
Verilog-A Compact Semiconductor Device

Modelling and Circuit Macromodelling with the

QucsStudio-ADMS “Turn-Key” Modelling System

M. E. Brinson

Centre for Communications Technology

London Metropolitan University
London N78DB, UK

mbrin72043@yahoo.co.uk

M. Margraf

Qucs and QucsStudio Project Founder

Berlin

Germany

michael.margraf@alumni.tu-berlin.de

Abstract—The Verilog-A “Analogue Device Model

Synthesizer” (ADMS) has in recent years become an established

modelling tool for GNU General Public License circuit simulator

development. Qucs and ngspice being two examples of open

source circuit simulators that use ADMS. This paper presents a

“turn-key” compact device modelling and circuit

macromodelling system based on ADMS and implemented in the

QucsStudio circuit design, simulation and manufacturing

environment. A core feature of the new system is a modelling

procedure which does not require users to manually patch the

circuit simulator C++ code. At the start of a QucsStudio

simulation the software automatically detects any changes in

Verilog-A model code, re-compiling and dynamically linking the

modified code to the body of the QucsStudio code. The inherent

flexibility of the “turn-key” system encourages rapid

experimentation with analogue and RF compact device models.

In this paper QucsStudio “turn-key” modelling is illustrated by

the design of a single stage RF amplifier circuit.

Keywords--QucsStudio, ADMS, Verilog-A, compact device

modelling, turn-key component modelling.

I. INTRODUCTION

Until the adoption of Verilog-A as the preferred analogue
hardware description language for compact semiconductor
device modelling by the Compact Model Council [1], C had
been the standard modelling language. However, hand coding
of compact device models in C was often found to be very
tedious, time consuming and subject to error, particularly when
determining the partial derivatives of the device currents and
charges needed in DC and transient simulation of non-linear
circuits. In contrast to C, the Verilog-AMS hardware
description language provides built-in tools which
automatically generate partial derivatives, making compact
device modelling a much more straight forward process.
Current trends suggest that there is growing acceptance by the
compact modelling community of the Verilog-AMS subset
Verilog-A as the preferred compact modelling language. The
standardization of Verilog-AMS [2] and specifically the
addition of a number of compact modelling enhancements to
its analog Verilog-A subset [3] have also greatly influenced

Verilog-A usage. The release of the Verilog-A “Analogue
Device Model Synthesizer” (ADMS) software [4] under the
GNU General Public License has also accelerated the rate at
which Verilog-A has been accepted and used by the modelling
community as a viable replacement for C. Moreover, the
growing number of commercial [5] [6] and open source circuit
simulators [7] [8] which use Verilog-A for compact
semiconductor device and circuit macromodelling is a
testimony to the importance of Verilog-A in the development
of circuit simulator technology. This paper outlines the
structure and operation of a new “turn-key” Verilog-A compact
model development system which automatically re-compiles
and dynamically links modified Verilog-A model code to the
C++ body of a circuit simulator prior to the start of a
simulation sequence. The new compact modelling system has
been implemented in a freely available circuit design,
simulation and manufacturing environment called QucsStudio
[9]. QucsStudio is released under the GNU General Public
License for use with the Microsoft Windows® operating
system and includes a second generation version of the popular
Qucs circuit simulator plus other important circuit design,
simulation and manufacturing features.

II. VERILOG-A COMPACT DEVICE MODELLING WITH

QUCS-ADMS

Verilog-A based compact device modelling [10] was first
implemented in Qucs version 0.0.11. In the original Qucs
modelling technique the ADMS Verilog-A to C++ synthesizer
was used to compile Verilog-A model code to C++ code
manually. After conversion the C++ code also had to be
manually merged with the main body of the Qucs circuit
simulator [11]. Similarly, the Qucs graphical user interface
code needed to be patched to add a new model symbol to the
simulators library of built-in component symbols. Finally, due
to the fact that the Qucs simulator uses C++ static model
libraries the entire simulator C++ code had to be re-compiled
and re-linked to generate a new extended simulator each time a
compact device model was added to the software. In principle,
it was possible to add compact device models to Qucs using the
previously described procedure. In practice, the modeling

process required users to have an advanced knowledge of C++
programming coupled with a good understanding of the Qucs
model application interface, making the process of adding new
compact models one which was more suited to Qucs
developers rather than the wider Qucs user community. The
original Qucs compact device modelling process was further
complicated in that it was designed primarily to function with
software development tools supplied with the Linux operating
system rather than more universally available Microsoft
Windows® operating system.

