 W W

W W

 .

Note that Dγ is a (T − J) x T matrix, Ds is (T −M + 1) x T , Σ = σ2
eW

−1 is T x

T and M is l x l where l = 2T − J −M + 1.

The equation for estimating γ and s is given by:

 γ

s

 =
[
A + D>M−1D

]−1
A

 ε

0

 (8.25)

where 0 is a vector of zeros of length T.
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8.4.3 Local level with trend

Here

g(θ) = η = Xβ + γ.

The local approximate internal model is given by

ε = γ +ψ + e

ε|γ,ψ ∼ N(γ +ψ,Σ)

γt =
J∑
j=1

φjγt−j + ψt + bt

ψt =
L∑
l=1

ρlψt−l + dt

b = Dγγ −ψ ∼ N(0, σ2
b IT−J)

d = Dψψ ∼ N(0, σ2
dIT−L)

where Dγ is given in Section 8.4.2 and Dψ is similarly defined.

Hence D(γ>,ψ>)> ∼ N(0,M), where γ = (γ1, γ2, . . . , γT )>, ψ = (ψ1, ψ2, . . . , ψT )>,

M = matrix diagonal (σ2
b IT−J , σ

2
dIT−L), and D is given later.

Maximize Q over (σ2
e , σ

2
b , σ

2
d,φ,ρ) gives estimate of σ2

e , σ
2
b , σ

2
d,φ,ρ where Q is

given by

Q = log f(ε|γ,ψ) + log f(γ,ψ)− 1

2
log
∣∣A + D>M−1D

∣∣+ T log 2π

log f(ε|γ,ψ) = −1

2
log |2πΣ| − 1

2
(ε− γ)>Σ−1 (ε− γ)

log f(γ,ψ) = −1

2
log |2πM| − 1

2

(
γ>ψ>

)
D>M−1D

(
γ>ψ>

)>
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The equation for estimating γ and ψ is given by

 γ

ψ

 =
[
A + D>M−1D

]−1
A

 ε

0

 (8.26)

A =

 Σ−1 0

0 0

 ,

D =

 Dγ Dγψ

0 Dψ

 ,

where

Dγψ = (−IT−1 0)

Dγψ is (T − J) x T with the first (J − 1) rows removed from Dγψ

8.4.4 Local level with trend and seasonality

Here

g(θ) = η = Xβ + γ + s.

The local approximate internal model is given by
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ε = γ + s + e

ε|γ, s ∼ N(γ + s,Σ)

γt =
J∑
j=1

φjγt−j + ψt + bt

ψt =
L∑
l=1

ρlψt−l + dt

st = −
M−1∑
m=1

st−m + wt

b = Dγγ −ψ ∼ N(0, σ2
b IT−J)

d = Dψψ ∼ N(0, σ2
dIT−L)

ω = Dss ∼ N(0, σ2
wIT−M+1)

where Dγ and Ds are defined in Section 8.4.2 and Dψ is defined similarly to Dγ.

Hence D(γ>,ψ>, s>)> ∼ N(0,M), where γ = (γ1, γ2, . . . , γT )>, ψ = (ψ1, ψ2, . . . , ψT )>,

s = (s1, s2, . . . , sT )>, M = matrix diagonal (σ2
b IT−J , σ

2
dIT−L, σ

2
wIT−M+1), and D is

given below.

Maximize Q over (σ2
e , σ

2
b , σ

2
d, σ

2
w,φ,ρ) gives estimate of σ2

e , σ
2
b , σ

2
d, σ

2
w,φ,ρ, where

Q is given by

Q = log f(ε|γ, s) + log f(γ,ψ, s)− 1

2
log
∣∣A + D>M−1D

∣∣+
3T

2
log 2π

log f(ε|γ, s) = −1

2
log |2πΣ| − 1

2
(ε− γ − s)>Σ−1 (ε− γ − s)

log f(γ,ψ, s) = −1

2
log |2πM| − 1

2

(
γ>ψ>s>

)
D>M−1D

(
γ>ψ>s>

)>
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D =


Dγ Dγψ 0

0 Dψ 0

0 0 Ds


where Dγψ is defined in Section 8.4.3 and

A =


Σ−1 0 Σ−1

0 0 0

Σ−1 0 Σ−1

 .

The equation for estimating γ,ψ and s:


γ

ψ

s

 =
[
A + D>M−1D

]−1
A


ε

0

0

 (8.27)

8.4.5 Local level with random coefficient of an explanatory

variable

Here

g(θ) = η = Xβ + γ.

The local approximate internal model is given by
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ε = Xβ + γ + e

ε|γ,β ∼ N(γ + Xβ,Σ)

γt =
J∑
j=1

φjγt−j + bt

βt =
J ′∑
j=1

φ′jβt−j + vt

b = Dγγ ∼ N(0, σ2
b IT−J)

v = Dββ ∼ N(0, σ2
vIT−J ′)

D(γ>,β>)> ∼ N(0,M), where γ = (γ1, γ2, . . . , γT )>, β = (β1, β2, . . . , βT )>, M =

matrix diagonal (σ2
b IT−J , σ

2
vIT−J ′), and D is defined below.

Maximize Q over (σ2
e , σ

2
b , σ

2
v ,φ,φ

′) gives estimate of (σ2
e , σ

2
b , σ

2
v ,φ,φ

′) where the

Q is given by

Q = log f(ε|γ,β) + log f(γ,β)− 1

2
log
∣∣A + D>M−1D

∣∣+ T log 2π

log f(ε|γ,β) = −1

2
log |2πΣ| − 1

2
(ε− γ −Xβ)>Σ−1 (ε− γ −Xβ)

log f(γ,β) = −1

2
log |2πM| − 1

2

(
γ>β>

)
D>M−1D

(
γ>β>

)>

D =

 Dγ 0

0 Dβ



A =

 Σ−1 Σ−1X

X>Σ−1 X>Σ−1X
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The equation for estimating γ and β is given by

 γ

β

 =
[
A + D>M−1D

]−1
A

 ε

0

 (8.28)
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8.5 Effective degrees of freedom in the GEST

The total effective degrees of freedom of the fitted model, df, combines those of the

models for θ1, θ2, θ3 and θ4, i.e. µ, σ, ν and τ , given by df1, df2, df3 and df4 respectively.

Hence,

df = df1 + df2 + df3 + df4

where

dfk = pk + dk

for k = 1, 2, 3, 4, and pk is the length of βk, while dk, the effective degrees of freedom

for the random effects in the model for θk.

8.5.1 Effective degrees of freedom for the local level and

seasonal structural model

Here the subscript k is omitted and a local level and seasonal model for θ (8.4.2) is

assumed.

Let B =
[
Σ−1 + σ−2b D>D

]−1
Σ−1 and let B̂, Σ̂, D̂, γ̂ and σ̂−2b be the values of

B,Σ,D,γ and σ−2b on convergence of the GEST fitting procedure (see Section 8.3.4).

On convergence,

γ̂ = B̂ε.

Hence d, the effective degrees of freedom used in the GEST model, is
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d = tr
[
B̂
]

= tr

{[
Σ̂
−1

+ σ̂−2b D̂>D̂
]−1

Σ̂
−1
}

(8.29)

As d is difficult to calculate directly for large T, it can be calculated by setting

∂Q/∂σ2
b = 0

∂Q/∂σ2
w = 0

for the local level and seasonal structural model, and using the following result,

(see Rigby and Stasinopoulos, (2013), Appendix A):

∂

∂x
log |xA + B| = tr

[
(xA + B)−1A

]
where x is a scalar and A and B are r x r matrices (provided |xA + B| 6= 0).

On convergence of maximising the Q:

∂Q

∂σ2
b

=
1

2σ4
b

tr

[A + D>M−1D
]−1 D>γ Dγ 0

0 0


+

1

2σ4
b

γ>D>γ Dγγ −
(T − J)

2σ2
b

,

∂Q

∂σ2
w

=
1

2σ4
w

tr

[A + D>M−1D
]−1 0 0

0 D>s Ds


+

1

2σ4
w

s>D>s Dss−
(T −M + 1)

2σ2
w

,
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∂Q

∂σ2
b

= 0⇒ 1

2σ4
b

tr

[A + D>M−1D
]−1 D>γ Dγ 0

0 0


 = − 1

2σ4
b

γ>D>γ Dγγ

+
(T − J)

2σ2
b

,

∂Q

∂σ2
w

= 0⇒ 1

2σ4
w

tr

[A + D>M−1D
]−1 0 0

0 D>s Ds


 = − 1

2σ4
w

s>D>s Dss

+
(T −M + 1)

2σ2
w

,

tr

[A + D>M−1D
]−1 σ−2b D>γ Dγ 0

0 0


 = − 1

σ2
b

γ>D>γ Dγγ + (T − J),

tr

[A + D>M−1D
]−1 0 0

0 σ−2w D>s Ds


 = − 1

σ2
w

s>D>s Dss + (T −M + 1).

Hence, adding the two traces gives:

tr

[A + D>M−1D
]−1 σ−2b D>γ Dγ 0

0 σ−2w D>s Ds




= 2T − J −M + 1− 1

σ2
b

γ>D>γ Dγγ −
1

σ2
w

s>D>s Dss.

Knowing that:

tr
{[

A + D>M−1D
]−1 [

A + D>M−1D
]}

= tr{I2T} = 2T
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Hence,

d = tr
{[

A + D>M−1D
]−1

A
}

= 2T − tr

[A + D>M−1D
]−1 σ−2b D>γ Dγ 0

0 σ−2w D>s Ds




d = 2T −
{

2T − J −M + 1− 1

σ2
b

γ>D>γ Dγγ −
1

σ2
w

s>D>s Dss

}
= J +M − 1 +

1

σ2
b

γ>D>γ Dγγ +
1

σ2
w

s>D>s Dss. (8.30)

Hence, for each distribution parameter, d is calculated using the values γ̂, σ̂2
b and

σ̂2
w on convergence of the GEST fitting algorithm.

8.5.2 Effective degrees of freedom for the local level struc-

tural model

The effective degrees of freedom for local level without seasonal effect is equal to:

d = J +
1

σ2
b

γ>D>γ Dγγ.

Hence, for each distribution parameter, d is calculated using the values γ̂, σ̂2
b on

convergence of the GEST fitting algorithm.
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8.5.3 Effective degrees of freedom for the local level with

trend and seasonal structural model

The effective degrees of freedom for the local level with trend and seasonal structural

model (8.4.4) is given by setting:

∂Q/∂σ2
b = 0

∂Q/∂σ2
d = 0

∂Q/∂σ2
w = 0

Using the following result, (see Rigby and Stasinopoulos, (2013), Appendix A):

∂

∂x
log |xA + B| = tr

[
(xA + B)−1A

]
where x is a scalar and A and B are r x r matrices (provided |xA + B| 6= 0).

On convergence of maximising the Q:
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∂Q

∂σ2
b

=
1

2σ4
b

tr


[
A + D>M−1D

]−1


D>γ Dγ D>γ Dγψ 0

D>γψDγ D>γψDγψ 0

0 0 0


+

1

2σ4
b

γ>D>γ Dγγ

−(T − J)

2σ2
b

,

∂Q

∂σ2
d

=
1

2σ4
d

tr


[
A + D>M−1D

]−1


0 0 0

0 D>ψDψ 0

0 0 0


+

1

2σ4
d

ψ>D>ψDψψ

−(T − J − L+ 1)

2σ2
d

,

∂Q

∂σ2
w

=
1

2σ4
w

tr


[
A + D>M−1D

]−1


0 0 0

0 0 0

0 0 D>s Ds


+

1

2σ4
w

s>D>s Dss

−(T −M + 1)

2σ2
w

,

Setting

∂Q

∂σ2
b

= 0⇒

1

2σ4
b

tr


[
A + D>M−1D

]−1


D>γ Dγ D>γ Dγψ 0

D>γψDγ D>γψDγψ 0

0 0 0


 = − 1

2σ4
b

γ>D>γ Dγγ +
(T − J)

2σ2
b

,

∂Q

∂σ2
d

= 0⇒
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1

2σ4
d

tr


[
A + D>M−1D

]−1


0 0 0

0 D>ψDψ 0

0 0 0


 = − 1

2σ4
d

ψ>D>ψDψψ +
(T − J − L+ 1)

2σ2
d

,

∂Q

∂σ2
w

= 0⇒

1

2σ4
w

tr


[
A + D>M−1D

]−1


0 0 0

0 0 0

0 0 D>s Ds


 = − 1

2σ4
w

s>D>s Dss +
(T −M + 1)

2σ2
w

.

Hence, adding the three traces gives:

tr
{[

A + D>M−1D
]−1

D>M−1D
}

=
1

σ2
b

(γ>ψ>)

 D>γ Dγ D>γ Dγψ

D>γ Dγ D>γ Dγψ


 γ

ψ


+

1

σ2
d

ψ>D>ψDψψ +
1

σ2
w

s>D>s Dss

+(T − J) + (T − J − L+ 1) + (T −M + 1).

Knowing that:

tr
{[

A + D>M−1D
]−1 [

A + D>M−1D
]}

= tr{I3T} = 3T

Hence,

d = tr
{[

A + D>M−1D
]−1

A
}

= 3T − tr
[(

A + D>M−1D
)−1

D>M−1D
]



8.5. EFFECTIVE DEGREES OF FREEDOM IN THE GEST 188

Hence the effective degrees of freedom d is given by

d = 2J + L+M − 2

+
1

σ2
b

(γ>ψ>)

 D>γ Dγ D>γ Dγψ

D>γ Dγ D>γ Dγψ


 γ

ψ


+

1

σ2
d

ψ>D>ψDψψ +
1

σ2
w

s>D>s Dss. (8.31)

Note that the final formula for the effective degrees of freedom d, (8.31), has

divisors
(

1
σ2
b
, 1
σ2
d
, 1
σ2
w

)
. The estimates of these variances are very small in Chapter

9, e.g. p220, so the inverse of these variances will be very large, with a very large

effective degrees of freedom. However, the fitted model in p220 is the random walk of

order 2 local level and deterministic smooth seasonal. In the random walk of order 2

local level the fitted local level is a very smooth curve with no much variability, (see

Figure 9.14 on page 229), so the variance is very small and the inverse of the variance

is very large, but because the smoothing matrix Dγ is a second order differencing

matrix, the γ̂>D>γ Dγγ̂ becomes smaller and it compensates the very large value

of the inverse of the variance. Hence, as the random walk have a higher order, the

fitted local level will be very smooth with a very small variance, but the higher order

differencing smoothing matrix makes the sum of the squared differenced fitted values

smaller to compensate the very large value of the inverse of the variance, so when

the γ̂>D>γ Dγγ̂ is multiplied by the inverse of the variance, the effective degrees of

freedom becomes smaller.



Chapter 9

Examples in the GEST

9.1 Introduction

This chapter provides practical illustrations of the capabilities of the GEST model

fitting procedure and diagnostic facilities to model univariate non-Gaussian time

series data. Two examples of continuous data: pound/dollar daily exchange rates

and Standard and Poor 500 stock index, and two examples of counts data: van

drivers killed in road accidents in the UK and polio incidence in the United States,

are modelled and analysed using the GEST model with different distributions and

their best model is chosen using Akaike information criteria (AIC) (Akaike, 1983).

