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ABSTRACT
This paper describes the modelling and fitting of Gaussian Markov
random field spatial components within a Generalized Additive-
Model for Location, Scale and Shape (GAMLSS) model. This allows
modelling of any or all the parameters of the distribution for the
response variable using explanatory variables and spatial effects. The
response variable distribution is allowed to be a non-exponential
family distribution. A new package developed in R to achieve this
is presented. We use Gaussian Markov random fields to model the
spatial effect in Munich rent data and explore some features and
characteristics of the data. The potential of using spatial analysis
within GAMLSS is discussed. We argue that the flexibility of paramet-
ric distributions, ability tomodel all theparameters of thedistribution
and diagnostic tools of GAMLSS provide an ideal environment for
modelling spatial features of data.
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1. Introduction

Since the introduction of the Generalized Additive Model for Location, Scale and Shape
(GAMLSS) by Rigby and Stasinopoulos [20], the models have been used in a variety
of different fields, such as actuarial science [13], biology, biosciences, energy economics
[27], genomics [14], finance, fisheries, food consumption, growth curves estimation [6],
and Multicentre Growth Reference Study Group [17,18], marine research, medicine,
meteorology, rainfall, vaccines and film studies, [28].

Discrete spatial variation, where the variables are defined on discrete domains, such
as regions, regular grids or lattices, can be modelled by Markov random fields (MRF).
MRF can be applied in different areas, such as spatial statistics, image analysis, structural
time-series analysis, analysis of longitudinal and survival data, spatio-temporal statistics,
graphical models and semiparametric models.

Kunsch [16] present many important results for Gaussian Markov random fields
(GMRF). Extensive theoretical and practical details of GMRF are provided by Rue and
Held [24]. In statistics Besag and Kooperberg [5] considered the Gaussian intrinsic
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autoregressive model (IAR), a very important specific case of GMRF models. Wood [30]
presents IAR models within a generalized additive model (GAM) framework. There are
few papers that use GAMLSS in a spatial framework. Rigby et al. [22] commented on the
paper ‘Beyond mean regression’, [15], and presented a simplified analysis of Munich rent
data with very few covariates, modelling the µ parameter with a spatial effect using an
IAR model term. In this paper we describe in detail the theoretical basis of the GAMLSS
implementation of GMRF, develop a package in R [10,19] to achieve this and explore the
potential of such modelling using the Munich rent data.

Section 2 discusses GAMLSS models and the modelling and fitting of GMRF spatial
components within GAMLSS models. In Section 3 we present the full Munich rent data
set, the strategy to choose a model and the results for the Munich rent data set. Section 4
investigates the adequacy of the chosen model using residual diagnostic worm plots. The
implementation in R is described in the appendix and the R code used in the analysis is
available from the authors atwww.gamlss.org. Section 5 presents relevant conclusions.

2. Methodology

Section 2.1 defines the GAMLSS framework, while Section 2.2 describes its estimation
procedure. Section 2.3 describes how the GMRF models can be incorporated within the
GAMLSS framework.

2.1. The GAMLSS framework

GAMLSS provides a very general andflexible system formodelling a response variable. The
distribution of the response variable is selected by the user from a very wide range of distri-
butions available in the gamlss package in R, [20], including highly skewed and kurtotic
continuous and discrete distributions. The gamlss package includes distributions with
up to four parameters, denoted by µ, σ , ν and τ , which usually represent the location
(e.g. mean), scale (e.g. standard deviation), and skewness and kurtosis shape parame-
ters, respectively. All the parameters of the response variable distribution can be modelled
using parametric and/or non-parametric smooth functions of explanatory variables, thus
allowing modelling of the location, scale and shape parameters. Specifically, a GAMLSS
model assumes that, for i = 1, 2, . . . , n, independent observationsYi have probability (den-
sity) function fY(yi|θ i) conditional on θ i = (θ1i, θ2i, θ3i, θ4i)⊤ = (µi, σi, νi, τi)⊤ a vector of
four distribution parameters, each of which can be a function of the explanatory vari-
ables. Rigby and Stasinopoulos [20] define an original formulation of a GAMLSS model as
follows.

