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Membrane proteins are a major focus for new drug discovery. Transmembrane beta-barrel proteins 

play key roles in the translocation machinery, pore formation, membrane anchoring and ion exchange. 

Given their key roles and the difficulty in membrane protein structure determination, the use of 

computational modelling is essential. This paper focuses on the topology prediction of transmembrane 

beta-barrel proteins. In the field of bioinformatics, many years of research has been spent on the 

topology prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-barrel) 

proteins topology prediction have been overshadowed and the prediction accuracy could be improved 

with further research. Various methodologies have been developed in the past for the prediction of 

TMB proteins topology, however the use of cascading classifier has never been fully explored. This 

research presents a novel approach to TMB topology prediction with the use of a cascading classifier. 

The MATLAB computer simulation results show that the proposed methodology predicts 

transmembrane beta-barrel proteins topologies with high accuracy for randomly selected proteins. By 

using the cascading classifier approach the best overall accuracy is 76.3% with a precision of 0.831 

and recall or probability of detection of 0.799 for TMB topology prediction. The accuracy of 76.3% 

is achieved using a two-layers cascading classifier. 

Keywords: Support vector machine, Deep learning, Neural networks, K-nearest neighbours, Cascading 

classifier, beta-barrel, Topology prediction 

1.   Introduction 

Transmembrane topology prediction problem will be discussed within this paper. A 

recent paper embarks upon a NN (Neural Network) technique and its comparison with 

hybrid-two-level NN-SVM (Support Vector Machines) methodology to classify inter-class 

and intra-class transitions to predict the number and range of beta membrane spanning 
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regions (Kazemian et al., 2016). The computer simulation results demonstrate a significant 

impact and a superior performance of NN-SVM tests with a five residue overlap for signal 

protein over NN with and without redundant proteins for prediction of transmembrane 

beta-barrel spanning regions.  The efforts to beta-barrel topology prediction have been 

overshadowed and the accuracy of prediction could be improved. Recent studies focus on 

alpha-helix transmembrane regions prediction with the use of SVM- genetic algorithm 

(Kazemian et al., 2013) or adaptive neural fuzzy inference system (Kazemian et al., 2014) 

for example. TMB topology prediction is understudied, and the aim of this paper is to 

evaluate the performance of a cascading classifier in the prediction of TMB topologies. 

Datasets used for transmembrane beta-barrel proteins are usually of small size. A recent 

publication by Sharma et al. (2016) evaluates the performance of various machine learning 

techniques based on small datasets with varying dimensionalities. From their study, they 

concluded that KNN (k-nearest neighbours), SVM and linear discriminant have the best 

predictive accuracy on small datasets. One of the latest methods used for predicting 

transmembrane beta-barrel topologies is BOCTOPUS (Hayat et al., 2012). In 2016, Hayat 

et al. introduced BOCTOPUS2 (Hayat et al., 2016), an improved version of BOCTOPUS. 

The correct topology is predicted correctly in 69% of the proteins with BOCTOPUS2. It is 

more than 10% improvement compared to BOCTOPUS, the earlier method. 

This research takes the transmembrane beta-barrel topology prediction further by 

applying novel techniques such as DNN, KNN and SVM as part of a cascading classifier. 

The computer simulation results show new results for TMB topologies prediction using a 

cascading classifier. 

 

2.   Machine Learning approaches 

 

The cascading classifier presented as part of this paper consists of combinations of 

various machine learning techniques including KNN, DNN and SVM. The model allows 

to use two methods or even three methods. Use KNN =1 or 0, use SVM = 1 or 0 and use 

NN = 1 or 0 are the list of parameters. Each machine learning techniques have their own 

characteristics that are summarized in this chapter. 

2.1.   K-Nearest Neighbours (KNN) 

     Among all machine learning algorithms, Nearest Neighbours algorithms are the 

simplest. KNN is particularly well suited for multi-modal classes as well as applications in 

which an object can have many class labels. Datasets used for transmembrane beta-barrel 

proteins are usually of small size. In the MATLAB implementation presented as part of 

this paper, KNN is one of three machine learning techniques that can be used as part of the 

cascading classifier within a combination. At the input layer, a sliding encoding window 

will be used on each amino acid sequence. Prediction is based on the topology 

characteristic of the central residue in the window. A binary array of size 20 is used to 

encode each window position at the start of the implementation. Several model parameters 
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have been modified such as the tie-breaking algorithm, the nearest neighbour search 

method, k value, maximum data points in node, tie inclusion flag, distance metrics and 

exponent. 