The purpose of modeling the pound/dollar daily exchange rates, is to model the

stochastic volatility with the GEST model and compare the GEST estimates with

previous models; for modelling the Standard and Poor 500 stock index returns, is

to model the asymmetric stochastic volatility, the conditional skewness parameter

and the conditional kurtosis parameter jointly with the GEST model and compare

the GEST estimates with the GARCH and APARCH models; and the purpose for

modelling counts data (e.g. van drivers killed in the UK, and the polio incidence

189
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in the US), is to model the stochastic seasonality with GEST model, investigate

whether the data is overdispersed by using the negative binomial type I conditional

distribution, applying different models for the local level, for example random walk

order 1, random walk order 2, autoregressive order 1, including explanatory variables.

Modelling time series of counts with classical Gaussian models is inappropriate

and it is necessary to consider non-Gaussian time series models. Univariate time

series of counts are discrete counts with distinct and non-negative integer values.

Analysing discrete data is one of the rapidly developing areas in time series mod-

elling, Zeger (1988) modelled counts time series with a Poisson distribution, Davis

et al. (2000) modelled the counts by the Poisson distribution given a latent process

and Davis et al. (2009) used a negative binomial distribution for the same data.

9.2 Pound sterling and US dollar exchange rate

The data in this example are the pound sterling and US dollar daily exchange rates

from 01-10-1981 to 28-06-1985. Harvey et al. (1994), Shephard and Pitt (1997), Kim

et al. (1998) and Durbin and Koopman (2000) fitted a stochastic volatility model

to pound/dollar exchange rates’ returns with a conditional normal distribution, to

model the volatility clustering effect of the returns. Their stochastic volatility model

is defined as:

yt = σtεt = σεt exp

(
ht
2

)
ht = φht−1 + ηt (9.1)

where εt ∼ N(0, 1), and ηt ∼ N(0, σ2
η).

The efficiency of Harvey et al. (1994) estimator was improved by Shephard and
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Pitt (1997) by using MCMC method, and this was again improved in speed by

Kim et al. (1998). Durbin and Koopman (2000) developed an importance-sampling

method for fitting the stochastic volatility model.

Using the GEST model, let Yt be the pound/dollar exchange rates’ returns, and

consider the conditional normal distribution, NO(yt|µt, σt), of the response variable

Yt.

9.2.1 Conditional normal distribution

Yt|µt, σt ∼ NO(µt, σt)

µt = β1,0

log(σt) = β2,0 + γ2,t

γ2,t = φγ2,t−1 + b2,t (9.2)

where b2,t ∼ N(0, σ2
b ).

Table 9.1: Model comparison of the estimated parameters

Stochastic Volatility σ2
η φ

Harvey et al. 0.0069 0.9912
Durbin and Koopman, classical approach 0.01165 0.9866
Durbin and Koopman, Bayesian approach 0.007425 0.9731

GEST model 0.007182 0.9744
The R commands for fitting the GEST model are given in Appendix D

From Table (9.1), the GEST estimation of the hyperparameters are very similar

to the Bayesian approach of Durbin and Koopman (2000), indicating an accurate fit

of the GEST model for the stochastic volatility of the pound sterling and US dollar

exchange rates’ returns. Note that the GEST models the stochastic volatility with

log(σt) and not with log(σ2
t ).
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Figure (9.1) shows the time series of the returns of the pound/dollar daily

exchange rates from 01-10-1981 to 28-06-1985, and Figure (9.2) shows the fitted

stochastic volatility of the GEST model. Clearly the returns exhibit volatility clus-

tering effect (large changes in returns tend to cluster together, resulting in persistence

of the amplitudes of return changes; or large changes tend to be followed by large

changes, of either sign, and small changes tend to be followed by small changes; Man-

delbrot, 1963). The GEST models the volatility clustering effect of the pound/dollar

returns with a stochastic volatility model for log(σt) as an autoregressive order 1 pro-

cess. As shown in Figure (9.2), σ̂t increases when the volatility clustering effect is

high, and decreases when the clustering is low. Figure (9.3) shows the QQ plot

of the residuals of the fitted stochastic volatility with the GEST using the normal

distribution, they appear satisfactory.
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Figure 9.1: The returns for pound/dollar daily exchange rates from 01-10-1981 to
28-06-1985
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Figure 9.2: The fitted stochastic volatility with the GEST model for the
pound/dollar daily returns.
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Figure 9.3: The QQ plot of the residuals of the fitted stochastic volatility with the
GEST model using a normal distribution to pound/dollar daily returns.
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9.3 Standard and Poor 500 stock index

9.3.1 Introduction

In this example, the GEST model is illustrated by an application to financial daily

returns of the S&P 500 stock index. The data, taken from the Yahoo.finance website,

are daily closing prices of the S&P 500 stock index from 02/01/1980 to 31/12/2012,

i.e. 8324 daily observations. Here the flexibility of the GEST model is demonstrated

in modelling the returns of the S&P 500 index based upon time-varying estimates of

distribution parameters µt, σt, νt and τt, representing location, scale, skewness and

kurtosis parameters of the conditional distribution.

In this section 9.3.1, the author compares different GEST models and selects the

best model using the Akaike information criterion (AIC). Then, in sections 9.3.4 and

9.3.5, the chosen GEST model is compared with the APARCH model using AIC and

normalized probability integral transform (normalized PIT) residuals to assess the

adequacy of each fitted model. Finally, in section 9.3.6, the chosen GEST model

is extended for modelling the conditional mean of S&P 500 stock index returns as

a random walk order 2 process, in addition to stochastic volatility, skewness and

kurtosis. The skew Student-t (SST ) distribution, which is a skew heavy tailed

distribution, is used in the GEST model for the conditional distribution of the S&P

500 daily returns.

9.3.2 Conditional skew Student t distribution

Let Pt be the price at time t and yt = ln(Pt/Pt−1) ∗ 100 be the return of the S&P

500 over the period 02/01/1980 to 31/12/2012. The conditional probability density

function f(yt|µt, σt, νt, τt) of the S&P 500 index returns yt is modelled by a skew t-

distribution, SST described in Appendix B, using the GEST to model the stochastic
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volatility, stochastic skewness and stochastic kurtosis parameters of the returns using

an autoregressive model for log(σt), and a random walk for log(νt) and log(τt − 2).

The model is given by

Yt|µt, σt, νt, τt ∼ SST (µt, σt, νt, τt)

µt = β1,0

log(σt) = β2,0 + γ2,t (9.3)

log(νt) = β3,0 + γ3,t

log(τt − 2) = β4,0 + γ4,t

where

γ2,t = φ1γ2,t−1 + b2,t

γ3,t = γ3,t−1 + b3,t

γ4,t = γ4,t−1 + b4,t.

This is model m1 in Table 9.2. Note that β2,0 is the reversion line for log(σt)

around which the autoregressive process γ2,t varies.

9.3.3 Leverage effect in volatility model

Leverage effects enable log(σt) to respond asymmetrically to positive and negative

values of yt, the return of the S&P 500, and are typically incorporated into the

GEST model by including two variables v1,t−1 and v2,t−1 in the random effects γ2,t,

where v1,t−1 = arcsinh(yt−1) if yt−1 < 0 and v2,t−1 = arcsinh(yt−1) if yt−1 >= 0.
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The use of the transformed arcsinh(yt−1) rather than just yt−1 in the GEST model

was found to reduce occasional extreme spikes in the fitted volatility. A very similar

technique was used by Nelson (1991) in the exponential GARCH (EGARCH) model

to capture leverage effects, and by Glosten, Jagannathan and Runkle (1993) in

the GJR-GARCH model, where Glosten, Jagannathan and Runkle (1993) included

a variable in which the squared observations are multiplied by an indicator that

takes a value of unity when an observation is negative and zero otherwise; Asai

and McAleer (2005) used Nelson’s (1991) technique for modelling the asymmetric

stochastic volatility model.

In model (9.3), asymmetric stochastic volatility terms were included in the model

for log(σt) to account for leverage effect giving

γ2,t = φ1γ2,t−1 + δ1v1,t−1 + δ2v2,t−1 + b2,t (9.4)

where v1,t−1 = arcsinh(yt−1) (if yt−1 < 0) and v2,t−1 = arcsinh(yt−1) (if yt−1 >= 0).

This is model m2 in Table 9.2. Submodels of model m2 where ν and/or τ is

constant over time are also given in Table 9.2. Effectively, Table 9.2 compares

between the submodels of the GEST model m2 to check whether we need a random

walk (rw) model for the skewness parameter and/or a random walk model for the

kurtosis parameter or just a constant for one or both parameters. Therefore, we fit

five submodels to the S&P 500 data and summarise the Akaike information criterion

(AIC). Note that the ”ar with lev.” model for σt is given by equation (9.4).

The model selected with minimum AIC is m2 giving fitted model:
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Table 9.2: Submodels of model m2

model µt σt νt τt df AIC
m1 const ar rw rw 349.4901 22005.87
m2 const ar with lev. rw rw 311.0655 21862.74
m3 const ar with lev. rw const 334.4506 21871.31
m4 const ar with lev. const rw 299.5491 21874.33
m5 const ar with lev. const const 330.4522 21879.61

Yt|µt, σt, νt, τt ∼ SST (µt, σt, νt, τt)

µt = 0.0266

log(σt) = 0.1362 + γ2,t (9.5)

log(νt) = −0.0693 + γ3,t

log(τt − 2) = 2.451 + γ4,t

where

γ2,t = 0.9855γ2,t−1 − 0.0658v1,t−1 − 0.0712v2,t−1 + b2,t

γ3,t = γ3,t−1 + b3,t

γ4,t = γ4,t−1 + b4,t

The fitted values for the variances are σ̂2
b2

= 0.00336, σ̂2
b3

= 3.2459e−05 and σ2
b4

=

0.00199

Figure (9.4) shows the time series of the returns of the S&P 500 stock index

over the period 02/01/1980 to 31/12/2012, and the fitted stochastic volatility of the

GEST model, for the return of the S&P 500. It is clear that the returns exhibit
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the volatility clustering effect (large changes in returns tend to cluster together,

resulting in persistence of the amplitudes of return changes). When the returns are

volatile the fitted stochastic volatility (σ̂t) increases, as is clear in the period when

the financial markets had a crisis of a credit crunch in 2008. When the returns are

not volatile the fitted stochastic volatility decreases.

Figure (9.5) shows the conditional skewness (νt) and the inverse of the condi-

tional kurtosis (1/τt) of the GEST model for the return of the S&P 500. These two

parameters model the shape of the conditional distribution of the returns. When

(νt > 1) the distribution of returns is positively skewed, and when (νt < 1) the dis-

tribution of returns is negatively skewed. Also the returns shows some spikes, which

occurs occasionally without the clustering effect. These are large positive or nega-

tive returns without persistence, indicating high kurtosis rather than high volatility.

These spikes are measured by the conditional kurtosis in the GEST model. A large

value of (1/τt) indicates a high kurtosis, and small value of (1/τt) indicates a low

kurtosis.
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Figure 9.4: Returns yt and fitted σt for model m2.
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Figure 9.5: Fitted νt and 1/τt for model m2.
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9.3.4 Comparing GEST model m2 and APARCH(1,1) model

The chosen GEST model m2 is now compared with alternative models. Asymmetric

power ARCH (APARCH) models are used to model volatility of the S&P 500 stock

index returns with the SST distribution in order to see how well they capture the

asymmetry and the fat tails of the asset returns compared with the GEST model. To

measure the goodness of fit, we use the global deviance (equals to - twice the maxi-

mum log-likelihood). The Akaike information criterion (AIC) was used to choose the

best fitted model. Using the fGarch package available in R (Wurtz et al., 2006) we

fit the GARCH(1,1) model, introduced by Bollerslev (1986), the GJR-GARCH(1,1)

model, introduced by Glosten, Jagannathan and Runkle (1993) to allow for lever-

age effect, and the APARCH(1,1) model, introduced by Ding, Granger and Engle

(1993), which adds the flexibility of a varying exponent. The GEST model m2 has

the lowest AIC followed by the APARCH(1,1) model.

Table 9.3: Model comparison between the GEST, GARCH, GJR-GARCH, and
APARCH

Information Criteria GEST GARCH GJR-GARCH APARCH
Global Deviance 21240.61 22294.64 22615.48 22141.96

AIC 21862.74 22306.65 22625.48 22157.96

9.3.5 Residual analysis for GEST model m2 and APARCH(1,1)

model

In this section we compare the residual analysis for the GEST model m2 with that

of the APARCH(1,1) model.
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Interpreting the shape of the worm plots

The residuals used here are called the normalized probability integral transform (nor-

malized PIT) residuals, (Rosenblatt, 1952; Mitchell and Wallis, 2011) or normalized

quantile residuals (Dunn and Smyth, 1996) and are defined by

r̂t = Φ−1(ût)

where

ût = FYt(yt|µ̂t, σ̂t, ν̂t, τ̂t)

where ût are the PIT residuals, FY is the cumulative distribution function of the

conditional distribution of Yt and Φ−1 is the inverse cumulative distribution function

of a standard normal N(0, 1) variable. The reason for using these residuals is that

the true residuals rt have a standard normal distribution if the model is correct.

Hence the residuals r̂t can be compared with a normal distribution using detrended

QQ plots.

Figures 9.6 and 9.7 display detail diagnostic plots for the residuals using a worm

plot developed by Van Buuren and Fredriks (2001). In this plot the range of time

is split into six intervals with equal numbers of days. The six time ranges are listed

and displayed in horizontal steps in the chart above the worm plot in Figures 9.6 and

9.7. A detrended normal QQ plot of the residuals in each interval is then displayed,

for the lowest time range in the bottom left hand plot, in rows to the highest time

range in the top right hand plot in both figures.

The worm plot allows detection of inadequacies in the model fit within specific

time ranges. From Figure 9.6, the detrended QQ plots for the fitted APARCH model

show inadequate fits to the data within most of the six time ranges, indicating differ-
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ences between the model and the empirical, mean, variance, skewness and kurtosis

of the residuals, within the corresponding time range to the individual QQ plot.

Table 9.4 below gives the interpretation of worm plots. Column 1 gives the

shape of the worm plot, column 3 shows how the residuals differ from a standard

normal distribution, while column 4 shows the corresponding inadequacy of the

assumed model in explaining the response variable. For example, a worm plot with

an U-shape indicates residuals with positive skewness, implying that the skewness

of the model’s response variable is too low and a higher (i.e. more positively or

less negatively) skew distribution is required. Column 2 of Table 9.4 is described in

section 9.3.5

Applying the interpretation of Table 9.4 to the APARCH model in Figure 9.6,

indicates that in worm plot 1 the residuals are positively skewed (the model skewness

is too low), in worm plot 3 the variance of residuals is too low (the model variance

is too high), in worm plot 4 and 6 the residuals are negatively skewed (the model

skewness is too high), in worm plot 5 residuals are platy-kurtotic (model kurtosis is

too high). Clearly the constant (conditional) skewness and the constant (conditional)

kurtosis in the APARCH model is inadequate. From Figure 9.7, the detrended QQ

plots for the GEST model show adequate fits to the data within most of the six

time ranges, indicating a reasonable fit to the data within time ranges. Note that

the single QQ plot for all residuals from each of the APARCH and GEST models

(not shown here) appear relatively satisfactory but splitting the QQ plot into the

six time periods shows inadequacies, particularly in the APARCH model.
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Table 9.4: The different shapes for the worm plots (first column) and corresponding
guide range of Z statistics (second column), interpreted with respect to the normal-
ized PIT residuals (third column) and the model response variable (fourth column).

