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Abstract 
 
We implement some recent Monte Carlo estimators for option pricing and assess their performance 
in finite samples. We find that the accuracy of these estimators is remarkable, even when more 
exotic financial derivatives are considered. Finally, we implement the Glasserman and Yu (2004b) 
methodology to price Asian Bermudan options and basket options. 
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1. Introduction 
 
Monte Carlo methods to price American style options seem to be now an active research area. The 

reason is mainly due to its suitability to price path dependent options and to solve high dimensional 

problems. 

 It is now standard to implement Monte Carlo methods using regression methods to price 

derivatives with American features. For example, Longstaff and Schwartz (2001) suggest using 

Least Squares approximation to approximate the option price on the continuation region and Monte 

Carlo methods to compute the option value (LS). Proof of asymptotic convergence of the option 

price estimator is derived under various assumptions and therefore more work is needed in this case.  

 Recently Clement et al (2002) undertake a theoretical analysis of the LS estimator, and show 

that the option price converges, in the limit, to the true option price. But the theoretical proof in 

Clement et al (2002) has some limitations in that it is based on a sequential rather than joint limit. 

Glasserman et al (2004a) consider the limitations in Clement et al (2002) and prove 

convergence of the LS estimator as the number of paths and the number of polynomials functions 

increase together. Further assumption of martingales polynomials is required here. 

 Glasserman et al (2004b) (GY) implement a weighted Monte Carlo Estimator (WME) to 

price American derivatives and show that their estimator produces less disperse estimates of the 

option price. However, no finite-sample proof of convergence of the proposed estimator is provided 

in that study. Furthermore, proof of Theorem 1is based on a two period framework.  

Applications of Monte Carlo estimators to price financial derivatives generally require using 

variance reduction techniques. One common feature of some of the studies cited above and other 

recent empirical ones is that they all have considered antithetic variates. As we shall see, particularly 

when pricing American style derivatives using one method rather than another makes the difference 

when determining the early exercise value. 

 In this paper we analyse the finite sample approximation of the LS (2001) and GY (2004b) 

by extending empirical studies such as Stentoft (2004). As shown in Glasserman and Yu (2004a) the 

choice of the basis function used in the regression is very important since (uniform) convergence of 

the option price to the true price can only be guaranteed if polynomials span the “true optimum”. To 

address this issue, we consider different basis functions and suggest possible “optimal polynomials”. 

We also discuss ways to implement variance reduction techniques in this context and study the 

contribution of these methods to variance reduction and bias. Finally, our study is the first empirical 

study on the WME as in Glasserman et al (2004b) and it also extends that methodology to price 
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options on a maximum of n assets and Bermudan-Asian options. We show that, even when more 

difficult payoffs are considered, the WME estimator produces reasonably accurate prices. 

 
 
2. The Least Squares Monte Carlo Methods 
 
We consider a probability space ),,( ΡΑΩ and its discrete filtration niiF ,...,0)( = , with n being an 

integer. Define with nXXX ,..., 10 a dR valued Markov chain representing the state variable 

recording all the relevant information on the price of a certain underlying asset. Assume that )(xVi , 

dRx∈ , is the value of an option if exercised at time i under the state x . Using a dynamic 

programming framework the value of the option is given by: 

 
 

]|)([sup)( xXXExV ii =Θ= Γ∈ τττ     (1) 
 
 
with  
 

)()( xxV nn Θ=        (2) 
 
 

]}|)([(),(max{)( 11 xXXVExxV iiiii =Θ= ++   (3) 
 

To determine the option value 0V  one has to (i) approximate the conditional expectations in (3) in 

some ways, and (ii) obtain a numerical (Monte Carlo) evaluation of the latter. 

 If the option payoff is a square integrable function, then (.)iV will be a function spanning the 

Hilbert space and we can approximate the conditional expectations in (3) by the orthogonal 

projection on the space generated by a finite number of basis functions kiφ , ni ,...,1=  and 

Kk ,...,1,0= , such that  

 

 
)()( xxV nn φ=        (5) 

 
 

]}|)([(),(max{)( 11 xXXVExxV iiiii == ++φ    (6) 
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Using a simple regression approach: 
 

 

1
0

,,11 )()( +
=

++ +≡ ∑ i

K

k
ikikiii XcXV εφ     (7) 

 
 

Therefore, we have transformed the dynamic programming scheme in (6) into a simple regression 

requiring the estimation of 1+K  coefficients (7). At this point we need to evaluate the conditional 

expectation numerically. This can be done by simulating j paths of the Markov process j
iX , with 

Mj ,...,1= , and calculating, at each stopping time τ , recursively, the payoff ),(* j
ii

j Xτφτ =Ρ . 

 
Remark. In Equation 7 we have included the error term iε . As pointed out in Grasserman and Yu 

(2004b), this is necessary for Equation 7 to hold at each i .  

 

Assumption 1. 

If 0)/( 1 =+ ii XE ε  and ])()([ '
iiii XXE φφ is non-singular, then ii VV →

^
for all ni ,...,1,0= , where 

iV
^

is the estimated option price.  

 

Proof of convergence in LS (2001) applies to the simplest possible case of only one exercise time 

and one state variable. Clement et al (2002) extend that proof to a multi period framework under the 

assumption that K is fixed. This would imply that the regression used is correct, therefore no sample 

bias is considered. GY (2004a) generalise the proof in Clement et al (2002) and show that the option 

price obtained by regression methods converges to the true price as ∞→),( MK . However, 

martingales basis are considered in this case. 

 All the theoretical results mentioned above are very important, particularly from a theoretical 

point of view. However, for practical applications of these methodologies we are more concerned 

with their performance in finite sample. 

