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1. Introduction

Following the seminal work of Barro (1991) and Barro and Sala-i-Martin (1991, 1992,

1995), in the last couple of decades a vast literature on convergence has been produced.

This is a key issue to assess the empirical relevance of neoclassical versus endogenous

growth models. The standard Solow (1956) model implies that all countries should

converge to a level of income that is determined by their respective saving rates and

population growth rates, and that over time poor countries or regions tend to grow faster

than rich ones. Therefore, evidence of convergence has traditionally been interpreted as

supporting the neoclassical model. However, Barro and Sala-i-Martin (1991, 1992)

argued that the estimated rate of convergence is only consistent with the neoclassical

model if diminishing returns to capital set in very slowly, and that endogenous growth

models with constant returns and gradual diffusion of technology also fit the data (see

also Mankiw et al., 1992, Quah, 1993, and Sala-i-Martin, 1996). Their approach is

based on testing for β-convergence in a regression of the first difference of per capita

output against an exogenous rate of technical progress, as well as lagged steady-state

and actual per capita output, where β is the slope coefficient. Their conclusion is that the

rate of convergence to its steady state value of per capita output is exponential and

approximately equal to 2% for most economies.

More recently, though, Michelacci and Zaffaroni (2000) have pointed out that

this finding cannot be reconciled with the other stylized facts of unit roots in output (see

Nelson and Plosser, 1982), and a fairly smooth trend of output per capita in the OECD

economies (see Jones, 1995). They show that extending the standard Solow model to

allow for cross-sectional heterogeneity in the adjustment speed results in output

exhibiting long memory, and that per capita output is well represented by a mean-

reverting long memory process with 0.5 ≤ d < 1, where d is the fractional integration
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parameter – in other words, it is not covariance stationary, but still mean-reverting, with

the implication that standard unit root tests will not reject the null of non-stationarity

even when convergence takes place. Their interpretation is that, given the long-memory

properties of the output series, convergence does take place, but at a hyperbolic very

slow rate rather than an exponential one.

However, their analysis has been criticised by Silverberg and Verspagen (2000),

who have argued that it cannot really shed light on the time series properties of output

per capita (and therefore take forward the convergence debate), as it relies on

questionable filtering of the data, and on using the semiparametric Geweke and Porter-

Hudak (GPH, 1983) method as modified by Robinson (1995a), which has been shown

to be biased in small samples. Instead, Silverberg and Verspagen (2000) use Beran’s

(1994) FGN estimator and Sowell’s (1992) parametric maximum likelihood estimator,

which are not affected by small-sample bias, and show that the evidence of fractional

integration in the range [0.5, 1), which is a key result in the paper by Michelacci and

Zaffaroni (2000), disappears when these more appropriate methods are used.

In another recent paper Mayoral (2006) examined annual real GNP and GNP per

capita in the US for the time period 1869-2001, using several parametric (Sowell, 1992,

Mayoral, 2004, Velasco and Robinson, 2000) and semi-parametric (Geweke and Porter-

Hudak, 1983 and Teverovsky and Taqqu, 1997) long-memory methods. Her results,

though slightly different depending on the technique used, provide evidence that the

orders of integration lie in the interval [0.5, 1), implying nonstationarity, high

persistence and mean-reverting behaviour.

The present paper makes the following contributions: first, we investigate if

mean reversion takes place in quarterly per capita real output in the US (1948-2008) by

using a variety of non-parametric, semi-parametric and fully parametric techniques
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based on fractional integration and long-memory processes. The results indicate that

the behaviour of US per capita real output is captured well by a linear trend model with

stationary long-memory behaviour, implying that shocks affecting the series will revert

to its trend sometime in the future. Moreover, the possibility of structural change is also

investigated, and it is found that there has been a decrease in the degree of persistence

of the series during the last three decades.

The layout of the paper is as follows. Section 2 discusses the relevance of

fractional integration to test for convergence. Section 3 outlines the methods used here.

Section 4 presents the empirical results. Section 5 focuses on long memory and

structural change. Section 6 summarises the main findings and offers some concluding

remarks.

2. Fractional integration and economic growth

Given a covariance stationary process {xt, t = 0, ±1, … }, with autocovariance function

E(xt –Ext)(xt-j-Ext) = γj, according to McLeod and Hipel (1978), xt displays the property

of long memory if






T

Tj
jT lim

is infinite. An alternative definition, based on the frequency domain is as follows.

