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ABSTRACT  

The aims of the research were to investigate the population and diversity of lactic 

acid bacteria (LAB) in human breast milk, to assess the probiotic potential of the 

identified LAB, to examine the antimicrobial resistance profile of the LAB and to 

investigate the possible relationship between the identified bacterial population 

and diversity with stage of lactation, number of children and diet. Samples of 

breast milk were collected from 20 breast feeding mothers. Standard spread 

plating on MRS agar and MRS agar supplemented with L-cysteine HCl (MRS-

cys) was used for the enumeration of the organisms. Phenotypic identification of 

108 recovered isolates was carried out. All isolates were Gram positive and 

oxidase negative, some were catalase positive and others were catalase negative. 

Further identification was carried out by grouping the isolates using repetitive 

sequence based PCR (rep-PCR). A total of nineteen groups were generated from 

the rep-PCR DNA profiles. This was followed by genotypic identification using 

16S rRNA gene sequencing. The 16S rRNA gene sequencing identified LAB and 

non-LAB. Most of the LAB isolates belonged to the Lactobacillus genus, the rest 

were Leuconostoc, Weissella, Streptococcus and Enterococcus spp. The non-LAB 

were Staphylococcus epidermidis and Staphylococcus hominis. To examine the 

potential probiotic characteristics of the isolates, at least one representative isolate 

from each species of LAB (11 in total) were selected and characterised through a 

series of experiments. Initially the acid and bile resistance of the selected isolates 

were studied. All eleven LAB showed good tolerance to low pH and high 

concentration of bile salt. The antimicrobial activity of the isolates was also 

assessed. Again all eleven LAB produced antibacterial metabolites that inhibited 
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the growth of all the four indicator bacteria (Bacillus cereus, Escherichia coli, 

Salmonella Enteritidis and Staphylococcus aureus) in both unbuffered and 

buffered agar spot tests. The antimicrobial activity of the LAB using Agar well 

diffusion assay revealed antimicrobial properties of some of the studied LAB. The 

ability of the eleven selected LAB to produce exopolysaccharide, deconjugate bile 

salt and reduce cholesterol was investigated. The entire eleven LAB produced 

exopolysaccharide, deconjugate bile salt and reduce cholesterol. The phenotypic 

antimicrobial resistance profile of the eleven LAB was assessed. Furthermore, the 

genetic background of the phenotypic resistance was also investigated. All eleven 

LAB were sensitive to ciprofloxacin, gatifloxacin and quinupristin/dalfopristin 

and resistant to daptomycin. Most of the LAB were resistant to erythromycin, 

gentamicin tetracycline and vancomycin. Antimicrobial resistance genes for 

erythromycin and tetracycline were confirmed for three LAB.  
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1.1 Introduction 

Breast milk is an important food and nourishment for both new born babies and 

infants. Besides its nutritional composition, it also contains exosomes, 

immunoglobulins and microRNA that promote the development of babies’ 

immune systems (Admyre et al. 2007). Micro RNA (miRNA) has been shown to 

be a transferable genetic material passed on from mother to child. It is suggested 

that miRNA are contained within microvesicles or exosomes (Kosaka et al. 

2010). A substance also found in human breast milk, human alpha-lactalbumin 

made lethal to tumour cells (HAMLET), has been shown to destroy over 50 

different kinds of cancer cells (Mossberg et al. 2010). Importantly, human breast 

milk has also been shown to contain some beneficial bacteria such as 

bifidobacteria and lactic acid bacteria (LAB) that help in developing a healthy 

microbiota in the gut of babies. Some of these beneficial bacteria have been 

shown to have probiotic potential. Numerous health benefits have been associated 

with the ingestion of probiotics and these include: improving the immune system, 

preventing intestinal infection especially diarrhoea, reducing allergy problems as 

well as improving recovery after antibiotic therapy. (Gueimonde et al. 2007, 

Martin et al. 2009 and Arboleye et al. 2011). These diverse components of human 

breast milk therefore promote the health, growth, development and overall 

wellbeing of babies and infants. 

Breast milk contains complex carbohydrates called human milk oligosaccharides 

(HMOs). There are more than two hundred HMOs in breast milk but despite their 

carbohydrate composition, they do not provide nourishment for babies, but 
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instead are utilised by bacteria, especially enhance growth of bifidobacteria and 

LAB that are associated with health benefits (Gueimonde et al. 2007, Gibson and 

Roberfroid, 2008). Utilisation of HMOs as a substrate for growth of bacteria 

encourages rapid proliferation of these organisms, encouraging favourable 

competition and contributing to eradication of pathogenic microorganisms 

(Gibson and Roberfroid, 2008 and Petherick, 2010). Human milk 

oligosaccharides can also prevent the binding of Campylobacter jejuni, a 

pathogenic bacterium that is associated with infant diarrhoea, to the intestinal 

epithelial cells. 

Furthermore, Zivkovic et al. (2011) have demonstrated that many 

oligosaccharides and glycoconjugates in human breast milk inhibit binding of 

pathogenic bacteria and toxins by acting as decoys. Anti-adhesive activity of 

HMOs against Streptococcus pneumoniae, enteropathogenic Escherichia coli, 

Listeria monocytogenes and Vibrio cholerae has also been revealed by Zivkovic 

et al. (2011). Breast-feeding is therefore an important source of LAB in the infant 

gut. 

1.2 The concept of probiotics 

Probiotics are viable microorganisms with proven health benefit that can be 

present in human and animal milk or fermented milk products which, when 

consumed, promote the health and well-being of the consumer. Probiotics have 

also been defined by the World Health Organisation (WHO) as “living 

microorganisms which when administered in adequate amounts confer health 

benefit on the host (FAO/WHO, 2001). Potentially beneficial microorganisms 
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include some species of bacteria and yeast including bifidobacteria and LAB, 

especially Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus 

paracasei, Lactobacillus acidophilus and Lactobacillus plantarum (Suganya et al. 

2013 and Khedid et al. 2009), Pedicoccus pentosaceus (Gerez et al. 2006), 

Weisella species, Bifidobacterium infantis, Bifidobacterium breve, 

Bifidobacterium longum and Bifidobacterium adolescentis (Matsuki et al. 1999 

and Onyibe et al. 2013). These bacteria can have a significant impact on the 

immunological, digestive and respiratory systems and thus prevent and relieve 

infectious diseases in children (FAO/WHO, 2006). The clinical applications of 

probiotics incude: treatment of diarrhoeal diseases associated with antibiotic 

therapy and travellers’ diarrhoea, irritable bowel syndrome, allergies and 

eradication of Helicobacter pylori that causes intestinal ulcer and gastritis 

(Hamilton-Miller, 2003). The criteria for selecting probiotic strains for use as 

supplements according to Plummer et al. (2004), Jennifer et al. (2005) and 

FAO/WHO (2006) are: 

(1) The organisms should be non-pathogenic 

(2) The organisms should maintain viability during production of a 

supplement 

(3)  The organisms should maintain viability during passage through the 

acidic environment of the stomach 

(4) The organisms must be genetically stable 

(5) They must be tolerant to bile salts 

(6) They should produce bile salt hydrolase enzyme 



29 
 

(7) They should have the ability to produce antimicrobial compounds that will 

inhibit the proliferation of known pathogens 

(8) They should have the ability to adhere to the gut epithelial tissues 

(9) They should have a positive effect on the immune system 

(10) They should have a proven clinical research record 

1.3 Origin of bifidobacteria and lactic acid bacteria in human breast milk  

It was thought that potentially beneficial bifidobacteria and LAB originate from 

the mammary gland, maternal nipples and the immediate surroundings of the 

breast skin. However, some studies have indicated that the origin of viable 

beneficial bacteria in human breast milk is the maternal gut (Perez et al. 2007 and 

Jeurink et al. 2013). Immune cells (CD18+), dendritic cells and macrophages in 

the mother’s gut pick up beneficial bacteria and transport them to the mammary 

gland using the lymphatic system (Jeurink et al. 2013). It has been shown that 

dendritic cells (DCs) can open the tight junctions between intestinal epithelial 

cells and penetrate the gut epithelium with their dendrites, enabling DCs to pick 

commensal bacteria directly from the gut lumen without damaging the integrity of 

the epithelial barrier (Martín et al. 2004. Perez et al. 2007 and Fernandenz et al. 

2013). This process has been likened to a Salmonella typhimurium strain that, 

although it was deficient in invasion genes, was able to reach the spleen alive 

after oral administration to mice (Rescigno et al. 2001). Macrophages have also 

been shown to be capable of disseminating non-invasive bacteria (Jeurink et al. 

2013). In research comparing bacterial diversity of breast milk and breast skin, 

major genotypic differences were found among the lactobacilli, enterococci and 
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bifidobacteria from the different environments (Martin et al. 2003 and 

Gueimonde et al. 2007). Logical arguments have been established ruling out 

presence of bacteria in human milk as a result of contamination and excluding the 

infant’s mouth, or mother’s breast skin, as vehicles transmitting bacteria to human 

breast milk. It has been shown that live beneficial bacteria orally administered to 

lactating women in a capsule can be retrieved from their milk (Jimenez et al. 2008 

and Arroyo et al. 2010). Moreover, studies in mice have shown that bacteria from 

the gut translocate to mesenteric lymph nodes (MLN) and mammary glands 

during the late stage of pregnancy and the beginning of lactation (Fernandez et al. 

2004 and Jeurink et al. 2013). The migration process from the maternal gut to the 

mammary gland is influenced by the ability of bacteria to adhere to mucus. 

Production of exopolysaccharides (EPS) by bacteria enhances their survival 

during systemic transportation. Research by Fanning et al. (2012) has shown that 

Bifidobacterium breve strain UCC2003 produces an EPS thought to facilitate 

ability of the bacterium to remain immunologically silent by escaping the 

adaptive B-cell host response. Potentially beneficial bacteria such as LAB and 

bifidobacteria present in milk may have an endogenous origin and may not be the 

result of contamination from the surrounding breast skin (Martin et al. 2003). 

1.4 Lactic acid bacteria  

Lactic acid bacteria are a group of bacteria characterized by diverse 

morphological, physiological and metabolic features. They are Gram positive, 

anaerobic or facultatively anaerobic, non-sporing cocci or rod and are catalase and 

oxidase negative. They produce lactic acid as the primary end product of 
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carbohydrate fermentation (Salminen and Wright, 1998, Khedid et al. 2009, 

Suganya et al. 2013 and Tusar et al. 2014). The genera of LAB consist of 

Lactobacillus, Lactococcus, Lactosphaera, Leuconostoc, Enterococcus, 

Aerococcus, Alloiococcus, Carnobacterium, Globicatella, Dolosigranulum, 

Oenococcus, Vagococcus, Streptococcus, Weisella, Pediococcus and 

Tetragenococcus. Classification of these bacteria into genera before the advent of 

DNA (molecular) identification was based on morphology, glucose fermentation, 

temperature of growth, ability to grow in high sodium chloride and organic and 

inorganic acids concentration, as well as lactic acid production. LAB can utilise 

glucose in two ways: by glycolysis (Embden-Meyerhof pathway) or the 6-

phosphogluconate and phosphoketolase pathway. Glycolysis results in lactic acid 

as the main end product (homo-lactic fermentation), while the 6-

phosphogluconate and phosphoketolase pathway results in multiple end products 

including lactic acid, ethanol, carbon dioxide and acetic acid (hetero-lactic 

fermentation). Therefore, LAB are phenotypically classified into two groups: 

homo-fermentative and hetero-fermentative (Salminen and Wright, 1998, Ammor 

et al. 2006 and Suskovic et al. 2010). 
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Figure 1.1: Phylogenetic tree of some lactic acid bacterial isolates based on 16S rDNA 

partial sequences, using the neighbor-joining method. Bordetella pertussis was used as an 

out group. Fhoula et al. (2013). 
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1.5 Production of antimicrobial substances and adhesion inhibitors by lactic 
acid bacteria 

Lactic acid bacteria produce a variety of antimicrobial organic acids that kill or 

inhibit growth of pathogenic microorganisms. Homo and hetero-fermentation of 

glucose yield potent end products such as lactic acid, acetic acid, ethanol and 

carbon dioxide. Carbon dioxide manifests antimicrobial properties in two ways: 

firstly, CO2 is itself toxic to some microorganisms, and secondly, creation of an 

anaerobic atmosphere prevents proliferation of aerobic microorganisms, 

especially concentrations of 85% nitrogen, 10% hydrogen and 5% carbon dioxide 

(Singleton, 2004).  Furthermore, LAB produce hydrogen peroxide (H2O2) which 

has a strong oxidizing effect on bacterial cells resulting in destruction or 

inactivation of pathogenic microorganisms (Suskovic et al. 2010). Moreover, 

bacteriocins are antimicrobial substances produced by some LAB, including 

Lactobacillus sake, Lactobacillus delbrueckii, Lactobacillus helveticus, 

Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus plantarum, 

Lactococcuslactis, Lactococcus plantarum, Lactococcus cremoris, Streptococcus 

mutans, Pediococcus acidilactici and Leuconostoc mesenteroides subsp. 

mesenteroides (Ammor et al. 2006). For example, nisin and diplococcin are 

bacteriocins produced by Lactococcus. Nisin inhibits growth of some Gram 

positive bacteria, such as Clostridium botulinum and Listeria monocytogenes 

(Ammor et al. 2006 and Suskovic et al. 2010). Other bacteriocins include lacticin, 

lactocin, mutacin, carnocin, salvaricin and streptococcin (Ammor et al. 2006 and 

Suskovic et al. 2010). 
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 Apart from these, LAB produce adhesion inhibitors that prevent binding of  

pathogenic microorganisms to the intestinal epithelial cell of a host and thus 

reduce ability of the pathogen to colonize the intestine (Zivkovic et al. 2011). 

Adhesion of microbes to the surface of the intestinal tract is important for stability 

of microorganisms in the intestinal environment because if they cannot adhere, 

they will be flushed away as a result of fluid secretions and peristaltic movement.  

1.6 Identification of microorganisms 

In the past, identification of microorganisms was based on biochemical and 

physiological (phenotypic) characteristics of the isolates such as Gram staining, 

presence of certain enzymes (catalase, oxidase, coagulase, protease, lipase and 

lecithinase), glucose fermentation, motility, spore formation and morphological 

features. However, while phenotypic characteristics are still valuable, advances in 

molecular biology have resulted in rapid and reliable methods of identifying 

microbes, particularly application of genetic sequencing to identify bacteria to 

species and even strain level. There are three types of ribosomal ribonucleic acid 

(rRNA) 5SrRNA, 16SrRNA and 23SrRNA but 16SrRNA provides the ideal 

balance between information content (Baker et al. 2011). This evolutionary 

chronometer (16SrRNA) is used for analysing phylogenetic relationships between 

bacteria with different sequences (Baker et al. 2011). Fragments of DNA 

containing 16SrRNA are generated by the polymerase chain reaction (PCR). 

These primers have been designed to anneal to the conserved regions of genes and 

thus facilitate use of one universal primer set to amplify 16SrRNA from 

phylogenetically different bacteria (Nicholl, 2008, Baker et al. 2011 and Rahman 
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et al. 2012).  If 16SrRNA gene sequencing is not able to differentiate closely 

related species, then sequencing of the pheS, rpoA and rpoB genes is 

recommended (Anyogu, et al. 2014). 

The first discovery of repetitive extragenic palindromic (REP) element was 

observed in the genomes of Escherichia coli and Salmonella typhimurium 

(Higgins et al. 1982 and Stern et al. 1984). Repetitive element sequence based-

polymerase chain reaction (rep-PCR) could be defined as the process of using 

known primers for the PCR amplification of interspersed repetitive DNA 

elements of bacterial and fungal genomes (Gillings and Holley, 1997). The 

amplified DNA fragments of rep-PCR after separation by gel electrophoresis 

generate a genomic fingerprint that can be used for subspecies and strain 

description (Gillings and Holley, 1997 and Healy et al. 2005). 

The EzTaxon database is a recently developed quality-controlled 16S rRNA gene 

sequence database for the identification of bacteria. It is the most effective 

database for the identification of 16S rRNA gene sequences (Kim et al. 2012). 

The 16S rRNA gene is the most preferred method for the molecular identification 

of microorganisms but the limitation of the 16S rRNA gene sequencing is the 

difficulty in interpretation of the nucleotide sequences of the DNA. Moreover, the 

GenBank which is also used for the identification of bacterial DNA sequence that 

is  searched using the National Center for Biotechnology Information Basic Local 

Alignment Search Tool (NCBI BLAST), have been shown to lack peer-reviewed 

sequences of type strains and sequences of non-type strains (Park et al. 2012 and 

Yoon et al. 2017). EzTaxon is therefore more discriminative and reliable. BIBI 
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database is also a new database that has also been developed for the interpretation 

and identification of the bacterial 16S rRNA gene sequences (Park et al. 2012). It 

is recommended that 16S rRNA gene sequencing results should be evaluated by 

Genbank and confirmed by EzTaxon or other quality-controlled databases (Kim et 

al. 2012, Park et al. 2012 and Yoon et al. 2017). 

Microorganisms can also be identified by the type of fatty acids they produce, 

using fatty acid methyl ester analysis (FAME analysis). In this technique, the 

lipids of a pure culture are extracted, esterified and quantified by gas 

chromatography (GC). The GC profile is then compared by computer with 

profiles of other microbes grown in identical conditions.  Although FAME 

analysis is rapid and inexpensive, interpretation of the results can be difficult 

(Baker et al. 2011).  

Identification of LAB using phenotypic and genotypic analysis has been 

undertaken by many researchers including; Martin et al. (2009) Rahman et al. 

(2012) and Kavitha and Davasena, (2013). Molecular studies on human breast 

milk based on 16S rRNA genes have revealed the presence of bifidobacteria 

including Bifidobacterium breve and Bifidobacterium longum subsp. infantis, 

Lactobacillus rhamnosus and Lactobacillus casei, detected by PCR-DGGE (PCR-

Denaturing Gradient Gel Electrophoresis) and RT-qPCR (Quantitative Real Time 

PCR), whole genome shotgun sequencing as well as16S rRNA gene sequencing 

(Martin et al. 2009, Rahman et al. 2012 and Kavitha and Davasena, 2013). Use of 

culture-dependent molecular techniques, especially those based on 16S rRNA 

gene sequencing has demonstrated the biodiversity of human milk microbiota. 
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Therefore, confirming presence of Staphylococcus, LAB and Bifidobacterium in 

human breast milk (Martin et al. 2003, Martin et al. 2007, Albesharat et al. 2011, 

Makino et al. 2011, Fernandez et al. 2013 and Tusar et al. 2014).  

1.7 Production of exopolysaccharides by lactic acid bacteria 

Exopolysaccharides (EPSs) are biopolymers secreted by bacteria. They protect 

bacterial cells from toxic substances, osmotic stress, dessication and 

bacteriophage. Moreover, they also facilitate adhesion of bacterial cells to 

surfaces (Hongpattarakere et al. 2011). The rheological properties of lactic acid 

bacterial exopolysaccharides are useful in the production of fermented dairy 

products and other fermented foods (Sasikumar et al. 2017). Beside the gelling 

properties of lactic acid bacterial exopolysaccharides, they also possess health 

promoting properties. The health promoting attributes of lactic acid bacterial 

exopolysaccharides include; cholesterol reduction, antimicrobial activity, 

antioxidant activity, antitumor, antiulcer and immunomodulation 

(Hongpattarakere et al. 2011, Ismail and Nampoothiri, 2013, Joshi and Koijam, 

2014, Domingos-Lopes et al. 2017,  Sasikumar et al. 2017 and Riaz-Rajoka et al. 

2018). Furthermore, lactic acid bacterial exopolysaccharides are stable in 

gastrointestinal tract which facilitate colonisation of beneficial LAB in the gut 

(Riaz-Rajoka et al. 2018).  

LAB produce various kinds of EPSs which differ in chemical compostion and 

structure (Ruas-Madiedo et al. 2002). Some Leuconostoc mesenteroides subsp. 

mesenteroides and Lactobacillus fermentum produce dextrans which are α D-

glucans, Streptococcus salivarius subsp. thermophilus and Lactobacillus reuteri 
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produces fructans which are levans (Ruas-Madiedo et al. 2002 and Badel et al. 

2011). Both dextran and fructan belong to the homopolysaccharides group of 

exopolysaccharides (Badel et al. 2011). On the other hand, Lactobacillus 

pentosus, Lactobacillus plantarum and Lactobacillus rhmnosus produce glucose 

and galactose. These sugars belong to the heteropolysaccharides group of 

exopolysaccharides (Badel et al. 2011).  

Additionally, some lactic acid bacterial exopolysaccharides are prebiotic.  

Prebiotics are non digestible oligosaccharides that stimulate growth of some 

beneficial bacteria in the gut (Hongpattarakere et al., 2011 and Badel et al., 2011).  

Hongpattarakere et al., 2011 reported the prebiotic property of EPS produced by 

some lactic acid bacteria especially Weissella cibaria A2 which exhibited 

bifidogenic effect. 

The antidiabetic and cholesterol lowering properties of exopolysaccharides 

produced by Lactobacillus plantarum BR2 were reported by Sasikumar et al. 

(2017), the EPS was not toxic to normal cells. Similarly, Ismail and Nampoothiri, 

2013 have studied the antioxidant and antitumor of EPS produced by 

Lactobacillus plantarum MTCC 9510. The EPS was found to have antitumor 

properties and also non toxic to normal cells.  

1.8 Bile salt hydrolase activity of lactic acid bacteria 

Bile salt hydrolase also referred to as cholylglycine hydrolase are enzymes that 

hydrolyse the amide bond of conjugated bile salts, thereby releasing the amino 

acid moiety from the steroid core and produce deconjugated bile salts (Begley et 

al. 2006 and Allain et al. 2018). Ability of lactic acid bacteria to produce bile 
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hydrolase enzyme is an important criterion in selection of probiotic bacteria 

(FAO/WHO, 2002 and Begley et al. 2006). Bile is synthesised in the liver, it is 

composed of bile acids, cholesterol, phospholipids, and biliverdin (Begley et al. 

2006). Cholic and chenodeoxycholic acids are primary bile salts which are 

conjugated bile salts. Bile salt hydrolase (BSH) enzyme facilitates deconjugation 

of cholic and chenodeoxycholic acids to unconjugated bile salts and glycine or 

taurine residue (Begley et al. 2006). Deconjugated bile acids occuring from bile 

salt hydrolysis have more inhibitory effects on bacteria than conjugated bile acids. 

Therefore, BSH plays a significant role in tolerance of some LAB to bile and bile 

salts. Deconjugated bile salts are less absorbed in the human intestine, therefore 

facilitating the excretion of free bile acids through faeces (Begley et al. 2006). 

Although, excessive excretions of bile salts could decrease the total amount of 

bile salts in human bodies. But lost bile salts could be restored by de novo 

synthesis from cholesterol which could reduce the level of serum cholesterol in 

human body (Begley et al. 2006). 

It has been reported that BSH facilitate assimilation of cholesterol into lactic acid 

bacterial cell membranes (Pereira et al. 2003 and Taranto et al. 2003). BSH 

activity is therefore important in selection of LAB with cholesterol lowering 

properties, as non deconjugating LAB do not assimilate cholesterol in vitro 

(Kumar et al. 2012 and Anandharaj and Sivasankari, 2014). 

Moreover, BSH detoxify bile salts and thus, increase survival of producing strains 

in the intestine (Kumar et al. 2012 and Allain et al. 2018). BSH activity of 
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beneficial lactic acid bacteria is therefore, vital in facilitating their survival in the 

harsh environmental condition of the gastrointestinal tract (Begley et al. 2006). 

BSH activity is a natural process that aids in reduction of cholesterol (Allain et al. 

2018). However, because deconjugated bile salts are less efficient than conjugated 

bile salts in the emulsification of dietary lipids, therefore, BSH activity could 

affect normal lipid digestion. Thus, the absorption of fatty acids could be impaired 

(Begley et al 2006). 

 The BSH activity of Lactobacillus pentosus and Lactobacillus plantarum was 

reported by saraniya and Jeevaratnam (2015). Similarly, cholesterol assimilation 

of Lactobacillus pentosus and Lactobacillus plantarum was also reported by 

Saraniya and Jeevaratnam (2015). The ability of Lactobacillus plantarum to 

produce BSH enzyme and assimilate cholesterol was also reported by Yadav et al. 

(2016).  

 

1.9 Cholesterol assimilation by LAB 

Hypercholesterolemia is associated with cardiovascular diseases which causes ill 

health and sudden death in both developed and developing countries. Manson et 

al. (1992) reported that 1% reduction in serum cholesterol decrease risk of 

coronary heart disease by 2–3%. Undesirable side effects of conventional drug 

therapy for hypercholesterolemia have prompted research into alternative safe 

therapy. Studies on cholesterol assimilation of LAB have demonstrated their 

ability to reduce cholesterol in vitro and in vivo (Pereira et al. 2003, Begley et al. 

2006, Damodharan et al. 2015, Saraniya and Jeevaratnam 2015, Shehata et al. 

2016 and Yadav et al. 2016).  
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Oral administration of some probiotics in vivo has been reported to reduce 

cholesterol level by about 22 to 33% (Pereira and Gibson 2002). Similarly, 

hyperlipidemic patients that were given Lactobacillus sporogenes for 90 days 

showed a 32% and 35% decrease in their LDL and total cholesterol levels, 

respectively (Mohan et al. 1990). In another human study carried out by Lin et al. 

(1989), blood cholesterol was significantly reduced in volunteers who were given 

tablets of Lactobacillus bulgaricus and Lactobacillus acidophilus for 16 weeks 

every day. Many studies on cholesterol-reducing potential of probiotics have not 

elucidated the mechanism of cholesterol assimilation by probiotics. However, 

cholesterol-lowering properties of LAB have been attributed to BSH activity, 

cholesterol conversion to coprostanol (Coprosterol), production of short-chain 

fatty acids (SCFAs) during growth of probiotics and binding of cholesterol to 

bacterial cell wall, incorporation of cholesterol into the cellular membrane and 

coprecipitation of cholesterol with deconjugated bile (Liong and Shah 2005, 

Kumar et al. 2012, Tsai et al. 2014, Tomaro- Duchesneau et al. 2014 and Shehata 

et al. 2016). The hypocholesterolemic property of some probiotics could be 

strain-specific (Tsai et al. 2014). Moreover, reduction of cholesterol in vitro has 

been shown to be higher in the presence of bile salt in MRS broth (Tahri et al. 

1997 and Praveen et al. 2007). Furthermore, cholesterol assimilation potential of 

some Lactobacillus species is related to their ability to produce BSH enzymes 

(Anandharaj and Sivasankari, 2014). 
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1.10 Antimicrobial resistance of LAB 

Resistance of some bacteria to antimicrobials is a global public health risk. 

Antibiotic resistance could be intrinsic (natural) or acquired. Intrinsic resistance is 

an inherent characteristic of some LAB and this could be attributed to presence of 

low-affinity targets, low cell permeability, antimicrobial inactivation of the 

antibiotics and the presence of efflux mechanisms (Ammor et al. 2008). However, 

intrinsic resistance and resistance by mutation are rarely disseminated (Ammor et 

al. 2008). Acquired resistance involves horizontal transfer of genes, especially 

those carried on mobile genetic elements (Florez et al. 2016). Many antimicrobial 

resistance (AMR) genes from both pathogens and commensal bacteria are similar 

and carry transferable genetic elements. Commensal bacteria such as LAB are 

therefore likely to disseminate AMR genes in the gut (Zhang et al. 2011). 

Potential transferability of antimicrobial resistance genes by LAB to other 

bacteria is inevitable. This could therefore, promote dissemination of AMR genes 

amongst different strains and species of bacteria (Ouoba et al. 2008 and Florez et 

al. 2016). For safety reasons, all probiotic bacteria must be screened for 

antimicrobial resistance and resistance genes (FAO/WHO 2006). Some 

antimicrobials used in the determination of antimicrobial resistance with their 

mechanism of action and resistance (Ouoba et al. 2008, Devirgiliis et al. 2013 and 

Guo et al. 2017) are shown in Table 1.1. 



43 
 

 

Table 1.1 Some antimicrobials used in the determination of antimicrobial resistance with their mechanism of action and 

resistance. 

Pharmacological 
group 

Antimicrobial 
and resistance gene 

Mechanism  
of action 

Mechanisms  
of resistance 

Aminoglycosides Amikacin  
Apramycin  
Gentamycin (aac(6ʺ),aph (2ʺ),  aac(3ʺ) V, ant(2ʺ)-1) 
 Kanamycin (aph(3”)-1,aph(3”)-111, ant(2”)-I) 
Neomycin (aph(3”)-11aph(3”)-11, aph(3”)-111) 
 Spectinomycin 
 Streptomycin (strA, strB, aadA, aadE) 

Ribosome Enzymatic inactivation 
Modification of cell permeability 
Target site mutations (alterations at the 
ribosomal binding sites) 

βeta-lactams Amoxicillin 
 Ampicillin (blazA) 
 Imipenem 
 Oxacillin 
 Penicillin (blazA) 
 Cloxacillin 

Cell wall  Efflux 
Enzymatic inactivation (β-lactamase) 
Modification of cell permeability 
Target site mutations (altered penicillin-
binding proteins)  

Chloramphenicol Chloramphenicol (catA) Ribosome Efflux 
Enzymatic inactivation (mainly acetylases, 
phosphotransferases)  
Target site mutations  
Modification of cell permeability 

Glycopeptides Linezolid (cfr) 
Vancomycin (vanA, vanB, vanC, vanE, vanX) 

Cell wall Target site mutations (reduction of 
vancomycin binding affinity by 
substitution of a terminal D-lactate or D-
serine for D-alanine) 

Lincosamides Clindamycin (lnu(A), lnu(B)) 
Lincomycin 

Ribosome Efflux  
Enzymatic inactivation 
Target site alterations (methylases)  

Ouoba et al. (2008), Devirgiliis et al. (2013) and Guo et al. (2017) 
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Table 1.1 continued 

Pharmacological 
group 

Antimicrobial and resistance gene Mechanism  
of action 

Mechanisms of resistance 

Macrolides Erythromycin (erm(A), erm(B) and 
erm(C)) 
Roxithromycin 

Ribosome Efflux  
Enzymatic inactivation 
Target site alterations (methylases) 

Quinolones Ciprofloxacin (gyrA, parC)  
NalidixicAcid 

DNA gyrase  
DNA 
topoisomerase 

Efflux 
Lower target expression levels 
Modification of cell permeability  
Target site mutations  

Rifamycins 
 

Rifampin RNA 
polymerase 

Enzymatic inactivation  
Modification of cell permeability 
Target site mutations  
Target duplication  

Sulfonamides Sulphamethoxazole Trimethoprim 
(dfrA, dfrD) 

Dihydropteroate 
Synthetase 
(DHPS) 

Target site mutations  
Plasmid-borne alternative drug-resistant variants of 
DHPS 

Streptogramins Quinupristin/dalfopristin 
(vatC, vatD,  vatE) 

Ribosome Efflux  
Enzymatic inactivation 
Ribosome Target site alterations (methylases)  

Tetracyclines Chlorotetracycline  
Tetracycline (tet(K), tet(L), tet(M), 
tet(O), tet(S), tet(W)) 

Ribosome  Efflux 
 Enzymatic inactivation 
Target protection 

Ouoba et al. (2008), Devirgiliis et al. (2013) and Guo et al. (2017)
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1.11 Antimicrobial resistance of LAB isolated from human breast milk 

Antimicrobial resistance of some LAB has been attributed to misuse of 

antimicrobials in food chain particularly in animal production, aquaculture and 

agriculture (Egervan et al. 2009). Once AMR LAB gets into the gut, they may 

function as reservoirs of mobile AMR genes that could potentially be transferred 

to other commensal and pathogenic bacteria (Ouoba et al. 2008 and Karapetkov et 

al. 2011).  Some studies have suggested that LAB present in human breast milk 

originate from maternal gut as a result of translocation to maternal mammary 

gland (Perez et al. 2007, Fernandenz et al. 2013 and Jeurink et al. 2013).  

Lactobacillus oris HMI68 isolated from human breast milk was reported to have 

multidrug resistance to antimicrobials.  It exhibited phenotypic resistance to nine 

antimicrobials including ampicillin and gentimicin although it was sensitive to 

kanamycin and novobiocin (Anandharaj and Sivasankari, (2014). Similarly, 

multidrug resistance resistance in Enterococcus faecium isolated from human 

breast milk to ciprofloxacin, ampicillin, gentamicin, penicillin and vancomycin 

was reported by Kivanc et al. (2016) and Reis et al. (2016). The presence of 

tet(W) gene in Lactobacillus plantarum and Lactobacillus reuteri isolated from 

human breast milk  was reported by Egervin et al. (2009). Furthermore, tet(M), 

erm(B) and sul2 genes were detected from Lactobacillus plantarum and 

Lactobacillus reuteri isolated from human breast milk  (Zhang et al.2011). 

However, Human alpha-lactalbumin made lethal to tumour cells (HAMLET) is a 

substance found in breast milk that has anti-tumour and bactericidal properties. It 

is an antimicrobial adjuvant that enhances biological activity of antibiotics when 

used simultaneously (Hakansson et al. 2011, Marks et al. 2012 and Marks et al. 
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2013). HAMLET has been shown to have antimicrobial potentiating effect on 

staphylococci and streptococci as well as numerous bacterial species with multi-

drug resistance (Marks et al. 2013). Marks et al. (2013) studied potentiating effect 

of HAMLET on antibiotics including erythromycin, gentamicin, methicillin and 

vancomycin. They found out that HAMLET had an effective antimicrobial 

adjuvant thus, increased the efficacy of the antimicrobials. Drug resistant 

Staphylococcus aureus and Streptococcus pneumoniae were able to become 

sensitive to the antimicrobials in in vitro assays (MICs and MBCs) and for 

elimination of biofilms and nasopharyngeal colonisation in vivo.   

Human breast milk is therefore endowed with various protective substances such 

as antibodies, HAMLET, immune stimulating properties, lysozyme, lactoferrin, 

oligosaccharides and other substances that have not yet been explored. These 

protective substances especially HAMLET has potential of reversing multiple 

drug resistance bacteria to susceptible bacteria when used in combination with 

antimicrobials. Breast fed babies and infants could consequently respond 

effectively to antimicrobial treatments. 

The specific aims of this research were: 

1. To investigate the population and diversity of LAB in Nigerian human breast 

milk. 

2. To investigate the probiotic potentials of the isolates. 

3. To investigate the phenotypic antimicrobial resistance profiles of LAB and 

genetic background of phenotypic resistances. 
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4. To investigate the possible relationship between the identified bacterial 

population and diversity with donors’ age, stage of lactation, gender of lactating 

babies, number of children and diet. 

 

The main objectives of this research were: 

1. To enumerate LAB recovered from Nigerian human breast milk. 

2.  To isolate potential LAB colonies.  

3. To phenotypically identify the isolates. 

4. To differentiate and group the isolates using rep-PCR. 

5. To identify isolates to species level by sequencing the 16S rRNA gene. 

6. To investigate the probiotic potential of the species by in vitro techniques, 

including acid and bile resistance, antimicrobial activity, cholesterol 

assimilation, bile salt hydrolase and exopolysaccharide production.  

7. To investigate antimicrobial resistance profile and determination of resistance 

genes. 

8. To undertake a survey on the background of breast milk donors to determine 

whether there is a relationship between the population and diversity of the 

LAB species recovered and stage of lactation, gender of lactating babies, 

number of children and diet. 
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Justification for the research 

1.  Although some research has been carried out on bifidobacteria in breast milk, 

few investigations have concerned LAB. With regard to Nigerian human breast 

milk, to the best knowledge of the author, no studies exist.  It is therefore 

imperative to undertake research on LAB in order to provide information on their 

population and diversity as well as their probiotic potential. 

2. To the best knowledge of the author, there has been very little research on the 

correlation between breast milk donors’ demographics (stage of lactation, number 

of children, age and diet) and the diversity of LAB  

Significance of the study 

The outcome of this study will contribute to knowledge of the population and 

diversity of LAB in human breast milk. The research will explore the probiotic 

potential of selected LAB recovered from human Nigerian breast milk and this 

will promote use of beneficial LAB in biotherapy for treatment of diarrhoeal and 

other diseases in babies. Supplementation of milk formula and other baby foods 

with probiotic bacteria, especially in developing countries, could be advocated. 

This will benefit babies who could not be breast fed due to diseases associated 

with their mothers. Information derived from the research findings on how the 

population and diversity of LAB in human breast milk correlates with donors’ 

demographics will provide information on factors that could increase or decrease 

the population or diversity of beneficial bacteria in human breast milk. Overall, 
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the findings of this research will benefit health policy makers, food industries, 

non-governmental agencies, the education sector and mothers. 
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CHAPTER TWO: ENUMERATION, ISOLATION AND 

IDENTIFICATION OF LACTIC ACID BACTERIA FROM HUMAN 

BREAST MILK 
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2.1 Introduction 

Human breast milk is a balanced food for the nourishment of newly born babies. 

Besides its nutritional composition, it contains beneficial LAB that help in 

developing a healthy microbiota of the baby’s gut (Fernandez et al. 2013 and 

Tusar et al. 2014). Some LAB found in human breast milk have protective effect 

against infant allergic and diarhoeal diseases. (Martin et al. 2015). Beneficial 

LAB present in human breast milk reduce incidence and severity of these illnesses 

by different mechanisms including; production of antimicrobial compounds and 

competitive exclusion (Fernandez et al. 2013 and Reis et al. 2016). According to 

Maldonado et al. (2012), the administration of Lactobacillus fermentum 

CECT5716 isolated from human breast milk to infants for a period of 6 months 

reduced the incidence rate of gastrointestinal infections, upper respiratory tract 

infections, and total number of infections to 46%, 27%, and 30% respectively. 

A large and diverse population of beneficial bacteria in the infant gut has 

therefore been linked to good health in newly born babies and contributes to their 

healthy development in the future (Fernandez et al. 2013). Albesharat et al. 

(2011) support the hypothesis that suggest a vertical transfer of intestinal LAB 

from the mother’s gut to the mammary gland and finally to the breast-fed infant’s 

gut. 

Investigators such as Martin et al. (2012) and Tusar et al. (2014) have 

demonstrated the presence of Lactobacillus gasseri, Lactobacillus fermentum, 

Lactobacillus plantarum, Lactococcus lactis, Leuconostoc mesenteroides subsp. 

mesenteroides,  Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium 
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longum,  Streptococcus salivarius,  Enterococcus faecium,  Enterococcus faecalis, 

Weissella confusa, Weissella cibaria, Staphylococcus epidermidis and 

Staphylococcus hominis in human breast milk. 

