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Abstract 

This paper analyses persistence in US interest rates. It focuses on the Federal Funds 
effective rate, whose degree of persistence is modelled using fractional integration, 
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fractional differencing parameter appear to be very sensitive to the choice of the I(0) 
error term; specifically, the order of integration is strictly above 1 if the errors are 
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1. Introduction 

The statistical properties of interest rates have been extensively investigated in the 

literature. Earlier studies typically focused on whether interest rates can be characterised 

as an I(0) or I(1) series. For instance, Cox, Ingersoll and Ross (1985) concluded that the 

short-term nominal interest rate is a stationary and mean-reverting I(0) process, whereas 

authors such as Campbell and Shiller (1987) assumed a unit root. A drawback of the 

I(0) models is that they imply long-rates which are not volatile enough (Shiller, 1979) 

whereas a problem with the I(1) models is that they imply that the term premium 

necessarily increases with bond maturities (Campbell, Law and MacKinlay, 1997).1  

Other studies analysed whether or not real rates are stationary, since a unit root 

in ex-ante real rates is inconsistent not only with the Fisher hypothesis but also with the 

consumption-based capital asset pricing model (CCAPM) of Lucas (1978) (see Rose, 

1988). Various papers found a unit root in the real interest rate (see, e.g., Goodwin and 

Grennes, 1994; Phylaktis, 1999; Rapach and Wohar, 2004). However, the low power 

and limitations of traditional unit root tests are now well known. More recent studies 

have tried to deal with them by using long-horizon data (see, e.g., Sekioua and Zakane, 

2007), or adopting a fractional integration approach. The latter offers much more 

flexibility compared to the usual I(0)/I(1) dichotomy, as it encompasses the intermediate 

case of the degree of integration being between 0 and 1, as well as above 1. This is 

particularly useful for series which, although mean-reverting, might exhibit long 

memory and therefore be characterised by a high degree of persistence. For example, 

Shea (1991) investigated the consequences of long memory in interest rates for tests of 

the expectations hypothesis of the term structure. He found that allowing for the 

possibility of long memory significantly improves the performance of the model, even 
                                                 
1 Recently, Gil-Alana and Moreno (2008) have therefore proposed a fractional model for the short-term 
interest rate and the term premium. Also, Kozicki and Tinsley (2001) propose a model with shifting 
endpoints for short-term interest rates, while Ang and Beckaert (2002) develop a regime-switching model. 
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though the expectations hypothesis cannot be fully resurrected. In a related study, 

Backus and Zin (1993) observed that the volatility of bond yields does not decline 

exponentially when the maturity of the bond increases; in fact, they noticed that the 

decline is hyperbolic, which is consistent with the fractionally integrated specification. 

Lai (1997) and Phillips (1998) provided evidence based on semiparametric methods that 

ex-ante and ex-post US real interest rates are fractionally integrated. Tsay (2000) 

employed an Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

model to show that the US real interest rate can be described as an I(d) process. Further 

evidence can be found in Barkoulas and Baum (1997), Tkacz (2001), Meade and Maier 

(2003), Sun and Phillips (2004), Gil-Alana (2004a, b), and Karanasos et al (2006). 

Couchman, Gounder and Su (2006) estimated ARFIMA models for ex-post and ex-ante 

interest rates in sixteen countries. Their results suggest that, for the majority of 

countries, the fractional differencing parameter lies between 0 and 1, and is 

considerably smaller for the ex-post than for the ex-ante real rates.  

Fractional cointegration tests have also been applied in recent studies. Lardic 

and Mignon (2003) tested for fractional cointegration between nominal interest rates 

and inflation under the assumption that both individual series were I(1). They tested this 

hypothesis with standard unit root procedures (Dickey and Fuller, 1979; Phillips and 

Perron, 1988; Kwiatkowski et al., 1992). However, these methods have extremely low 

power if the alternatives are of a fractional form (Diebold and Rudebusch, 1991; Hassler 

and Wolters, 1994; Lee and Schmidt, 1996). Barkoulas and Baum (1997) also used 

fractional integration to model nominal interest rates and found evidence of long 

memory in the differenced series. Mean reversion in nominal rates is reported for Asian 

and emerging countries respectively in Gil-Alana (2004a) and Candelon and Gil-Alana 

(2006). 
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The present paper analyses the behaviour of the US Federal Funds effective rate 

and, similarly to various studies referenced above, uses a fractional integration 

framework to estimate its degree of persistence. However, it also makes the additional 

contribution of examining thoroughly, by means of recursive and rolling techniques, its 

stability over time, an issue which has not been addressed in the previous literature. The 

layout of the paper is the following. The econometric model and estimates are reported 

in Section 2, whilst the final Section 3 summarises the main findings and offers some 

concluding remarks. 

