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Abstract: The Birnbaum-Saunders generalized t (BSGT) distribution is a 
very flflexible family of distributions that admits different degrees of 
skewness and kurtosis and includes some important special or limiting cases 
available in the literature, such as the Birnbaum-Saunders and Birnbaum-
Saunders t distributions. In this paper we provide a regression type model to 
the BSGT distribution based on the generalized additive models for location, 
scale and shape (GAMLSS) framework. The resulting model has high 
flflexibility and therefore a great potential to model the distribution 
parameters of response variables that present light or heavy tails, i.e. 
platykurtic or leptokurtic shapes, as functions of explanatory variables. For 
different parameter settings, some simulations are performed to investigate 
the behavior of the estimators. The potentiality of the new regression model 
is illustrated by means of a real motor vehicle insurance data set. 
 
Key words: Finance, GAMLSS, generalized additive models, penalized splines, 
positively skewed data. 

 
1. Introduction 

The Birnbaum-Saunders (BS) distribution is the most popular model used to describe 
the lifetime process under fatigue. It was proposed by Birnbaum and Saunders (1969) due 
to the problems of vibration in commercial aircraft that caused fatigue in the materials. This 
distribution is also known as the fatigue life distribution and can be used to represent 
failure time in various scenarios. As reported by Pescim et al. (2014), the BS distribution 
has received wide ranging applications in past years that include: modelling of hourly SO2 
concentrations at ten monitoring stations located in different zones in Santiago (Leiva et al., 
2008); modelling of diameter at breast height distributions of near-natural complex 
structure silver fir-European beech forests (Podlaski, 2008); modelling of hourly dissolved 
oxygen (DO) concentrations observed at four monitoring stations located at different areas 
of Santiago (Leiva et al., 2009; Vilca et al., 2010); statistical analysis of redundant systems 
with one warm stand-by unit (Nikulin and Tahir, 2010), among others. 

Because of the widespread study and applications of the BS distribution, there is a need 
for new generalizations of this distribution. Daz-Garca and Leiva (2005) proposed a family 
of generalized Birnbaum-Saunders (GBS) distributions based on countoured elliptical 
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distributions such as Pearson VII and Student's t distributions, Vilca and Leiva (2006) 
introduced a BS model based on skew normal distributions. Gomez et al. (2009) extended 
the BS distribution from the slash-elliptic model. Vilca et al. (2010) and Castillo et al. 
(2011) developed the epsilon-skew Birnbaum-Saunders distribution. More recently, 
Cordeiro and Lemonte (2011) and Pescim et al. (2014) dened the beta Birnbaum-Saunders 
and the Kummer beta Birnbaum-Saunders models, respectively. 

Despite some of those BS generalized distributions induce asymmetry, symmetry and 
promote weight variation of the tail, they do not provide all these shapes in the same 
density function. A highly flexible model which admits light or heavy tails, shaper or 
flflatter peaked shape and it has some important special and/or limiting cases, is the 
Birnbaum-Saunders generalized t (BSGT) distribution pro-posed by Genc (2013). This 
generalization of the BS distribution contains some models previously studied in the 
literature and, therefore, the BSGT enables to study and t various types of data with 
different shapes by a unifed approach. 

In many practical applications, the responses are affected by explanatory variables such 
as the socioeconomics and school levels, blood pressure, cholesterol level, soil quality, 
climate, among many others. BS regression models are widely used to estimate the 
reliability or predict the durability of non-repairable copies of materials. Among them, 
Rieck and Nedelman (1991) proposed a log-linear regression model based on the BS 
distribution. Diagnostic analysis for the BS regression model were developed by Galea et al. 
(2004), Leiva et al. (2007) and Xie and Wei (2007), while the Bayesian inference was 
introduced by Tisionas (2001). Barros et al. (2008) proposed a class of lifetime regression 
models that includes the log-Birnbaum-Saunders-t (BS-t) regression models as special case. 
Furthermore, Lemonte and Cordeiro (2009) and Villegas et al. (2011) studied the BS 
nonlinear and BS mixed models, respectively. However, those BS regression models follow 
the same idea of many previous regression type models in the literature such as generalized 
linear models (Nelder and Wedderburn, 1972), generalized additive models (Hastie and 
Tibshirani, 1990) and log location-scale models (Lawless, 2003; Cancho et al., 2009; 
Roman et al., 2012; Pascoa et al., 2013). These models use only the location parameter of 
the distribution of the response variable which is a major limitation since other parameters 
may need to be modelled. 

