
Parallel querying of distributed ontologies with shared vocabulary

Index-based Concurrent SPARQL query processing

Sharjeel Aslam, Vassil Vassilev and Karim Ouazzane

1 Introduction
The World Wide Web is used and acclaimed as a data storage and sharing centre.

The conventional approaches for searching on World Wide Web are, Keywords similarities and contents

categorization, however due to insufficient performance by theses searches, resulted with huge unconnected or

unwanted data as well.

To conquered the issues of future intelligent World Wide Web, idea of Semantic Web was launched in 2001 with

the new framework for World Wide Web for data retrieval. Improvement of XML, RDF, OWL and development

of ontology development tool Jena helped to initiate the reality of Semantic Web applications. Described semantic

web technologies raised more questions regarding retrieval data on Semantic Web and need for new search engine

on distribute ontologies

Author is going to propose a system to fetch and process distributed SPARQL query. Results of SPARQL queries

come in RDF graph category. If we investigate start of RDF query language, then we reach to this conclusion that

all languages for the most part have the same features as SQL. These languages are SEROL, RDQL and RQL and

so on.

Proposed distributed query mechanism will access distributed RDF store to fetch required information. The

purpose for this system is not just producing single query results but fetching meaningful and linked information

from diverse sources. To accomplish this our proposed framework will convert main SPARQL query into sub

queries and sending sub queries to required repository to get required data

2 Literature Review
One of the unique quality of current technology is that ontologies are treated as monolithic by inference engines

and software's of ontology administration. Whenever requirement comes to build layers between ontologies under

distributed heterogeneous environment then common practice is to develop global unified ontology and applying

reasoning on it. When the requirement comes to reapply existing facts of ontology at some stage in creation of

new ontology, precisely similar method is used. Replication in newly developed ontology is the compulsory part

for reused ontology and later on additional reasoning is applied on composed ontology. [1]

Now we take a look on issues on current semantic search engines in a summarised way as follows:

 Few intelligent semantic search engine do not perform very well when need to improve precision

and low recall. Ding's introduced semantic flash search engine, it is exposed that search engine's resources are

based on top-50 retrieved results from the Google, cannot categorised as semantic search engine, option can be

there for low precision and high [2]

 Inside an intelligent semantic search engine, recognition of user's purpose of search plays vital part. For

example, call for term's analysis system was proposed by chiung-Hon leon lee to identify the purpose of search

by the user. Motivational factor behind the reason was to give more flexibility to user [3].

 Few search engines presented the option for the term search. If user entered the word which can

have multip meanings then results can be the alternatives list of words by search engine [4].

 If user have a distinctive domain knowledge and query does not contain all required components then

problem can be arise among non-phrased wrong queries [5]

Single word entered by the user can have many similar or associated meanings

 Numerous semantic descriptions can be utilised to symbolised the similar proposed meaning. The

above described problems may obstruct the Semantic Web applications when they have to conclude the definite

meaning of assured textual resources in the context of ontologies [6].

In general, Inference techniques are incompetent on linked ontologies due to its massive size.

The building of reasoning procedures while permitting to maintain the ontologies isolated.

Details on the WWW may not be trustworthy because of the evolving environment and the absence of upgraded

insights. Interaction among predicates can be the reason of intermediate output which cannot be as real as required.

[7]

After executing the query, environment cannot be remain static. On the WWW information may not change

quickly but rather in different situations like information streams, queries may take long time for execution which

can effect information attributes and running cost as well. It can effect server performance as well due to workload.

Described scenario make it compulsory to adapt strategies for changing environment.

Query optimisers ordinarily change to a heuristic methodology when queries turn out to be excessively

complicated using dynamic tools. [8]

Request required various information from different sources then execution model after using optimizing

techniques does not full fill requirements. The principle issue in this circumstance is that cardinality gauges

change too rapidly for the streamlining [9]. Additionally, Schedule the early results and planning for executions

turns out to be extremely perplexing

3 Overview of the Distributed RDF Algebra
As I have proposed a system to fetch and process distributed SPARQL query. As we realize that SPARQL is

suggested by W3C for getting to RDF components and it has all the elements which are essential for querying

RDF data sets. [10] Results of SPARQL queries come in RDF graph category. If we investigate start of RDF

query language, then we reach to this conclusion that all languages for the most part have the same features as

SQL. These languages are SEROL, RDQL and RQL and so on.