2.2.   Deep Neural Network (DNN) 

     Deep neural networks have become popular machine learning tools in recent years. In 

a recent paper, Heffernan et al. (2015) achieved a secondary structure prediction accuracy 

of 82% by using a deep learning neural network. Deep neural networks are able to learn 

complex patterns. For the MATLAB implementation presented as part of this paper, when 

a DNN is used part of a combination, the pattern recognition network variable is used for 

the creation of a pattern recognition neural network. An input layer, a hidden layer and an 

output layer are used to define the neural network. At the input layer, a sliding encoding 

window is used on each amino acid sequence. 

2.3.   Support Vector Machines (SVM) 

Another machine learning technique used as part of the cascading classifier is SVM. In 

the field of machine learning, a Support Vector Machine is a supervised learning technique 

that can be used for both classification and regression. SVMs don’t over generalize in 

general whereas the neural networks can lead to over generalization often (Mitchell, 1997). 

The performance of SVM depends largely on the kernels chosen. The best kernel of choice 

for a specific problem had to be researched for this implementation. Smola et al. (Smola, 

1998) provided an explanation of the relation between the standard regularization theory 

and the SVM kernel method. Other problems of SVMs, for the training and testing phases 

include size and speed. For a similar generalization performance, other neural networks are 

faster than SVMs (Haykin, 1998). 

2.4.   Ensemble methods 

There has been an increasing use of ensemble learning methods in recent research in 

computational biology. Ensemble learning combines multiple learning algorithms in order 

to improve the overall prediction accuracy (Dietterich, 2000). It is one of the most 

promising solutions for many biological problems. Ensemble of SVMs has been evaluated 

in a study for robust microarray data classification (Peng, 2006). When a comparison was 

done between a single SVM classifier and the ensemble of bagging and boosting, the author 

observed that the proposed clustering based SVM ensemble obtained the best result. 

Cascading is a specific case of ensemble learning. It is based on concatenation of several 

classifiers using the information provided from the output of a given classifier as additional 

information for the next classifier in the cascade. Kazemian et al. presented in a recent 

study (Kazemian et al., 2014) a cascaded SVM-NN classification methodology for signal 

peptide discrimination and cleavage site identification. The overall accuracy achieved was 

91.5% based on cross-validation tests using the SVM-NN model. A study on the TMB 
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topology prediction using a cascading classifier has not yet been evaluated, hence the 

interest of this paper. 

 

3.   Data preparation 

3.1.   Datasets 

     There are a number of databases that are available and are repositories for the structures 

and sequences of transmembrane proteins. TOPDB (Topology data bank of transmembrane 

proteins) contains a comprehensive list of transmembrane proteins with topology 

information (Tusnády, 2008). It is the most complete and comprehensive collection of 

transmembrane protein datasets containing experimentally derived topology information. 

The database collects the details of various experiments carried out to learn about the 

topology of particular transmembrane proteins. The experimental techniques include 

fusion with reporter enzymes, glycosylation studies, protease accessibility and 

immunolocalization. It has a total of 4190 transmembrane proteins obtained from the 

literature and from public databases available on internet. Data derived from literature 

cannot be collected automatically but data based on 3D structures generates semi-automatic 

and continuously updated information for the database. For each protein in the database, 

the most probable topology consistent with the collected experimental constraints is also 

calculated using multiple transmembrane topology prediction algorithms for alpha-helices 

and beta-barrel transmembrane proteins respectively. The web interface includes tools for 

extensive searching, relational querying and data browsing as well as visualization tools 

for topology data. The beta-barrel TOPDB entries can be downloaded directly from the 

web interface. The topdb_bp.txt file contains 123 TMB sequences. The table below 

represents a sample of 15 TMB out of the 123 TMB proteins used for this implementation. 
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Table 1.  Sample of 20 TMBs selected out of 123 TMBs available in TopDB database 

 

 ID Description Organism 

1 BP00056 

 

Outer membrane usher protein 

faeD precursor 

Escherichia coli 

2 BP00086 

 

Maltoporin precursor Escherichia coli 

3 BP00115 

 

Outer membrane protein A 

precursor 

Escherichia coli 

4 BP00124 

 

Outer membrane pore protein 

E precursor 

Escherichia coli 

5 BP00193 

 

Major outer membrane protein 

P.IA precursor, PIA 

Neisseria gonorrhoeae 

6 BP00272 

 

Major outer membrane protein 

P.IB precursor, PIB 

Neisseria gonorrhoeae 

7 BP00273 

 