Early colonisation of the infant gut with potentially beneficial bacteria enables the 

lymphoid tissue associated with the gut to mature and consequently helps 

homeostasis of the intestinal epithelium tissue and contributes to regulation of the 

intestinal physiology (Matsuki et al. 1999 and Gueimonde et al. 2007).  Breast fed 

infants have higher populations of Bifidobacterium infantis and other beneficial 

bacteria than infants who are fed formula milk (Matsuki et al. 1999 and 

Gueimonde et al. 2007). The formation of a stable gut microflora in human 

neonates is favourably influenced by dominance of a diverse population of 

beneficial bacteria and this is vital for healthy development of the infant 

gastrointestinal tract (GIT) and immune system (Arboleye et al. 2011). 

The enumeration and isolation of bacterial cells is significant for the identification 

and characterization of bacteria. Various methods of genotypic identification of 

bacteria were used by Martin et al. (2003), Albesharat et al. (2011), Martin et al. 

(2012) and Tusar et al. (2014) to assess the composition of human breast milk 

microflora. 

Albesharat et al. (2011) differentiated isolates from human breast milk isolated 

from 15 Syrian mothers using random amplified polymorphic DNA (RAPD).  

Isolates were identified as LAB by comparative 16S rDNA sequencing and 

Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry 

(MALDI-TOF-MS) analyses. Lactobacillus, Enterococcus, Streptococcus, 
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Pediococcus and Staphylococcus were identified. RAPD and MALDI-TOF-MS 

patterns allowed comparison of the lactic microbiota on species and strain level in 

their study. Similarly, Tusar et al. (2014) also used RAPD to discriminate 86 

presumptive isolates from human breast milk isolated from 11 Slovenian lactating 

mothers. Representatives of different RAPD groups were identified using 16S 

rDNA sequencing. Identified LAB were Lactobacillus fermentum, Lactobacillus 

salivarius, Lactobacillus reuteri, and Enterococcus faecium. Bifidobacterium 

breve species and Staphylococcus epidermidis were also identified. Martin et al. 

(2003) also used RAPD to discriminate isolates from human breast milk isolated 

from 8 Spanish breast feeding mothers. Lactobacillus gasseri and Enterococcus 

faecium were identified using 16S rDNA sequencing. However, Martin et al. 

(2012) identified Staphylococcus, Lactobacillus, and Bifidobacterium from 20 

Spanish breast feeding mothers using Quantitative Real-Time PCR (qRTi-PCR), 

RAPD and 16S rRNA gene sequencing. Sakwanski et al. (2016) studied 

microbiota of human breast milk of Chinese lactating mothers using microbiota 

profiling based on the sequencing of fragments of 16S rRNA gene and 

quantitative polymerase chain reaction (qPCR). Breast milk samples were 

collected using standard protocol without aseptic cleansing and with aseptic 

cleansing of maternal nipples and breast surrounding. Presence of Streptococcus 

and Staphylococcus species for both collection protocols were reported. 

Sakwanski et al. (2016) also revealed a significantly higher number of bacteria 

identified in the “breastfeeding-associated microbiota” compared to milk obtained 

under aseptic conditions. 
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There is limited information regarding LAB present in Nigerian human breast 

milk. Many studies have focused on isolation of LAB from other continents of the 

world but not Africa. The aim of the study described in this chapter was to isolate 

and identify LAB from some samples of Nigerian human breast milk. This would 

enable selection of LAB isolates for further characterisation in regard to their 

probiotic properties and their antimicrobial resistance profile and antimicrobial 

resistance genes. The specific objectives of this study were: 

• To enumerate and isolate LAB present in Nigerian human breast milk. 

• To phenotypically identify the isolates based on cell and colony 

morphology and biochemical tests. 

• To characterise and confirm the identity of isolates using molecular 

techniques such as rep-PCR and 16S rRNA gene sequencing. 

2.2 Materials and methods 

2.2.1 Donor recruitment 

Breast milk samples were collected from 20 breast feeding mothers in Diamond 

Specialist Hospital Kaduna, Nigeria. Lactation period of donors was between 1 to 

21 months. Ethics approval was granted by the London Metropolitan University 

Ethics Committee. Breast feeding mothers were contacted in person and the 

research explained to them. Those that showed interest were enlisted as 

participants. Donors were recruited after indicating their consent by signing the 

consent forms to voluntarily participate (Appendix 1). 
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2.2.2 Sample collection 

The human breast milk samples were manually expressed into sterile tubes. 

Nipples of donors were not sterilised prior to milk collection. Milk samples were 

stored in an ice box at 1 to 2 °C but not frozen and transported to the 

microbiology laboratory of the Department of Food Technology, Kaduna 

Polytechnic, Nigeria. Samples were analysed as soon as possible within 6 h after 

collection. The media and diluent were prepared before collection of samples.  

2.2.3 Enumeration of LAB 

Breast milk samples were diluted ten-fold to 10-3 in maximum recovery diluent 

(MRD, CM0733, Oxoid, Basingstoke, UK). Volumes of 100 µl of the three 

dilutions and the undiluted milk sample were spread in duplicate on deMan 

Rogosa Sharpe agar (MRS, CM0361, Oxoid, UK) and in duplicate on MRS agar 

to which 0.5g/litre L- cysteine hydrochloride (C1276 Sigma, Gillingham, UK) 

had been added (MRS-cys agar). The plates were incubated anaerobically (in 

anaerobic jars (AG25, Oxoid, UK) with anaerogen pack (ANOO35A, 

Thermoscientific, UK) at 37 oC for 48-72 h. Colonies were counted, calculated 

and reported as cfu/ml.  

2.2.4 Isolation of LAB isolates 

Separated colonies were randomly picked from plates of MRS and MRS-cys that 

had counts of 30-300 colonies. The selected colonies were transferred to coded 

cryovials and stored at -20 °C (Microbank, Prolab Diagnostics, UK). As backup, 

in addition to randomly selecting individual colonies, a loop was used to harvest 
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all remaining colonies from the surface of the plate. The loopful was transferred 

to another coded cryovial. This provided a backup of additional microorganisms. 

The cryovials were stored in the freezer at -20 oC in Nigeria. They were 

transported to the UK in an insulated cooler bag. The total journey time was 

approximately nine hours. 

Beads from single colonies and harvested colonies in the cryovials were cultured 

on MRS agar and incubated at 37 oC for 48-72 h in an anaerobic cabinet (Don 

Whitley, UK) in an atmosphere of 85% N, 10% H and 5% CO2. Single colonies 

from both the random selection and the harvested colonies were streaked on MRS 

agar and incubated at 37 oC for 48-72 h in an anaerobic cabinet. Gram staining, 

catalase and oxidase tests were carried out on presumptive LAB. Single colonies 

from the plates were transferred aseptically into cryovials and stored at -20 oC 

until required for further tests. 

2.2.5 Phenotypic Identification of Isolates 

Pure cultures were streaked on MRS agar and incubated at 37 oC for 48-72 h in an 

anaerobic cabinet. Gram staining, catalase and oxidase tests were carried out.  

2.2.5.1 Catalase and oxidase tests 

For the catalase test, a drop of 30% (v/v) hydrogen peroxide (H1009 Sigma, 

Gillingham, UK), was placed on a single colony from a 24 h culture that had been 

transferred to a glass slide. Formation of bubbles of oxygen indicated a positive 

reaction. For the oxidase test, Whatman filter paper (10292221 Fischer Scientific, 

Leicestershire, UK) was saturated with oxidase reagent (Tetramethyl-p-phenylene 
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diamine dihydrochloride, 07770 Sigma, Gillingham, UK). A sterile plastic loop 

was used to pick a colony which was smeared on the saturated filter paper.  A 

change in colour from colourless to blue within 20 s indicated a positive reaction 

due to formation of cytochrome c oxidase (Downes and Ito, 2001). 

2.2.6 Genotypic assessment and identification of isolates 

The methods of Ouoba et al. (2012) and Anyogu et al. (2014) were used for the 

genotypic evaluation of the isolates.  

2.2.6.1 Chromosomal DNA extraction 

A colony from a 24 h culture was inoculated in 1ml of autoclaved high purity 

water (W4502 Sigma, Gillingham, UK) in a 1.5ml Eppendorf centrifuge tube. The 

tube was centrifuged for 1 minute at 12,000 x g (Eppendorf 5415R, UK) to wash 

the cells. The supernatant was carefully discarded. An aliquot of 100 µl of 

InstaGene matrix (7326030 Bio-Rad, Hertfordshire, UK) was added to the pellet 

and incubated at 56 oC for 30 min. The tube was rotated on a vortex (Fisons, UK) 

for 10 s and placed in a 100 oC heat block for 8-10 min. The tube was again 

rotated on the vortex for another 10 s and centrifuged at 12,000 x g (Eppendorf 

5415R, UK) for 3 min. The supernatant was transferred into a sterile Eppendorf 

tube. The DNA extract (supernatant) was stored at -20 oC for subsequent use.  

2.2.6.2 Differentiation of isolates using rep-PCR 

The rep-PCR molecular technique was used to group isolates that were isolated 

from human breast milk. Differentiation of isolates by rep-PCR was based on 

similarity of DNA band patterns. To conduct the PCR, a final volume of 25 µl 
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reaction mixture was set up as follows; 2 µl of extracted DNA, 2.5 µl of PCR 

buffer (10 X; N808-0161, Applied Biosystems), 4 µl of dNTP (1.25 mmol/ l; 

U1511,Promega, Southampton, UK), 2 µl of MgCl2 (25 mmol/ l; AM9530G, 

Applied Biosystems), 4 µl of primer GTG5 (5’-GTG GTG GTGGTG GTG-3’) (5 

mmol/ l; Applied Biosystems), 0.2 µl of Taq polymerase (5 U; N808-0161, 

Applied Biosystems) and 10.30 µl of autoclaved high purity water (W4502 

Sigma, Gillingham, UK). The amplification was carried out in a thermocycler 

(GeneAmp PCR 2700 system, Applied Biosystems, UK) using the following 

conditions; initial denaturation at 94 °C for 4 min followed by 30 cycles of 

denaturation at 94 °C for 30 s, annealing at 45 °C for 1 min, elongation at 65 °C 

for 8 min and final extension at 65 °C for 16 min, then cooling at 4 °C. The 

amplified fragments of DNA (PCR products) were separated using agarose gel 1.5 

% (w/v) (1613103 Bio-Rad, Hertfordshire, UK)  and electrophoresis at 120V for 3 

h. PCR products were visualised after staining with diluted ethidium bromide 

(E1510 Sigma, Gillingham, UK) solution using a gel documentation system 

(GelDoc, UVP, Cambridge UK).  

2.2.6.3 16S rRNA gene sequencing amplification 

Representative isolates from each rep-PCR group were selected for16S rRNA 

gene amplification.  Primers (100 mM) 0.5 µl of Primers (100 mM), PA 

(sequence) and 0.5 µl PE, (sequence) [Sigma, Gillingham, UK] were used to 

direct the amplification of a partial portion of the 16S rRNA gene. The reaction 

mixture consisted of 37.73 µl autoclaved high purity water (W4502 Sigma, 

Gillingham, UK), 5 µl 10x Buffer PCR buffer with MgCl2 (Applied Biosystems, 
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UK),  5 µl dNTP 1.25 mM (Promega, UK), 0.25 µl Taq DNA Polymerase 

(Applied Biosystems, UK) and 1µl extracted DNA. A volume of 1µl of the 

extracted DNA was placed in a PCR tube and 49µl of the PCR mixture was added 

and mixed. The PCR tubes were placed in the DNA thermocycler (Applied 

Biosytems, UK). The amplification process included; denaturation at 95 oC for 5 

min,  35cycles of 94 oC for 1 min, 55 oC for 1 min and 72 oC for 1min and a final 

extension at 72 oC for 5 min. In order to confirm that amplification had occurred, 

gel electrophoresis was carried out for 30 min as described in rep-PCR. PCR 

products that showed visible bands were purified using QIAquik PCR purification 

kit (Qiagen, UK), the manufacturer’s instruction were followed. To generate a 

copy of the reverse strand, sequencing PCR was carried out using primer PD 

(sequence) (Sigma, Gillingham, UK) and the ABI big dye terminator (Applied 

Biosytems, UK).  A volume of 4 µl of the purified PCR product was placed in a 

PCR tube, 2 µl of primer pD and 4 µl of ABI big dye terminator reaction mix 

were added and mixed thoroughly. The amplification process was performed 

under the following conditions; 95 oC for 2 min, then 35 cycles of 96 oC for 15 s, 

40 oC for 1 s and 60 oC for 4 min. PCR products were sent to Source Bioscience 

(Cambridge, UK) for sequencing. Sequences of each isolate were compared to the 

GenBank database using the Basic Local Alignment Search Tool (BLAST) 

program of the National Center for Biotechnology Information (NCBI, MD, 

USA) and the EZTaxon (Yoon et al., 2017) database. Genus and species 

identification of the isolates was confirmed when sequence showed above 97% 

(Genbank) and 97% (EZTaxon) similarity to those in the databases.  
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2.3 Results 

2.3.1 Enumeration and isolation 

In total, 20 volunteers were recruited in Nigeria following the procedures 

explained in section 2.2.1 (donor recruitment). Colonies were isolated from 18 of 

the 20 human breast milk samples examined which showed numbers ranging from 

2.30±0.23 to 4.04±0.20 cfu/ml in MRS agar and 2.14±0.20 to 4.14±0.13 cfu/ml in 

MRScys agar. No growth was observed in two samples (samples B and N). No 

growth was also observed on MRScys agar that was inoculated with sample O. 

The numbers of colonies in the samples were similar in both the MRS and MRS-

cys agar plates.  Except for samples F and J where the number of colonies was 

higher in MRS (4.04±0.20) and in MRS-cys agar (4.14±0.13) respectively as 

compared to the rest of the samples (Table 2.1). A total of 108 isolates were 

isolated. 

2.3.2 Phenotypic characteristics 

One hundred and eight (108) isolates from MRS and MRS-cys agar were screened 

for their microscopic and biochemical characteristics (Table 2.2). All tested 

colonies from all the samples were Gram positive and oxidase negative. All 

isolates from samples A, C and F were catalase negative cocci, while all isolates 

from samples E, H and J were catalase positive cocci. All isolates from D and M 

were catalase negative rods. Isolates from sample G were catalase positive cocci, 

with the exception of isolates G1d and G1b (MRS) which were catalase negative. 

Sample I yielded mainly catalase positive cocci, but one was catalase negative. 

All isolates from Sample K contained principally catalase positive cocci except 
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for one, which was catalase negative. All isolates from Sample L were catalase 

positive; two of them (MRS) were rods and the other two cocci. Two isolates 

from sample O (MRS) were catalase positive rods, the other two were a rod and a 

coccus, both catalase negative. All the isolates from sample P were catalase 

negative, four were rods and one was a coccus. Sample Q yielded two catalase 

positive cocci and the other two were rods, one catalase negative and the other 

catalase positive. Three of the isolates from sample R (MRS) were catalase 

negative rods while the other three were catalase positive cocci. All isolates from 

sample S were catalase positive rods. One of the isolates from sample T (MRS) 

was catalase positive cocci; the others were catalase negative rods. 
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Table 2.1 The recovery of microorganisms from human breast milk on MRS and 

MRS-cys agar. 

Samples cfu/ml (MRS) cfu/ml (MRS-cys) 

A 3.34 ± 0.22 3.23 ± 0.14 
 

B <1x10 <1x10 
C 3.17 ± 0.10 3.23 ± 0.14 

 
D 3.36 ± 0.13 3.27 ± 0.20 

 
E 3.17 ± 0.10 

 
3.11 ± 0.17 
 

F 4.04 ± 0.20 
 

2.96 ± 0.35 
 

G 2.86 ± 0.22 
 

2.30 ± 0.15 
 

H 2.30 ± 0.23 
 

2.49 ± 0.15 
 

I 3.90 ± 0.30 
 

2.92 ± 0.20 

J 2.65 ± 0.29 
 

4.14 ± 0.13 

K 2.77 ± 0.33 
 

2.96 ± 0.29 

L 2.65 ± 0.10 
 

2.84 ± 0.14 
 

M 2.70 ± 0.17 
 

2.94 ± 0.17 

N <1x10 <1x10 
O 2.47 ± 0.22 

 
<1x10 

P 3.25 ± 0.11 
 

3.34 ± 0.16 
 

Q 3.17 ± 0.10 
 

3.20 ± 0.12 
 

R 2.98 ± 0.48 
 

2.14 ± 0.24 
 

S 3.07 ± 0.10 
 

3.27 ± 0.11 
 

T 3.04 ± 0.21 
 

2.93 ± 0.29 
 

  MRS = de Man Rogosa Sharpe agar  

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 
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   cfu/ml = colony forming unit per milliliter 

   Data are mean log10 ± standard deviation of duplicate experiments. 

Table 2.2:   Phenotypic characteristic of bacteria isolated from human breast 

milk.  

Sample Media Gram stain and 

morphology 

Catalase 

test 

Oxidase 

test 

A1a ,b, c, d and 
A2a, b, c and d 

MRS-CYS Gram +ve cocci in pairs, 
chains and clusters 

-ve -ve 

B MRS-CYS ng ng ng 
B MRS ng ng ng 
C1a MRS Gram +ve cocci in pairs, 

chains and clusters 
-ve -ve 

C2a, b, c and d MRS-CYS Gram +ve cocci in pairs, 
chains and clusters 

-ve -ve 

D1 MRS-CYS Gram +ve rods singly or in 
pairs 

-ve -ve 

D2 MRS Gram +ve rods singly or in 
pairs 

-ve -ve 

E2a, b, c and d MRS-CYS Gram +ve cocci singly, in 
pairs and tetrads 

+ve -ve 

F1 and F2 MRS Gram +ve cocci in pairs and 
chains 

-ve -ve 

F1 and F2 MRS-CYS Gram +ve cocci in pairs and 
chains 

-ve -ve 

G1a and c MRS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

G1b and d MRS Gram +ve cocci in pairs, 
tetrads and chains 

-ve -ve 

G1a, b and c MRS-CYS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

G2a, b, c and d MRS-CYS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

G2a, b and c MRS Gram +ve cocci  singly, in 
pairs, and chains 

+ve -ve 

a, b, c and d = individual  distinct colonies from plates that were cultured from cryovial 
beads. 

ng = no growth. 

MRS = de Man Rogosa Sharpe agar      

MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 
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Table 2.2 continued 

Sample Media Gram stain and 

morphology 

Catalase 

test 

Oxidase 

test 

H1 and H2 MRS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

H1 and H2 MRS-CYS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

I1 MRS Gram +ve cocci in pairs, 
tetrads and chains 

-ve -ve 

I1 and I2 MRS-CYS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

I2 MRS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

J2a and b MRS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

J2a, b, c and d MRS-CYS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

K1 MRS Gram +ve cocci in pairs, 
tetrads and chains 

-ve -ve 

K1 and K2 MRS-CYS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

K2 MRS Gram +ve cocci in pairs, 
tetrads and chains 

+ve -ve 

a, b, c and d = individual  distinct colonies from plates that were cultured from cryovial 
beads. 

ng = no growth. 

MRS = de Man Rogosa Sharpe agar     

 MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 
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Table 2.2 continued 

Sample Media Gram stain and 
morphology 

Catalase 
test 

Oxidase 
test 

L1 and L2 MRS Gram +ve rods singly or 
in pairs 

-ve -ve 

L1 and L2 MRS-CYS Gram +ve cocci pairs 
and chains 

-ve -ve 

M1 and M2 MRS-CYS Gram +ve rods singly or 
in pairs 

-ve -ve 

M1,  M2a ,b, c 
and M3 

MRS Gram +ve rods singly or 
in pairs 

-ve -ve 

N MRS ng ng ng 
N MRS-CYS ng ng ng 
O MRS-CYS ng  ng ng 
O1 MRS Gram +ve rods and 

cocci in pairs or chains 
+ve -ve 

O2 and O3 MRS Gram +ve rods singly or 
in pairs 

-ve -ve 

P1 MRS Gram +ve cocci in pairs, 
tetrads and chains 

-ve -ve 

P2 and P3 MRS Gram +ve rods singly or 
in pairs 

-ve -ve 

P2a, b MRS-CYS Gram +ve rods singly or 
in pairs 

-ve -ve 

Q1 MRS Gram +ve cocci in pairs 
and chains 

-ve -ve 

Q1 MRS-CYS Gram +ve rods singly or 
in pairs 

+ve -ve 

a, b, c and d = individual  distinct colonies from plates that were cultured from cryovial 
beads. 

ng = no growth. 

MRS = de Man Rogosa Sharpe agar     

 MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 
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Table 2.2 continued 

Sample Media Gram stain and 

morphology 

Catalase 

test 

Oxidase 

test 

Q2 and Q3a, b, 
c 

MRS-CYS Gram +ve rods singly or 
in pairs 

-ve -ve 

Q2a MRS Gram +ve rods singly or 
in pairs 

-ve -ve 

Q2b MRS Gram +ve cocci in pairs +ve -ve 
R1 MRS Gram +ve cocci in pairs, 

tetrads and chains 
+ve -ve 

R1 MRS-CYS Gram +ve cocci in pairs 
and chains 

+ve -ve 

R2, R3 and 
R4a 

MRS Gram +ve cocci in pairs 
and chains 

+ve -ve 

R4b, R5a and 
R5b 

MRS Gram +ve rods singly or 
in pairs 

-ve -ve 

S1 and S2a, b MRS-CYS Gram +ve rods singly or 
in pairs 

+ve -ve 

S3 MRS Gram +ve rods singly or 
in pairs 

+ve -ve 

T1, T2a, b and 
T3a, b 

MRS-CYS Gram +ve rods singly or 
in pairs 

-ve -ve 

T1 MRS Gram +ve cocci in pair 
and chains 

+ve -ve 

T2a MRS-CYS Gram +ve rods singly or 
in pairs 

-ve -ve 

T2b MRS-CYS Gram +ve rods singly or 
in pairs 

-ve -ve 

T2a,b,c and 
T3a,b 

MRS 
 

Gram+ve rods singly or 
in pairs 

-ve -ve 

a, b, c and d = individual  distinct colonies from plates that were cultured from cryovial   
beads 

ng = no growth. 

MRS = de Man Rogosa Sharpe agar    

 MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 
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2.3.2 Genotypic identification 

The rep-PCR was first used to discriminate bacterial strains (Figure 2.1 to 2.5). 

This facilitated grouping of isolates into 19 groups based on visual observation of 

similarity of DNA band patterns. Using 16S rRNA gene sequencing, GenBank 

and EZTaxon databases, the isolates were identified. The identified organisms 

are shown in Table 2.3. Intraspecies genotypic diversity was seen in 

Lactobacillus pentosus, Lactobacillus coryniformis and Leuconostoc 

mesenteroides subsp. lactis which were divided into three and two groups 

respectively by rep-PCR (Table 2.3). Most of the identified LAB belong to the 

Lactobacillus genus, the rest are Leuconostoc, Weissella, Streptococcus and 

Enterococcus. The non-LAB were identified as Staphylococcus epidermidis 

and Staphylococcus hominis.  

The predominant genus was Lactobacillus with four species; Lactobacillus 

fermentum, Lactobacillus coryniformis, Lactobacillus pentosus and Lactobacillus 

plantarum. Weissella, Leuconostoc and Streptococcus each have two species 

which are Weissella confusa, Weissella paramesenteroides, Leuconostoc 

mesenteroides subsp. mesenteroides, Leuconostoc mesenteroides subsp. lactis, 

Streptococcus salivarius subsp. thermophilus and Streptococcus cristatus 

respectively, and finally Enterococcus faecium. In total, 67% of the identified 

bacteria were LAB (Enterococcus faecium 8.8%, Leuconostoc mesenteroides 

subsp. mesenteroides 5.3%, Leuconostoc mesenteroides subsp. lactis 5.3%, 

Lactobacillus fermentum 5.3%, Lactobacillus coryniformis 5.4%, Lactobacillus 

pentosus 10.5%, Lactobacillus plantarum 1.8%, Streptococcus salivarius subsp. 
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thermophilus 3.5%, Streptococcus cristatus 1.8% Weissella confusa 10.5% and 

Weissella paramesenteroides 8.8%). The remaining 33% were non-LAB 

(Staphylococcus epidermidis 24.2% and Staphylococcus hominis 8.8%). 

 

 

Figure 2.1: Rep-PCR gel image of DNA profiles of Enterococcus faecium 

A1a[Mc] = A1, A1b[Mc] = A2, A1c=A3, A1d[Mc] = A4, A2a[Mc] = A5, A2b[Mc] = 
A6, A2c[Mc] = A7, A2d[Mc] =A8, C1a[M] = A19, G1b[M] = A40, G1d[M] = A41  

 M = Molecular marker 

A1a [Mc] to G1d [M] = isolate codes 

A1 to A41 = Rep-PCR profiles of isolates 
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Figure 2.2: Rep-PCR gel image of DNA profiles of Lactobacillus pentosus 

L1 [M] = B51, T1 [M] = B78, T2b [Mc] = B81, T2a [M] = B82, T2b [M] =B83,  

T2c [M] = B84, 

T3a [Mc] = B87, J2c [Mc] = B91, J2d [Mc] = B92, Q3b [Mc] = B100  

M = Molecular marker 

L1 [M] to Q3b [Mc] = isolate codes 

B51 to B100 = Rep-PCR profiles of isolates 
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Figure 2.3: Rep-PCR gel image of DNA profiles of C = Lactobacillus coryniformis 

T1 [Mc] = C79, T2a [Mc] = C80, T2b [M] = C83, T2c [M] = C84, T3b [Mc] = C86 and 
T3b [M] = C88 

D = Lactobacillus fermentum   E2d [Mc] = D15, O1 [M] = D17 and O2 [M] =D17 

E = Lactobacillus plantarum   P3 [M] = E66 and M = Molecular marker 

T1 [Mc] to P3 [M] = isolate codes 

C79 to E66 = Rep-PCR profiles of isolates 
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Figure2.4: Rep-PCR gel image of DNA profiles of F= Leuconostoc mesenteroides 
subsp. mesenteroides 

C2a [M] = F9, C2b [Mc] = F10 and C2c [Mc] = F11 

G = Leuconostoc mesenteroides subsp. lactis   

R1 [M] = G67, J2b [M] = G71, Q3c [M] = G73, R4b [M] = G74, R5a [M] = 75,  

Q1 [Mc] = G95  

 M = Molecular marker 

C2a [M] to Q1 [Mc] = isolate codes 

F9 to G95 = Rep-PCR profiles of isolates 
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Figure 2.5: Rep-PCR gel image of DNA profiles of J = Weissella confusa 

D2 [M] =J14, L2 [M] = J53, L2 [Mc] = J54, M2a [M] = J58, M2b [M] = J59 and M2c 
[M] = J60 

H=Streptococcus cristatus   Q1 [M] = H96,   

I = Streptococcus salivarius subsp. thermophilus =L1 (Mc)  

K = Weissella paramesenteroides D1 [Mc] = K13, P2 [M] = K63, P2a [Mc] = K64, P2b 
[Mc] = K65 and J2a [Mc] = K89 

M = Molecular marker 

D2 [M] to J2a (Mc) = isolate codes 

J14 to K89 = Rep-PCR profiles of isolates 
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Table 2.3: Identification of 16S rRNA gene sequences of bacteria isolated from 

human breast milk by NCBI and EzTaxon databases. 

Sample Isolate 
code 

Rep-
PCR 
groups 

Identification by 16S 
rRNA gene 
sequencing by NBCI 
BLAST 

% Confirmation of 
identification by 
Eztaxon  

% 

A A1a 
(Mc) 

 
A1b 
(Mc) 

 

1 
 
 
1 

Enterococcus 
faecium(B1) 

 
Enterococcus 
faecium(B2) 

98 
 
 

98 
 

Enterococcus 
faecium(B1) 

 
Enterococcus 
faecium(B2) 

 

99.39 
 
 

98.86 
 

B ng ng ng ng ng ng 
C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C1a(M) 
 

C2b 
(Mc) 

 
 
 
 

C2c 
(Mc) 

 
 

C2a 
(M) 

1 
 
2 

 
 

 
 
 
2 
 

 
2 

Enterococcus faecium 
(B19) 

Leuconostoc 
mesenteroides subsp. 
mesenteroides (B10) 
Leuconostoc 
pseudomesenteroides 

 
Leuconostoc 
mesenteroides subsp. 
mesenteroides(B11) 
 

Leuconostoc 
Pseudomesenteroides 

 
Leuconostoc 
mesenteroides subsp. 
mesenteroides(B9) 

99 
 
 

99 
 

 
98 
 
 

99 
 

 
98 

 
 
99 
 
 

Enterococcus faecium 
(B19) 

Leuconostoc 
mesenteroides subsp. 
mesenteroides(B10) 

 
 
 
Leuconostoc 
mesenteroides subsp. 
mesenteroides(B11) 

 
 

 
Leuconostoc 
mesenteroides subsp. 
mesenteroides(B9) 

99.79 
 
 

100 
 
 
 
 
 

100 
 
 
 

 
 
100 

D D1 
(Mc) 

 
D2 (M) 

 
 

3 
 
 

9 

Weissella 
paramesenteroides 

(B13) 
 
Weissella confusa (B14) 

99 
 

 
 
99 
 

Weissella 
paramesenteroides 

(B13) 
 
Weissella confusa (B14) 

99.80 
 

 
 
99.79 

 
E 
 

E2d 
(Mc) 

 
E2a 
(Mc) 

 
E2c 
(Mc) 

 
 

4 
 

 
5 
 

 
5 

Lactobacillus 
fermentum (B15) 

 
Staphylococcus 

epidermidis (B20) 
 

 
Staphylococcus 

epidermidis (B22) 

100 
 

 
100 

 
 

 
100 

 

Lactobacillus 
fermentum (B15) 

 
Staphylococcus 

epidermidis (B20) 
 

 
Staphylococcus 

epidermidis (B22) 
 
 

99.17 
 

 
100 

 
 

 
99.12 

 

F F2 (M) 5 Staphylococcus 
epidermidis (B32) 

96 
 

Staphylococcus 
epidermidis (B32) 

95.45 
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  Mc = MRS-cysteine     

  M = MRS   (B1) to (B88) = chromosal DNA codes   

 % = percent likelihood of identity (values in red = acceptable level of similarity)    

 ng = no growth 
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Table 2.3 continued 

Sample Isolate 
code 

Rep-
PCR 
groups 

Identification by 16S 
rRNA gene sequencing 
by NBCI BLAST 

% Confirmation of 
identification by 
Eztaxon  

% 

G 
 
 
 
 
 
 
 
 

G1b 
(M) 

 
G1d 
(M) 

 
G2a 
(M) 

 
G2b 
(M) 

 
G1a 
(Mc) 

 
 
 

G2b 
(Mc) 

 
 
 

G2c 
(Mc) 

 
 
 

G1c 
(M) 

 
G2c  
(Mc) 

 

1 
 

 
1 
 
 

5 
 
 

5 
 

 
5 
 
 
 
 

5 
 
 
 
 

5 
 
 
 
 

6 
 

 
6 

Enterococcus 
faecium(B40) 

 
Enterococcus faecium  

(B41) 
 

Staphylococcus 
epidermidis (B42) 

 
Staphylococcus 

epidermidis (B43) 
 

Staphylococcus 
epidermidis (B33) 

Staphylococcus 
haemolyticus 

 
Staphylococcus 

epidermidis (B36) 
Staphylococcus 
haemolyticus 

 
Staphylococcus 

epidermidis (B38) 
Staphylococcus 
haemolyticus 

 
Staphylococcus hominis 

(B47) 
 

Staphylococcus 
hominis(B37) 

Staphylococcus warneri 

98 
 

 
98 
 
 

99 
 

 
98 
 

 
99 

 
99 
 
 

99 
 
99 

 
 
99 

 
99 
 
 

99 
 
 

100 
 

100 
 

Enterococcus 
faecium(B40) 

 
Enterococcus faecium  

(B41) 
 

Staphylococcus 
epidermidis (B42) 

 
Staphylococcus 

epidermidis (B43) 
 

Staphylococcus 
epidermidis (B33) 

 
 
 

Staphylococcus 
epidermidis (B36) 

 
 
 

Staphylococcus 
epidermidis (B38) 

 
 

 
Staphylococcus 
hominis (B47) 

 
Staphylococcus 
hominis(B37) 

 

99.34 
 

 
99.37 

 
 

98.91 
 

 
99.56 

 
 
97.99 

 
 
 
 

98.71 
 
 
 
 

98.73 
 
 
 
 

100 
 

 
99.79 

 

  Mc = MRS-cysteine     

  M = MRS   (B1) to (B88) = chromosal DNA codes   

 % = percent likelihood of identity (values in red = acceptable level of similarity)  
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Table 2.3 continued 

Sample Isolate 
code 

Rep-
PCR 
groups 

Identification by 
16S rRNA gene 
sequencing by 
NBCI BLAST 

% Confirmation of 
identification by 
Eztaxon  

% 

H H1 
(Mc) 

 
H1 

(Mc) 
 

H2 
(Mc) 

5 
 

 
6 
 

 
6 

Staphylococcus 
epidermidis (B45) 

 
Staphylococcus 
hominis (B23) 

 
Staphylococcus 
hominis (B24) 

100 
 
 
100 

 
 
100 

 

Staphylococcus 
epidermidis (B45) 

 
Staphylococcus hominis 

(B23) 
 

Staphylococcus hominis 
(B24) 

100 
 

 
99.57 

 
 
99.79 

 
I I2 

(Mc) 
18 Pantoea dispersa  

( B28) 
93 Pantoea dispersa ( B28) 89.84 

 
J 
 
 
 
 

 

 
J2a 

(Mc) 
 
 

J2d 
(Mc) 

 
 

 
3 
 

 
 

12 
 
 

 
Weissella 

paramesenteroides 
(B89) 

 
Lactobacillus  

plantarum (B92) 
Lactobacillus 

pentosus 
 

 
99 
 
 

 
100 
 
99 

 

 
Weissella 

paramesenteroides (B89) 
 

 
Lactobacillus pentosus 

(B92) 
 
 

 
99.60 

 
 

 
100 

 
 

 

K K1 
(Mc) 

 
K1 
(M) 

 

5 
 

 
5 

 

Staphylococcus 
epidermidis (B48) 

 
Staphylococcus 

epidermidis(B94) 

97 
 

 
100 

 
 

Staphylococcus 
epidermidis (B48) 

 
Staphylococcus 

epidermidis (B94) 

97.33 
 

 
99.79 
 

L L1 (M) 
 

 
 

L1 
(Mc) 

 
 

 
 

L2 
(Mc) 

 
 
L2 (M) 

 
 

7 
 
 

 
8 
 
 

 
 
9 
 

 
 

9 

Lactobacillus 
pentosus (B51) 
Lactobacillus 

plantarum 
 
Streptococcus 
salivarius subsp. 
thermophilus(B52) 
Streptococcus sp. oral 

clone 
 

Weissella confusa 
(B54) 

 
Weissella confusa 

(B53) 
 

97 
 

97 
 
 

99 
 
 

99 
 

 
99 
 

 
97 
 

Lactobacillus pentosus 
(B51) 

 
 

 
Streptococcus salivarius 
subsp. thermophilus(B52) 

 
 

 
Weissella confusa (B54) 

 
 
 

Weissella confusa (B53) 
 

97.88 
 
 
 
 

100 
 
 
 

 
99.54 

 
 
 
99.11 

 

  Mc = MRS-cysteine     

  M = MRS   (B1) to (B88) = chromosal DNA codes   

 % = percent likelihood of identity (values in red = acceptable level of similarity)  
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Table 2.3 continued 

Sample Isolate 
code 

Rep-
PCR 
groups 

Identification by 16S 
rRNA gene 
sequencing by NBCI 
BLAST 

% Confirmation of 
identification by 
Eztaxon  

% 

L L1 (M) 
 
 
 
 

L1 
(Mc) 

 
 

L2 
(Mc) 

 
L2 (M) 
 

7 
 

 
 
 

8 
 
 

 
9 

 
9 

Lactobacillus pentosus 
(B51) 

Lactobacillus plantarum 
 
 
Streptococcus salivarius 
subsp. thermophilus 
(B52) 

Streptococcus sp. oral 
clone 

 
Weissella confusa (B54) 
 
Weissella confusa (B53) 
 

97 
 
97 

 
 
99 

 
 
99 

 
 
99 

 
97 
 

Lactobacillus pentosus 
(B51) 

 
 
 
Streptococcus salivarius 
subsp. thermophilus 
(B52) 

 
 
 
Weissella confusa (B54) 
 
Weissella confusa (B53) 
 

97.88 
 

 
 
 
100 

 
 

 
 
 

99.54 
 
99.11 

 
M 
 
 
 
 
 
 
 
 

M2b 
(M) 

 
 

 
 

M2c 
(M) 

 
 

M2a 
(M) 

 

9 
 
 

 
 
 

9 
 

 
9 

Weissella confusa (B59) 
 

Weissella koreensis 
 

Weissella salipiscis 
 
 

Weissella confusa (B60) 
 

 
Weissella confusa (B58) 

99 
 

99 
 

99 
 
 

100 
 

 
90 
 

 

Weissella confusa (B59) 
 
 
 
 
 
 

Weissella confusa (B60) 
 

 
Weissella confusa (B58) 
 

99.47 
 
 
 
 
 
 

99.77 
 

 
99 

N 
 

ng ng ng ng ng ng 

O O2 
(M) 

 
O3 
(M) 

4 
 
 
4 

Lactobacillus fermentum 
(B17) 

 
Lactobacillus fermentum 

(B18) 

100 
 
 

100 
 
 

Lactobacillus fermentum 
(B17) 

 
Lactobacillus fermentum 

(B18) 

99.60 
 
 

99.60 

Mc = MRS-cysteine       

M = MRS   (B1) to (B88) = chromosal DNA codes   

 % = percent likelihood of identity (values in red = acceptable level of similarity)  

  ng = no growth 
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Table 2.3 continued 

Sample Isolate 
code 

Rep-
PCR 
groups 

Identification by 16S 
rRNA gene 
sequencing by NBCI 
BLAST 

% Confirmation of 
identification by 
Eztaxon  

% 

 
P 
 
 
 
 
 
 
 
 

 

 
P2a 

(Mc) 
 
 

P2b 
(Mc) 

 
 

P2 (M) 
 

 
P3 (M) 

 
3 
 

 
 