In Equation (7) we have approximated the conditional expectation by using current basis 

functions (that is )( ii Xφ ). However one would expect the option price at time 1+i to be more 

closely correlated with the basis function )( 11 ++ ii Xφ rather than )( ii Xφ . GY (2004b) develop a 

method based on Monte Carlo simulations where the conditional expectation is approximated by 
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)( 11 ++ ii Xφ rather than )( ii Xφ . They show that their Monte Carlo scheme has a regression 

representation given by: 

 
 

∑
=

+++++ +=
K

k
ii

j
kiiki

j
i XXV

0

^

11,111

^
)()( εφϖ     (8) 

 
 
 However an important assumption is necessary in this case: 

 

Assumption 2. (Martingale property of basis function) )()|)(( 11 iiiii XXXE φφ =++ , for all i . 

 

GY (2004b) call this method regression later, since it involves using functions )( 11 ++ ii Xφ . On the 

other hand, they call the LS (2001) method regression now since it uses functions )( ii Xφ . Although 

Theorem 1 in GY (2004b) provides a justification for using regression later as opposed to regression 

now, proof of that theorem is based on a single period framework. Furthermore, GY (2004b) neither 

provide an empirical application of their proposed estimator nor suggest ways of obtaining  

martingale basis. 

 
 
3. A Simple Example 
 
To motivate this study, in this section, we provide a simple example where we estimate early 

exercises values for American put options by crude Monte Carlo methods and using variance 

reduction techniques. Table 1 below shows the results. 

 

Monte Carlo EU-BS 
Early Exercise 

Value Binomial 
Early 

Exercise Difference 
5.265 4.84 0.425 5.265 0.425 0.00% 
6.234 5.96 0.274 6.244 0.284 1.00% 
7.374 7.14 0.234 7.383 0.243 0.90% 

     Antithetic  
     Variates     

5.261 4.84 0.421 5.265 0.425 0.40% 
6.24 5.96 0.28 6.244 0.284 0.40% 

7.384 7.14 0.244 7.383 0.243 -0.10% 
Control 
Variates      

5.264 4.84 0.424 5.265 0.425 0.10% 
6.246 5.96 0.286 6.244 0.284 -0.20% 
7.387 7.14 0.247 7.383 0.243 -0.40% 

Table 1. Monte Carlo refers to crude Monte Carlo method. EU-BS is the price of an equivalent 
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European option obtained by Black & Scholes formula. Binomial is the price of the option 
obtained by binomial methods. Early exercise refers to the estimates of the early exercise value. 
 

We consider three in-the-money put options with strike $45, initial price $40, maturity seven months 

and risk free rate of interest 4.88% and volatilities 20%, 30% and 40% respectively. The last column 

shows the difference, in percentages, between estimates of the early exercise value by crude Monte 

Carlo, Monte Carlo implemented by variance reduction techniques, and Binomial methods. As we 

can see using variance reduction techniques reduces the bias by an order of 80% on average. This is 

likely to have a substantial impact on the estimate of the put option price. 

 

 

4. Valuing American Put Options 
 
Table 1 above shows that it is important to implement Monte Carlo methods with variance reduction 

techniques since, in this way, we can reduce the bias in the estimation of the early exercise value 

and achieve a more accurate price of the option. Therefore variance reduction techniques reduce the 

probability of generating sub-optimal exercise decisions. In this section we first apply the LS (2001) 

and GY (2004b) methods to price American style put options and thereafter implement the same 

methodologies by using different basis functions and different variance reduction techniques. As we 

pointed out above, we can only expect convergence of the estimated option price to the true price if 

polynomials used in the regression are “optimal polynomials”.   

We start with a simple application where we do not use variance reduction techniques. Prices 

reported are averages of 50 trials. We report standard errors and root mean square errors as a 

measure of the bias in the estimation of the conditional expectation in (6). As a benchmark, we 

consider the Binomial method with 20,000 time steps. Table 2 below shows the empirical results. To 

implement the GY (2004b) estimator we specify the following martingale basis under geometric 

Brownian motion and exponential polynomial: 

 
))()1((exp)()( 0

2/2 ttkkkrXX i
k

iiik −−+−= σφ   (9) 
 
 
On the other hand we could not find a valid martingale specification for polynomials when Laguerre 

basis were used. Finally, following GY (2004a), Hermite polynomials ( kH ) define martingales as: 

 

k
k

iik HtX 2/)( =φ       (10) 
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Longstaff-Schwartz (2001), Glasserman-Yu (2004b) 
Methods    

           
Exponential    Laguerre   BIN. 
   2 3 4 2 3 4   
GY 0.2/0.0833 4.9968 4.997 4.997 0 0 0 5
  SE [0.00122] [0.00114] [0.00095] 0 0 0   
  RMSE [0.00331] [0.00299] [0.00328] 0 0 0   
LS 02/0.0833 4.9968 4.9967 4.997 4.995 4.996 4.996 5
  SE [0.00021] [0.00114] [0.0011] [0.000703] [0.000407] [0.000217]   
  RMSE [0.00325] [0.00326] [0.00285] [0.00535] [0.00368] [0.00376]   
GY 0.2/0.3333 5.0927 5.0857 5.082 0 0 0 5.087
  SE [0.00749] [0.0055] [0.00678] 0 0 0   
  RMSE [0.09267] [0.1023] [0.1009] 0 0 0   
LS 0.2/0.3333 5.0922 5.0856 5.0881 5.077 5.087 5.0852 5.087
  SE [0.04687] [0.00752] [0.0082] [0.00684] [0.00647] [0.00668]   
  RMSE [0.0922] [0.1005] [0.10272] [0.00098] [0.00448] [0.00184]   
GY 0.2/0.5833 5.2523 5.2614 5.2651 0 0 0 5.265
  SE [0.00968] [0.0066] [0.0124] 0 0 0   
  RMSE [0.2839] [0.2935] [0.29498] 0 0 0   
LS 0.2/0.5833 5.2489 5.2635 5.2641 5.2528 5.265 5.265 5.265
  SE [0.00566] [0.0114] [0.008195] [0.00677] [0.009518] [0.00838]   
  RMSE [0.2865] [0.2926] [0.2871] [0.01221] [0.001313] [0.000188]   
GY 0.3/0.0833 5.0597 5.0591 5.0611 0 0 0 5.06
  SE [0.00591] [0.005903] [0.00711] 0 0 0   
  RMSE [0.05975] [0.06372] [0.0685] 0 0 0   
LS 0.3/0.0833 5.0595 5.0591 5.0581 5.054 5.061 5.061 5.06
  SE [0.00633] [0.00541] [0.0056] [0.005489] [0.006804] [0.00679]   
  RMSE [0.05951] 0.06372] [0.06371] [0.000651] [0.004389] [0.000094]   
GY 0.3/0.3333 5.6941 5.7042 5.7086 0 0 0 5.706
  SE [0.01056] [0.0098] [0.0131] 0 0 0   
  RMSE [0.7172] [0.7300] [0.73087] 0 0 0   