My proposed distributed query mechanism has following principle stages

1. Accessing distributed RDF stores

2. Creating new RDF data after fetching and linking information from diverse sources.

The purpose for this system is not just producing single query results but fetching meaningful and linked

information from diverse sources. To accomplish this our proposed framework will examine single main query

into small chunks and afterward get information accordingly.

Our strategy utilizes the fundamental pattern of RDF information. RDF utilizes <Subject, Object, Predicate> tuple

model as it portrays that Subject S has property P which holds O value. Subject and Predicate are depicted as

URIs and Object goes under URIs classification or can be a literal. This straightforward and simple to utilize

information expression strategy accomplish query handling optimization of RDF store.

The accompanying area is going to portray design of our proposed technique. This segment will highlight and

depict the significance of query analysis and retrieval of RDF in distributed atmosphere which is the objective of

our proposed framework

The principle segment of our SPARQL query structure is a centralised storage strategy where RDF triples are

stored after fetching required information and centralised processing system helps to link and communicate with

distributed sources.

Figure 1 Framework

Fundamental part of centralized process is to investigating or analysing query in a small chunks and fetching

information from remote areas. Toward the end query will be assessed against central repository.

As we will create client interface for taking input as string which will processed on centralized method via HTTP.

We are going to utilize information document which will hold all data which are important to make association

with sesame or jena and RDF stores. All procedure will have performed by centralized process.

3.1 Indexing
The general methodology of our procedure is NOT simply concentrating on results from each remote repository

however formulating and analysing final output after fetching all RFD data. Using this methodology joins both

dispersed data and new RDF store.

Presently i am going to enhance clarification about centralized procedure that how it functions. To access remote

RDF initially need to build up secure association then pre-handling query stage is done which is a technique for

linguistically analysis of query and afterward isolate into little chunks. This analysis give us access to RDF

statements which gives triple pattern and it stores in a local and centralized RDF repository. Reasoning can be

apply to this fetched RDF data. Central repository holds RDF data temporarily and it will be over right when new

requested query analysis begins. Query analysis only begins when all RDF triples are fetched from all distributed

sources and final output are delivered after analysing central repository.

3.2 Operators

This document proposed the formal specification/model for operations to access distributed ontologies and an

algorithm to divide main SPARQL query into sub queries to fetch data from multiple repositories. I am

proposing different operations, select, project, union, generalization and specialization

𝝅 sign is used for project which takes S O and P as input and source is schema

𝝅
[𝑺?
𝑶?

]
(𝒔𝒐𝒖𝒓𝒄𝒆)

As we know that triplet has three elements, Subject, Predicate and Object. Project operator, 𝝅 ,operator will be

used to extract information about subject and object from schema and source replace with the schema name.

Example: Exhibit a list of resources from Museum about writer and handwritten documents

𝝅
[?𝒘𝒓𝒊𝒕𝒆𝒓  ?𝑺
 ?𝑯𝑫−𝑫𝒐𝒄  ?𝑶

]
(𝑺𝒄𝒉𝒆𝒎𝒂)

W = Writer
wr = writes
D1 = Document 1
D2 = Document 2
D3 = Document 3

1.1 Select:

1.1.1 Syntax:
𝝈[𝒍𝒐𝒈𝒊𝒄](𝒔𝒐𝒖𝒓𝒄𝒆)

1.1.2 Explanation:

𝝈 sign is used for select and bring all required sources or nodes which meets the condition. Arithmetic

,Comparison or Boolean operators can be utilized along with constants or strings inside the "𝒍𝒐𝒈𝒊𝒄" . and source

replace with the schema name.