In this context, Rigby and Stasinopoulos (2005) developed the generalized additive 
models for location, scale and shape (GAMLSS), a very general class of univariate 
regression models whose main advantage is that all parameters of a given distribution (that 
does not necessarily belong to the exponential family) can be modelled as parametric 
and/or additive nonparametric smooth functions of explanatory variables, which can lead to 
a simpler distribution for a given response variable Y, simplifying the interpretation of the 
problem in study. Within GAMLSS the shape of the conditional distribution of the 
response variable can vary according to the values of the explanatory variables, allowing 
great modelling flexibility. 

In this paper, we introduce the BSGT distribution into the GAMLSS frame-work in 
order to provide a very flexible regression model for this family, modelling all of its four 
parameters using explanatory variables. The new regression model may be fitted to a data 
set with light or heavy tails, i.e. a platykurtic or leptokurtic response variable as, for 
example, the total claim amount of an insurance company. The rest of this paper is outlined 
as follows. Section 2 provides a brief review of the BSGT family of distributions. The 
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BSGT is introduced into the GAMLSS framework in Section 3. Section 4 shows a 
simulation study with different values of the parameters. A real data set application 
regarding insurance is provided in Section 5 to show the BSGT flexibility, and comparing 
it with well-known models. Section 6 ends the paper with some concluding remarks. 
 
2. The BSGT distribution - a brief review 

Daz-Garca and Leiva (2005) proposed the GBS family of distributions defined by 
transformation from any random variable Z with symmetric distribution S (Gupta and 
Varga, 1993), with density given by 
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where Z ~S(ߞ = 0, ߶ = 1, (ߜ , δ  correponds to the parameters inherited from the 

baseline distribution, c is the normalizing constant such that fY(y) is a proper density, K(⋅) 
is the kernel of the density of Z, α > 0 represents the shape parameter and β > 0 is the scale 
parameter and is also the median of the distribution. As α →0, the GBS distribution 
becomes symmetrical around β , whereas when α  grows the distribution becomes 
increasingly positively skewed. Its probability density function (pdf) can be expressed as 
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for y > 0. 
If Z has a GT distribution, Z~GT(0,1, ν, τ), with pdf given by 
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where −∞ < z < ∞ then the random variable Y obtained from transformation 
(1) has a BSGT distribution with pdf given by 
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where y > 0, α > 1, β > 0, υ > 0 and τ > 0. As in (1) if the shape parameter α → 0, 

the distribution becomes near symmetrical around  β and when α grows the model becomes 
increasingly positively skewed; β  is a scale parameter and is also the median of the 
distribution; and  ν and τ are the parameters related to the peak and tails of the distribution. 
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Note that as y ⟶ ∞  then ௒݂(ߙ|ݕ, ,ߚ ,ߥ ߬) = ഌഓିݕ)ܱ
మ ିଵ) , the same order as a t 

distribution with  ντ/2 degrees of freedom. 
Hence, small values of the product of and result in a heavier upper tail. Similarly, larger 
values of the product of ν and τ will result in a lighter upper tail. Parameter τ also affects 
the peak of the distribution: τ ≤ 1 results in a spiked peak in the distribution, with a sharp 
spike (i.e. infinite derivative) if τ < 1, while a larger τ results in an increasingly flatter peak. 

Despite its flexibility that can combine symmetrical/asymmetrical shapes with light or 
heavy tails (i.e. leptokurtic or platykurtic densities), the BSGT model is important since it 
has some special or limiting cases already proposed in the literature such as the BS, BS-t, 
BS-Laplace, BS-Cauchy and BS-power exponential (BSPE) distributions, as displayed in 
figure1. 

 

 
Figure 1: Relationships of the BSGT special models 
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3. GAMLSS model for the BSGT distribution 

GAMLSS are semi-parametric regression models that involve a distribution for the 
response variable (parametric part) and may involve non-parametric smoothing terms when 
modelling parameters of the distribution as functions of explanatory variables. The 
GAMLSS R implementation, called the gamlss package, includes distributions with up to 
four parameters that are commonly represented by μ for location, σ for scale and ν and τ 
for shape (Rigby and Stasinopoulos, 2005). Hence, for the BSGT distribution, we consider 
μ = β, σ = α, ν = ν and τ = τ to obey the established notation in GAMLSS framework in 
R software (Stasinopoulos and Rigby, 2007). Moreover, from this point, we say that a 
random variable Y follows a BSGT distribution, denoted by Y~BSGT(μ, σ, ν, τ). 