For k=1,2,3,4, let gk(.) be a known monotonic link function relating the distribution
parameter θk = (θk1, . . . , θkn)⊤ to predictor ηk = (ηk1, . . . , ηkn)⊤. Then we set

gk(θk) = ηk = Xkβk +
Jk∑

j=1
hjk(xjk), (1)

where Xk is a known design matrix, βk = (β1k, . . . ,βJ′kk
)⊤ is a parameter vector of length

J′k, hjk is a smooth nonparametric function of variableXjk and the xjk’s are vectors of length
n, for k=1,2,3,4 and j = 1, . . . , Jk.
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170 F. DE BASTIANI ET AL.

Model (1) can be written in a random effects form and random effects can also be
included in the model for the n × 1 vectors µ, σ , ν and τ :

g1(µ) = η1 = X1β1 +
J1∑

j=1
Zj1γ j1,

g2(σ ) = η2 = X2β2 +
J2∑

j=1
Zj2γ j2,

g3(ν) = η3 = X3β3 +
J3∑

j=1
Zj3γ j3,

g4(τ ) = η4 = X4β4 +
J4∑

j=1
Zj4γ j4,

(2)

where here the random effects parameters γ jk are assumed to have independent (prior)
normal distributions with γ jk ∼ Nqjk(0, λ

−1
jk G−1

jk ) andG−1
jk is the (generalized) inverse of a

qjk × qjk symmetricmatrixGjk, where ifGjk is singular then γ jk has an improper prior den-
sity function proportional to exp(− 1

2λjkγ
⊤
jkGjkγ jk). Note that the conditional distribution

of the response variable (given the random effects parameters) can be any distribution,
exponential family or non-exponential family, while the random effects parameters are
Gaussian.

Different formulations of the Z’s and the G’s result in different types of additive terms,
for example, random effects terms, smoothing terms, time-series terms or spatial terms as
presented in Section 2.3. The advantage of modelling spatial data within GAMLSS is that
different distributions beside the exponential family can be fitted and also it is possible, if
needed, to model spatially any or all the parameters of the distribution.

2.2. Estimation of themodel

The log-likelihood function for the GAMLSS model (2) under the assumption that
observations of the response variable are independent is given by

ℓ =
n∑

i=1
log fY(yi | µi, σi, νi, τi),

where fY(·) represents the probability (density) function of the response variable. The
penalized log-likelihood function for model (2) is given by

ℓp = ℓ − 1
2

4∑

k=1

Jk∑

j=1
λjkγ

⊤
jkGjkγ jk. (3)

We will need estimates for the ‘betas’, β = (β1,β2,β3,β4)
⊤, the parameters of the linear

part of the model, the ‘gammas’, γ = (γ 11, . . . , γ J11, γ 12, . . . , γ J44)
⊤, the random effects
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parameters, and the ‘lambdas’ λ = (λ11, . . . , λJ11, λ12, . . . , λJ44)⊤, the hyper-parameters of
the model.

Within the GAMLSS framework the linear parameters β and the random effects
parameters γ are estimated (for fixed values of the smoothing hyper-parameters λ) by
maximizing the penalized likelihood function ℓp given by Equation (3). There are two
basic algorithms to achieve this, the RS and the CG algorithms. Both use an iteratively
reweighted (penalized) least-squares algorithm. Appendix C of Rigby and Stasinopou-
los [20] shows that both algorithms lead, for given λ hyper-parameters, to the maximum
penalized log-likelihood estimates for the betas and the gammas, i.e. β̂ and γ̂ . Appendix
A.1 of Rigby and Stasinopoulos [20] shows that these estimates are also posterior mode
(or MAP) estimates. The hyper-parameters λ can be estimated locally, see [21], or glob-
ally, see [20]. The local methods are in general a lot faster and easier to implement than
the global ones. ‘Local’ means that the method of estimation of the hyper-parameters
applies each time within the RS or CGGAMLSS algorithms and ‘global’ means themethod
is applied outside the RS or CG GAMLSS algorithms. In addition, for either ‘local’ or
‘global’ estimation, there are (at least) three different criteria for estimating the smoothing
hyper-parameters:

• minimizing the generalized cross validation (GCV), Wood [30],
• minimizing the generalized Akaike information criteria (GAIC), Akaike [1],
• maximum likelihood (ML).