Major outer membrane protein 

P, PIA 

Neisseria meningitidis 

serogroup B 

8 BP00274 

 

Outer membrane protein class 

2 

Neisseria meningitidis 

9 BP00310 

 

Sucrose porin precursor Salmonella 

typhimurium 

10 BP00320 

 

Alpha-hemolysin precursor 

(Alpha-toxin) (Alpha-HL) 

Staphylococcus 

aureus 

11 BP00339 

 

Porin Rhodobacter blasticus 

12 BP00345 

 

Outer membrane protein F 

precursor (Porin ompF) (Outer 

membrane protein 1A) (Outer 

membrane protein IA) (Outer 

membrane protein B) 

Escherichia coli 

13 BP00346 

 

Ferrichrome-iron receptor 

precursor (Ferric hydroxamate 

uptake) (Ferric hydroxamate 

receptor) 

Escherichia coli 

14 BP00359 

 

Outer membrane porin protein 

32 precursor (OMP32) 

Delftia acidovorans 

15 BP00364 

 

Outer membrane protein tolC 

precursor 

Escherichia coli 

 

 

http://topdb.enzim.hu/?m=show&id=BP00086
http://topdb.enzim.hu/?m=show&id=BP00086
http://topdb.enzim.hu/?m=show&id=BP00115
http://topdb.enzim.hu/?m=show&id=BP00115
http://topdb.enzim.hu/?m=show&id=BP00124
http://topdb.enzim.hu/?m=show&id=BP00124
http://topdb.enzim.hu/?m=show&id=BP00193
http://topdb.enzim.hu/?m=show&id=BP00193
http://topdb.enzim.hu/?m=show&id=BP00272
http://topdb.enzim.hu/?m=show&id=BP00272
http://topdb.enzim.hu/?m=show&id=BP00273
http://topdb.enzim.hu/?m=show&id=BP00273
http://topdb.enzim.hu/?m=show&id=BP00274
http://topdb.enzim.hu/?m=show&id=BP00274
http://topdb.enzim.hu/?m=show&id=BP00310
http://topdb.enzim.hu/?m=show&id=BP00310
http://topdb.enzim.hu/?m=show&id=BP00320
http://topdb.enzim.hu/?m=show&id=BP00320
http://topdb.enzim.hu/?m=show&id=BP00339
http://topdb.enzim.hu/?m=show&id=BP00339
http://topdb.enzim.hu/?m=show&id=BP00345
http://topdb.enzim.hu/?m=show&id=BP00345
http://topdb.enzim.hu/?m=show&id=BP00346
http://topdb.enzim.hu/?m=show&id=BP00346
http://topdb.enzim.hu/?m=show&id=BP00359
http://topdb.enzim.hu/?m=show&id=BP00359
http://topdb.enzim.hu/?m=show&id=BP00364
http://topdb.enzim.hu/?m=show&id=BP00364
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The BOCTOPUS2 dataset is the second dataset used for the implementation. It is the 

dataset that was used for the training/testing of the software/predictor BOCTOPUS2 which 

is a transmembrane beta-barrel topology prediction tool (Hayat, 2012). It is available on 

the website of BOCTOPUS2 server. The BOCTOPUS2 dataset consists of 42 TMB 

sequences. 

3.2.   Data collection 

All residues in the data sets were annotated as either “I” (Inner-loop), “O” (Outer loop) 

or “M” (Transmembrane beta-strand) based on the coordinate of the C-alpha atoms and 

membrane boundaries obtained from the OPM (Orientations of Proteins in Membranes) 

database (Lomize, 2006). Residues located within the membrane boundaries but do not 

belong to a transmembrane beta-strand are labelled as “I” or “O” based on the location of 

the initial residue. On the BOCTOPUS2 server website, supplementary information is 

provided with the BOCTOPUS2 dataset (42 proteins) available in the file named 

boctopus2_crossvalidation_dataset.xlsx and the sequences and their annotation used for 

training/testing BOCTOPUS2 named boctopus2_dataset_sequenceannotation.txt. 

For the implementation, data was curated manually, and two files were created for use 

in MATLAB: boctopus2Sequence.txt that list all sequences and boctopus2Labels.txt that 

list all labels. The load file created out of those two files was named boctopus2dataset.mat. 