III. QUCSSTUDIO-ADMS “TURN-KEY” VERILOG-A

COMPACT DEVICE MODELLING

A primary aim of the QucsStudio Verilog-A compact
device modelling system is to provide the circuit simulation
software with a simple modelling tool that does not require the
main body of the circuit simulator C++ code to be patched by
hand when adding new device models. In contrast to the
original Qucs modelling scheme the QucStudio version is
based on dynamic linked model libraries rather than static
model libraries. This change has had a major effect. The
implemented modelling system has been called a “turn-key”
system to emphasize that it takes over responsibility for
determining when a compact device model needs to be re-
compiled and re-linked. Changes in Verilog-A model code act
like a key turning on the compilation and linking of changed
code. When changes take place, edited models are
automatically updated at the start of the next user requested
circuit simulation. Fig. 1 presents a simple flow chart, outlining
each of the QucsStudio modelling stages. In this diagram the
modelling process is shown starting from Verilog-A code entry
at the top, using a built-in text editor, followed by attachment
of a model Verilog-A code file (XXXX.va) to a QucsStudio
“C++ compiled model “ icon, through synthesis of the C++
model code, using the ADMS software, to C++ compilation
and finally construction of a model subcircuit at the bottom. At
the start of the modelling process equations representing the
different physical aspects of device operation are entered into
the QucsStudio software as Verilog-A “module” code. A
convenient colour highlighted text editor is provided with
QucsStudio for this task. Phase two involves the synthesis of
the C++ code from the entered Verilog-A code. With the
Verilog-A model code visible on the QucsStudio text editor
display window, pressing key F2 causes the generation of the
compact model C++ code to take place, followed by C++
compilation using the MinGW tools to form a dynamic linked
library (XXXX.dll) for the model under construction. The last
two stages only take place if the original Verilog-A module
code is error free. On successful generation of the “C++
compiled model” it is linked to the main body of QucsStudio
software and becomes a standalone simulation component. It
can also be combined with other QucsStudio components by
attaching it to a QucsStudio schematic diagram, and indeed to
other “C++ compiled models”, to form a subcircuit or
macromodel. During the simulation of circuits which include
C++ compiled models changes to their Verlog-A code will
automatically trigger the “turn-key” modelling process
ensuring that the Verilog-A compact device models are kept up
to date at all times.

IV. A SIMPLIFIED VERILOG-A NPN RF BJT MODEL

To demonstrate the QucsStudio Verilog-A “turn-key”
modelling procedure the construction of a simple RF npn BJT
compact device model is presented next. The model
information given in Fig. 2 is based on a large signal Ebors-
Moll bipolar transistor equivalent circuit, a simplified set of
non-linear device equations, including second order high-level
current injection effects and internal capacitance, plus a
subcircuit schematic showing external inductance and
capacitance. The Verilog-A code for the RF npn BJT is listed
in Fig. 3. On attaching this code to a QucsStudio C++ compiled
model icon the software tries to extract the external node
names and parameters. If successful QucsStudio draws a group
of named terminals attached to the C++ compiled model icon.
These correspond in name and list order to the “inout”
terminals given in the Verilog-A module statement. Shown in
Fig.4 is a single stage class A RF npn BJT amplifier circuit,
with collector feedback, configured as a small signal AC
simulation over the frequency band 1MHz to 8GHz.

Figure 1. A flow chart outlining the QucsStudio "Turn-key" Verilog-

A compact model development system

Figure 2. A QucsStudio “turn-key” RF npn BJT model outline showing:

Ebors-Moll equations and equivalent circuit plus second order high-level

current injection effects and internal capacitance equations; C++

compiled model icon with parameters (X1); subcircuit body and symbol

plus parameters (Q1).

IV. QUCSSTUDIO C++ COMPILED MODEL PROGRAMMING

INTERFACE

Central to the operation of the QucsStudio Verilog-A “turn-
key” modelling system is a C++ compiled model component.
An outline of the structure and content of a compiled model
coponent is listed in Fig.5. In general QucsStudio built-in
component models are defined by a C++ code template which
lists model properties. The list contains amongst other things
the number of external and internal nodes as well as pointers to
the parameter list and to the schematic symbol. It also contains
function calls, like (tEvaluate)Matrix in Fig.5, that determine
the physical operation of a component. Many of these are
optional. The production version of the QucsStudio software is

provided with a number of detailed examples of component
model template entries. These are fully documented and
provide a wealth of important model building data. The values
for the variables listed in the component template are
generated by ADMS during synthesis of the model C++ code.