The default method in the GAMLSS software implementation is ‘local ML’ in which
the (smoothing) hyper-parameters (and therefore their corresponding effective degrees of
freedom) are estimated automatically using a local maximum likelihood (ML) procedure,
see [21]. (This ‘localML’ procedure is a penalized quasi-likelihood (PQL)method, Breslow
and Clayton [7].)

2.3. GaussianMarkov random fields

An MRF is a set of random variables where a local defined assumption is used to deter-
mine their joint (or global) distribution, [2, Section 3]. Their local behaviour is described
through Markov properties based on conditional independence assumptions. For exam-
ple by studying different areas on amap, we would expect neighbourhood areas to bemore
similar that others far apart. In this case a conditional independence assumption that given
the neighbours the occurrence of an event in the area is independent from the event occur-
ring in other areas seems reasonable. Those Markovian assumptions can be presented as
an undirected graph G, where each vertex represents an areal unit and each edge connects
two areal units and represents a neighbouring relationship, Rue and Held [24]. Areal data
are sometimes called lattice data, and often the lattice is a 2-dimensional grid in the plane,
either finite or infinite.

LetG = (V , E) be an undirected graph [12,29] that consists of verticesV = (1, 2, . . . , q),
and a set of edges E , where a typical edge is (m, t), m, t ∈ V . Undirected is in the sense
that (m, t) and (t,m) refer to the same edge. Following Rue and Held [24], a random vec-
tor γ = (γ1, . . . , γq)⊤ is called a Gaussian MRF (i.e. GMRF) with respect to the graph
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172 F. DE BASTIANI ET AL.

G, with mean µ and (symmetric) precision matrix λG, if and only if its density has
the form

π(γ ) ∝ exp
[
−1
2
λ(γ − µ)⊤G(γ − µ)

]
(4)

and

Gmt ̸= 0 ⇐⇒ (m, t) ∈ E form ̸= t,

where Gmt is the element of matrix G for rowm and column t.
Hence the nonzero pattern ofG determines G. We can read off fromG whether γm and

γt are conditionally independent, because a well-known theorem in this field (Theorem
3.2 of Rue and Held [24]) says that γm and γt are conditionally independent, given γr for
all r not equal tom or t, if and only if Gmt = 0. It also means in practice that the precision
matrix is often sparse.

The conditional autoregressive (CAR) model first introduced by Besag [3] and also
described in detail in [5] is a GMRF model of the form given in Equation (4) where G
is a non-singular matrix. The CAR model can also be specified by the local definition:

γi|γ −i ∼ N

⎛

⎝
∑

j
αijγj, ki

⎞

⎠ ,

where γ −i = (γ1, γ2, . . . , γi−1, γi+1, . . . , γq) and αii = 0, αij = −Gij/Gii(i ̸= j) and ki =
1/(λGii) for i = 1, 2, . . . , q. Then using Brook’s lemma [8], it can be shown that the joint
distribution for γ is of the form given in Equation (4) withµ = 0, providedαijkj = αjiki for
all i and j to ensure that matrix G is symmetric [5]. Specific models in which the precision
Gmatrix in Equation (4) is singular are called the IARmodel. That is, the IAR is a limiting
case of CAR in which G is singular. The IAR model has been used for spatially structured
random effects in generalized linear models [2]. Rue and Held [24,30] present the IAR
model within a GAM framework. In this context we extend to the GAMLSS framework.