Suppose that xt has an absolutely continuous spectral distribution, so that it has a

spectral density function, denoted by f(λ), and defined as

 
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Then, xt displays long memory if the spectral density function has a pole at some

frequency λ in the interval [0, π]. Most of the empirical literature has concentrated on
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the case where the singularity or pole in the spectrum occurs at the zero frequency.1

This is the standard case of I(d) models of the form:

,...,1,0,)1(  tuxL tt
d (1)

,0,0  txt

where L is the lag operator (Lxt = xt-1) and ut is I(0) defined as a covariance stationary

process with spectral density function that is positive and bounded at any frequency.

Thus, the process ut could itself be a stationary and invertible ARMA sequence, when

its autocovariances decay exponentially; however, it could decay at a much slower rate

than exponentially. When d = 0 in (1), xt = ut, and xt is said to be “weakly

autocorrelated” as opposed to the case of “strongly autocorrelated” if d > 0. Moreover,

if 0 < d < 0.5, xt is still covariance stationary, but its lag-j autocovariance γj decreases

very slowly, at the rate of j2d-1 as j → ∞, and so the γj are non-summable. We say then

that xt has long memory given that f(λ) is unbounded at the origin. Also, as d in (1) 

increases beyond 0.5 and through 1 (the unit root case), xt can be viewed as becoming

“more nonstationary” in the sense, for example, that the variance of the partial sums

increases in magnitude. Processes of the form given by (1) with positive non-integer d

are called fractionally integrated, and when ut is ARMA(p, q) xt has been called a

fractionally ARIMA (or ARFIMA) model. This type of model provides a higher degree

of flexibility in modelling low frequency dynamics which is not achieved by non-

fractional ARIMA models.

There are several theoretical arguments that can be put forward to justify long

memory (and fractional integration) in aggregate time series (Robinson, 1978; Granger,

1980; Taqqu et al., 1997; Chambers, 1998; Parke, 1999; etc.). Robinson (1978) and

1 During the 1960s, Granger (1966) and Adelman (1965) pointed out that most aggregate economic time
series have a typical shape with the spectral density increasing dramatically as the frequency approaches
zero and that differencing the data leads to overdifferencing at the zero frequency.
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Granger (1980) showed that if the individual series follow heterogeneous AR(1)

processes of the form:

,...,2,1,,...,2,1,,1,,   tNiuxx titiiti 

then the aggregate series




N

i
tit xx

1
,

can exhibit long memory if, for example, the αi are drawn from a Beta B(p, q)

distribution for certain values p and q. With slight variations, this is also the argument

employed in Michelacci and Zaffaroni (2000), Silverberg and Verspagen (2000),

Mayoral (2006) and others when using long range dependence in aggregate output

series. A crucial issue here is then to determine the appropriate order of the series to

distinguish between permanent and transitory changes in output. Thus, for example, if it

is I(0) stationary, shocks affecting the series will be transitory and the degree of decay

will depend on the structure describing the short-run dynamics, being, for example,

exponential if they are autoregressive. On the other hand, if the series is I(1), shocks

will be permanent and thus persisting forever. By allowing for fractional integration, we

permit a much richer degree of flexibility in the dynamic behaviour of the series to

analyse the persistence of shocks: if d  (0, 0.5), the series is covariance stationary and

mean reverting, with the effects of shocks disappearing in the long-run, though at a

slower (hyperbolic) rate than in the I(0) case; if d  [0.5,1), the series is no longer

covariance stationary but is still mean reverting, while d  1 implies that the series is

nonstationary and non-mean-reverting.2

2 In the case of d in the interval [0.5, 1) some authors argue that “mean reversion” is a misnomer given
the nonstationarity nature of the process (Phillips and Xiao, 1999).
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3. Methodology

In this section we briefly describe the methods employed for the empirical analysis in

Section 4, which are based on non-parametric, semi-parametric and parametric

techniques for modelling long-range dependence. It is well known that the findings on

persistence and long memory can vary substantially depending on the method used, and

therefore a robustness check is crucial.