Figure 3. Verilog-A code for a simplified RF npn BJT model: the model

parameters have the same meaning as those defined in the SPICE 3f5

BJT model [12].

Figure 4. A class A npn BJT RF amplifier with collector feedback: small

signal AC test circuit and example gain and phase response curves;

legend: solid line = dB(Vout.v/Vin.v) the amplifier gain in dB and dotted

line = wphase(Vout.v/Vin.v) the unwrapped phase of the amplifier gain

in degrees.

In the case of the RF npn BJT the translated C++ model
code is stored in file BJTFP405npn.va.cpp and compiled by the
MinGW tools to produce a BJTFP405npn dynamically linkable
library. In order to synthesize the C++ code needed for
simulation of an analogue model the QucsStudio-ADMS-
MinGW tools undertake the required operations in terms of a
model application programming interface (API), specifically
designed for QucsStudio C++ component model creation. The
currently available API model functions are defined in Fig.6.

V. ADDING VERILOG-A NATURES TO QUCSSTUDIO

A high percentage of compact device models include a
mixture of linear and non-linear R, L and C components. The
2.3.0 version of ADMS appears to treat all R and C
components as non-linear elements. Also in this version of
ADMS it is not permitted to express the connection of
inductance L between circuit nodes p and n as V(p,n) <+
L*ddt(I(p,n)). However, this limitation can be overcome
by combining a capacitor with a gyrator [13] to form a linear
or non-linear inductance. In those compact models with a
significant number of R, C and L elements simulation run

Figure 5. QucsStudio component definition template.

Figure 6. QucsStudio C++ model application programming interface

functions: function parameters have their usual meaning as implied by

their names.

times can be reduced, especially transient simulation, by
ensuring that the QucsStudio “turn-key”modeling system uses
linear R, C and L components whenever possible rather than
non-linear devices. In the QucsStudio software the selection of
linear or non-linear fundamental R, C or L components has
been implemented by adding three new Verilog-A “natures” to
the standard disciplines and natures file “disciplines.vams”.
These are listed in Table I. A parameter, called
insideQucsStudio, is also defined by QucsStudio to allow
automatic linear or non-linear component selection from within

TABLE I. QUCSSTUDIO NATURES PLUS MODIFIED ELECTRICAL

DISCIPLINE FOR LINEAR R AND C COMPONENTS

nature Resistance nature Conductance nature Capacitance

 units = ”ohms”; units = “s”; units = “F”;

 access = R; access access = C;

endnature endnature endnature

 discipline electrical

 potential Voltage;

 flow Current;

 flow Conductance;

 flow Resistance;

 flow Capacitance;

 end discipline

Verilog-A model code, for example in the resistive case:

 `ifdef insideQucsStudio

 R(b1) <+ Rvalue;

 `else

 I(b1) <+ V(b1)/Rvalue;

 `endif;

VI. TRANSIENT SIMULATION OF A CLASS A RF NPN BJT

AMPLIFIER

The circuit diagram drawn in Fig. 7 shows a single stage
class A npn BJT RF amplifier with signal outputs taken
directly from the BJT base and collector terminals respectively.
Fig. 7 also illustrates a typical set of base and collector
transient simulation waveforms for a 50mV peak, 10MHz
sinusoidal signal applied to the amplifier input. Although the
QucsStudio “turn-key” modelling system is primarily designed
to be a fast simple to use development tool for constructing
equation-defined compact device models it also works along-
side an advanced post-simulation data processing and
visualization package incorporating the GNU GPL Octave
numerical analysis software [14]. The current version of
QucsStudio allows simulation output data to be numerically
processed by the Octave package, following completion of a
circuit simulation task. For example, the voltage amplitude
spectra shown in Fig.8 were computed using the Octave “m”
script listed in Fig. 9. This illustrates the use of Octave
functions and statements for converting QucsStudio simulation
data into the Octave data format, the use of the Octave
function fft to perform a fast Fourier transform of
output data NB.Vt and NC.Vt and finally how Octave

visualization statements can generate the output data plots
shown in Fig.8.

Figure 7. A class A npn BJT RF amplifier with collector feedback:

transient simulation test circuit with directly coupled voltage test probes

NB and NC and time response output waveforms for a sinusoidal input

signal of 50mV peak, 10MHz frequency and zero input phase.

Figure 8. Voltage amplitude spectra plotted against frequency for

amplifier probe signals NB and NC.