Example: Exhibit all paintings of OilPainting from Schema

𝜎𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔=𝑜𝑖𝑙𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔 (𝑆𝑐ℎ𝑒𝑚𝑎)

P1 = Painting 1
P2 = Painting 2
P3 = Painting 3
OP = Oil Painting
rp = Represented-By

1.2 Join

1.2.1 Syntax:
𝜋[?𝑋 ,?𝑌]𝝈[𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏](𝒔𝒐𝒖𝒓𝒄𝒆)

 ⋈

𝜋[?𝑋 ,?𝑍]𝝈[𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏](𝒔𝒐𝒖𝒓𝒄𝒆)

1.2.2 Syntax Explanation:
⋈ sign is used for a join. It combines triplets from a single or multiple sources according to requested query. We

are using both operators, Project and Select, in our syntax. Project operator, 𝜋, takes two parameters, ? X and ?Y

. As we know that triplet has three elements, Subject, Predicate and Object. So ?X represent subject and ? Y

represent object. Select operator, 𝝈, will be used for a condition and Arithmetic ,Comparison or Boolean operators

can be utilized along with constants or strings inside the "𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏" . and source replace with the schema name.

Following example will explain that how join operator works

Join Case 1: Exhibit all paintings of all painters from schemas where used crafts is watercolour

𝜋[?𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ,?𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔,?𝑐𝑟𝑎𝑓𝑡]𝝈[𝒄𝒓𝒂𝒇𝒕=′𝒘𝒂𝒕𝒆𝒓𝒄𝒐𝒍𝒐𝒖𝒓′](𝑺𝒄𝒉𝒆𝒎𝒂 𝑨)

 ⋈
𝜋[?𝑝𝑎𝑖𝑛𝑡𝑒𝑟,?𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔 ,?𝑐𝑟𝑎𝑓𝑡]𝝈[𝑩.𝒄𝒓𝒂𝒇𝒕=𝑨.𝒄𝒓𝒂𝒇𝒕](𝑺𝒄𝒉𝒆𝒎𝒂 𝑩)

C = Craft
OP = Oil Painting
WC = Water Colour
Wood = Wood
HRD =Hand written Documents
rpb = Represented By

1.3 Generalization:

1.3.1 Explanation:
Generalization is the process of extracting common characteristics from one or more classes and combining

them into a generalized superclass It is used to get hierarchies of classes and subclasses in up level, up to

defined level. In our case we are going up to 1 level.

𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒍𝒂𝒔𝒔),𝒏−𝒍𝒆𝒗𝒆𝒍)(𝑺𝒐𝒖𝒓𝒄𝒆)

1.3.2 Explanation:
As we know that triplet has three elements, Subject, Predicate and Object. Subject and object always represents

classes or subclasses. Generalization operator , 𝑮𝒆𝒏 ,operator will be used to extract parent class up to 1 level

of mentioned class (?class). Source will be replaced with the schema

Example 1: Exhibit all the hierarchies of painting at level 1

𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒂𝒊𝒏𝒕𝒊𝒏𝒈)𝟏,)(𝑺𝒄𝒉𝒆𝒎𝒂)

M = Museum
A =Artefact
F = Founder
P = Painter
W = Writer
Paint = Painting
Doc = Documents
OP = Oil Painting
WC = Water Colour
Wood = Wood
C = Craft

Specialization:

Specialization is the reverse process of Generalization, means, creating new sub classes from an existing class.

In our case we are going bottom up to 1 level

Abstract from Museum schema

1.3.3 Syntax:
𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒍𝒂𝒔𝒔),𝒏−𝒍𝒆𝒗𝒆𝒍)(𝑺𝒄𝒉𝒆𝒎𝒂)

As we know that triplet has three elements, Subject, Predicate and Object. Subject and object always represents

classes or subclasses. Specialization operator , 𝑺𝒑𝒆𝒄,operator will be used to extract child classes up to 1 level

of mentioned class (?class). Source will be replaced with the schema

Example 1: Exhibit all the hierarchies of craft down to 1 level (bottom)

𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒓𝒂𝒇𝒕)𝟏,)(𝑺𝒄𝒉𝒆𝒎𝒂)

IV Distributed SPARQL queries

The general methodology of our procedure is NOT simply concentrating on results from each remote repository

however formulating and analysing final output after fetching all RFD data. Using this methodology joins both

dispersed data and new RDF store.