Shape of worm plot Z stats. Normalized PIT resid. Response var.
level: below the origin Z1 < -2 mean too small mean too large
level: above the origin Z1 > 2 mean too large mean too small
line: negative slope Z2 < -2 variance too small variance too large
line: positive slope Z2 > 2 variance too large variance too small
U-shape Z3 < -2 positive skewness skewness too high
inverted U-shape Z3 > 2 negative skewness skewness too low
S-shape with left bent Z4 < -2 platykurtosis kurtosis too high
up (i.e. tails too heavy)
S-shape with left bent Z4 > 2 leptokurtosis kurtosis too low
down (ie. tails too light)
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Figure 9.6: Worm plot of the APARCH model
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Figure 9.7: Worm plot of the GEST model

Interpreting the Z statistics

Model diagnosis is further investigated by calculating Z statistics to test the nor-

mality of the residuals within time groups (Royston and Wright, 2000).

Let G be the number of time groups and let {rgi, i = 1, 2, .., ni} be the residuals

in time group g, with mean r̄g and standard deviation sg, for g = 1, 2, .., G. The fol-

lowing statistics Zg1,Zg2,Zg3,Zg4 are calculated from the residuals in group g to test

whether the residuals in group g have population mean 0, variance 1, skewness 0 and

kurtosis 3, where Zg1 = n
1/2
g r̄g, Zg2 =

{
s
2/3
g − [1− 2/(9ng − 9)]

}
/ {2/(9ng − 9)}1/2

and Zg3 and Zg4 are test statistics for skewness and kurtosis given by D’Agostino et

al. (1990), in their equations (13) and (19) respectively. Provided the number of

groups G is sufficiently large then the Zgj values should have approximately standard

normal distributions under the null hypothesis that the true residuals are standard
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normally distributed. We suggest as a rough guide values of |Zgj| greater than 2 be

considered as indicative of significant inadequacies in the model. Note that signifi-

cant positive (or negative) values Zgj > 2 (or Zgj < −2) for j = 1, 2, 3 or 4 indicate

respectively that the residuals in time group g have a higher (or lower) mean, vari-

ance, skewness or kurtosis than the assumed standard normal distribution. See Table

9.4 for the interpretation.

Table 9.5 gives the values of Zgj obtained from the APARCH fitted model. The

significant negative values of Zg2 are Z32 and Z52 indicating that the residual variance

is too low (or equivalently that the fitted APARCH model variance or volatility

is too high) within the corresponding time group, i.e. interval of time t for the

group. The significant negative values of Zg3 are Z23 and Z63 indicating that the

residual skewness is too low (or equivalently the model skewness is too high) while

the significant positive value of Zg3 is Z13 indicating that the residual skewness is

too high (or equivalently the model skewness is too low). The significant negative

value of Zg4 is Z54 indicating that the residual kurtosis is too low (or equivalently

the model kurtosis is too high) while the significant positive values of Zg4 are Z24

and Z34, indicating that the residual kurtosis is too high (or equivalently the model

kurtosis is too low). Clearly a constant skewness and constant kurtosis in APARCH

model is inadequate.

Table 9.6 gives the values of Zgj obtained from the GEST fitted m2 model. There

is only one significant value Z23, indicating the residual skewness is too low (or

equivalently the model skewness is too high) for the corresponding time period of

the group of observations.

In conclusion, the residual analysis shows that the GEST fitted model does fit

the data better than the APARCH model.
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Table 9.5: Z statistics of APARCH

group, g time, t Z1 Z2 Z3 Z4
1 0.5 to 1387.5 -0.14 -0.13 3.44 -1.44
2 1387.5 to 2775.5 1.27 1.51 -2.75 3.14
3 2775.5 to 4162.5 0.69 -3.38 0.53 2.06
4 4162.5 to 5549.5 0.08 1.94 -1.48 -1.85
5 5549.5 to 6937.5 -0.58 -2.16 -0.53 -2.49
6 6937.5 to 8324.5 -0.69 1.83 -2.58 -1.08

Table 9.6: Z statistics of GEST

group, g time, t Z1 Z2 Z3 Z4
1 0.5 to 1387.5 -0.28 -0.13 0.84 -1.71
2 1387.5 to 2775.5 1.14 0.23 -2.16 0.34
3 2775.5 to 4162.5 0.99 -0.66 -0.39 -0.05
4 4162.5 to 5549.5 0.20 0.38 -0.37 -1.11
5 5549.5 to 6937.5 -0.30 -0.37 -0.10 -1.82
6 6937.5 to 8324.5 -0.62 0.48 -0.49 -0.60

9.3.6 Extended model for the S&P 500

Here the GEST model m2 for the S&P 500 data is extended to include a random

walk order 2 models for µt, νt and τt and autoregressive ar(1) with leverage model

for σt, i.e.

Yt|µt, σt, νt, τt ∼ SST (µt, σt, νt, τt)

µt = β1,0 + γ1,t

log(σt) = β2,0 + γ2,t (9.6)

log(νt) = β3,0 + γ3,t

log(τt − 2) = β4,0 + γ4,t
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where

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

γ2,t = φ1γ2,t−1 + δ1v1,t−1 + δ2v2,t−1 + b2,t

γ3,t = 2γ3,t−1 − γ3,t−2 + b3,t

γ4,t = 2γ4,t−1 − γ4,t−2 + b4,t

This provides a fitted model for the return mean µt, given in Figure 9.8, which

corresponds to economic cycles of rising S&P 500 or ”booms” (with positive mean

returns i.e. µt > 0), and declining S&P 500 or ”busts” (with negative mean returns

i.e. µt < 0). Figure 9.9 gives the fitted σt, νt and 1/τt for model 9.7. They are similar

to Figures (9.4) and (9.4), except νt and τt are smoother. The reason for considering

GEST model 9.7 was that it provides an interesting model for the return mean µt

and also has a reduced AIC = 21815.54 compared with AIC = 21862.74 for GEST

model m2.
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Figure 9.8: Fitted µt and σt for extended GEST model of equation (15).
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Figure 9.9: Fitted νt and 1/τt for extended GEST model of equation (15).
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9.4 Van drivers killed in UK

In time series analysis of road traffic safety, it is often required to assess the effect

of road safety measures on the development in traffic safety over time. The data in

this example are the monthly number of light goods vehicle drivers killed in road

accidents from 1969 to 1984 in the UK. The data is available in R as vandrivers

within the package sspir (Dethlefsen and Lundbye-Christensen, 2006). It consists

of 192 observations of counts, where, on January 31st, 1983, a seat belt legislation

law was introduced in the UK.

Durbin and Koopman (2000) modeled this data to measure the effect of the seat

belt legislation on the number of deaths of van drivers in road traffic accident in

the UK. They used a conditional Poisson distribution with a trend, seasonality and

intervention in the structural mean model. The intervention parameter is a dummy

variable or an indicator variable which takes zero values before the legislation period

and a unity afterward, to measure the effect of the seat belt law. In particular, their

model consist of a random walk local level and seasonality with an intervention term,

seatbelt.

Let Yt be the monthly number of light goods van drivers killed in road accidents

in the UK from January 1969 to December 1984, and consider; the conditional Pois-

son distribution PO(Yt|µt) of the response variable Yt in the GEST model, and the

conditional negative binomial type I distribution NBI(Yt|µt, σt) of the response vari-

able Yt in the GEST model, with and without the intervention variable, to measure

the effect of the seat belt legislation on road safety. In addition, with deterministic

seasonality and stochastic seasonality to check whether there were any changes in

the seasonality pattern in the data.
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9.4.1 Conditional Poisson distribution

Here we consider conditional Poisson distribution models with each of a random walk

order 1 and a random walk order 2 local levels, each of which with (i) no seasonal

effect, (ii) a deterministic seasonal effect factor, (iii) a deterministic smooth seasonal

effect, (iv) a stochastic seasonal effect, each of which (I) without an intervention

variable, (II) with an intervention variable. The results are summarized later in

Tables 1.1. to 1.4.

RW(1) local level model, m1

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(1) local level and deterministic seasonal effect factor model, m2

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + ξt + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ) and where ξ is a factor with 12 levels, for fixed seasonality,

i.e. ξ> = (1, 2, . . . , 12, 1, 2, . . . , 12, 1, 2, . . . , 12).
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RW(1) local level and deterministic smooth seasonal effect model, m15

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1x1,t + β1,2x2,t + β1,3x3,t + β1,4x4,t + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(1) local level and stochastic seasonal model, m3

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t + s1,t

where

γ1,t = γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt

where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).

RW(1) local level with intervention variable model, m4

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + γ1,t

γ1,t = γ1,t−1 + b1,t
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where b1,t ∼ NO(0, σ2
b ) and where ζ is an intervention variable with ζt = 0 for t < tI

and ζt = 1 for t > tI where, tI = 170, is the point corresponding to the month

February 1983, following the intervention on January 31st 1983.

RW(1) local level with intervention variable and deterministic seasonal

effect factor model, m5

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + ξt + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(1) local level with intervention variable and deterministic smooth

seasonal effect model, m16

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + β1,2x1,t + β1,3x2,t + β1,4x3,t + β1,5x4,t + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).
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RW(1) local level with intervention variable and stochastic seasonal model,

m6

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζ + γ1,t + s1,t

where

γ1,t = γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt

where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).

RW(2) local level model, m20

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

where b1,t ∼ NO(0, σ2
b ).
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RW(2) local level and deterministic seasonal effect factor model, m21

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + ξt + γ1,t

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

where b1,t ∼ NO(0, σ2
b ) and where ξ is a factor with 12 levels, for fixed seasonality,

i.e. ξ> = (1, 2, . . . , 12, 1, 2, . . . , 12, 1, 2, . . . , 12).

RW(2) local level and deterministic smooth seasonal effect model, m22

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1x1,t + β1,2x2,t + β1,3x3,t + β1,4x4,t + γ1,t

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(2) local level and stochastic seasonal model, m23

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t + s1,t

where

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt
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where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).

RW(2) local level with intervention variable model, m24

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + γ1,t

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

where b1,t ∼ NO(0, σ2
b ) and where ζ is an intervention variable with ζt = 0 for t < tI

and ζt = 1 for t > tI where, tI = 170, is the point corresponding to the month

February 1983, following the intervention on January 31st 1983.

RW(2) local level with intervention variable and deterministic seasonal

effect factor model, m25

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + ξt + γ1,t

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

where b1,t ∼ NO(0, σ2
b ).
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RW(2) local level with intervention variable and deterministic smooth

seasonal effect model, m26

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + β1,2x1,t + β1,3x2,t + β1,4x3,t + β1,5x4,t + γ1,t

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(2) local level with intervention variable and stochastic seasonal model,

m27

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1ζt + γ1,t + s1,t

where

γ1,t = 2γ1,t−1 − γ1,t−2 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt

where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).
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Table 9.7: RW(1) local level models without seatbelt using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt df cond. AIC
m1 0.0009535645 - - - 10.61 965.53
m2 0.0009204082 - - y 22.24 958.12
m15 0.0009076958 - y - 15.00 951.35
m3 0.0009120539 1.259696e-07 - - 21.77 957.64

The R commands for fitting these models are given in Appendix D.

Table 9.8: RW(1) local level models with seatbelt using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt β̂1,1 df cond. AIC
m4 0.0005873255 - - - -0.3156 9.67 965.02
m5 0.0005943976 - - y -0.2662 21.32 958.20
m16 0.0005771665 - y - -0.27792 14.08 951.27
m6 0.0005843044 8.039543e-09 - - -0.2697 20.94 957.84

The R commands for fitting these models are given in Appendix D.

where y=yes in Tables 9.7, 9.8, 9.9, and 9.10.
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Table 9.9: RW(2) local level models without seatbelt using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt df cond. AIC
m20 1.979532e-07 - - - 4.48 963.79
m21 1.923868e-07 - - y 15.57 954.26
m22 1.88806e-07 - y - 8.53 947.58
m23 8.15026e-08 6.076289e-08 - - 16.04 956.11

The R commands for fitting these models are given in Appendix D.

Table 9.10: RW(2) local level models with seatbelt using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt β̂1,1 df cond. AIC
m24 6.798457e-08 - - - -0.2162 4.89 964.10
m25 7.800994e-08 - - y -0.17751 16.04 955.17
m26 6.995681e-08 - y - -0.18796 8.97 948.36
m27 2.061154e-09 7.11798e-09 - - -0.2437 15.12 955.89

The R commands for fitting these models are given in Appendix D.

According to Tables 9.7, 9.8, 9.9, and 9.10 the best model with a smallest con-

ditional Akaike information criteria, (cond. AIC)1, is m22, RW(2) local level and

deterministic smooth seasonal effect. The deterministic smooth seasonal effect is

modelled by sine and cosine pairs with both annual and semiannual cycles. The

seasonality in this data is constant over time, and it is better to be modeled by

smooth sine and cosine pairs.

The model which Durbin and Koopman (2000) fitted to the van drivers was a

structural mean model with a random walk local level and stochastic seasonal for

the conditional Poisson distribution. Their parameter estimates for the random walk

local level and the seasonal disturbances were σ̂η = 0.0245 and σ̂w = 0 respectively,

with a conclusion that the seasonal effect is constant over time. Their parameter

1The conditional AIC = -2 maximum conditional log-likelihood + 2 effective degrees of freedom,
and the global deviance = -2 maximum conditional log-likelihood, both are conditional on the fitted
random effect γ̂t.
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estimate for the seat belt intervention variable was λ = −0.280, which corresponds

to a reduction in the number of deaths of 24%. Durbin and Koopman’s (2000) model

is equivalent to model m6 from Table (9.8). The estimated hyperparameters for m6

are σb = 0.02417239 and σw = 0.0000896635 for the random walk local level and the

seasonal disturbances respectively, which implies a fixed seasonal effect in the data,

and β1,1 = −0.2697 which corresponds to a reduction in the number of deaths of

24%.

However, model m22 is better then m6, has a smaller AIC, implies that the GEST

model m22, RW(2) local level and deterministic smooth seasonal effect model, im-

proves the RW(1) local level with intervention variable and stochastic seasonal model

of Durbin and Koopman (2000).

For analysing the statistical significance of the seat belt on the reduction of the

number of deaths of van drivers in the UK , model m26, RW(2) local level with

intervention variable and deterministic smooth seasonal effect, is used.

