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Abstract: This paper presents the design of a high-performance 0.45–0.50 THz antenna on chip (AoC)
for fabrication on a 100-micron GaAs substrate. The antenna is based on metasurface and substrate-
integrated waveguide (SIW) technologies. It is constituted from seven stacked layers consisting of
copper patch–silicon oxide–feedline–silicon oxide–aluminium–GaAs–copper ground. The top layer
consists of a 2 × 4 array of rectangular metallic patches with a row of subwavelength circular slots to
transform the array into a metasurface. This essentially enlarges the effective aperture area of the
antenna. The antenna is excited using a coplanar waveguide feedline that is sandwiched between the
two silicon oxide layers below the patch layer. The proposed antenna structure reduces substrate
loss and surface waves. The AoC has dimensions of 0.8 × 0.8 × 0.13 mm3. The results show that the
proposed structure greatly enhances the antenna’s gain and radiation efficiency, and this is achieved
without compromising its physical size. The antenna exhibits an average gain and efficiency of 6.5 dBi
and 65%, respectively, which makes it a promising candidate for emerging terahertz applications.

Keywords: Antenna on chip (AoC); metasurface; terahertz (THz); substrate integrated waveguide
(SIW); gallium arsenide (GaAs)

1. Introduction

Smart wireless devices have grown in popularity at an exponential rate. This has
caused an explosion of data traffic in the limited prescribed bandwidth resources [1]. It
is estimated that the data rate in the next decade is going to be in the order of Tbps [2,3].
Although it has been shown that THz communication can easily provide a Gbps data rate,
we are at a nascent stage of development for data rates in the Tbps [4,5]. THz waves benefit
from being sandwiched between the millimeter and light waves in the electromagnetic
spectrum. Compared with millimeter waves, THz waves have a wider usable frequency
band and focused beam directivity that makes them highly unsusceptible to interference
issues. Compared with light waves, THz waves have a stronger penetration power [6].

Antennas have a direct bearing on the performance of wireless systems in terms of
operating bandwidth, radiation gain, and efficiency. These parameters have an impact
on the system’s data transmission rate, imaging resolution, and range. Compared with
millimeter waves, the design of THz antennas is highly challenging as THz antennas
operate at much higher frequencies and their size is significantly smaller. Moreover, the
packaging of THz antennas is limited by materials and process technologies. Additionally,
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free-space path loss is an inevitable characteristic of all wireless communication. However,
THz waves are greatly absorbed by the atmosphere. Hence, increasing the gain of the THz
antenna is an important requirement to compensate for the free-space path loss. Moreover,
THz antennas suffer from relatively high loss, which makes them currently impractical for
on-chip fabrication.

An antenna is the first element in a wireless receiver and the last element in a trans-
mitter. To guarantee optimum power transfer between the antenna and the RF-integrated
circuitry, it is necessary to include an impedance matching network at the junction of the
antenna and the RF circuitry. Typically, antennas are matched to a 50 Ohm impedance
system, which normally requires converting the complex impedance of the system to
50 Ohm [7]. This is achieved by employing conjugate matching, in which the imaginary
section of two impedances has an identical magnitude but reverse signs. Additionally,
bond wires are used to connect the THz antenna to the integrated circuit. As bond wires
are not characterized well at THz, the matching is often suboptimal [6].

On-chip realizations of antennas overcome the abovementioned limitations as impedances
of integrated circuit elements do not need to be matched with 50 Ohm [8–10]. Co-design of
circuits and antennas guarantee that complex impedances are conjugately matched with
no need for a matching circuit, thus saving several additional elements, area, expense, and
numerous design attempts. Furthermore, the antenna on chip (AoC) omits any doubt with
bond-wires as metal interlinks are used to interface the integrated circuit to the antenna feed
point [11].

Antennas for on-chip applications need to be planar as they need to be fabricated
using the same integrated circuit processing. A low-resistivity substrate (10–20 Ω cm) is
a common choice for the fabrication of CMOS circuits, which is necessity to overcome
the latch-up issue. This type of substrate, however, greatly limits the efficiency of planar
antennas resulting from high ohmic and dielectric loss in the underlying silicon substrate.
A dipole antenna fabricated on a 10 Ωcm silicon substrate typically has a limited efficiency
of 10% [12,13].

Proposed in this paper is a technique to overcome the limitations on bandwidth,
gain, and efficiency of THz antennas fabricated on-chip. This is achieved by employing
two different technologies, namely a substrate-integrated waveguide (SIW) and a 2D
metamaterial, which is commonly referred to as a metasurface [14]. The proposed technique
reduces the loss due to the substrate and suppresses the adverse effects of surface waves.
The results confirm this has notable improvement in the radiation characteristics of AoC.