3 
 
 
3 
 

 
19 

 
Weissella  

paramesenteroides 
(B64) 

 
Weissella 

paramesenteroides 
(B65) 

Weissella 
paramesenteroides 

(B63) 
 

Lactobacillus 
plantarum (B66) 

 
99 
 
 
 

100 
 
 
 

99 
 

 
100 

 
 

 
Weissella  

paramesenteroides (B64) 
 
 

Weissella 
paramesenteroides (B65) 
 

Weissella 
paramesenteroides (B63) 

 
 

Lactobacillus plantarum 
(B66) 

 
99.61 

 
 
 
 

99.79 
 

 
99.80 

 
 
100 

 
 

Q 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q2a 
(M) 

 
Q3c 
(M) 

 
 
Q1(Mc) 

 
 
 
 
 

Q2b 
(M) 

 
 
 
 
Q1 (M) 
 

6 
 
 

10 
 
 

10 
 

 
 
 
 

11 
 

 
 
 

16 
 
 
 

Staphylococcus 
hominis (B98) 

 
Leuconostoc 
mesenteroides subsp. 
lactis(B73) 
 
Leuconostoc 
mesenteroides subsp. 
lactis(B95) 

 
Leuconostoc garlicum 

 
Streptococcus 

pneumoniae (B72) 
 

Streptococcus mitis 
 
 
Streptococcus cristatus 

(B96) 

98 
 
 
 

99 
 

 
 
99 
 
 

99 
 
93 

 
 
94 
 

 
100 

 

Staphylococcus hominis 
(B98) 

 
Leuconostoc 
mesenteroides subsp. 
lactis(B73) 
 
 
Leuconostoc 
mesenteroides subsp. 
lactis(B95) 

 
 

Streptococcus 
pneumoniae (B72) 

 
 

 
 

Streptococcus cristatus 
(B96) 

 

98.38 
 
 
 

99.34 
 

 
 
 
99.52 
 

 
 

82.42 
 
 
 

 
 

99 

R R1 
(Mc) 

 
R1(M) 

 
 

5 
 
 

17 

Staphylococcus 
epidermidis B(101) 

 
Leuconostoc 
lactis(B67) 

Leuconostoc garlicum 
 

Leuconostoc citreum 

97 
 

 
99 
 

99 
 

98 

Staphylococcus 
epidermidis B(101) 

 
Leuconostoc lactis(B67) 

 
 
 

100 
 

 
100 

 

Mc = MRS-cysteine       
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M = MRS   (B1) to (B88) = chromosal DNA codes   

 % = percent likelihood of identity (values in red = acceptable level of similarity)  

Table 2.3 continued 

Sample Isolate 
code 

Rep-
PCR 
groups 

Identification by 16S 
rRNA gene 
sequencing by NBCI 
BLAST 

% Confirmation of 
identification by 
Eztaxon  

% 

S 
 
 
 
 
 

 

S3 (M) 
 

S1 
(Mc) 

 
S2b 
(Mc) 

 

5 
 

 
5 

 
8 

Staphylococcus 
epidermidis (B77) 

 
Staphylococcus 

epidermidis (B103) 
 

Streptococcus 
salivarius subsp. 
thermophilus (B76) 

99 
 

 
100 

 
 
99 

 

Staphylococcus 
epidermidis (B77) 

 
Staphylococcus 

epidermidis (B103) 
 
Streptococcus salivarius 

subsp. thermophilus (B76) 

100 
 

 
100 

 
 

100 
 

T T1 (M) 
 

 
 

T2b 
(Mc) 

 
 
 
 

T2a 
(M) 

 
 
 

T3b 
(Mc) 

 
T2a 
(Mc) 

 
 
 
 

T3a 
(M) 

 
 
 

T3b 
(M) 

 

12 
 

 
 

12 
 
 
 
 

12 
 

 
 
 

13 
 
 

13 
 
 
 
 

14 
 

 
 
 

15 

Lactobacillus pentosus 
(B78) 

Lactobacillus 
plantarum 

 
Lactobacillus pentosus 

(B81) 
 Lactobacillus 
plantarum 

 
Lactobacillus pentosus 

(B82) 
Lactobacillus 
plantarum 

 
Lactobacillus 
coryniformis (B86) 
 
Lactobacillus 
coryniformis(B80) 
Lactobacillus salivarus 
Lactobacillus 
rhamnosus 
 
Lactobacillus pentosus 

(B87) 
Lactobacillus 
plantarum 
 
Lactobacillus 
coryniformis (B88) 
 Lactobacillus    
rhamnosus 

96 
 
96 
 
 

100 
 
 

100 
 

97 
 
97 
 
 

99 
 

 
99 

 
99 
99 
 
 

100 
 
100 

 
 

97 
 
97 

Lactobacillus pentosus 
(B78) 

 
 

 
Lactobacillus pentosus 

(B81) 
 
 
 

Lactobacillus pentosus 
(B82) 

 
 
 

Lactobacillus 
coryniformis (B86) 

 
Lactobacillus 

coryniformis(B80) 
 

 
 
 

Lactobacillus pentosus 
(B87) 

 
 
 

Lactobacillus 
coryniformis (B88) 

 
 

 

100 
 
 
 
 

98.04 
 
 
 
 

100 
 
 
 
 

99.79 
 

 
99.58 

 
 

 
 
 

99.56 
 
 

 
 
99.79 

 
 

Mc = MRS-cysteine       
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M = MRS   (B1) to (B88) = chromosal DNA codes   

 % = percent likelihood of identity (values in red = acceptable level of similarity)  

 2.4 Discussion 

It was imperative to investigate presence of LAB in human breast milk samples 

from Nigerian breast feeding mothers. Limited research on LAB in human breast 

milk exist in the African continent especially Nigeria. The presence of LAB in 

human breast milk was therefore investigated in this study. The laboratory 

analysis of the breast milk samples involved enumeration and isolation of LAB 

from breast milk samples and preliminary phenotypic identification of isolates 

including Gram staining, catalase and oxidase tests.  

A total of 108 isolates from 20 samples of breast milk were recovered from both 

MRS agar and MRS-cys agar. The isolation of presumptive LAB from breast milk 

samples using MRS and MRS-cys agar is a good indication that potentially 

beneficial bacteria may be present in the milk samples. MRS-cys is MRS agar that 

has been supplemented with L-cysteine hydrochloride. L-cysteine hydrochloride 

facilitates removal of oxygen from MRS medium, creating more anaerobic 

condition which promotes growth of LAB and bifidobacteria. 

Tusar et al. (2014) isolated 86 isolates from human breast milk of 11 Slovenian 

lactating mothers using MRS agar, M17 agar and Transgalctosylated 

oligiosaccharide (TOS) propionate agar. However, Nasiraii et al. (2011) isolated 

306 isolates from human breast milk samples of 20 Iranian breast feeding mothers 

using MRS agar. 
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The isolation of 102 to 104 cfu/ml bacterial cells in this study corroborates with the 

counts of Martin et al. (2009) and Albesharat et al. (2011). Other research has 

shown that approximately 103 to 104 cfu/ml LAB have been isolated from the 

breast milk of healthy mothers (Jeurink et al. 2013). The standard minimum 

consumption of potentially beneficial bacterial cells per day for any value to the 

consumer is 106 to109cfu/ml or cfu/gram (Lourens-Hattingh and Viljoen, 2001 

and WGO, 2008). The isolation of 102 to 104cfu/ml bacterial cells in this study 

indicates that the babies would ingest the required daily number of cells, since 

they will drink at least 700ml of breast milk per day. Infants therefore ingest 

1x105 to 1x107 beneficial bacterial cells during suckling, if the babies consume 

approximately 800ml (Singh et al. 2014).  

The genotyping of LAB is currently the most reliable method of verifying their 

identity at the genus, species and subspecies level. Using rep-PCR allowed typing 

of the isolates at genus, species and sub-species level into 19 groups based on 

their DNA patterns. The rep-PCR showed that there is an intraspecies genotypic 

diversity in some of the LAB. This was seen in Lactobacillus pentosus, 

Lactobacillus coryniformis and Leuconostoc mesenteroides subsp. lactis. No 

genotypic diversity was observed in Enterococcus faecium, Leuconnostoc 

mesenteroides subsp.mesenteroides, Lactobacillus fermentum, Streptococcus 

cristatus, Streptococcus salivarius subsp. thermophilus, Weissella confusa and 

Weissella paramesenteroides.  

Both phenotypic and genotypic techniques were used in the identification of LAB 

in this study. Similar methods were also used by other researchers for 
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identification of LAB in human breast milk (Martin et al. 2003, Albesharat et al. 

2011, Singh et al. 2014 and Tusar et al. 2014), human feces (Khalil et al. 2007 

and Albesharat et al. 2011) and fermented foods (Kpikpi et al. 2010, Takeda et al. 

2011, Ouoba et al. 2012 and Anyogu et al. 2014). 

Research on human breast milk indicates similar LAB to those herein reported, 

and also other LAB and non-LAB not identified in this research. Martin et al. 

(2003) identified Lactobacillus fermentum, Enterococcus faecium and 

Lactobacillus gasseri. Albesharat et al. (2011) reported the presence of 

Lactobacillus plantarum, Enterococcus faecium, Enterococcus faecalis, 

Lactobacillus fermentum, Lactobacillus brevis and Pediococcus pentosaceus, 

while Tusar et al. (2014) identified Lactobacillus fermentum, Enterococcus 

faecalis, Lactobacillus salivarius, Lactobacillus gasseri, Lactobacillus reuteri, 

Bifidobacterium breve and Staphylococcus epidermidis. Maternal diet could 

account for some differences in LAB observed in this study to those reported by 

other authors such as Albesharat et al. (2011) and Tusar et al. (2014). 

Publications reporting on fermented foods identified similar LAB to those isolated 

from human breast milk. Anyogu et al. (2014) identified Lactobacillus plantarum, 

Enterococcus faecium, Leuconostoc mesenteroides subsps.mesenteroides, 

Weissella confusa and Weissella paramesenteroides from fermented cassava, 

while Kpikpi et al. (2010) isolated Lactobacillus plantarum, Lactobacillus 

fermentum and Leuconostoc mesenteroides subsp. mesenteroides from fermented 

condiments. Takeda et al. (2011) recovered Lactobacillus fermentum, 

Enterococcus faecium, Leuconostoc mesenteroides subsp. mesenteroides, 
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Weissella confusa, Lactobacillus plantarum and Lactobacillus pentosus from 

fermented dairy products. It is interesting to note that seven out of the eleven 

identified LAB in this study are similar to LAB identified from fermented foods. 

Some studies have linked presence of same species of probiotic LAB ingested by 

mothers to those found in their breast milk (Nasiraii et al. 2011and Gomez-

Gallago et al. 2016). Therefore, maternal dietary habits could contribute to 

diversity of LAB in human breast milk. Moreover, the origin of LAB present in 

human breast milk has been attributed to maternal gut (Martin et al. 2003 and 

Jeurink et al. 2013). Some bacteria could migrate from maternal gut to mammary 

gland with the help of maternal dendritic cells (Fernandenz et al. 2013). 

The identification of LAB, Staphylococcus epidermidis and Staphylococcus 

hominis in this study is corroborated by the results of other studies on human 

breast milk such as Martin et al. (2003), Martin et al. (2007), Makino et al. 

(2011), Martin et al. (2012), Fernandez et al. (2013),  Tusar et al. (2014) and 

Altuntas, (2015). In fact, Martin et al. (2012) stated that Staphylococcus 

epidermidis and Staphylococcus hominis were identified in the entire human 

breast milk samples they evaluated using 16S rRNA gene sequencing. 

Martin et al. 2012 collected samples of breast milk from Spanish breast feeding 

mothers after cleansing of maternal nipples. But they reported the presence of 

Staphylococcus epidermidis and Staphylococcus hominis in the samples. 

Similarly, Tusar et al. 2014 used aseptic techniques for collection of breast milk 

samples from Slovenian lactating mothers. Staphylococcus epidermidis were also 

identified in the milk samples. However, Sakwanski et al. 2016 compared the 
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microbiota of Chinese human breast milk collected with aseptic cleansing and 

without aseptic cleansing of maternal nipples. Staphylococcus species were 

identified in both samples. Aseptic cleansing of nipples therefore, does not 

prevent the identification of Staphylococcus species from human breast milk. 

Moreover, Staphylococcus species are commensal bacteria inherent in human 

breast milk. 

Some of the LAB identified from the Nigerian human breast milk were similar to 

those isolated in other countries, since Enterococcus faecium and Lactobacillus 

spp. were also identified in Spanish human breast milk (Martin et al. 2003), 

Slovenian human breast milk (Tusar et al. 2014) and from the breast milk of 

Syrian mothers (Albesharat et al. 2011). 

LAB are important beneficial bacteria that have been used for centuries as starter 

organisms in the production of many kinds of fermented foods (Lee et al. 2012). 

Because of their ancient use in food production, some genera of LAB such as 

Lactobacillus, Lactococcus, Streptococcus, Leuconostoc and Pediococcus have 

been “generally recognized as safe” (GRAS) by the United States Food and Drug 

Administration (USFDA) and have also been included in the list of “Qualified 

Presumption of Safety” (QPS) by the European Food Safety Authority (EFSA) 

(Ayeni et al. 2011). 

Olivares et al. (2006) suggested that breast milk of healthy breast-feeding mothers 

is the best source of beneficial LAB for the infant gastrointestinal tracts (GIT). 

Breast fed babies have a more diverse population of LAB in their GITs than their 

formula-fed counterparts (Matsuki et al. 1999 and Gueimonde et al. 2007). 
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Human breast milk is therefore an important source of potentially beneficial LAB 

that has been shown to promote the health and well-being of newly born babies 

and infants. 

 

2.5 Conclusion  

Bacteria recovered from human breast milk samples belong to a diverse range of 

genera and species of LAB. The 16S rRNA gene sequencing identified 38 LAB, 

Lactobacillus was the predominant genus with four species which are; 

Lactobacillus fermentum, Lactobacillus coryniformis, Lactobacillus pentosus and 

Lactobacillus plantarum. This study has contributed to the knowledge of the 

diversity of LAB in some samples of Nigerian human breast milk. The 

identification of these bacteria has facilitated further research into their probiotic 

potential and antimicrobial resistance profile. 
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3.1 Introduction 

For beneficial bacteria to improve the health and wellbeing of a host, it must resist 

the hostile environmental conditions of the upper gastrointestinal tract (GIT). The 

digestive system has various lethal, but host-protective, mechanisms that prevent 

passage of microorganisms through the GIT such as hydrochloric acid, gastric 

secretions and bile salts (Jin et al. 1998). As soon as LAB enter the duodenum, 

their survival depends on their ability to resist and adapt to bile salts, because the 

bacterial cell membrane consists of lipid and fatty acids that are prone to 

destruction by bile salts (Meritt and Donaldson, 2009). 

The GIT is a systemic tube divided into segments from the mouth to the anus 

(Figure 3.1). The regions of the digestive system are: mouth, oesophagus 

stomach, small intestine and large intestine. The stomach and upper small 

intestine contain fewer bacteria (103 to 105 per gram of intestinal content) due to 

the low pH (2-4) of the segment. Acid tolerant Lactobacillus and Streptococcus 

are the dominant genera in this segment. The lower part of the small intestine 

(ileum) contains diverse bacterial communities (108 per gram of intestinal 

content), while the large intestine (colon) has pH value of 5.5 to 7.0. The large 

intestine is the most important location for bacterial colonization and is the most 

diverse and densely populated region (1011 to 1013 per gram of intestinal content 

(Mackie et al. 1999). The GIT of an unborn baby is sterile (Neu and Li, 2003), 

colonization of the GIT begins after birth with transmission of microbes from the 

mother and the immediate environment. Babies are further exposed to a range of 

bacteria by ingesting breast milk and other food substances. Bacteria entering the 



88 
 

GIT through breast feeding are more likely to colonise the infant gut than bacteria 

ingested in other foods (Albesharat et al. 2011) and factors that regulate the fate 

of ingested microorganisms differ between newborns and adults (Mackie et al. 

1999). The stomach of the adult is more acidic than that of the newborn baby, the 

pH of the adult stomach is between 2 and 4. But in the first 24 to 48 hours after 

birth, the gastric pH of a baby is 5.5 to 7 (Neu and Li, 2003). The average time 

that a probiotic can survive in the stomach is 90 minutes (Park and Lim, 2015).  

 

Figure 3.1: Anatomy of the pediatric digestive system. Source: Fairview Health 
Library (2016).  
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In vitro studies of acid and bile resistance are vital in assessing the capability of 

beneficial bacteria to survive in the GIT ((Pan et al. 2009, Bendali et al. 2011, 

Zhang et al. 2013and Park and Lim, 2015). Survival of LAB at low pH such as 2 

to 4 is variable and dependent on the intrinsic (genotypic) attributes of a particular 

species, but supplementing acidic environments with glucose, lysozyme and 

pepsin increases the likelihood of survival of probiotic LAB (Corcoran et al. 

2005, Hosseini et al. 2009, Bendali et al. 2011 and Zhang et al. 2013).  

Resistance to bile toxicity is another important attribute of probiotic bacteria. Bile 

tolerance is species-specific and therefore tolerance amongst species is variable 

(Begley et al. 2005). Variability in resistance to bile salts within genera and 

species of LAB has been reported by Chateau et al. (1994) who recorded a 

diverse resistance pattern in strains of Lactobacillus rhamnosus. Jacobs et al. 

(1999) observed similar variability in strains of Lactobacillus plantarum, 

Lactobacillus fermentum, Lactobacillus rhamnosus and Lactobacillus casei. 

Resistance of LAB to acid and bile is variable among genera and species of LAB, 

it is therefore necessary to screen some of the identified LAB in this study. The 

aim of the study described in this chapter was to examine tolerance of some of the 

identified LAB to acid and bile solutions in vitro. Ability of LAB to survive in 

simulated gastric pH and bile could attribute LAB to potential probiotic. Thus, 

enable further probiotic characterisation of selected LAB. The specific objectives 

of this study were: 
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• To assess the survivability of selected LAB in different simulated gastric 

pH values, with and without pepsin. 

• To assess the survivability of selected LAB in different concentrations of 

bile salt. 

The LAB selected for investigation were: 

• Enterococcus faecium (A1a[Mc]) 

• Lactobacillus coryniformis (T3b[Mc]) 

• Lactobacillus fermentum (O3[M]) 

• Lactobacillus pentosus (T2a[M]) 

• Lactobacillus plantarum (P3[M]) 

• Leuconostoc mesenteroides subsp. lactis (R1[M]) 

• Leuconostoc mesenteroides subsp. mesenteroides (C2c[Mc]) 

• Streptococcus cristatus (Q1[M]) 

• Streptococcus salivarius subsp. thermophilus (S2b[Mc]) 

• Weissella confusa (M2c[M]) 

• Weissella paramesenteroides (D1[Mc]) 

Each of the LAB selected represent other identified LAB of the same genus and 

species. The selection was based on similarity in their rep-PCR profiles. 
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3.2 Materials and methods 

The acid and bile resistance study was carried out according to the methods of Jin 

et al. (1998), Chung et al. (1999), Lee et al. (2012) and Singh et al. (2014).  

3.2.1 Acid resistance study 

Acid resistance of selected LAB was studied in phosphate buffered saline (PBS) 

with pH 7.3 as control, and PBS with pH adjusted to values of 4.0, 3.0 and 2.0 

using 1M hydrochloric acid (HCl) without pepsin, and at the same pH values with 

pepsin (3g/L).  The solutions were sterilised using 0.2 micron membrane filters 

(7187, Whatman, UK) under vacuum (model 2552C-02 Welch Thomas Stokie, 

USA), then aseptically transferred in 9ml volumes to sterile universal bottles.  A 

loopful of several colonies of a 24 h culture of the isolate grown on MRS agar 

was sub-cultured into 1 ml maximum recovery diluent (MRD) and drops of this 

were added to 9 ml of MRD in sterile bottles with black caps until a value of 0.5 

on the MacFarland standard was achieved, which gave an approximate 

concentration of 108 cfu/ml (Dalynn biological 2014), which constituted the 

inoculum for the experiment. One ml of the inoculum was placed in the control 

tube containing 9 ml PBS (pH 7.3), and the same volume was added to 9 ml tubes 

of adjusted PBS.The tubes were incubated anaerobically at 37 oC for 3 h during 

which 100 µl were withdrawn using a pipette every 30 m, decimally diluted and 

plated on MRS agar, which was incubated anaerobically at 37 oC for 48 h. The 

enumerations were carried out in duplicate, colonies counted and mean values 



92 
 

calculated as cfu/ml. Survival ratios were calculated by dividing the stressed cell 

number by the control cell number and multiplying by 100. 

3.2.2 Bile resistance study 

Bile resistance of the selected LAB were also studied in PBS (control) and PBS 

containing 0.3, 0.5, 1 and 1.5 % (w/v) bile salt (B3883, Sigma, UK). The 

solutions were filter sterilised and aseptically dispensed after sterilisation, as 

described in Section 3.1.1. The inoculum of LAB was prepared as described in 

Section 3.1.1 and inoculation of the tubes containing PBS with bile salts was also 

carried out in the same way.  The tubes were incubated anaerobically at 37 oC for 

3 h and samples taken every 30 min and treated as described in Section 3.1.1. The 

enumerations were carried out in duplicate, colonies counted and mean values 

calculated as cfu/ml. Survival ratios were calculated by dividing the stressed cell 

number by the control cell number and multiplying by 100. 

3.3 Results 

3.3.1 Acid and bile resistance study 

Three different pH and bile concentrations were chosen to simulate the stomach 

acid and duodenum bile. The acid resistance of the eleven selected LAB were 

examined in PBS with pH adjusted to values of 4.0, 3.0 and 2.0 using 1M 

hydrochloric acid (HCl) without pepsin, and at the same pH values with pepsin 

(3g/L). The bile resistance was assessed in PBS containing 0.3, 0.5, 1 and 1.5 % 

(w/v) bile salt. The results of the acid and bile resistance of the studied lactic acid 
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bacteria are shown in figures 3.2 to 3.23 (graphs are log10 cfu/ml of bacterial 

counts, Tables are shown in Appendix 4). 

Cells of Leuconostoc mesenteroides subsp. mesenteroides were completely killed 

when exposed to pH 2.0 + pepsin and pH 2.0 at 0 minutes. Leuconostoc 

mesenteroides subsps. mesenteroides only survived in pH 3.0 during the first 30 

minutes, it did not survive beyond 30 minutes. In pH 3.0 + pepsin, cells survived 

the 3 hours of incubation. Pepsin therefore had a major effect on tolerance of 

Leuconostoc mesenteroides subsps. mesenteroides to pH 3 (Figure 3.2). Similarly, 

the bacterium was able to survive in pH 4.0 + pepsin and pH 4.0 without pepsin. 

Cells of Leuconostoc mesenteroides subsp. mesenteroides survived in all the bile 

concentrations of 0.3, 0.5, 1.0 and 1.5% up to the third hour (Figure 3.3).  
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Figure 3.2: Percentage survival ratios of Leuconostoc mesenteroides subsp. 

mesenteroides at pH values of 3.0 and 4.0 with and without pepsin. The error bars are 

standard deviation of duplicate experiments. 

 

 

Figure 3.3: Percentage survival ratios of Leuconostoc mesenteroides subsp.  

 mesenteroides in 0.3, 0.5, 1.0 and 1.5 % bile salts.  The error bars are standard deviation 

of duplicate experiments. 
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without pepsin. In pH 3.0 + pepsin, the cells survived up to the third hour 

indicating major effect of pepsin. In pH 4.0 + pepsin and pH 4.0 without pepsin, 

the cells also survived up to the third hour (Figure 3.4). Cells of Weissella 

paramesenteroides were able to survive in all the bile concentrations of 0.3, 0.5, 

1.0 and 1.5 (Figure 3.5). 

 

    Figure 3.4: Percentage survival ratios of Weisella paramesenteroides at pH values of   

3.0 and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 

 

Figure 3.5: Percentage survival ratios of Weisella paramesenteroides in 0.3, 0.5, 1.0 and 

1.5 % bile salts. The error bars are standard deviation of duplicate experiments. 
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Cells of Lactobacillus fermentum continued to survive in pH 2.0 + pepsin up to 

the third hour but the cells did not survive beyond the first hour in pH 2.0. In pH 

3.0 + pepsin and pH 3.0 without pepsin, as well as pH 4.0 + pepsin and pH 4.0 

without pepsin the cells survived up to the third hour (Figure 3.6). Resistance to 

bile salt was variable with time and concentration. Cells of Lactobacillus 

fermentum were able to survive up to three hours in 0.3% and 0.5%. The cells 

were able to survive up to two hours in 1.0 and 1.5% after which they became less 

tolerable (Figure 3.7). 

 

Figure 3.6: Percentage survival ratios of Lactobacillus fermentum at pH values of 2.0, 

3.0 and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 

 

0

20

40

60

80

100

120

0 30 60 90 120 150 180

Survival ratio 
(%)

Exposure time (min)

%survivalpH2

%survivalpH3

%survivalpH4

%survivalpH2+pepsin

%survival pH3+pepsin

%survival pH4+ pepsin



97 
 

 

Figure 3.7: Percentage survival ratios of Lactobacillus fermentum in 0.3, 0.5, 1.0 and 1.5 

% bile salts. The error bars are standard deviation of duplicate experiments. 
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therefore, had significant effect on survival of the cells at this pH.  
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Figure 3.8: Percentage survival ratios of Lactobacillus pentosus at pH values of 2.0, 3.0 

and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 
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Figure 3.9: Percentage survival ratios of Lactobacillus pentosus in 0.3, 0.5, 1.0 and 1.5 

% bile salts. The error bars are standard deviation of duplicate experiments. 

Cells of Weissella confusa could not survive in pH 2.0 + pepsin and pH 2.0 

without pepsin. Therefore, pepsin did not have any effect on survival of cells at 
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Figure 3.10: Percentage survival ratios of Weisella confusa at pH values of 3.0 and 4.0 

with and without pepsin. The error bars are standard deviation of duplicate experiments. 

 

Figure 3.11: Percentage survival ratios of Weisella confusa in 0.3, 0.5, 1.0 and 1.5 % bile 

salts. The error bars are standard deviation of duplicate experiments. 
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subsp. thermophilus cells also survived up to the third hour. But in 1.5% bile, the 

cells could not survive beyond the second hour (Figure 3.13). 

 

Figure 3.12: Percentage survival ratios of Streptococcus salivarius subsp. thermophilus 

at pH values of 2.0, 3.0 and 4.0 with and without pepsin. The error bars are standard 

deviation of duplicate experiments. 

 

Figure 3.13: Percentage survival ratios of Streptococcus salivarius subsp. thermophilus 

in 0.3, 0.5, 1.0 and 1.5 % bile salts. The error bars are standard deviation of duplicate 

experiments. 
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Lactobacillus plantarum cells survive in pH 2.0 + pepsin up to the third hour but 

the cells only survive in pH 2.0 without pepsin at the initial zero minute. Pepsin 

had major effect on survival at pH 2. In pH 3.0 + pepsin, pH 3.0 without pepsin, 

pH 4.0 + pepsin and pH 4.0 without pepsin the cells survived the three hours of 

incubation (Figure 3.14). Lactobacillus plantarum cells also survived in all the 

bile salt concentrations of 0.3%, 0.5%, 1% and 1.5% (Figure 3.15). 

 

Figure 3.14: Percentage survival ratios of Lactobacillus plantarum at pH values of 2.0, 

3.0 and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 
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Figure 3.15: Percentage survival ratios of Lactobacillus plantarum in 0.3, 0.5, 1.0 and 

1.5 % bile salts. The error bars are standard deviation of duplicate experiments. 

Lactobacillus coryniformis cells survive in pH 2.0 + pepsin and pH 2.0 without 

pepsin up to 90 minutes.  The cells survived in pH 3.0 + pepsin and pH 3.0 

without pepsin, pH 4.0 + pepsin and pH 4.0 without pepsin up to the third hour 

(Figure 3.16). Lactobacillus coryniformis cells were also able to survive all the 

concentrations of bile salt of 0.3, 0.5, 1 and 1.5% (Figure 3.17). 
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Figure 3.16: Percentage survival ratios of Lactobacillus coryniformis at pH values of 2.0, 

3.0 and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 

 

Figure 3.17: Percentage survival ratios of Lactobacillus coryniformis in 0.3, 0.5, 1.0 and 

1.5 % bile salts. The error bars are standard deviation of duplicate experiments. 
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Figure 3.18: Percentage survival ratios of Streptococcus cristatus at pH values of 2.0, 3.0 

and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 

 

Figure 3.19: Percentage survival ratios of Streptococcus cristatus in 0.3, 0.5, 1.0 and 1.5 

% bile salts. The error bars are standard deviation of duplicate experiments. 

Leuconostoc mesenteroides subsp. lactis cells survived pH 2.0 + pepsin up to 2hrs 

30 minutes but the cells survived in pH 2.0 for only 30 minutes. Pepsin had major 

effect on survival at this pH. The survivability of the cells in pH 3.0 + pepsin, pH 

3.0 without pepsin, pH 4.0 + pepsin and pH 4.0 without pepsin was observed in 

0

20

40

60

80

100

120

0 30 60 90 120 150 180

Survival ratio 
(%)

Exposure time (min)

%survivalpH3

%survivalpH4

%survivalpH2+pepsin

%survival pH3+pepsin

%survival pH4+ pepsin

0

20

40

60

80

100

120

0 30 60 90 120 150 180

Survival ratio 
(%)

Exposure time (min)

% survival in 0.3% bile salts

% survival in  0.5% bile salts

% survival in 1.0% bile salts

% survival in 1.5% bile salts



106 
 

the three hours of incubation (Figure 3.20). The survivability of Leuconostoc 

mesenteroides subsp. lactis in all the bile salt concentrations of 0.3, 0.5, 1 and 

1.5% was also observed for the three hours of incubation (Figure 3.21). 

 

Figure 3.20: Percentage survival ratios of Leuconostoc mesenteroides subsp. lactis at pH 

values of 2.0, 3.0 and 4.0 with and without pepsin. The error bars are standard deviation 

of duplicate experiments. 

 

Figure 3.21: Percentage survival ratios of Leuconostoc mesenteroides subsp. lactis in 

0.3, 0.5, 1.0 and 1.5 % bile salts. The error bars are standard deviation of duplicate 

experiments. 
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Enterococcus faecium cells survived pH 2.0 + pepsin up to 2hrs 30 minutes but 

the cells survived in pH 2.0 for the first hour.  Pepsin therefore, had major effect 

on survival at this pH. The survivability of the cells in pH 3.0 + pepsin, pH 3.0 

without pepsin, pH 4.0 + pepsin and pH 4.0 without pepsin was observed in the 

three hours of incubation (Figure 3.22). The survivability of Enterococcus 

faecium cells in all the bile salt concentrations of 0.3, 0.5, 1 and 1.5% for the three 

hours of incubation was also observed (Figure 3.23).  

 

Figure 3.22: Percentage survival ratios of Enterococcus faecium at pH values of 2.0, 

3.0 and 4.0 with and without pepsin. The error bars are standard deviation of duplicate 

experiments. 
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Figure 3.23: Percentage survival ratios of Enterococcus faecium in 0.3, 0.5, 1.0 and 1.5 

% bile salts. The error bars are standard deviation of duplicate experiments. 

3.4 Discussion 

The tolerance to gastric acid and bile is considered a requirement for any 

probiotic bacteria. Acid and bile are likely to be the most antagonistic substances 

that affect the survivability and viability of LAB in the gut. The survivability of 

LAB in simulated pH and bile salts in vitro was therefore evaluated in this study.  

All the Lactobacillus species survived in pH 2.0 with pepsin for three hours of 

incubation, with the exception of Lactobacillus coryniformis, which survived for 

only 90 minutes. Streptococcus cristatus also survived in pH 2.0 with pepsin for 

the three hours. Leuconostoc mesenteroides subsp. lactis and Enterococcus 

faecium survived in pH 2.0 with pepsin for 150 minutes but Streptococcus 

salivarius subsp. thermophilus survived for only 60 minutes. Leuconostoc 

mesenteroides subsp. mesenteroides, Weissella paramesenteroides and Weissella 

confusa could not survive in pH 2.0. All LAB survived in both pH 3.0 and pH 4.0 

with and without pepsin, with the exception of Leuconostoc mesenteroides and 
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Weissella paramesenteroides, which failed to survive in pH 3.0 without pepsin. 

The ability of Leuconostoc mesenteroides and Weissella paramesenteroides to 

survive in pH 3.0 + pepsin may have been influenced by the protective effect of 

the pepsin enzyme. Survival of LAB in low pH is therefore confirmed by this 

research to be variable. According to Zhang et al. (2013), Leuconostoc 

mesenteroides subsp. lactis survived better in pH 3.0 with pepsin (4g/L) than in 

higher concentrations of pepsin (6,8 and 10g/L), confirming its excellent survival 

in this research at pH 3.0 in a concentration of 3g/L pepsin. The results of 

Hosseini et al. (2009) indicated that Enterococcus faecium survived better in pH 

3.0 with pepsin than without, again validating the research herein reported. 

Bendali et al. (2011) reported survival of Lactobacillus paracasei in pH 2.0 with 

pepsin, this is in agreement with survival of Lactobacillus species in this research. 

Khalil et al. (2007) reported the tolerance of Lactobacillus fermentum, 

Lactobacillus plantarum and Lactobacillus pentosus to pH 3.0 and 0.3% bile, 

corroborating with the research herein reported.  

Some LAB develop protective mechanisms that allow them to survive in acidic 

environments. The amino acid decarboxylase mechanism controls the pH of the 

bacterial environment by consuming hydrogen ions as part of the decarboxylation 

reaction, thus increasing the pH of the environment (Weeks and Sachs, 2001). 

Another mechanism is production of alkali, e.g. evolution of ammonia from urea 

through the action of urease (Weeks and Sachs, 2001). Streptococcus salivarius 

subsp. thermophilus possesses the urease gene enabling it to survive an acidic 

environment by neutralizing the acid (Cotter and Hill, 2003). Transporter-
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dependent metabolic pathways favour the acid stress response in Lactobacillus 

plantarum, production of ATP at low pH promotes its survival in acidic 

conditions (Heunis et al. 2014).  

Resistance to bile salts is another important criterion in the selection of probiotic 

bacteria. The small intestine and colon have high concentration of bile that has 

detrimental effects on bacterial cells. The cell membranes of bacteria are 

composed of lipid and fatty acids that are easily destroyed by bile salts (Meritt 

and Donaldson, 2009). Bile acid have antimicrobial effects on gut bacteria, 

deoxycholic acid (DCA) and cholic acid (CA) are potent antimicrobial 

compounds (Meritt and Donaldson, 2009). The entire LAB examined in this 

research survived the critical 0.3% bile salt concentration. They also survived 

concentration of 0.5%, however some LAB could not resist bile concentration of 

1% and 1.5%. The 0.3% bile salt concentration is the critical concentration that 

any potential probiotic bacteria must tolerate (Shehata et al. 2016).  

All 11 LAB were to some degree tolerant to pH values between 2.0 and 4.0 and to 

concentrations of bile between 0.3 and 1.5%. The gastric emptying time of breast-

fed infants is 47 minutes faster than that of formula-fed infants, which is 65 

minutes (Van et al. 1999). Therefore, beneficial LAB could easily pass to the 

colon and because of the rapid passage to the colon and relatively high pH (5.5 to 

7) of the infant’s stomach, beneficial LAB could improve the health and 

wellbeing of breast-fed babies.  
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3.5 Conclusion  

The LAB evaluated in this chapter demonstrated properties that could possibly 

enable them to be used as probiotic bacteria for both babies and adults. Survival 

in acidic and bile solutions is among the hurdles that potential probiotic bacteria 

must overcome. The pepsin enzyme has enhanced tolerance of some of the 

screened LAB to very low pH. This study has contributed to the knowledge of the 

acid and bile resistance of some LAB that have been identified in samples of 

Nigerian human breast milk. 
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CHAPTER FOUR: ANTIMICROBIAL ACTIVITY OF LACTIC ACID 
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4.1 Introduction 

The upsurge in antibiotic resistance among bacteria and consequent increasing 

failure of antibiotics to treat microbial diseases has prompted more research into 

alternative antimicrobial compounds. Promising and effective antimicrobial 

substances are now being investigated. Many reports exist on antimicrobial 

compounds produced by lactic acid bacteria (LAB) (Jacobsen et al. 1999, 

Hernandez et al. 2005, Ammor et al. 2006, Suskovic et al. 2010, Jara et al. 2011 

and Leite et al. 2015). The antimicrobial activity of LAB has been associated with 

production of potent metabolites that include: organic acids (lactic and acetic 

acids), carbon dioxide, ethanol, hydrogen peroxide and bacteriocins (Hernandez et 

al. 2005, Ammor et al. 2006 and Suskovic et al. (2010).  Moreover, the 

antimicrobial substances produced by LAB have been categorised into two 

groups: firstly, low molecular mass substances of less than 1000 Da and secondly, 

high molecular mass substances greater than 1000 Da (Ammor et al. 2006). 

4.1.2 Low molecular mass antimicrobials 

Low molecular mass antimicrobials constitute a diverse range of metabolites 

produced by LAB. Organic acids are the most important and potent antimicrobials 

produced by these bacteria (Salminen and Wright, 1998, Ammor et al. 2006 and 

Leite et al. 2015). The inhibitory and antagonistic effect of organic acids is 

attributed to reduction of intracellular pH and dissipation of membrane potential. 

Additionally, hydrogen peroxide has strong oxidizing effects on microbial cells 

and a destructive effect on cell proteins and molecular structure (Ammor et al. 

2006). Reuterin and reutericyclin produced by some strains of Lactobacillus 
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reuterii have broad spectrum effects on both Gram positive and Gram negative 

bacteria, as well as fungi and protozoa (Suskovic et al. 2010). Reuterin and 

Reutericyclin play a vital role in the probiotic effects of some species of 

Lactobacillus reuterii, especially in the prevention of diarrhoea. Moreover, these 

potent antimicrobial substances are bactericidal against pathogenic 

microorganisms, they are also important in food preservation (Ammor et al. 

2006). 

Other low molecular mass antimicrobials include cyclic dipeptides produced by 

Lactobacillus plantarum and Lactobacillus pentosus. Three (3)-phenyllactic acid 

and 4-hydroxyphenyllactic acid are produced by Lactobacillus plantarum, 

Lactobacillus rhamnosus, Lactobacillus acidophilus and Leuconostoc 

mesenteroides subsp. mesenteroides. Benzoic acid, methylhydantoin and 

mevalonolactone are also produced by Lactobacillus plantarum, which have 

antimicrobial effects against fungi and Gram positive bacteria (Hernandez et al. 