The model m26 models the random effect with a random walk order 2 local level,

the fixed effect of the seasonality and the fixed effect of the seat belt. Testing whether

the fixed effect of the seat belt is significant, we refit model m26, and call it model

m261, with fixed hyperparameters for the random walk order 2 local level, estimated

from model m26, and without the seat belt variable, and test whether the difference

in the global deviances of m26 and m261 is bigger than the value of the Chi square

statistic with one degree of freedom at 5% significance level, (χ2
1,0.05 = 3.841). If the

fixed effect of seat belt is statistically significant, implies that the seat belt variable

has dropped the deviance significantly, and is needed in the model.

Note that, model m261 is equivalent to model m22 but with fixed values for hyper-

parameters taken from the fitted hyperparameters of model m26. Also note that the

effect of the seat belt in model m26 is smaller, β1,1 = −0.18796, corresponding to an
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17.14% reduction in the mean number of deaths [since exp(−0.18796) = 0.8286479].

Conditional test for the seat belt intervention variable in m26

Testing whether the fixed effect of the seat belt legislation law had a significant

impact on the reduction of the number of deaths of van drivers in the UK, is obtained

approximately using the conditional test of β1,1 to be significantly negative in model

m26 is necessary. The null hypothesis is (H0 : β1,1 = 0) against (H1 : β1,1 6= 0) with

5% significance level.

If H0 is accepted, then exp(β̂1,1) is equal to one, implies that there was no re-

duction in the mean number of deaths of van drivers. However, if H0 is rejected and

H1 is accepted, then exp(β̂1,1) = exp(−0.18796) = 0.8286479, implies that the mean

level has dropped by 0.1713521, corresponding to 17.13% reduction in the mean

number of deaths of van drivers.

Using a χ2
1,0.05 test with one degree of freedom at 5% significance level:

H0 : β1,1 = 0 against H1 : β1,1 6= 0.

Table 9.11: Conditional test for the seat belt intervention variable in m26

model σ̂2
e σ̂2

b β̂1,1 df cond. AIC cond. deviance
m26 0.8399006 6.995681e-08 -0.18796 8.97 948.36 930.41
m261 0.8399006 6.995681e-08 - 9.17 949.87 931.53

The R commands for fitting these models are given in Appendix D.

From Table 9.11, the difference in deviances is equal to 1.12 < 3.841. Hence, H0

is accepted and H1 is rejected. This indicates β1,1 is not statistically significant and

should not be included in the model, in which case model m22 is the best model,

and the seat belt legislation law does not have a statistical significant effect on the

reduction of the mean number of death of van drivers.

The 95% profile confidence interval for β1,1 is equal to (-0.4379, 0.1261) as shown



9.4. VAN DRIVERS KILLED IN UK 223

in Figure 9.10. The 95% profile confidence interval is obtained by fixing the hyper-

parameters in model m261 and offsetting β1,1ζt, where β1,1 takes a sequence of values

(e.g. from min=-0.6 to max=0.5), and ζt is the seat belt intervention variable. The

95% profile confidence interval is obtained by using the function prof.term() avail-

able in R within the package gamlss (Stasinopoulos et al., 2008). This function plots

the profile deviance for model m261 from the minimum value of β1,1 to the maximum

value of β1,1, gives the 95% profile confidence interval for β1,1 and the estimate of

β1,1 at the minimum global deviance, as shown in Figure 9.10.

The lower bound of the 95% profile confidence interval for β1,1 is given by:

β1,1 = −0.4379, the exp(−0.4379) = 0.6454 which corresponds to a 35.46%

minimum reduction in the mean number of deaths of van drivers killed in road

accidents in the UK.

The upper bound of the 95% profile confidence interval for β1,1 is given by:

β1,1 = 0.1261, the exp(0.1261) = 1.1344 which corresponds to a 13.44% maximum

increase in the mean number of deaths of van drivers killed in road accidents in the

UK.

The estimate of β1,1 is given by:

β̂1,1 = −0.18796, the exp(−0.18796) = 0.8286479 which corresponds to a 17.14%

reduction in the mean number of deaths of van drivers killed in road accidents in the

UK, predicted by the model m26, but not statistically significant because the 95%

profile confidence interval for β1,1 includes the zero, as shown in Figure 9.10. The R

commands are given in Appendix D.
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Figure 9.10: The 95% profile confidence interval for β1,1

95% confidence interval for the hyperparameter σ2
b in m22

To calculate the 95% two-sided confidence interval for the hyperparameter σ2
b , the

following transformation is needed for the GEST model m22. The GEST estimates

the log(σ̂2
b ) and calculates its standard error by inverting the Hessian matrix ob-

tained from the fitted model m22. This standard error is for the predictor for the

hyperparameter.

Hence, the 95% confidence level for log(σ̂2
b ) is given by

log(σ̂2
b )-1.96(se(log(σ̂2

b ))) = -15.4825459 - 1.96(1.2879334) = -18.0069

log(σ̂2
b )+1.96(se(log(σ̂2

b ))) = -15.4825459 + 1.96(1.2879334) = -12.9582

Now

σ̂2
b = exp(-15.4825459)=1.9e-07 and

exp(-18.0069)= 1.5e-08 and
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exp(-12.9582)= 2.4e-06.

Hence

[1.5e-08, 2.4e-06] is the 95% confidence level for σ2
b .

9.4.2 Conditional negative binomial type I distribution

Here we consider conditional negative binomial type I, (NBI), distribution models

with each of a random walk order 1 and a random walk order 2 local levels, each

of which with (i) no seasonal effect, (ii) a deterministic seasonal effect factor, (iii) a

deterministic smooth seasonal effect, (iv) a stochastic seasonal effect, each of which

(I) without an intervention variable, (II) with an intervention variable. The log(σt) =

β2,0, a constant for all NBI models.

For example RW(1) local level model, b1, is defined as

Yt|µt, σt ∼ NBI(µt, σt)

log(µt) = β1,0 + γ1,t

log(σt) = β2,0

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

The results are summarized later in Tables 9.12, 9.13, 9.14, and 9.15.

where y=yes in Tables 9.12, 9.13, 9.14, and 9.15.
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Table 9.12: RW(1) local level models without seatbelt using the conditional NBI
distribution

model σ̂2
b σ̂2

w xt ξt β̂2,0 df cond. AIC
b1 0.0009535645 - - - -36.09 11.61 967.53
b2 0.0008421035 - - y -36.09 21.81 959.20
b15 0.0009076958 - y - -36.09 16.00 953.35
b3 0.0009120418 2.821023e-08 - - -36.09 22.77 959.64

The R commands for fitting these models are given in Appendix D.

Table 9.13: RW(1) local level models with seatbelt using the conditional NBI
distribution

model σ̂2
b σ̂2

w xt ξt β̂1,1 β̂2,0 df cond. AIC
b4 0.0005873425 - - - -0.3156 -36.09 10.67 967.02
b5 0.0005944848 - - y -0.2661 -36.09 22.32 960.20
b16 0.0005771708 - y - -0.27791 -36.09 15.08 953.27
b6 0.0005844664 3.603998e-08 - - -0.2696 -36.09 21.94 959.84

The R commands for fitting these models are given in Appendix D.

Table 9.14: RW(2) local level models without seatbelt using the conditional NBI
distribution

model σ̂2
b σ̂2

w xt ξt β̂2,0 df cond. AIC
b17 1.979661e-07 - - - -36.09 5.48 965.79
b18 1.923878e-07 - - y -36.09 16.57 956.26
b19 1.888009e-07 - y - -36.09 9.53 949.58
b20 8.153892e-08 1.843182e-07 - - -36.09 17.04 958.11

The R commands for fitting these models are given in Appendix D.
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Table 9.15: RW(2) local level models with seatbelt using the conditional NBI
distribution

model σ̂2
b σ̂2

w xt ξt β̂1,1 β̂2,0 df cond. AIC
b21 6.798399e-08 - - - -0.2162 -36.09 5.89 966.10
b22 7.804827e-08 - - y -0.17741 -36.09 17.04 957.17
b23 6.996993e-08 - y - -0.18794 -36.09 9.97 950.36
b24 2.061154e-09 2.768264e-07 - - -0.2437 -36.09 16.12 957.91

The R commands for fitting these models are given in Appendix D.

From the above Table 9.12, 9.13, 9.14, and 9.15, b19 is the best model according

to Akaike information criteria, but in comparison with model m22, the AIC has not

improved, which indicates model m22 is still the best model. Hence, the Poisson

distribution is the best conditional distribution for this data. The conditional test

for β1,1 for model b19 is not needed, since m22 has a better AIC using the Poison

distribution.

The time series of van drivers killed in road accidents in the UK from January

1969 to December 1984, and the fitted RW(2) local level of model m22 without

seasonality, are plotted together in Figure 9.14. We also plot the data and the fitted

RW(1) local level with seat belt intervention variable of model m16 in Figure 9.11,

the fitted RW(2) local level with seat belt intervention variable of model m26 in

Figure 9.12, and the fitted RW(1) local level of model m15 in Figure 9.13.

Figure 9.15 illustrates the time series of the van drivers killed in the UK and the

decomposition of fitted model m22 into two components, RW(2) local level and deter-

ministic seasonal. The R commands for plotting Figure 9.14 are given in Appendix

D.
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Figure 9.11: Monthly number of light goods van drivers killed in road accidents in
the UK from January 1969 to December 1984 in gray, and the fitted RW(1) local
level with intervention variable in red.
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Figure 9.12: Monthly number of light goods van drivers killed in road accidents in
the UK from January 1969 to December 1984 in gray, and the fitted RW(2) local
level with intervention variable in red.
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Figure 9.13: Monthly number of light goods van drivers killed in road accidents in
the UK from January 1969 to December 1984 in gray, and the fitted RW(1) local
level in red.
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Figure 9.14: Monthly number of light goods van drivers killed in road accidents in
the UK from January 1969 to December 1984 in gray, and the fitted RW(2) local
level in red.



9.4. VAN DRIVERS KILLED IN UK 230

Time

Va
n 

dr
iv

er
s 

ki
lle

d

1970 1975 1980 1985

5
15

1970 1975 1980 1985

5
8

11

Time

Le
ve

l

1970 1975 1980 1985

0.
9

1.
1

Time

S
ea

so
na

l

Figure 9.15: The fitted RW(2) local level and smooth seasonal of model m22 for
monthly number of light goods van drivers killed in road accidents in the UK from
January 1969 to December 1984.
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9.5 Polio incidence in the United States

The data of this example is a time series of the monthly number of cases of po-

liomyelitis reported in the U.S. Centres for Disease Control from January 1970 to

December 1983. The data is available in R as polio within the package gamlss

(Stasinopoulos et al., 2008).

The polio data, consist of 168 observations, were originally modelled by Zeger

(1988) who used a parameter-driven approach with the Poisson conditional distri-

bution, in which a first order autoregressive model was used for the latent process.

Using an alternative observation-driven approach, Li (1994) compared a second order

moving average log linear Poisson process to a second order Markov autoregressive

model of Zeger and Qaqish (1988). Fokianos (2000) improved the fit by applying

a truncated Poisson model. Benjamin et al. (2003) fitted a negative binomial and

Poisson GARMA models to the data, reporting a significantly better fit for the neg-

ative binomial model with deterministic seasonal, and Davis and Wu (2009) fitted

the negative binomial distribution to the polio data.

All the previous models used a deterministic seasonal model. They modelled

seasonality with a sine and a cosine for 6 months and 12 months, which is a smooth

deterministic cyclical model for seasonality, and no one has considered a stochastic

seasonality model for the polio data. In addition, Benjamin et al. (2003) and Davis

and Wu (2009) reported that the negative binomial distribution fits better than the

Poisson distribution for the polio data.

Hence, the main interest of the author for modelling the polio data is investigating

whether the data is overdispersed by fitting the negative binomial conditional distri-

bution to the polio data, and investigating whether the seasonal effect is stochastic

or deterministic. For these reasons the GEST model has the flexility to model the

stochastic seasonality with a structural time series model and check whether the
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seasonality is changing over time, and has the flexibility to use different discrete

conditional distributions to model to the overdispersion in the data.

Let Yt be the monthly number of cases of poliomyelitis reported in the U.S. from

January 1970 to December 1983, and consider; the conditional Poisson distribution

PO(Yt|µt) of the response variable Yt in the GEST model, and the conditional neg-

ative binomial type I distribution NBI(Yt|µt, σt) of the response variable Yt in the

GEST model, with and without trend in time, and with deterministic seasonality

and stochastic seasonality to check whether there were any changes in the seasonal

effect in the polio data.

9.5.1 Conditional Poisson distribution

Here we consider conditional Poisson distribution models with each of a random walk

order 1 and autoregressive order 1 local levels, each of which with (i) no seasonal

effect, (ii) a deterministic smooth seasonal effect, (iii) a deterministic seasonal effect

factor, (iv) a stochastic seasonal effect, each of which (I) without a fixed linear trend

in time, (II) with a fixed linear trend in time. The results are summarized later in

Tables 9.16, 9.17, 9.18, and 9.19.

RW(1) local level model, p1

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).
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RW(1) local level and deterministic smooth seasonal effect model, p2

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1x1,t + β1,2x2,t + β1,3x3,t + β1,4x4,t + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(1) local level and deterministic seasonal effect factor model, p3

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + ξt + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ) and where ξ is a factor with 12 levels, for fixed seasonality,

ξ> = (1, 2, . . . , 12, 1, 2, . . . , 12, 1, 2, . . . , 12).

RW(1) local level and stochastic seasonal model, p4

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t + s1,t

where

γ1,t = γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt
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where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).

RW(1) local level with fixed linear trend model, p5

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(1) local level with fixed linear trend and deterministic smooth sea-

sonal effect model, p6

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ β1,2x1,t + β1,3x2,t + β1,4x3,t + β1,5x4,t + γ1,t

γ1,t = γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

RW(1) local level with fixed linear trend and deterministic seasonal effect

factor model, p7

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ ξt + γ1,t

γ1,t = γ1,t−1 + b1,t
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where b1,t ∼ NO(0, σ2
b ) and where ξ is a factor with 12 levels, for fixed seasonality,

ξ> = (1, 2, . . . , 12, 1, 2, . . . , 12, 1, 2, . . . , 12).

RW(1) local level with fixed linear trend and stochastic seasonal model,

p8

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ γ1,t + s1,t

where

γ1,t = γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt

where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).

AR(1) local level model, g1

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t

γ1,t = φ1γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).
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AR(1) local level and deterministic smooth seasonal effect model, g2

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1x1,t + β1,2x2,t + β1,3x3,t + β1,4x4,t + γ1,t

γ1,t = φ1γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

AR(1) local level and deterministic seasonal effect factor model, g3

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + ξt + γ1,t

γ1,t = φ1γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ) and where ξ is a factor with 12 levels, for fixed seasonality,

ξ> = (1, 2, . . . , 12, 1, 2, . . . , 12, 1, 2, . . . , 12).

AR(1) local level and stochastic seasonal model, g4

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + γ1,t + s1,t

where

γ1,t = φ1γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt
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where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).