The following shows how a specific IAR model is incorporated in GAMLSS. Let W be
the proximitymatrix (whichwe assume to be symmetric) where the elementswii are set to 0
andwij = 1 if i and j (i ̸= j) share some common boundary, or 0 otherwise. The precisionG
matrix can be constructed fromDw − W, whereDw is a diagonalmatrix with each element
in the diagonal being the respective row sumof the proximitymatrix. For example, consider
the five areas represented in the left size of Figure 1, which is a subsample of the areas
in the Munich rent data example analyzed in Section 3. The conditional independence
assumptions in this case is described by the undirected graph in the right size of Figure 1.
The graph shows that neighbouring areas are connected.

For this example the proximity matrixW and theDw and Gmatrices are given by

W =

⎡

⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 0 0
1 0 0 1 1
0 0 1 0 1
0 0 1 1 0

⎤

⎥⎥⎥⎥⎦
, Dw =

⎡

⎢⎢⎢⎢⎣

2 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

⎤

⎥⎥⎥⎥⎦
and G =

⎡

⎢⎢⎢⎢⎣

2 −1 −1 0 0
−1 1 0 0 0
−1 0 3 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

⎤

⎥⎥⎥⎥⎦
.
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Figure 1. Showing, on the left of the figure, a subset of five regions of the Munich rent data example of
Section 3 and, on the right, an undirected graph describing the conditional independence relationship
between the five regions.

The effect of the G matrix is to bring fitted values from neighbouring regions closer
together (rather than to shrink them towards the overall mean as is the case of a simple
random effect model term). Note that the matrix G is treated within GAMLSS as an extra
penalty in the penalized log-likelihood given in Equation (3).

Assume that a response variable and explanatory variables are recorded at observa-
tions which belong spatially to one of a set of areas (or regions). Zero, one or more than
one observation may be recorded in each region. To incorporate IAR models within the
GAMLSS model (2), set Z to be an index matrix defining which observation belongs
to which area, and let γ be the vector of q spatial random effects and assume γ ∼
Nq(0, λ−1G−1), whereG−1 is the (generalized) inverse of a q × qmatrix,G. In the follow-
ing IAR model, based on [4], the matrixG contains the information about the neighbours
(adjacent regions), with elements given byGmm = nm where nm is the total number of adja-
cent regions to regionm and Gmt = −1 if regionm and t are adjacent, and zero otherwise,
form = 1, . . . , q and t = 1, . . . , q. This model has the attractive property that conditional
on λ and γt for all t ̸= m, then γm ∼ N(

∑
γtn−1

m , (λnm)−1) where the summation is over
all regions which are neighbours of regionm.

The nonzero pattern of thematrixG determines the graphG. A nonzero value inmatrix
G implies a connection between the two corresponding regions in the graph G (they are
connected neighbours). The zero value inmatrixG implies no connection between the two
regions in the graph G and hence that the corresponding spatial random effects γm and γt
for the two regions are conditionally independent (given the other spatial random effects
γr for all r not equal tom or t).

The R implementation of the above IAR model as a predictor term for any parame-
ter of the distribution of the response variable in a GAMLSS model is achieved by the R
packagegamlss.spatialwhich is described in the appendix.More details about using
GAMLSS in R are presented in [25].
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174 F. DE BASTIANI ET AL.

3. Application to theMunich rent data

Here we use the package gamlss.spatial to provide a detailed spatial analysis of a
data set on rents for flats in the City of Munich.

3.1. The data

The response variable is the rent, (i.e. the monthly rental price, which remains after hav-
ing subtracted all running costs and incidentals) of properties in the city of Munich, [15].
We used the Munich rent data in the year 1999, available from data frame rent99 in
the gamlss.data package in R. The data frame rent99 has 3082 observations on the
following 9 variables:

• rent: rent per month (in Euro),
• rentsqm: rent per month per square metre (in Euro),
• area: living area in square metres,
• yearc: year of construction,
• location: quality of location: a factor indicating whether the location is average

location, (1), good location, (2), or top location, (3),
• bath: quality of bathroom: a factor indicating whether the bathroom facilities are

standard, (0), or premium, (1),
• kitchen: quality of kitchen: a factor indicating whether the kitchen is standard, (0),

or premium, (1),
• cheating: central heating: a factor indicating a property with central heating, (1), or

without central heating, (0),
• district: district in Munich (this provides the spatial explanatory variable).