3.1. Non-parametric approaches

The two methods presented here test the null hypothesis of short memory (i.e. d = 0 in

(1)) against long memory (d > 0) and/or anti-persistence (d < 0).3 First we describe a

procedure developed by Lo (1991). The modified R/S statistic (Lo, 1991) is:

,)(min)(max
)(ˆ
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and xt is a stationary series (-0.5 < d < 0.5) of sample size T, with sample mean x ,

sample variance ,ˆ 2
x and sample autocovariance at lag j given by .ˆ j This statistic was

further normalized as:

T

qQ
qV T

T
)(

)(  . (2)

An advantage of the modified R/S statistic is that it allows us to obtain a simple

formula for the fractional differencing parameter d, since

.
)(

))((

TLog

qQLog
d T

3 A process is said to be anti-persistent if it reverses itself more often than a random series would (see
Mandelbrot, 1977).
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The null hypothesis of I(0) includes ARMA models, though, as pointed out by

Haubrich and Lo (2001), it does not contain a trend-stationary model. The limit

distribution of VT(q) is derived in Lo (1991) and the 95% confidence interval with equal

probabilities in both tails is [0.809, 1.862]. Several Monte Carlo experiments conducted

by Teverovsky et al. (1999) and Willinger et al. (1999) show that this method is biased

in favour of accepting the null of no long memory as the bandwidth parameter q

increases. Therefore, these authors warned about using Lo’s modified method in

isolation.4

Lee and Schmidt (1996) showed that the KPSS test proposed by Kwiatkowski,

Phillips, Schmidt and Shin (1992) has the same power as Lo’s statistic against long

memory alternatives. Giraitis, Kokoszka, Leipus and Teyssiere (2003) proposed a

centering of the KPSS statistic based on the partial sum of the deviations from the

mean. They called this method the rescaled-variance V/S statistic, which is given by

,
)(ˆ
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is their sample

variance. According to Giraitis et al. (2003) the V/S test is more suitable for series that

exhibit high volatility, and various Monte Carlo experiments conducted by these authors

show that the V/S test is less sensitive to the choice of the bandwidth number q. These

authors showed that the asymptotic distribution of MT(q) is given by Fk(πc1/2), where Fk

is the limit distribution of the standard Kolmogorov statistic and c is the critical value at

a chosen significance level (e.g. the 5% level).

4 Other papers dealing with the small sample distribution of the R/S statistic are Harrison and Treacy
(1997) and Izzeldin and Murphy (2000).
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As for the choice of the optimal bandwidth parameter q (q*) in the two methods

described above, q = 0 corresponds to the classic Hurst-Mandelbrot R/S statistic.

Haubrich and Lo (2001) suggested using Andrew’s (1991) data-dependent procedure to

determine the optimal bandwidth, which is given by

,
2

3 3

1
*

*















Ta
q (4)

with ,
)ˆ1(

ˆ4
22

2
*






a where ̂ is the first order AR coefficient.

3.2 Semi-parametric approaches

The main advantage of the semi-parametric methods is that they only specify the I(d)

structure, without modelling the d-differenced process, which is merely described as an

I(0) process. In doing so they avoid the problem of potential misspecification in the

short-run dynamics of the series.

There exist several procedures for estimating the fractional differencing

parameter in semiparametric contexts. Of these, the log-periodogram regression

estimate proposed by Geweke and Porter-Hudak (1983) has been the most widely used.

This method was later modified by Künsch (1986) and Robinson (1995a) and has been

analysed, among others, by Hurvich and Ray (1995), Velasco (1999a, 2000) and

Shimotsu and Phillips (2002). Based on the Whittle function, Robinson (1995b)

proposed another estimator, which is essentially a local ‘Whittle estimator’ in the

frequency domain, using a band of frequencies that degenerates to zero. The estimator is

implicitly defined by:

,log
1

2)(logminargˆ

1
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
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ddCd  (5)
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where I(s) is the periodogram of the raw time series, xt, given by:
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and d  (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions,

Robinson (1995b) proved that:

,)4/1,0()ˆ(  TasNddm do

where do is the true value of d. This estimator is robust to a certain degree of conditional

heteroskedasticity (Robinson and Henry, 1999) and is more efficient than other semi-

parametric competitors.

Although there exist further refinements of this procedure, (Velasco, 1999b,

Velasco and Robinson, 2000; Phillips and Shimotsu, 2004, 2005; etc.), these methods

require additional user-chosen parameters, and the estimates of d may be very sensitive

to the choice of these parameters. In this respect, the method of Robinson (1995b)

seems computationally simpler.