2. Antenna on Chip Design

The proposed AoC is constituted from several stacked layers comprising Cu–SiO2–
Cu–SiO2–Al–GaAs–Cu as shown in Figure 1. The top layer consists of a 2 × 4 array of
rectangular copper patches. Etched on the patches is a row of subwavelength circular slots.
The antenna is excited using proximity coupling at the patch edge, which is analogous to a
gap coupling patch. This is achieved with a microstrip coplanar waveguide feedline, which
is created by having both sides next to the feedline grounded. The feedline is sandwiched
between the two silicon oxide layers, below which is a layer with aluminium patches that
are separated from each other by a narrow gap. This layer acts like a partially reflective
surface. The outer periphery of the aluminium patches is studded with an arrangement
of densely lined metallic posts or vias connecting it to the ground-plane through the
GaAs substrate to create a SIW electromagnetic resonant cavity. Incident electromagnetic
waves that penetrate through the gaps in the aluminium layer are reflected at the ground-
plane. The thickness of the GaAs substrate is such that the phase shift of the ground-plane
reflected waves is in phase with the waves reflected at the surface of the copper patches.
With this arrangement, the aluminium surface acts like an artificial magnetic conductor
(AMC) that fully reflects incident waves with a near zero degrees reflection phase [15].
This configuration results in significantly enhanced directivity. The circular slots across
the rectangular patches act like miniature resonators that radiate energy at the THz band.
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The antenna was implemented on a GaAs substrate of 100-micron thickness, a dielectric
constant of 12.94, and a loss-tangent of 0.006.
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Figure 1. The proposed AoC incorporating metamaterial and SIW technologies, (a) top view, and
(b) side view.

The proposed SIW structure reduces substrate loss, radiation leakage, and adverse
effects of surface wave propagation. This is achieved by carefully choosing the diameter
and spacing of the metallic vias [16]. The subwavelength circular slots transform the
array into a metasurface that has an effect of amplifying the effective aperture area of the
antenna, the consequence of which is an enhancement in the radiation gain and efficiency
of the antenna. In addition, the slots also improve the impedance match and bandwidth of
the antenna.

The optimized structural parameters of the proposed AoC are given in Table 1. Opti-
mization was done using CST Microwave Studio, which is a 3D full-wave electromagnetic
simulation tool. The optimization involved parameterizing the antenna structure to achieve
the target goal of |S11| ≤ −10 dB across 450–500 GHz. The optimizer used in CST Mi-
crowave Studio was the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES).
This optimizer was used because it has a relatively fast convergence, and it uses the history
of the previous iterations to improve the performance of the algorithm while avoiding
local optimums. The AoC has a form factor of 0.8 × 0.8 × 0.13 mm3. The effect of the
circular slots and metallic vias on the performance parameters of the AoC are shown in
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Figures 2–4. It is evident that the metasurface and SIW significantly improve the antenna’s
impedance bandwidth to better than S11 ≤ −15 dB, and the radiation gain and efficiency
to over 0.45–0.5 THz. The average impedance match over 0.45–0.5 THz is approximately
30 dB, which an improvement of 15 dB without the slots and vias. The antenna has a
fractional bandwidth of 10.52%. By incorporating the slots in the patches, the average
radiation gain of the antenna increases to 6.5 dBi. This is an improvement of 2.7 dBi without
the slots. The corresponding radiation efficiency increases to approximately 65%, which
is an improvement of 12% without the slots. The average gain with the inclusion of the
metallic vias is 6.5 dBi, which is an improvement of 4.4 dBi without the vias. The average
efficiency with the metallic vias increases to about 65%, which is an improvement of 19%
without the vias.

The E-plane and H-plane radiation patterns of the proposed AoC at 0.45 THz are
shown in Figure 5. Clearly, the radiation patterns exhibit relatively high directivity in both
planes. The half-power beam width in the xy-plane is 26◦ and that in the xz-plane is 17◦.
In addition, the side-lobe and back-lobe levels are all below −17.5 dBi in the xz-plane and
below −22 dBi in the xy-plane.

Table 1. Optimized structural parameters of the AoC.

Parameter Dimension

Area occupied area by copper patches 400 µm2

Area occupied by aluminium patches 600 × 600 µm2

Number of slots on each copper patch 7
Thickness of the aluminium layer 10 µm

Thickness of copper patches 10 µm
Diameter of the slots 7 µm

Gap between slots 26 µm
Diameter of the metallic via 7 µm
Gap between metallic vias 26 µm

Width of gap between the patches 10 µm
Thickness of the GaAs layer 100 µm

Thickness of the ground-plane (GND) layer 10 µm
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3. Comparison with State-of-the-Art AoC

Table 2 compares the salient features of the proposed on-chip antenna with AoC
reported in the literature. The maximum gain of the proposed antenna of 7.4 dBi is lower
than [17,18] but it is comparable to references [11,19,20]. Additionally, it has a maximum
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efficiency of 70%, which is lower than [17,19,20] but it is comparable to [11]. However,
compared with the cited work in Table 2 the proposed antenna operates over a much
higher frequency (between 450 and 500 GHz). Moreover, other than the antenna in [21]
that operates over a much lower frequency range (50–70 GHz), the proposed antenna is
much less thick with respect to the operating wavelength than other on-chip antennas
reported to date. This is attributed to combining metasurface and SIW technologies in
the implementation of the on-chip antenna. The thinner antenna structure is important to
prevent the generation of surface or substrate modes that can adversely affect the antenna’s
performance, especially at THz frequencies [22].