 

2. Econometric model and estimates 

A time series process {yt, t = 0, ±1, …} is said to be integrated of order d, and denoted 

by yt ≈  I(d), if it requires d-differences to render the series stationary I(0), that is, 

,0,0
,...,2,1,)1(

≤=
==−

ty
tuyL

t

tt
d

   (1) 

where, ut is an I(0) process, defined as a covariance stationary process with spectral 

density function that is positive and finite, and L is the backward shift operator.2 In the 

event that d is not an integer, the series yt requires fractional differencing in order to 

obtain a possibly stationary ARMA series. ARIMA(p,d,q) models in which d is a 

positive integer are then special cases of the general process in (1). If d > 0, yt is said to 

have long memory because of the strong association between observations distant in 

time, and the higher the value of d is, the higher is the level of dependence in the time 

series behaviour.3  

                                                 
2 The condition yt = 0, t ≤ 0 is required for the Type II definition of fractional integration. For an 
alternative definition (Type I), see Marinucci and Robinson (1999).  
3 See Robinson (1994a, 2003), Beran (1994), Baillie (1996), Doukhan et al. (2003) and Gil-Alana and 
Hualde (2008) for surveys of the literature on fractional integration. 
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The time series data analysed in this paper is the Federal Funds effective rate, 

monthly, (with overnight maturity), from July 1954 to March 2008, obtained from the 

Board of Governors of the Federal Reserve System (http://www.federalreserve.gov). 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 1 shows a plot of this time series. Visual inspection suggests that it 

exhibits an upward trend until the beginning of the 80s, when the trend is reverted and 

becomes negative. 

As a first step we compute an estimate of d for the whole sample period. For this 

purpose, we use a Whittle estimator in the frequency domain along with a testing 

procedure developed by Robinson (1994b). This method is parametric, and does not 

require preliminary differencing; it allows us to test any real value d, thus encompassing 

stationary and nonstationary hypotheses. We consider the following formulation  

,tt xty ++= βα     (2) 

                ,)1( tt
d uxL =−     (3) 

testing the null hypothesis, 

 

                             ,: oo ddH =      (4) 

in (2) and (3) for any real value do. Initially, we assume that α = β = 0 a priori in (2), 

that is, we suppose that there are no deterministic terms in the regression model (2), 

though we also consider the cases of an intercept (α = 0 and β unknown), and an 

intercept with a linear time trend (α and β unknown). Given the parametric nature of the 

tests, we must specify the functional form of the disturbance term, ut. Here we consider 

the two cases of white noise and autocorrelated errors. In the latter case we first assume 
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an AR(1) process for ut. Then, the model of Bloomfield (1973) is also considered. This 

is a non-parametric approach to modelling the I(0) error term that produces 

autocorrelations decaying exponentially as in the AR(MA) case.4 

Robinson’s (1994b) test statistic is given by: 

     aATr ˆˆ
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â  and Â  in the above expressions are obtained through the first and second derivatives 

of the log-likelihood function with respect to d (see Robinson, 1994b, p. 1422, for 

further details). I(λj) is the periodogram of ut evaluated under the null, i.e.: 

;'ˆ)1(ˆ tt
d

t wyLu o β−−=  

,),1(;)1(;)1('ˆ
1

1

1

T
tt

d
t

T

t
t

d
t

T

t
tt tzzLwyLwww oo =−=∑ −







∑=

=

−

=
β  

and g is a known function related to the spectral density function of ut. Robinson 

(1994b) established that under certain regularity conditions:5 

   ,)1,0(ˆ ∞→→ TasNr d    (6) 

                                                 
4 Gil-Alana (2004c) showed that the model of Bloomfield (1973) approximates fairly well ARMA(p,q) 
structures in the context of fractional integration, where p and q are small values. 
5 These conditions are very mild regarding technical assumptions which are satisfied by (2) – (4). 
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and also the Pitman efficiency of the tests against local departures from the null. 