Presently I am going to enhance clarification about centralized procedure that how it functions. To access remote

RDF initially need to build up secure association then pre-handling query stage is done which is a technique for

linguistically analysis of query and afterward isolate into little chunks. This analysis give us access to RDF

statements which gives triple pattern and it stores in a local and centralized RDF repository. Reasoning can be

apply to this fetched RDF data. Central repository holds RDF data temporarily and it will be over right when new

requested query analysis begins. Query analysis only begins when all RDF triples are fetched from all distributed

sources and final output are delivered after analysing central repository.

Algorithm 1 . Translating SPARQL query into Algebraic expression
Step1. Initialise String for SPARQL query
Step2. Initialise list of models
Step3. Create Function transformToAlgebricForm which receive queryString and model

 Step4. Create Query of given sparql query string using create method of
QueryFactory.
 Step5: Create the pattern element of created Query
 Step6. Create Op object to compile the query
 Step7. Optimize the Algebra expression
 Step8. initialize variable varMap as HashMap and allocate memory to Vars and put
 those into varMap
 Step9. Create object of NodeTransform with varMap
 Step10. Call transform method to get query into relational algebraic form

 Algorithm 2 . Converting main SPARQL query into sub queries
Step1. Create function generateSubQry which receive Linked Hash Map of triplePath and set
of Strings containing required model names
Step2. Declare variable parentModels as Set of Model and assign keySet of MaodelMap
Step3. Declare variable modelTripleMap with key Model and value as LinkedHashSet of
TriplePath
Step4. Declare variable triplesForModel as LinkedHashSet<TriplePath>
Step5 Begin For loop
 get the key of entry into tripleName
 get the value of entry into set of String
 if modelSet contains modelname
 Add triplename to triplesForModel
 end if
Step6. Save the model and triplesForModel to map modelTripleMap
Step7. End of for

V Execution of SPARQL queries in distributed ontologies
Algorithm 3 . Sending SPARQL subquery to fetch required results
Step1. Create function runqueryonModel which takes modelTripleMap and modelcollection as
input
Step2 Declare parentmodel
Step3 Declare variable Map<String, String> subQryDetails
Step4 Begin loop // for each model existingModel from parentModel
Step5 Get model name of existingModel and prefix of ExistingModel
Step6 Execute the query using queryExecution engine to receive the resultset of
 executed query
Step7 if ResultSet has next element
 add modelname and query to subQryDetails
 split the modelname with “.” and store it into array fname
 create object of file with “subquery” appended to fname
Step8 End if
Step9 End Loop
Step10 End function

Algorithm 4 . Combining results

Step 1 Create function runQueryonModels(List<Model> modelCollection, String queryFinal)
Step 2 get substring of query with index of select and last index of }
Step 3 Declare Function ReadableIndex.createReadableIndex(FileFilter)
Step 4 Declare variable Map<String, String>subQryDetails

Map<String, String> subQryDetails = new HashMap<>();
Step 5 Begin For loop –for each model existingModel from parentModel
Step 5.1. : get model name of existingModel
Step 5.2. : get the prefix of ExistingModel
Step 5.3. : Execute the query using queryExecution engine
Step 5.4. : get the resultset of executed query

Step 5.5. : if ResultSet has next element
step 5.5.1. : add modelname and query to subQryDetails and return it
step 5.5.2. : split the modelname with “.” and store it into array fname
step 5.5.3. : create object of file with “subquery” appended to fname
step 5.5.4. : create fileoutputstream of above mentioned file
step 5.5.5. : write above result to mentioned file using ResultSetFormatter

Step 5.6: end if
Step 6 . Step close fileoutputstream and queryEngine.
Step 7. End loop.
Step 8. get Map<String, String>subQryDetails i.e list of subqueries
Step 9. combine subqueries with string append operation

Step 10.get the list of models
Step 11 iterate over each model and execute appended query using queryEngine
Step 12 create object of fileWriter and write query results to csv file.