Regarding TOPDB dataset, the data files were also manually curated.  A download for 

sequences and topologies is available on the Topology Data Bank of Transmembrane 

Proteins website. All TOPDB entries are available in one file called top_all.txt. The file 

was divided manually into two separate files named TOPBPLabels.txt and 

TOPBPSequence.txt. The observed topology represented with an X corresponds to the 

signal peptide. For the implementations, the signal peptide was ignored. The process of 

curation was similar to the BOCTOPUS2 dataset. The load file created out of those two 

files was named TOPBPdataset.mat. It contains 123 proteins. 

3.3.   Data pre-processing 

In order to train the cascading classifier, datasets needed to be created and formatted for 

MATLAB. Structure arrays were created with a small program. A 1x42 structure array 

with three fields (header, sequence, and topology) was created for BOCTOPUS2 and a 

1x123 structure array was created for the TOPDB dataset. The name of the structure arrays 

and the load files for the implementation are called TOPBPdataset.mat and 

Boctopus2dataset.mat. The fields include ‘header’ which corresponds to the annotation of 

a given protein sequence, ‘sequence’ which represents the protein sequence and ‘topology’ 

which represents the predicted topology. 
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4.   Computer simulation implementation and results 

The computer simulation was executed in MATLAB. The approach is classified as an 

experimental study. A cascading classifier is built and parameters are modified and 

optimized in order to achieve the best possible performance in the context of TMB 

topology prediction. 

4.1.   Creating and training the cascading classifier 

Data division for the cascading classifier is defined by the model. Data division is based 

on two parameters corresponding to the fraction of first level training set and fraction of 

second level training set. The fraction of first level training set parameter defines how many 

data will be used in total for training. So, if we choose a fraction of first level training set 

equals to 0.8, it means 80% of data will be used for training and 20% for testing. From the 

selected 80%, the fraction of second level training set defines which part will be used by 

the first layer and which part will be used by the second layer. For fraction of first level 

training set equals 0.8 and the fraction of second level training set equals 0.5, if we have a 

total a 100 data, 80 will be used for training in total. Among them, 50%=40 will be used 

for the first layer and 50%=40 will be used for the second layer. When not using DNN, the 

fraction of the first level can be set manually. 

The model consists of two levels. Several selected models will be trained at the first 

level. The selected algorithms (KNN, SVM or DNN) are trained to predict the values of 

the class. In case two or more classifiers are selected, a second level SVM classifier is 

trained to predict the value of the class based on the probability predicted by those two or 

more models at the first level. A block diagram of the cascading classifier is presented in 

Fig. 1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Block diagram of the cascading classifier. 
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This is a cascading classifier as the output of the first layer corresponds to the input of 

the second layer. In case, only one model is initially selected at the first level, the second 

layer classifier will not be trained. 

The model allows to use a single method, two methods or even three methods. KNN 

=1 or 0, SVM = 1 or 0, and DNN = 1 or 0 are the list of parameters. If a parameter is equals 

to 0, it will not be used in the cascading classifier. All combinations are possible except for 

combinations when all of them are equal to zero. If only one of them is set to one, the 

application will work as one classifier. The selected classifier (equals to one) will be trained 

and will show the results. If at least two parameters are set to one, it means that several 

classifiers will be trained and then combined together by one more probability classifier. 

When multiple classifiers are chosen, a second level SVM will be trained. 

4.2.   Modifying the cascading classifier parameters 

The model has four different basic configurations. The parameters of each machine 

learning algorithms can be modified.  

When KNN has been used as part of the cascading classifier, various parameters have 

been modified. One parameter is the k value (number of nearest neighbours). The classifier 

performs better with more than one neighbour and the best results are reached when the k 

value equals eleven. The tie-breaking algorithm has been modified using the smallest index 

among tied groups, using the class with the nearest neighbour among tied groups and using 

a random tie breaker. The tie inclusion flag as well as the maximum number of data points 

in each lead node of the kd-tree have been modified. Nearest neighbour search method has 

been modified by creating and using a kd-tree to find the nearest neighbours and by using 

the exhaustive search algorithm. Distance metrics used include the City block distance, 

Chebyshev distance, one minus the sample linear correlation between observations, one 

minus the cosine of the included angle between observation and the Euclidean distance. 