3.3 Parametric approaches

Estimating d parametrically along with the other model parameters can be done in the

frequency domain or in the time domain. In the time domain, Sowell (1992) analysed

the exact maximum likelihood estimator of the parameters of the ARFIMA model,

using a recursive procedure that allows quick evaluation of the likelihood function,

which is given by:

,
2

1
exp)2( 1'2/12/









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where   nn xxxX ,...,, 21 and  ,0~ NX n .5 Other parametric methods of estimating

d based on the frequency domain were proposed, among others, by Fox and Taqqu

(1986) and Dahlhaus (1989). Small sample properties of these and other estimators were

examined in Smith et al. (1997) and Hauser (1999). In the first of these articles, several

semi-parametric procedures were compared with Sowell’s maximum likelihood

estimation method, finding that Sowell’s (1992) procedure outperforms the semi-

parametric ones in terms of bias and mean square errors. Hauser (1999) also compares

Sowell’s (1992) procedure with others based on the exact and the Whittle likelihood

function in the time and the frequency domain, and shows that Sowell’s procedure

dominates the others in the case of fractionally integrated models.

In this paper we will employ a method suggested by Robinson (1994). There are

several reasons for using this method. First, it allows us to include deterministic terms

such as an intercept or a linear time trend unlike other methods such as Lo’s (1991)

non-parametric approach. Another advantage of this method is that it is valid for any

real value of d, therefore encompassing stationary (d < 0.5) and nonstationary (d ≥ 0.5)

hypotheses, unlike the methods described above that require first differencing to render

the series stationary prior to the estimation of d. Moreover, the limit distribution is

standard normal and is the most efficient method under Gaussianity of the error term.

We employ here the following model,

...,2,1,10  txty tt  (6)

,...,2,1,)1(  tuxL tt
d (7)

where ut is assumed to be I(0), and given the parametric nature of this method, ut has to

be specified in a parametric form, that may be a white noise process, or more generally,

5 See also Beran (1995), Tanaka (1999), Dolado, Gonzalo and Mayoral (2003) for other parametric
methods in the time domain.
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some type of weak autocorrelation (i.e, ARMA) structure. In this approach we test the

null hypothesis:

,: oo ddH 

for any real value do in (6) and (7), and the limit distribution is N(0, 1). The functional

form of the test statistic is presented in Appendix A.6

4. Empirical results

The time series data analysed in this section is real per capita US GDP, quarterly, for

the time period 1948Q1 – 2008Q3. We will present results based on both the original

time series and its (first-difference) log-transformation. Real GDP data (GDPC96) were

obtained from the US Department of Commerce_ Bureau of Economic Analysis

(http://www.bea.gov), while those of population were retrieved from the Civilian

Noninstitutional Population (CNP160V) obtained from the Department of Labor,

Bureau of Labor Statistics (http://www.bls.gov).

[INSERT FIGURE 1 ABOUT HERE]

Figure 1 displays plots of the time series and their first differences. Both series

appear to be nonstationary in levels, increasing over time. On the other hand, their first

differences have a stationary appearance. First, we perform the non-parametric methods

described in Section 3.1. The results based on Lo’s (1991) modified R/S statistic and

Giraitis et al.’s (2003) procedure are displayed in Table 1.

6 Empirical applications based on this procedure can be found for example, in Gil-Alana and Robinson,
(1997), Gil-Alana (2000, 2005), etc.

http://www.bea.gov/
http://www.bls.gov/
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[INSERT TABLE 1 ABOUT HERE]

Starting with real per capita GDP (in first differences), we cannot reject the null

of I(0) stationarity for any bandwidth parameter when using Lo’s (1991) modified R/S

statistic. Moreover, the estimated values of d are smaller than 0.10 in all cases. Using

the V/S statistic of Giraitis et al. (2003) the same evidence against long memory is

obtained for all bandwidth parameters. Performing the same type of analysis on the

growth rate series, evidence of short memory is obtained in all cases. Thus, using these

non-parametric procedures, there is no evidence of long memory in the first differences

of US real output (both the raw series and the one in logs).

[INSERT FIGURE 2 ABOUT HERE]

Next we compute the estimates of d based on the semi-parametric method of

Robinson (1995b). The results displayed in Figure 2 refer to d̂ in (5) for the whole

range of values of the bandwidth number m = 1, 2, …, T/2 (on the horizontal axis).7

Figure 2a refers to real per capita GDP while Figure 2b displays the estimates for the

growth rate, and, in both cases, we present the 95% confidence intervals corresponding

to the I(1) and the I(0) hypothesis respectively. The results are consistent in both cases.