VI Conclusion and future development

The conventional approaches for searching on World Wide Web are, Keywords similarities and contents

categorization, however due to insufficient performance by theses searches, resulted with huge unconnected or

unwanted data as well. We have proposed index mechanisms which store triplet’s information from all

participated RDF files into one single repositories. We successfully proposed and implemented algorithms using

Java To transform main SPARQL query into algebraic expression, converting main SPARQL queries into sub

queries and then sending each sub query into required repository to get data.

References

[1] http://subs.emis.de/LNI/Proceedings/Proceedings29/GI-Proceedings.29-9.pdf.

[2] D. Ding, J. Yang, Q. Li, L. Wang, and W. Liu, "Towards a flash search engine based on expressive semantics," in Proceedings of WWW
Alt.'04 New York, 2004, pp. 472-473.

[3] Chiung-Hon Leon Lee, Alan Liu, "Toward Intention Aware Semantic Web Service Systems," scc, vol. 1, pp.69-76, 2005 IEEE

International Conference on Services Computing (SCC'05) Vol-1, 2005.
[4] D. Tumer, M. A. Shah, and Y. Bitirim, ‘An Empirical Evaluation on Semantic Search Performance of Keyword-Based and Semantic

Search Engines: Google, Yahoo, Msn and Hakia’, in Fourth International Conference on Internet Monitoring and Protection, 2009.

ICIMP ’09, 2009, pp. 51 –55.

[5] Z. Gefu and H. Zhao-hui, ‘Design of a Semantic Search Engine System for Apparel’, in 2010 International Conference on E-Business and

E-Government (ICEE), 2010, pp. 1414 –1417.

[6] Z. ZhiHao, H. JiPing, D. Ting, and W. Yu, ‘Semantic Web Service Similarity Ranking Proposal Based on Semantic Space Vector Model’,
in 2012 Second International Conference on Intelligent System Design and Engineering Application (ISDEA), 2012, pp. 917 –920.

[7] H. S. Pinto, A. G´omez-P´erez, and J. P. Martins. Some issues on ontology integration. In Proceedings of the Workshop on Ontologies and

Problem Solving Methods (IJCAI-99),1999.
[8] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge Engineering Review, 18(1):1–31, 2006.

[9] B. Omelayenko. RDFT: A Mapping Meta-Ontology for Business Integration. In Proceedings of the Workshop on Knowledge

Transformation for the Semantic for the Semantic Web at the 15th European Conference on Artificial Intelligence (KTSW2002), pages
77– 84, Lyon, France, 23 July 2002.

[10] D. Tumer, M. A. Shah, and Y. Bitirim, ‘An Empirical Evaluation on Semantic Search Performance of Keyword-Based and Semantic

Search Engines: Google, Yahoo, Msn and Hakia’, in Fourth International Conference on Internet Monitoring and Protection, 2009.
ICIMP ’09, 2009, pp. 51 –55.

[11] Z. Gefu and H. Zhao-hui, ‘Design of a Semantic Search Engine System for Apparel’, in 2010 International Conference on E-Business

and E-Government (ICEE), 2010, pp. 1414 –1417.
[12] Z. ZhiHao, H. JiPing, D. Ting, and W. Yu, ‘Semantic Web Service Similarity Ranking Proposal Based on Semantic Space Vector Model’,

in 2012 Second International Conference on Intelligent System Design and Engineering Application (ISDEA), 2012, pp. 917 –920.

[13] H. S. Pinto, A. G´omez-P´erez, and J. P. Martins. Some issues on ontology integration. In Proceedings of the Workshop on Ontologies
and Problem Solving Methods (IJCAI-99),1999.

[14] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge Engineering Review, 18(1):1–31, 2006.

[15] B. Omelayenko. RDFT: A Mapping Meta-Ontology for Business Integration. In Proceedings of the Workshop on Knowledge
Transformation for the Semantic for the Semantic Web at the 15th European Conference on Artificial Intelligence (KTSW2002), pages 77–

84, Lyon, France, 23 July 2002.

Appendix A: RDF Schema of the museum ontology