AR(1) local level with fixed linear trend model, g5

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ γ1,t

γ1,t = φ1γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

AR(1) local level with fixed linear trend and deterministic smooth sea-

sonal effect model, g6

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ β1,2x1,t + β1,3x2,t + β1,4x3,t + β1,5x4,t + γ1,t

γ1,t = φ1γ1,t−1 + b1,t

where b1,t ∼ NO(0, σ2
b ).

AR(1) local level with fixed linear trend and deterministic seasonal effect

factor model, g7

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ ξt + γ1,t

γ1,t = φ1γ1,t−1 + b1,t
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where b1,t ∼ NO(0, σ2
b ) and where ξ is a factor with 12 levels, for fixed seasonality,

ξ> = (1, 2, . . . , 12, 1, 2, . . . , 12, 1, 2, . . . , 12).

AR(1) local level with fixed linear trend and stochastic seasonal model,

g8

Yt|µt ∼ PO(µt)

log(µt) = β1,0 + β1,1t+ γ1,t + s1,t

where

γ1,t = φ1γ1,t−1 + b1,t

s1,t = −
M−1∑
m=1

s1,t−m + wt

where b1,t ∼ NO(0, σ2
b ) and w1,t ∼ NO(0, σ2

w).
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Table 9.16: RW(1) local level models without trend using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt df cond. AIC
p1 0.2188918 - - - 43.96 495.52
p2 0.07116778 - y - 28.74 494.94
p3 0.08117827 - - y 38.33 496.73
p4 0.07903896 0.00829891 - - 41.95 493.12

The R commands for fitting these models are given in Appendix D.

Table 9.17: RW(1) local level models with trend using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt β̂1,1 df cond. AIC
p5 0.219989 - - - -0.003753 45.08 497.52
p6 0.0711074 - y - -0.003821 29.72 497.02
p7 0.08114721 - - y -0.004001 39.31 498.79
p8 0.07892945 0.008317149 - - -0.004254 42.93 495.19

The R commands for fitting these models are given in Appendix D.

where y=yes in Tables 9.16, 9.17, 9.18, and 9.19.
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Table 9.18: AR(1) local level models without trend using the conditional Poisson
distribution

model σ̂2
b σ̂2

w xt ξt φ̂1 df cond. AIC
g1 0.7503972 - - - 0.401733 95.53 515.45
g2 0.6581206 - y - 0.345565 94.90 516.27
g3 0.6019258 - - y 0.4111022 99.10 522.23
g4 0.6818061 5.878952e-06 - - 0.372089 95.63 512.40

The R commands for fitting these models are given in Appendix D.

Table 9.19: AR(1) local level models with trend using the conditional Poisson dis-
tribution

model σ̂2
b σ̂2

w xt ξt β̂1,1 φ̂1 df cond. AIC
g5 0.7693205 - - - -0.004031 0.3532904 98.07 518.05
g6 0.6956179 - y - -0.004521 0.2528894 99.09 519.62
g7 0.6510392 - - y -0.004751 0.3135243 104.41 526.97
g8 0.7302721 3.132148e-07 - - -0.004772 0.2788073 100.15 516.09

The R commands for fitting these models are given in Appendix D.
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The first two Tables, 9.16 and 9.17, summarize the random walk local level

models with and without a fixed linear trend, and with deterministic seasonal and

stochastic seasonal, and Tables 9.18, and 9.19 summarize the autoregressive local

level models with and without a fixed linear trend, and with deterministic seasonal

and stochastic seasonal. The random walk local level models have a better condi-

tional AIC compared with conditional AIC of the autoregressive local level models

for the polio data, in which case, the best model with the smallest AIC is model p4,

RW(1) local level and stochastic seasonal model, given in Figure 9.17.

In addition, the local level and stochastic seasonal models have a smallest AIC

than the local level and deterministic seasonal models in all the tables, implying that

the seasonality of the polio is changing over time and needs a stochastic seasonal

model rather than a deterministic seasonal model.

Figure 9.16 shows the time series of the polio data, from January 1970 to De-

cember 1983 , and the fitted of the RW(1) local level of model p4 without plotting

seasonality.

Figure 9.17 shows the time series of the polio data and the decomposition of

fitted model p4 into two components, RW(1) local level and stochastic seasonal. It

is clear that the fitted seasonality is changing over time and is not fixed, hence, the

seasonality of the polio is stochastic rather than deterministic.

95% confidence interval for the hyperparameters σ2
b and σ2

w in p4

To calculate the 95% two-sided confidence interval for the hyperparameters σ2
b and

σ2
w, the following transformations are needed for the GEST model p4. The GEST

estimates the log(σ̂2
b ) and log(σ̂2

w) and calculates their standard errors by inverting

the Hessian matrix obtained from the fitted model p4, these standard errors are for

the predictors for the hyperparameters.
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Hence, the 95% confidence level for log(σ2
b ) is given by

log(σ̂2
b )-1.96(se(log(σ̂2

b )) = -2.53781433 - 1.96(0.4557181)= -3.431022

log(σ̂2
b )+1.96(se(log(σ̂2

b )) = -2.53781433 + 1.96(0.4557181) = -1.644607

Now

σ̂2
b = exp(-2.53781433)= 0.07903896 and

exp(-3.431022)= 0.03235386 and

exp(-1.644607)= 0.1930884.

Hence,

[0.1930884, 0.03235386] is 95% confidence level for σ2
b .

The 95% confidence level for log(σ2
w) is given by

log(σ̂2
w)-1.96(se(log(σ̂2

w)) = -4.79163116 - 1.96(1.2339636)= -7.2102

log(σ̂2
w)+1.96(se(log(σ̂2

w)) = -4.79163116 + 1.96(1.2339636) = -2.373063

Now

σ̂2
w = exp(-4.79163116)= 0.008298909 and

exp(-7.2102)= 0.0007390093 and

exp(-2.373063)= 0.09319483.

Hence,

[0.0007390093, 0.09319483] is 95% confidence level for σ2
w.

9.5.2 Conditional negative binomial type I distribution

Here we consider conditional negative binomial type I, (NBI), distribution models

with each of a random walk order 1 and autoregressive order 1 local levels, each of

which with (i) no seasonal effect, (ii) a deterministic smooth seasonal effect, (iii) a

deterministic seasonal effect factor, (iv) a stochastic seasonal effect, each of which

(I) without a fixed linear trend in time, (II) with a fixed linear trend in time. The

log(σt) = β2,0, a constant for all NBI models. The results are summarized later in
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Tables 9.20, 9.21, 9.22, and 9.23.

Table 9.20: RW(1) local level models without trend using the conditional negative
binomial distribution

model σ̂2
b σ̂2

w ξt xt β̂2,0 df cond. AIC
n1 0.2188917 - - - -36.05 44.96 497.52
n2 0.04895041 - - y -2.108 25.07 497.93
n3 0.06100436 - y - -2.721 35.27 500.07
n4 0.07546877 0.007867358 - - -36.05 41.87 495.36
The R commands for fitting these models are given in Appendix D.

Table 9.21: RW(1) local level models with trend using the conditional negative
binomial distribution

model σ̂2
b σ̂2

w ξt xt β̂1,1 β̂2,0 df cond. AIC
n5 0.2193205 - - - -0.001671 -36.05 46.01 499.52
n6 0.04881961 - - y -0.000558 -2.105 26.04 499.95
n7 0.06056373 - y - -0.003242 -2.704 36.17 502.15
n8 0.07886942 0.008314509 - - -0.003267 -36.05 43.92 497.18

The R commands for fitting these models are given in Appendix D.
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Table 9.22: AR(1) local level models without trend using the conditional negative
binomial distribution

model σ̂2
b σ̂2

w ξt xt β̂2,0 φ̂1 df cond. AIC
e1 0.7504561 - - - -36.06 0.4017 96.53 517.43
e2 0.6580777 - - y -36.05 0.3455 95.90 518.27
e3 0.601919 - y - -36.05 0.4111 100.10 524.23
e4 0.6821032 1.429029e-06 - - -36.05 0.3719 96.64 514.40

The R commands for fitting these models are given in Appendix D.

Table 9.23: AR(1) local level models with trend using the conditional negative
binomial distribution

model σ̂2
b σ̂2

w ξt xt β̂1,1 β2,0 φ̂1 df cond. AIC
e5 0.7693097 - - - -0.00403 -36.06 0.353 99.06 520.02
e6 0.6956196 - - y -0.004521 -36.05 0.259 100.09 521.62
e7 0.6510741 - y - -0.004751 -36.05 0.313 105.40 528.96
e8 0.7301156 1.6325e-05 - - 0.004772 -36.05 0.279 101.15 518.09

The R commands for fitting these models are given in Appendix D.
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From Tables 9.20, 9.21, 9.22, and 9.23, n4 is the best model according to Akaike

information criteria, but in comparison with model p4, the AIC has not improved

with the conditional negative binomial distribution, which indicates that model p4

is still the best model. Hence, the Poisson distribution is the best conditional distri-

bution for the polio data. Note that the estimate of log(σ̂t) = β̂2,0 = −36.05, hence,

σ̂t = 0, implies that the variance of the NBI is equal to the variance of Poisson,

which indicates that there is no dispersion in the polio data.

Benjamin et al. (2003) fitted negative binomial and Poisson GARMA(0,2) models

with deterministic seasonal and with and without trend, and their best chosen model

was a negative binomial GARMA(0,2) model without trend with the AIC = 504.9.

The GEST model has a smaller AIC than the GARMA(0,2) model and disagrees

with the GARMA(0,2) in regards to the best fitted distribution for the polio. The

R commands for plotting Figure 9.16 and Figure 9.17 are given in Appendix D.
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Figure 9.16: Monthly number of polio cases in the U.S. from 1970 to 1983 in gray
and the fitted local level of model p4 in red.
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Figure 9.17: Monthly number of polio cases in the U.S. from 1970 to 1983 in gray
and the fitted local level in red and the fitted stochastic seasonality in blue of model
p4.



Chapter 10

Conclusion and future

developments

The thesis presents a new approach for modelling univariate time series, namely the

generalized structural time series (GEST) model. The proposed GEST model pri-

marily addresses the difficulty in modelling time-varying skewness and time-varying

kurtosis (beyond mean and dispersion time series models) to better describe the

non-Gaussian movements in a time series. Proofs of some of the properties of the

GEST process are given in Appendix C.

This chapter outlines the main contributions of the thesis in time series analysis

and proposes some directions for future developments of the GEST model.

10.1 Originality of the GEST process

The thesis introduces a novel and general stochastic process, namely the GEST

process, for Gaussian and non-Gaussian, continuous and discrete, seasonal and non-

seasonal time series data.

The GEST process extends the traditional Gaussian processes to non-Gaussian

247
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processes and is implemented with 80 conditional distributions, in either stationary

and non-stationary situations, by modelling time varying-mean, time-varying vari-

ance, time-varying skewness and time-varying kurtosis. Stationarity properties of

the GEST process under specific conditions are explored in two theorems in chapter

7.

10.2 Originality of the GEST model

In addition, this thesis makes a number of original contributions to the area of

structural time series modelling by developing a new class of univariate time series

models, the Generalized Structural (GEST) time series model which extends the

traditional univariate Gaussian structural models to non-Gaussian situation.

The GEST model allows modelling of any or all the parameters of the conditional

distribution, of Yt given the past, using structural terms and explanatory terms (e.g.

linear and/or non-linear parametric terms and/or smoothing terms in explanatory

variables).

For example, the GEST model extends the current Gaussian structural frame-

work of modeling the conditional mean and conditional variance to include two

more parameters for modelling conditional skewness and conditional kurtosis in a

non-Gaussian structural framework. In this extended structural model, all the pa-

rameters are modeled jointly and explicitly via an autoregressive structural term and

a seasonal structural term, together with explanatory terms.

The GEST model is a general regression model with a stochastic nature based on

the GEST process. A method of estimating the parameters of the GEST model is

described and explained in Chapter 8. The S&P 500 returns are used as one example

to show that the GEST model outperforms the traditional GARCH type models as
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a better representation of the past observations. More applications of the GEST

model to counts time series, e.g. van drivers killed in the UK and Polio incidence in

the US are illustrated.

10.3 Important applications of the GEST model

There are several important points to make here:

� The GEST model allows the use of a flexible parametric distributionD(µt, σt, νt, τt)

for the dependent variable, including highly skew and/or kurtotic distributions

such as the generalized beta type 2 (including the special case of the general-

ized Pareto) of McDonald and Xu (1995), power exponential of Nelson (1991),

Johnson’s SU of Johnson et al. (1994), Gumbel of Crowder et al. (1991), Box-

Cox Cole-Green of Cole and Green (1992), Sinh-arcsinh of Jones and Pewsey

(2009) and skewed t-family distributions.

� The use of a flexible parametric distribution allows: a) the fitting of the GEST

model using the penalised likelihood estimation algorithm discussed in section

chapter 8, and b) the use of a variety of diagnostic tools (from both the econo-

metric or standard statistical literature) for model checking and selection (see,

for example, chapter 9).

� The GEST model expands the systematic part of time series models to allow

the stochastic modelling of any or all of the distribution parameters (µt, σt, νt, τt)

as structural terms and (if necessary) linear, non-linear and smooth functions

of independent variables (see chapter 8).

� The structural terms for each distribution parameter of the conditional distri-

bution can be a random walk or autoregressive (of any order) and can include
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seasonal and/or leverage effects.

� The GEST model can model seasonal count data, with a random walk or au-

toregressive and seasonal structural terms, using a Poisson, negative binomial,

Delaporte, or Sichel conditional distribution. If the data is counts without

seasonal pattern, then the GEST with a random walk or autoregressive term

can be used.

� Note, the conditional distribution of the response variable given the past can be

any continuous or discrete distribution. In fact any of the 80 or so distributions

implemented in the R package gamlss.dist, Stasinopoulos et al. (2008), can

be used. This provides a very flexible way of analysing physical phenomena

time series containing rare events, e.g. flooding, or spells of high counts as in

epidemiological data or economic time series data like inflation data.

� Time-varying mean, variance, skewness and kurtosis are of interest in them-

selves and provide information on various aspects of a time series. The GEST

model provides a useful framework based upon time-varying estimates of the

distribution parameters (µt, σt, νt, τt).

Chapter 9 demonstrates the flexibility of the GEST model to model the stochas-

tic seasonal effect of the Polio incidents in the U.S.; to have different orders for

the random walk local level in the van drivers killed in the UK; and to capture the

time-varying skewness and kurtosis of the returns of the S&P 500 stock index. Fur-

thermore, a variety of diagnostic tools have also been used to compare the adequacy

of the GEST model with the APARCH model for the returns of the S&P 500 stock

index.
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10.4 Limitations and future developments

Clearly a large variety of models can be fitted within the GEST framework, but

further development is needed to establish the model capability for forecasting.

Further work includes:

� Assessing forecasting with GEST using a recursive forecasting algorithm, and

� a simulation study to explore the properties of hyperparameters estimates and

reliability of the standard errors.

These two further works on the GEST have been considered by the author,

but due to time constraint of this research and the time consumption of both

algorithms, simulation study and forecasting, have been proposed for future

developments of the GEST.