The GAMLSS model for the BSGT distribution assumes that conditional on its 
parameters (μ, σ, ν and τ), observations ௜ܻ are independent BSGT(μ, σ, ν, τ) variables with 
pdf given in (2), and can be expressed as 
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where ݃௞(∙), k = 1,2,3,4, are the link functions, ߚ఑

் = ,ଵ఑ߚ) … , ௃ೖߚ
ᇲ ௞) denotes the parameter 

vector associated to explanatory variables with design matrix ܺ௞ and each ℎ௝௞ function is a 
smooth non-parametric function of an explanatory variable ݔ௝௞, being typically a smoothing 
spline (for more details, see e.g. Hastie and Tibshirani, 1990) or P-spline (Eilers and Marx, 
1996). 
 
Selecting the response variable distribution and diagnostics 

 
Two different stages comprehend the strategy to t a GAMLSS model: fitting and 

diagnostics. In the fitting stage, we t different models using a generalized Akaike 
information criterion (GAIC, for more information, see Voudouris et al., 2012) to compare 
them (the model with the smallest GAIC is selected). The Akaike information criterion 
(AIC; Akaike, 1974) and Schwarz Bayesian criterion (SBC, Schwarz, 1978) are special 
cases of the GAIC(k) when k = 2 and k = log(n), respectively. 

In the diagnostic stage, we use the normalized (randomized) quantile residuals (Dunn 
and Smyth, 1996) that are defined by 

߬̂௜ = Φିଵ(ݑො௜) 
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Where  Φିଵ  is the inverse cumulative distribution function of a standard normal 
variable and ݑො = (෠ߠ|ݕ)௒ܨ  is the fitted cumulative distribution function. The main 
advantage of this type of residual is that its true values ݎ௜ , ݅ = 1, … , ݊  always have a 
standard normal distribution given the assumption that the model is correct, whatever the 
distribution of the response variable, i.e. if the model for the response variable is correct, 
the residuals have a standard normal distribution. 
Selecting the explanatory variables 

In order to select the explanatory variables for the BSGT model, we use a 
backward/forward algorithm implemented in gamlss package called StepGAICAll.A: 

 
1) Step 1: select a model for μ using a forward GAIC selection procedure and fixing σ , ν 

and τ; 
 

2) Step 2: select a model for σ using a forward GAIC selection procedure given the model 
for μ in Step 1 and fixing ν and τ; 

 
3) Step 3: select a model for ν using a forward GAIC selection procedure given the models 

for μ and σ obtained in Steps 1 and 2, respectively, and fixing ; 
 

4) Step 4: select a model for τ using a forward GAIC selection procedure given the models 
for μ, σ  and ν obtained in Steps 1, 2 and 3, respectively; 

 
5) Step 5: perform a backward GAIC selection procedure to select a model for ν given the 

models for μ, σ, and τ obtained from Steps 1, 2 and 4, respectively; 
 

6) Step 6: perform a backward GAIC selection procedure to select a model for σ given the 
models for μ, ν,  and tau obtained from Steps 1, 5 and 4, respectively; 

 
7) Step 7: perform a backward GAIC selection procedure to select a model for μ given the 

models for σ, ν,  and τ obtained from Steps 6, 5 and 4, respectively. 
The resulting model may contain different terms for each of the parameters μ, σ, ν and τ. 
 

Computational functions 
In order to perform a simulation study with the BSGT distribution and a real data set 

application using the BSGT regression model, we implemented this family into the gamlss 
package in R (for more details about GAMLSS framework estimation processes, see Rigby 
and Stasinopoulos, 2005) and the following functions will be available in the gamlss.dist 
package: 

 
1) dBSGT() gives the BSGT probability density function; 
2) pBSGT() gives the BSGT cumulative distribution function (cdf); 
3) qBSGT() gives the BSGT quantile function, i.e. inverse cdf; and 
4) rBSGT() is the BSGT random number generator. 
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It is noteworthy that we can also t the special and/or limiting cases of the BSGT 
distribution in gamlss, e.g. in order to fit a BS-t distribution, we use the following 
arguments within the main function gamlss(): tau.fix = TRUE and tau.start = 2 in order to 
fit τ  = 2 in BSGT(μ, σ, ν, τ) model. 
 