The Euclidean distance is the most widely used distance metric in KNN and is the default 

distance metric used during the implementation. In Cartesian coordinates, if 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) are two points in Euclidean n-space and n a positive 

integer, then the distance (d) from x to y or y to x is given by the Pythagorean formula: 

 

                                          𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = √∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1               (1) 

 

     When DNN has been used as part of the cascading classifier, various hidden layer sizes 

have been used from two to 1000. Various training algorithms have been used with the 

computation in order to evaluate the accuracy of prediction. The scaled conjugate gradient 

is the default training algorithm available in MATLAB. Other available trainings used 

included resilient backpropagation algorithm, Conjugate Gradient with Powell/Beale 

Restarts, Fletcher-Powell Conjugate Gradient in which weight and bias values are updated 

according to the conjugate gradient backpropagation with Fletcher-Reeves updates 

(Fletcher, 1964), Polak-Ribiére Conjugate Gradient Training algorithm in which weight 

and bias values are updated according to the conjugate gradient backpropagation with 
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Polak-Ribiére updates, Levenberg-Marquardt algorithm, One Step Secant algorithm, and 

Variable Learning Rate Backpropagation algorithm. The Scaled Conjugate Gradient 

provides the best results. 

     The transfer function was modified. Log-Sigmoid allows the signals received from the 

input layer to be transformed in each hidden layer. Log-Sigmoid was used and provided 

better results than the hyperbolic tangent sigmoid transfer function. Training occurred 

according to the training parameters defined such as maximum number of epochs, 

maximum time to train in seconds, minimum performance gradient or maximum validation 

failures for example. When one of the conditions defined is met, the training process will 

stop. It can be for example that the maximum number of epochs also referred as the number 

of repetitions is reached, the maximum amount of time is exceeded or the performance is 

minimized to the goal defined. The number of validation checks are used to terminate the 

training. The gradient will become very small as the training reaches a minimum of the 

performance. The value of the minimum performance gradient was set to 1e-6. If the 

magnitude of the gradient was less than 1e-6, the training would have stopped. This was 

not applicable for this implementation. The number of validation checks represents the 

number of successive iterations that the validation performance fails to decrease. When the 

number reached six, which was the value set for the maximum validation failures, the 

training stopped.  

Various functions were used for the data division for the DNN. One problem that 

occurs during neural network training is data overfitting, where the network tends to 

memorize the training examples without learning how to generalize to new situations. The 

default method for improving generalization is called early stopping and consists in 

dividing the available training data set into three subsets. The training set which is used for 

computing the gradient and update the network weights and biases, the validation test 

whose error is monitored during the training process because it tends to increase when data 

is over-fitted and the last subset is the test set whose error can be used to assess the quality 

of the division of the data set. One configuration used for data division included division 

into three sets using random indices. The ratio that is used by default is 0.6/0.2/0.2. It 

corresponds to the ratio for training, testing and validation. The data is randomly divided 

so that 60% of the samples are assigned to the training set, 20% to the validation set, and 

20% to the test set. Other configurations included data divided into three sets using blocks 

of indices or into three sets using specified indices. The data division is an automatic 

process that happens when the network is trained. 

When SVM has been used as part of the cascading classifier, the optimization routine 

is a parameter that was modified. It is specified as Iterative Single Data Algorithm by 

default or using quadratic programming to implement L1 soft-margin minimization by 

quadratic programming or Sequential Minimal Optimization (Fan et al., 2005). The default 

is Iterative Single Data Algorithm, if the expected proportion of outliers in the training data 

is set to a positive value for two-class learning. Other parameters modified included Box 

constraint that helps prevent overfitting, Cache size, flag to clip alpha coefficients, 

tolerance for gradient difference, feasibility gap tolerance, maximum number of numerical 
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optimization iterations, Kernel offset parameter, Kernel scale parameter, Karusch-Kuhn-

Tucker complementary conditions violation tolerance, number of iterations between 

optimization diagnostic message output, expected proportion of outliers in training data, 

store support vectors, their labels, number of iterations between reductions of active set, 

flag to standardize data, verbosity level and  kernel function using Gaussian or Radial Basis 

Function (RBF), linear kernel or polynomial kernel. 

Polynomial kernel function order is another parameter that has been modified. The 

default value is three. For this implementation polynomial SVMs have been used as layer 

one and two of the cascading classifier. The polynomial kernel is a kernel function that is 

used often with SVMs or kernelized models. It represents the similarity of vectors (training 

sample) in a feature space over polynomials of the original variables, allowing learning of 

non-linear models. The polynomial kernel looks not exclusively at the given features of 

input samples for determination of their similarity, but it looks also at combinations of 

these. For regression analysis, the combinations refer to interaction features. The feature 

space of a polynomial kernel equals that of polynomial regression, but without the 

combinatorial blow-up in the number of parameters to be learned.  

The order of polynomial in mathematics refers also to the degree of a polynomial, that 

is, the largest exponent (for a univariate polynomial) or sum of exponents (for a 

multivariate polynomial) in any of its monomials. 