In the data framerent99 the variableslocation,bath,kitchen andcheating
are declared as factors with reference levels 1, 0, 0 and 0, respectively. The reference level for
cheatingwas changed to 1 in the analysis, becausemost properties have central heating.

The distribution of the monthly rent is asymmetric and skewed towards the right as is
shown in Figure 2.

Figure 3 shows plots of the rent against each of the above explanatory variables.
Although these are bivariate exploratory plots and take no account of the interplay between
the explanatory variables, they give an indication of the complexity of this data. The
first two explanatory variables, area and yearc, are continuous. The plot of rent
against area suggests a positive relationship between median rent and area, with an
increased variation for larger area. The assumption of homogeneity in the variance of
the rent99 variable appears to be violated here. There is also some indication of pos-
itive skewness in the distribution of the rent variable. The peculiarity of the plot of
rent against yearc is due to the method of data collection. The plot suggests that for
houses up to 1960 the median rent price is roughly constant, but for flats constructed
after that year there is an increasing trend in the median rent price. The remaining box
and whisker plots display how the rent price varies according to the explanatory factors.
The median rent price increases as the location changes from average to good and then
to top location. The median rent price also increases if the flat has a premium bathroom,
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Figure 2. Histogram and box and whisker plots for rent data from the year 1999 in Munich.

a premium kitchen or central heating. There are no surprises in the plots here, but again
the problem of skewness is prominent with generally (but not always) longer upper than
lower tails.

In summary, any statistical model used for the analysis of the above data should be
able to deal with the complexity of the relationship between rent and the explanatory
variables. The dependence of the median of the response variable rent on floor space
(area) and year of construction (yearc) is nonlinear and non-parametric smoothing
functions may be needed. Median rent may also depend on interactions between the
explanatory variables. There is clear indication of nonhomogeneity of the variance of rent.
The variance of the response variable rent may depend on its mean and/or explanatory
variables. There is clear indication of skewness in the distribution which may also depend
on explanatory variables. The median rent (and the variance and skewness of rent) may
also depend on the spatial explanatory variable (district), which is a key part of the
analysis.

3.2. Model selection strategy

This section describes the model selection strategies adopted in this paper. Let M =
{D,L,T ,λ} represent a GAMLSS model as defined in Section 2.1. The components of
M are defined as follows:

D specifies the distribution of the response variable,
L specifies the set of link functions for the distribution parameters µ, σ , ν and τ ,
T specifies the terms appearing in the predictors for µ, σ , ν and τ ,
λ specifies the smoothing hyper-parameters which determine the amount of smooth-
ing of continuous explanatory variables (area and yearc) and of the spatial effect
(district).

In the search for an appropriate GAMLSS model for any new data set, all the
above four components have to be specified as objectively as possible. The GAMLSS
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176 F. DE BASTIANI ET AL.

Figure 3. Plot of the rent99 against explanatory variables area, yearc, location, bath,
kitchen and cheating.

framework requires that the empirical researchers have a good understanding of the
properties of the distributions from the list of available distributions in the GAMLSS
framework.

The selection of the appropriate distribution D is done in two stages: the fitting stage
and the diagnostic stage. The fitting stage involves the comparison of different fittedmodels
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using a generalized Akaike information criterion (GAIC). The diagnostic stage involves
the normalized quantile residuals, [11], or ‘z-scores’, which provide information about the
adequacy of the model and can be used in connection with diagnostic plots like worm
plots, [26], or other test statistics, e.g. Z-statistics andQ-statistics, [23]. The selection of the
link function L is usually determined by the range of parameters. For a given distribution
for the response variable, the selection of the termsT for the parameters of the distributions
is done using a stepwise GAIC procedure.