2005, Ammor et al. 2006 and Suskovic et al. 2010). 

4.1.2 High molecular mass antimicrobials 

Potent bacteriocins and other antibacterial proteinaceous substances with broad 

and narrow spectrum activity against pathogenic microbes are elaborated by LAB. 

Bacteriocins are ribosomally-synthesized peptides and proteins and are classified 

into three groups, firstly lantibiotics (lanthionine-containing bacteriocin) 

including nisin, lactocin, and mersacidin. The second group is the non-

lanthionine-containing bacteriocins including pedocin (sakacin, leucocin and 

curvacin), lactococcin (plantaricin and lacticin) and acidocin (enterocin and 



115 
 

reuterin). The third group comprises bacteriolysins such as lysostaphin, 

enterolysin, helvetican and helveticin (Hernandez et al. 2005, Ammor et al. 2006 

and Suskovic et al. 2010). 

Various laboratory techniques are used in assessing antimicrobial activity of 

LAB. But the most frequently used methods are the agar spot test and agar well 

diffusion assay. The aim of the study described in this chapter was to investigate 

the antimicrobial activity of some of the identified LAB against four pathogenic 

bacteria. Ability of LAB to produce antimicrobial metabolites that will inhibit the 

growth of pathogenic bacteria is amongst the criteria for selection of probiotic 

LAB. The specific objectives of this study were: 

• To evaluate the antimicrobial activity of the LAB using the unbuffered 

and buffered agar spot tests. 

• To assess the antimicrobial activity of the LAB using the agar well 

diffusion assay. 

• To investigate sensitivity of LAB inhibitory compounds to heat, 

proteolytic enzymes (proteinase K and protease) and catalase.  

The LAB selected for investigation were: 

• Enterococcus faecium (A1a[Mc]) 

• Lactobacillus coryniformis (T3b[Mc]) 

• Lactobacillus fermentum (O3[M]) 

• Lactobacillus pentosus (T2a[M]) 

• Lactobacillus plantarum (P3[M]) 
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• Leuconostoc mesenteroides subsp. lactis (R1[M]) 

• Leuconostoc mesenteroides subsp. mesenteroides (C2c[Mc]) 

• Streptococcus cristatus (Q1[M]) 

• Streptococcus salivarius subsp. thermophilus (S2b[Mc]) 

• Weissella confusa (M2c[M]) 

• Weissella paramesenteroides (D1[Mc]) 

Each of the LAB selected represent other identified LAB of the same genus and 

species. The selection was based on similarity in their rep-PCR profiles. The 

indicator organisms used to demonstrate antimicrobial effects by the LAB were: 

Escherichia coli NCTC 12900, Salmonella Enteritidis DT124, Staphylococcus 

aureus CMCC 1930 and Bacillus cereus NCFB 13507, derived from the London 

Metropolitan University Microbiology Research Unit (MRU) culture collection. 

4.2 Materials and methods 

The evaluation of the antimicrobial potential of the 11 selected LAB was carried 

out according to the methods of Hernandez et al. (2005), Kizerwetter-Swida and 

Binek, (2005),  Ammor et al. (2006), Kivanc etal. (2011), Al-Otaibi (2012) and 

Anyogu et al. (2014). The antimicrobial activity was evaluated using the agar spot 

test and the agar well diffusion assay. The indicator organisms were the four 

pathogenic bacteria provided by the Microbiology Research Unit (MRU). The test 

organisms were the 11selected LAB. 
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4.2.1 Inoculum preparation 

Pathogenic bacterial inocula (indicator organisms) 

Escherichia coli NCTC 12900, Salmonella Enteritidis DT124, Staphylococcus 

aureus CMCC 1930 and Bacillus cereus NCFB 13507 were derived from the 

Microbiology Research Unit (MRU) culture collection for use as indicator 

organisms.  

Colonies of a 24 h culture of each indicator bacterium grown aerobically on 

nutrient agar at 37 oC were dispersed in 1 ml maximum recovery diluent (MRD). 

The suspension was adjusted to 0.5 McFarland standard to give an approximate 

concentration of 108 cfu/ml. These microbial suspensions were used as the 

indicator inocula for the experiments. 

LAB inocula 

Colonies of a 24 h culture of the isolate grown on MRS agar anaerobically at 37 

oC was sub-cultured into 1 ml maximum recovery diluent (MRD). The suspension 

was adjusted to 0.5 MacFarland standard, giving an approximate concentration of 

108 cfu/ml.  This was used for the spot test. 

4.2.2 Unbuffered agar spot test 

The agar spot test was used for preliminary assessment of antagonistic effects of 

the 11 selected LAB against Escherichia coli, Salmonella Enteritidis, 

Staphylococcus aureus and Bacillus cereus (indicator organisms). An aliquot of 5 

µl of LAB inocula was spotted on MRS agar and the plates were allowed to dry 

for one hour at room temperature. The plates were incubated at 37 oC anerobically 
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for 24 h to initiate growth of the test organism. The colonies of developing test 

organism were then overlaid with 10 ml soft Tryptone Soya Agar (soft TSA), the 

agar was prepared by adding 0.8% (w/v) plain agar (LP0012, Oxoid, UK) to 

Tryptone Soya Broth (TSB; CM0129, Oxoid, UK).  After autoclaving this was 

retained in a molten state at 45 oC and 100 µl (108 cfu) of indicator organism were 

added. The overlaid plates were incubated inverted at 37 oC aerobically for 

another 24 h. The zones of inhibition of the indicator organism by the test 

organism were measured in mm using a ruler. 

4.2.3 Buffered agar spot test 

To rule out the effect of the acid content of MRS agar on inhibition of growth of 

the indicator organisms, the acid in the MRS agar medium was neutralised. MRS 

agar containing 2g/L of sodium bicarbonate was prepared for the test organisms 

and the procedure described in Section 4.1.2 was followed.  

4.2.4 Agar well diffusion assay 

 The LAB that indicated clear zones of inhibition in the agar spot test were further 

assessed for antimicrobial activity using the agar well diffusion assay (AWDA). A 

24 h culture of each LAB in MRS broth (CM0359, Oxoid UK) was centrifuged at 

1000 x g for 10 min at 4 oC. The cell-free supernatant was filtered through a 0.2 

µm sterile filter and this was used for the experiment. Twenty milliliters soft 

Tryptone Soya Agar (TSA) which was prepared by adding 0.8% (w/v) plain agar 

(LP0012, Oxoid, UK) to Tryptone Soya Broth (TSB; CM0129, Oxoid, UK) was 

used. After autoclaving the agar, it was retained in a molten state at 45 oC and 100 

µl (108 cfu) of each indicator organism were added and was poured into Petri 
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dishes. When the agar solidified, wells were created using sterile 200-1000 µl 

pipette tip. The wells were filled with 100 µl filtered supernatant of the LAB. The 

plates were kept at 4 oC for 3 hours to allow diffusion of supernatant of the LAB.  

Plates were incubated inverted at 37 oC aerobically for 24 h. The zones of 

inhibition of the indicator organism by the test organism were measured in mm 

using a ruler. 

4.2.5 Agar well diffusion assay with concentrated buffered and concentrated 

unbuffered supernatant 

A 24 h culture of LAB in MRS broth (CM0359, Oxoid UK) was prepared as 

above. A volume of 10 mls of cell-free supernatant with original pH of 4 to 4.4 

was concentrated to 1g by freeze drying (Heto PowerDry PL3000 Freeze Dryer, 

Thermo Electron Corporation, UK) at -56 oC and 0.16 hpa for 48 h. The 

concentrated supernatant was diluted fivefold (1/5, 1g supernatant into 4ml MRS 

broth). To assess whether inhibitory effect of antimicrobial substances was not 

organic acid, part of the concentrated supernatant was neutralized to pH 6.7 using 

sterile 1 M sodium hydroxide (NaOH). The buffered supernatant was also used 

for the experiment. The procedure described as above for agar well diffusion was 

followed.  

4.2.6 Thermal heat treatment  

The concentrated cell free supernatants of the LAB isolates that showed positive 

results in the agar well diffusion assay were subjected to heat treatment using 

Techne Dri-Block (DB-2D, Thistle Scientific, UK). A volume of 1000 µl of each 

LAB supernatant was placed in the heating block (63 oC for 30 min) and samples 
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cooled to 4 oC. The residual antibacterial activity of the heat treated cell-free 

supernatants was assessed using the agar diffusion assay. The procedure described 

in above for agar well diffusion was followed.  

4.2.7 Effect of proteolytic enzymes  

To assess if inhibition of growth of indicator organisms is as a result of 

production of peptides, sensitivity of antimicrobials to proteinase K 1mg/ml (BP 

1700-100, Fischer Scientific, UK) and protease 1 mg/ml (P5147, Sigma, UK) was 

evaluated. An aliquot of 100 µl of each enzyme (filter sterilised) was added to 900 

µl supernatant and the samples were incubated at 30 oC for 1 h. One well 

containing supernatant without the enzymes was used as control. The residual 

activity was determined using the agar well diffusion assay. The procedure 

described as above for agar well diffusion was followed.  

4.2.8 Effect of catalase  

To assess if inhibition of growth of indicator organisms is as a result of 

production of hydrogen peroxide H2O2, 100 µl (filter sterilised) catalase enzyme 

(C9322 Sigma, UK) at a final concentration of 1mg/ml was added to 900 µl 

supernatant. One well containing supernatant without catalase was used as 

control. The residual activity was determined using the agar well diffusion assay. 

The procedure described as above for agar well diffusion was followed.  
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4.3 Results 

4.3.1 Unbuffered and buffered agar spot test 

All 11 LAB produced antibacterial metabolites that inhibited growth of all four 

indicator bacteria in both the unbuffered and buffered agar spot tests. The 

strongest zones of inhibitions were seen in the unbuffered agar spot test (Table 4.1 

and Figure 4.1). In the buffered agar spot test, Lactobacillus pentosus, 

Streptococcus salivarius subsp. thermophilus and Lactobacillus plantarum 

exhibited the strongest zones of inhibition against Bacillus cereus as determined 

by measuring the zones (Figure 4.2). Leuconostoc mesenteroides subsp. 

mesenteroides, Lactobacillus pentosus, Weissella confusa, Leuconostoc 

mesenteroides subsp.  lactis and Lactobacillus coryniformis showed the strongest 

inhibition against Staphylococcus aureus. Weissella paramesenteroides, 

Lactobacillus pentosus, Weissella confusa, Lactobacillus plantarum, Leuconostoc 

mesenteroides subsp. lactis and Lactobacillus coryniformis exhibited the strongest 

inhibition against Salmonella enteritidis. Only Lactobacillus fermentum strongly 

inhibited Escherichia coli (Table 4.2). The agar spot test demonstrates ability of 

LAB cell cultures to inhibit growth of pathogenic bacteria. 
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Table 4.1 Antibacterial activity of LAB against indicator bacteria using 

unbuffered agar spot test. 

Lactic acid bacteria B. cereus E. coli Staph. 
aureus 

S. 
Enteritidis 

Leuconostoc mesenteroides subsp. 
mesenteroides 

+++ +++ +++ +++ 

Weissella paramesenteroides +++ +++ ++ +++ 
Lactobacillus fermentum +++ +++ +++ +++ 
Lactobacillus pentosus +++ +++ +++ +++ 
Weissella confusa +++ +++ +++ +++ 
Streptococcus salivarius subsp. 
thermophilus 

+++ +++ ++ +++ 

Enterococcus faecium ++ +++ ++ ++ 
Lactobacillus plantarum +++ +++ +++ +++ 
Leuconostoc mesenteroides subsp. 
lactis 

+++ +++ ++ +++ 

Lactobacillus coryniformis +++ +++ +++ +++ 
Streptococcus cristatus +++ +++ ++ ++ 
(-) = no inhibition 

(+) = Zone of inhibition < 10 mm 

(++) = Zone of inhibition between 10-20 mm 

(+++) = Zone of inhibition > 20 mm 

Table 4.2 Antibacterial activity of LAB against indicator bacteria using buffered 

agar spot test. 

Lactic acid bacteria B. cereus E. coli Staph. 
aureus 

S. 
Enteritidis 

Leuconostoc mesenteroides subsp. 
mesenteroides 

++ ++ +++ ++ 

Weissella paramesenteroides ++ ++ ++ +++ 
Lactobacillus fermentum ++ +++ ++ ++ 
Lactobacillus pentosus +++ ++ +++ +++ 
Weissella confusa ++ ++ +++ +++ 
Streptococcus salivarius subsp. 
thermophilus 

+++ ++ ++ ++ 

Enterococcus faecium ++ ++ ++ ++ 
Lactobacillus plantarum +++ ++ ++ +++ 
Leuconostoc mesenteroides subsp. 
lactis 

++ ++ +++ +++ 

Lactobacillus coryniformis ++ ++ +++ +++ 
Streptococcus cristatus ++ ++ ++ ++ 
(-) = no inhibition 
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(+) = Zone of inhibition < 10 mm 

(++) = Zone of inhibition between 10-20 mm 

(+++) = Zone of inhibition > 20 mm 

 

Figure 4.1: Antimicrobial activity of Leuconostoc mesenteroides subsp. lactis against 

Bacillus cereus in unbuffered agar spot test 

 

Figure 4.2: Antimicrobial activity of Streptococcus salivarius subsp. thermophilus 

against Bacillus cereus in buffered agar spot test 
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4.3.2 Agar well diffusion assay 

The initial results of the agar well diffusion assay revealed ability of Lactobacillus 

coryniformis and Lactobacillus pentosus to moderately  inhibit E. coli, B. cereus 

and S. Enteritidis but no inhibition was seen against Staph.aureus. Zones of 

inhibition were also seen in Lactobacillus fermentum, Lactobacillus plantarum 

and Streptococcus cristatus against B. cereus. No inhibition was seen against 

Staph. aureus, E. coli, and S. Enteritidis. Streptococcus salivarius subsp. 

thermophilus, Weissella confusa, Leuconostoc mesenteroides subsp. lactis, 

Weissella paramesenteroides, Enterococcus faecium and Leuconostoc 

mesenteroides subsp. mesenteroides did not exhibit antimicrobial activity against 

the indicator organisms (Table 4.3). The agar well diffusion assay (AWDA) 

demonstrates antagonistic effects of cell‐free supernatants of LAB against 

pathogenic bacteria. 

Table 4.3 Antibacterial activity of cell free supernatant against indicator bacteria 

using agar well diffusion assay. 

Lactic acid bacteria B. cereus E. coli Staph. 
aureus 

S.  
Enteritidis 

Leuconostoc mesenteroides subsp. 
mesenteroides 

- - - - 

Weissella paramesenteroides - - - - 
Lactobacillus fermentum + - - - 
Lactobacillus pentosus ++ ++ - ++ 
Weissella confusa - - - - 
Streptococcus salivarius subsp. 
thermophilus 

- - - - 

Enterococcus faecium - - - - 
Lactobacillus plantarum ++ - - - 
Leuconostoc mesenteroides subsp. 
lactis 

- - - - 

Lactobacillus coryniformis ++ + - ++ 
Streptococcus cristatus ++ - - - 
(-) = no inhibition 
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(+) = Zone of inhibition < 10 mm 

(++) = Zone of inhibition between 10-20 mm 

(+++) = Zone of inhibition > 20 mm 

 

4.3.3 Agar well diffusion assay with concentrated unbuffered and 

concentrated buffered supernatant 

Since not all of the LAB cell free supernatants inhibited growth of pathogenic 

bacteria, the cell free supernatants were concentrated in order to obtain higher 

concentration of antimicrobial compounds. It was observed that Lactobacillus 

pentosus, Lactobacillus plantarum, Lactobacillus coryniformis and Streptococcus 

cristatus exhibited moderate inhibition against all the indicator bacteria. Weissella 

confusa showed inhibition against E. coli, B. cereus and Staph. aureus.  

Lactobacillus fermentum exhibited inhibition against B. cereus and E. coli while 

Weissella paramesenteroides andLeuconostoc mesenteroides subsp.mesenteroides 

showed inhibition against Staph. aureus (Table 4.4 and Figure 4.3). Streptococcus 

salivarius subsp. thermophilus, Leuconostoc mesenteroides subsp. lactis, and 

Enterococcus faecium did not exhibit any inhibition against the indicator bacteria. 

When neutralised concentrated cell free supernatants of the LAB were dispensed 

into agar wells, no zones of inhibition were seen against the indicator bacteria 

after incubation. 
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Table 4.4 Antibacterial activity of cell free concentrated supernatant (5 fold) 

against indicator bacteria using agar well diffusion assay. 

Lactic acid bacteria B. cereus E. coli Staph. 
aureus 

S. 
Enteritidis 

Leuconostoc mesenteroides subsp. 
mesenteroides 

- - + - 

Weissella paramesenteroides - - + - 
Lactobacillus fermentum + ++ - - 
Lactobacillus pentosus ++ ++ ++ ++ 
Weissella confusa ++ + + - 
Streptococcus salivarius subsp. 
thermophilus 

- - - - 

Enterococcus faecium - - - - 
Lactobacillus plantarum ++ ++ ++ ++ 
Leuconostoc mesenteroides subsp. 
lactis 

- - - - 

Lactobacillus coryniformis ++ ++ ++ ++ 
Streptococcus cristatus ++ ++ ++ ++ 
(-) = no inhibition 

(+) = Zone of inhibition < 10 mm 

(++) = Zone of inhibition between 10-20 mm 

(+++) = Zone of inhibition > 20 mm 
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Figure 4.3: Antimicrobial activity of concentrated cell free supernatant of Streptococcus 

cristatus against Salmonella Enteritidis in agar well diffusion assay. 

4.3.4 Thermal heat treatment  

When concentrated cell free supernatants of LAB were heated at 63 oC for 30 

min, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus coryniformis 

and Streptococcus cristatus also exhibited inhibition against all indicator bacteria. 

But cell free supernatants of Weissella paramesenteroides, Lactobacillus 

fermentum, Leuconostoc mesenteroides subsp. mesenteroides and Weissella 

confusa did not have any antimicrobial activity against indicator bacteria (Table 

4.5 and Figure 4.4). 
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Table 4.5 Effect of heat (63 oC for 30 min) on antimicrobial activity of 

concentrated cell free supernatant (5 fold) against indicator bacteria using agar 

well diffusion assay. 

Lactic acid bacteria B. cereus E. coli Staph. 
aureus 

S. 
Enteritidis 

Lactobacillus pentosus ++ ++ + ++ 
Lactobacillus plantarum ++ ++ ++ ++ 
Lactobacillus coryniformis + ++ + + 
Streptococcus cristatus ++ + + ++ 
Weissella paramesenteroides - - - - 
Lactobacillus fermentum - - - - 
Leuconostoc mesenteroides subsp. 
mesenteroides 

- - - - 

Weissella confusa - - - - 
(-) = no inhibition 

(+) = Zone of inhibition < 10 mm 

(++) = Zone of inhibition between 10-20 mm     

(+++) = Zone of inhibition > 20 mm 

 

 

Figure 4.4: Antimicrobial activity of concentrated cell free supernatant (63 oC for 30 

min) of Lactobacillus plantarum against Bacillus cereus in agar well diffusion assay. 
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4.3.5 Effect of proteolytic and catalase enzymes  

Concentrated cell free supernatants of Streptococcus cristatus that were treated 

with proteinase K, protease and catalase enzymes all exhibited antimicrobial 

activity against all indicator bacteria. Similarly, Lactobacillus pentosus, 

Lactobacillus plantarum and Lactobacillus coryniformis showed inhibition 

against B. cereus. In Lactobacillus pentosus, inhibition was seen against 

Staph.aureus with proteinase K and protease but no inhibition was seen with 

catalase, the enzymes had effect on inhibition of E. coli and S. Enteritidis. In 

Lactobacillus plantarum, inhibition was seen in E. coli with proteinase K and 

protease but no inhibition was seen with catalase. No inhibition was also seen in 

Staph. aureus and S. Enteritidis. Lactobacillus coryniformis only exhibited 

antimicrobial activity against Staph. aureus with protease (Table 4.6 and Figures 

4.5, 4.6 and 4.7). 
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Table 4.6 Effect of enzymes and neutralisation on antimicrobial activity of 

concentrated cell free supernatant (5 fold) against indicator bacteria using agar 

well diffusion assay. 

LAB Indicator 
bacteria  

Proteinase  
K 

Protease Catalase Neutralised 
CCFS 

Lactobacillus 
pentosus 

B. cereus 
 
E. coli 
 
Staph. aureus 
 
S. Enteritidis 
 

++ 
 
- 
 

++ 
 
- 

++ 
 
- 
 

++ 
 
- 

++ 
 
- 
 
- 
 
- 

- 
 
- 
 
- 
 
- 

Lactobacillus 
plantarum 

B. cereus 
 
E. coli 
 
Staph. aureus 
 
S. Enteritidis 
 

++ 
 

++ 
 
- 
 
- 

++ 
 

++ 
 
- 
 
- 

++ 
 
- 
 
- 
 
- 

- 
 
- 
 
- 
 
- 

Lactobacillus 
coryniformis 

B. cereus 
 
E. coli 
 
Staph. aureus 
 
S. Enteritidis 
 

++ 
 
- 
 
- 
 
- 

++ 
 
- 
 

++ 
 
- 

++ 
 
- 
 
- 
 
- 

- 
 
- 
 
- 
 
- 

Streptococcus 
cristatus 

B. cereus 
 
E. coli 
 
Staph. 
aureus 
 
S. Enteritidis 

++ 
 

++ 
 

++ 
 

++ 

++ 
 

++ 
 

++ 
 

++ 
 

++ 
 

++ 
 

++ 
 

++ 

- 
 
- 
 
- 
 
- 

(-) = no inhibition                    

(+) = Zone of inhibition < 10 mm        

CCFS = Concentrated cell free supernatant 

(++) = Zone of inhibition between 10-20 mm   

 (+++) = Zone of inhibition > 20 mm                   
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Figure 4.5: Antimicrobial activity of concentrated cell free supernatant (with protease) of 

Lactobacillus plantarum against Bacillus cereus in agar well diffusion assay. 

 

Figure 4.6: Antimicrobial activity of concentrated cell free supernatant (with proteinase 

K) of Streptococcus cristatus against Bacillus cereus in agar well diffusion assay. 
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Figure 4.7: Antimicrobial activity of concentrated cell free supernatant (with catalase) of 

Lactobacillus pentosus against Bacillus cereus in agar well diffusion assay. 

 

4.4 Discussion 

The antimicrobial activity of LAB is important in the selection of potential 

probiotic LAB. In order to assess the probiotic potential of some of the identified 

LAB in this research, the study on antimicrobial activity of 11 selected LAB was 

carried out. The antimicrobial activity of LAB against four pathogenic bacteria 

was investigated and all 11 selected LAB inhibited growth of the four pathogens, 

in both the unbuffered and buffered agar spot tests, with the strongest inhibition 

recorded in the unbuffered agar spot test. According to Jara et al. (2011) and Leite 

et al. (2015), some members of the LAB produce bacteriocins and other 

antagonistic metabolites such as hydrogen peroxide, carbon dioxide and lactic and 

other acids. Moreover, reduction of pH due to the production of lactic acid is 
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detrimental to some pathogenic microbes (Jacobsen et al. 1999, Ammor et al. 

2006, Pan et al. 2009 and Suskovic et al. 2010). 

Similarly, Leite et al. (2015) studied probiotic potential of selected LAB 

(Leuconostoc mesenteroides subsp. mesenteroides, Lactococcus lactis and 

Lactobacillus paracasei) strains isolated from Beazalian kefir grains. They 

evaluated antimicrobial activity of the LAB against Escherichia coli, Salmonella 

Enteritidis, Staphylococcus aureus and Listeria monocytogenes using agar spot 

test. Escherichia coli and Salmonella Enteritidis were the most inhibited by the 

LAB, no inhibition was observed in Staphylococcus aureus. Listeria 

monocytogenes was inhibited by Lactococcus lactis and Lactobacillus paracasei. 

The inhibition of Escherichia coli and Salmonella Enteritidis by Leuconostoc 

mesenteroides subsp. mesenteroides in Leite et al. (2015) research corroborate 

with our result and our methodology. But, Leuconostoc mesenteroides subsp. 

mesenteroides in our study showed strong inhibition against Staphylococcus 

aureus. 

The antimicrobial activity of LAB from fermented cassava was also studied by 

Anyogu et al. (2014) using the agar spot test and the well diffusion assay. Their 

results indicated that Weissella confusa, Lactobacillus plantarum, Leuconostoc 

mesenteroides subsp. mesenteroides, Enterococcus faecium and Weissella 

paramesenteroides exhibited zones of inhibition against Escherichia coli, 

Salmonella typhimurium, Staphylococcus aureus and Bacillus cereus. Although 

no inhibition in Staphylococcus aureus was seen in Leuconostoc mesenteroides 

subsp. mesenteroides. This supports our result and methodology although the 
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entire LAB in our study inhibited the growth of Staphylococcus aureus. 

Additionally, Enterococcus faecium demonstrated antibacterial activity against 

Staphylococcus aureus (Ammor et al. 2006) while Olivares et al. (2006) reported 

antimicrobial activity of Lactobacillus fermentum against Escherichia coli and 

Staphylococcus aureus.  

Therefore, antimicrobial activity of LAB against both Gram positive (Bacillus 

cereus and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli 

and Staphylococcus aureus) have been corroborated by aforementioned 

researchers (Ammor et al. (2006), Olivares et al. (2006), Jara et al. (2011), 

Anyogu et al. (2014) and Leite et al. (2015). 

The antimicrobial activity of unconcentrated and concentrated cell free 

supernatants of LAB against four pathogenic bacteria was also investigated. The 

effects of heat, Proteolytic and catalase enzymes on antimicrobial activity of 

supernatants were also assessed. Concentration of cell free supernatants increased 

antimicrobial activity of Lactobacillus pentosus, Lactobacillus plantarum, 

Lactobacillus coryniformis and Streptococcus cristatus, Lactobacillus fermentum, 

Weissella paramesenteroides, Leuconostoc mesenteroides subsp. mesenteroides 

and Weissella confusa. However, antimicrobial activity of Lactobacillus 

fermentum, Weissella paramesenteroides, Leuconostoc mesenteroides subsp. 

mesenteroides and Weissella confusa were affected by heat.  

Effects of proteolytic and catalase enzymes on antimicrobial activity of 

supernatants inhibition of pathogens were variable. Supernatants of Streptococcus 
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cristatus was the most stable, they were not affected by enzymes. Inhibition was 

seen against all indicator bacteria. Similarly, Lactobacillus pentosus, 

Lactobacillus plantarum, Lactobacillus coryniformis also retained some of their 

antimicrobial activity. The antimicrobial activity of Lactobacillus pentosus, 

Lactobacillus plantarum, Lactobacillus coryniformis and Streptococcus cristatus 

could be as a result of production of organic acids since no inhibition of 

pathogens was observed after neutralisation of concentrated cell free supernatants. 

The antimicrobial activity could also be attributed to production of peptides 

(bacteriocins) and hydrogen peroxide. 

Jara et al. (2011) studied inhibitory activity of Lactobacillus plantarum, 

Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus paracasei, 

Lactobacillus curvatus isolated from breast milk on gastrointestinal pathogenic 

bacteria (Escherichia coli, Salmonella Enteritidis and Shigella ssp.). The agar 

diffusion assay was used for assessing the antimicrobial activity. The result of the 

study indicated that all the Lactobacillus ssp. inhibited growth of the three 

pathogenic bacteria but Lactobacillus plantarum showed the strongest zone of 

inhibition against Salmonella Enteritidis. Similar trend was also seen in our study.   

Additionally, Al-Otaibi et al. (2012), studied antimicrobial activity of 

Lactobacillus and Lactococcus isolated from Saudi fermented dairy products. In 

their findings, they stated that about 30% of LAB that show antimicrobial activity 

against pathogens in agar spot test failed to produce the same antimicrobial 

activity in the agar well diffusion assay. 
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 In agar spot test, LAB are able to continue to grow and secrete antimicrobial 

substances but when minimum amount of cell free supernatant is dispensed in 

agar well diffusion assay, pathogenic bacteria might be able to resist antimicrobial 

substances present in cell free supernatant. Another factor that could prevent 

inhibition is poor diffusion and permeation of supernatant through agar. 

Al-Otaibi et al. (2012) also studied effect of heat treatment (63 oC for 30 min) on 

cell free supernatant of Lactobacillus and Lactococcus against Staph. aureus, 

Salmonella species, E. coli and Listeria monocytogenes. They observed inhibition 

of pathogens, indicating efficiency of antimicrobial substances despite heat 

treatment at this temperature and time. A similar trend was also seen in the study 

herein reported because heat treated concentrated cell free supernatant of 

Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus coryniformis and 

Streptococcus cristatus inhibited growth of all the four pathogens. According to 

Al-Otaibi et al. (2012), antimicrobial activity of cell free supernatants of 

Lactobacillus bulgaricus and Lactococcus lactis were lost when treated with 

proteinase K and pepsin.  Furthermore, antimicrobial activity of Lactobacillus 

plantarum TF711 was inactivated by proteinase K, pronase E, trypsin and pepsin 

but was active with lipase A enzymes (Hernandez et al. 2005). In this study, 

antimicrobial substances of Streptococcus cristatus were not affected by enzyme 

reaction, however, antimicrobial activity Lactobacillus pentosus, Lactobacillus 

plantarum, Lactobacillus coryniformis was not active against all pathogens. 

Anyogu et al. (2014) reported that no inhibition was seen in Escherichia coli, 

Salmonella typhimurium, Staphylococcus aureus and Bacillus cereus after 
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neutralisation of cell free supernatants of Weissella confusa, Lactobacillus 

plantarum, Leuconostoc mesenteroides subsp. mesenteroides, Enterococcus 

faecium and Weissella paramesenteroides. A similar trend was also seen in the 

study herein reported. 

4.5 Conclusion  

The antimicrobial properties of LAB have been attributed to their probiotic 

potential. The inhibitory effect of the LAB against both Gram positive and Gram 

negative bacteria was investigated. The LAB has exhibited broad inhibitory 

spectrum against the indicator (pathogenic) bacteria in the buffered and 

unbuffered agar spot tests. Some of the LAB also inhibited growth of some of the 

pathogens in the agar well diffusion assay. 

The results herein reported indicate that the LAB studied have the potential to be 

considered probiotic. The antimicrobial properties of cell free supernatants of 

some of the LAB studied inhibited pathogenic bacteria. Heat did not affect 

antimicrobial activity of Lactobacillus pentosus, Lactobacillus plantarum, 

Lactobacillus coryniformis and Streptococcus cristatus. Antimicrobial activities 

of the LAB were also not affected by some enzymes. Moreover, antimicrobial 

properties of the studied LAB could be attributed to production of lactic acid, 

hydrogen peroxide and bacteriocins. This study has therefore, contributed to the 

knowledge of the antimicrobial activity of some lactic acid bacteria that have been 

identified in some samples of Nigerian human breast milk.  
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5.1 Introduction 

Hypercholesterolemia (high blood cholesterol) is an important risk factor for heart 

disease. Alternative to conventional drugs such as statins (simvastatin and 

lovastatin) with fewer side effects is on the rise. Some beneficial lactic acid 

bacteria (LAB) have shown promising cholesterol-lowering ability. Moreover, 

Anandharaj and Sivasankari, (2014) has reported the cholesterol-reducing 

property of Lactobacillus oris species that was isolated from human breast milk. 

Amongst beneficial effects of LAB is lowering of serum cholesterol which is 

evident in many studies in humans, animals and in vitro. (Pereira et al. 2003, 

Begley et al. 2006, Damodharan et al. 2015, Saraniya and Jeevaratnam 2015, 

Shehata et al. 2016 and Yadav et al. 2016). 

Bile salt hydrolase (BSH) activity of LAB has been attributed to serum 

cholesterol reduction (Damoddharan et al. 2015). Bile salt hydrolase (BSH) is an 

enzyme that is produced by some LAB which causes the deconjugation of bile 

salts. Deconjugated bile acids (glycine and taurine) are therefore less soluble and 

less reabsorbed into blood. This process facilitates excretion of bile acids in feces 

(Vianna de Souza and Dias, 2017).  Ability of LAB to hydrolyse bile salt through 

production of hydrolase enzymes is a vital criterion in selection of probiotic 

bacteria (FAO/WHO, 2002). Bile salt hydrolase activity has been exhibited by 

many LAB species with probiotic potential especially Lactobacillus spps. 

(Damodharan et al. 2015 and Yadav et al. 2016). Additionally, Shehata et al. 

2016 have reported the BSH activity and cholesterol assimilation of some 

Lactobacillus species including Lactobacillus paracasei and Lactobacillus 
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delbrueckii. Furthermore, Anandharaj and Sivasankari, (2014) and Riaz-Rajoka et 

al. (2017) have reported the BSH activity of Lactobacillus rhamnosus and   

Lactobacillus oris species that were isolated from human breast milk. However, 

BSH activity could interfere with normal lipid digestion because deconjugated 

bile salts are less efficient in the emulsification of dietary lipids (Begley et al. 

2006). 

Bacterial exopolysaccharides (EPS) are long-chain polysaccharides which could 

adhere to cell surface or secreted into extracellular environment as loose slime. 

Some exopolysaccharide are prebiotic that stimulates growth of beneficial 

bacteria.  Moreover, exopolysaccharide producing LAB can efficiently pass to 

gastrointestinal tract (Patil et al. 2015). Additionally, exopolysaccharides are 

bioactive substances that have beneficial effects on human health (Panthavee et 

al. 2017). Apart from EPS textural quality in dairy fermented foods, EPS secreted 

by beneficial LAB can reduce obesity, cholesterol, ulcer, gastritis and other 

inflammatory reactions (Joshi and Koijam, 2014, Patil et al. 2015 and Panthavee 

et al. 2017). Moreover, Jiang et al. (2016) and Riaz-Rajoka et al. (2017) have 

reported production of EPS by Lactobacillus plantarum and Lactobacillus 

rhamnosus species that were isolated from human breast milk.  

The aim of the study described in this chapter was to examine cholesterol 

assimilation, bile salt hydrolase and exopolysaccharide production by some of the 

identified LAB. Ability of LAB to assimilate cholesterol, produce bile salt 

hydrolase and exopolysaccharide are some of the functional properties of 

probiotics. The specific objectives of this study were: 
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• To evaluate cholesterol reducing potential of the identified LAB.  

• To assess bile salt hydrolase activity of the LAB. 

• To examine exopolysaccharide production by LAB. 

The LAB selected for investigation were: 

• Enterococcus faecium (A1a[Mc]) 

• Lactobacillus coryniformis (T3b[Mc]) 

• Lactobacillus fermentum (O3[M]) 

• Lactobacillus pentosus (T2a[M]) 

• Lactobacillus plantarum (P3[M]) 

• Leuconostoc mesenteroides subsp. lactis (R1[M]) 

• Leuconostoc mesenteroides subsp. mesenteroides (C2c[Mc]) 

• Streptococcus cristatus (Q1[M]) 

• Streptococcus salivarius subsp. thermophilus (S2b[Mc]) 

• Weissella confusa (M2c[M]) 

• Weissella paramesenteroides (D1[Mc]) 

Each of the LAB selected represent other identified LAB of the same genus and 

species. The selection was based on similarity in their rep-PCR profiles. 

The control, Enterococcus casseliflavus was kindly provided by the London 

Metropolitan University’s Microbiology Unit of Science Laboratory. 
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5.2 Materials and methods 

5.2.1 Inoculum preparation 

A loopful of several colonies of a 24 h culture of isolate grown on MRS agar was 

sub-cultured into 1 ml maximum recovery diluent (MRD) and drops of this was 

added to 9 ml of MRD in sterile bottles with black caps until a value of 0.5 on the 

MacFarland standard was achieved, which gave an approximate concentration of 

108 cfu/ml, this was the inoculum for the experiment.  

5.2.2 Exopolysaccharide (EPS) production by lactic acid bacteria 

The initial qualitative exopolysaccharide production study was carried out 

according to the methods of Joshi and Koijam, (2014), Zergui et al. (2015) and 

Angmo et al. (2015). An aliquot of 100 µl inoculum was spread on ruthenium red 

milk agar (10% (w/v) skim milk powder (70166, Fluka, UK) 1% (w/v) sucrose 

(84100, Sigma, UK), ruthenium red (2751, Sigma, UK) 0.08% (w/v) and plain 

agar (LP0012, Oxoid, UK) 1.5% (w/v)). Plates were incubated anaerobically at 37 

oC for 48 h. White coloured colonies indicate EPS production. The ruthenium red 

was filter sterilised with first 0.45 micron then 0.2 micron nalgene syringe filters 

before adding to molten agar containing skim milk powder and sucrose. 

An aliquot of 100 µl inoculum was spread on MRS agar supplemented with 5% 

(w/v) sucrose (84100, Sigma, UK) and 0.08% (w/v) ruthenium red (2751, Sigma, 

UK). Also, an aliquot of 100 µl inoculum was spread on MRS agar supplemented 

with 5% (w/v) sucrose. Plates were incubated anaerobically at 37 oC for 48 h. 

White coloured colonies on MRS ruthenium red agar indicate EPS production. 
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Shiny viscous colonies on MRS sucrose agar also indicate EPS production. MRS 

ruthenium red agar and MRS sucrose agar were used in order to compare EPS 

production by LAB in both media. 

Exopolysaccharide positive isolates were screened quantitatively for 

exopolysaccharide production using the methods of Akabanda et al. (2014), Joshi 

and Koijam, (2014) and Larouchi et al. (2014). An aliquot of 1 ml inoculum (108 

cfu/ml) was placed in 5 ml MRS broth containing 5% (w/v) sucrose. The 

suspension was incubated at 37 oC for 24 h. Culture was centrifuged at 10,000 x g 

for 10 min. An aliquot of 1 ml supernatant was placed in 3 ml cold 95% ethanol 

(652261, Sigma, UK) and kept at 4 oC for 24 h. The mixture was centrifuged at 

10,000 x g for 10 min and 3 ml deionised water was placed in precipitated pellets 

(EPS sample). Total amount of carbohydrate content in pellet was determined by 

the phenol-sulphuric acid method. An aliquot of 1 ml EPS sample was mixed with 

1 ml deionised water. An aliquot of 1 ml 6% (v/v) phenol aqueous solution 

(P02632, Sigma, UK) was added to the mixture followed by rapid addition of 5ml 

of 95% (v/v) sulphuric acid (435589, Sigma, UK). The mixture was vigorously 

mixed and was incubated at room temperature for 20 min. An aliquot of 500 µl of 

each sample was diluted with 500 µl deionised water. Absorbance was measured 

at 490 nm using spectrophotometer (Jenway, 7315). MRS broth (69966, Sigma, 

UK) containing 5% (w/v) sucrose was used as control. Experiments were carried 

out in duplicate. The concentration of EPS was calculated using the Beer 

Lambert’s law equation following the method of Indimuli et al. (2015) and 

Khamis et al. (2017). The Beer Lambert’s law equation is shown below; 
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A = ƐLC 

Where A = amount of light absorb by sample at a given wavelength 

           Ɛ = molar absorptivity  

           L = distance that light travels through solution (cuvette path length) 

           C = concentration of absorbing sample per volume 

5.2.3 Bile salt hydrolase activity 

 The bile salt hydrolase activity study was carried out according to the methods of 

Saraniya and Jeevaratnam (2015), Shehata et al. (2016) and Yadav et al. (2016). 