The following names are given to polynomials according to their degree. Degree 0 

corresponds to non-zero constant, degree one is linear, degree two is quadratic, degree three 

is cubic, degree four is quartic and so on. In general, SVM works well on small datasets. 

A recent study evaluated the performance of SVMs with linear, quadratic and cubic kernels 

in the problem of recognizing 3D objects from 2D views. The paper indicates that the 

degree of the polynomial order plays a minor role in the final results (Dos Santos et al., 

2002). 

4.3.   Results of cascading classifier 

Multiple runs have been executed in MATLAB using different parameters 

configurations. Various ratio combinations such as 50:50, 60:40, 70:30, 75:25 and 80:20 

have been used for the split between training and testing data in the fraction of first level 

training set.  Best results for the cascading classifier were obtained using a split with 80% 

of data used for training and 20% used for testing in the fraction of first level training set 

and 42% in the fraction of second level training set. Best results are obtained with 

parameters configured to a window size of 55, hidden layer size of 55, log sigmoid transfer 

function, scaled conjugate gradient for the training function,  Mean squared normalized 

error performance function and data division into three sets using random indices for the 

DNN part of the cascading classifier and k-value of eleven, exhaustive nearest neighbour 

search method, random tie-breaking algorithm for the KNN part of the cascading classifier. 

For the SVM part of the cascading classifier, a polynomial kernel function. The model was 

set to store the support vectors, their labels and the estimated α coefficients. The default 

values were used for the box constraint, cache size, solver, tolerance to gradient difference, 
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feasibility gap tolerance, maximal number of optimization iterations, kernel offset 

parameter, kernel scale, Karush-Kuhn-Tucker complementarity conditions violation 

tolerance, number of iterations between optimization diagnostic message output, expected 

proportion of outliers in training data, polynomial kernel function order, number of 

iterations between movement of observations from active to inactive set, flag to standardize 

predictor data and verbosity level.  

The performance of the model was evaluated with the use of ROC curves, confusion 

matrix and bar charts. The Receiver Operating Characteristic (ROC) is a plot of the true 

positive rate (sensitivity) versus the false positive rate (1 - specificity). Fig. 1 represents 

the confusion matrix for the cascading classifier. We examine the confusion matrix by 

considering the outputs of the trained classifier and comparing them to the expected results 

(targets). Green blocks (diagonal cells) show the number (and percentage) of class 

samples/residues positions in the dataset that were correctly classified. Red blocks show 

misclassifications (false positives in the upper right, false negative in the lower left). For 

example, based on fig. 2, 704 examples of class three are wrongly classified as class one. 

Grey blocks give the percentages of correct classification in relation to the respective class. 

The confusion matrix provides a good visualization of the performance of the classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Confusion matrix 

 

The receiver operating characteristic for each output class is plotted with the plot 

receiver operating characteristic. When the curve goes to the left and top edges of the plot 

it means that the classification is better. The sensitivity measures the proportion of actual 

positives that are correctly identified as such. The false positive is also known as the fall-

out. Fall-out is closely related to specificity and is equal to (1 - specificity). The steepness 
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of ROC curve is also important since it is ideal to maximize the true positive rate while 

minimizing the false positive rate.  

The ROC curve (Fig. 3) is thus the sensitivity as a function of the fall-out. A perfect 

predictor would be described at 100% sensitive. The closer the ROC curve is to the upper 

left corner (100% sensitivity, 100% specificity), the higher the overall accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  ROC curve 

 

      

Topologies predictions can be evaluated in more detail by calculation of prediction quality 

indices (Kabsch, 1983). Fig. 4 indicates how well a particular topology was predicted and 

wether overprediction or underprediction have occurred. The blue column represents the 

computed fraction of correct predictions when a given topology is observed (in other 

words, the number of residues correctly predicted for topology I, O or M, divided by the 

number of residues observed) . The red column represents the computed fraction of correct 

predictions when a given topology is predicted (in other words, the number of residues 

correctly predicted, divided by the number of residues predicted).Those quality indices are 

important for the interpretation of the prediction accuracy.The fraction correct of predicted 

(red column) is practically useful in predicting unknown topologies. Results indicate that 

overprediction and underprediction is limited, which suggests that the cascading classifier 

can effectively predict. Bar (x, y) is the MATLAB function that was used to create Fig. 4. 
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Fig. 4.  Prediction quality indices 

5.   Conclusion 

 