Evidence of I(1) behaviour in real output (or, alternatively, I(0) in the growth rate) is

found if the bandwidth parameter is small. However, if m is higher than T/4, this

hypothesis is rejected in favour of higher orders of integration. If we focus on m = (T)1/2

≈ 16, the I(1) hypothesis cannot be rejected for the original series and the I(0) one for

the growth rate. Overall there is strong evidence against mean reversion (d < 1) for real

7 The choice of the bandwidth is crucial in view of the trade-off between bias and variance: the
asymptotic variance is decreasing with m while the bias is growing with m.
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per capita GDP, and we found some evidence of long memory (d > 0) in the growth

rate series if the bandwidth is large, a result that might be spurious and reflect the

neglected ARMA structure for the d-differenced process. However, a limitation of the

above approaches is that they do not allow the inclusion of deterministic terms such as

intercepts and linear trends. Thus, in what follows, we assume that the series have an

intercept and/or a linear time trend, and that it is the demeaned (detrended) series that

exhibits long memory. For this purpose we employ the parametric approach of

Robinson (1994) described in Section 3.3, assuming that the disturbances are white

noise and also autocorrelated. In particular, we consider the set-up in (6) and (7), testing

Ho (8) for do-values from -0.500 to 1.500 and 0.001 increments in the real per capita

output, and from -1.500 to 0.500 in the growth rate. In other words, the tested (null)

model is:

,...,2,1,)1(,10  tuxLxty tt
d

tt
o

with I(0) ut. Performing the statistic r̂ as given in Appendix A we should expect a

monotonic decrease in the value of the test statistic with respect to the values of do.

Such monotonicity is a consequence of the one-sided alternatives employed in this

procedure. Thus, for example, we would expect that if Ho (8) is rejected with do = 0.250

against the alternative Ha: d > 0.250, an even stronger rejection occurs when testing Ho

with do = 0.200.

[INSERT FIGURE 3 ABOUT HERE]

Figure 3 shows the values of the test statistic for the two cases of an intercept

and a linear time trend under white noise and AR(1) disturbances, as well as the

confidence bands for the non-rejection cases. It can be seen that, in the two cases of
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white noise disturbances, there is a monotonic decrease, and the values of do for which

Ho cannot be rejected (displayed in Table 2) range, for real per capita GDP, between

1.116 and 1.333 with an intercept and between 1.119 and 1.334 with a linear trend. For

the growth rate series, the non-rejection values are constrained between 0.152 and 0.394

with an intercept, and between 0.146 and 0.396 with a linear trend respectively. Thus,

although there are slight differences between the raw and the logged series, the

implications are the same in the two cases, with values above 1 for the two series in

levels.

In the case of autocorrelated errors, we observe a lack of monotonicity in the

values of the test statistic with respect to d: we obtain non-rejection values when d is

close to 0 and 1 but rejections for values in between. This may be explained by the low

power of this method if the roots of the AR polynomials are close to the unit circle. In

fact, this happens with all parametric procedures due to the competition between the

fractional differencing parameter and the AR parameters in describing the time

dependence. When employing higher AR orders we obtain essentially the same results.

[INSERT TABLE 2 ABOUT HERE]

We report in Table 2 the values of d that produce the lowest statistics in absolute

value. These values should be approximations to the maximum likelihood estimates

since Robinson’s (1994) method is based on the Whittle function, which is an

approximation to the likelihood function.8 Thus, we choose the values of d where the

test statistic crosses the 0-axis in the plots in Figure 3. For real per capita GDP the most

interesting case in view of the LR tests is the one with a linear time trend and AR(1) ut,

8 We also computed Sowell’s (1992) and Beran’s (1994) statistics, and the results were rather similar to
those reported here.
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with an estimated value of d of 0.312. In case of the growth rate series we observe that

the estimated value of d is also very sensitive to the choice of the error term. We obtain

values around 0.26 for the white noise case (and thus with values significantly above 1

for the undifferenced log-series), and anti-persistence (d < 0) in case of autocorrelated

disturbances with values of -0.622 (with an intercept) and -0.546 (with a linear trend).

Thus, according to these two specifications, the log-series are mean-reverting with

values of d equal to 0.378 (with an intercept) and 0.454 (with a linear time trend).