4. Simulation study 

We performed a simulation study generating 12 different scenarios with two sample 
sizes (n = 100 and n = 500) using the rBSGT() function. The scenarios were chosen in such 
a way that all possible density shapes could be covered, using as true parameter values μ = 
50 and 

 
1) σ = 0.5  for near symmetrical (Table 1) and σ = 1.5  for very asymmetrical shapes 

(Table 2); 
 

2) ν = 1.0 for heavy-tailed and  ν = 5.0 for less heavy tailed; 
 

3) τ = 1.5, τ = 2.0 and τ = 10.0 since a low value of τ tends to a sharper peaked shape 
(leptokurtic), while a high value of  tends to a flatter peaked shape (platykurtic). 

 
The simulation study was performed in a HP Proliant M530e Gen8 Computer under a 

Debian Linux operating system. Tables 1 and 2 present the true simulated parameter values, 
average estimates (AE) and standard deviations (SD) for the estimated parameters for near 
symmetrical ( σ  = 0.5) and very asymmetrical ( σ = 1.5) scenarios, respectively. The 
required numerical evaluations are implemented in R software through the gamlss function 
(Stasinopoulos and Rigby, 2007). 



 

216 Modelling location, scale and shape parameters of the birnbaum-saunders generalized t distribution 

Table 1: Real parameter value, average estimates (AE) and standard deviations (SD) based on 1,000 
simulations of the near symmetrical version of the BSGT distribution 
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Table 2: Real parameter value, average estimates (AE) and standard deviations (SD) based on 1,000 
simulations of the very asymmetrical version of the BSGT distribution 

 
As expected, we observe (from Tables 1 and 2) that when n = 500 we obtain closer 

estimates compared to the true generating value and the SD values decrease. Moreover, we 
can note that parameters ν and τ are slightly more imprecise than μ and σ which could be 
happening since they are often high correlated. Also, distribution of the parameter 
estimators of ν and τ are highly positively skewed. 
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5. Application: motor vehicle insurance data 

In this Section, we illustrate the usefulness of the BSGT regression model, using the 
GAMLSS framework, to the total claim amount (response variable, Y) from motor vehicle 
insurance policies over a twelve-month period in 2004−2005 (De Jong and Heller, 2008, p. 
15). The original data set was composed of approximately 68,000 policies, but here, we 
used only those with at least one claim (totalling 3,911 policies). Using this reduced data 
set, Y ranges from 1.09 to 55,720.00, with mean=2,145.00, median=844.70, standard 
deviation=3,765.86, skewness=4.74 and kurtosis=38.58. 

Since Y is a very positively skewed variable we used four different distributions 
besides the BSGT distribution which are possible suitable candidates for the response 
variable: the Box-Cox t (BCTo), generalized gamma (GG), inverse Gaussian (IG) 
distributions that are already available in gamlss.dist package and the BS distributions 
which is a special case of the BSGT distribution. The co-variates used to build the models 
in order to explain Y are displayed in Table 3. 

 
 

Here, we replaced ଵܺ by ଵܺ
∗ = log(Xଵ + 1) to modify the high skewness exhibited by 

this variable. After some previous analysis, we excluded six observations that presented ଵܺ 
= 0, i.e. the vehicles with value equals zero and the only two observations with ܺଶ = 4, i.e. 
when there were four claims, since they were considered as outliers. Finally, we fitted 
several regression models using the backward/forward algorithm available in Section 3. 
Moreover, we considered a P-spline (pb; for more details, see Eilers and Marx, 1996) in 
both quantitative covariates ( Xଵ

∗  and X଼ ). Appropriate link functions for each of the 
parameters were chosen in all five distributions: when a distribution parameter θ has range 
−∞ < θ < ∞, we used the identity link function, whereas, when θ > 0 the logarithm link 
function was adopted. 