Table 2. Comparison of the proposed AoC with previous works reported in the literature.

Ref. Antenna Design
Fractional Bandwidth

(%) (Freq. Range
(GHz))

Gain (dBi) Eff. (%) Dimensions
(Physical and Electrical)

[11] Patch fed higher
order mode DRA 7.3 [330–355] Max. 7.9 Max. 74 0.2 × 0.5 mm2

0.222λ0 × 0.555λ0 @330 GHz

[17] On-chip 3D using
Yagi-like concept 11.8 [320–360] Max. 10 Max. 80 0.7 × 0.7 × 0.43 mm3

0.75λ0 × 0.75λ0 × 0.46λ0 @320 GHz

[18] Dipole array
antenna 10.7 [130.3–145] Max. 20.5 Max. 59.2 32 × 20 × 0.818 mm3

13.91λ0 × 8.69 × 0.355λ0 @130.3 GHz

[19] Loop antenna 6 [65–69] Max. 8 Max. 96.7 0.7 × 1.25 mm2

0.151λ0 × 0.271λ0 @65 GHz

[20] Half-mode cavity
fed DRA 11.3 [125–140] Max. 7.5 Max. 46 0.8 × 0.9 × 1.3 mm3

0.333λ0 × 0.375 × 0.541λ0 @125 GHz

[21] Differential-fed 33.3 [50–70] Max. −3.2 - 1.5 × 1.5 × 0.3 mm3

0.25λ0 × 0.25λ0 × 0.05λ0 @50 GHz

[23] Bowtie-slot 15.4 [90–105] Max. −1.78 - 0.71 × 0.31 × 0.65 mm3

0.213λ0 × 0.093λ0 × 0.195λ0 @90 GHz

[24] Ring-shaped
monopole 33.3 [50–70] Max. 0.02 Max. 35 -

[25] Circular open-loop 16.1 [57–67] Max. −4.4 - 1.8 × 1.8 × 0.3 mm3

0.342λ0 × 0.342λ0 × 0.057λ0 @57 GHz

[26] AMC embedded
slot antenna 126 [15–66] Max. 2 - 1.44 × 1.1 × 2 mm3

0.072λ0 × 0.055λ0 @15 GHz

[27] Monopole 43.5 [45–70] Max. 4.96 - 1.953 × 1.93 × 0.25 mm3

0.293λ0 × 0.289λ0 × 0.037λ0 @45 GHz

[28] Dipole-antenna 7.1 [95–102] Max. 4.8 - -

[29] Tab monopole 50 [45–75] Max. 0.1 Max. 42 1.5 × 1 mm2

1.5 × 1 mm20.225λ0 × 0.150λ0 @45 GHz

[30] Slot fed stacked
DRA 7.7 [125–135] Max. 4.7 Max. 43 0.9 × 0.8 × 1.5 mm3

0.375λ0 × 0.333 × 0.625λ0 @125 GHz

[31] DRA 15.4 [120–140] Max. 2.7 Max. 43 0.9 × 0.8 × 0.6 mm3

0.36λ0 × 0.32 × 0.24λ0 @120 GHz

[32] Patch array
antenna 11.6 [259–291] Max. 5.2 - 2.47 × 1.53 × 0.675 mm3

2.14λ0 × 1.33 × 0.586λ0 @259 GHz

[33]
Octagonal shorted
annular ring array

antenna
5.4 [303–320] Max. 4.1 Max. 38 0.55 × 0.5 × 0.3 mm3

0.555λ0 × 0.505 × 0.303λ0 @303 GHz

This
Work

Metasurface and
SIW 10.5 [450–500] Max. 7.4 Max. 70 0.8 × 0.8 × 0.13 mm3

1.21λ0 × 1.21λ0 × 0.196λ0 @450 GHz
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4. Conclusions

The innovative design of an antenna is described for on-chip applications for terahertz
applications. It is shown that by combining metasurface and SIW technologies in the
antenna design, its impedance bandwidth, radiation gain, and efficiency performance
are substantially enhanced. This is achieved without increasing the aperture area of the
antenna. The antenna is constructed on a GaAs substrate and is composed of a 2 × 4
array of rectangular patches with a row of circular slots etched on it. It is excited through
a microstrip coplanar waveguide feedline. Compared to AoC reported in the literature,
the proposed antenna has a larger frequency bandwidth and operates at a much higher
frequency with comparable gain and radiation efficiency.
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