Table 2. Note that GY and LS are respectively the methodologies proposed by Longstaff and Swartz (2001) 
 and Glasserman and Yu (2004b). SEs are standard errors and RMSEs are root mean square errors.  
Exponential and Laguerre are the polynomials used in this application. 2-4 refer to the number of basis  
used. BIN is the price of the option given by a Binomial method. The zeros refer to cases when we 
were not able to obtain martingales basis for a specific polynomial and therefore we could not implement  
the GY(2004b) method. 
 
 
The first column of Table 2 shows the methodologies used (i.e. Glasserman and Yu, 2004b and 

Longstaff and Schwartz, 2001). In the second column we report the volatilities used to price the 

option and the time to expiry.1 The strike of the option is assumed to be $45 and the initial stock 

price $40. Therefore we only consider in the money options. The risk free rate of interest is assumed 

to be 4.88% per year. Fifty time steps are considered in combination with 100,000 Monte Carlo 

replications. We consider two different polynomial basis, namely exponential and Laguerre. The 
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numbers of basis used are 2, 3 and 4 bases. Following Brodie and Kaya (2004), the RMSE is 

defined as2 2/12 )var( iancebias + . Results in Table 2 favour Laguerre polynomials in quite few 

cases. Standard errors are in general small. The RMSE confirms what has been found in other 

studies, that is, the convergence implied by these estimators is not uniform. In fact, by increasing the 

number of basis one does not necessarily reduces the bias.  

 
Table 2 continued 
LS 0.3/0.3333 5.6941 5.6991 5.7034 5.689 5.699 5.706 5.706
  SE [0.00918] [0.0115] [0.01309] [0.01321] [0.01385] [0.00123]   
  RMSE [0.7185] [0.7279] [0.73380] [0.01735] [0.006130] [0.00467]   
GY 0.3/0.5833 6.2232 6.2379 6.2455 0 0 0 6.244
  SE [0.0143] [0.01952] [0.01487] 0 0 0   
  RMSE [1.268] [1.2838] [1.2875] 0 0 0   
LS 0.3/0.5833 6.2221 6.2314 6.2439 6.227 6.2427 6.234 6.244
  SE [0.0068] [0.01547] [0.01326] [0.01182] [0.0133] [0.01428]   
  RMSE [1.2741] [1.2866] [1.2818] [0.01678] [0.00134] [0.00592]   
GY 0.4/0.0833 5.2775 5.2864 5.2881 0 0 0 5.286
  SE [0.01027] [0.00855] [0.00763] 0 0 0   
  RMSE [0.28247] [0.29144] [0.2952] 0 0 0   
LS 0.4/0.0833 5.2758 5.2859 5.2832 5.2749 5.2889 5.2908 5.286
  SE [0.00622] [0.00874] [0.01032] [0.00089] [0.00936] [0.01071]   
  RMSE [0.28319] [0.29066] [0.2958] [0.0111] [0.00287] [0.00479]   
GY 0.4/0.3333 6.4911 6.5097 6.5131 0 0 0 6.51
  SE [0.01522] [0.01657] [0.0123] 0 0 0   
  RMSE [1.521] [1.537] [1.5386] 0 0 0   
LS 0.4/0.3333 6.4988 6.5006 6.5121 6.4954 6.511 6.514 6.51
  SE [0.00732] [0.0141] [0.01898] [0.01522] [0.01479] [0.01719]   
  RMSE [1.522] [1.532] [1.5412] [0.01459] [0.00104] [0.00370]   
GY 0.4/0.5833 7.3631 7.3781 7.382 0 0 0 7.383
  SE [0.01906] [0.02537] [0.02382] 0 0 0   
  RMSE [1.4086] [1.4287] [1.4321] 0 0 0   
LS 0.4/0.5833 7.3701 7.3760 7.3824 7.3621 7.376 7.374 7.383
  SE [0.007797] [0.02166] [0.01782] [0.02478] [0.001341] [0.01291]   
  RMSE [1.4107] [1.421] [1.4301] [0.02094] [0.5611] [0.00949]   

 
 
Following other studies such as LS (2001) and Stentoft (2004), in Table 3 below we have 

implemented these methodologies using standard antithetic variates. We price the same option (i.e. 

with the same parameters) as the one considered in Table 2. Although, as we mentioned above, 

antithetic variates have already been considered in other empirical studies using the LS (2001) 

method, they have never been used to implement the estimator proposed in GY (2004b). Therefore 

as far as we know the present study is the first empirical study to implement the GY (2004b) 

estimator to price financial derivatives.  