A backward/forward selection of explanatory terms as described in Section 3 was 
performed for all parameters through stepGAICAll.A function in gamlss package 
(Stasinopoulos and Rigby, 2007) and values of global deviance (GD), Akaike information 
criterion (AIC) and Schwarz Bayesian criterion (SBC) were computed in order to compare 
all fitted models. Table 4 displays those statistics from the best tted models for each used 
distribution, and so, the BSGT regression model could be chosen as the more suitable 
model since it returned the smallest GD, AIC and SBC values (65,534.1, 65,607.1 and 
65,836.0,respectively).
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Table 4: Statistics from the best fitted models for each used distribution 

 
The final and best model from the BSGT distribution under the GAMLSS framework 

(3) is given by 
 

log(μ) = 7.796 − 0.094 ଵܺ
∗ + 0.759(݂݅ Xଶ = 2) + 1.231(݂݅ Xଶ = 3) 

                 +0.208(݂݅ X଺ = (ܤ + 0.215(݂݅ X଺ = (ܥ + 0148(݂݅ X଺ =  (ܦ
                 +0.390(݂݅ X଺ = (ܧ + 0.473(݂݅ X଺ = (ܨ − 0.563X଼ 

 
log(σ) = 1.344 − ܾ݌ ଵܺ

∗ − 0.306(݂݅ Xଶ = 2) − 0.610(݂݅ Xଶ = 3) 
                 +0.160(݂݅ X଺ = (ܤ + 0.157(݂݅ X଺ = (ܥ + 0.098(݂݅ X଺ =  (ܦ
                 +0.129(݂݅ X଺ = (ܧ + 0.129(݂݅ X଺ = (ܨ − 0.397X଼ 

 
log(ߥ) = −3.948 + 0.003(݂݅ Xସ = 2) + 0.073(݂݅ Xସ = 3) + 0.166(݂݅ Xସ = 4) 
                  −0.086(݂݅ X଺ = (ܤ − 0.262(݂݅ X଺ = (ܥ − 0.442(݂݅ X଺ =  (ܦ
                  −0.0635(݂݅ X଺ = (ܧ − 0.856(݂݅ X଺ =  (ܨ

and 
log(߬) = 4.747 + 0.449(݂݅ X଺ = B) + 0.475(݂݅ X଺ = C) + 1.009(݂݅ X଺ = D) 
                 +1.185(݂݅ X଺ = (ܧ + 1.099(݂݅ X଺ =  (4)                                                       (ܨ

 
We can note that the four covariates were considered on the location parameter μ in the 

final BSGT model and both of the quantitative ones did not require any smoothing function. 
From the model for the median μ in (4), we observe that the higher is the vehicle value the 
lower is the median total claim amount which is somewhat unexpected. The same occurs 
with the exposure during the year. From the other two covariates considered in μ, we can 
say analyzing Figures 2(a) and (b) that the greater is the number of claims, greater will be 
the median total claim amount and that people living in areas E and F tend to have higher 
median claim amounts, respectively. 
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As it was observed in model (4), we jusy need a smoothing function to model the 
covariate ଵܺ

∗ in σ. This relationship is showed in Figure 2(c) and we can note that for lower 
vehicle values there is a positive effect on the dispersion and after a certain point this 
relation becomes negative. Figures (d) and (e) present the relationship between the number 
of claims and driver's area of residence, respectively, with the dispersion. Further, the 
exposure during the year has a negative linear effect on dispersion. Figures 2(f)−(h) 
represent the relationships between selected covariates with the tails of the distribution. 

Finally, the histogram and Q-Q plot of the normalized quantile residuals (Dunn and 
Smyth, 1996) of model (4) are displayed in Figure 3. Figure 3(a), apart from one outlier, 
show us that the residuals adequately follow a normal distribution. Figure 3(b) confirms 
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this outlier and also shows that there are a few points off the line in the high end of the 
range, but in general, the BSGT regression model provides a good fit to these data. 

 
 

6. Concluding remarks 

In this paper, we used the Birnbaum-Saunders generalized t (BSGT) distribution 
proposed by Genc (2013) which admits light or heavy tails, shaper or flatter peaked shape 
and it has some important special cases studied in the literature. Based on this distribution, 
we proposed a BSGT regression model using the flexibility of the GAMLSS framework 
(Rigby and Stasinopoulos, 2005). The new regression model can be used as an alternative 
to model light and heavy-tailed response variables as parametric and/or additive 
nonparametric smooth functions of explanatory variables. Hence, this extended regression 
model is very flexible in many practical situations. Moreover, we conducted a simulation 
study using 12 different scenarios in order to cover all possible BSGT density shapes: near 
symmetrical and very asymmetrical, light and heavy-tailed (i.e. platykurtic and leptokurtic). 
We also discussed model checking analysis using the normalized quantile residuals in the 
new regression model fitted to a real data. An application to insurance data set 
demonstrated that it can be used quite effectively to provide better fits than others flexible 
regression models. 
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