An aliquot of 100 µl inoculum was spread on MRS agar (69964, Sigma, UK) 

plates supplemented with 0.37g/L (0.037% (w/v) calcium chloride (449709, 

Sigma, UK) and 5g/L (0.5% (w/v)) sodium salt of taurodeoxycholic acid (TDCA, 

T0557, Sigma, UK). Unsupplemented MRS agar plates were used as control. The 

plates were incubated anaerobically at 37 oC for 48 h. White precipitated colonies 

on MRS (TDCA) agar plates indicate deconjugation of bile salt. 

5.2.4 Cholesterol assimilation 

 The cholesterol assimilation study was carried out according to the methods of 

Iranmanesh et al. (2014), Tomaro-Duchesneau et al. (2014), Saraniya and 

Jeevaratnam (2015), Shehata et al. (2016) and Yadav et al. (2016). 

Filter sterilised water soluble cholesterol (10mg/100ml, C1145, Sigma, UK) was 

added to MRS broth supplemented with 0.3g/100ml ox-bile salt (70168, Fluka, 

UK). The mixture was inoculated with 1% each of LAB culture and incubated 
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anaerobically at 37 oC for 24 h. Uninoculated mixture (cholesterol and MRS broth 

supplemented with 0.3g/100ml bile salt) was kept as control. After incubation, 

cultured broth was centrifuged at 10,000 x g for 10 min. An aliquot of 1 ml of 

supernatant was placed in 1 ml potassium hydroxide (33%w/v, 30614, Sigma, 

UK) and 2 ml absolute ethanol (46139, Sigma, UK) was added. The mixture was 

placed in water bath at 37 oC for 15 min. After cooling to 22 oC, 2 ml deionised 

water and 3 ml hexane (296090, Sigma, UK) was added and mixed thoroughly for 

one minute. This was kept at room temperature for 15 min to allow phase 

separation. An aliquot of 1 ml hexane layer was placed in a tube and the tube was 

placed in water bath at 65 oC to allow evaporation of solvent. Once dried, 2 ml o-

phthalaldehyde reagent (P0632, Sigma, UK) was added and mixed thoroughly for 

one minute. After mixing, an aliquot of 0.5 ml concentrated sulphuric acid 

(339741, Sigma, UK) was added and mixed thoroughly for one minute. The 

mixture was kept at room temperature for 10 min. Absorbance of inoculated broth 

sample and uninoculated broth sample was read at 550 nm using a 

spectrophotometer. Ability of LAB to remove cholesterol from broth was 

calculated using the formula below; 

A = (B – C/B) X 100 (Saraniya and Jeevaratnam 2015 and Yadav et al. 2016) 

Where A = % cholesterol removed  

B = Absorbance of uninoculated MRS/cholesterol broth sample 

C = Absorbance of inoculated MRS/cholesterol broth sample 

 Experiments were carried out in duplicate. 
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5.3 Results 

5.3.1 Exopolysaccharide (EPS) production and bile salt hydrolase activity 

The ability of the eleven selected LAB to produce exopolysaccharide, 

deconjugate bile salt and reduce cholesterol was examined. All 11 LAB produced 

exopolysaccharides on MRS ruthenium red agar and MRS sucrose during the 

initial qualitative screening (Table 5.1 and Figure 5.1 to 5.6). But on ruthenium 

red milk agar, Lactobacillus coryniformis, Lactobacillus fermentum and Weissella 

paramesenteroides did not produce exopolysaccharides. The entire 11 LAB 

produced EPS at a concentration of 0.452 to 0.542 mg/ml during the quantitative 

evaluation. Lactobacillus pentosus had the highest EPS yield of 0.542 mg/ml 

which is higher than the bacterium that was used as control (Enterococcus 

casseliflavus). The EPS yield of Enterococcus casseliflavus was 0.510 mg/ml 

(Table 5.2 and Figure 5.7). Similarly, the entire 11 LAB deconjugated bile salt of 

taurodeoxycholic acid (Table 5.1 and Figure 5.8 to 5.9). 

 

 

 

 

 

 



147 
 

Table 5.1 Exopolysaccharide (EPS) production by lactic acid bacteria and bile 

salt hydrolase activity. 

LAB   RRM  MRSRR MRSS MRSTDCA 
Leuconostoc mesenteroides subsp. 
mesenteroides 

+ + + + 

Weissella paramesenteroides - + + + 
Lactobacillus fermentum - + + + 
Lactobacillus pentosus + + + + 
Weissella confusa + + + + 
Streptococcus salivarius subsp. 
thermophilus 

+ + + + 

Enterococcus faecium + + + + 
Lactobacillus plantarum + + + + 
Leuconostoc mesenteroides subsp. 
lactis 

+ + + + 

Lactobacillus coryniformis - + + + 
Streptococcus cristatus + + + + 
RRM = Ruthenium red milk agar 

MRSRR = MRS ruthenium red agar 

MRSS = MRS sucrose agar 

MRSTDCA = MRS taurodeoxycholic acid 

(-) = no EPS production 

(+) = EPS production or deconjugation of bile salt 

 

 

 



148 
 

 

Figure 5.1: Exopolysaccharide production by Enterococcus faecium on ruthenium red 

milk agar 

 

 

Figure 5.2: Exopolysaccharide production by Enterococcus casseliflavus (control) on 

ruthenium red milk agar 
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Figure 5.3: Exopolysaccharide production by Lactobacillus plantarum on MRS 

ruthenium agar 

 

 

 

Figure 5.4: Exopolysaccharide production by Enterococcus casseliflavus (control) on 

MRS ruthenium agar 
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Figure 5.5: Exopolysaccharide production by Weissella confusa on MRS sucrose agar 

 

 

Figure 5.6: Exopolysaccharide production by Enterococcus casseliflavus (control) on 

MRS sucrose agar 
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Table 5.2 Absorbance and concentration of EPS produced by lactic acid bacteria 

LAB   Absorbance 
 (490 nm) 

Concentration of 
EPS (mg/ml) 

Leuconostoc mesenteroides subsp. 
mesenteroides 

0.851 ± 0.01 0.473 ± 0.01 

Weissella paramesenteroides 0.883 ± 0.03 0.491 ± 0.02 
Lactobacillus fermentum 0.852 ± 0.01 0.473 ± 0.01 
Lactobacillus pentosus 0.975 ± 0.02 0.542 ± 0.02 
Weissella confusa 0.957 ± 0.04 0.532 ± 0.03 
Streptococcus salivarius subsp. 
thermophilus 

0.880 ± 0.02 0.489 ± 0.02 

Enterococcus faecium 0.943 ± 0.02 0.521 ± 0.01 
Lactobacillus plantarum 0.813 ± 0.01 0.452 ± 0.01 
Leuconostoc mesenteroides subsp. lactis 0.908 ± 0.03 0.505 ± 0.01 
Lactobacillus coryniformis 0.853 ± 0.05 0.474 ± 0.03 
Streptococcus cristatus 0.966 ± 0.01 0.537 ± 0.01 
Enterococcus casseliflavus                                        0.918 ± 0.03  0.510 ± 0.02 
Data are mean ± standard deviation of duplicate experiments. 

 

The concentration of EPS yield was calculated using the Beer Lambert’s law 

equation; 

 A = ƐLC 

Where A = amount of light absorbed by sample at a given wavelength 

           Ɛ = molar absorptivity = 0.899 

           L = distance that light travels through solution (cuvette path length) = 1cm 

           C = concentration of absorbing sample per volume 

Initial concentration of samples were diluted 2 fold (500µl:500µl) = 1/2 

Therefore, calculated concentration (C) was multiplied by 0.5 
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Figure 5.7: The concentration of EPS produced by LAB isolated from human breast milk 

The error bars are standard deviation of duplicate experiments. 
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Figure 5.8: Deconjugation of bile salt by Streptococcus cristatus on MRS 

taurodeoxycholic acid agar 

 

Figure 5.9: Deconjugation of bile salt by Enterococcus faecium on MRS 

taurodeoxycholic acid agar 



154 
 

 

5.3.2 Cholesterol assimilation 

Cholesterol assimilation potential of LAB was evaluated in vitro in the presence 

of ox- bile. The entire 11LAB exhibited cholesterol reducing ability, the highest 

cholesterol assimilation was observed in Lactobacillus plantarum with 68% 

reduction. Followed by Lactobacillus fermentum and the lowest assimilation 

percentage was observed in Weissella confusa with 46±8.48%. (Table 5.3 and 

Figure 5.10). 

Table 5.3 Cholesterol assimilation by lactic acid bacteria isolated from human 

breast milk 

LAB   Absorbance 
(550 nm) 

Cholesterol assimilated (%) 

Leuconostoc mesenteroides subsp. 
mesenteroides 

0.136 ± 0.02 59 ± 8.48 

Weissella paramesenteroides 0.142 ± 0.03 57 ± 12.72 
Lactobacillus fermentum 0.118 ± 0.01 65 ± 4.24 
Lactobacillus pentosus 0.133 ± 0.03 60 ± 12.72 
Weissella confusa 0.181 ± 0.02 46 ± 8.48 
Streptococcus salivarius subsp. 
thermophilus 

0.125 ± 0.01 62 ± 4.24 

Enterococcus faecium 0.159 ± 0.05 52 ± 21.21 
Lactobacillus plantarum 0.107 ± 0.00 68 ± 0.00 
Leuconostoc mesenteroides subsp. 
lactis 

0.120 ± 0.02 64 ± 8.48 

Lactobacillus coryniformis 0.122 ± 0.01 63 ± 4.24 
Streptococcus cristatus 0.130 ± 0.02 61 ± 8.48 
Data are mean ± standard deviation of duplicate experiments. 

A = (B – C/B) X 100 (Saraniya and Jeevaratnam 2015 and Yadav et al. 2016) 

Where A = % cholesterol removed  

B = Absorbance of control (uninoculated MRSbile + cholesterol (10mg/100ml) = 0.334 

C = Absorbance value of each LAB inoculated into MRS/cholesterol broth sample 
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Figure 5.10: Cholesterol assimilation by LAB isolated from human breast milk 

The error bars are standard deviation of duplicate experiments. 
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5.4 Discussion 

Exopolysaccharide production (EPS) and bile salt hydrolase activity of LAB are 

important requirement in the selection of probiotic LAB. Similarly cholesterol 

assimilation potential of LAB is also an essential attribute of probiotic LAB. The 

Exopolysaccharide production (EPS), bile salt hydrolase activity and cholesterol 

assimilation by lactic acid bacteria was therefore investigated in this study. 

During the qualitative screening of EPS, all the LAB were able to produce EPS on 

MRS ruthenium red agar and MRS sucrose agar except for ruthenium red milk 

agar on which Lactobacillus coryniformis, Lactobacillus fermentum and Weissella 

paramesenteroides did not produce exopolysaccharides. For the quantitative 

analysis of EPS, the entire LAB produced EPS at a concentration of 0.452 to 

0.542 mg/ml. Lactobacillus pentosus produced the highest concentration of EPS 

of 0.542 (mg/ml) while Lactobacillus plantarum produced the lowest. Total 

amount of EPS produced by LAB is greatly influenced by type of sugars present 

in growth medium (Hongpattarakere et al. 2012 and Joshi and Koijan 2014). The 

ability of the entire LAB in this study to produce EPS on MRS ruthenium red agar 

and MRS sucrose agar could be attributed to presences of high concentration of 

two kinds of sugars in the medium.  MRS agar already has glucose and was 

further supplemented with 5% sucrose. Furthermore, MRS is an excellent medium 

for growth of LAB. Similarly, the MRS broth used for the quantitative 

determination of EPS was also supplemented with 5% sucrose. The amount of 

EPS produced from each LAB in the culture broth supports the agar screening on 

the MRS agar. The negative EPS production of Lactobacillus coryniformis, 

Lactobacillus fermentum and Weissella paramesenteroides on ruthenium red milk 
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agar could be attributed to low concentration of 1% sucrose and this sugar was the 

sole carbon source. EPS production on MRS medium supplemented with high 

concentration of sucrose has been shown to be optimum (Van Geel Schutten et al. 

1998, Hongpattarakere et al. 2012 and Joshi and Koijan 2014). The authors also 

pointed out that sucrose is a very good substrate for ample EPS production, they 

therefore suggest supplementation of agar and broth for screening of EPS 

producing LAB with high concentration of this sugar. Jiang et al. (2016) reported 

EPS yield of 426.73 mg/L by Lactobacillus plantarum isolated from human breast 

milk which is higher than the yield obtained for this bacterium (0.452 mg/ml) in 

this study. However, Sasikumar et al. 2017 reported a much higher yield of 2.8 

g/L from Lactobacillus plantarum that was isolated from jackfruit. Moreover, 

Riaz-Rajoka et al. (2018) reported EPS yield of 461-737.3 mg/L from strains of 

Lactobacillus rhamnosus isolated from human breast milk. Furthermore, 

Tulumoglu et al. (2013) investigated EPS production by some lactobacilli species 

isolated from children feces, their research findings indicate EPS yield of 70-290 

mg/L with Lactobacillus pentosus having the highest yield. Similarly, in this 

research, Lactobacillus pentosus had the highest EPS yield. However, Akanbanda 

et al. (2014) reported EPS production of 50-150µg/ml from Lactobacillus 

fermentum, Lactobacillus plantarum, Leuconostoc mesenteroides subsp. 

mesenteroides and Enterococcus faecium from fermented milk product. The EPS 

produced by similar LAB in this study were much higher than that reported by 

Akanbanda et al. (2014).  Additionally, Joshi and Koijan (2014) reported an EPS 

yield of 340.82 mg/L from Leuconostoc mesenteroides subsp. lactis isolated from 
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fermented beverage.  EPS production is variable among genus and species of 

LAB, therefore, yields and properties are dependent on kind of strain and species 

(Riaz-Rajoka et al. 2018).  EPS polymers do not only act as carbon or energy 

reservoirs, they are importantly involved in protection of LAB against 

unfavourable harsh environmental conditions (Salazar et al. 2016). In fact, EPS 

production by LAB and bifidobacteria promote acid and bile resistance and 

adherence to intestinal mucosa thereby prolonging existence of LAB in gastro 

intestinal tract (Alp and Aslim, 2010 and Zergui et al. 2014). Furthermore, 

production of EPS by LAB also facilitates their translocation from maternal gut to 

mammary gland (Jeurink et al. 2013). EPS producing LAB play a significant role 

in colonisation of GIT tract thus, compete favourably with pathogenic bacteria 

thereby reducing colonisation of pathogens ((Jeurink et al. 2013 and Riaz-Rajoka 

et al. 2018). In fact, EPS have been attributed with antioxidant activity, antitumor 

and cholesterol reducing potential (Joshi and Koijan 2014, Sasikumar et al. 2017 

and Riaz-Rajoka et al. 2018). Moreover, EPS producing LAB are able to bind free 

bile acids thereby reducing cholesterol level in the GIT (Sasikumar et al. 2017). 

Cholesterol reduction ability of LAB was assessed in vitro, all LAB demonstrated 

cholesterol lowering ability ranging from 46±8.48 to 68±0.00%. Many strains of 

lactobacilli and other LAB have been shown to assimilate cholesterol in vitro 

(Tulumoglu et al. 2013, Annadraj and Sivasankar 2014, Iranmanesh et al. 2014, 

Saraniya and Jeevaratnam 2015, Sasikumar et al. 2017 and Gunyatki and Asan-

Ozusaglam 2018). Moreover, Annadraj and Sivasankar (2014) reported 61% 

assimilation of cholesterol by Lactobacillus oris isolated from human breast milk. 
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This is in agreement with this study as all the Lactobacillus species have 

demonstrated cholesterol assimilation percentage of 60% and above. Similarly, 

Gunyatki and Asan-Ozusaglam (2018) reported 23.67 to 88.94% cholesterol 

reducing ability of Lactobacillus gasseri strains isolated from human breast milk. 

Additionally, Tulumoglu et al. (2013) also reported 32.4 to 76.5% cholesterol 

removal by Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus 

rhamnosus and Lactobacillus paracasei isolated from children feces. Their result 

indicated highest cholesterol assimilation of 76.5% by Lactobacillus pentosus 

which is much higher than herein reported for Lactobacillus pentosus (60%). 

Furthermore, Saraniya and Jeevaratnam (2015) also indicated 73% cholesterol 

assimilation by Lactobacillus pentosus and 71% by Lactobacillus plantarum 

isolated from fermented soy milk. This is in contrast with this study as similar 

LAB demonstrated less than 70% cholesterol reduction. But Iranmanesh et al. 

(2014) reported 50% cholesterol assimilation by Lactobacillus pentosus and 30% 

by Leuconostoc lactis isolated from traditional Iranian dairy product. This is much 

lower than the cholesterol assimilation herein reported for similar LAB. 

Hypercholesterolemia (high blood cholesterol level) is an important risk factor for 

development of heart disease especially coronary heart disorder (atherosclerosis). 

Bacteriotherapy is a promising alternative for lowering serum cholesterol 

(Shehata et al. 2016). Some of the proposed mechanisms for cholesterol 

assimilation by LAB include; deconjugation of bile salts, cholesterol conversion 

to coprostanol (Coprosterol), production of short-chain fatty acids (SCFAs) and 

uptake of cholesterol into bacterial cell membrane. (Tsai et al. 2014, Tomaro- 
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Duchesneau et al. 2014 and Shehata et al. 2016). Cholesterol assimilated into 

bacterial cells would prevent absorption of this substance from host GIT into 

blood stream (Zergui et al. 2014). These mechanisms have been suggested to 

facilitate cholesterol metabolism by LAB. 

Ability of LAB to produce bile salt hydrolase (BSH) enzyme enhance their 

tolerance to bile salts thus, minimising serum cholesterol (Shehata et al. 2016). In 

this study all LAB demonstrated ability to produce BSH by deconjugation of bile 

salt of taurodeoxycholic acid. Shehata et al. (2016) indicated BSH activity of 

Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus gasseri and 

Lactococcus lactis isolated from raw milk and fermented foods. Similarly, 

Saraniya and Jeevaratnam (2015) also indicated BSH activity of Lactobacillus 

pentosus and Lactobacillus plantarum isolated from fermented soy milk.  Bile 

salts are produced from cholesterol in the liver, they become conjugated with 

glycine or taurine to become bile salts. However, BSH producing LAB 

deconjugate the bile salts to in oder to detoxify them (Begley et al. 2006, Saraniya 

and Jeevaratnam 2015 and Shehata et al. 2016). Moreover, BSH enzyme 

hydrolyses bile salts to release free primary bile acids (Shehata et al. 2016). 

EPS, cholesterol assimilation and BSH activity are functional properties used for 

the characterisation of potential beneficial LAB. Many beneficial LAB have been 

found to produce EPS and BSH which aid in lowering serum cholesterol (Shehata 

et al. (2016), Sasikumar et al. (2017) and Riaz-Rajoka et al. (2018).   
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5.5 Conclusion 

The Exopolysaccharide production, bile salt hydrolase activity and cholesterol 

assimilation by LAB have been attributed to their probiotic potential. The results 

reported in this study show the probiotic attributes of the LAB studied. The LAB 

were able to produce EPS, BSH and assimilate cholesterol. EPS production by 

LAB could be increased by supplementation of MRS medium with high 

concentration of sucrose. Bile salt hydrolase activity of LAB is linked with 

potential reduction of cholesterol by LAB in vitro. This study has therefore, 

contributed to the knowledge of the functional properties of some lactic acid 

bacteria that have been identified in some samples of Nigerian human breast milk.  
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CHAPTER SIX: ANTIMICROBIAL RESISTANCE OF LACTIC ACID 

BACTERIA AND DETERMINATION OF RESISTANCE GENES 
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6.1 Introduction 

Antimicrobial resistance (AMR) is a global health issue that needs to be addressed 

from different perspectives. Antimicrobial resistance is the ability of microbes to 

survive and proliferate when exposed to antimicrobials that they were originally 

susceptible to. Antimicrobials are extensively misused and overused in humans, 

food producing animals, agriculture and aquaculture and this undoubtedly 

contribute to AMR occurrence (Egervin et al. 2009, Jimenez et al. 2013, Munoz-

Atienza et al. 2013, WHO, 2014, FSAI, 2015 and Reis et al. 2016). Some 

antimicrobials used in humans and animals have been in existence for more than 

70 years. Antimicrobial resistance to some of the first, second and third 

generation antibiotics is on the rise, particularly to cephalosporins, carbapenemis, 

quinolones/fluroquinolones, sulphonomides and tetracycline (FSAI, 2015). 

Furthermore, Resistance to antimicrobials can be intrinsic or acquired 

(Karapetkov et al. 2011). Intrinsic resistance is a natural AMR trait exhibited by 

some LAB. It can be defined as the non-susceptibility of a bacterium to a known 

concentration of antimicrobial that should be lethal at the appropriate dose. This 

could be due to permeability barrier and active efflux (Sharma et al. 2017).  

Intrinsic resistance is usually not transferable and does not compromise the safety 

of LAB (Sharma et al. 2017). Resistance of bacteria such as some species of lactic 

acid bacteria (LAB) to aminoglycosides antibiotics (gentamycin, kanamycin, 

neomycin and streptomycin) is intrinsic because it is associated with the absence 

of cytochrome-mediated electron transport that mediates the uptake of 

antimicrobials (Hummel et al. 2007).  LAB with intrinsic resistance can survive 
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high dose of antimicrobials making the bacteria less susceptible to antimicrobials 

(Rolain, 2013). A bacterium can acquire resistance to antimicrobial substances by 

receiving new traits through mutations in inherent genes or getting resistance 

genes through horizontal gene transfer (Florez et al. 2016). Horizontal transfer of 

AMR genes is usually mediated by mobile genetic elements such as plasmids and 

transposons. LAB with antimicrobial resistance genes exist in nature. They can be 

found in humans, animals, breast milk and other foods (Ouoba et al., 2008; 

Rolain, 2013, Reis et al. 2016, Sharma et al. 2017). Moreover, the food chain and 

gastro intestinal tract are suggested to be important routes for spread of 

antimicrobial resistant LAB (Egervin et al. 2009, Reis et al. 2016).  Thus, these 

bacteria can act as vectors for spreading AMR genes from food to humans and/or 

animals (Ouoba et al. 2008, Karapetkov et al. 2011, FSAI, 2015). 

Some LAB are considered beneficial bacteria and thus referred to as probiotics. 

But safety of these bacteria may be compromised if they act as vectors for 

transmission of AMR genes to potential pathogenic bacteria (Ouoba et al. 2008 

and Sharma et al. 2017). 

Women of childbearing age are frequently misusing antibiotics in developing 

world including Nigeria where adequate regulations on antimicrobial substances 

are ineffective (Oloyemi et al. 2010 and Sapkota et al. 2010). LAB possessing 

AMR genes could be transferred vertically from mother to infant, from mother’s 

gastro intestinal tract, during delivery or breast milk feeding (Egervin et al. 2009, 

Rolain, 2013, Kozak et al. 2015 and Reis et al. 2016).   
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The aim of the study described in this chapter was to evaluate the AMR profile of 

LAB isolated from human breast milk and to investigate presence of AMR genes 

in the bacteria. The screening of LAB for AMR and AMR genes is vital in 

ensuring the safety of potential probiotic LAB. The specific objectives of this 

study were: 

• To assess the phenotypic AMR profiles of some identified LAB by 

screening their susceptibility to various antimicrobials. 

• To investigate the genetic background of phenotypic resistance by 

screening for AMR genes in the LAB. 

6.2 Materials and methods 

The susceptibility of LAB was carried out using the methods of Ouoba et al 

(2008). 

The LAB selected for investigation were: 

• Enterococcus faecium (A1a[Mc]) 

• Lactobacillus coryniformis (T3b[Mc]) 

• Lactobacillus fermentum (O3[M]) 

• Lactobacillus pentosus (T2a[M]) 

• Lactobacillus plantarum (P3[M]) 

• Leuconostoc mesenteroides subsp. lactis (R1[M]) 

• Leuconostoc mesenteroides subsp. mesenteroides (C2c[Mc]) 

• Streptococcus cristatus (Q1[M]) 
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• Streptococcus salivarius subsp. thermophilus (S2b[Mc]) 

• Weissella confusa (M2c[M]) 

• Weissella paramesenteroides (D1[Mc]) 

Each of the LAB selected represent other identified LAB of the same genus and 

species. The selection was based on similarity in their rep-PCR profiles. 

6.2.1 Positive control bacteria 

Positive control bacteria were used for the AMR gene study and are shown in 

Table 6.1. The positive controls were kindly provided by the European Union 

Reference Laboratory for AMR, National Food Institute, Technical University of 

Denmark (DTU, Lyngby, Denmark). 
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Table 6.1 Positive control bacteria used for the detection of AMR genes 

Bacteria Gene 

Escherichia coli K13 aac(3ʺ) IV 
Salmonella tyhpimurium DT104 aadA 
Enterococcus faecalis PEF4 aadE 
No positive control aac(6ʺ)aph(2ʺ) 
Escherichia coli K12 ant(2ʺ)-1 
Staphylococcus aureus E19771 blazA 
Staphylococcus aureus Tn554 erm(A) 
Enterococcus faecalis JH2-2 erm(B) 
Staphylococcus aureus PSE55 erm(C) 
Staphylococcus aureus 50A247 mecA 
Staphylococcus aureus LGA251 mecC 
Escherichia coli RSF1010 strA 
Escherichia coli RSF1010 strB 
Staphylococusintermedius 2567 tet(K) 
Staphylococcus aureus PSTS9 tet(L) 
Salmonella intermedius 2567 tet(M) 
Camplylobacter coli P1P1433 tet(O) 
Escherichia coli tet(Q) 
Listeria monocytogenes BM4210/PIP811 tet(S) 
Escherichia coli tet(W) 
Enterococcus faecium BH4147 vanA 
Enterococcus faecalis V583 vanB 
Enterococcus faecium 6605 vanX 
 

6.2.2 Assessment of the susceptibility of lactic acid bacteria to antimicrobials 

Antimicrobial susceptibility of LAB was evaluated using Gram positive minimal 

inhibitory concentration (MIC) plates for eighteen antimicrobials (GPN3F, Trek 

diagnostic systems, Thermo Scientific, UK) as shown in (Table 6.2a and 6.2b). 

The MIC was determined by the broth microdilution method according to the 

method of Ouoba et al. (2008). 
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6.2.2.1 Inoculum preparation 

A loopful of colonies of 48 h culture of isolates grown on MRS agar was placed 

in 1ml sterile distilled water. The suspension was centrifuged for 1 min at 13,000 

x g (Eppendorf 5415R, UK), the supernatant discarded and the pellet dissolved in 

500 µl maximum recovery diluent (MRD). Drops of the suspension were added to 

10 ml MRD in sterile screw capped tubes until a value of 0.5 MacFarland 

standard (108cfu/ml) was achieved using nephelometer (Sensititre, 

SN437R03N007 Trek diagnostic systems, UK).  

6.2.2.2 Determination of the MIC 

An aliquot of 100 µl of the 0.5 Macfarland standard suspension was added into 20 

ml MRS broth and transferred into a sterile petri dish. An aliquot of 50 µl of 

suspension was inoculated into each well of the microtitre plates that contain the 

different antimicrobials. Each microtitre plate was covered with a plastic film and 

incubated anaerobically at 37 oC for 48 h. A purity check was performed by 

streaking a loopful of the remaining suspension on MRS agar plates. After the 

incubation time, the MIC plates were observed with a magnifying sensititre 

manual mirror. Visible growth (precipitated cells) or no visible growth were 

recorded on the GPN3F sensititre Gram positive plate format sheet.  

To determine the susceptibility profile of the LAB, breakpoints for the 

antimicrobials proposed by the European Food Safety Agency (EFSA), the 

European Committee on Antimicrobial Susceptibility testing (EUCAST), the 

Clinical and Laboratory Standards Institute (CLSI) and other published literatures 
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(Table 6.2a and 6.2b) were used. Breakpoint is a known concentration of 

antimicrobial that indicates whether a bacterium is susceptible or resistance to the 

antimicrobial. The MIC obtained for each antimicrobial was compared with the 

proposed breakpoint and the susceptibility determined. Each bacterium was 

considered resistant if the MIC was greater than the established breakpoint and 

susceptible if less than the breakpoint.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



170 
 

Table 6.2a Proposed Breakpoints for the LAB studied  

Antimicrobials/ 
concentration 
range 

LAB/Breakpoints (µg/ml) 

 Lb 
plantarum 

Lb. 
pentosus 

Lb. 
fermentum 

Lb. 
coryniformis 

Leu. 
mesenteroides 

Ampicillin 
 (0.12-16) 

2a 2a 2a 2a ⃰ 2a 

Ceftriaxone  
(8-64) 

4* 4* 4* 4* 4* 

Ciprofloxacin  
(0.5-2) 

4d 4* 4c 4* >32e 

Clindamycin 
 (0.12-1) 
 

2a 2a 1a 1a 1a 

Daptomycin 
 (0.25-8) 

4f 4f 4f 4f 4* 

Erythromycin  
(0.25-4) 

1a  1a 1a 1a 1a 

Gatifloxacin  
(1-8) 

≥8i* ≥8i* ≥8i* ≥8i* ≥8i* 

Gentamicin 
 (2-16 & 500) 

16 a 16 a 16 a 16 a ⃰ 16 a 

Levofloxacin  
(0.25-8) 

4h* 4h* 4h* 4h* 4h* 

Linezolid 
 (0.5-8) 

≥8d ≥8d 4c ≥8d ⃰ ≥8e 

Oxacillin+2%NaCl 
(0.5-8) 

8d 8d ⃰ 8d ⃰ 8d ⃰ 8d 

Penicillin 
(0.06-8) 

4d 4d ⃰ 4d ⃰ 4d ⃰ 1e 

Quinupristin/ 
Dalfopristin  
(0.12-4) 

4h 4h 4h 4h 4h 

Rifampin  
(0.5-4) 

32gc 32gc 32c 32gc 4e 

Streptomycin  
(1000) 

64a 64a 64a 16a 64a 

Tetracycline 
 (2-16) 

32a 32a 8a 32a 8a 

Trimethoprim/ 
Sulfamethoxazole 
(0.5/9.5-4/76) 

32 
/512 d 

>32 ⃰ 
/512 d 

32 
/512 d 

2 ⃰ 
/512 d 

32 ⃰ 
/512 d 

Vancomycin  
(1-128) 

4g 4g 4g 4g ≥32e 

 a = EFSA (2012)     

 b= EFSA (2015)     

 C = Klayraung et al. (2008) 
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 d = Ouoba et al. (2008)    

 e = Florez et al. (2016)   

 f = Humphries et al. (2013) 

g = ECHCPDG (2003)     

h = EFSA (2008)  

 i= CLSI (2016) 

J: British Society for Antimicrobial Chemotherapy (BSAC) Methods for Antimicrobial 
Susceptibility Testing (2013) 

H: European Committee on Antimicrobial Susceptibility Testing 2014 

*: breakpoints determined in this study using those of similar genera 
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Table 6.2b Proposed Breakpoints for the LAB studied  

Antimicrobials/ 
concentration 
range 

LAB/Breakpoints (µg/ml) 

 Leu. 
lactis 

Weisalla 
confusa 

Weisella 
paramesenteroides 

St. 
salivarius 

St. 
cristatus 

Ent. 
faecium 

Ampicillin 
 (0.12-16) 

2a 2e 2e 2a ⃰ 2a ⃰ 2a 

Ceftriaxone  
(8-64) 

4* 4* 4* 4* 4* 4* 

Ciprofloxacin  
(0.5-2) 

>32e >32e 4* 4* 4* 4b 

Clindamycin 
 (0.12-1) 
 

1a 1e 1e 2a ⃰ 2a ⃰ 4a 

Daptomycin 
 (0.25-8) 

4* 4* 4* 1j 1j 4f 

Erythromycin  
(0.25-4) 

1a 1e 1e 2a ⃰ 2a ⃰ 4a 

Gatifloxacin 
 (1-8) 

≥8i* ≥8i* ≥8i* ≥8i* ≥8i* ≥8i 

Gentamicin  
(2-16 & 500) 

16 a 128d 128d 32 a ⃰ 32 a ⃰ 32 a 

Levofloxacin  
(0.25-8) 

4h* 4h* 4h* 4h* 4h* 4h 

Linezolid  
(0.5-8) 

≥8e ≥8de ≥8de  ⃰ 4J* 4J* 4b 

Oxacillin+2%NaCl 
(0.5-8) 

8d ⃰ 8d ⃰ 8d ⃰ 8d 8d ⃰ 8d ⃰ 

Penicillin  
(0.06-8) 

1e 1e 1e 2J 2J ≥ 16i 

Quinupristin/ 
Dalfopristin  
(0.12-4) 

4h 4h ⃰ 4h ⃰ 4h 4h ⃰ 4h 

Rifampin  
(0.5-4) 

4e 4e 4e 4* 4* 4g 

Streptomycin  
(1000) 

64a 64e 64e 64a* 64a* 128a 

Tetracycline 
 (2-16) 

8a 8e 8e 4a ⃰ 4a ⃰ 4a 

Trimethoprim/ 
Sulfamethoxazole 
(0.5/9.5-4/76) 

32  ⃰
/512 

d 

32 ⃰ 
/512 d 

32 ⃰ 
/512 d 

32 ⃰ 
/512 d 

32 ⃰ 
/512 d 

32 ⃰ 
/512 d 

Vancomycin  
(1-128) 

≥32e ≥32e ≥32e 4a* 4a* 4a 

a = EFSA (2012)     

 b= EFSA (2015)   

 C = Klayraung et al., (2008) 
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d = Ouoba et al., (2008)   

 e = Florez et al., (2016)   

 f = Humphries et al.,(2013) 

g = ECHCPDG (2003)     

h = EFSA (2008)   

 i= CLSI (2016) 

J: British Society for Antimicrobial Chemotherapy (BSAC) Methods for Antimicrobial 
Susceptibility Testing (2013) 

H: European Committee on Antimicrobial Susceptibility Testing 2014 

*: breakpoints determined in this study using those of similar genera 

 

6.2.3 Assessment of antimicrobial resistance genes 

Assessment of AMR genes was carried out using polymerase chain reaction 

(PCR) with specific primers for each AMR gene screened. The AMR genes that 

were screened are; 

1) Erythromycin: erm(A), erm(B) and erm(C) 

2) Gentamicin: aac(6ʺ)aph (2ʺ), aac(3ʺ) V, ant(2ʺ)-1 

3) Methicilin: mecA and mecC 

4) Penicillin: blazA 

5) Streptomycin: strA, strB, aadA, aadE 

6) Tetracycline: tet(K), tet(L),tet(M), tet(O), tet(Q), tet(S),tet(W) 

7) Vancomycin: vanA, vanB, vanC 
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6.2.3.1 DNA extraction 

A colony from a 48 h culture was picked and added in 1ml of autoclaved high 

purity water (Sigma, Gillingham, UK). The suspension was then centrifuged for 

1min at 12,000 x g (Eppendorf 5415R, UK). The supernatant was carefully 

discarded and 100 µl of InstaGene matrix (Bio-Rad, UK) was added to the pellet. 

This was followed by an incubation of the mixture at 56 oC for 30 min. Further, 

the tube was rotated on a vortex (Fisons, UK) for 30 s and placed in a 100 oC heat 

block for 8-10 min. After the latter incubation, the tube was rotated again on the 

vortex for another 30 s and the mixture centrifuged at 12,000 x g (Eppendorf 

5415R, UK) for 3 min. The DNA extract in the supernatant was transferred into a 

sterile eppendorf tube and stored at -20 oC until required for further analysis. 

6.2.3.2 Polymerase chain reaction (PCR) for screening the AMR genes 

The presence of AMR genes coding for some AMR specific genes (mentioned 

above) was screened by PCR using specific primers. For the PCR of 

erythromycin, gentamicin, tetracycline and vancomycin resistance genes, the 50 

µl PCR mixture consisted of 40.3 µl autoclaved high purity water, 5 µl PCR 

buffer (containing 15 mM of magnesium chloride), 0.5 µl dNTP (1.25 mM), 0.5 

µl each of forward and reverse primers (21 pmol/µl), 0.2 µl Taq DNA polymerase 

(5U) and 3 µl DNA extract. Primers and annealing temperatures for each gene are 

shown in (Table 6. 3a and 6.3b). 

The PCR mixture for streptomycin strA and strB resistance genes consisted of 

38.3 µl autoclaved high purity water, 5 µl PCR buffer (containing 15 mM of with 
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magnesium chloride), 0.5 µl dNTP (1.25 mM), 2 µl magnesium chloride (25 

mM), 0.5 µl each of forward and reverse primers (21pmol/µl), 0.2 µl Taq DNA 

polymerase (5U) and 3 µl DNA extract. 

The PCR  mixture for streptomycin aadA resistance gene consisted of 39.8 µl 

autoclaved high purity water, 5 µl PCR buffer(containing 15 mM of with 

magnesium chloride), 0.5 µl dNTP(1.25 mM), 0.5 µl magnesium chloride (25 

mM), 0.5 µl each of forward and reverse primers (21pmol/µl), 0.2 µl Taq DNA 

polymerase (5U) and 3 µl DNA extract. 

The PCR mixture for streptomycin aadE and penicillin blazA resistance genes 

consisted of 37.3 µl autoclaved high purity water, 5 µl PCR buffer (containing 15 

mM of with magnesium chloride), 0.5 µl dNTP(1.25 mM), 3 µl magnesium 

chloride (25 mM), 0.5 µl each of forward and reverse primers (21pmol/µl), 0.2 µl 

Taq DNA polymerase (5U) and 3 µl DNA extract. 