Preliminary analysis, using distributions defined on the positive real line, indicated that
the Box–Cox Cole and Green distribution [9], BCCGo(µ, σ , ν), seems an appropriate dis-
tribution for the rent data to use for model selection. The BCCGo distribution has a default
log link for the median µ. If we use an identity link for µ it implies an additive model for
µ and so, for example, changing from an unpopular to a popular district results in a fixed
change in median rent, irrespective of how large an area the property has and irrespective
of its year. It is more likely that the change in median rent is not a fixed amount but a fixed
percentage, implying that a multiplicative model is more appropriate, i.e. a log link for µ.
It was found that the log link for µ provided a better fit to the data then the identity link.

Because the fitting time of the spatial GMRF term for district in themodel is longer
that the rest of the terms, first we used a selection procedure for all explanatory variables
(apart from district) for all distribution parameters (µ, σ and ν) using a generalized
Akaike information criterion, GAIC, with penalty equal 4. Then, given the selected model,
we tried adding the GMRF term IAR, with penalty equal 2. The reason for the choice of
k=4 in GAIC for the selection of terms (excluding the spatial effect) is that several terms
have a single parameter and a 5% significance level for a generalized likelihood ratio test
for a single parameter being different from zero is based on an (asymptotic) Chi-squared
distribution with critical value χ2

1,0.05 = 3.84 ≈4. The spatial term involves many effec-
tive parameters being jointly tested and so a lower critical value per effective parameter
is appropriate. When choosing whether to select a spatial term, we decided to use the
standard AIC with k=2.

The procedure to select the explanatory variables using the BCCGo distribution is first
to fit an initial starting model and then:

(1) use a forward GAIC selection procedure to select an appropriate model for µ, with
σ and ν as constants,

(2) use a forward selection procedure to select an appropriate model for σ , given the
model for µ obtained in (1) and for ν fitted as a constant,

(3) use a forward selection procedure to select an appropriate model for ν, given the
models for µ and σ obtained in (1) and (2), respectively,

(4) use a backward elimination procedure to select an appropriate model for σ , given the
models for µ and ν obtained in (1) and (3), respectively; and

(5) use a backward elimination procedure to select an appropriate model for µ, given
the models for σ and ν obtained in (3) and (4), respectively.

The above procedure is executed in gamlss using the function stepGAICAll.A.
The resulting chosen model may contain different explanatory variables for µ, σ and ν.
Then from this model we
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(i) add the district as a spatial effect for µ using the IAR spatial model,
(ii) add the district as a spatial effect for µ and σ using the IAR spatial model,

and
(iii) add the district as a spatial effect for µ, σ and ν using the IAR spatial model.

The (smoothing) hyper-parameters λ can be fixed or estimated from the data. The stan-
dard way of fixing the (smoothing) hyper-parameters is by fixing their effective degrees of
freedom (edf) for smoothing.

The local maximum likelihood estimation method for each λ is the method used in
our analysis. Hence, the model terms were selected using the GAIC, while the smooth-
ing parameters (and hence their corresponding edf) were chosen using local maximum
likelihood.

3.3. Results

In Section 3.2 we explained the model selection strategy. The final chosen fitted model
m2final is given by

Y ∼ BCCGo(µ̂, σ̂ , ν̂),

log(µ̂) = 6.06 + h11(yearc) + h21(area) + s(district)

+ 0.079(if location=2, good) + 0.211(if location=3, top)

− (0.255 − 0.0038nyearc)(if cheating=0, no central heating)

+ (0.146 − 0.0034nyearc + 0.0023narea)(if kitchen=1, premium)

+ 0.067(if bath=1, premium),

log(σ̂ ) =11.811 + h12(yearc) + 0.0016(area)

+ 0.231(if cheating=0, no central heating),

ν̂ = −12.377 + h13(yearc) + h23(area) + 2.381(if kitchen=1, premium),

(5)

where the h functions are smooth non-parametric functions and s is an IAR spatial smooth-
ing function. The distribution BCCGo(µ, σ , ν) has a multiplicative model for the median
µ, (resulting from the log link for µ), and nyearc and narea are, respectively, yearc and
area centred at their means (i.e. subtract their means, 67.37 and 1956.31, respectively). The
medianµmodel includes a spatial term in district (using the GMRFmodel IAR), and
provides an improvement (i.e. reduction) in AIC. We also fitted the model with additional
spatial effects for σ and ν but the improvement was too small so we opted for the simpler
model, in this case, the spatial effect just for µ.