Figure 9. Octave "m" script for post-simulation amplifier data

processing: Functions “loadQucsDataset” and “loadQucsVariable” are

provided with the QucsStudio software for conversion of simulation

output data to Octave internal format.

VII. CONCLUSIONS

Compact device modelling with Verilog-A has become
standard practice among commercial and GNU General Public
License circuit simulators, with many packages adopting the
ADMS Verilog-A to C++ model synthesizer as the central core
in their device modelling strategy. Initial open source
implementations of the ADMS model synthesizer often
depended on model developers patching simulator C++ code
when constructing new models. This approach not only
requires developers to have a good understanding of a
particular circuit simulators model application interface but is
likely to be error prone. The introduction of the QucsStudio
“turn-key” approach to compact device modeling provides for
the first time, as far as the authors are aware, a freely available,
fast and simple to use GNU General Public License modelling
tool which does not require users to manually patch circuit
simulator C++code.

REFERENCES

[1] Compact Model Council, TechAmerica, Arlington, VA.

http://www.gela.org/About-TechAmerica, 2009. [accessed January
2012].

[2] Accellera, “Verilog-AMS Language Reference Manual, version 2.2”,

2004, http://www.accellera.org, 2010. [accesssed January 2012].

[3] L. Lemaitre, G. Coram, C. McAndrew and K. Kundert, “Extensions to
Verilog-A to support compact device modeling”, Proceedings of the

IEEE International Workshop on Behavioural Modeling and Simulation,
BMAS, 7-8 Oct. 2003, pp, 134-138.

[4] L. Lemaitre. ADMS, http://adms.noovela.com:8001/, 2007. [accessed
January 2012].

[5] Smash mixed signal simulator, Version 5.18.0, Dolphin Integration,

France, http://www,dolphin.fr/medal/smash/smash_overview.php, 2011.
[accessed January 2012].

[6] Symica Custom IC Design Toolkit, Symica LLC, 2009-2012,

http://www.symica.com/products/symica-de, 2012. [accessed January
2012].

[7] P Nenzi, ngspice release 23, http://ngspice.sourceforge.net/index.html,

2011. [accessed January 2012].

[8] A. Davis, Gnucap, Version 0.35, http://www,gnu.org/software/gnucap/,
2008. [accessed January 2012].

[9] M. Margraf, QucsStudio, Version 1.3.0,

http://www.mydarc.de/DD6UM/QucsStudio/qucsstudio.html, 2012.
[accessed 2012].

[10] M. Margraf, S.Jahn, J. Flucke, R. Jacob, V. Habchi, T. Ishikawa, A.
Gopala Krishna, M. Brinson, H. Parruitte, B.Roucaries and G. Kraut,

Qucs (Quite universal circuit simulator), Version 0.0.16, 2011,
http://qucs.sourceforge.net/index.html, [accessed January 2012].

[11] M. Brinson and S. Jahn, Building device models and circuit

macromodels with the Qucs GPL circuit simulator, COMON project
meeting, IHP, Frankfurt (Oder), Germany, 2009, http://www.mos-

ak.org/frankfurt_o/papers/M_Brinson_Qucs_COMON_April_2_2009_fi
nal.pdf. [accessed anuary 2012].

[12] P. Antognetti and G. Massobrio (Editors), “Semiconductor device

modeling with SPICE”, McGraw-Hill Book Company, New York, 1988.

[13] S. Jahn and M.E. Brinson, “Interactive compact device modelling using
Qucs equation-defined devices”, International journal of Numerical

Modelling: Electronic Networks, Devices and Fields, 2008, 21:335-349.

[14] J.W. Eaton et al., Octave,
http://www.gnu.org/software/octave/about.html. [accessed January

2012].

http://www.gela.org/About-TechAmerica
http://www.accellera.org/
http://adms.noovela.com:8001/
http://www,dolphin.fr/medal/smash/smash_overview.php
http://www.symica.com/products/symica-de
http://ngspice.sourceforge.net/index.html
http://www,gnu.org/software/gnucap/
http://www.mydarc.de/DD6UM/QucsStudio/qucsstudio.html
http://qucs.sourceforge.net/index.html
http://www.mos-ak.org/frankfurt_o/papers/M_Brinson_Qucs_COMON_April_2_2009_final.pdf
http://www.mos-ak.org/frankfurt_o/papers/M_Brinson_Qucs_COMON_April_2_2009_final.pdf
http://www.mos-ak.org/frankfurt_o/papers/M_Brinson_Qucs_COMON_April_2_2009_final.pdf
http://www.gnu.org/software/octave/about.html