The reaction mixture for methicillin (MecA and MecC) resistance genes was 

made of  6.5 µl autoclaved high purity water, 12.5 µl 2x green master mix, 2 µl 

each of forward and reverse primers and 3 µl DNA extract. 

The PCR amplifications were carried out in a thermocycler (GeneAmp PCR 2700 

system, Applied Biosystems, UK) with the following temperature sequences: 

initial denaturation of 94 oC for 3 min, 25 or 35 cycles of 94 oC for 1 min, 

annealing temperature of 45 oC to 67 oC for individual primers (Table 4) and 72 

oC for 1 min. This was followed by a final extension at 72 oC for 10 min. 
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A volume of 10 µl of the amplicons (PCR products) was separated by 

electrophoresis on 1.5% (w/v) agarose gel. The gel was stained with ethidium 

bromide (0.5 µl/ml), distained in water and visualized under UV light. 

The Taq polymerase, PCR buffer and magnesium chloride were from Applied 

Biosystems, UK, the high purity water and primers from Sigma, UK and the 

dNTP mix from Promega, UK. 

6.2.3.3 Sequencing of resistances genes 

The PCR products of the screened resistance genes that showed visible bands 

were purified with the Qiagen purification kit (Qiagen, UK) as described by the 

manufacturer. At the initial stage of using a new purification kit, about 96-100% 

ethanol was added to buffer PE before usage. An aliquot of 225 µl buffer PB was 

added to 45 µl of PCR sample in an eppendorf tube and the mixture transferred 

into a QIAquick spin column placed in a 2 ml collection tube followed by 

centrifugation at 13,000 x g for 1 min to bind the DNA to the column. The filtered 

liquid was discarded and750 µl buffer PE added  in the column  followed by 

centrifugation (13,000 x g for 1 min) in order to wash the DNA. The filtered 

liquid was discarded and additional centrifugation step operated to eliminate any 

residual PE buffer. The column was then transferred in a clean 1.5 ml eppendorf 

tube and the elute DNA eluted by adding 50 µl buffer EB followed by 

centrifugation at 13,000 x g for 1 min. The filtered purified DNA obtained was 

used for the sequencing. The purified products were sequenced (Source 

bioscience, Cambridge, UK) using the same primers at a volume of 3.2 µl. The 
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sequences were analysed in the Genbank data base using Basic Alignment Search 

Tool (BLAST). 
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Table 6.3a Resistance genes with specific primers and annealing temperatures 

Resistance  
genes 

Primers* Annealing  
temperature 
(ºC) 

Amplicon 
size 
(bp) 

aac(3ʺ) IV 5ʹ-GTG TGC TGC TGG TCC ACA GC-3ʹ 
5ʹ-AGT TGA CCC AGG GCT GCT GC-3ʹ 

63 1550 

aadA 5ʹ-ATC CTT CGG CGC GAT TTT G-3ʹ 
5ʹ-GCA GCG CAA TGA CAT TCT TG-3ʹ 

56 3000 

aadE 5ʹ-ATG GAA TTA TTC CCA CCT GA-3ʹ 
5ʹ-TCA AAA CCC CTA TTA AAG CC-3ʹ 

50 2000 

aac(6ʺ)aph(2ʺ) 5ʹ-CCA AGA GCA ATA AGG GCA TA-3ʹ 
5ʹ-CAC TAT CAT AAC CAC TAC CG-3ʹ 

48 1400 

ant(2ʺ)-1 5ʹ-GGG CGC GTC ATG GAG GAG TT-3ʹ 
5ʹ-TAT CGC GAC CTG AAA GCG GC-3ʹ 

67 500 

blazA 5′-CAGTTCACATGCCAAAGAG -3′  
5′- TACACTCTTGGCGGTTTC -3′ 

54 2000 

erm(A) 5ʹ-AAG CGG TAA AAC CCC TCT GAG-3ʹ 
5ʹ-TCA AAG CCT GTC GGA ATT GG-3ʹ 

55 1400 

erm(B) 5ʹ-CAT TTA ACG ACG AAA CTG GC-3ʹ 
5ʹ-GGA ACA TCT GTG GTA TGG CG-3ʹ 

52 1000 

erm(C) 5ʹ-CAA ACC CGT ATT CCA CGA TT-3ʹ 
5ʹ-ATC TTT GAA ATC GGC TCA GG-3ʹ 

48 1000 

mecA 5’ – TCCAGATTACAACTTCACCAGG–3’ 
5’ – CCACTTCATATCTTGTAACG–3’ 

59 300 

mecC 5’ – GAAAAAAAGGCTTAGAACGCCTC–3’ 
5’ – GAAGATCTTTTCCGTTTTCAGC–3’ 

59 200 

* Primers adopted from European Union Reference Laboratory for AMR, National 

Institute, DTU, Lyngby, Denmark. 
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Table 6.3b Resistance genes with specific primers and annealing temperatures 

Resistance 
 genes 

Primers* Annealing 
 temperature 
(ºC) 

Amplicon 
size 
(bp) 

strA 5ʹ-CTT GGT GAT AAC GGC AAT TC-3ʹ 
5ʹ-CCA ATC GCA GAT AGA AGG C-3ʹ 

55 1400 

strB 5ʹ-ATC GTC AAG GGA TTG AAA CC-3ʹ  
5ʹ-GGA TCG TAG AAC ATA TTG GC-3ʹ 

56 1400 

tet(K) 5ʹ-TTA GGT GAA GGG TTA GGT CC-3ʹ 
5ʹ-GCA AAC TCA TTC CAG AAG CA-3ʹ 

55 1550 

tet(L) 5ʹ-GTT GCG CGC TAT ATT CCA AA-3ʹ 
5ʹ-TTA AGC AAA CTC ATT CCA GC-3ʹ 

54 1550 

tet(M) 5ʹ-GTT AAA TAG TGT TCT TGG AG-3ʹ 
5ʹ-CTA AGA TAT GGC TCT AAC AA3ʹ 

45 1500 

tet(O) 5ʹ-GAT GGC ATA CAG GCA CAG AC-3ʹ 
5ʹ-CAA TAT CAC CAG AGC AGG CT-3ʹ 

55 1550 

tet(Q) 5ʹ-ATG TTC AAT ATC GGT ATC AAT GA-3ʹ 
5ʹ-GCG GAT ATC ACC TTG CTT C-3ʹ 

55 1000 

tet(S) 5’-TGG AAC GCC AGA GAG GTA TT-3’ 
5’-ACA TAG ACA AGC CGT TGA CC-3’ 

55 1550 

tet(W) 5’-GCCATCTTGGTGATCTCC-3’ 
5’-TGGTCCCCTAATACATCGTT-3’ 

55 1550 

vanA 5ʹ-AAC AAC TTA CGC GGC ACT-3ʹ 
5ʹ-AAA GTG CGA AAA ACC TTG C-3ʹ 

55 1550 

vanB 5ʹ-GAT ATT CAA AGC TCC GCA GC-3ʹ 
5ʹ-TGA TGG ATG CGG AAG ATA CC-3ʹ 

55 1000 

vanX 5ʹ-TGC GAT TTT GCG CTT CAT TG-3ʹ 
5ʹ-ACT TGG GAT AAT TTC ACC GG-3ʹ 

55 1400 

* Primers adopted from European Union Reference Laboratory for AMR, National 

Institute, DTU, Lyngby, Denmark. 
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6.3 Results 

6.3.1 Susceptibility of the LAB studied to antimicrobials 

The results of the MIC of various antimicrobials for the different LAB are shown 

in Table 6.4. All eleven LAB were sensitive to ciprofloxacin, gatifloxacin and 

quinupristin/dalfopristin as suggested by MIC values that are below the proposed 

breakpoints. On the other hand, they were all resistant to daptomycin. For the rest 

of antimicrobial, the susceptibility was variable according to the isolate and the 

antimicrobial screened. For example, most LAB were sensitive to ampicillin and 

oxacillin except the isolate of Enterococcus faecium which showed resistance to 

the antimicrobial.  Most were also sensitive to penicillin except the isolate of 

Weisella paramesentreoides which was resistant. Weisella confusa, Weisella 

paramesentreoides and Enterococcus faecium were resistant to rifampin whereas 

the other isolates were sensitive. For trimethoprim/sulfamethoxazole and 

streptomycin, it was not possible to determine the susceptibility of the isolates 

because the range of the concentrations of the antimicrobials included in the MIC 

did not cover the value of the proposed breakpoints. 
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Table 6.4a Minimum inhibitory concentration of various antimicrobials for the 

LAB studied and their associated susceptibility patterns. 

Antimicrobials MIC (µg/ml) 
 Lb. 

plantarum 
Lb. 
pentosus 

Lb. 
fermentum 

Lb. 
coryniformis 

Leu. mesenteroides 
subsp. 
mesenteroides 

Ampicillin  
(0.12-16) 

1 S 0.25 S ≤0.12 S 0.25 S 0.5 S 

Ceftriaxone  
(8-64) 

≤8 R 8 R ≤8 R ≤8 R 32 R 

Ciprofloxacin 
 (0.5-2) 

>2 S >2 S >2 S >2 S >2 S 

Clindamycin 
 (0.12-1) 
 

>2 R >2 R 0.5 S ≤0.12 S 0.25 S 

Daptomycin  
(0.25-8) 

>8 R >8 R >8 R >8 R >8 R 

Erythromycin 
 (0.25-4) 

4 R 4 R 4 R 2 R 4 R 

Gatifloxacin  
(1-8) 

8 S 4 S >8 S 2 S 4 S 

Gentamicin 
 (2-16 & 500) 

>16 R >16 R >16 R 16 S 8 S 

Levofloxacin  
(0.25-8) 

>8 R >8 R >8 R 4 S >8 R 

Linezolid  
(0.5-8) 

4 S 2 S >8 R 4 S 4 S 

Oxacillin+2%NaCl 
(0.5-8) 

4 S 4 S 2 S 1 S 2 S 

Penicillin 
 (0.06-8) 

2 S 1 S 0.25 S 0.25 S 0.25 S 

Quinupristin/ 
Dalfopristin  
(0.12-4) 

2 S 4 S 0.25 S 2 S 1 S 

Rifampin  
(0.5-4) 

2 S 2 S ≤0.5 S ≤0.5 S 1 S 

Streptomycin  
(1000) 

>1000 R ≤1000NA ≤1000 NA ≤1000 NA ≤1000 NA 

Tetracycline 
 (2-16) 

>16 R >16 R 16 R >16 R 16 R 

Trimethoprim/ 
Sulfamethoxazole 
(0.5/9.5-4/76) 

>4/76NA >4/76NA >4/76NA 4/76NA >4/76 NA 

Vancomycin  
(1-128) 

>128 R >128 R >128 R >128 R >128 R 

R = Resistance 

S = Susceptibility 

NA =Not applicable 
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Table 6.4b Minimum inhibitory concentration of various antimicrobials for the 

LAB studied and their associated susceptibility patterns. 

Antimicrobials MIC (µg/ml) 

 Leu. 
mesenteroides 
subsp. 
lactis  

Weisella 
confusa 

Weisella 
paramesenteroides 

St. salivarius 
subsp. 
thermophilus 

St. 
cristatus 

Ent. 
faecium 

Ampicillin  
(0.12-16) 

0.25 S 0.25 S ≤0.12 S ≤0.12 S ≤0.12 S >16 R 

Ceftriaxone 
 (8-64) 

>64 R 16 R ≤8 S ≤8 S ≤8 S >64 R 

Ciprofloxacin  
(0.5-2) 

>2 S >2 S >2 S >2 S >2 S >2 S 

Clindamycin 
 (0.12-1) 
 

≤0.12 S 0.5 S >2 R >2 R 0.5 S 2 S 

Daptomycin  
(0.25-8) 

>8 R >8 R >8 R >8 R >8 R >8 R 

Erythromycin 
 (0.25-4) 

2 R 2 R 4 R >4 R 2 S >4 R 

Gatifloxacin  
(1-8) 

≤1 S ≤1 S 4 S 2 S 4 S >8 S 

Gentamicin 
 (2-16 & 500) 

16 S >500 R >16 S >500 R >16 S >500 R 

Levofloxacin  
(0.25-8) 

4 S 4 S >8 R 8 R >8 R >8 R 

Linezolid 
 (0.5-8) 

8 S 4 S 2 S ≤0.5 S 4 S 4 S 

Oxacillin+2% 
NaCl  
(0.5-8) 

1 S 2 S 2 S ≤0.25 S 1 S >8 R 

Penicillin  
(0.06-8) 

≤0.06 S 1 S 2 R ≤0.06 S 1 S >8 S 

Quinupristin/ 
Dalfopristin 
 (0.12-4) 

1 S 0.5 S 4 S 2 S 1 S 0.5S 

Rifampin 
 (0.5-4) 

1 S >4 R >4 R ≤0.5 S ≤0.5 S >4 R 

Streptomycin 
 (1000) 

≤1000 NA ≤1000 
NA 

≤1000 NA ≤1000 NA >1000 R >1000 R 

Tetracycline  
(2-16) 

4 S >16 R 8 S >16 R >16 R >16 R 

Trimethoprim/ 
Sulfamethoxazole 
(0.5/9.5-4/76) 

>4/76 NA >4/76 
NA 

>4/76 NA >4/76 NA >4/76 
NA 

>4/76 
NA 

Vancomycin 
 (1-128) 

>128 R >128 R >128 R ≤1 S >128 R 4 S 

R = Resistance 

S = Susceptibility 
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NA =Not applicable 

 

6.3.2 Determination of AMR genes 

The result of the screening of AMR genes is shown in Table 6.5a, 6.5b, and 

Figure 6.1, 6.2 and 6.3. No positive amplicon was obtained for the genes screened 

for gentamicin, methicillin, penicillin and streptomycin and vancomycin. For 

Erythromycin, a positive amplicon for the erm(B) was obtained with 

Streptococcus salivarius subsp. thermophilus and the identity of the gene was 

confirmed by sequencing. For tetracycline, the tet(K), tet(L) and tet(M) genes 

were detected in  Enterococcus faecium  where as, tet(M) and tet(L) were detected 

in Streptococcus salivarius subsp. thermophilus and in Streptococcus cristatus 

respectively. The identity of the pre-cited tetracycline genes was confirmed by 

sequencing. As seen in Tables 6.5a and 6.5b, positive amplicons were obtained 

for erm(A), tet(Q), and tet(W) genes but either the bands were faint or their 

occurrence was not stable over the repeat experiments. 
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Table 6.5a Antimicrobial resistance gene screening 

Isolates Antimicrobials 
 Erythromycin Gentamycin Methicillin Penicillin Streptomycin 
 erm(A) erm(B) erm(C) ant 

(2”) 
aac(3”) aac (6”) aph 

(2”) 
mecA mecC blazA strA strB aadA aadE 

1 ± - - - - - - - - - - - - 
2 - + - - - - - - - - - - - 
3 - - - - - - - - - - - - - 
4 ± - - - - - - - - - - - - 
5 - - - - - - - - - - - - - 
6 ± - - - - - - - - - - - - 
7 - - - - - - - - - - - - - 
8 - - - - - - - - - - - - - 
9 - - - - - - - - - - - - - 
10 ± - - - - - - - - - - - - 
11 ± - - - - - - - - - - - - 
+ = Confirmed gene 

+ = Positive PCR 

±= initial band faint and repeated PCRs were negative or faint = negative PCR 

1 = Lactobacillus plantarum          

 2 = Streptococcus salivarius subsp. thermophilus   

3 = Leuconostoc mesenteroides subsp. mesenteroides        

 4 = Lactobacillus fermentum  

 5 = Weissella paramesenteroides    
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6 = Lactobacillus pentosus 

7 = Enterococcus faecium              

  8 = Leuconostoc mesenteroides subsp. lactis 

 9 = Weissella confusa                     

10 = Streptococcus cristatus 

11 = Lactobacillus coryniformis 

 

Table 6.5b Antimicrobial resistance gene screening 

Isolates Antimicrobials 
 Tetracycline Vancomycin 
 tet(K) tet(L) tet(M) tet(O) tet(Q) tet(S) tet(W) vanA vanB vanX 
1 - - - - ± - - - - - 
2 - - + - ± - ± - - - 
3 - - - - ± - ± - - - 
4 - - - - - - - - - - 
5 - - - - ± - - - - - 
6 - - - - ± - - - - - 
7 + + + - ± - - - - - 
8 - - - - ± - - - - - 
9 - ± - - ± - - - - - 
10 - + - - ± - ± - - - 
11 - ± - - ± - - - - - 
+ = Confirmed gene 
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+ = Positive PCR 

±= initial band faint and repeated PCRs were negative or faint = negative PCR 

1 = Lactobacillus plantarum          

 2 = Streptococcus salivarius subsp. thermophilus   

3 = Leuconostoc mesenteroides subsp. mesenteroides        

 4 = Lactobacillus fermentum  

 5 = Weissella paramesenteroides    
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6 = Lactobacillus pentosus 

7 = Enterococcus faecium              

8 = Leuconostoc mesenteroides subsp. lactis 

 9 = Weissella confusa                     

10 = Streptococcus cristatus 

11 = Lactobacillus coryniformis 

 

 

Figure 6.1 Antimicrobial resistance gene gel image of erm(B) and  tet(M) 

1 = Lactobacillus plantarum          

 2 = Streptococcus salivarius subsp. thermophilus  

 3 = Leuconostoc mesenteroides subsp. mesenteroides        

 4 = Lactobacillus fermentum  
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 5 = Weissella paramesenteroides    

 6 = Lactobacillus pentosus 

 7 = Enterococcus faecium              

 8 = Leuconostoc mesenteroides subsp.  lactis 

9 = Weissella confusa                     

10 = Streptococcus cristatus 

11 = Lactobacillus coryniformis 

 

 

Figure 6.2: Antimicrobial resistance gene gel image of tet(K) and tet(S) 

1 = Lactobacillus plantarum          

 2 = Streptococcus salivarius subsp. thermophilus   

 3 = Leuconostoc mesenteroides subsp. mesenteroides        
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 4 = Lactobacillus fermentum  

 5 = Weissella paramesenteroides    

 6 = Lactobacillus pentosus 

 7 = Enterococcus faecium              

 8 = Leuconostoc mesenteroides subsp. lactis 

 9 = Weissella confusa                     

10 = Streptococcus cristatus 

11 = Lactobacillus coryniformis 

 

 

Figure 6.3: Antimicrobial resistance gene gel image of tet(O) and tet(Q) 

1 = Lactobacillus plantarum          
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2 = Streptococcus salivarius subsp. thermophilus   

 3 = Leuconostoc mesenteroides subsp. mesenteroides        

 4 = Lactobacillus fermentum  

 5 = Weissella paramesenteroides    

 6 = Lactobacillus pentosus 

7 = Enterococcus faecium              

 8 = Leuconostoc mesenteroides subsp. lactis 

 9 = Weissella confusa                     

10 = Streptococcus cristatus 

11 = Lactobacillus coryniformis 

 

6.4 Discussion 

For safety of probiotic LAB intended to be used as supplement or in food 

products, the FAO/WHO (2006) recommends screening for AMR genes. 

Therefore, the phenotypic and genotypic AMR profile of LAB isolated from 

human breast milk was investigated in this study. The entire LAB were sensitive 

to quinolones (ciproflaxicin and gatifloxacin) as well as streptogramins 

(quinupristin/dalfopristin) indicating inhibition of DNA synthesis. Similarly, the 

entire LAB were susceptible to beta-lactams (ampicillin, penicillin and oxicillin) 

with the exception of Enterococcus faecium which showed resistance to 

ampicillin and oxicillin and Weisella paramesentreoides which was resistant to 

penicillin. The beta-lactams are known for their inhibition of cell wall synthesis 

(Cho et al. 2014). The entire LAB were also sensitive to the oxazolidinones 

(linezolid) with the exception of Lactobacillus fermentum. Similar trend was 
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reported in the study of Florez et al. (2016) where Leuconostoc and Weissella 

species isolated from fermented dairy milk showed susceptibility towards 

ciprofloxacin, ampicillin, penicillin and linezolid.  Also, similar to the current 

study, Lactobacillus species isolated from human breast milk were susceptible to 

ampicillin and penicillin (Martin et al. 2005, Malek et al. 2010, Sharma et al. 

2014, Kozak et al. 2015,Sharma et al. 2017) as well as to clindamycin and 

quinupristin/dalfopristin (Kozak et al. 2015). However, Jiang et al. (2016) 

indicated a resistance of lactobacilli isolated from human breast milk to 

ciproflaxicin. The difference with the current study may be due to various factors 

such as the origin of the isolates and the screening methods used. 

It has been reported that resistance of LAB to vancomycin is an intrinsic trait 

related to the presence of D-alanyl-D-lactate in their peptidoglycan as opposed to 

D-alanyl dipeptide which inhibit the binding of vancomycin (Gueimonde et al. 

2013, Florez et al. 2016). In fact, Sharma et al. (2017) and Kozak et al. (2015) 

reported vancomycin resistance in Lactobacillus plantarum and Lactobacillus 

pentosus from human breast milk. This was also observed for Leuconostoc and 

Weissella species from fermented dairy milk (Florez et al. 2016). In the current 

study, the LAB demonstrated high resistance to glycopeptides (daptomycin and 

vancomycin), but the isolates of Streptococcus salivarius subsp. thermophilus and 

Enterococcus faecium were susceptible to vancomycin. This study corroborates 

with the research finding of Jimenez et al. (2013) which also reported 

susceptibility of Enterococcus faecium from human breast milk to vancomycin. 

The results of the current study and that of Jimenez et al. (2013) suggest that the 
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intrinsic resistance to vancomycin claimed for LAB is not applicable to all 

species. The resistance to other antimicrobials such as ceftriaxone, erythromycin, 

gentamicin, levofloxacin, tetracycline and clindamycin observed in the current 

study for some LAB has also been reported in earlier similar studies (Kozak et al. 

2015, Ouoba et al. 2008 and Sharma et al. 2017). Tetracyclines are widely used 

globally in humans and food animals therefore, tetracycline resistance and 

resistant genes is very common in bacteria (Vries et al. 2011 and Jimenez et al. 

2013).  

Multi-drug resistance was observed in the LAB investigated with the highest seen 

in Enterococcus faecium which exhibited resistance to 10 antimicrobials. This 

trend was observed by Kivanc et al. (2016) and Reis et al. (2016) who reported 

multiple drug resistance in Enterococcus faecium isolated from human breast milk 

to ciprofloxacin, ampicillin, gentamicin, penicillin and vancomycin. Also, Munoz 

et al. (2013) observed resistance of Enterococcus faecium isolated from aquatic 

environment to multiple drugs including erythromycin, ciproflaxicin, rifampicin, 

tetracycline and vancomycin.   

The confirmation of the presence of the tet(K),  tet(L), tet(M) and erm(B) genes in 

some of the isolates support their phenotypic resistance to tetracycline and 

erythromycin. The presence of tet(M) and erm(B) genes observed in the 

Streptococcus salivarius was also reported by Zhang et al.(2011) in isolates from 

the same genus and also from human breast milk.  Antibiotic resistance genes 

including tet(M) were found in Enterococcus species from the gut of 16 American 

infants without antibiotic exposure. These infants were fed breast milk or infant 
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formula from birth to one year (Rolain, 2013). Egervin et al. (2009) reported the 

presence of tet(W) gene in Lactobacillus plantarum and Lactobacillus reuteri 

isolated from human breast milk. In the current study, faint positive amplicons for 

tet(W) were observed for Streptococcus cristatus, Streptococcus salivarius subsp. 

thermophilus and Leuconostoc mesenteroides subsp. mesenteroides but the 

concentration was not enough to allow a sequencing of the products and the 

confirmation of the identity of the gene. However, Thummu and Halami (2012) 

reported the presence of tet(W) in Lactobacillus salivarius isolated from Indian 

fermented food. Wang et al. (2006) reported tet(A) gene in Streptococcus 

thermophilus and Lactococcus lactis isolated from cheese. Use of tetracycline in 

humans and animals has contributed to the persistence of tet genes in bacteria 

(Vries et al. 2011 and Jimenez et al. 2013). On the other hand, Ouoba et al. 

(2008) reported the presence of gyrA (ciprofloxacin) and aph(3’)II (Kanamycin) 

resistance genes in  Lactobacillus plantarum, Lactobacillus paraplantarum and 

Lactobacillus casei isolated from human origin. Sulfonomide resistance gene 

(sul2) was reported in Enterococcus and Streptococcus species isolated from 

human breast milk (Zhang et al. 2011). In this study, phenotypic resistances 

observed with some isolates for some antimicrobials were not associated with the 

presence of the genes screened and coding for the antimicrobials. This may be 

related to intrinsic resistance to the antimicrobial or the presence of other genes 

which were not screened. The high phenotypic resistance of LAB to 

aminoglycosides (e.g.gentamicin), glycopeptides (daptomycin and vancomycin) 

and tetracycline could be due to selective pressure for resistance to these 
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antimicrobials. Antimicrobial resistance is a multifaceted problem that could be 

attributed to various kinds of selection pressures and mode of transmission 

(Ouoba et al. 2008). 

Many studies have suggested that some beneficial bacteria such as bifidobacteria 

and LAB originate from maternal gut (Martin et al. 2003, Fernandez et al. 2004, 

Gueimondeet al. 2007, Perez et al. 2007, Jimenez et al. 2008, Arroyo et al. 2010, 

Fernandenz et al. 2013, Jeurink et al. 2013). Supporting this theory, the presence 

of AMR and AMR genes in the LAB screened could be related to translocation of 

LAB with these features from maternal gut to mammary glands. However, if this 

theory is to be opposed, then presence of the tet(K), tet (L), tet(M) and erm(B) 

genes observed in this study could be attributed to contaminated maternal nipples 

that could harbour bacteria with potential AMR genes. Maternal gastrointestinal 

tract and skin microflora are possible reservoirs of antimicrobial resistant bacteria 

which could be transmitted to newborns and infants (Kozak et al. 2015). None of 

the maternal nipples was cleaned with sterilised swabs before collection of the 

breast milk samples. Cleaning of breast before breast feeding amongst lactating 

mothers is rarely practice in both developed and developing worlds. In order to 

have an insight into what babies are ingesting, this study decided to collect 

samples of breast milk the way babies suckle.  

High resistance of LAB to antimicrobials as demonstrated by this study could be 

attributed to antibiotic misuse and high level of exposure to antimicrobials by 

women of childbearing age as well as lactating mothers. This is further coupled 

with the food chain because once a bacterium with resistance to antimicrobials is 
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ingested, it could be passed to the gut. This could be transferred to infants via 

breast milk. Lactic acid bacteria that originate from the gut have diverse AMR 

that could be transferred to other bacteria present in the gut (Rolain, 2013). 

Frequent isolation of antimicrobial resistant microorganisms in ready to eat food 

products indicates possibility of disseminating antimicrobial resistant bacteria 

from food to humans (Zhang et al. 2011). Antibiotic residues are frequently found 

in edible animal flesh and dairy products in Nigeria (Kabir et al. 2004, Adetunji, 

2011). Also, erythromycin, gentamicin, penicillin, streptomycin and tetracycline 

and other antimicrobials are inappropriately used for prophylaxis and therapeutics 

in poultry laying eggs (Adebowale et al. 2016 and Mund et al. 2017).  In Nigeria 

as well as other developing countries, self medication with various antibiotics is 

common. Gentamicin, streptomycin, tetracycline and vancomycin and other 

antimicrobials are easily purchased over the counter without prescription. Lack of 

proper legislation and regulation contribute significantly to irrational antibiotic 

prescription and self medication. Thus, inevitably increase resistance of bacteria 

to antimicrobials (Olayemi et al. 2010, Sapkota et al. 2010 and Akinyandemu and 

Akinyandemu, 2014).   

6.5 Conclusion 

The study was aimed at assessing the phenotypic and genotypic AMR profiles of 

LAB from breast milk collected from some Nigerian nursing mothers. The results 

indicate resistance of some of the LAB to diverse antimicrobials, especially to 

tetracycline, vancomycin, streptomycin and gentamycin. Some LAB also 

demonstrated susceptibility profile to some of the antimicrobials especially 
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ciprofloxacin, gatifloxacin and quinupristin/dalfopristin. Positive amplicons were 

not observed for gentamicin, methicillin, penicillin and streptomycin and 

vancomycin genes. AMR genes tet(K), tet(L) and tet(M)), erm(B) coding for 

tetracyline and erythromycin were confirmed in Enterococcus faecium, 

Streptococcus salivarius subsp. thermophilus and Streptococcus cristatus. The 

study has therefore revealed the antimicrobial resistance profile and antimicrobial 

resistance genes of some LAB isolated from samples of Nigerian human breast 

milk. 
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CHAPTER SEVEN: DEMOGRAPHIC STUDY OF HUMAN BREAST 

MILK SAMPLES WITH RELATION TO LACTIC ACID BACTERIAL 

POPULATION AND DIVERSITY 
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7.1 Introduction 

Human breast milk is a complex biological fluid that adequately nourishes babies 

and infants. Human breast milk contain bioactive compounds such as human 

alpha-lactalbumin made lethal to tumour cells (HAMLET), immune cells, 

immunoglobulins, lactoferrin, lysozymes, and oligosaccharides (Admyre et al. 

2007, Mossberg et al. 2010, Hakansson et al. 2011, Marks et al. 2012 and Marks 

et al. 2013). Apart from nutritional components of breast milk, it also has 

commensal bacteria that are important for development of infant’s gut. Some 

beneficial bacteria such as lactic acid bacteria play a significant role in 

establishment of intestinal microflora of breast-fed babies. Probiotic LAB 

improve health of babies by reducing risks of diseases associated with allergy and 

diarrhea (Gueimonde et al. 2007, Martin et al. 2009 and Arboleye et al. 2011). 

However, gestational age, lactation stage, maternal diet, nutritional status, 

geograhical location, mode of delivery and use of antibiotics could affect 

population and diversity of human breast milk microbiota (Mills, et al. 2011, 

Khodayar-Pardo et al. 2014 and Gomez-Gallego et al. 2016). 

Human milk oligosaccharides (HMOs) stimulate growth of beneficial bacteria, 

HMOs are therefore prebiotic that promote growth and proliferation of probiotic 

bacteria (Mills, et al. 2011). Moreover, maternal HMOs vary in quality and 

quantity in relation to lactation period, maternal Lewis blood group and secretor 

status. But diet, ethnicity, lifestyle and many factors could contribute to structural 

variations of HMOs (Thum et al. 2012). Futhermore, fructo- oligosaccharides 

(found in onions, asparagus, tomatoes and other vegetables) and galacto- 
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oligosaccharides are both soluble alimentary fibres. These types of fibres get into 

gastrointestinal tract where they are fermented by bacteria (Mills, et al. 2011). 

Consumption of prebiotics by lactating mothers could therefore increase 

population and diversity of beneficial bacteria (Mills, et al. 2011). 

The aim of the study described in this chapter was to examine breast milk donors’ 

demographic characteristics that could be related with composition of bacterial 

population and diversity in their breast milk samples. The specific objective of 

this study was to determine demographic factors (stage of lactation, gender of 

lactating babies, number of children and diet) that could relate to population and 

diversity of lactic acid bacteria in human breast milk. 
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7.2 Materials and methods 

7.2.1 Data collection 

The instrument for data collection used in this study was questionnaire (Appendix 

3). The questionnaires were administered to donors at the time of breast milk 

collection (2.2.1, donor recruitment). The survey includes relevant questions 

regarding demographics of donors and their babies as well as donors’ diets. The 

questions were simple and required less than 20 minutes to answer. 

7.2.2 Data analysis 

Descriptive statistic was used to get the percentage of all the variables of 

demography of each sample as they relate to bacterial population and diversity. 

The methods of Arora et al. (2000), Odindo et al. (2014) and Patel et al. (2015) 

were used for this study. 

7.3 Results 

7.3.1 Bacterial population and diversity of human breast milk samples 

About 18.75% of the samples had a diversity of three kinds of bacteria, 56.25% 

had two types of bacteria while 25% had one bacterium. The population of the 

bacteria range from 2.30±0.15 to 4.14±0.13.  Samples F and I had less than 97% 

identity (Table 7.1). 
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Table 7.1 Bacterial population and diversity of human breast milk samples 

Sample Bacterial counts 
(cfu/ml) MRS 

Bacterial counts 
(cfu/ml) 
MRScys 

Identified bacteria % identity 

A 3.34±0.22 3.23±0.14 Enterococcus faecium  99.39 
 

B <1x10 <1x10 - - 
C 3.17±0.10 3.23±0.14 Enterococcus  faecium  

 
Leuconostoc  mesenteroides 
subsp. mesenteroides 
 

 99.79 
                                                  
100 
 

D 3.36±0.13 3.27±0.20 Weissella  paramesenteroides  
 
Weissella  confusa  

99.80 
 
99.79 

 
E 
 

3.17±0.10 
 

3.11±0.17 
 

Lactobacillus  fermentum  
 
Staphylococcus  epidermidis  

99.17 
 
100 
 

F  
4.04±0.20 

 
2.96±0.35 

 
Staphylococcus  epidermidis 

                                
95.45 
 

G 2.86±0.22 2.30±0.15 Enterococcus faecium 
 
Staphylococcus epidermidis 
 
Staphylococcus hominis  
 

99.37 
 
99.56 
 
100 

H 2.30±0.23 2.49±0.15 Staphylococcus epidermidis 
 
Staphylococcus hominis  
 

100 
 
99.57 
 

I 3.90±0.30 2.92±0.20 Pantoea dispersa  
 

89.84 
 

J 
 
 
 
 

2.65±0.29 4.14±0.13 Weissella paramesenteroides  
 
Lactobacillus pentosus  
 

 99.60 
 
100 
 

  MRS = de Man Rogosa Sharpe agar    

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

  cfu/ml = colony forming unit per milliliter 

  Data are mean log10 ± standard deviation of duplicate experiments 
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Table 7.1 continued 

Sample Bacterial counts 
(cfu/ml) MRS 

Bacterial 
counts (cfu/ml) 
MRScys 

Identified bacteria % 
identity 

K 
 
 
 

2.77±0.33 2.96±0.29 Staphylococcus epidermidis  
 

Staphylococcus epidermidis  
 

97.33 
 
99.79 
 

L 
 

2.65±0.10 2.84±0.14 Lactobacillus pentosus  
 
Streptococcus salivarus subsp. 
thermophilus  
 
Weissella confusa  
 

97.88 
 
100 
 
 
99.54 
 

M 2.70±0.17 2.94±0.17 Weissella confusa  
 

99.77 
 

N <1x10 <1x10                        - - 
O 2.47±0.22 <1x10 Lactobacillus fermentum  

 
99.60 
 

P 3.25±0.11 3.34±0.16 Weissella paramesenteroides  
 
Lactobacillus plantarum  
 

 99.80 
 
100 

Q 3.17±0.10 3.20±0.12 Staphylococcus hominis  
 

Leuconostoc mesenteroides 
subsp. lactis  
 
Streptococcus pneumoniae  
 
Streptococcus cristatus  
 

98.38 
 
99.52 
 
 
82.42 
 
99 
 

R 2.98±0.48 2.14±0.24 Staphylococcus epidermidis  
 
Leuconostoc mesenteroides 
subsp. lactis 

 

100 
 
100 

 

S 3.07±0.10 3.27±0.11 Staphylococcus epidermidis  
 
Streptococcus salivarus subsp. 
thermophilus 

100 
 
100 

 
T 3.04±0.21 2.93±0.29 Lactobacillus pentosus  

 
Lactobacillus coryniformis  

100 
 
99.79 

  MRS = de Man Rogosa Sharpe agar    

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

  cfu/ml = colony forming unit per milliliter 

  Data are mean log10 ± standard deviation of duplicate experiments 
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7.3.2 Relationship between lactation stage (age of babies) and bacterial 
counts 

Sixty percent of the babies’ lactation age was between 0-6 months and the 

population of bacteria isolated from the breast milk was between 2.14± 0.24 to 

4.04±0.20 cfu/ml but two samples were >100 cfu/ml. Twenty-five percent of the 

babies age while lactating was between7-13 months, the colony counts were in 

the range of 2.30±0.15 to 3.25±0.11 cfu/ml. Babies lactating between 14-20 

months were ten percent with bacterial counts between 2.65±0.10 to 4.14±0.13. 