Figures 4–6 display the fitted parametric terms and smooth functions in log(µ̂) in
the final chosen model (5). Their effects are additive for log(µ̂) and hence multiplica-
tive for the fitted median rent µ̂. The fitted median rent generally increases with area
and year of construction (from Figure 4). A good location results in a 8.2% [calculated
by (e0.079 − 1) × 100] increase in fitted median rent (relative to an average location), while
a premium location results in a 23.5% increase, and a premium bathroom results in a 6.9%
increase.
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Figure 4. Term plots forµ.

The effect on median rent of no central heating depends on the year of construction.
No central heating results in a 22.5% decrease in median rent for the average year of con-
struction, and a higher % decrease for older properties. The effect of a premium kitchen
on median rent depends on both year of construction and area of the property, resulting
in a 15.6% increase in median rent for a property with average year of construction and
average area, and a higher % increase for older or larger properties.

Figure 6 shows the district effect on log(µ̂) where we can see that the rent prices
are higher in the centre and southeast regions than in the north and west regions of the
Munich city. Relative to the baseline district a region with the best district has a 10.5%
[i.e (e0.10 − 1) × 100] higher fitted median rent, while a region with worst district has a
9.5% [i.e (1 − e−0.10) × 100%] lower fitted median rent (assuming all other explanatory
variables including location type are fixed).

Figure 7 shows the fitted parametric terms and smooth function in log(σ̂ ), in the final
chosenmodel (5). Figure 7 shows that the fitted σ̂ (the approximate coefficient of variation
of rent) increases with area but decreases with year of construction. No central heating
results in a 26.1% increase in σ̂ . [It should be noted that if the total effective degrees of
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Figure 5. Term plots of the interactions forµ.

freedom used in the model for µ is high relative to the sample size, then this can result in
negative bias in σ̂ . This was not the case in the fitted model (5)].

Figure 8 shows that the fitted ν̂ (the skewness parameter) in Equation (5) decreases with
area but increases with year of construction. Note that decreasing ν̂ increases the positive
skewness of the fitted distribution for rent. A premium kitchen results in an increase of 2.4
in ν̂. Hence larger older properties with a standard kitchen have a more positively skew
fitted distribution for rent.

4. Residual diagnostics

We check the adequacy of the fitted model using (normalized quantile) residuals, [11]. If
the model is correct then the true residuals have a standard normal distribution. Figure 9
displays a worm plot, [26], for the residuals of the chosen fitted model. The worm plot is
a detrended normal QQ plot of the residuals which indicates a reasonable fit to the data,
since over 95% of the points lie within the elliptical (dashed) 95% pointwise interval bands.

In order to investigate the adequacy of the chosen model for different combinations
of the two continuous explanatory variables yearc and area, we cut each explanatory
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Figure 6. The fitted spatial effect forµ for the chosen model with spatial effect.

Figure 7. Term plots for σ .
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Figure 8. Term plots for ν.

Figure 9. Worm plot of the residuals for the chosen final model m2final.

variable into four non-overlapping intervals with equal numbers of observations giving
16 joint intervals and obtain a worm plot (i.e detrented QQ plot) for cases in each of the
16 joint intervals. This is a way of highlighting failures of the model within different joint
ranges of the two explanatory variables. Figure 10 shows the result, (obtained by a sin-
gle worm command in the gamlss package), where above the plot the four intervals for
yearc are displayed and to the right of the plot the four intervals of area are displayed.
The worm plots generally indicate a reasonable fit to the data in the 16 joint intervals. Sim-
ilarly, Figure 11 displays the worm plots for combinations of the two explanatory variables
yearc and kitchen, which also indicate a reasonable fit to the data. For the sake of
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Figure 10. Worm plot of the residuals split by the yearc and area variables for the final model.