This paper discusses the applications of a cascading classifier that consists of multiple 

machine learning algorithms including KNN, DNN and SVM for TMB topology 

prediction. Training and testing were performed on curated TOPDB and BOCTOPUS2 

datasets. The model allows to use a single method, two methods or even three methods by 

selecting KNN =1 or 0, SVM = 1 or 0, and DNN = 1 or 0. The computer simulation results 

using the TOPDB dataset that include 123 TMB sequences respectively generates an 

overall topology prediction accuracy of 76.3% with a precision of 0.831 and recall or 

probability of detection of 0.799 for TMB topology prediction. The accuracy of 76.3% is 

for one scenario combination where layer one includes SVM, KNN and DNN, and layer 

two include SVM. When used individually, best accuracy from DNN, SVM and KNN are 

70%, 64% and 71.8% respectively. The output of layer one is the input of layer two in the 

cascading classifier. The algorithms were optimized by varying the parameters. Various 

ways to improve the performance of the deep neural network part of the cascading classifier 

were implemented including checking for overfitting. It is important to ensure that the deep 

neural network does not over-fit. Few techniques were used to avoid overfitting including 

early stopping. It precipitates the training of the deep neural network leading to a reduction 
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in error in the test set. Checking for overfitting was one way to improve the performance 

of the DNN. Few other parameters were modified for the DNN including the number of 

layers in the neural network, the activation function used, the training function and/or 

performance function. The scaled conjugate gradient backpropagation has been proven to 

provide the best accuracy for the implementation. It provides faster training with excellent 

test efficiency. Few parameters have also been modified for the KNN part of the cascading 

classifier. The use of the Euclidean distance has been proven to provide the best accuracy 

for the implementation. Various values of k have also been used. A value of k=11 has been 

proven to provide the best accuracy for the implementation. SVMs were initially designed 

for binary classification. The multi-class classification problem was decomposed into a 

series of binary problems. The implementation of the SVMs as part of the cascading 

classifier in MATLAB used the support vector machine template. Various parameters of 

SVMs have been used and tuned in order to improve the performance. Parameter C 

represents the error penalty for misclassification for SVMs. The parameter C is defined as 

box constraint in MATLAB and various values were used. Increasing Box constraint 

decreases the number of support vectors, but it also increases training time. During SVMs 

training, SVMs kernels and its parameters have very important role for classification 

accuracy. Various kernels were used. The most efficient kernel was the polynomial kernel 

with polynomial order three. It is aligned with the findings of the literature on this topic. 

The polynomial degree parameter controls the flexibility of the decision boundary. Higher 

degree kernels yield a more flexible decision boundary. For SVM, in order to avoid 

overfitting, a soft Margin needs to be chosen instead of a hard one. Gamma (γ) is an 

important parameter and it controls overfitting in SVM. Gamma is not technically an SVM 

parameter. It is a parameter of the Kernel. Gamma (γ) is referred as the kernel scale 

parameter in MATLAB. Various kernel scale parameters have been used and best results 

are obtained with kernel scale parameter equals 1. 

Overall, by constructing and using various machine-learning frameworks as part of the 

cascading classifier, a system has been developed and could predict the TMB topologies 

with significant robustness in comparison to other classifiers. In comparison, PRED-

TMBB2 is a method recently developed based on Hidden Markov Models yielding 76% 

accuracy for correct topology predictions (Tsirigos, 2016). BOCTOPUS2 (Hayat et al., 

2016) is another recent study that has the topology predicted correctly only in 69% of the 

proteins. The cascading classifier has also a better prediction accuracy compared to 

BOCTOPUS (Hayat et al., 2012). The method presented in this paper is innovative and 

represents an improvement in the prediction of beta-barrel transmembrane topology 

prediction. Many important biological processes are mediated by transmembrane proteins. 

The methodology could be applied to any TMB proteins and could potentially help to 

identify new targets for antibiotics, vaccines and antimicrobials. 

Acknowledgments 

This research work has been carried out at Intelligent Systems Research Centre, School of 

Computing and Digital Media, London Metropolitan University. The project ‘Cascading 



 Cascading classifier application for the topology prediction of transmembrane beta-barrel proteins 

 

15 

classifier application for topology prediction of transmembrane beta-barrel proteins’ is 

available on Gitlab (https://gitlab.com/CMG1101/cascading-classifier-application-for-

topology-prediction-of-transmembrane-beta-barrel-proteins) 

.  

References 

 

1. Dietterich TG, Ensemble Methods in Machine Learning, Multiple Classifier Systems, pp. 1–15, 

2000. 