Those over 20 months were only five percent with bacterial counts of between 

3.37±0.20 to 3.36±0.13 (Table 7.2a and 7.2b).  
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Table 7.2a Relationship between lactation stage (age of babies) and bacterial counts 

Lactation stage 
(Months) 
 

  0-6      7-13 

Bacterial counts 
(cfu/ml) 

Sample  
 

MRS MRScys 

A 
 

3.34±0.22 3.23±0.14 

B 
 

<1x10 <1x10 

C 3.17±0.10 3.23±0.14 

E 3.17±0.10 
 

3.11±0.17 
 

F 4.04±0.20 2.96±0.35 

I 3.90±0.30 2.92±0.20 

K 2.77±0.33 2.96±0.29 

M 2.70±0.17 2.94±0.17 

N <1x10 <1x10 

R 2.98±0.48 2.14±0.24 

S 
 

3.07±0.10 3.27±0.11 

T 
 

3.04±0.21 2.93±0.29 
 

Sample  
 

MRS MRScys 

G 
 
 

2.86±0.22 2.30±0.15 

H 
 
 

2.30±0.23 2.49±0.15 

O 
 
 

2.47±0.22 <1x10 

P 
 
 

3.25±0.11 3.34±0.16 

Q 
 
 

3.17±0.10 3.20±0.12 
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MRS = de Man Rogosa Sharpe agar    

MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

cfu/ml = colony forming unit per milliliter 

Data are mean log10 ± standard deviation of duplicate experiments 

Table 7.2b Relationship between Lactation stage (age of babies) and bacterial counts 

Lactation stage 
(Months) 
 

 14-20 Over 20 

Bacterial counts 
(cfu/ml) 

Sample  
 

MRS MRScys 

J 
 

2.65±0.29 4.14±0.13 

L 
 
 

2.65±0.10 2.84±0.14 

 

Sample  
 

MRS MRScys 

D 
 
 
 

3.36±0.13 3.27±0.20 

 

 MRS = de Man Rogosa Sharpe agar    

MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

cfu/ml = colony forming unit per milliliter 

Data are mean log10 ± standard deviation of duplicate experiments 

 

 



206 
 

 

7.3.3 Relationship between babies’ sex and bacterial counts 

Male babies represent sixty percent of the babies, the bacterial counts of their 

mothers’ breast milk was between 2.14±0.24 to 4.04±0.20 cfu/ml. Forty percent 

of the babies were females and the colony counts of their mothers’ breast milk 

was between 2.30±0.23 to 3.90±0.30 cfu/ml but two samples were <100 (Table 

7.3).  
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Table 7.3 Relationship between babies’ sex and bacterial counts 

Sex of babies 
 

Males Females 

Bacterial 
counts 
(cfu/ml) 

Sample  
 

MRS MRScys 

A 3.34±0.22 3.23±0.14 

C 3.17±0.10 3.23±0.14 

F 4.04±0.20 2.96±0.35 

G 2.86±0.22 2.30±0.15 

J 2.65±0.29 4.14±0.13 

L 2.65±0.10 2.84±0.14 

M 2.70±0.17 2.94±0.17 

O 2.47±0.22 <1x10 

P 3.25±0.11 3.34±0.16 

R 2.98±0.48 2.14±0.24 

S 
 

3.07±0.10 3.27±0.11 

T 
 

3.04±0.21 2.93±0.29 
 

Sample  
 

MRS MRScys 

B <1x10 <1x10 

D 3.36±0.13 3.27±0.20 

E 3.17±0.10 
 

3.11±0.17 
 

H 2.30±0.23 2.49±0.15 

I 3.90±0.30 2.92±0.20 

K 2.77±0.33 2.96±0.29 

N <1x10 <1x10 

Q 
 

3.17±0.10 3.20±0.12 
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  MRS = de Man Rogosa Sharpe agar    

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

  cfu/ml = colony forming unit per milliliter 

Data are mean log10 ± standard deviation of duplicate experiments 

 

7.3.4 Relationship between number of donors’ children and bacterial counts 

Forty percent of the donors have only one child and bacterial counts of their 

breast milk samples was between 2.14±0.24 to 4.04±0.20cfu/ml.  Donors with 

four to five children represented twenty percent of the population and their breast 

milk bacterial counts was between 2.30±0.15to 3.17±0.10 cfu/ml, but two 

samples were >100 cfu/ml. Donors with children between 6 to7 and 8 to 9 were 

fifteen percent and had colony counts of 2.47±0.22 to 3.34±0.16 cfu/ml and 

2.65±0.29 to 4.14±0.13 cfu/ml respectively. Donors with children between 2 to 3 

and 10-11 constitute five percent of the sampled population with bacterial counts 

ranging from 3.27±0.20 to 3.36±0.13 cfu/ml and 3.17±0.10 to 3.20±0.12 cfu/ml 

respectively (Table 7.4a, 7.4b and 7.4c).   
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Table 7.4a Relationship between number of donors’ children and bacterial counts 

Number of children 
 

 1          2-3 

Bacterial counts 
(cfu/ml) 

Sample    MRS                   MRScys         Sample  MRS               MRScys 

 C             3.17±0.10            3.23±0.14 
 
F             4.04±0.20            2.96±0.35 
 
H             2.30±0.23           2.49±0.15 
 
K             2.77±0.33           2.96±0.29 
 
L             2.65±0.10            2.84±0.14 
 
R             2.98 ±0.48           2.14±0.24 
 
S              3.07±0.10           3.27 ±0.11 
 
T              3.04 ±0.21          2.93 ±0.29          
 

D             3.36±0.13      3.27±0.20 

  MRS = de Man Rogosa Sharpe agar    

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine                 

  cfu/ml = colony forming unit per milliliter  

Data are mean log10 ± standard deviation of duplicate experiments 
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Table 7.4b Relationship between number of donors’ children and bacterial counts 

Number of children 
 

 4-5                         6-7 

Bacterial counts 
(cfu/ml) 

Sample  
 

MRS MRScys 

B 
 

>100 >100 

E 
 

3.17±0.10 
 

3.11±0.17 
 

G 
 

2.86±0.22 2.30±0.15 

N <1x10 <1x10 
 

Sample  
 

MRS MRScys 

M 
 

2.70±0.17 2.94±0.17 

O 
 

2.47±0.22 <1x10 

P 3.25±0.11 3.34±0.16 

 

Table 7.4c Relationship between number of donors’ children and bacterial counts 

Number of children 
 

              8-9 10-11 

Bacterial counts 
(cfu/ml) 

Sample  
 

MRS MRScys 

A 
 

3.34±0.22 3.23±0.14 

I 
 

3.90±0.30 2.92±0.20 

J 
 

2.65±0.29 4.14±0.13 
 

Sample  
 

MRS MRScys 

Q 
 

3.17±0.10 3.20±0.12 
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  MRS = de Man Rogosa Sharpe agar    

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

  cfu/ml = colony forming unit per milliliter 

  Data are mean log10 ± standard deviation of duplicate experiments 

 

7.3.5 Relationship between donors’ diet and bacterial counts 

Although donors eat almost similar staple foods, there was still a variation in the 

bacterial counts of their breast milk samples. The highest counts of 4.04±0.20and 

4.14±0.13 cfu/ml were from donors that consume tuwon shinkafa (mashed rice) 

with vegetable soup and danwake (boiled dumpling) with fried onion and pepper 

respectively (Table 7.5). 
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Table 7.5 Relationship between donors’ diet and bacterial counts 

Samples 
 

Typical daily foods of donors  Bacterial counts    
(cfu/ml) 

  MRS MRScys 
A Pounded yam (mashed yam) with egusi (melon 

seed) soup. 
3.34±0.22 3.23±0.14 

B Tuwon shinkafa (mashed rice) with vegetable soup. <1x10 <1x10 
C Beans and rice with stew 3.17±0.10 3.23±0.14 
D Jollof rice. 3.36±0.13 3.27±0.20 
E Beans, semovita (semolina) fufu with draw soup 

(ewedu, okra or ogbono). 
3.17±0.10 
 

3.11±0.17 
 

F Tuwon shinkafa (mashed rice) with vegetable soup.  
4.04±0.20 

 
2.96±0.35 

G Tuwo (mashed rice, corn or semovita) with kuka 
(baobab leaf powder) soup. 

2.86±0.22 2.30±0.15 

H Tuwo (mashed rice, corn or semovita) with 
vegetable soup. 

2.30±0.23 2.49±0.15 

I Amala (cassava or yam) fufu with vegetable, tea 
and bread 

3.90±0.30 2.92±0.20 

J 
 
 
 

Danwake (boiled dumpling made from a mixture of 
bean flour, cassava flour, wheat flour baobab 
powder and potash) with fried onion and pepper. 

2.65±0.29 4.14±0.13 

K Jollof rice. 2.77±0.33 2.96±0.29 
L Rice and stew 2.65±0.10 2.84±0.14 
M Rice and stew 2.70±0.17 2.94±0.17 
N Maize fufu with vegetable soup. <1x10 <1x10 
O Maize fufu with vegetable soup or kuka (baobab 

leaf powder) soup. 
2.47±0.22 <1x10 

P Tuwon shinkafa (mashed rice) with vegetable soup. 3.25±0.11 3.34±0.16 
Q Rice and stew 3.17±0.10 3.20±0.12 
R Pasta and vegetables 2.98±0.48 2.14±0.24 
S Rice and stew 3.07±0.10 3.27±0.11 
T Rice and beans stew 3.04±0.21 2.93±0.29 
  MRS = de Man Rogosa Sharpe agar    

  MRS-cys = de Man Rogosa Sharpe agar + L-cysteine 

  cfu/ml = colony forming unit per milliliter 

Data are mean log10 ± standard deviation of duplicate experiments 
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7.3.6 Demography of donors and bacterial diversity of human breast milk 
samples 

About 11.11% of donors with age range between 15-25 years had a diversity of 

three kinds of bacteria, 66.66% had two types of bacteria and 22.22% had one 

bacterium. About 33.33% of donors with age range between 26-36 years had a 

diversity of two types of bacteria and 66.66% had one bacterium. Fifty percent of 

over 36 years donors had diversity of three kinds of bacteria and 50% and had a 

diversity of two types of bacteria (Table 7.6). 

About 62.5% of 0-6 month lactation stage had a diversity of two kinds of bacteria 

and 37.5% had one bacterium. Forty percent of 7-13 month lactation stage had a 

diversity of three kinds of bacteria, also 40% had two types of bacteria and 20% 

had one bacterium. Fifty percent of 14-20 month lactation stage had diversity of 

three kinds of bacteria and 50% two types of bacteria. Only one sample had a 

lactation stage of over 20 month and had a hundred percent two types of bacteria.  

About 18.18% of donors with male babies had diversity of three kinds of bacteria, 

54.54% had two types of bacteria and 27.27% had one bacterium. Forty percent of 

donors with female babies had diversity of three kinds of bacteria also 40% had 

two types of bacteria and 20% had one bacterium.   

About 14.28% of the mothers with only one child had diversity of three kinds of 

bacteria, 71.43% had two types of bacteria and 14.28% had one bacterium.  Fifty 

percent of the mothers with 4-5 children had diversity of three kinds of bacteria 

and 50% had two types. About 33.33% of the mothers with 6-7 children had 

diversity of two kinds of bacteria and 66.66% had one bacterium. While 50% of 
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donors with 8-9 children had diversity of two kinds of bacteria and 50% had one 

bacterium. Donors with children between 2 to 3 and 10-11 had 100% diversity of 

two kinds of bacteria and three types of bacteria respectively. 

Sample L had the highest lactic acid bacterial diversity with Lactobacillus 

pentosus, Streptococcus salivarus subsp. thermophilus and Weissella confusa. 

The donor was at 14 to 20 months lactation stage, has one child, gender was male 

and frequently consumed food was rice and stew. Samples C, D, J, P, Q and T 

each had two types of lactic acid bacteria (Table 7.6). 
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Table 7.6 Demography of donors and bacterial diversity of human breast milk 
samples 

Sample Demography Bacteria 
 

A 0-6 month lactation stage, male, 8-9 children, diet: 
Pounded yam (mashed yam) with egusi (melon seed) 
soup. 
 

Enterococcus faecium 

C 0-6 month lactation stage, male, one child, diet: 
Beans and rice with stew. 
 

Enterococcus  faecium  
Leuconostoc  mesenteroides 
subsp. mesenteroides 
 

D Over 20 month, female, 2-3 children, diet: Jollof rice. Weissella  paramesenteroides  
Weissella  confusa  
 

E 0-6 month lactation stage, female, 4-5 children, diet: 
Beans, semovita (semolina) fufu with draw soup 
(ewedu, okra or ogbono). 

Lactobacillus  fermentum  
Staphylococcus  epidermidis  
 

G 7-13 month lactation stage, male, 4-5 children, diet: 
Tuwo (mashed rice, corn or semovita) with kuka 
(baobab leaf powder) soup. 

Enterococcus faecium 
Staphylococcus epidermidis 
Staphylococcus hominis  
 

H 7-13 month lactation stage, female, one child, diet: 
Tuwo (mashed rice, corn or semovita) with vegetable 
soup and noodles. 

Staphylococcus epidermidis 
Staphylococcus hominis  
 

J 14-20 month lactation stage, male, 8-9 children, diet: 
Danwake (boiled dumpling made from a mixture of 
bean flour, cassava flour, wheat flour baobab powder 
and potash) with fried onion and pepper. 
 

Weissella paramesenteroides  
Lactobacillus pentosus  
 

K 
 
 

0-6 month lactation stage, male, one child, diet: 
Jollof rice. 
 
 

Staphylococcus epidermidis  
Staphylococcus epidermidis  
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Table 7.6 continued 

Sample Demography Bacteria 
 

L 
 

14-20 month lactation stage, male, one child, 
diet: Rice and stew 
 

Lactobacillus pentosus  
Streptococcus salivarus subsp. 
thermophilus 
Weissella confusa  
 

M 0-6 month lactation stage, male, 6-7 children, 
diet: Rice and stew 
 

Weissella confusa  
 

O 0-6 month lactation stage, male, 6-7 children, 
diet: Maize fufu with vegetable soup or kuka 
(baobab leaf powder) soup. 
 

Lactobacillus fermentum 
 

P 7-13 month lactation stage, male, 6-7 
children, diet: Tuwon shinkafa (mashed rice) 
with vegetable soup. 

Weissella paramesenteroides  
Lactobacillus plantarum  
 

Q 7-13 month lactation stage, female, 10-11 
children, diet: Rice and stew. 

Staphylococcus hominis  
Leuconostocmesenteroides subsp.  
lactis  
Streptococcus cristatus  
 

R 0-6 month lactation stage, male, one child, 
diet: Pasta and vegetables. 

Staphylococcus epidermidis  
Leuconostoc mesenteroides subsp. 
lactis 

 
S 0-6 month lactation stage, male, one child, 

diet: Rice and stew 
 

Staphylococcus epidermidis  
Streptococcus salivarus subsp. 
thermophilus 

T 0-6 month lactation stage, male, one child, 
diet: Rice and beans stew. 
 

Lactobacillus pentosus  
Lactobacillus coryniformis  
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7.4 Discussion 

Demographic factors (stage of lactation, gender of lactating babies, number of 

children and diet) that could relate to population and diversity of lactic acid 

bacteria in human breast milk were examined. The population of 102 to 104 cfu/ml 

bacterial cells in this study is similar to the counts observed by Martin et al. 

(2003) and Albesharat et al. (2011). Other studies have reported LAB population 

of about 103 to 104 cfu/ml from the breast milk of healthy mothers (Jeurink et al. 

2013). A diversity of eleven LAB and two Staphylococcus species were present in 

HBM samples analysed in this study. The highest diversity of three kinds of LAB 

was observed in only one sample, other samples demonstrated presence of two or 

one LAB or a mixture of LAB and Staphylococcus species. Other samples had 

only Staphylococcus species. Collado et al. (2009) reported diversity of 

Staphylococcus, Bifidobacterium, Lactobacillus, Enterococcus and Streptococcus 

species in all 50 samples of Spanish HBM using quantitative real-time PCR 

technique (qRTI-PCR). This diversity is similar with our findings with the 

exception of Bifidobacterium species which was not present in any of the samples 

analysed in this study. Similarly, Soto et al. (2014) analysed 66 samples of HBM 

of German and Austrian mothers using PCR. They reported diversity of 

Staphylococcus, Streptococcus, Bifidobacterium and Lactobacillus species with 

diversity of two kinds of species in seven samples. Additionally, Martin et al. 

(2007) reported diversity of LAB from five samples of Spanish HBM using PCR 

and denaturing gradient gel electrophoresis (DGGE). A diversity of Lactobacillus 

fermentum, Weissella confusa, Leuconostoc citreum, Lactobacillus rhamnosus, 
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Lactobacillus plantarum and Leuconostoc fallax were detected. They observed a 

diversity of three kinds of LAB in three samples. However, Urbaniak et al. (2016) 

reported diversity of Staphylococcus, Enterobacteriaceae and Pseudomonas 

species in all 39 samples of Canadian HBM. Streptococcus and Lactobacillus 

species were present in some samples.  

Lactation period of maternal HBM samples did not indicate much difference in 

the population and diversity of LAB in this study. Bacterial population count of 

102 and 103 cfu/ml were all observed at all stages of lactation. Moreover, cell 

count of 104  was observed in maternal breast samples at 0-6 months and over 20 

months lactation period. Similarly, lactation stage did not affect bacterial 

composition, as Enterococcus faecium was present in maternal breast samples at 

lactation stage of 0-6 months and 7-13 months. Other LAB and Staphylococcus 

species were also present at almost all stages of lactation. This study is in 

agreement with the study of Sakwanska et al. (2016) which indicated no 

difference in Bifidobacterium, Lactobacillus, Streptococcus and Staphylococcus 

species at 4 days to 2 month lactation stage from HBM of Chinese lactating 

mothers. The findings of Khodayar-Pardo et al. (2014) is also in agreement with 

this study, their result indicate no difference in Bifidobacterium, Lactobacillus, 

Enterococcus and Staphylococcus composition of colostrum and mature milk of 

Spanish lactating mothers. In contrast to this study herein reported, Cabrera-Rubio 

et al. (2012) reported changes in bacterial composition at 0, 1 and 6 months of 

lactation. They demonstrated high presence of Lactococcus, Leuconostoc, 

Staphylococcus, Streptococcus and Weissella species in colostrum sample than in 
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mature milk samples of Finnish lactating mothers. Similarly, Collado et al., 

(2012) reported high presence of Enterococcus species in colostrum than in 

samples at 1 to 6 month of lactation from Finnish lactating mothers. 

In this study, no much difference was also observed in population and diversity of 

LAB with relation to babies’ sex and number of donors’ children. Moreover, 

Urbaniak et al. (2016) indicated no difference in population and diversity of 

Streptococcus, Lactobacillus, Staphylococcus and Pseudomonas species with 

relation to infant gender. 

Maternal diet could have effect on diversity of LAB as observed in this study. 

Donors whose diet include a combination of rice, beans, stew and vegetable soup 

had a diversity of two LAB with one sample demonstrating a diversity of three 

LAB. Moreover, vegetables especially onions and tomatoes are fructo- 

oligosaccharides which are easily utilised by some LAB present in GIT (Mills, et 

al. 2011). Furthermore, diet rich in carbohydrate and protein  facilitate 

proliferation of anaerobic bacteria in GIT (Walker and Iyenger, 2015). However, 

frequent ingestion of antibiotics and consumption of less balanced diet by 

lactating mothers could contribute to less population and diversity of LAB in 

human breast milk (Gomez-Gallego et al. 2016). Studies on relationship between 

maternal diet, lactation stage, babies sex and number of maternal children and 

population and diversity of LAB are very few. But dietary habits could potentially 

modify intestinal microbiota which consequently affect type of bacteria 

transferred from maternal gut to mammary gland  (Gomez-Gallego et al. 2016).  
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More extensive research on factors that could influence lactic acid bacterial 

population and diversity in HBM is still needed to provide additional knowledge 

in this area. This demographic study is weak because lactic acid bacterial 

diversity was not appropriately measured and dietary information was not 

sufficient. 

7.5 Conclusion 

Donors’ demographic factors that could influence composition of bacterial 

population and diversity in their breast milk samples were investigated. A 

population of 102 to 104 cfu/ml bacterial cells and diversity of eleven LAB and 

two Staphylococcus species were present in HBM samples examined in this study. 

No difference was observed in the population and diversity of LAB with relation 

to lactation stage, babies’ sex and number of donors’ children. Maternal diet is an 

important factor that could influence population and diversity of LAB in human 

breast milk. 
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CHAPTER EIGHT: GENERAL DISCUSSION AND 
RECOMMENDATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



222 
 

8.1 Introduction 

This research enumerated, isolated and identified lactic acid bacteria present in 

some samples of Nigerian human breast milk. It further studied the probiotic 

characteristics of some of the LAB and resistance of the LAB to some 

antimicrobials. Finally the research studied the relationship between breast milk 

donors’ demographics with population and diversity of LAB. The overall findings 

of the research as they relate to their specific aims and objectives are summerised 

and discussed. Furthermore, strengths and limitations of the research were 

explained. Recommendations for future studies were also enumerated. 

8.2 Scope of the research 

To achieve the aims and objectives of this research, the research was conducted in 

four stages; 

• Enumeration, isolation and identification of isolates 

• Probiotic characterisation of identified LAB 

• Antibiotic resistance study 

• Demographic study of human breast milk samples with relation to lactic 

acid bacterial population and diversity 

8.3 Enumeration, isolation and identification of isolates 

In order to achieve the aims of the first stage of the research, 20 breast feeding 

mothers who signed the consent forms were recruited for sample collection in 

Nigeria (2.2.2). Enumeration of LAB was carried out on MRS and MRS 
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supplemented with 0.5g/L L-cysteine hydrochloride (2.1.3). Both medium were 

suitable for growth of LAB. Similarly, Kavitha and Devasena (2013) and Nayra et 

al. (2013) also used the two media for isolation of LAB from human breast milk. 

However, Diaz-Ropero et al. (2006) and Olivares et al. (2006) isolated LAB from 

human breast milk using only MRS agar. 

The number of colonies observed on the two media was similar, 2.30±0.23 

to 4.04±0.20 cfu/ml on MRS agar and 2.14±0.24 to 4.14±0.13 cfu/ml on MRS L-

cysteine hydrochloride agar. Other authors also reported presence of 102 to 104 

cfu/ml cultivable bacteria including LAB in human breast milk (Perez et al. 2007 

and Martin et al. 2009). On the other hand, presence of 103 to 105 cfu/ml lactic 

acid bacteria in human breast milk was reported by Martin et al. (2003) and 

Jeurink et al. (2013). Recovered isolates from this study were stored in cryovials, 

they were subsequently purified and stored for identification. 

The first step in the identification of the isolates was the phenotypic assessment 

which involved Gram staining, catalase and oxidase tests. A total of 108 

recovered isolates were phenotypically identified. The second stage in the 

identification consisted of rep-PCR and 16S rRNA gene sequencing. The initial 

genotypic identification (rep-PCR) facilitated grouping of isolates into 19 groups. 

The 16S rRNA gene sequencing identified some LAB and staphylococci. These 

are Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus coryniformis, 

Lactobacillus fermentum, Leuconostoc mesenteroides subsp. mesenteroides, 

Weissella confusa, Weissella paramesenteroides, Streptococcus salivarius subsp. 

thermophilus, Streptococcus cristatus, Leuconostoc mesenteroides subsp. lactis, 



224 
 

Enterococcus faecium, Staphylococcus epidermidis and Staphylococcus hominis. 

Presence of some LAB and staphylococci as observed in this research is in 

agreement with findings of Martin et al. (2003), Martin et al. (2007), Albesharat 

et al. (2011), Makino et al. (2011), Fernandez et al. (2013), Tusar et al. (2014) 

and Altuntus (2015). 

8.4 Probiotic characterisation of identified LAB 

Probiotics are living microorganisms that could be present in breast milk and 

other food products and when consumed in sufficient amount provide health 

benefit to host (FAO/WHO, 2001). Beneficial LAB play a vital role in competing 

favourably with pathogenic bacteria and excluding them in order to dominate the 

gut of babies (Jara et al., 2011 and Kavitha and Devasana 2013). For any 

beneficial bacterium to be classified as probiotic, it must meet the standards 

stipulated by Food and Agriculture Organisation and World Health Organisation 

(FAO/WHO, 2001). Some of the criteria include; viability, non-pathogenic, 

withstands harsh gastric conditions (acid and bile), produce antimicrobial 

substances that will inhibit or kill pathogens, adhere to gut epithelial tissues and 

bile salt hydrolase activity. Exopolysaccharide production and cholesterol 

assimilation are also important beneficial attributes of probiotic LAB (Jennifer et 

al. 2005, Shehata et al. 2016 and Yadav et al. 2016). 

The selected LAB used for the probiotic studies in this research were 

representative of each genus and species of the eleven identified LAB 

(Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus coryniformis, 
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Lactobacillus fermentum, Leuconostoc mesenteroides subsp. mesenteroides,  

Weissella confusa, Weissella paramesenteroides, Streptococcus salivarius subsp. 

thermophilus, Streptococcus cristatus, Leuconostoc mesenteroides subsp. lactis 

and Enterococcus faecium). The probiotic assessments included; acid and bile 

resistance study, antimicrobial activity of LAB, bile salt hydrolase, cholesterol 

assimilation and exopolysaccharide production by LAB. Because in vivo studies 

are expensive, time consuming, needs stringent screening and approval by ethical 

committees, in vitro tests were used in this research. 

8.4.1 Acid and bile resistance study 

Acid and bile are very harsh substances present in the stomach and small 

intestine. Any potential beneficial bacteria must be able to tolerate and survive in 

low acid and bile environments (Pan et al. 2009). Ability of LAB to survive acid 

and bile facilitate colonisation in the gastrointestinal tract (GIT). Thus, allowing 

them to dominate and produce lactic acid and other antagonistic substances that 

annihilate pathogens (Hermanns et al. 2014). 

Tolerance of LAB to pH 2.0, pH 3.0 and pH 4.0 with and without pepsin was 

examined in this research. Similarly, tolerance to 0.3%, 0.5%, 1% and 1.5% was 

also evaluated. The entire LAB could not withstand pH 2.0, but some especially 

Lactobacillus and Streptococus species were able to resist pH 2.0 with pepsin up 

to the third hour of the experiment. The pepsin therefore facilitated the survival of 

the LAB at this pH. Bendali et al. 2011 reported survival of Lactobacillus species 

in pH 2.0 with pepsin and this is in agreement with the research herein reported. 
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At pH 3.0 and pH 4.0 with and without pepsin, the entire LAB exhibited tolerance 

with the exception of Leuconostoc mesenteroides subsp. mesenteroides and 

Weissella paramesenteroides which did not survive in pH 3.0 without pepsin. 

Other researchers such as Hosseini et al. (2009), Zhang et al. (2013) and 

Hermanns et al. (2014) have reported protective effect of pepsin enzyme in 

promoting survivability of LAB to low pH. Moreover, tolerance of LAB to low 

pH is variable amongst species (Khalil et al. (2007).  

Tolerance to bile salts is also vital in screening of beneficial bacteria with 

potential probiotic properties. The evaluated LAB in this research tolerated the 

critical 0.3% bile concentration standard which is a must for any potential 

beneficial bacteria to survive. Similarly, the screened LAB also tolerated higher 

concentrations of 0.5%, 1% and 1.5% bile salt. 

8.4.2 Antimicrobial activity of LAB 

Production of antagonistic substances by LAB such as lactic acid, hydrogen 

peroxide, bacteriocins and other antimicrobial substances are associated with 

potential probiotic benefits (Suskovic et al. 2010 and Leite et al. 2015). In fact, 

antimicrobial substances secreted by LAB have bacteriostatic and bactericidal 

effects on pathogenic bacteria (Pan et al. 2009 and Jara et al. 2011). 

This study examined antimicrobial activity of LAB at sequential stages. It started 

with preliminary evaluation of production of antimicrobial substances using 

unbuffered and buffered agar spot tests (4.1.2 and 4.1.3). The entire LAB 

inhibited the growth of indicator bacteria (Escherichia coli NCTC 12900, 
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Salmonella Enteritidis DT124, Staphylococcus aureus CMCC 1930 and Bacillus 

cereus NCFB 13507). The cell free supernatant agar diffusion assay was 

relatively poor in inhibition of all pathogenic indicator bacteria. Except 

Lactobacillus pentosus and Lactobacillus coryniformis which inhibited growth of 

Bacillus cereus, Escherichia coli and Salmonella Enteritidis. But when cell free 

supernatant was concentrated using freeze dryer and diluted fivefold, increased 

inhibition of pathogens by some LAB was observed. Lactobacillus pentosus, 

Lactobacillus coryniformis, Lactobacillus plantarum and Streptococcus cristatus 

inhibited all the four indicator pathogenic bacteria. Weissella confusa inhibited 

Bacillus cereus, Escherichia coli and Staphylococcus aureus while Lactobacillus 

fermentum inhibited Bacillus cereus and Escherichia coli. Concentration of cell 

free supernatant increased potency of antimicrobial substances as observed in this 

study. Organic acid especially lactic acid could be the most antagonistic substance 

that inhibited some of the tested pathogens. The concentrated cell free 

supernatants of Lactobacillus pentosus, Lactobacillus coryniformis, Lactobacillus 

plantarum and Streptococcus cristatus that were heated at 63 oC for 30 min 

inhibited the growth of all four pathogens. This temperature/time combination 

was slightly higher than that used in pasteurisation (62.5 oC for 30 min) of human 

breast milk in milk banks (Kim and Unger 2010 and Haiden and Zeiglar, 2016). 

Similar trend was also reported by Al-Otaibi et al. (2012). Only Streptococcus 

cristatus was able to inhibit the four pathogens when the concentrated cell free 

supernatant was treated with enzymes (proteinase, protease and catalase). This 

could be as a result of production of bacteriocins and hydrogen peroxide. 
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Antimicrobial activity of LAB against Bacillus cereus, Escherichia coli, 

Salmonella Enteritidis and Staphylococcus aureus as observed in the agar spot 

test in this study is in agreement with Anyogu et al. (2014) and Leite et al. (2015) 

who studied antimicrobial activity of LAB from cassava and Brazillian kefir 

grains. The poor inhibition of pathogens by agar diffusion assay as observed in 

this study could be attributed to low concentration of antimicrobial substances as 

well as poor diffusion of supernatants.  Al-Otaibi et al. (2012) also reported poor 

antimicrobial activity in agar well diffusion assay but strong antimicrobial activity 

in agar spot test. 

8.4.3 Cholesterol assimilation, bile salt hydrolase and exopolysaccharide 

production by LAB 

Beneficial LAB with probiotic properties are helpful in reducing incidence of 

infectious and non infectious illnesses such as diarrhoea, allergy and 

hyperlipedemia (Martin et al. 2003, Tusar et al. 2014 and Gunyatki and Asan-

Ozusaglam 2018). Although, hypercholesterolemia is a rare incidence in infants, 

Yusuf et al. (2004) indicated high cholesterol and triglycerides (TG) in babies 

with family history of cardiovascular diseases. Deconjugation of bile salt by bile 

salt hydrolase enzyme is an important probiotic attribute that facilitate reduction 

of cholesterol (Damoddharan et al. 2015). Lactic acid bacterial exopolysaccharide 

is also associated with cholesterol reduction (Joshi and Koijan, 2014 and 

Panthavee et al. 2017). Exopolysaccharide facilitate movement of LAB from 

stomach to colon (Patil et al. 2015). It also aids in translocation of LAB from 

mother’s gut to mammary gland (Jeurink et al. 2013).  
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This segment of research assessed production of exopolysaccharide by LAB 

(5.1.2), evaluated deconjugation of bile salt (bile salt hydrolase activity, 5.1.3) 

and examined cholesterol reduction potential (5.1.4) by the eleven selected LAB. 

The results obtained in this study indicated production of exopolysaccharide and 

bile salt hydrolase enzyme as well as assimilation of cholesterol by LAB. The 

findings of this research is in agreement with other researches such as Jiang et al. 

(2016) and Riaz-Rajoka et al. (2018) who reported production of 

exopolysaccharide by Lactobacillus plantarum and Lactobacillus rhamnosus 

isolated from human breast milk. Moreover, Annadraj and Sivasankar (2014) and 

Gunyatki and Asan-Ozusaglam (2018) reported cholesterol assimilation by 

Lactobacillus oris and Lactobacillus gasseri isolated from human breast milk. 

Additionally, Shehata et al. (2016) and Saraniya and Jeevaratnam (2015) reported 

bile salt hydrolase activity of some Lactobacillus species isolated from raw milk 

and fermented foods. 

The positive effect of early colonisation of infants’ gut by potentially probiotic 

lactic acid bacteria in human milk is an interesting and emerging area of research. 

Knowledge on probiotic attributes of LAB isolated from human breast milk is 

important in influencing lactating mothers and prospective mothers to breastfeed 

their babies diligently. Food and pharmaceutical industries could utilise 

information derived from this research on probiotic attributes of LAB in 

producing baby foods supplemented with probiotic bacteria. This could benefit 

babies that could not be breastfed due to communicable disease that could be 

passed on from mother to child. Overall, insight into probiotic attributes of LAB 
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will benefit health organisations, non-governmental agencies, researchers and the 

entire humanity. 

8.5 Antimicrobial resistance of LAB and determination of resistance genes 

When evaluating probiotic safety, two recommendations are presently acceptable. 

The European Food Safety Authority (EFSA) status of Qualified Presumption 

Safety (QPS) and the United State Food and Drug Administration (FDA) 

Generally Recognised as Safe (GRAS) (Sanders et al. 2010). Some LAB are 

regarded as safe (GRAS) by the United State FDA (Imperial and Albana, 2016) 

because of their ancient use in dairy and other fermented foods. But safety of 

some LAB could be at risk if they have potential of transferring antimicrobial 

resistance (AMR) genes (Sharma et al. 2017). Resistance of some LAB to 

antimicrobials has been attributed to indiscriminate application of antibiotics in 

food chain (Kabir et al. 2004, Adetunji, 2011, Zhang et al. 2011 and Mund et al. 

2017). Misuse of antibiotics by humans including women of child bearing age is 

also associated with global AMR (Sapkota et al. 2010 and Jimenez et al. 2013). 

Moreover, vertical transfer of LAB with AMR genes from mother to infant 

through breast feeding is possible (Egervin et al. 2009, Rolain, 2013, Kozak et al. 

2015 and Reis et al. 2016). 

This study assessed phenotypic resistance of the eleven LAB to some 

antimicrobials. It also examined AMR genes that could be present in the LAB. 

Sensitivity of the eleven LAB to ciprofloxacin, gatifloxacin and 

quinupristin/dalfopristin was observed. Also, all LAB were sensitive to 
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ampicillin, penicillin and oxacillin with the exception of Enterococcus faecium 

that was resistant to ampicillin and oxacillin. The LAB were also sensitive to 

linezolid with the exception of Lactobacillus fermentum. However, most of the 

LAB were resistant to daptomycin, erythromycin, levofloxacin, tetracycline and 

vancomycin. Sensitivity of Lactobacillus species to ampicillin and penicillin as 

observed in this study is in agreement with other studies on human breast milk 

(Martin et al. 2005, Malek et al. 2010, Sharma et al. 2014, Kozak et al. 2015 and 

Sharma et al. 2017). Vancomycin resistance is very common amongst LAB 

(Gueomonde et al. 2013 and florez et al. 2016). Moreover, Kozak et al. (2015) 

and Sharma et al. (2017) reported vancomycin resistance in Lactobacillus 

plantarum and Lactobacillus pentosus isolated from human breast milk. 

Resistance of some LAB to clindamycin, ceftriaxone, erythromycin, gentamicin, 

levofloxacin and tetracycline as reported in this study is in agreement with other 

researchers (Ouoba et al. 2008, Kozak et al. 2015 and Sharma et al. 2017). In 

fact, erythromycin and tetracycline are constantly misused worldwide in human 

and food chain (Zhang et al. 2011 and Jimenez et al. 2013). Therefore, contribute 

to higher incidences of resistance of some LAB to these antimicrobials. In this 

study, resistance genes of tet (K), tet (L), tet (M) and erm (B) were confirmed for 

some of the LAB. The genes for tet (K), tet (L) and tet (M) were present in 

Enterococcus faecium, tet (L) in Streptococcus cristatus while tet (M) and erm 

(B) were present in Streptococcus salivarius subsp. thermophilus. None of the 

Lactobacillus species that were screened for resistance genes were confirmed 

although some showed positive amplicons. In contrast to this study, Egervin et al. 
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(2009) reported presence of tet (W) gene in Lactobacillus plantarum and 

Lactobacillus reuteri isolated from human breast milk. Other researchers have 

reported presence of tet (W), tet (O), tet (M) and tet (S) in Lactobacillus species 

isolated from fermented food products (Nawaz et al. 2011 and Thumma and 

Halami, 2012). According to FDA, presence of some tet genes in some probiotics 

supplemented in baby foods could not compromise clinical use of tetracycline, 

since tetracyclines are not recommended for children that are less than eight years 

old (Sanders et al. 2010). Some research on Human alpha-lactalbumin made 

lethal to tumour cells (HAMLET) a substance found in human breast milk is 

yielding promising results on its antimicrobial potentiating effect on 

staphylococci and numerous bacterial species with multi-drug resistance 

(Hakansson et al. 2011, Marks et al. 2012 and Marks et al. 2013). Therefore, 

presence of some tetracycline genes in Enterococcus faecium, Streptococcus 

cristatus and Streptococcus salivarius subsp. thermophilus as reported in this 

study is less likely to pose safety risks to babies. 

8.6 Demographic study of human breast milk samples with relation to lactic 

acid bacterial population and diversity 

Human breast milk is a source of nourishment for babies. Presence of some 

beneficial lactic acid bacteria in human breast milk is vital for intiation, 

maturation and development of babies’ gut. Bifidobacteria, lactic acid bacteria 

and other commensal bacteria such as staphylococci have been isolated from 

human breast milk (Martin et al. 2009, Albesharat et al. 2011 and Sungaya et al. 

2013). Babies suckling about 800 mg/day of breast milk will ingest about 105 to 
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107 bacterial cells (Martin et al. 2003 and Singh et al. 2014). However, 

differences have been reported to exist between gut microflora of breast fed 

babies to that of their formula fed counterparts (Martin et al. 2003 and Nasiraii et 

al. 2011). Gut microbiota of breast fed babies is composed of abundant Gram 

positive bacterial populations especially LAB (Khedid et al. 2009, Martin et al. 

2009 and Kavitha and Devasena, 2015). Several factors  could affect population 

and diversity of human breast milk microflora. Amongst the factors are ; 

gestational age, lactation stage, mode of delivery, geographical location, maternal 

nutritional status and diet (Mills et al. 2011, Nasiraii et al. 2011,  Pardo et al. 

2014 and Gomez-Gallego et al. 2016). 

This study examined breast milk donors’ demographic characteristics that could 

be related with composition of bacterial population and diversity in their breast 

milk samples. The data was collected using questionnare (Appendix 3) during 

sample collection. A population of 102 to 104 cfu/ml bacterial cells were 

enumerated in 18 out of the 20 breast milk samples. While a diversity of eleven 

LAB and two Staphylococcus species were identified. The population of 

enumerated bacteria in this study is in agreement with that of Perez et al. (2007) 

and Martin et al. (2009) who also enumerated  a population of 102 to 104 cfu/ml. 

Diversity of Staphylococcus, Lactobacillus, Bifidobacterium and Streptococcus 

species were identified in Spanish (Collado et al. 2009), German and Austrian 

(Soto et al. 2014) human breast milk. Urbaniak et al. (2016) on the other hand 

reported diversity of Staphylococcus, Enterobacteriaceae and Pseudomonas 

species in Canadian human breast milk. Diversity of Staphylococcus, 
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Lactobacillus and Streptococcus species reported by Collado et al. (2009) and 

Soto et al. (2014) are in agreement with some of the diverse LAB from Nigerian 

human breast milk as reported in this study. There was no difference in the 

population and diversity of LAB with relation to sex of babies, lactation stage and 

number of donors’ children. But maternal diet as observed in this study could 

affect diversity of LAB in human breast milk. Moreover, donors who consume 

complementary diet of rice, beans, stew and vegetable soup had diversity of two 

LAB with one sample having diversity of three LAB. In fact, diet has potential of 

modulating maternal intestinal microbiota (Gomez-Gallago et al. 2016) and 

consequently maternal gut bacteria translocate to mammary gland (Martin et al. 

2003, Fernandez et al. 2004,Gueimondeet al.2007, Perez et al. 2007, Jimenez et 

al. 2008, Arroyo et al. 2010, Fernandenz et al. 2013 and Jeurink et al. 2013). 

