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Abstract: This research article describes a technique for realizing wideband dual notched functionality
in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap
(EBG) techniques. For comparison purposes, a reference antenna array was initially designed
comprising hexagonal patches that are interconnected to each other. The array was fabricated on
standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average
gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application
in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding
hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially
transformed the antenna to a composite right/left-handed structure that behaved like series left-
handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now
operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band
functionality was incorporated in the proposed array to eliminate unwanted interference signals from
other wireless communications systems that coexist inside the UWB spectrum. This was achieved by
introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that
are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed
techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm).
The results presented confirm dual-band rejection at the wireless local area network (WLAN) band
(5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to
other dual notched band designs previously published the footprint of the proposed technique is
smaller and its rejection notches completely cover the bandwidth of interfering signals.

Keywords: bandgap rejection; electromagnetic bandgap (EBG); metamaterials (MTM); composite
right/left-handed structures (CRLH); ultra-wide band (UWB); antennas

1. Introduction

Ultra-wideband (UWB) systems enable high data rate wireless transmission and
therefore are not just restricted to wireless communications systems but have application in
radar and imaging systems because they enable acquisition of high-resolution images. UWB
antennas are an essential component of UWB systems providing low power dissipation
and large impedance bandwidth. Characteristics sought after in UWB antennas include
small form factor, desired radiation characteristics, and cost effectiveness [1,2].

The UWB spectrum is shared with other narrowband services, for example, wireless
local area network (WLAN) for IEEE 802.11a in the USA (5.15–5.35 and 5.725–5.825 GHz),
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which can interfere with UWB systems [3]. Therefore, it is important to eliminate such
signals from affecting the performance of UWB systems. This is normally achieved by using
filters in the RF front-end. Although filters are effective devices, they can introduce extra
loss and cost as well as affect the overall size of the systems [4,5]. To overcome interference
between UWB systems and narrowband systems that operate within the UWB spectrum
extensive research has been conducted over the past several years on developing UWB
antennas that possess band-reject characteristics. Various band-notched UWB antennas
have been reported using different design techniques [6–18].

Previous examples of band-notched UWB antennas include reference [19], where two
closely spaced but extremely narrow band notches are achieved by adding two stubs on
each side of the patch antenna, whose lengths are quarter-guide wavelength at the desired
notching frequency. Electromagnetic (EM) analysis reveals that strong rejection is realized
when adjacent currents flow in opposite directions and cancel the radiated fields. In fact,
at the notch frequencies, the current flowing on the stubs is in opposite direction (out-of-
phase) from the current on the antenna edges. In [20], a notched band is realized by placing
electromagnetic bandgap (EBG) structures on the coplanar waveguide (CPW) feedline.
The EBG structures are constructed on the opposite face of the substrate and aligned with
the CPW feedline. Shorting pins are used to connect the EBG structures with the feedline.
Essentially, the CPW feedline uses the EBG structures as a ground-plane. The resonant
frequencies of the EBG structures are tuned so that they merged to create a rectangular
shaped notched band. In [21], a dual-band notch is realized by loading a pair of split-ring
resonators (SRR) on the opposite side of the CPW-fed monopole. The SRRs are placed
under the feedline. Dimensions of the SRR determine the notching frequency. The pair of
SRRs are separated by quarter-guided wavelength to avoid mutual coupling effects. In [22],
strategically placing a stepped slot, the antenna can be excited under differential-mode of
operation. Dual notched bands are created by introducing two pairs of quarter–wavelength
slits, a pair of half-wavelength stubs, and a half-wavelength stub. The bandwidths of the
dual notched bands can be controlled by adjusting the lengths of the stubs and slits. In [23],
band notch functionality is realized by using two pairs of horizontally placed folded-strip
resonators with an inductive coupling scheme. Finally, in [24], a stepped slot antenna
is used to realize UWB impedance matching characteristics. By slitting an open-ended
quarter wavelength slot and a short-ended half-wavelength ring slot on the ground near
the stepped slot, a notched band of 5.15–5.85 GHz is created. The single and dual notched
band UWB antennas described above have a relatively narrow bandwidth. Antennas
are needed to suppress interference signals from not just narrowband signals but also
wideband signals such as the X-band downlink satellite communication band (660 MHz).
Therefore, it is necessary to investigate techniques to realize wide rejection bandwidth
UWB antennas.

This article describes a technique to realize an UWB antenna array that has two wide
rejection bands to eliminate interference signals from unwanted wireless systems that
operate in the ultra-wideband frequency domain. This is accomplished by applying meta-
material (MTM) and EBG techniques. Application of MTM extends the operationally
bandwidth of the array, and EBG is used to create notched bands at the interfering frequen-
cies. The simulation results of the design were verified using two different 3-D full-wave
electromagnetic tools.