2. Dos Santos EM, Gomes HMA, Comparative Study of Polynomial Kernel SVM Applied to 

Appearance-Based Object Recognition, Proceedings of the First International Workshop on 

Pattern Recognition with Support Vector Machines, pp. 408-418, 2002. 

3. Fan RE, Chen PH, Lin CJ, Working set selection using second order information for training 

support vector machines, Journal of Machine Learning Research 6:1889–1918, 2005. 

4. Fletcher R, Reeves CM, Function minimization by conjugate gradients, The Computer Journal 

7:149–154, 1964. 

5. Hayat S, Elofsson A, BOCTOPUS: improved topology prediction of transmembrane β barrel 

proteins, Bioinformatics 28:516–522, 2012. 

6. Hayat S, Peters C, Shu N, Tsirigos KD, Elofsson A, Inclusion of dyad-repeat pattern improves 

topology prediction of transmembrane β-barrel proteins, Bioinformatics 32:1571–1573, 2016. 

7. Haykin S, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ, 

USA: Prentice Hall PTR, 1998. 

8. Heffernan et al., Improving prediction of secondary structure, local backbone angles, and 

solvent accessible surface area of proteins by iterative deep learning, Scientific reports 5:11476, 

2015. 

9. Kabsch W, Sander C, How good are predictions of protein secondary structure?, FEBS Letters 

155:179–182, 1983. 

10. Kazemian HB, White K, Palmer-Brown D, Applications of evolutionary SVM to prediction of 

membrane alpha-helices, Expert Systems with Applications 40:3412–342, 2013. 

11. Kazemian H, Yusuf SA, An ANFIS approach to transmembrane protein prediction. IEEE World 

Congress on Computational Intelligence (IEEE WCCI 2014), IEEE International Conference 

on Fuzzy Systems, Beijing China, pp.1360-1365, 2014. 

12. Kazemian HB, Yusuf SA, White K, Signal peptide discrimination and cleavage site 

identification using SVM and NN, Computers in Biology and Medicine  45:98–110, 2014. 

13. Kazemian H, Yusuf SA, White K, and Grimaldi CM, NN approach and its comparison with 

NN-SVM to beta-barrel prediction, Expert Systems with Applications  61:203–214, 2016. 

14. Kecman V, Huang TM, Vogt M, Iterative Single Data Algorithm for Training Kernel Machines 

from Huge Data Sets: Theory and Performance, Support Vector Machines: Theory and 

Applications, pp. 255–274. Berlin: Springer-Verlag, 2005. 

15. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI, OPM: orientations of proteins in 

membranes database, Bioinformatics 22:623–625, 2006. 

16. Mitchell TM, Machine Learning, McGraw-Hill, 1997. 

17. Peng Y, A novel ensemble machine learning for robust microarray data classification, 

Computers in Biology and Medicine 36:553–573, 2006. 

18. Reich  JC, An Iterative Feature Perturbation Method for Gene Selection from Microarray Data, 

PhD Thesis, University of South Florida, Tampa, FL, USA, 2010. 

19. Sharma S, Sharma V, Performance of Various Machine Learning Classifiers on Small Datasets 

with Varying Dimensionalities, Circulation in Computer Science 1:30-35, 2016. 

https://gitlab.com/CMG1101/cascading-classifier-application-for-topology-prediction-of-transmembrane-beta-barrel-proteins
https://gitlab.com/CMG1101/cascading-classifier-application-for-topology-prediction-of-transmembrane-beta-barrel-proteins


Hassan B. Kazemian, Cedric Maxime Grimaldi 

 

16 

20. Smola AJ, Schölkopf B, Müller KR, The connection between regularization operators and 

support vector kernels, Neural Networks 11:637–649, 1998. 

21. Tsirigos KD, Elofsson A, Bagos PG, PRED-TMBB2: improved topology prediction and 

detection of beta-barrel outer membrane proteins, Bioinformatics, 32:i665–i671, 2016. 

22. Tusnády GE,  Kalmár L, Simon I, TOPDB: topology data bank of transmembrane proteins. 

Nucleic Acids Research 36:234–239, 2008. 



Responses to reviewers’ comments 
 

Reviewer #1:  
 
Authors seem to have answered most of the concerns from original submission. Few 
unanswered questions as below. 
 
1) This article uses cascading classifier with KNN, DNN and SVM components for TMB 
topology prediction. The unanswered question is regarding the other well- known / popular 
machine learning approaches. What if KNN and/or DNN and/or SVM components of 
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