                                                                                                                                                                                                  
1 For example, 0.2/0.0833 should be read as 20% volatility and 1 month to expiry. 
2 Refer to Brodie and Kaya (2004) for further details. 
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  Longstaff-Schwartz (2001), Glasserman and Yu (2004b) Methods  
           
Exponential    Laguerre   BIN. 
   2 3 4 2 3 4   
GY 0.2/0.0833 4.996 4.997 4.997 0 0 0 5
SE  [0.000173] [0.000259] [0.0002537] 0 0 0   
RMSE  [0.003621] [0.003447] [0.003454] 0 0 0   
LS 02/0.0833 4.9966 4.996 4.997 4.994 4.996 4.996 5
SE  [0.000351] [0.0002892] [0.000279] [0.000658] [0.00039] [0.000266]   
RMSE  [0.003424] [0.003559] [0.003459] [0.00591] [0.00367] [0.003565]   
GY 0.2/0.3333 5.079 5.085 5.084 0 0 0 5.087
SE  [0.006513] [0.00667] [0.005471] 0 0 0   
RMSE  [0.008158] [0.00207] [0.00304] 0 0 0   
LS 0.2/0.3333 5.079 5.086 5.0865 5.082 5.084 5.084 5.087
SE  [0.006342] [0.005806] [0.00441] [0.00650] [0.00448] [0.00529]   
RMSE  [0.008438] [0.001535] [0.000493] [0.005289] [0.00297] [0.00281]   
GY 0.2/0.5833 5.251 5.261 5.262 0 0 0 5.265
SE  [0.006765] [0.008092] [0.00567] 0 0 0   
RMSE  [0.01367] [0.003912] [0.00305] 0 0 0   
LS 0.2/0.5833 5.254 5.259 5.2634 5.253 5.262 5.261 5.265
SE  [0.005042] [0.006498] [0.005579] [0.00839] [0.00571] [0.00604]   
RMSE  [0.01113] [0.00608] [0.00158] [0.01271] [0.00296] [0.004253]   
GY 0.3/0.0833 5.054 5.059 5.061 0 0 0 5.06
SE  [0.006252] [0.004472] [0.00404] 0 0 0   
RMSE   [0.00605] [0.001031] [0.000162] 0 0 0   

Table 3: Antithetic variates. GY and LS are respectively the methodologies proposed by Longstaff and Schwartz (2001) 
and Glasserman and Yu (2004b). SEs are standard errors and RMSEs are the root mean square errors. Exponential and 
Laguerre are the polynomials used in this application. 2-4 refer to the number of basis functions used. BIN is the price of 
the option given by the Binomial method. The zeros refer to cases when we were not able to obtain martingales basis for 
a specific polynomial and therefore we could not implement the GY (2004b) method. 
 
 
Both the methodologies produce an accurate price of the option. Very small standard errors signal 

that estimates are accurate and not disperse. In general estimates of the option price given by the LS 

(2001) method seem to be less disperse than others. This result may not fully support Theorem 1 in 

Glasserman and Yu (2004b). Our result may imply that, once a multi period framework is 

considered, Theorem 1 in GY (2004b) no longer holds3. In fact, evidence of uniform convergence is 

much stronger when the LS (2001) method, in conjunction with Laguerre basis, is used than the GY 

(2004b) method. In fact, in this case, in general, the bias decreases as we increase the number of 

basis4.   

 

                                                           
3 This result might be due to the specific martingales bases used in this study. We shall look at this issue in more details 
in a separate study and suggest ways of designing martingales basis with bounded variance. 
4 Of course, we do not claim here that (uniform) convergence of the estimated option price to the true price is due to the 
variance reduction methodology employed. In fact, it may well be due to the polynomial chosen (i.e. Laguerre) in this 
empirical example. 
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Table 3 continued 
LS 0.3/0.0833 5.055 5.059 5.068 5.054 5.059 5.061 5.06
SE  [0.00581] [0.002595] [0.00379] [0.00579] [0.00439] [0.00432]   
RMSE  [0.00521] [0.00122] [0.000279] [0.21134] [0.000929] [0.000554]   
GY 0.3/0.3333 5.691 5.702 5.707 0 0 0 5.706
SE  [0.01595] [0.007062] [0.00737] 0 0 0   
RMSE  [0.01595] [0.00425] [0.000681] 0 0 0   
LS 0.3/0.3333 5.693 5.704 5.704 5.690 5.702 5.705 5.706
SE  [0.007459] [0.006206] [0.00634] [0.00823] [0.00742] [0.00562]   
RMSE  [0.01342] [0.001563] [0.001874] [0.4254] [0.004271] [0.001261]   
GY 0.3/0.5833 6.228 6.24 6.239 0 0 0 6.244
SE  [0.00572] [0.009582] [0.00613] 0 0 0   
RMSE  [0.01583] [0.00506] [0.005132] 0 0 0   
LS 0.3/0.5833 6.229 6.235 6.238 6.224 6.239 6.240 6.244
SE  [0.00829] [0.00758] [0.00779] [0.00999] [0.00803] [0.00647]   
RMSE  [0.01479] [0.00873] [0.006014] [0.02019] [0.00471] [0.003669]   
GY 0.4/0.0833 5.275 5.285 5.289 0 0 0 5.286
SE  [0.008957] [0.005144] [0.00535] 0 0 0   
RMSE  [0.01085] [0.0006409] [0.002555] 0 0 0   
LS 0.4/0.0833 5.274 5.284 5.286 5.274 5.284 5.287 5.286
SE  [0.00565] [0.005249] [0.00546] [0.00499] [0.00643] [0.00629]   
RMSE  [0.01239] [0.001781] [0.0001743] [0.012403] [0.00205] [0.001198]   
GY 0.4/0.3333 6.494 6.509 6.509 0 0 0 6.51
SE  [0.008389] [0.009061] [0.00754] 0 0 0   
RMSE  [0.01627] [0.000939] [0.0002757] 0 0 0   
LS 0.4/0.3333 6.496 6.507 6.508 6.4923 6.506 6.51 6.51
SE  [0.007467] [0.005948] [0.00846] [0.00734] [0.000437] [0.00709]   
RMSE  [0.01419] [0.003064] [0.001931] [0.017695] [0.004269] [0.000199]   
GY 0.4/0.5833 7.366 7.371 7.378 0 0 0 7.383
SE  [0.00901] [0.000234] [0.00915] 0 0 0   
RMSE  [0.0167] [0.0025] [0.00469] 0 0 0   
LS 0.4/0.5833 7.361 6.379 7.384 7.366 7.376 7.384 7.383
SE  [0.009083] [0.000342] [0.00953] [0.00836] [0.000897] [0.00720]   
RMSE   [0.02167] [0.00291] [0.000509] [0.01692] [0.006972] [0.000523]   