Figure 11. Worm plot of the residuals split by the yearc and kitchen variables for the final model.

brevity, the worm plots for individual explanatory variables and for other combinations of
two explanatory variables were omitted here, but they also indicated a reasonable fit to the
data.
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5. Conclusions

Wehave shown that theGAMLSS framework provides a platform to fit, compare and check
spatial models for the parameters of the distribution of a response variable which may be
non-exponential family. This includes continuous response variable distributions which
are highly positively or negatively skewed and/or have high or low kurtosis (i.e. leptokurtic
or platykurtic), discrete count distributions that are overdispersed (e.g. negative binomial)
or have excess zeros (eg zero inflated negative binomial), or mixed continuous–discrete
distributions (e.g. zero-inflated gamma and inflated beta). The spatial analysis shown in
this paper can be applied to other data sets that have geographical information specifying
the neighbours of each region.

We would like to finish by emphasizing that looking at a single statistical model in iso-
lation is not good practice. Any chosen model should be able to stand up to scrutiny and
that involves being able to compare it with alternativemodels and checking its assumptions.
The data for this article can be found in the package gamlss.data. The commands to
fit the model and plot the results in the paper are in a vignette distributed with the package
gamlss.spatial.
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Appendix. The R implementation of GMRF spatial model within GAMLSS
Here we explain the implementation of the important GMRF submodel, the IARmodel described in
Section 2.3, within GAMLSS. The IAR model is implemented in the package gamlss.spatial
thought the function gmrf(). A new package was needed because of several dependencies of the
function gmrf() on existing but not standard R packages. Also gmrf() is the first function of
a series of additive term spatial functions that are in progress. The function gmrf() fits an IAR
term within the predictor of any distribution parameter in a GAMLSS model. There are two meth-
ods implemented for estimating the (smoothing) hyper-parameter λ. The two different methods
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should produce identical results and can be seen as PQLmethods [7]. The method is selected by the
argument method of the function gmrf(). There are two possible values for the method:

(i) method = "Q" which estimates the spatial IAR (smoothing) hyper-parameter λ by min-
imizing the Q-function, see [21], which is a way to minimize the local marginal likelihood
function,

(ii) method = "A" which estimates the spatial IAR (smoothing) hyper-parameter λ using the
‘alternating’ method to minimize the local marginal likelihood, see [21].

To perform the analysis, we need thematrixG, which has the information about the relationships
between the areas, showing if they are neighbouring areas or not. If two polygons areas have at least
a single point in common, then they are treated as neighbours. The function gmrf() accepts three
different ways to pass the geographical information:

(i) polys, is aR list comprising the region label followed by coordinates of points in two columns
in matrix form defining the boundary for each area,

(ii) neighbour, is a R list comprising each region label followed by its neighbouring region
labels,

(iii) precision, is a Rmatrix containing the Gmatrix.

For instance, for a simple model (with no explanatory variables and modelling only the location
parameter) the information can be given in three different ways:

fit <- gamlss(rent~gmrf(district, polys=polys), data=rent99),

or

fit <- gamlss(rent~gmrf(district, neighbour=neighbour),
data=rent99),

or

fit <- gamlss(rent~gmrf(district, precision=precision),
data=rent99).

If the polys information is given, then the function gmrf() will automatically compute the
matrixG to do the analysis. The same happens if the neighbour information is given. The fastest
way to estimate the spatial IAR model in (2), as described in Sections 2.2 and 2.3, is to give the
precision (i.e. matrix G) since no extra calculations are needed.

Extra utility functions available within the package to obtain the matrixG before performing the
analysis (to speed up the fitting) are:

polys2nb() which creates neighbour list from the polygon polys information and
nb2prec() which creates the matrix G from the neighbour information.

When fitting several models for model selection this saves time. To plot the fitted values of
a fitted gmrf object the function draw.polys() is available. For more details about the
gamlss.spatial package, see the help file in http://cran.r-project.org/.
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