2. Antenna Array Structure
2.1. Reference Antenna Array

The configuration of the reference antenna array shown in Figure 1a,b consists of
a 2 × 4 matrix of hexagonal patches that are interconnected to each other with a high
impedance microstrip-line. The bottom side of the substrate is a ground-plane as shown
in Figure 1b. The array is excited through a common central feedline. The patches in
the array are based on a standard design and its performance was simulated and opti-
mized using CST Microwave Studio. The array was fabricated on the FR-4 substrate with
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dielectric constant of 4.3, tanδ of 0.025, and thickness of 0.8 mm. The thickness of the
conductive layer made of copper is 0.035 mm. The total dimensions of the antenna are
20 mm × 20 mm × 0.87 mm. Geometrical parameters of the optimized array are listed
in Table 1. The reflection-coefficient response of the reference antenna array in Figure 1c
shows that it operates over 5.25 GHz to 10.1 GHz corresponded to 63.19% practical band-
width, which falls short for UWB systems defined between 3.1 GHz to 10.6 GHz. Figure 1d
show the average radiation gain of the array across its operating band is 1.5 dBi.
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Figure 1. Geometry of the reference antenna: (a) top-side of substrate, (b) back-side of substrate
(ground-lane), (c) simulated reflection-coefficient response, and (d) simulated radiation gain response.

Table 1. Geometrical parameters of the reference antenna array.

Parameters Dimensions (mm)

Radius of hexagonal patches 2
Width of connecting lines 0.5

Horizontal gap between patches 7.5
Vertical gap between patches 1.55
Length of the central feedline 10

Width of the feedline 0.5
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2.2. Fabrication Process

The fabrication of the antenna is made by standard photo-lithographic method based
on a chemical etching process as illustrated in Figure 2. This involves the removal of
the unwanted conductive regions of the metallic layer. The photo-lithographic process
uses light to transfer the antenna pattern from a photomask to a photosensitive chemical
photoresist on the substrate. The thickness of the photoresist layer is typically 1 micron. A
series of chemical treatments is performed to etch the exposure pattern on the metal. This
procedure is comparable to a high precision version of the method used to make printed
circuit boards. Precision of this technique is typically down to less than 2 microns and the
repeatable accuracy is ±10 microns, which means that the fabrication method will have
negligible effect on the performance of the antenna whose dimensions are specified in
Table 1. The vias are created using the standard through-hole technology. This involves
drilling a hole through the dielectric substrate which then needs to be cleaned of debris
from the drilling operation before a conductive wire is inserted through it. The wires are
cut to size and both ends of the wire are soldered to the microstrip surface to create an
electrical short circuit. Alternately, through-hole plating process can be used to metallize
the via-holes. Through-hole plating involves chemically coating the holes with a thin layer
of copper through a process called electroless copper deposition. This gives the copper
plating a base to build up from. The full amount of copper is then electroplated in the via
holes by connecting the board to an electrical charge so that the boards act as cathodes for
the electroplating process.
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In the next section, the composite right/left-handed (CRLH) structure is applied
in the antenna structure to incorporate metamaterial characteristics to extend the arrays
impedance bandwidth.

2.3. Transforming the Antenna Array for Ultra-Wideband (UWB) Operation

The bandwidth of the reference antenna array defined for S11≤−10 dB in Figure 1 is
between 5.25 GHz to 10.1 GHz. This partially covers the required UWB spectrum defined
by the American Federal Communications Commission (FCC) to be between 3.1 GHz
to 10.6 GHz. Therefore, it was necessary to extend the array’s bandwidth to fulfill the
UWB bandwidth criteria. This was achieved by incorporating CRLH structure in the
hexagonal patches of the reference antenna array. This involved etching a hexagonal slot
in the radiating patch and inserting a metallic via at the center of the patch to ground
it, as shown in Figure 3a–c. Geometrical parameters of the optimized array are listed in
Table 2. The hexagonal slot in the radiating patch essentially acts like a series left-handed
capacitance, and the metallic via acts like a shunt left-handed inductance. Moreover, surface
currents that flow over the antenna establish parasitic right-handed capacitance between
the patch and the ground-plane, and series right-handed inductance on its surface. This
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modification essentially introduces metamaterial characteristics in the reference antenna.
The consequence of this is significant improvement of the impedance bandwidth as well
as the radiation gain over the UWB spectrum as is confirmed by the simulation results in
Figure 3d,e. The reference antenna’s impedance bandwidth for S11≤−10 dB is extended
from between 5.25 GHz and 10.1 GHz to between 2 GHz and 12 GHz, which corresponds
to a fractional bandwidth of 142.85%. Compared to the reference array this constitutes a
bandwidth improvement of ∼80%. The corresponding average gain improved from 1.5 dB
to 5 dBi.
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Figure 3. Configuration of the proposed metamaterial (MTM) based antenna array: (a) top-side
view of substrate, (b) back-side view of substrate (ground-plane), (c) isometric view showing all the
structural components and their locations, (d) reflection-coefficient response of the reference and
MTM antenna array, and (e) radiation gain of the reference and MTM antenna array.
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Table 2. Geometrical parameters of the MTM inspired ultra-wideband (UWB) antenna. (Note, all
other parameters are given in Table 1.).