Furthermore, Nasiraii et al. 2011 reported isolation of Lactobacillus rhamnosus 

LC705 from human breast milk samples of donors who were given probiotic diets 

containing Lactobacillus rhamnosus LC705. 

8.7 Strengths and limitations of this research 

Identification of lactic acid bacteria from human breast milk is imperative in 

knowing their diversity and potential probiotic properties that could be of 

immense benefit to babies. Some studies on microflora of human breast milk has 

been reported from countries such as Austria, Canada, Germany, Slovenia and 

Spain (Collado et al. 2009, Martin et al. 2012, Soto et al. 2014 and Tusar et al. 

2014). But some differences were reported on composition of human breast milk 

which could be as a result of variation in dietry habits and other maternal factors 
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across different geographical areas. This research was therefore important because 

of the gaps in knowledge about diversity of LAB in Nigerian human breast milk 

and their potential probiotic properties. There is no information on antimicrobial 

resistance profile of LAB and antimicrobial resistance genes of LAB isolated 

from Nigerian human breast milk. There is also a gap in knowledge about factors 

that could contribute to population and diversity of LAB in human breast milk. 

Standard and reliable laboratory techniques were used in this study. Substantial 

amount of isolates were recovered and a total of 108 were phenotypically 

examined. The genotypic techniques employed in this research consisted of 

repetitive sequence based PCR (rep-PCR) for grouping isolates and identification 

using16S rRNA gene sequencing. The probiotic studies have revealed the ability 

of the eleven screened LAB to tolerate acid and bile. They were able to produce 

antimicrobial substances that inhibited growth of some pathogenic bacteria. As 

well as produce exopolysaccharide and bile salt hydrolase enzyme, they also 

reduced cholesterol. These potential beneficial properties exhibited by the 

screened LAB could be of great benefit to breast fed babies’ health and wellbeing. 

The antimicrobial resistance (AMR) study of the eleven screened LAB also used 

standard and reliable phenotypic and genotypic methods. The study has 

demonstrated the antimicrobial resistance profile of the studied LAB and some of 

their associated antimicrobial resistance genes. The AMR study has elucidated the 

global risks associated with misuse of antibiotics in human and food chain. 

Bacteria with AMR genes could be introduced into foods, thereby reaching 
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maternal gut, consequently transferred to mammary gland and eventually present 

in human breast milk. 

In vitro methods were used to study LAB probiotic attributes in this research. In 

vitro assessment of probiotic characteristics are widely used in laboratory 

experiments because of accessibility and affordability (Pan et al. 2009, Bendali et 

al. 2011, Zhang et al. 2013 and Park and Liam, 2013). The complex issues and 

difficulties surrounding in vivo studies of probiotic bacteria resulted in the use of 

in vitro techniques. Although, in vitro methods are simulation of in vivo 

conditions, it also provides an estimation of what could happen in vivo. In vitro 

methods does not require meticulous screening and ethical approval, they are also 

less expensive and time consuming than in vivo studies. However, in vivo studies 

are important for confirmation of in vitro studies.  This is especially vital when 

LAB with potential beneficial properties would be used in human clinical 

experiments. 

Because of limited time frame for the research, a representative of each genus and 

species of the identified LAB were evaluated for probiotic and antimicrobial 

resistance studies. Each identified LAB should have been screened because 

probiotic attributes and antimicrobial resistance are strain specific (Begley et al. 

2005 and Reis et al. 2016). 

The number of donors was relatively small for the demographic study but the 

study has given an insight to some factors that could affect the diversity of LAB 

in human breast milk. 
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This research has revealed some of the lactic acid bacterial communities present 

in some samples of Nigerian human breast milk. It has explored the probiotic 

potential of some of the LAB and antimicrobial resistance of some of the LAB to 

antimicrobial substances. The research has therefore, contributed to the 

knowledge of microflora of some samples of Nigerian human breast milk. 

Additionally, it has contributed to the knowledge of the probiotic potentials of 

some of the lactic acid bacteria that have been investigated. The research has also 

given an insight into the antimicrobial resistance profile and antimicrobial 

resistance genes of some of the assessed LAB. 

The antimicrobial resistance of some of the investigated LAB to some 

antimicrobials especially tetracycline as observed in this research could be 

attributed to misuse of antibiotics. Despite the resistance of some of the LAB 

investigated in this research to some antimicrobials, breast feeding is the best 

option for babies. In fact, human breast milk is nature’s most balanced food for 

the nourishment of newly born babies as well as infants. Moreover, breast milk of 

healthy breast-feeding mothers is the best source of beneficial LAB for babies’ 

gastrointestinal tracts (GIT). Breast fed infants have a greater diversity of LAB in 

their GITs than their formula-fed counterparts. Additionally, presence of large and 

diverse population of beneficial bacteria in the infant gut has been associated to 

good health in newly born babies and aids their healthy development in the future. 
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8.8 Recommendation for future studies 

• In vivo studies on probiotic characteristics of the LAB to further confirm 

their beneficial properties. 

• Investigation on mechanism of cholesterol assimilation by LAB is 

important. 

• Studies on ability of the LAB to transfer antimicrobial resistance genes 

should be carried out to verify their safety for use as probiotic 

supplements. 

• More extensive and collaborative research on relationship between breast 

milk donors’ demography and population and diversity of LAB should be 

advocated. 
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Appendix 

Appendix 1: Participant information sheet 

PARTICIPANT INFORMATION SHEET 

Dear Participant 

You are invited to take part in a research project entitled Enumeration, Isolation, 

Identification and Probiotic Characterisation of Lactic Acid Bacteria from Human 

Breast Milk.  

But before you decide whether or not to take part, it is important for you to 

understand why the research is being done and what it will involve. Please take 

time to read the following information carefully. Please feel free to ask questions 

if anything is unclear to you or if you would like more information.   

N.B: For participants who cannot speak or read English, the investigator will 

translate and fill the form on their behalf. 

The research is aimed at: 

(1)  Investigating the presence, type and population of some beneficial 

microorganisms in breast milk. 

(2)  Investigating some of the potential beneficial effects of the 

microorganisms. 

(3)  Investigating the possible relationship between the presence of the 

organisms in breast milk with donors’ age, ethnicity, stage of lactation, 

number of children and diet. 
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What is the purpose of the study? 

The purpose of this research is to find out if there are beneficial lactic acid 

bacteria in human breast milk. These microorganisms are important in the 

development of healthy digestive system of babies and therefore promote the 

health and well-being of babies. 

Why have I been invited to participate? 

You have been approached because you are a breast feeding mother. 

Do I have to take part? 

      It is up to you to decide whether or not to take part, your participation is entirely 

voluntary. If you do decide to take part you will be given this information sheet to 

keep and you will be asked to sign the consent form. If you decide to take part 

you are still free to withdraw at any time and without giving a reason. If you do 

decide to take part, you will be given this information sheet to keep and be asked 

to sign a consent form. 

DURATION:  

There will be 1 session only which will last only few minutes.  

BENEFITS, RISK AND DISCOMFORT:  

Your participation in this study will contribute to our understanding of the breast 

milk microbiota. There are no potential physical risks associated with 

participation in this experiment. Please note that your participation in this study 

will not embrace any particular benefit to you.  
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TASK REQUIREMENTS:  

After reading and signing the consent form, you will be asked to express your 

breast milk in a sterile tube that will be provided. 

ANONYMITY / CONFIDENTIALITY:  

Every effort will be made to protect your privacy.  Your name will not be used in 

any of the research reports or publications prepared with results obtained from 

this study.  All information obtained in this study that identifies who you are will 

be recorded with a code number, and all studies are approved by ethical 

committee of Faculty of Life Science & Computing at London Metropolitan 

University. The information provided will be used for research purposes only.  

RIGHT TO WITHDRAW:  

Your participation in this experiment is completely voluntary.  

You have the right to withdraw from this experiment at any time. If you feel 

anxious and/or uncomfortable at any stage of the study you could withdraw from 

the study just by letting the investigator know about your intention without any 

reasoning. Please bring your concerns to the researcher's attention immediately 

when and if needed. 

If you decide to participate in this study, your participation and any information 

collected from you will be strictly confidential, and will be only available to the 

research team. 

We would like to thank you, in advance, for your anticipated participation. 
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Supervisor: Dr. Hamid Ghoddusi 

Supervisor’s signature.......................................................... 

Research Student: Binta Sambo Abdullahi 

Research Student’s signature................................................. 

Participant name: 

Participant’s signature........................................................... 

 

Thanks Milking Moms!!! 

We appreciate and value every drop of your donation 

 

Appendix 2: Full consent form for breast milk collection 

FULL CONSENT FORM FOR BREAST MILK COLLECTION 

Title of project: Enumeration, Isolation, Identification and Probiotic 

Characterisation of Lactic Acid Bacteria from Human Breast Milk. 

Name of volunteer (capitals)................................................................. 

Please tick each statement to show your agreement 

 

1. I confirm I have read the participant information sheet on the above 

project and have been given a copy to keep. I have had the opportunity to 

ask questions about the project and I am satisfied with the information 

that I have been given. 

 

2. I understand that my participation is voluntary and that I am free to 

withdraw at any time without giving any reason. 
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3. I agree to give breast milk samples for research in the above named 

project. I understand that all data and samples will be made anonymous 

prior to being circulated to other scientists.  I give permission for a sub-

sample of my breast milk to be transported to London Metropolitan 

Microbiology Research Unit in the United Kingdom for additional 

analyses. 

 

4. I understand that I am giving the breast milk sample for the research 

study without any financial benefit.  

 

5. I agree to donate my breast milk.  

 

6. I agree to take part in the study and know how to contact the research 

team if I need to. 

 

Volunteer’s signature ____________________   Date _____________ 

I confirm that I have fully explained the nature of this study to the above 

named volunteer. 

Research student’s signature _________________      Date_____________ 
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Appendix 3: Breast milk donation form 

Breast Milk Donation  

DONOR REGISTRATION FORM 

SAMPLE CODE:          

Date _________________________________________________ 

Name ___________________________ Age _____ DOB _________________ 

Phone (Home) ______________ Work _______________ Other ____________ 

Address _________________________________________________________ 

City __________________________ State _______________ Zip __________ 

Occupation _______________________________________________________ 

Baby’s Name __________________________ Sex _______ DOB ___________ 

Birth Weight _____ Height _____ Last height / weight _________  Date _______ 

Was baby full term? __________ if no, what was the gestational age? ________ 

Ethnic background? 

Number of children including the newborn? 

Typical daily food of mum? 

Do you have any fever with headache? Yes _____ No _____If yes, please 

explain: 

__________________________________________________________________

______________________________________________________________
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Appendix 4: Results of acid and bile resistance study of lactic acid bacteria isolated from human breast milk 

Table 3.1: Acid tolerance of Leuconostoc mesenteroides subsp. mesenteroides. 

Time 
(min) Controla 

(cfu/ml) 

pH2  
(cfu/ml) 

SRb 

(%) 
pH3 

(cfu/ml) 
SRb 
(%) 

pH4  
(cfu/ml) 

SR b 
(%) 

pH2+ 
pepsin   
(cfu/ml) 

SRb 
(%) 

pH3+ 
pepsin 
(cfu/ml) 

SR b 
(%) 

pH4+ 
pepsin 
(cfu/ml) 

SR b 
(%) 

 
0 7.99±0.20 

 
<10 0.0 8.40±0.29 

 
 105 8.46±0.14 105 

 
<10 0.0 8.56±0.27 

 
107 8.59±0.26 107 

30 
7.85±0.11 

 
<10 0.0 8.11±0.16 

 
103 8.41±0.21 107 

 
<10 0.0 8.54±0.12 

 
108 8.63±0.22 109 

60 7.91±0.32 <10 0.0 0.00 0.0 7.90±0.19 99 <10 0.0 6.86±0.10 86 7.77±0.10 98 
90 8.57±0.26 <10 0.0 0.00 0.0 7.92±0.11 92 <10 0.0 6.72±0.18 78 7.81±0.14 91 

120 8.41±0.17 <10 0.0 0.00 0.0 7.69±0.27 91 <10 0.0 6.56±0.33 77 7.67±0.17 91 
   150 8.62±0.38 <10 0.0 0.00 0.0 7.80±0.13 90 <10 0.0 6.48±0.29 75 7.82±0.22 90 

 
180 8.60±0.13 

 
<10 0.0 0.00 0.0 7.82±0.16 90 

 
<10 0.0 6.40±0.13 

 
74 7.80±0.13 90 

Table 3.2: Bile salt tolerance of Leuconostoc mesenteroides subsp. mesenteroides. 

Time 
(min) Controla 

(cfu/ml) 

0.3% 
bile salt 

SR (%)b 0.5% bile 
salt SR (%)b 1% 

bile salt SR (%)b 1.5% bile 
salt SR (%)b 

0 7.99±0.20 7.70±0.20 96 7.69±0.24 96 7.67±0.18 96 7.60±0.21 95 
30 7.85±0.11 7.81±0.15 99 7.79±0.16 99 7.72±0.29 98 7.70±0.27 98 
60 7.91±0.32 7.81±0.21 98 7.81±0.20 98 7.74±0.25 97 7.71±0.16 97 
90 8.57±0.26 7.74±0.23 90 7.63±0.25 89 6.91±0.15 80 6.90±0.22 80 

120 8.41±0.17 7.57±0.14 89 7.57±0.19 89 6.70±0.12 79 6.60±0.20 78 
   150 8.62±0.38 7.68±0.11 89 7.46±0.17 86 5.68±0.24 65 5.57±0.16 64 

180 8.60±0.13 7.40±0.21 86 6.30±0.23 73 5.15±0.30 59 5.11±0.13 59 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100  
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Table 3.3: Acid tolerance of Weissella paramesenteroides.  

Time 
(min) 

Controla 
(cfu/ml) 

pH2  
(cfu/ml) 

SRb 

(%) 
pH3 

(cfu/ml) 
SRb 
(%) 

pH4  
(cfu/ml) 

SR b 
(%) 

pH2+ 
pepsin   

(cfu/ml) 

SRb 
(%) 

pH3+ pepsin 
(cfu/ml) 

SR b 
(%) 

pH4+ pepsin 
(cfu/ml) 

SR b 
(%) 

 
0 8.39±0.24 

 
<10 0.0 7.90±0.18 94 8.74±0.22 104 

 
<10 0.0 7.76±0.17 92 8.39±0.14 100 

30 
8.49±0.21 

 
<10 0.0 5.90±0.10 69 8.50±0.13 100 

 
<10 0.0 6.98±0.31 82 8.46±0.27 99 

60 8.69±0.15 <10 0.0 0.00 0.0 8.00±0.26 92 <10 0.0 7.00±0.19 80 7.96±0.23 91 
90 8.99±0.28 <10 0.0 0.00 0.0 8.00±0.26 88 <10 0.0 7.00±0.19 77 8.00±0.26 88 

120 9.00±0.11 <10 0.0 0.00 0.0 8.00±0.26 88 <10 0.0 7.00±0.19 77 8.00±0.26 88 
   150 9.04±0.16 <10 0.0 0.00 0.0 8.00±0.26 88 <10 0.0 6.95±0.25 76 8.00±0.26 88 

 
180 9.07±0.10 

 
<10 0.0 0.00 0.0 8.00±0.26 88 

 
<10 0.0 6.91±0.21 76 8.00±0.26 88 

Table 3.4: Bile salt tolerance of Weissella paramesenteroides. 

Time 
(min) 

Controla 
(cfu/ml) 

0.3%bile 
salt 

SR (%)b 0.5%bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5%bile 
salt 

SR (%)b 

0 8.39±0.24 7.92±0.12 94 7.85±0.29 93 7.81±0.15 93 7.81±0.19 93 
30 8.49±0.21 7.98±0.16 94 7.95±0.24 93 7.93±0.22 93 7.82±0.11 92 
60 8.69±0.15 8.04±0.11 92 8.00±0.26 92 7.98±0.17 91 7.98±0.16 91 
90 8.99±0.28 8.00±0.26 88 7.98±0.10 88 7.96±0.30 88 7.95±0.23 88 

120 9.00±0.11 8.00±0.26 88 7.96±0.21 88 7.90±0.14 87 7.83±0.21 87 
   150 9.04±0.16 7.96±0.10 88 7.88±0.24 87 7.74±0.30 85 7.44±0.16 82 

180 9.07±0.10 7.70±0.13 84 7.67±0.18 84 7.50±0.12 82 7.27±0.10 80 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100  
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Table 3.5: Acid tolerance of Lactobacillus fermentum. 

Time 
(min) Controla 

(cfu/ml) 

pH2  
(cfu/ml) 

SRb 

(%) 
pH3 

(cfu/ml) 
SRb 
(%) 

pH4  
(cfu/ml) 

SR b 
(%) 

pH2+ 
pepsin   
(cfu/ml) 

SRb 
(%) 

pH3+ 
pepsin 
(cfu/ml) 

SR b 
(%) 

pH4+ 
pepsin 
(cfu/ml) 

SR b 
(%) 

 
0 8.73±0.18 4.82±0.32 55 7.96±0.23 91 8.96±0.12 102 4.90±0.30 56 7.98±0.25 91 8.90±0.14 102 

30 8.80±0.20 4.79±0.30 54 7.93±0.11 90 8.91±0.15 101 4.87±0.23 55 7.96±0.18 90 8.90±0.14 101 
60 8.75±0.31 4.41±0.27 50 6.97±0.16 79 8.92±0.22 102 4.77±0.27 54 7.98±0.13 91 8.74±0.10 100 
90 8.83±0.26 <10 0.0  7.00±0.19 79 8.93±0.11 101 4.74±0.15 53 7.99±0.34 90 8.91±0.19 100 

120 8.89±0.13 <10 0.0 6.99±0.16 78 8.96±0.19 100 4.59±0.22 51 8.00±0.32 90 8.95±0.24 100 
   150 8.94±0.20 <10 0.0 6.97±0.18 78 7.99±0.17 89 4.47±0.27 50 7.00±0.28 78 8.97±0.12 100 

 
180 9.00±0.23 

 
<10 0.0 6.97±0.21 77 8.00±0.11 88 4.23±0.16 47 7.00±0.28 77 8.00±0.19 88 

Table 3.6: Bile salt tolerance of Lactobacillus fermentum. 

Time 
(min) Controla 

(cfu/ml) 

0.3%bile salt SR 
(%)b 

0.5%bile 
salt 

SR 
(%)b 

1% 
bile salt 

SR 
(%)b 

1.5%bile salt SR 
(%)b 

0 8.73±0.18 8.00±0.25 91 8.00±0.13 91 7.99±0.27 91 7.97±0.32 91 
30 8.80±0.20 7.99±0.36 90 7.98±0.17 90 7.97±0.23 90 7.97±0.32 90 
60 8.75±0.31 8.00±0.25 91 7.99±0.26 91 7.94±0.16 90 7.91±0.30 90 
90 8.83±0.26 8.00±0.25 90 8.00±0.13 90 7.90±0.12 89 7.90±0.27 89 

120 8.89±0.13 7.99±0.36 89 7.99±0.18 89 7.28±0.11 81 7.26±0.17 81 
       150 8.94±0.20 7.00±0.22 78 7.00±0.11 78 5.38±0.16 60 5.18±0.21 57 

180 9.00±0.23 6.98±0.17 77 6.00±0.16 66 <10       0.0 <10  0.0 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100  
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Table 3.7: Acid tolerance of Lactobacillus pentosus. 

Time 
(min) Controla 

(cfu/ml) 

pH2  
(cfu/ml) 

SRb 
(%) 

pH3  
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 7.85±0.37 7.59±0.27 96 7.77±0.41 98 7.83±0.11 99 7.63±0.16 97 7.84±0.52 99 7.91±0.24 100 
30 7.83±0.29 <10 0.0 7.77±0.41 99 7.86±0.26 100 6.94±0.10 88 7.86±0.44 100 7.92±0.30 101 
60 7.90±0.28 <10 0.0 7.76±0.27 98 7.92±0.30 100 6.89±0.21 87 7.89±0.20 99 7.94±0.28 100 
90 8.65±0.15 <10 0.0 7.79±0.33 90 7.68±0.19 88 5.46±0.17 63 7.91±0.20 91 8.65±0.17 100 

120 8.67±0.43 <10 0.0 7.82±0.18 90 8.67±0.11 100 4.11±0.20 47 7.92±0.37 91 8.69±0.13 100 
  150 8.70±0.16 <10 0.0 7.83±0.22 89 8.69±0.14 99 3.30±0.11 37 7.89±0.16 90 8.69±0.30 99 
180 8.70±0.22 <10 0.0 7.77±0.15 89 8.71±0.19 100 3.14±0.17 36 7.91±0.21 90 8.74±0.14 100 

Table 3.8: Bile salt tolerance of Lactobacillus pentosus. 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 7.85±0.37 7.90±0.66 100 7.87±0.12 100 7.86±0.45 100 7.85±0.13 100 
30 7.83±0.29 7.93±0.23 101 7.90±0.21 100 7.89±0.38 100 7.89±0.11 100 
60 7.90±0.28 7.95±0.27 100 7.91±0.25 100 7.89±0.38 99 7.87±0.16 99 
90 8.65±0.15 7.97±0.29 92 7.93±0.12 91 7.91±0.24 91 7.90±0.20 91 

       120 8.67±0.43 8.00±0.18 92 7.96±0.34 91 7.94±0.30 91 7.92±0.25 91 
       150 8.70±0.16 7.98±0.23 91 7.95±0.28 91 7.91±0.19 90 7.88±0.16 90 
       180 8.70±0.22 7.99±0.15 91 7.95±0.16 91 7.93±0.21 91 7.92±0.10 91 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100  

 
 

 



283 
 

 

 

 

Table 3.9: Acid tolerance of Weissella confusa. 

Time 
(min) Controla 

(cfu/ml) 

pH2  
(cfu/ml) 

SRb 
(%) 

pH3  
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb(%) pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 7.68±0.71 <10 0.0 7.66±0.27 99 7.77±0.16    101 <10 0.0 7.49±0.33    97 7.78±0.20     101 
30 7.74±0.52 <10 0.0 7.59±0.17    97 7.79±0.24    100 <10 0.0 7.63±0.38 98 7.80±0.23     100 
60 7.78±0.23 <10 0.0 7.56±0.10 97 7.81±0.11 100 <10 0.0 7.73±0.26 99 7.81±0.15 100 
90 7.83±0.25 <10 0.0 7.39±0.19 94 7.85±0.18 100 <10 0.0 7.79±0.30 99 7.86±0.15 100 

  120 7.88±0.20 <10 0.0 7.23±0.11 91 7.89±0.24 100 <10 0.0 7.82±0.30 99 7.89±0.17 100 
  150 7.89±0.34 <10 0.0 7.20±0.11 91 7.91±0.29 100 <10 0.0 7.72±0.21 97 7.94±0.11 100 
  180 7.91±0.23 <10 0.0 5.11±0.20 64 7.93±0.20 100 <10 0.0 7.53±0.24 95 7.97±0.11 100 
Table 3.10:  Bile salt tolerance of Weissella confusa. 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile salt SR (%)b 

0 7.68±0.71  7.74±0.29 100   7.72±0.62 100    7.62±0.30           99   7.61±0.13 99 
30 7.74±0.52   7.75±0.36 100   7.73±0.40            99     7.71±0.15            99    7.71±0.17 99 
60 7.78±0.23 7.74±0.24 99 7.71±0.23 99    7.70±0.20 99    7.61±0.13 97 
90 7.83±0.25 7.20±0.21 91 7.17±0.32 91 6.14±0.20 78 6.07±0.18 77 

       120 7.88±0.20 6.27±0.18 79 6.23±0.27 79 5.14±0.22 65 5.07±0.12 64 
       150 7.89±0.34 6.14±0.26 77 6.07±0.17 76  4.07±0.10 51 <10              0.0 
       180 7.91±0.23 5.32±0.28 67 5.17±0.22 65 <10             0.0 <10              0.0 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100  
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Table 3.11:  Acid tolerance of Streptococcus salivarius subsp. thermophilus. 

Time 
(min) Controla 

(cfu/ml) 

pH2 
(cfu/ml) 

SRb 
(%) 

pH3 
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 7.78±0.32 <10 0.00 7.54±0.19 96 7.62±0.24 97 3.56±0.11 45 7.53±0.44 96 7.69±0.55 98 
30 7.75±0.37 <10 0.00 7.57±0.12 97 7.73±0.30 99 3.49±0.14 45 7.44±0.37 96 7.78±0.38 100 
60 7.81±0.25 <10 0.00 7.43±0.21 95 7.78±0.26 99 3.36±0.10 43 7.47±0.41 95 7.82±0.22 100 
90 

7.85±0.17 <10 0.00 7.32±0.20 93 7.86±0.21 100 <10 
   

0.00 7.36±0.30 93 7.88±0.31 100 
  120 

8.60±0.41 <10 0.00 6.59±0.14 76 8.60±0.18 100 <10 
   

0.00 6.66±0.30 77 8.63±0.26 100 
  150 

8.65±0.34 <10 0.00 6.20±0.13 71 8.69±0.21 100 <10 
   

0.00 6.61±0.28 76 8.70±0.17 100 
  180 

8.71±0.23 <10 0.00 5.17±0.10 59 8.72±0.25 100 <10 
   

0.00 6.55±0.22 75 8.74±0.20 100 
Table 3.12:  Bile salt tolerance of Streptococcus salivarius subsp. thermophilus. 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 7.78±0.32 7.61±0.14 97 7.56±0.28 97 7.51±0.20 96 7.46±0.15 95 
30 7.75±0.37 7.62±0.22 98 7.57±0.25 97 7.44±0.28 96 7.32±0.21 94 
60 7.81±0.25 7.44±0.18 95 7.36±0.21 94 7.32±0.34 93 7.27±0.20 93 
90 7.85±0.17 7.25±0.11 92 7.14±0.26 91 6.59±0.17 83 6.53±0.26 83 

       120 8.60±0.41 6.62±0.15 76 6.51±0.15 75 6.50±0.20 75 5.39±0.19               0.0 
       150 8.65±0.34 5.53±0.19 63 5.47±0.23 63 5.34±0.16 61 <10               0.0 
       180 8.71±0.23 5.44±0.11 62 5.20±0.23 59 5.07±0.11 58 <10               0.0 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100 
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Table 3.13: Acid tolerance of Lactobacillus plantarum. 

Time 
(min) Controla 

(cfu/ml) 

pH2 
(cfu/ml) 

SRb 
(%) 

pH3 
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 7.70±0.68 6.21±0.19 80 7.68±0.40 100 7.72±0.26   100 6.90±0.13 89 7.69±0.41 99 7.74±0.29 100 
30 7.76±0.43 <10 0.0 7.72±0.33 100 7.77±0.34    100 6.92±0.13 89 7.74±0.34 99 7.78±0.36 100 
60 7.79±0.47 <10 0.0 7.77±0.35 100 7.82±0.25 100 6.89±0.17 88 7.78±0.20 99 7.85±0.30 100 
90 7.85±0.51 <10 0.0 7.80±0.22 98 7.86±0.25 100 6.82±0.14 86 7.81±0.29 99 7.87±0.34 100 

  120 7.89±0.29 <10 0.0 7.73±0.27 97 7.92±0.31 100 4.68±0.19 59 7.82±0.29 99 7.93±0.41 100 
  150 7.96±0.33 <10 0.0 7.69±0.20 96 7.96±0.30 100 4.59±0.11 57 7.79±0.24 97 7.96±0.43 100 
  180 7.99±0.55 <10 0.0 7.65±0.20 95 8.00±0.18 100 4.38±0.11 54 7.74±0.20 96 8.00±0.32 100 
Table 3.14: Bile salt tolerance of Lactobacillus plantarum. 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 7.70±0.68 7.69±0.54 99   7.68±0.48 99 7.61±0.21 98 7.56±0.30 98 
30 7.76±0.43 7.74±0.47 99   7.71±0.23 99 7.68±0.26 98 7.65±0.34 98 
60 7.79±0.47 7.77±0.31 99   7.74±0.15               99 7.71±0.17 99 7.68±0.34 98 
90 7.85±0.51 7.82±0.35 99 7.79±0.25 99 7.74±0.24 98 7.71±0.23 98 

       120 7.89±0.29 7.77±0.22 98 7.74±0.15 98 7.68±0.13 97 7.65±0.31 96 
       150 7.96±0.33 7.66±0.18 96 7.63±0.20 95 7.56±0.19 95 7.55±0.25 94 
       180 7.99±0.55 7.60±0.31 95 7.47±0.11 93 7.36±0.16 92 7.27±0.22 91 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100 
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Table 3.15: Acid tolerance of Lactobacillus coryniformis. 

Time 
(min) Controla 

(cfu/ml) 

pH2 
(cfu/ml) 

SRb 
(%) 

pH3 
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb(%) pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 7.86±0.50 4.34±0.11 55 7.72±0.23 98 7.85±0.40 99 4.49±0.16 57 7.80±0.36 99 7.87±0.67 100 
30 7.93±0.59 3.27±0.10 41 7.76±0.21 97 7.91±0.27 99 4.38±0.21 55 7.77±0.31 97 7.92±0.73 99 
60 7.97±0.46 3.23±0.15 40 7.78±0.21 97 7.94±0.21 99 3.46±0.12 43 7.85±0.39 98 7.98±0.77 100 
90 8.73±0.51 3.11±0.18 35 7.66±0.17 87 8.72±0.33 99 3.23±0.10 36 7.87±0.26 90 8.74±0.59 100 

  120 8.79±0.51 <10 0.0 7.70±0.26 87 8.74±0.31 99 <10 0.0 7.92±0.39 90 8.80±0.34 100 
  150 8.86±0.32 <10 0.0 7.83±0.14 88 8.78±0.38 99 <10 0.0 7.95±0.22 89 8.87±0.31 100 
 180 8.89±0.24 <10 0.0 7.93±0.29 89 8.79±0.38 98 <10 0.0 7.97±0.27 89 8.90±0.31 100 
Table 3.16: Bile salt tolerance of Lactobacillus coryniformis 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1%  
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 7.86±0.50 7.85±0.18               99   7.76±0.25 98 7.67±0.36 97 7.65±0.22 97 
30 7.93±0.59 7.86±0.15               99   7.76±0.21 97 7.74±0.28 97 7.73±0.17 97 
60 7.97±0.46 7.86±0.15               98 7.77±0.19 97 7.71±0.21 96 7.70±0.29 96 
90 8.73±0.51 7.60±0.23 87 7.57±0.23 86 7.55±0.30 86 7.53±0.34 86 

       120 8.79±0.51 7.59±0.13 86 7.54±0.23 85 7.51±0.16 85 7.49±0.16 85 
       150 8.86±0.32 7.57±0.17 85 7.51±0.17 84 7.50±0.16 84 7.44±0.20 83 
       180 8.89±0.24 7.54±0.14 84 7.47±0.13 84 7.46±0.11 83 7.38±0.13 82 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100 
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Table 3.17: Acid tolerance of Streptococcus cristatus. 

Time 
(min) Controla 

(cfu/ml) 

pH2 
(cfu/ml) 

SRb 
(%) 

pH3 
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin  
(cfu/ml) 

SRb(%) pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 8.74±0.77 6.96±0.14 79 8.56±0.24 97 8.78±0.32 100 6.97±0.20 79 8.62±0.63 98 8.80±0.34 100 
30 8.78±0.65 3.14±0.10 35 8.62±0.36 98 8.79±0.35 100 6.17±0.16 70 8.66±0.28 98 8.83±0.28 100 
60 8.81±0.65 <10 0.0 8.69±0.21 98 8.82±0.27 100 5.54±0.21 62 8.73±0.42 99 8.84±0.22 100 
90 8.85±0.40 <10 0.0 8.71±0.17 98 8.86±0.24 100 5.53±0.21 62 8.77±0.47 99 8.86±0.13 100 

  120 8.88±0.32 <10 0.0 8.69±0.30 97 8.88±0.14 100 5.41±0.13 60 8.81±0.36 99 8.88±0.20 100 
  150 8.89±0.32 <10 0.0 8.64±0.18 97 8.90±0.14 100 4.27±0.19 48 8.84±0.24 99 8.92±0.15 100 
 180 8.93±0.27 <10 0.0 8.49±0.20 94 8.94±0.21 100 3.34±0.10 37 8.88±0.30 99 8.95±0.20 100 
Table 3.18: Bile salt tolerance of Streptococcus cristatus 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 8.74±0.77 8.68±0.56 99 8.67±0.12 99 8.61±0.21 98 8.53±0.15 97 
30 8.78±0.65 8.71±0.41 99 8.69±0.17 99 8.67±0.38 98 8.61±0.26 98 
60 8.81±0.65 8.74±0.47 99 8.72±0.24 98 8.70±0.32 98 8.64±0.32 98 
90 8.85±0.40 8.79±0.32 99 8.74±0.29 98 8.72±0.32 98 8.69±0.18 98 

       120 8.88±0.32 8.75±0.25 98 8.71±0.14 98 8.66±0.24 97 8.63±0.23 97 
       150 8.89±0.32 8.72±0.30 98 8.68±0.20 97 8.61±0.27 96 8.54±0.20 96 
       180 8.93±0.27 8.60±0.22 96 8.56±0.23 95 8.49±0.28 94 8.25±0.20 92 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100 
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Table 3.19: Acid tolerance of Leuconostoc mesenteroides subsp. lactis. 

Time 
(min) Controla 

(cfu/ml) 

pH2  
(cfu/ml) 

SRb 
(%) 

pH3 
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 8.70±0.82 6.34±0.14 72 8.63±0.28 99 8.74±0.17 100 7.79±0.15 89 8.69±0.43 99 8.75±0.35       100 
30 8.75±0.87 3.20±0.20 36 8.66±0.31 98 8.77±0.22 100 7.74±0.11 88 8.69±0.43 99 8.78±0.50       100 
60 8.80±0.61 <10 0.0 8.70±0.37 98 8.81±0.27 100 6.79±0.20 77 8.74±0.47 99 8.81±0.53 100 
90 8.83±0.33 <10 0.0 8.75±0.22 99 8.84±0.19 100 6.65±0.20 75 8.81±0.50 99 8.85±0.27 100 

   120 8.86±0.39 <10 0.0 8.71±0.16 98 8.86±0.19 100 3.51±0.10 39 8.76±0.31 98 8.87±0.19 100 
   150 8.88±0.44 <10 0.0 8.57±0.25 96 8.90±0.25 100 3.11±0.18 35 8.72±0.28 98 8.91±0.24 100 
  180 8.92±0.48 <10 0.0 8.47±0.23 94 8.93±0.35 100 <10 0.0 8.68±0.35 97 8.93±0.30 100 
Table 3.20: Bile salt tolerance of Leuconostoc mesenteroides subsp. lactis. 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 8.70±0.82   8.61±0.17               98   8.57±0.33 98   8.55±0.20              98 8.54±0.39 98 
30 8.75±0.87   8.69±0.22               99   8.65±0.46 98   8.62±0.32              98 8.59±0.20 98 
60 8.80±0.61 8.71±0.25 98 8.69±0.21 98 8.65±0.18 98 8.64±0.26 98 
90 8.83±0.33 8.74±0.20 98 8.72±0.40 98 8.68±0.13 98 8.66±0.43 98 

       120 8.86±0.39 8.69±0.14 98 8.65±0.15 97 8.64±0.36 97 8.62±0.30 97 
       150 8.88±0.44 8.53±0.11 96 8.51±0.22 95 8.49±0.30 95 8.47±0.21 95 
       180 8.92±0.48 8.49±0.21 95 8.44±0.31 94 8.34±0.16 93 8.30±0.18 92 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100 
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Table 3.21: Acid tolerance of Enterococcus faecium 

Time 
(min/hour) Controla 

(cfu/ml) 

pH2  
(cfu/ml) 

SRb 
(%) 

pH3  
(cfu/ml) 

SRb 

(%) 
pH4 

(cfu/ml) 
SRb 

(%) 
pH2+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH3+ 
pepsin 
(cfu/ml) 

SRb 

(%) 
pH4+ 
pepsin 
(cfu/ml) 

SRb 

(%) 

0 7.83±0.44 7.53±0.12 96 7.72±0.24 98 7.85±0.52 100 7.64±0.13 97 7.79±0.37 99 7.85±0.35 100 
30 7.86±0.23 6.54±0.19 83 7.74±0.20 98 7.86±0.41 100 6.70±0.10 85 7.81±0.30 99 7.86±0.35 100 
60 7.88±0.50 4.69±0.10 59 7.76±0.35 98 7.87±0.39 100 4.77±0.16 60 7.82±0.22 99 7.88±0.28 100 
90 7.89±0.27 <10 0.0 7.71±0.44 97 7.89±0.40 100 4.54±0.16 57 7.84±0.42 99 7.90±0.20 100 

   120 7.92±0.31 <10 0.0 7.69±0.20 97 7.92±0.46 100 3.46±0.22 43 7.83±0.31 98 7.94±0.39 100 
   150 7.94±0.26 <10 0.0 7.69±0.18 96 7.94±0.32 100 3.07±0.17 38 7.77±0.25 97 7.95±0.47 100 
  180 7.95±0.31 <10 0.0 7.65±0.27 96 7.96±0.28 100 <10 0.0 7.67±0.25 96 7.97±0.31 100 
Table 3.22: Bile salt tolerance of Enterococcus faecium 

Time 
(min) Controla 

(cfu/ml) 

0.3% bile 
salt 

SR (%)b 0.5% bile 
salt 

SR (%)b 1% 
bile salt 

SR (%)b 1.5% bile 
salt 

SR (%)b 

0 7.83±0.44  7.71±0.63 98   7.69±0.27 98 7.69±0.53 98 7.68±0.17 98 
30 7.86±0.23  7.77±0.46 98   7.74±0.15 98 7.72±0.41 98 7.70±0.20 98 
60 7.88±0.50 7.78±0.35 98 7.77±0.23 98 7.74±0.24 98 7.74±0.23 98 
90 7.89±0.27 7.74±0.23 98 7.74±0.27 98 7.72±0.19 97 7.69±0.32 97 

       120 7.92±0.31 7.72±0.41 97 7.70±0.32 97 7.67±0.27 96 7.65±0.32 96 
       150 7.94±0.26 7.71±0.60 97 7.68±0.29 96 7.62±0.26 96 7.59±0.15 95 
      180 7.95±0.31 7.68±0.38 96 7.64±0.16 96 7.56±0.21 95 7.50±0.28 94 
Control, pH and bile salt values are mean log10 (cfu/ml) ± standard deviation of duplicate experiments 

a = control cells in pH 7.3 (phosphate buffered saline) 

b = SR (survival ratio), stressed cell number divided by control cell number multiplied by 100 
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