Based on the t-tests on the deterministic terms and LR tests on the specification

of the autocorrelated structure, we choose as potential models, for the real per capita

GDP, the following specification:

)85.189()86.141(

913.0,)1(,00014.001497.0 1
312.0

ttttttt uuuxLxty  

(t-values in parenthesis), and for the growth series,

)66.190(

,887.0,)1(,00497.0log)1( 1
622.0

ttttttt uuuxLxyL  


implying the latter equation an order of integration for the log-real per capita output of

about 0.378. Thus, evidence of mean reversion is obtained in the two cases, the

unlogged and the logged versions of real per capita US output.9

Overall, our findings are partially consistent with those of Mayoral (2006), who

using a long span of US data on both GNP and GNP per capita covering 133 years

reaches the conclusion that these series are highly persistent but mean-reverting series

that can be modelled as fractionally integrated processes, a result which is found to be

robust even when allowing for breaks in the deterministic component of the model. As

9 We also consider AR(k) processes with k = 2, 3 and 4 for the I(0) error term ut, and the results were in
all cases similar to the AR(1) case. Moreover, the orders of integration were in all cases in the interval (0,
0.5) for the two series in levels. We report in the paper the values for the AR(1) case since it produced the
lowest statistics.
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Mayoral (2006) points out, this evidence is inconsistent with endogenous growth

models, in the context of which permanent policy changes should have permanent

effects on economic growth. There is an important difference between our findings and

those of Mayoral (2006), namely our estimated orders of integration are all in the range

(0, 0.5) while in Mayoral (2006) they are in the interval [0.5, 1). An explanation for this

may be the different data frequency employed. Since Mayoral’s data are annual they are

characterised by a higher degree of aggregation which may induce a higher degree of

persistence in the data.

5. Long memory and structural change

In this section we take into account the possibility of a structural break in the data. This

is a relevant issue in the context of fractional integration since it has been argued by

many authors that fractional integration might be an artificial artefact generated by the

existence of breaks in the data (see, e.g., Cheung, 1993; Diebold and Inoue, 2001;

Giraitis et al., 2001; Mikosch and Starica, 2004; Granger and Hyung , 2004; etc.).

[INSERT TABLE 3 ABOUT HERE]

Table 3 displays for the two series the estimates of the break dates and the

deterministic terms along with the fractional differencing parameters using the

procedure developed by Gil-Alana (2008).10 We employ models with intercept and

intercepts with linear trends combined with white noise and AR(1) disturbances.

Employing higher AR orders leads essentially to the same results for both break dates

and fractional differencing parameters. Starting with the real per capita GDP series (in

10 This method is briefly described in Appendix B.
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Table 3a) we observe that the break date is found to occur at 1978Q2 in the four cases

examined, and the same break date is found for the growth rate series (see Table 3b) if

the disturbances are autocorrelated. We report in the table in bold the estimates

corresponding to the selected model for each series.11 Thus, for real per capita GDP the

selected model is

)553.10()437.19(

,...,1,774.0,)1(,00012.001551.0 *
1

490.0 TtuuuxLxty ttttttt   

and

)546.16()749.0(

...,,1,875.0,)1(,00020.000171.0 *
1

314.0 TTtuuuxLxty ttttttt   

and for the growth rate series,

)168.9(

,...,1,742.0,)1(,00556.0 *
1

416.0* TtuuuxLxy ttttttt
 

 

and

)793.16(

,...,1,876.0,)1(,00429.0 *
1

666.0* TtuuuxLxy ttttttt  
 

with *
ty = (1 - L)log(yt), and T* = 1978Q2 for the two series. Thus, we observe a

reduction in the degree of persistence (as measured by the fractional differencing

parameters) in the two cases, from 0.490 to 0.314 in case of the raw series, and from

0.584 to 0.334 in the log of GDP.

[INSERT FIGURE 4 ABOUT HERE]

11 As in the previous section the models were selected according to the t-values for the deterministic terms
along with LR tests.
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Figure 4 displays the impulse response functions and their corresponding 95%

confidence bands for the two series in the two subsamples. The results are similar for

the two series, a rapid decrease being observed in the post-1978 period.

[INSERT FIGURE 5 ABOUT HERE]

Figure 5 displays the estimated time trends for the two subsamples in the

original data and the two estimated intercepts in case of the growth rate series. We

observe that in the original series the estimated trends fit the data relatively well, and

there is some persistence in the deviations of the raw data from the trends that is

modelled through a stationary long-memory process.