 
 
To measure the impact of antithetic variates on the estimates of the option prices in Table 3, we 

have calculated the variance reduction (VR) factor, as the ratio of the estimate of naïve variance and 

the estimate of antithetic variate variance, for a reasonable sample of the options in Table 3. We 

have considered options with volatilities 20-40% and time to expiry 1 and 4 months. When 

exponential basis is used the VR factor ranges from 0.68 to 3.34 for GY (2004b) method and 0.96 to 

6.62 for LS (2001) method. On the other hand when Laguerre basis is used the VR factor ranges 
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from 0.10 to 7.475. The biggest gain from using antithetic variates methods seems to come from 

implementing the LS (2001) method by using Laguerre basis.  

 
4.1 Regression Methods and Moment Matching 
 
One important issue when pricing derivatives by simulation is that we can confidently price a 

derivatives security if, in the first place, we can correctly simulate the dynamics of the underlying 

asset. The methodology we present below accomplishes this task.  

We follow Boyle et al (1997) and consider the dR  valued Markov chain 

sequence nXXX ,..., 10 and assume that we know the expectation 0)exp()( XrtXE −= . The sample 

mean process of the sequence above can be written as: 

 
 

∑
=

−
=

M

j

jX
M
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1

1     (11) 

 

In finite sample we know that
−

≠ XXE )( . However we can adjust the simulated paths such that the 

following equality holds for all i : 
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~

tXtXEtXtX ii
−

−+=   (12) 
 
 

where )(
~

tX i is the new simulated path after the transformation.  
 

Consequently, we have that )](()]([
~

tXEtXE i =  holds and the mean of the simulated sample path 

matches the population mean exactly. Apart from matching the first moment of the process, we can 

also match higher order moments such as variance for example.  In this case one re-writes the 

process in (12) in the following form: 

 

 

    )]([)]()([)(
~

tXE
s

tXtXtX
X

X
ii +−=

− σ  (13) 

                                                           
5 We have considered a sample of 30 options. Results are not reported to save space. We have also dropped in some 
cases some extreme values (i.e. very high or low VR factors) that might have generated outliers. 
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 where Xσ  and Xs  are, respectively, the population and the sample variance. 

 

 

 

One important drawback of the process in (12) is that sample paths are correlated and therefore it is 

unlikely that the initial and the simulated processes will have the same distribution. The correlation 

also makes estimates of standard errors meaningless. To overcome these drawbacks, in the empirical 

application, we have implemented the additive process in (12) to the standard Brownian motion 

process )(tBi , in the following way: 

 

 

t
s

tBtBtB B
ii /)]()([)(

~ −
−=     (13) 

 

To preserve independence between sample paths, we have rescaled the increments of the process 

)(tBi  as follows: 
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where ijZ are standard normal variables, and 2

1

2 )(
1

1
jij

n

i
ZZ

n
s

−

=
−

−
= ∑ . 

 

4.2 Empirical Results 

 

In this Section we show an application of moment matching when pricing one of the options 

considered in Table 2 and Table 3. We consider a put option with seven months to expiry, volatility 

40%, initial stock price $40. The rate of interest is 4.88%p.a.  We set the number of steps equal to 

50 in all the experiments we conduct. We compute standard errors and root mean squares errors for 

sample size of 16, 70, 300, 1000 based on 2000 simulations. Values are reported in log term. 
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     Figure 1 Standard errors versus sample size in pricing an American 
     Put option with strike $45 and initial stock price $40. 
 

 

In Figure 1 we have compared standard errors versus sample size for the GY (2004b) and LS (2001) 

methods implemented with antithetic variates (A) and moment matching (MM). Antithetic variates 

outperform moment matching in this case. Interestingly standard errors for GY (2004b) and LS 

(2004) methods are narrower when moment matching is used. 

In Figure 2 we compare the root mean squares error for LS (2001) and GY (2004b) methods 

when implemented with the same variance reduction methods as in Figure 1. 
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   Figure 2 Root mean squares error versus sample size in pricing an American 

    Put option with strike $45 and initial stock price $40.      
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It is interesting that the root mean squares errors for the LS (2001) and GY (2004b) methods are 

almost indistinguishable when implemented with the same variance reduction method. The lowest 

root mean square error is obtained when the Longstaff and Schwartz method is implemented with 

antithetic variates6. In the next section we shall present an alternative approach based on control 

variates to implement methodologies such as the LS (2001) and GY (2004b).  

 
 
4.3 Regression Methods and Control Variates 

 

The method of control variates is one of the most popular variance reduction techniques and has 

many analogies with moment matching. Applications of this method in finance for pricing, 

(Rubinstein, et al, 1985), or model calibration (Glasserman and Yu, 2003) are very common. In this 

section we implement the methodologies presented in Section 2 by using control variates. Suppose 

that, given a stopping time ),( TtΓ∈τ , and the state variable iX , we want to estimate the price of an 

option that, as in (1), can be found by solving the following conditional expectation: 

 

]|)([sup)( xXXExV ii =Θ= Γ∈ τττ   (14) 

 

for the set of all possible stopping timesτ . If we consider functions )(xkφ  and impose that: 

 

Assumption 3. 