  

[INSERT TABLE 1 ABOUT HERE] 

 

Table 1 reports the estimates of d based on the Whittle function in the frequency 

domain along with the 95% confidence intervals of the values of do for which Ho cannot 

be rejected using Robinson’s (1994b) parametric approach, the range of values 

considered for do being from 0 to 2 with 0.01 increments. It can be seen that in the case 

of white noise errors the unit root null (i.e. d = 1) is rejected in the three cases of no 

regressors, an intercept and a linear trend in favour of higher orders of integration. The 

Whittle estimate of d is found to be 1.27 in the three cases. However, when allowing for 

possible autocorrelation, the estimated values of d are substantially smaller in all cases, 

and the unit root null hypothesis is now rejected in favour of smaller degrees of 

integration, implying mean-reverting behaviour. If ut is AR(1) the estimated values of d 

range between 0.71 and 0.90, whilst when using the exponential spectral model of 

Bloomfield (1973) they are slightly higher, ranging from 0.76 to 0.93. Thus, mean 

reversion (d < 1) is obtained in all cases if autocorrelation is permitted. 

 Given the similarities between the results for the two cases of an intercept and an 

intercept with a linear time trend, it appears that a time trend might not required for 

these series. Thus, it may be of interest to consider a joint test of: 

oo ddH =:  and .0=β     (7) 

This possibility is not addressed in Robinson (1994b) though Gil-Alana and Robinson 

(1997) derived a LM test of (7) against the alternatives: 

oa ddH ≠:  or ,0≠β     (8) 
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as follows. We consider the regression model (2) with the vector partitions zt = (zAt
T, 

zBt
T)T, β = (βA

T, βB
T)T, and we want to test Ho: d = do and βB = βB0. Then, a LM statistic 

may be shown to be 2r̂ (see equation (5)) plus 
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212 ,ˆσ̂  and 2r̂  is calculated as above but using the tû  just defined. If the 

dimension of zBt is qB, then we compare (9) with the upper tail of the 

2
1 Bq+χ distribution. In our case, testing (7) against (8) in (2) and (3) with zt = (1, t)T, we 

have qB = 1, zAt = 1, zBt = t for t ≥  1. Although we do not report the results, the time 

trend was found not to be necessary in the three cases. 

 In what follows we examine if the fractional differencing parameter has 

remained constant over time. For this purpose we first re-compute the estimates of d 

along with Robinson’s (1994b) tests, for different sample sizes, starting with 121 

observations (July, 1954 – July 1964), and adding successively one observation at a 

time till the end of the sample (645 observations, from July, 1954 – March, 2008). We 

consider the model with an intercept, and the results for the three cases of white noise, 

AR(1) and Bloomfield disturbances are displayed in Figure 2. 

 

[INSERT FIGURE 2 ABOUT HERE] 
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 Starting with the white noise case (Figure 2(i)), it can be seen that the values are 

above 1 in all cases, increasing to 1.36 in the sample ending in November 1979 and 

dropping fast to 1.11 in May 1980. Then, the values stabilise around 1.26 till the end of 

the sample. When ut is assumed to be autocorrelated, either as an AR process or using 

the Bloomfield model, (Figures 2(ii) and (iii)), the results again indicate a fall in the 

degree of persistence around May 1980. In fact, the values are around 1.15 before that 

day and drop drastically to around 0.78 afterwards. Overall, the results presented so far 

suggest the occurrence of a structural break around May 1980, with a sharp decline in 

the degree of persistence after that date. 

 The above results, however, are not directly comparable because of the different 

sample sizes used to obtain the recursive estimates, ranging from 120 to 645 

observations. Therefore, we also take a rolling approach using a fixed-size window of 

120 observations which shifts along the sample by one month at a time, the first 

subsample being July 1954 to August 1964, and so on until the final subsample from 

March 1998 to March 2008. The results are shown in Figure 3. 

 

[INSERT FIGURE 3 ABOUT HERE] 

 

 Starting again with the white noise case, one can see that all the estimated values 

of d are above 1. They increase from 1 till almost 1.50 over the first 184 subsamples. 

Then there is a sharp decrease at subsample 185 (November, 1979 – November 1989), 

the estimate of d being only slightly above 1.20 until subsample 312 (May 1980 – May 

1990); subsequently, it starts rising again. 