� There is a possibility that the GEST model is over-fitting the parameters of

the conditional distribution when modelling the time series. Furthermore,

the results are all based on in-sample fit, and the over-fitting could be due

to the flexibility of the GEST model and the complexity of its structure in

fitting time series, which is good for explaining the past, but not necessarily a

good model for forecasting the future. However, in empirical volatility studies,

the more challenging and interesting aspect of a new model or method is its

ability to forecast volatility more accurately. Thus, one of the important future

development of the GEST model is forecasting the stochastic volatility and

comparing the forecast of the GEST model with other models. In addition,

forecasting the shape parameters (skewness and kurtosis parameters) of the

conditional distribution and comparing the in-sample fit with out-sample fit

are both important for the development of the GEST model.
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� The Q function uses a multivariate normal distribution with weights, alterna-

tively using the Kalman filter with weights can be another way of estimation

of the hyperparameters for non-Gaussian time series observations within the

GEST model.

� Fitting the parameter τt of the conditional distribution using the GEST model

can be difficult when the sample size of the observations is small. A possible

solution for capturing movements of the parameter τt is to increase the sample

size so the tail of the conditional distribution is changing over time, or to use

a sophisticated optimization tool by coding the algorithm of the GEST model

in JAVA.

� Finally a possible development is to speed up the global estimation method and

use it instead of the local estimation method, using C programming language.



Appendix A

Derivations of Chapter 4

A.1 Derivations of Section 4.2

Let

f(y) =

∫
f(y|γ)f(γ)dγ,

where

f(y|γ) =
1

|2πΣ| 12
exp

{
−1

2
(y −Xβ − Zγ)>Σ−1(y −Xβ − Zγ)

}
,

and

f(γ)1 =
1

|2πD| 12
exp

{
−1

2
(γ>D−1γ)

}
,

hence

1This is the prior density for γ.
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f(y) =

∫
1

|2πΣ| 12
exp

{
−1

2
(y −Xβ − Zγ)>Σ−1(y −Xβ − Zγ)

}
× 1

|2πD| 12
exp

{
−1

2
(γ>D−1γ)

}
dγ

= |2πΣ|−
1
2 |2πD|−

1
2

∫
exp{−1

2

[
(y −Xβ − Zγ)>Σ−1(y −Xβ − Zγ) + (γ>D−1γ)

]
}dγ

= |2πΣ|−
1
2 |2πD|−

1
2

∫
exp{−1

2
[γ>(Z>Σ−1Z +D−1)γ + (y −Xβ)>Σ−1(y −Xβ)

−2(y −Xβ)>Σ−1Zγ]}dγ.

Writing

γ̂ = (Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ)

f(y) = |2πΣ|−
1
2 |2πD|−

1
2

∫
exp{−1

2
[(γ − γ̂)>(Z>Σ−1Z +D−1)(γ − γ̂)

+(y −Xβ)>Σ−1(y −Xβ)− γ̂>(Z>Σ−1Z +D−1)γ̂]}dγ

= |2πΣ|−
1
2 |2πD|−

1
2 |2π(Z>Σ−1Z +D−1)|−

1
2 exp{−1

2
[(y −Xβ)>Σ−1(y −Xβ)

−(y −Xβ)>Σ−1Z(Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ)]}

= |2πΣ|−
1
2 |2πD|−

1
2 |2π(Z>Σ−1Z +D−1)|−

1
2 exp{−1

2
(y −Xβ)>

[Σ−1 − Σ−1Z(Z>Σ−1Z +D−1)−1Z>Σ−1](y −Xβ)}

= |2πΣ|−
1
2 |2πD|−

1
2 |2π(Z>Σ−1Z +D−1)|−

1
2 exp{−1

2
(y −Xβ)>V −1(y −Xβ)}
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where

V −1 = Σ−1 − Σ−1Z(Z>Σ−1Z +D−1)−1Z>Σ−1,

and

∫
exp

{
−1

2
(γ − γ̂)>(Z>Σ−1Z +D−1)(γ − γ̂)

}
dγ = |2π(Z>Σ−1Z +D−1)|−

1
2 ,

since if

γ ∼ N
(
γ̂, [Z>Σ−1Z +D−1]−1

)
,

f(γ) = |2π(Z>Σ−1Z +D−1)|
1
2 exp

{
−1

2
(γ − γ̂)>(Z>Σ−1Z +D−1)(γ − γ̂)

}
,

and

∫
f(γ)dγ = 1.

Pawitan (2001), page 446 shows that

|V | = |Σ||D||Z>Σ−1Z +D−1|.

Hence

f(y) = |2πV |−
1
2 exp{−1

2
(y −Xβ)>V −1(y −Xβ)}. (A.1)
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An alternative method for deriving the marginal distribution of y is to use the

characteristic function:

if y ∼ N(Xβ + Zγ,Σ),

and γ ∼ N(0, D),

then Ey
[
exp(iT>y)

]
= Eγ

[
Ey/γ[exp(iT>y)|γ]

]
,

where Ey/γ
[
exp(iT>y)|γ

]
= exp

(
iT>[Xβ + Zγ]− 1

2
T>ΣT

)
,

so

Eγ
[
Ey/γ[exp(iT>y)|γ]

]
= Eγ

[
exp

(
iT>[Xβ + Zγ]− 1

2
T>ΣT

)]
= exp

(
iT>Xβ − 1

2
T>ΣT

)
Eγ
[
exp(iT>Zγ)

]
= exp

(
iT>Xβ − 1

2
T>ΣT

)
exp

(
iT>Z0− 1

2
T>ZDZ>T

)
= exp

(
iT>Xβ − 1

2
T>(Σ + ZDZ)>T

)
.

Hence

Ey
[
exp(iT>y)

]
= exp

(
iT>Xβ − 1

2
T>(Σ + ZDZ)>T

)
,

so y ∼ N
(
Xβ,Σ + ZDZ>

)
,

where Σ + ZDZ> = V,

then y ∼ N (Xβ, V ) .



A.2. DERIVATIONS OF SECTION 4.3 257

A.2 Derivations of Section 4.3

From 4.2 the marginal distribution of y is normal with mean Xβ and variance V

such that:

E(y) = Eγ[Ey(y|γ)] = Eγ[Xβ + Zγ] = Xβ

V (y) = Eγ[Vy(y|γ)] + Vγ[Ey(y|γ)]

= Eγ[Σ] + Vγ[Xβ + Zγ]

= Σ + ZDZ> = V (A.2)

The marginal log-likelihood of the fixed parameters (β, θ) is

logL(β, θ) = −1

2
log |V | − 1

2
(y −Xβ)>V −1(y −Xβ) (A.3)

For fixed θ, taking the derivatives of the marginal log-likelihood logL(β, θ) with

respect to β, we find the estimate of β as the solution of

(
X>V −1X

)
β = X>V −1y

β̂ =
(
X>V −1X

)−1
X>V −1y (A.4)

The standard errors for β̂ can be calculated from the observed Fisher information

of β:
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I(β̂) = X>V −1X (A.5)

A.3 Derivations of Section 4.4

The conditional distribution of y given γ is multivariate normal with mean and

variance given in (4.2) and the random effects γ is multivariate normal with mean 0

and variance D. The log-likelihood of the random effects γ is given by

logL(β, θ, γ) = −1

2
log |Σ| − 1

2
(y −Xβ − Zγ)>Σ−1(y −Xβ − Zγ)

−1

2
log |D| − 1

2
γ>D−1γ (A.6)

Given the fixed parameters (β, θ), taking the derivative of the log-likelihood with

respect to γ

∂ logL

∂γ
= Z>Σ−1(y −Xβ − Zγ)−D−1γ (A.7)

setting (A.7) to zero we obtain the estimate of the random effects γ.

The estimate γ̂ is the solution of

(Z>Σ−1Z +D−1)γ = Z>Σ−1(y −Xβ)

γ̂ = (Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ) (A.8)
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This estimate is known as the best linear unbiased predictor (BLUP).

The second derivative matrix of the log-likelihood with respect to γ is

∂2 logL

∂γ∂γ>
= −Z>Σ−1Z −D−1,

so the observed Fisher information matrix is equal to

I(γ̂) = Z>Σ−1Z +D−1. (A.9)

Assuming the fixed effects are known, the standard errors for γ̂ (also interpreted

as the prediction error for a random parameter) can be computed as the square root

of the diagonal elements of I(γ̂)−1, Pawitan (2001), page 442.

Note that the estimates of β in (A.4) and γ in (A.8) are the joint maximizer of

logL(β, θ, γ) at fixed θ. Specifically, the derivative of logL(β, θ, γ) with respect to

β is

∂ logL

∂β
= X>Σ−1(y −Xβ − Zγ) (A.10)

Combining (A.10) with (A.7) and setting them to zero, we have

 X>Σ−1X X>Σ−1Z

Z>Σ−1X Z>Σ−1Z +D−1


 β

γ

 =

 X>Σ−1y

Z>Σ−1y

 . (A.11)

The estimates obtained from solving this simultaneous equation are exactly those
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of equation (A.4) and (A.8), Pawitan (2001), page 444-445.

A.4 Derivations of Section 4.5

The variance of y is equal to V = Σ + ZDZ>. The following identities are from

Pawitan (2001), page 445-446.

V = Σ + ZDZ>

V −1 = Σ−1 − Σ−1Z(Z>Σ−1Z +D−1)−1Z>Σ−1

|V | = |Σ||D||Z>Σ−1Z +D−1|

γ̂ = DZ>V −1(y −Xβ̂)

= (Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ)

V −1(y −Xβ̂) = Σ−1(y −Xβ̂ − Zγ̂)

(y −Xβ̂)>V −1(y −Xβ̂) = (y −Xβ̂ − Zγ̂)>Σ−1(y −Xβ̂ − Zγ̂) + γ̂D−1γ̂

The determinant of the variance, |V | = |Σ||D||Z>Σ−1Z + D−1|, is derived from

the following partitioned matrix result.

Let

A =

 Σ Z

Z> −D−1

 ,

then the determinant of A is equal to:

|A| = | −D−1||Σ + ZDZ>|

= |Σ|| − Z>Σ−1Z −D−1|.
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The following three steps give a summary of the marginal log-likelihood for θ:

1 By integrating out γ from f(y|β, γ)f(γ) and replacing β by β̂ = β̂(θ), the

profile of the marginal log-likelihood for θ is given by

pl(θ) = −1

2
log |V | − 1

2
(y −Xβ̂)>V −1(y −Xβ̂).

2 Applying further identity for |V | and an identity for (y −Xβ̂)>V −1(y −Xβ̂)

given by Pawitan (2001), page 445-446, to pl(θ), we can rewrite pl(θ) for

computational purpose as:

pl(θ) = −1

2
log |Σ| − 1

2
(y −Xβ̂ − Zγ̂)>Σ−1(y −Xβ̂ − Zγ̂)

−1

2
log |D| − 1

2
γ̂>D−1γ̂ − 1

2
log |Z>Σ−1Z +D−1| (A.12)

3 By integrating out both β and γ from f(y|β, γ)f(γ), the modified profile like-

lihood for θ is given by

plm(θ) = −1

2
log |V | − 1

2
log |X>V −1X| − 1

2
(y −Xβ̂)>V −1(y −Xβ̂)

where −1
2

log |X>V −1X| is the extra REML term.

4 Removing hats from β̂ and γ̂ in the profile of the marginal log-likelihood for θ

(A.12) will be called a Q function. Maximising the Q function over β, γ and θ

is also maximising pl(θ).

pl(θ) ≡ Q(β, θ, γ)
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Pawitan (2001), page 446.

A.5 Derivations of Section 4.6

Assume the variance matrices are of the form

Σ = σ2
eW

D = σ2
γM,

where W and M are known matrices of rank N and q respectively, W and M are

assumed identity matrices in the estimation, and where the determinant of Σ and

the determinant of D are equal to:

|Σ| = σ2N
e |W |

|D| = σ2q
γ |M |.

An alternative method of estimation is the alternating method:

(a) Given θ, calculate β̂θ and γ̂θ using:

β̂θ = (X>V −1X)−1X>V −1y

γ̂θ = (Z>Σ−1Z +D−1)−1Z>Σ−1(y −Xβ)
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(b) Given β̂θ and γ̂θ, update σ2
e and σ2

γ using

σ2
e =

e>W−1e

N − d

σ2
γ =

γ̂>θ M
−1γ̂θ
d

where

e = y −Xβ̂θ − Zγ̂θ,

N = the number of observations,

and

d = trace{(Z>W−1Z + λM−1)−1Z>W−1Z},

where

λ = σ2
e/σ

2
γ.

The justification for this is given below.

Let

Q(θ, β̂θ, γ̂θ) = −N
2

log σ2
e −

1

2σ2
e

e>W−1e

−q
2

log σ2
γ −

1

2σ2
γ

γ>M−1γ

−1

2
log |σ−2e Z>W−1Z + σ−2γ M−1|

where e = y −Xβ̂θ − Zγ̂θ is the error vector, and the constant term is not included

in the Q, but is equal to N
2

log(2π).

The derivatives of the Q with respect to σ2
e and σ2

γ are given by:
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∂Q

∂σ2
e

= − N

2σ2
e

+
1

2σ4
e

e>W−1e

+
1

2σ4
e

trace{(σ−2e Z>W−1Z + σ−2γ M−1)−1Z>W−1Z}

∂Q

∂σ2
γ

= − q

2σ2
γ

+
1

2σ4
γ

γ>M−1γ

+
1

2σ4
γ

trace{(σ−2e Z>W−1Z + σ−2γ M−1)−1M−1}

Pawitan (2001), page 448.

Setting both derivatives of the Q with respect to σ2
e and σ2

γ to 0, we obtain the

following equations for the estimates of σ2
e and σ2

γ:

σ̂2
e =

1

N
[e>W−1e+ trace{(σ−2e Z>W−1Z + σ−2γ M−1)−1Z>W−1Z}]

σ̂2
γ =

1

q
[γ>M−1γ + trace{(σ−2e Z>W−1Z + σ−2γ M−1)−1M−1}.

Note that, the derivatives of the determinant is based on the following result,

(see Rigby and Stasinopoulos, (2013), Appendix A):

∂

∂x
log |xA + B| = trace

[
(xA + B)−1A

]
where x is a scalar and A and B are r x r matrices (provided |xA + B| 6= 0).

Hence,

∂

∂σ2
e

log |σ−2e Z>W−1Z + σ−2γ M−1| = − 1

σ4
e

trace
[
(σ−2e Z>W−1Z + σ−2γ M−1)−1Z>W−1Z

]
∂

∂σ2
γ

log |σ−2e Z>W−1Z + σ−2γ M−1| = − 1

σ4
γ

trace
[
(σ−2e Z>W−1Z + σ−2γ M−1)−1M−1] .
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Alternatively, σ2
e and σ2

γ can be estimated using the following equations:

trace{(σ̂−2e Z>W−1Z + σ̂−2γ M−1)−1Z>W−1Z}

= trace{σ̂2
e(Z

>W−1Z + λ̂M−1)−1Z>W−1Z}

= σ̂2
ed

where λ̂ = σ̂2
e/σ̂

2
γ, and

d = trace{(Z>W−1Z + λ̂M−1)−1Z>W−1Z}

.