6. Conclusions

This paper analyses the long memory properties of quarterly per capita real output in the

US using non-parametric, semi-parametric and parametric techniques. The results vary

substantially depending on the methodology employed. Evidence of fractional

integration with mean-reverting behaviour is obtained in a parametric context if the

underlying disturbances are weakly autocorrelated: shocks affecting the series revert to

the original trends though at a very slow hyperbolic rate. We also examine the

possibility of a structural break in the data and the results indicate that there is a slight

reduction in the degree of persistence after the break that is found to occur in the second

quarter of 1978.

Note that the approach employed in this article does not directly test the

hypothesis of fractional integration versus structural breaks as instead in Mayoral

(2006), who allows for breaks in the deterministic terms imposing the same degree of
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integration before and after the break(s). The same happens with other methods such as

those used by Robinson (1994), Hidalgo and Robinson (1996) and Lazarova (2005),

which allow breaks in the deterministic components with long-memory innovations.

Unlike these approaches, we allow different orders of integration before and after the

break date. Other methods such as Ohanissian et al. (2008) can also be employed,

though this method exploits the invariance property of the long-memory parameter for

temporal aggregation. However, the present paper does not deal with temporal

aggregation since it focuses exclusively on quarterly data. Moreover, Ohanissian et al.’s

(2008) method is semi-parametric (and based on Geweke and Porter-Hudak’s 1983

approach) while we employ purely parametric specifications in the presence of a break.

An interesting extension of our analysis would be to estimate a more flexible model for

the break, for instance incorporating Markov switching along with fractional

integration. However, at present the necessary theory is still missing and no procedure is

available to jointly estimate the parameters in such a model. Work in this direction is

now in progress.
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Appendix A

The LM test of Robinson (1994) for testing Ho: d = do, in (6) and (7) is
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â and Â in the above expressions are obtained through the first and second derivatives

of the log-likelihood function with respect to d (see Robinson, 1994, page 1422, for

further details). I(j) is the periodogram of ut evaluated under the null, i.e.:

;'ˆ)1(ˆ tt
od

t wyLu  ,)1(;)1('ˆ

1

1

1
t

od
t

T

t
t

od
t

T

t
tt zLwyLwww  
















zt = (1, t)T, and g is a known function related to the spectral density function of ut:

.),;(
2

);;(
2

2 



  gf

Appendix B

We examine a model of the form:

btt
d

tt TtuxLxty ,...,1,)1(; 1
11   ,

,,...,1,)1(; 2
22 TTtuxLxty btt

d
tt  

where the 's and the 's are the coefficients corresponding respectively to the

intercepts and the linear trends; d1 and d2 may be real values, ut is I(0), and Tb is the

time of a break that is supposed to be unknown. This model can also be written as:
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~
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it  i = 1, 2.

The procedure is based on the least square principle. First we choose a grid for the

values of the fractionally differencing parameters d1 and d2, for example, dio = 0, 0.01,

0.02, …, 1, i = 1, 2. Then, for a given partition {Tb} and given initial d1, d2-values,
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Let )d,d;T(ˆ )1(
o2

)1(
o1b and )d,d;T(ˆ )1(

o2
)1(

o1b denote the resulting estimates for partition

{Tb} and initial values )1(
o1d and )1(

o2d . Substituting these estimated values into the

objective function, we have RSS(Tb;
)1(

o1d , )1(
o2d ), and minimising this expression for all

values of d1o and d2o in the grid we obtain )T(RSS b ,dT(RSSminarg )i(
o1;b}j,i{

).d )j(
o2 Then, the estimated break date,

k
T̂ , is such that )T(RSSminargT̂ im...,,1ik  ,

where the minimisation is done over all partitions T1, T2, …, Tm, such that Ti - Ti-1 

T. Then, the regression parameter estimates are the associated least-squares estimates

of the estimated k-partition, i.e., }),T̂({ˆˆ
kii  }),T̂({ˆˆ

kii  and their corresponding

differencing parameters, }),T̂({d̂d̂ kii  for i = 1 and 2.
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Figures and Tables

Figure 1: Time series plots
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Table 1: Non-parametric statistics for long memory

a) Real per capita GDP (in first differences)

0 1 2 3 4 5 10 50 100 q*

Lo’s mod.
(1991)

1.6124
(0.0870)

1.4362
(0.0659)

1.3233
(0.0510)

1.2632
(0.0425)

1.2300
(0.0377)

1.2182
(0.0870)

1.2273
(0.0373)

1.5494
(0.0797)

1.7049
(0.0972)

1.2182
(0.0870)

Giraitis et
al. (2003)