For 1,...,1 −= ni )(xikφ is in ))((2
iXL φ ; 0))(Pr(

^
== ii VxV ; iΠ denotes the orthogonal projection 

from )(2 ΩL onto the vector space generated by )}(),...,(),({ 21 xxx kφφφ , 

 

It follows that, as ∞→),( MK , the sample estimator of the option: 

 

i
M

j

j
ii VV

M
V ==Π ∑

=1

^ 1
τ    (15) 

                                                           
6 Note we do not claim that this is an universal result. In fact moment matching methods can also be implemented in 
other different ways. For example one could use moments for the stock price paths for the adjustment in (13) instead of 

using 
~

iB . 
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The estimator in (15) therefore converges almost surely toward the price of the option given by 

(14)7. Define the path estimator of the option using control variates as follows: 

 

)]([
^^

Υ−ΥΠ+Π=Π i
j

iiiiii EVZ λ    (16) 

 

where iλ is a previsible process in F with ∞<)( iFE λ and jΥ is a random variable for which we can 

compute the conditional expectation. 

 

The sample estimator in (15) can be written as: 

 

∑
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m

j
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m
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τ    (17) 

)]([
^

YEYV i
j

iiii −Π+Π= λ   (18) 

 

     0))]([(lim =−Π∞→ YEYE i
j

iiij λ  (19) 

 

Therefore the following result follows 

 

iii VVE =)(
~

    (20) 

 

From (16) it follows that )]([
~

iiZVar λ , particularly we have )()(
^~

ii VVarZVar ≤ if 

 

][
],[

^
*

i

ii
i YVar

YVCov
−=λ    (21) 

 

Therefore efficiency can be gained by minimising iλ in (16). To achieve this goal, we can use a 

simple Least Squares approach, that, we already use to compute estimates of the conditional 

                                                           
7 See Clement et al (2002) amongst others. 
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expectation in (14). The estimation of iλ , in this case, will introduce some bias, however this will 

vanish as the number of replications increases. As pointed out in Boyle, Broadie and Glasserman 

(1997), the estimator of iλ need not be very precise to achieve a reduction of variance in the case of 

using only one control. It becomes instead important when multiple controls are introduced. In the 

empirical application in this paper we have fixed 1=iλ  for all i . 

 

4.4  Empirical Results 

 

In this Section we implement the LS (2001) and GY (2004b) methodologies by using control 

variates. To implement the LS (2001) and GY (2004b) by control variates, we use the approach 

described above.  Empirical results are reported in Table 4. 

 

Longstaff-Schwartz (2001), Glasserman and Yu (2004a) Methods   
           
Exponential    Laguerre     
   2 3 4 2 3 4 BIN. 
GY 0.2/0.0833 4.999 4.996 4.997 0 0 0 5
SE  0.00689 0.00771 0.0077 0 0 0   
RMSE  0.00083 0.00395 0.003052 0 0 0   
LS 02/0.0833 4.996 4.995 4.995 4.996 4.9948 4.999 5
SE  0.00594 0.00871 0.00646 0.000519 0.0069 0.00682   
RMSE  0.00409 0.0048 0.005019 0.000373 0.000418 0.000101   
GY 0.2/0.3333 5.077 5.086 5.085 0 0 0 5.087
SE  0.01185 0.009746 0.0107 0 0 0   
RMSE  0.01015 0.000829 0.00194 0 0 0   
LS 0.2/0.3333 5.078 5.083 5.091 5.08 5.085 5.084 5.087
SE  0.00999 0.00777 0.0071 0.00522 0.00835 0.01024   
RMSE  0.00908 0.003678 0.00331 0.00659 0.002344 0.00274   
GY 0.2/0.5833 5.251 5.262 5.26 0 0 0 5.265
SE  0.0094 0.01269 0.0146 0 0 0   
RMSE  0.01514 0.002854 0.00531 0 0 0   
LS 0.2/0.5833 5.253 5.261 5.263 5.251 5.266 5.264 5.265
SE  0.0132 0.00957 0.0096 0.00968 0.010665 0.01412   
RMSE  0.01179 0.00373 0.00218 0.00149 0.0007153 0.000145   
GY 0.3/0.0833 5.056 5.056 5.059 0 0 0 5.06
SE  0.00819 0.00809 0.00811 0 0 0   
RMSE  0.003608 0.003745 0.0006428 0 0 0   
LS 0.3/0.0833 5.057 5.057 5.06 5.055 5.0595 5.063 5.06
SE  0.01011 0.00706 0.009211 0.0059 0.00786 0.00887   
RMSE   0.002734 0.00269 0.0004334 0.00504 0.000462 0.0003185   

Table 4. Control variates. SEs are standard errors and RMSEs are the root mean square errors. Exponential and 
Laguerre are the polynomials used in this application. 2-4 refers to the number of basis functions used. BIN is the price 
of the option given by a Binomial method. The zeros refer to cases when we were not able to obtain martingales baseis 
for a specific polynomial and therefore we were not able to obtain martingales basis and could not implement the GY 
(2004b) method. 
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We have implemented the method of control variates by sampling the price of a similar European 

option at each possible stopping time and setting the value of *λ equal to 1. 
 