Hence,

σ̂2
e =

1

N

[
e>W−1e+ σ̂2

ed
]

from page 264.

Nσ̂2
e =

[
e>W−1e+ σ̂2

ed
]

σ̂2
e =

e>W−1e

N − d
.

Also,

trace{(σ̂−2e Z>W−1Z + σ̂−2γ M−1)−1(σ̂−2e Z>W−1Z + σ̂−2γ M−1)} = Iq = q,
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trace{σ̂−2e (σ̂−2e Z>W−1Z + σ̂−2γ M−1)−1Z>W−1Z}

+trace{σ̂−2γ (σ̂−2e Z>W−1Z + σ̂−2γ M−1)−1M−1} = q,

trace{σ̂−2γ (σ̂−2e Z>W−1Z + σ̂−2γ M−1)−1M−1} = q − d.

Hence,

σ̂2
γ =

1

q

[
γ>M−1γ + (q − d)σ̂2

γ

]
qσ̂2

γ =
[
γ>M−1γ + (q − d)σ̂2

γ

]
σ̂2
γ =

γ>M−1γ

d

where d is the model degrees of freedom.

A.6 Derivations of Section 4.7

The marginal distribution of y is Gaussian with following mean and variance:

E(y) = Xβ

V (y) = V = Σ + Z1D1Z
>
1 + Z2D2Z

>
2

Given θ = (σ2
e , σ

2
γ1
, σ2

γ2
), the estimates of β, γ1, γ2 are the solution of
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X>Σ−1X X>Σ−1Z1 X>Σ−1Z2

Z>1 Σ−1X Z>1 Σ−1Z1 +D−11 Z>1 Σ−1Z2

Z>2 Σ−1X Z>2 Σ−1Z1 Z>2 Σ−1Z2 +D−12




β

γ1

γ2

 =


X>Σ−1y

Z>1 Σ−1y

Z>2 Σ−1y

 .

The profile log-likelihood of θ is

logL(θ) = −1

2
log |V | − 1

2
(y −Xβ̂)>V −1(y −Xβ̂) (A.13)

and the Q function is equal to:

Q = −1

2
log |Σ| − 1

2
e>Σ−1e

−1

2
log |D1| −

1

2
γ1
>D−11 γ1 −

1

2
log |Z>1 Σ−1Z1 +D−11 |

−1

2
log |D2| −

1

2
γ2
>D−12 γ2 −

1

2
log |Z>2 Σ−1Z2 +D−12 | (A.14)

where e = y−Xβ−Z1γ1−Z2γ2, using the assumption that γ1 and γ2 are independent,

and Z1 and Z2 are orthogonal in the sense that Z>1 Σ−1Z2 = 0.

Let Σ = σ2
eW,D1 = σ2

γ1
M1, D2 = σ2

γ2
M2, where W,M1,M2 are knows matrices of

rank N, q1, q2 respectively.

By taking the derivatives of Q with respect to all the parameters and setting

them to zero we obtain the equations for the variances as follows:
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σ2
e =

1

N
[e>W−1e+ trace{(σ−2e Z>1 W

−1Z1 + σ−2γ1 M
−1
1 )−1Z>1 W

−1Z1}

+trace{(σ−2e Z>2 W
−1Z2 + σ−2γ2 M

−1
2 )−1Z>2 W

−1Z2}]

σ2
γ1

=
1

q1
[γ>1 M

−1
1 γ1 + trace{(σ−2e Z>1 W

−1Z1 + σ−2γ1 M
−1
1 )−1M−1

1 }]

σ2
γ2

=
1

q2
[γ>2 M

−1
2 γ2 + trace{(σ−2e Z>2 W

−1Z2 + σ−2γ2 M
−1
2 )−1M−1

2 }]

Alternatively σ2
e , σ

2
γ1
, σ2

γ2
can be evaluated as

σ2
e =

e>W−1e

N − d1 − d2

σ2
γ1

=
γ>1 M

−1
1 γ1
d1

σ2
γ2

=
γ>2 M

−1
2 γ2
d2

where d1 and d2 are the degrees of freedom such that:

di = trace{(Z>i W−1Zi + λiM
−1
i )−1Z>i W

−1Zi}

for i = 1, 2 and λi = σ2
e/σ

2
γi

, Pawitan (2001), page 454.



Appendix B

Skew Student t distribution

A skewed Student t distribution was used to allow for skewness and kurtosis in the

conditional distribution of financial returns initially by Hansen (1994) and subse-

quently by Fernandez and Steel (1998) using an alternative parametrization. Fer-

nandez and Steel (1998) consider a shifted and scaled t distribution with τ degrees

of freedom, i.e. µ0 + σ0T where T ∼ tτ , denoted here by TF (µ0, σ0, τ), and splice

together at µ0 two differently scaled distributions, Y1 ∼ TF (µ0, σ0/ν, τ) below µ0

and Y2 ∼ TF (µ0, σ0ν, τ) above µ0, The resulting distribution is denoted here by

Y ∼ ST3(µ0, σ0, ν, τ). Wurtz et al. (2006) reparameterized the skew t distribution

of Fernandez and Steel (1998) so that in the new parametrization µ is the mean and

σ is the standard deviation, denoted here by Y ∼ SST (µ, σ, ν, τ), where

fY (y|µ, σ, ν, τ) =
2

(1 + ν2)

{
fY1(y)I(y < µ0) + ν2fY2(y)I(y ≥ µ0)

}
=

c

σ0

{
1 +

(y − µ0)
2

σ2
0τ

[
ν2I(y < µ0) +

1

ν2
I(y ≥ µ0)

]}−(τ+1)/2
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for −∞ < y < ∞, −∞ < µ < ∞, σ > 0, ν > 0, and τ > 2, where c =

2ν/
[
(1 + ν2)B(1

2
, τ
2
)τ 1/2

]
,

µ0 = µ− σm/s,

and

σ0 = σ/s

and

m = 2τ 1/2(ν2 − 1)/

[
(τ − 1)νB(

1

2
,
τ

2
)

]
and

s2 =
{
τ
(
ν3 + ν−3

)
/
[
(τ − 2)(ν + ν−1)

]}
−m2.

Hence Y ∼ SST (µ, σ, ν, τ) = ST3(µ0, σ0, ν, τ) has mean µ and variance σ2 since

E(Y ) = µ0 + σ0E(Z0) = (µ − σm/s) + (σ/s)m = µ and V (Y ) = σ2
0V (Z0) =

(σ2/s2)s2 = σ2, where Z0 = (Y − µ0)/σ0 ∼ ST3(0, 1, ν, τ) and where E(Z0) = m

and V (Z0) = s2 provided τ > 2 from Fernandez and Steel (1998) p360. Note that

Z = (Y − µ)/σ ∼ SST (0, 1, ν, τ) has mean 0 and variance 1.



Appendix C

Proof of the Theorems

C.1 Theorem 1 Proof

Yt|µt, σt, νt, τt ∼ D(µt, σt, νt, τt) where µt = β1,0 + γ1,t, and log σt = β2,0 + γ2,t.

Applying the law of iterated expectations,

a)

E[Yt] = E [E (Yt|µt, σt, νt, τt)] = E[µt],

so E[µt] = β1,0 + E (γ1,t) .

If Φ1(B)γ1,t = b1,t,

then γ1,t = Φ1(B)−1b1,t = ψ1(B)b1,t,

where Φ1(B) is assumed to be invertible. Then

E[γ1,t] = ψ1(B)E(b1,t) = 0, as b1,t ∼ N(0, σ2
b ),

so E[µt] = β1,0.

Hence E[Yt] = β1,0
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b)

V [Yt] = V [E (Yt|µt, σt, νt, τt)] + E [V (Yt|µt, σt, νt, τt)] ,

so V [Yt] = V [µt] + c2E[σ2
t ],

but V[µt] = V [γ1,t] = V [ψ1(B)b1,t] = S1σ
2
b1
,

and E[σ2
t ] = E [exp (2β2,0 + 2γ2,t)] = exp (2β2,0)E [exp (2γ2,t)] ,

where E [exp (2γ2,t)] = E [exp (2ψ2(B)b2,t)] =
∞∏
j=0

E [exp (2ψ2,jb2,t−j)] ,

as γ2,t = ψ2(B)b2,t, and assuming independence of bk,t.

Applying the following lemma:

if b ∼ N(0, σ2
b ) then E [exp(rψb)] = exp

(
1
2
r2ψ2σ2

b

)
.

so E [exp (2γ2,t)] =
∞∏
j=0

exp
(
2ψ2

2,jσ
2
b2

)
= exp

(
2S2σ

2
b2

)
,

where Sk = 1 +
∞∑
j=1

ψ2
k,j,

and ψ2,0 = 1.

Hence V[Yt] = S1σ
2
b1

+ c2 exp
(
2β2,0 + 2S2σ

2
b2

)
.

C.2 Theorem 2 Proof

a) E[Yt] = E [E (Yt|µt, σt, νt, τt)] = E[µt] = exp
(
β1,0 + 1

2
S1σ

2
b1

)
, from d) below.

b) V [Yt] = V [E (Yt|µt, σt, νt, τt)] + E [V (Yt|µt, σt, νt, τt)] = V [µt] + E [v(µt, σt)].
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c) V [µt] = E[µ2
t ]−{E[µt]}2 = exp(2β1,0)

[
exp(2S1σ

2
b1

)− exp(S1σ
2
b1

)
]
, from d) be-

low.

d) E[µrt ] = E [exp(rβ1,0 + rγ1,t)] = exp(rβ1,0)E [exp(rψ1(B)b1,t)].

E [exp(rψ1(B)b1,t)] =
∞∏
j=1

E [exp(rψ1,jb1,t−j] =
∞∏
j=1

exp

(
1

2
r2ψ2

1,jσ
2
b1

)

= exp

(
1

2
r2S1σ

2
b1

)
,

since if b ∼ N(0, σ2
b ), E [exp(rψb)] =

∫∞
−∞ exp(rψb) 1√

2πσb
exp

[
− b2

2σ2
b

]
db

= exp
(
1
2
r2ψ2σ2

b

) ∫∞
−∞

1√
2πσb

exp
[
− 1

2σ2
b
(b− rψσ2

b )
2
]
db = exp

(
1
2
r2ψ2σ2

b

)
.

e) As for d).

Corollary 1 Theorem 2 applies to the following distributions, the negative

binomial type 1 and 2, NBI and NBII, respectively, the gamma, GA, and inverse

Gaussian, IG, distributions. The results below for the marginal mean E[Yt] and

variance V [Yt] of Yt use the results of Theorem 2.

1. Yt|µt, σt ∼ NBI(µt, σt) with mean µt and variance µt+σtµ
2
t , then E[Yt] = E[µt]

and V [Yt] = V [µt] + E[µt] + E[σt]E[µ2
t ]. Note σt = 0 gives Yt|µt ∼ PO(µt).

2. Yt|µt, σt ∼ NBII(µt, σt) with mean µt and variance µt + σtµt, then E[Yt] =

E[µt] and V [Yt] = V [µt] + E[µt] + E[σt]E[µt]

3. Yt|µt, σt ∼ GA(µt, σt) with mean µt and variance σ2
tµ

2
t , then E[Yt] = E[µt] and

V [Yt] = V [µt] + E[σ2
t ]E[µ2

t ]. Note σt = 1 gives Yt|µt ∼ EXP (µt).

4. Yt|µt, σt ∼ IG(µt, σt) with mean µt and variance σ2
tµ

3
t , then E[Yt] = E[µt] and

V [Yt] = V [µt] + E[σ2
t ]E[µ3

t ].



Appendix D

R commands

The simulation and fitting functions are programmed in R. They are available by

the author and will be in a public domain in a package called gest in R statistical

software.

D.1 R commands for chapter 5

The data used here can be downloaded in a zip file from this web site:

http://www.ssfpack.com/CKbook.html.

The R fitting commands and output in Table 5.1:

NorwayFinland <- read.delim("<PATH>/NorwayFinland.txt", header=F)

Nor <- (NorwayFinland$V2)

lNor <- log(Nor)

tNor <- (NorwayFinland$V1)

lnorw <- zoo(lNor,order.by=tNor)

m1 <- RW(lnorw,plot=T)

c(m1$sig2e, m1$sig2b, m1$value.of.Q)
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The R fitting commands and output in Table 5.2:

UK.KSI <- read.delim("<PATH>/UKdriversKSI.txt", header=F)

KSI <- ts(UK.KSI, start = c(1969, 1), freq = 12)

lksi <- log(KSI)

m2 <- RW(lksi,plot=T)

c(m2$sig2e, m2$sig2b, m2$value.of.Q)

The R fitting commands and output in Table 5.3:

NorwayFinland <- read.delim("<PATH>/NorwayFinland.txt", header=F)

Fin<- (NorwayFinland$V3)

lfin<- log(Fin)

m3 <- rw.tr(lfin,plot=T)

c(m3$sig2e, m3$sig2b, m3$sig2d, m3$value.of.Q)

The R fitting commands and output in Table 5.4:

UK.KSI <- read.delim("<PATH>/UKdriversKSI.txt", header=F)

KSI <- ts(UK.KSI, start = c(1969, 1), freq = 12)

lksi <- log(KSI)

m4 <- rw.tr(lksi,plot=T)

c(m4$sig2e, m4$sig2b, m4$sig2d, m4$value.of.Q)

The R fitting commands and output in Table 5.5:

UK.inflation<- read.delim("<PATH>/UKinflation.txt", header=F)

UKinf <- ts(UK.inflation, start = c(1950, 1), freq = 4)

m5 <- rw.seas(UKinf,plot=T)

c(m5$sig2e, m5$sig2b, m5$sig2w, m5$value.of.Q)
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The R fitting commands and output in Table 5.6:

UK.KSI <- read.delim("<PATH>/UKdriversKSI.txt", header=F)

KSI <- ts(UK.KSI, start = c(1969, 1), freq = 12)

lksi <- log(KSI)

m6 <- rw.seas(lksi,plot=T, frequency=12)

c(m6$sig2e, m6$sig2b, m6$sig2w, m6$value.of.Q)

The R fitting commands and output in Table 5.7:

library(FinTS)

data(q.jnj)

m7 <- ar.seas(as.ts(q.jnj),plot=T)

c(m7$sig2e, m7$sig2b, m7$sig2w, m7$phi1)

m8 <- ar.seas(as.ts(log(q.jnj)),plot=T)

c(m8$sig2e, m8$sig2b, m8$sig2w, m8$phi1)

The R fitting commands and output in Table 5.8:

lpp <- read.delim("<PATH>/logUKpetrolprice.txt", header=F)

UK.KSI <- read.delim("<PATH>/UKdriversKSI.txt", header=F)

KSI <- ts(UK.KSI, start = c(1969, 1), freq = 12)

lksi <- log(KSI)

m9 <- rw.exp(lksi, lpp, plot=T)

c(m9$sig2e, m9$sig2b, m9$sig2v)

c(m9$beta[1], m9$value.of.Q)