Parameters Dimensions (mm)

Radius of hexagonal slots 1.25
Width of hexagonal slots 0.25

Radius of via-holes 0.25
Height of via-holes 0.85

2.4. MTM Based UWB Antenna Array with Wide Rejection Bands

As the UWB frequency band is shared with other wireless systems such as WLAN
operating across 5.150–5.825 GHz it can experience interference. To prevent this the
RF front-end of UWB systems require a filter which can be costly and affect the size of
the system. To overcome the effects of interfering signals various techniques have been
previously proposed [3,19–24] that introduce notching function on the UWB antenna;
however, their rejection band is narrow to completely reject wideband interfering signals.
Dual wideband rejection band is introduced here by applying electromagnetic bandgaps on
the back side of the MTM antenna array. This technique does not affect the array’s physical
dimensions. The proposed EBG is realized by implementing arrangement of circular slots
on the antenna’s ground-plane under the patches and interconnecting microstrip-lines,
as shown in Figure 4a–c. The geometrical parameters of the proposed antenna array are
given in details in Table 3. The exact positions of the EBG slots were optimized using
CST Microwave Studio. The results in Figure 4d show the two notched bands are highly
selective and realized between 4.90–6.04 GHz and 7.09–8.50 GHz. Therefore, the proposed
antenna array is capable of suppressing interference affects from WLAN (5.15–5.825 GHz)
and X-band satellite downlink communication band (7.10–7.76 GHz). Two different 3-D
full-wave electromagnetic simulation tools were used to validate the design, that is CST
Microwave Studio and HFSS. There is excellent agreement between both tools which
confirms the feasibility of the proposed technique.



Micromachines 2021, 12, 269 7 of 9
Micromachines 2021, 12, x 7 of 9 
 

 

  
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. Layout of the proposed MTM based antenna array loaded with electromagnetic bandgap 
(EBG) slots: (a) top-side of substrate, (b) back-side of substrate (ground-plane), (c) isometric view 
showing the structural components and their locations, (d) reflection coefficient response 
comparison of the reference, MTM, and MTM with EBG loading, and (e) radiation gain of the 
reference, MTM, and MTM with EBG loading. 

  

Figure 4. Layout of the proposed MTM based antenna array loaded with electromagnetic bandgap (EBG) slots: (a) top-side
of substrate, (b) back-side of substrate (ground-plane), (c) isometric view showing the structural components and their
locations, (d) reflection coefficient response comparison of the reference, MTM, and MTM with EBG loading, and (e)
radiation gain of the reference, MTM, and MTM with EBG loading.
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Table 3. Geometrical parameters of the MTM inspired UWB antenna loaded with EBG slots. (Note,
all other parameters are given in Tables 1 and 2).

Parameter Dimensions (mm)

Radius of EBG slots 0.2
Gap between EBG slots 0.5

3. State-of-the-Art Comparison

The proposed MTM-EBG technique to realize UWB antenna array with dual notched
band characteristics is compared with other single and dual notched band UWB antennas
in Table 4. It is evident that the proposed antenna has a smaller footprint compared to
single and dual notched band antennas in references [19–23]. The notched band of the
proposed antenna is significantly larger than any of the prior designs. Moreover, unlike
other dual notched band antennas its EBG frequency can be controlled, and its design and
implementation are relatively easy. Also, the proposed antenna is excited with a single feed
port unlike other cited works that need two-port excitations except for reference [3]. As a
result, the characteristics of the proposed MTM-EBG UWB antenna array and its simplicity
make it a viable candidate for various UWB applications.

Table 4. Comparison with state-of-the-art UWB notched band antennas.

References Antenna Size
(mm3) No. of EBGs Bandwidth of

each EBG (GHz) Controllable EBG Freq. Design
Complexity

[3] 16 × 25 × 1.52 Single 0.71 Yes No
[19] 44 × 44.4 × 0.1 Dual 0.21 and 0.21 No No
[20] 48 × 50 × 1 Single 0.97 Yes No
[21] 50 × 50 × 1.575 Dual 0.24 and 0.48 No No
[22] 28 × 18 × 0.8 Dual 0.54 and 0.53 No Yes
[23] 38 × 42 × 0.5 Single 0.76 No Yes
[24] 8.5 × 22 × 0.8 Single 1.34 No Yes

Proposed Work 20 × 20 × 0.87 Dual 1.14 and 1.41 Yes No

4. Conclusions

Feasibility of a low-profile UWB antenna array design with two highly selective wide
rejection bands has been investigated. This was achieved by introducing metamaterial
characteristics in the hexagonal patch antenna to extend its operational bandwidth. Dual
notched bands were incorporated in the design to prevent the UWB system being affected
by interference from WLAN (5.15–5.825 GHz) and X-band satellite downlink communi-
cation band (7.10–7.76 GHz). This was accomplished by loading the ground-plane of the
antenna with electromagnetic bandgap slots. The proposed techniques had no effect on
the dimensions of the antenna array. Unlike previous dual-notched band designs the
proposed antenna is smaller and has a wider notched band characteristic to eliminate
interfering signals.
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