Table 4 continued 

GY 0.3/0.3333 5.691 5.705 5.702 0 0 0 5.706
SE  0.00701 0.00886 0.01252 0 0 0   
RMSE  0.01536 0.000733 0.004363 0 0 0   
LS 0.3/0.3333 5.688 5.707 5.706 5.692 5.702 5.704 5.706
SE  0.0117 0.00888 0.01082 0.00756 0.00952 0.00884   
RMSE  0.018356 0.000463 0.0004135 0.0144 0.00422 0.00171   
GY 0.3/0.5833 6.238 6.236 6.243 0 0 0 6.244
SE  0.00981 0.0146 0.00959 0 0 0   
RMSE  0.01636 0.00768 0.000871 0 0 0   
LS 0.3/0.5833 6.229 6.241 6.242 6.226 6.239 6.246 6.244
SE  0.01249 0.01081 0.01385 0.001369 0.0161 0.0156   
RMSE  0.01538 0.002699 0.001753 0.01792 0.000532 0.000152   
GY 0.4/0.0833 5.278 5.282 5.289 0 0 0 5.286
SE  0.00765 0.00704 0.008454 0 0 0   
RMSE  0.007675 0.00418 0.002976 0 0 0   
LS 0.4/0.0833 5.275 5.285 5.289 5.275 5.282 5.285 5.286
SE  0.01115 0.00978 0.00535 0.00875 0.00642 0.00705   
RMSE  0.010527 0.001442 0.002635 0.0115 0.003856 0.00102   
GY 04/0.3333 6.491 6.507 6.513 0 0 0 6.51
SE  0.01421 0.015 0.01444 0 0 0   
RMSE  0.0201 0.00264 0.003587 0 0 0   
LS 0.4/0.3333 6.491 6.504 6.51 6.496 6.513 6.51 6.51
SE  0.01076 0.0131 0.01243 0.0128 0.01025 0.0105   
RMSE  0.01554 0.005928 0.002473 0.0144 0.0003199 0.000489   
GY 0.4/0.5833 7.364 7.374 7.38 0 0 0 7.383
SE  0.01583 0.0111 0.0123 0 0 0   
RMSE  0.01915 0.008729 0.003454 0 0 0   
LS 0.4/0.5833 7.363 7.381 7.382 7.365 7.377 7.383 7.383
SE  0.01011 0.01657 0.0145 0.01286 0.013356 0.0162   
RMSE   0.02024 0.002854 0.001329 0.01776 0.005812 0.0004751   

 

Results in Table 4 show that control variates estimator produces a very accurate price regardless the 

function used in the regression. Three basis are sufficient to achieve a low RMSE. Even in this 

application, it is not always the case that the GY (2004b) method produces the smallest standard 

errors. This may further support what we pointed out in Section 38. The LS (2001) method 

implemented with Laguerre bases seems to produce the lowest RMSE and the strongest evidence of 

uniform convergence. Finally, the VR factor, in this case, ranges between 0.45 and 5. 

 

 

                                                           
8 The assumption of finite variance on the basis functions (see Assumption C1 in Glasserman and Yu, 2004b) may also 
be another reason why variation of the estimates of the option in this case is not as stable as Theorem 1 would suggest..  
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5 Valuing American Bermuda Asian Options 
 
We consider the previous methodologies when pricing more complex options such as American 

Asian options and options written on a maximum of n assets. It is with this type of options that the 

LS (2001) and GY (2004b) methodologies become interesting. 

As in Longstaff and Schwartz (2001), we consider pricing an American Asian option having 

also an initial lockout period. In order to use the options prices reported in Longstaff and Schwartz 

(2001) as benchmark, we consider an American call option that after an initial lock out period of 

three months can be exercised at any time up to maturity T . We assume 2=T years. The average is 

the (continuous) arithmetic average of the underlying stock price calculated over the lock out period. 

We implement the LS (2001) and GY (2004b) methodologies by using control variates method. The 

choice of the control in this case falls, obviously, on the price of an equivalent geometric option. 

Therefore, we use the methodology described above and choose the price of a geometric average 

option as a control. As in Longstaff and Schwartz (2001) the strike price is $100, the risk free rate of 

interest 6% and volatility 20%. We use different scenarios for the stock prices )(S  and assume 200 

steps for both stock price and average. The results are reported in Table 5: 

 

American Bermudan Asian Options (LS 2001 Method) 
  

Expon. 
 

Lagu. 
 

Expon. 
 

Lagu. 
 

Expon. 
 

Lagu. 
S m = 30,000  M = 50,000  m = 75,000  
80 0.9211 0.9218 0.937 0.945 0.9422 0.950 
90 3.080 3.106 3.210 3.312 3.320 3.312 

100 7.492 7.522 7.679 7.845 7.843 7.873 
110 13.23 13.89 14.188 14.234 14.355 14.501 
120 20.09 21.2 22.081 22.111 22.189 22.311 

       Table 5. S is the stock price, m the number of simulations, while Expon. and Lagu. 
       are respectively exponential and Laguerre basis functions. 

 

As in Longstaff and Schwartz (2001), we use the first eight Laguerre basis9 and 50,000 replications. 

In our application, we have also used exponential basis. Using finite difference methods to price 

these options LS (2001) report option prices equal to $0.949 ($80), $3.267 ($90), $7.889 ($100), 

$14.538 ($110) and $22.423 ($120)10. In general, our results support those reported in Tables 3 of 

Longstaff and Schwartz (2001). That is the LS (2001) method produces a very accurate price of the 

option. If we calculate the early exercise value in this case and compare it with what reported in LS 

(2001) for the same options but using antithetic variates, we have that, for Laguerre bases and, 

                                                           
9 That is, first two Laguerre bases on the stock price and average plus their cross products including an intercept. 
10 Number in the brackets are initial stock prices and the initial average value for the stock price is assumed to be 90. 
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000,75=m , differences in the early exercise values in LS (2001) ranges between 0.007 and 0.050, 

while in the present study the range is between 0.001 and 0.042. This is in line with what we pointed 

out at the beginning. The choice and the correct implementation of variance reduction techniques is 

important when pricing option with American features since it reduces the probability of generating 

sub-optimal strategies. 