D.2 R commands for chapter 7

Simulation of Figure 7.1
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set.seed(1002)

y<-gest.sim(N=1000, mu.init=1, sigma.init=1, mu.sigb=.1, sigma.sigb=0,

plot=T, family=NO)

Simulation of Figure 7.2

set.seed(1223)

y <-gest.sim(N=1000, mu.init=1, sigma.init=1, mu.sigb=.1, sigma.sigb=.05,

plot=T, family=NO)

Simulation of Figure 7.3

set.seed(1244)

y<-gest.sim(N=1000, mu.init=1, sigma.init=1, mu.sigb=.1, sigma.sigb=.05,

mu.type="AR", mu.phi=.5, plot=T, family=NO)

Simulation of Figure 7.4

set.seed(1240)

y<-gest.sim(N=240, mu.sigb=.1, mu.sigS=.01, sigma.sigb=0,

mu.type="levelSeasonal", frequency=12, plot=T, family=NO)

Simulation of Figure 7.5

set.seed(1246)

y<-gest.sim(240, mu.sigb =.1, mu.sigS=.01, sigma.sigb=.06,

mu.type="levelSeasonal", frequency=12, plot=T, family=NO)

Simulation of Figure 7.6 and fitting of Figure 7.8

set.seed(1224)

y<-gest.sim(N=1000, mu.sigb =.05, plot=T, family=PO)

Y <- y[,1]

m1 <- gamlss(Y~rw(Y), family=PO)
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Simulation of Figure 7.9 and fitting of Figure 7.10

set.seed(12029)

y <-gest.sim(1000, mu.sigb =.03, sigma.sigb=.03, plot=T, family=NBI)

Y <- y[,1]

m1 <- gamlss(Y~rw(Y),sigma.fo=~rw(Y), family=NBI)

op <- par(mfrow=c(3,1))

plot(Y, col="gray", ylab="y")

plot(y[,2], col="gray", ylab="mu")

lines(fitted(m1, "mu"), col="red")

plot(y[,4], col="gray", ylab="sigma")

lines(fitted(m1, "sigma"), col="red")

Simulation of Figure 7.11 and fitting of Figure 7.12

set.seed(19984)

y<-gest.sim(5000, mu.sigb=.03, sigma.sigb=.03, nu.sigb=.04,

nu.init=5, plot=T, family=TF2)

Y <- y[,1]

m1 <- gamlss(Y~rw(Y),sigma.fo=~rw(Y), nu.fo=~rw(Y),family=TF2)

op <- par(mfrow=c(4,1))

plot(Y, col="gray", ylab="y")

op <- par(mfrow=c(3,1))

plot(y[,2], col="gray", ylab="mu")

lines(fitted(m1, "mu"), col="red")

plot(y[,4], col="gray", ylab="sigma")

lines(fitted(m1, "sigma"), col="red")

plot(1/y[,6], col="gray", ylab="1/nu")

lines(1/(fitted(m1, "nu")), col="red")
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D.3 R commands for chapter 9

D.3.1 Pound sterling and US dollar exchange rate

sv<-gamlss(Returns~1, sigma.fo=~ar(Returns), family=NO, data=da)

The data used in this example is ”sv.dat”, and can be downloaded in a zip file

from:

http://www.ssfpack.com/DKbook.html.

D.3.2 Standard and Poor 500 stock index

da <- read.csv("<PATH>/SP-80-dec2012.csv")

y <- as.ts(da$Returns)

D <- as.Date(da[,1], "%d/%m/%Y")

Da <- blag(y,lags=1,from.lag=0, omit.na = F, value=0)

# using the asinh transformation

.y._Neg <- asinh(ifelse(Da[,2]<0,Da[,2],0))

.y._Pos <- asinh(ifelse(Da[,2]>=0,Da[,2],0))

#-------------------------------

m1 <- gamlss(y~1, sigma.fo=~ar(y), nu.fo=~rw(y), tau.fo=~rw(y),

family=SST, n.cyc=40)

#-------------------------------

m2 <- gamlss(y~1, sigma.fo=~ar(y, .y._Neg, .y._Pos, include.leverage=T),

nu.fo=~rw(y), tau.fo=~rw(y), family=SST, n.cyc=40)

#-------------------------------

m3 <- gamlss(y~1, sigma.fo=~ar(y, .y._Neg, .y._Pos, include.leverage=T),

nu.fo=~rw(y), tau.fo=~1, family=SST, n.cyc = 40)

#------------------------------



D.3. R COMMANDS FOR CHAPTER 9 280

m4 <- gamlss(y~1, sigma.fo=~ar(y, .y._Neg, .y._Pos, include.leverage=T),

nu.fo=~1, tau.fo=~rw(y), family=SST, n.cyc=40)

#-------------------------------

m5 <- gamlss(y~1, sigma.fo=~ar(y, .y._Neg, .y._Pos, include.leverage=T),

nu.fo= ~1, tau.fo=~1, family = SST, n.cyc = 40)

#-------------------------------

m6 <- gamlss(y~rw(y,order=2), sigma.fo=~ar(y, .y._Neg, .y._Pos,

include.leverage=T), nu.fo=~rw(y,order=2), tau.fo=~rw(y,order=2),

family=SST, n.cyc = 40)

D.3.3 Van drivers killed in UK

library(gamlss)

library(sspir)

data(vandrivers)

tvd<-1:192

x1 <-cos(2*pi*tvd/12)

x2 <-sin(2*pi*tvd/12)

x3 <-cos(2*pi*tvd/6)

x4 <-sin(2*pi*tvd/6)

mvd<-as.factor(cycle(vandrivers$y))

Using the conditional Poisson distribution (PO)

m1 <-gamlss(y~rw(y),family=PO,data=vandrivers)

m2 <-gamlss(y~rw(y)+mvd,family=PO,data=vandrivers)

m15<-gamlss(y~rw(y)+x1+x2+x3+x4,family=PO,data=vandrivers)

m3 <-gamlss(y~srw(y,frequency=12),family=PO,data=vandrivers)
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m4 <-gamlss(y~rw(y)+seatbelt,family=PO,data=vandrivers)

m5 <-gamlss(y~rw(y)+seatbelt+mvd,family=PO,data=vandrivers)

m16<-gamlss(y~rw(y)+seatbelt+x1+x2+x3+x4,family=PO,data=vandrivers)

m6 <-gamlss(y~srw(y,frequency=12)+seatbelt,family=PO,data=vandrivers)

m20<-gamlss(y~rw(y,order=2),family=PO, data=vandrivers)

m21<-gamlss(y~rw(y,order=2)+mvd,family=PO,data=vandrivers)

m22<-gamlss(y~rw(y,order=2)+x1+x2+x3+x4,family=PO, data=vandrivers)

m23<-gamlss(y~srw(y,order=2,frequency=12),family=PO,data=vandrivers)

m24<-gamlss(y~rw(y,order=2)+seatbelt,family=PO,data=vandrivers)

m25<-gamlss(y~rw(y,order=2)+seatbelt+mvd,family=PO,data=vandrivers)

m26<-gamlss(y~rw(y,order=2)+seatbelt+x1+x2+x3+x4,family=PO,data=vandrivers)

m27<-gamlss(y~srw(y,order=2,frequency=12)+seatbelt,family=PO,data=vandrivers)

Using the conditional negative binomial distribution (NBI)

b1 <-gamlss(y~rw(y),family=NBI,data=vandrivers)

b2 <-gamlss(y~rw(y)+mvd,family=NBI,data=vandrivers)

b15<-gamlss(y~rw(y)+ x1+x2+x3+x4,family=NBI,data=vandrivers)

b3 <-gamlss(y~srw(y,frequency=12),family=NBI,data=vandrivers)

b4 <-gamlss(y~rw(y)+seatbelt,family=NBI,data=vandrivers)

b5 <-gamlss(y~rw(y)+seatbelt+mvd,family=NBI,data=vandrivers)

b16<-gamlss(y~rw(y)+seatbelt+x1+x2+x3+x4,family=NBI,data=vandrivers)

b6 <-gamlss(y~srw(y,frequency=12)+seatbelt,family=NBI,data=vandrivers)

b17<-gamlss(y~rw(y,order=2),family=NBI,data=vandrivers)

b18<-gamlss(y~rw(y,order=2)+mvd,family=NBI,data=vandrivers)

b19<-gamlss(y~rw(y,order=2)+x1+x2+x3+x4,family=NBI,data=vandrivers)

b20<-gamlss(y~srw(y,order=2,frequency=12),family=NBI,data=vandrivers)
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b21<-gamlss(y~rw(y,order=2)+seatbelt,family=NBI,data=vandrivers)

b22<-gamlss(y~rw(y,order=2)+seatbelt+mvd,family=NBI,data=vandrivers)

b23<-gamlss(y~rw(y,order=2)+seatbelt+x1+x2+x3+x4,family=NBI,data=vandrivers)

b24<-gamlss(y~srw(y,order=2,frequency=12)+seatbelt,family=NBI,data=vandrivers)

Conditional test for β1,1 in model m26

m26<-gamlss(y~rw(y,order=2)+seatbelt+x1+x2+x3+x4,family=PO,data=vandrivers)

m261<-gamlss(y~rw(y,order=2,sig2e.fix=TRUE,sig2b.fix=TRUE,

sig2e=0.8399006,sig2b=6.99568e-08)+x1+x2+x3+x4,family=PO,data=vandrivers)

95% profile confidence interval for β1,1 in model m26

mod<-quote(gamlss(y~offset(this*seatbelt)+ rw(y,order=2,sig2e.fix=TRUE,

sig2b.fix=TRUE,sig2e=0.8399006,sig2b=6.99568e-08)+x1+x2+x3+x4,

family=PO, data=vandrivers))

prof.term(mod, min=-0.6, max=0.5, xlab="Beta_1,1")

Plotting Figure 9.12

library(zoo)

ti <- time(vandrivers$y)

z1 <- -0.18796*(vandrivers$seatbelt)

z2 <- exp(2.21495+(fitted(m26$mu.coefSmo[[1]]))+z1)

z3 <- zoo(z2,order.by=ti)

plot(vandrivers$y, col="gray", ylab="Van drivers killed")

lines(z3, col="darkred")
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Plotting Figure 9.14

library(zoo)

ti <- time(vandrivers$y)

z2 <- exp(2.19736+(fitted(m22$mu.coefSmo[[1]])))

z3 <- zoo(z2,order.by=ti)

plot(vandrivers$y, col="gray", ylab="Van drivers killed")

lines(z3, col="darkred")

Plotting Figure 9.15

svd1 <- (0.09786 *x1)+ (-0.06923 *x2)+ (0.10381 *x3) +(-0.04517*x4)

S1 <- exp(zoo(svd1,order.by=ti))

op <- par(mfrow=c(3,1))

plot(vandrivers$y, col="gray", ylab="Van drivers killed")

plot(z3, col="darkred", ylab="Level", xlab="Time")

plot(S1, col="darkblue", ylab="Seasonal", xlab="Time")

D.3.4 Polio incidence in the United States

library(gamlss)

tp <-1:168

x1 <-cos(2*pi*tp/12)

x2 <-sin(2*pi*tp/12)

x3 <-cos(2*pi*tp/6)

x4 <-sin(2*pi*tp/6)

mp <-as.factor(cycle(polio))
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Using the conditional Poisson distribution (PO)

p1 <-gamlss(polio~rw(polio), family=PO, data=polio)

p2 <-gamlss(polio~rw(polio) + x1+x2+x3+x4, family=PO, data=polio)

p3 <-gamlss(polio~rw(polio)+ mp, family=PO, data=polio)

p4 <-gamlss(polio~srw(polio,frequency=12), family=PO, data=polio)

p5 <-gamlss(polio~rw(polio) + tp, family=PO, data=polio)

p6 <-gamlss(polio~rw(polio) + tp + x1+x2+x3+x4, family=PO, data=polio)

p7 <-gamlss(polio~rw(polio) + tp + mp, family=PO, data=polio)

p8 <-gamlss(polio~srw(polio,frequency=12) + tp, family=PO, data=polio)

g1 <-gamlss(polio~ar(polio), family=PO, data=polio)

g2 <-gamlss(polio~ar(polio) + x1+x2+x3+x4, family=PO, data=polio)

g3 <-gamlss(polio~ar(polio) + mp, family=PO, data=polio)

g4 <-gamlss(polio~sar(polio,frequency=12), family=PO, data=polio)

g5 <-gamlss(polio~ar(polio) + tp, family=PO, data=polio)

g6 <-gamlss(polio~ar(polio) + tp + x1+x2+x3+x4, family=PO, data=polio)

g7 <-gamlss(polio~ar(polio) + tp + mp, family=PO, data=polio)

g8 <-gamlss(polio~sar(polio,frequency=12) + tp, family=PO, data=polio)

Using the conditional negative binomial distribution (NBI)

n1 <-gamlss(polio~rw(polio), family=NBI, data=polio)

n2 <-gamlss(polio~rw(polio)+ x1+x2+x3+x4, family=NBI, data=polio)

n3 <-gamlss(polio~rw(polio)+ mp, family=NBI, data=polio)

n4 <-gamlss(polio~srw(polio,frequency=12), family=NBI, data=polio)

n5 <-gamlss(polio~rw(polio)+ tp, family=NBI, data=polio)

n6 <-gamlss(polio~rw(polio)+ tp + x1+x2+x3+x4, family=NBI, data=polio)

n7 <-gamlss(polio~rw(polio)+ tp + mp, family=NBI, data=polio)
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n8 <-gamlss(polio~srw(polio,frequency=12) + tp, family=NBI, data=polio)

e1 <-gamlss(polio~ar(polio), family=NBI, data=polio)

e2 <-gamlss(polio~ar(polio)+ x1+x2+x3+x4, family=NBI, data=polio)

e3 <-gamlss(polio~ar(polio)+ mp, family=NBI, data=polio)

e4 <-gamlss(polio~sar(polio,frequency=12), family=NBI, data=polio)

e5 <-gamlss(polio~ar(polio)+ tp, family=NBI, data=polio)

e6 <-gamlss(polio~ar(polio)+ tp + x1+x2+x3+x4, family=NBI, data=polio)

e7 <-gamlss(polio~ar(polio)+ tp + mp, family=NBI, data=polio)

e8 <-gamlss(polio~sar(polio,frequency=12) + tp, family=NBI, data=polio)

Plotting Figure 9.16

library(zoo)

ti <- time(polio)

Z2 <- exp(0.3535 +(fitted(p4$mu.coefSmo[[1]])[,2]))

Z3 <- zoo(Z2,order.by=ti)

plot(polio, col="gray", ylab="Polio")

lines(Z3, col="darkred")

Plotting Figure 9.17

library(zoo)

sp <- (fitted(p4$mu.coefSmo[[1]])[,3])

S1 <- exp(zoo(sp,order.by=ti))

op <- par(mfrow=c(3,1))

plot(polio, col="gray", ylab="Polio")

plot(Z3, col="darkred", ylab="Level", xlab="Time")

plot(S1, col="darkblue", ylab="Seasonal", xlab="Time")
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