 Next we consider the case of autocorrelated disturbances and show in the bottom 

part of Figure 3 the values for the Bloomfield (1973) case. Again there is a substantial 
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change in the estimated values of d for the subsamples ranging from 185 (November, 

1979 – November 1989) to 312 (May 1980 – May 1990), suggesting once more the 

existence of a break around these dates. 

 Given the possibility of a structural break in the data, we then perform a 

procedure due to Gil-Alana (2008) that enables us to estimate the date of the structural 

change along with the fractional differencing parameters and their associated 

coefficients for each subsample. This model is based on the following model, 

    btt
d

tt TtuxLxy ,...,1,)1(; 11 ==−+= α   (10) 

     ,,...,1,)1(; 22 TTtuxLxy btt
d

tt +==−+= α    (11) 

where the α's are the coefficients corresponding to the intercepts; d1 and d2 can be any 

real value, and represent the orders of integration for each subsample, ut is I(0) and Tb is 

the time of the break that is assumed to be unknown. This method is based on 

minimising the sum of squared residuals for a grid of (d1, d2) values. Using Tb-values 

from 50 (August, 1958) to 550 (June, 2004), the break was found to occur at 

observation 311, corresponding to May 1980, which is completely consistent with the 

results reported above. The resulting parameter estimates for the two cases of white 

noise and AR(1) disturbances are displayed in Table 2. 

 

[INSERT TABLE 2 ABOUT HERE] 

 

 We note that when the disturbances are modelled as white noise the fractional 

differencing parameters are 1.28 and 1.49 for the first and second subsamples 

respectively. Thus, we observe an increase in the degree of dependence after the break. 

However, if ut is assumed to follow an AR(1) process, the opposite happens, and the 

value of d decreases after the break: it is above 1 (1.32) before May 1980, and equal to 
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0.93 afterwards. We performed Beran’s (1992) goodness-of-fit test for each of the four 

subsamples, and evidence in favour of the two autocorrelated models was found. 

Overall, it seems that the integration parameter representing the degree of persistence in 

the US Federal Funds effective rate has decreased from a value above 1 in the 

subsample ending in May 1980 to one strictly below 1 afterwards. 

 

3. Conclusions 

This paper analyses persistence in US interest rates. Specifically, using monthly data 

from July 1954 through March 2008, we estimate the order of integration of the US 

Federal Funds effective rate in a fractional integration framework. Moreover, unlike 

previous studies, we examine whether the degree of persistence of interest rates is stable 

over time. The results appear to be very sensitive to the specification chosen for the I(0) 

error term: when this is assumed to be a white noise, the fractional differencing 

parameter is found to be strictly above 1, while it is estimated to be strictly smaller than 

1 in the case of autocorrelated disturbances. Further, recursive and rolling estimates 

indicate that the fractional differencing parameter has not remained constant over time, 

a sharp decline in the degree of persistence having occurred after May 1980. The 

existence of a structural break in May 1980, with the order of integration substantially 

decreasing in the presence of autocorrelated disturbances, is also confirmed by carrying 

out a procedure that enables us to determine the break date endogenously within a 

fractionally integrated framework (see Gil-Alana, 2008). In fact this break corresponds 

to the beginning of the announced Volcker disinflation, which resulted in greater 

instability in the response of interest rates to inflation. The reasons behind this 

instability and its policy implications will be investigated in future research. 
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Figure 1: Federal Funds Effective Rate 
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Table 1: Estimates of d using the whole sample 
 No regressors An intercept A linear time trend 

White noise [1.18  (1.27)  1.38] [1.19  (1.27)  1.38] [1.19  (1.27)  1.38] 

AR (1) [0.71  (0.79)  0.88] [0.73  (0.80)  0.90] [0.73  (0.80)  0.90] 

Bloomfield (m = 1) [0.76  (0.83)  0.93] [0.76  (0.83)  0.93] [0.76  (0.83)  0.93] 
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Figure 2: Recursive Estimates of d and 95% Confidence Bands  
i) White noise case 
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Figure 3: Rolling Estimates of d and 95% Confidence Bands 
i) White noise case 
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Table 2: Estimates of d and the associated parameters in a model with a single break 
First subsample Second subsample T* = 311 

(May, 1980) d intercept AR coeff. d intercept AR coeff. 

White noise 1.28 0.713 
(1.821) ----- 1.49 11.421 

(27.311) ----- 

AR (1) 1.32 -0.022 
(-0.106)

-0.067 0.93 14.071 
(16.251) 

0.566 

 