In Table 6, we extend the Glasserman and Yu (2004b) method to price American Asian 

options. We use Hermite basis ( KHφ ) to satisfy Assumption 2 as follows, KHkf φ , with 2/k
k tf = . 

The method seems to underestimate the option price. 

 

 
American Bermudan Asian Options (GY, 2004b Method)  

Hermite  
S m = 30,000 M = 50,000 M = 75,000 

80 0.925 0.936 0.940 
90 3.188 3.310 3.166 

100 7.521 7.544 7.563 
110 13.83 14.223 14.321 
120 20.11 21.645 22.022 

       Table 6. S is the stock price, m the number of simulations. 
 

 

However, in general, more work is necessary to implement this method since the choice of a 

martingale basis might be fundamental. On the other hand it seems that this fundamental problem 

has become more, to use Chris Rogers`s words, “an art than a science”. As pointed out above we 

shall address this important issue in a separate study.  

 

6 Valuing American Basket Options 
 
Finally, we consider an additional high dimensional problem. We consider an American call option 

written on a maximum of five risky assets paying a proportional dividend. We assume that each 

asset return is independent from the other. Once again, we use the same parameter specifications as 

in Longstaff and Schwartz (2001) and Broadie and Glaserman (1997) such that we can use prices 

reported in these papers as benchmark. We implement the methodologies by using antithetic 

variates. 

 Broadie and Glasserman (1997) use stochastic mesh to solve this type of problems and report 

confidence interval for the option prices. We consider three different options with initial stock prices 

of 90,100, and 110 respectively. The assets pay a 10% proportional dividend, the strike price of the 

option is 100, the risk free rate of interest is 10% and volatility is 20%. Confidence intervals 
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reported in Brodie and Glasserman (1997) are [16.602, 16.710] when the initial asset value is 90; 

[26.101, 26.211] with initial asset value of 100, and finally [36.719, 36.842] when the initial value is 

110.  The option prices in Longstaff and Schwartz (2001) are respectively, 16.657, 26.182, and 

36.812 and they all fall within the Broadie and Glasserman `s confidence interval above.  

 

American Basket Option (LS 2001 Method) 
  Expon. Hermite Expon. Hermite Expon. Hermite

S m = 30,000 M = 50,000 m = 75,000
90 16.6895 16.677 16.6555 16.6171 16.6632 16.642

100 26.1758 26.1744 26.1708 26.1033 26.0804 26.12
110 36.7697 36.7642 36.7826 36.7482 36.8214 36.748

  
Table 7. S is the stock price, m the number of simulations, while Expon. and Hermite 
are respectively exponential and Hermite basis functions. 

 
 

     
                             American Basket Options (GY, 2004b Method) 

  Hermite   
S m =30. m =50. 

 
m = 75. 

90 16.5935 16.623 16.4759  
100 26.0789 26.181 25.6802  
110 36.286 36.71 36.1032  

     
   Table 8. S is the stock price, m the number of simulations. 

 

 

We note that regardless of the number of replications or basis functions used, we achieve, in all 

cases, a price that lies within the above interval. We have also extended the GY (2004b) method to 

price basket options (see Table 8). As in the previous application, we have used Hermite 

polynomials to satisfy Assumption 1 in GY (2004b). We note that option prices estimates fall within 

the Broadie and Glasserman `s confidence interval when 50,000 paths are considered. Therefore the 

martingale basis used in this case seems to be appropriate. 
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8. Conclusions 
 
From an academic and even a practitioner`s point of view, pricing American options still remains an 

interesting research area, particularly when Monte Carlo methods is employed. This is mainly due to 

the flexibility of this method to accommodate high dimensional features. 

 Recently, Longstaff and Schwartz (2001) and Glasserman and Yu (2004b) propose two 

option pricing estimators based on Monte Carlo simulations. The general objective of this paper is to 

undertake an empirical analysis to investigate the finite sample approximations of these estimators. 

Apart from the above specified objective, we also (i) estimate the bias induced by these estimators, 

(ii) suggest an “optimal” polynomial function, (iii) extend these methodologies by implementing 

various variance reduction techniques. Finally, this is the first empirical study on the estimator 

proposed in Glasserman and Yu (2004b) and it extends that method to solve high dimensional 

problems. 

One general result in the literature on pricing American options by Monte Carlo methods 

(regression methods) is that Monte Carlo methods generate sub-optimal policies when used to 

estimate early exercises values and consequently they generate estimated prices that are below the 

true price (see for example LS, 2001, and Clement et al, 2002, for a discussion). Rogers (2002) 

formulate the problem in Equation (3) as the dual and show that one can use a martingale approach 

to reduce the probability of choosing sub-optimal policies when determining the early exercise 

value. However, this approach requires designing an optimal martingale and there is no clear cut 

rule yet on how to do that. In this study we point out that variance reduction techniques, if correctly 

implemented, can help us to reduce the probability of generating sub-optimal policies. 

 Overall, we find that option prices estimates by LS (2001) and GY (2004b) methodologies 

are accurate regardless the type of option considered. A large part of the sample bias can be 

eliminated with an acceptable number of replications (i.e. 100,000). However, in general, the LS 

(2001) estimator performs the best. With this estimator we found Laguerre polynomials and control 

variates to out-perform the others11. Therefore, in practical applications, we recommend using 

Laguerre polynomials. In general, a number of basis equal to three, 100,000 replication and control 

variate seem to be the right combination to achieve a substantial level of accuracy. 

 
 
 
 
 

                                                           
11 We have also considered Hermite polynomials but the results were not satisfactory and therefore were not reported in 
this study. However, results are available upon request. 
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