0.1200 0.0952 0.0808 0.0736 0.0698 0.0685 0.0695 0.1108 0.1342 0.0685

a) Real per capita GDP growth

0 1 2 3 4 5 10 50 100 q*

Lo’s mod.
(1991)

1.4351
(0.0651)

1.2457
(0.0400)

1.1421
(0.0242)

1.0933
(0.0162)

1.0764
(0.0134)

1.0779
(0.0136)

1.1154
(0.0199)

1.4420
(0.0669)

1.5130
(0.0754)

1.0851
(0.0148)

Giraitis et
al. (2003)

0.0863 0.0650 0.0546 0.0501 0.0485 0.0487 0.0521 0.0876 0.0959 0.0493

In Lo’s (1991) modified R/S statistic, the 95% confidence interval with equal probabilities in both tails is [0.809, 1.862]. The
values in parentheses refer to the estimates of the d’s. In Giraitis et al. (2003), the critical value at the 5% level is 0.1869.
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Figure 2: Whittle estimates of d based on a semiparametric method (Robinson, 1995)

a) Real per capita GDP

0

0,4

0,8

1,2

1,6

2

1 10 19 28 37 46 55 64 73 82 91 100 109 118

b) Real per capita GDP growth

-0,8

-0,4

0

0,4

0,8

1 10 19 28 37 46 55 64 73 82 91 100 109 118

The horizontal axis refers to the bandwidth parameter while the vertical one displays the estimates of d.
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Figure 3: Estimates of d with Robinson (1994) for a range of values of d

a) Real per capita GDP
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The horizontal axis refers to the range of values of d under Ho. The vertical one displays the values of the test
statistic, and the bold lines refer to the 95% non-rejection bands.
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Table 2: Estimates of d based on a parametric approach (Robinson, 1994)

a) Real per capita GDP

Intercept Linear time trend

White noise 1.212
(1.116, 1.333)

1.215
(1.119, 1.334)

-0.014
(-0.356, -0.156)

0.312
(0.196, 0.489)

0.794
(0.757, 1.423)

---AR (1)

0.985
(0.956, 1.423)

---

b) Real per capita GDP growth

Intercept Linear time trend

White noise
0.260

(0.152, 0.394)
0.258

(0.146, 0.396)

AR (1) -0.622
(-0.812, -0.409)

-0.546
(-0.696, -0.390)

In parenthesis the 95% confidence band for the values of d. In bold the best model specification for each
series.
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Table 3: Estimates of the coefficients in a model with a single break (Gil-Alana, 2008)

a) Real per capita GDP

Break
date

First Subsample Second subsample

d1 α1 β1 ρ1 d2 α2 β2 ρ2

Int + WN 1978Q2 1.328 0.01567
(66.689)

--- --- 1.296 0.03108
(127.09)

--- ---

Int + AR 1978Q2 1.236 0.01502
(21.787)

--- 0.109 1.390 0.03050
(36.424)

--- -0.187

TT + WN 1978Q2 1.269 0.01562
(63.348)

0.00011
(1.668)

--- 1.207 0.01372
(2.003)

0.00014
(2.537)

---

TT + AR 1978Q2 0.490 0.01551
(19.437)

0.00012
(10.553)

0.774 0.314 0.00171
(0.749)

0.00020
(16.546)

0.875

b) Real per capita GDP growth

Break
date

First Subsample Second subsample

d1 α1 β1 ρ1 d2 α2 β2 ρ2

Int + WN 1965Q4 0.340 0.00801
(1.617)

--- --- 0.197 0.00358
(2.355)

--- ---

Int + AR 1978Q2 -0.416 0.00556
(9.168)

--- 0.742 -0.666 0.00429
(16.793)

--- 0.876

TT + WN 1982Q4 0.238 0.00895
(2.091)

-0.00006
(-1.292) --- 0.219 0.01981

(3.190)
-0.00007
(-2.343)

---

TT + AR 1978Q2 -0.477 0.00827
(6.078)

-0.00004
(-2.063)

0.741 -0.666 0.00443
(1.715)

0.0000008
(-0.057)

0.875

Int = intercept; TT = Time trend; WN = White noise and AR = Autoregression. In bold the selected model for each series.
t-values in parentheses.
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Figure 4: Impulse response functions and 95% confidence intervals
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The thin lines refer to the 95% confidence bands for the impulse responses.
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Figure 5: Time series plots and their estimated deterministic terms
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