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Abstract. A class of autonomous Kolmogorov systems that are dissipative and com-
petitive with the origin as a repellor are considered when each nullcline surface is either
concave or convex. Geometric method is developed by using the relative positions of the
upper and lower planes of the nullcline surfaces for global asymptotic stability of an in-
terior or a boundary equilibrium point. Criteria are also established for global repulsion
of an interior or a boundary equilibrium point on the carrying simplex. This method
and the theorems can be viewed as a natural extension of those results for Lotka-Volterra
systems in the literature.

Note. This is the paper accepted by Dynamical System (an international jour-
nal) on 27th November 2018 and it will be available at the following perma-
nent link: https://doi.org/10.1080/14689367.2018.1554030 in late 2018 or early
2018.

1. Introduction

In this paper, we consider differential systems of the form

(1) ẋi = xiFi(x), i ∈ IN = {1, 2, . . . , N},
known as Kolmogorov systems. Since such systems typically model populations of species,
genes, molecules, and so on, where each xi denotes the population size and Fi the intrinsic
growth rate of the ith species, the phase space for the study of (1) is restricted to the first
orthant RN+ or an invariant subset of RN+ . We assume that F : RN+ → RN is at least C1.
Some particular class of examples include Lotka-Volterra systems where each Fi is an affine
function,

(2) ẋi = rixi(1− ai1x1 − · · · − aiNxN ), i ∈ IN ,
Gompertz models where each Fi has the form Fi(y) = ri ln 1

y ,

(3) ẋi = rixi ln
1

ai1x1 + · · ·+ aiNxN
, i ∈ IN ,

1991 Mathematics Subject Classification. Primary: 37B25; Secondary: 37C70, 34D23, 34D05, 92D25.
Key words and phrases. equilibrium point, global attraction, global repulsion, global asymptotic stability,

geometric method.

1



2 ZHANYUAN HOU

Leslie/Gower (or Atkinson/Allen) models where each Fi has the form Fi(y) = ci

(
1+ri
ri+y
− 1
)

,

(4) ẋi = cixi

(
1 + ri

ri + ai1x1 + · · ·+ aiNxN
− 1

)
, i ∈ IN ,

Ricker models where each Fi has the form Fi(y) = ci(e
ri(1−y) − 1),

(5) ẋi = cixi(exp[ri(1− ai1x1 − · · · − aiNxN )]− 1), i ∈ IN .

There is an extensive literature in population ecology and dynamical systems on (1) and
its various particular cases. To name a few, Hirsch [2, 3, 4] investigated the dynamics of
competitive and cooperative systems and Zeeman [14] studied bifurcations in competitive
Lotka-Volterra systems focusing on three-dimensional cases. Hirsch [4] showed that com-
petitive dissipative systems with the origin as a repellor has a global attractor Σ on RN+ \{0},
where Σ is homeomorphic to the standard (N − 1)-simplex ∆N−1 by radial projection.
Zeeman [14] called Σ carrying simplex and used geometric analysis of nullclines of Lotka-
Volterra systems to classify three-dimensional systems with stable nullclines into 33 classes,
the dynamics of each class has a clear description on Σ. Similar to [14], Jiang, Niu and Zhu
[11] did a complete classification of nullcline stable competitive three-dimensional Gom-
pertz models. Jiang and Niu [10] further extended such classification to three-dimensional
competitive systems with linearly determined nullclines including (2)–(5) and more. For a
wider survey, see the above articles and the references cited therein.

Here we are concerned with the asymptotic behaviour of (1) when there is an equilibrium
point p ∈ RN+ that is globally attracting or repelling. For Lotka-Volterra systems, a criteron
by Lyapunov function method is known for global asymptotic stability of a boundary or
interior equilibrium point (see Theorem 3.2.1 in [12]). For competitive Lotka-Volterra
systems, Zeeman and Zeeman [15] developed the split Lyapunov function method and
provided sufficient conditions for an interior equilibrium point to be a global attractor or
a global repellor. Hou and Baigent [5, 1] further developed the split Lyapunov function
method and extended the above results for global attraction or repulsion to a boundary as
well as interior equilibrium point of Lotka-Volterra systems that may not be competitive.
In [6], the authors applied the Lyapunov function method and the split Lyapunov function
method to dissipative systems (1) with both 0 and ∞ as repellors in RN+ , and obtained
criteria for global asymptotic stability or global repulsion of an equilibrium point. These
results can be viewed as further extension of [15, 5, 1] from Lotka-Volterra systems to
Kolmogorov systems (1). Yu, Wang and Lu [13] obtained sufficient conditions for global
stability of three-dimensional competitive Gompertz models. For Lotka-Volterra systems,
there are also results for global repulsion or attraction by methods that are not using
Lyapunov functions. For example, Hou used geometric method for global attraction [7, 8]
and global repulsion [9].
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In this paper, we are going to deal with a class of competitive dissipative systems (1) that
has a carrying simplex Σ and each nullcline is a concave or convex surface. By using geo-
metric analysis of such nullclines, we provide sufficient conditions for an equilibrium point
p ∈ RN+ \ {0} to be globally asymptotically stable or for p to be globally repelling.

The rest of the paper is organised as follows: 2. System description and notation. 3.
Geometric method for global stability. 4. Proof of Theorem 3.1. 5. Geometric method for
global repulsion. 6. Proof of Theorem 5.1. 7. Conclusion.

2. System description and notation

For convenience, we rewrite system (1) as

(6) ẋ = f(x) ≡ D[x]F (x), x ∈ RN+ ,

where D[x] = diag[x1, . . . , xN ] and F ∈ C1(RN+ ,RN ). Let intRN+ denote the interior of RN+ .

For any x, y ∈ RN , we write x� y or y � x if y−x ∈ intRN+ , x ≤ y or y ≥ x if y−x ∈ RN+ ,

and x < y or y > x if x ≤ y but x 6= y. We view each x ∈ RN as a column vector and
use xT as the transpose of x. With a slight abuse of notation, we shall use 0 for scalar and
vector zero as well as the origin in RN .

Throughout the paper we assume that (6) meets the following assumptions:

(A1) F (0)� 0 so that the origin 0 is a repellor.

(A2) The system is dissipative: there is a compact invariant set that attracts uniformly
each compact set of initial points.

(A3) The system is competitive: ∂Fi
∂xj
≤ 0 for all i, j ∈ IN with i 6= j.

(A4) ∂Fi
∂xj

(p) < 0 for every fixed point p ∈ RN+ \ {0} and all i, j ∈ IN .

Then the basin of repulsion of 0 in RN+ , Br(0) = {x ∈ RN+ : α(x) = {0}}, is a bounded open

set of RN+ and Σ = ∂Br(0) \ Br(0) is known as the carrying simplex. The theorem below
(see Theorem 1.7 in [4] or Theorem 2.1 in [14]) describes the dynamics of (6) in terms of
Σ.

Theorem 2.1. Under the assumptions (A1)–(A4), every trajectory in RN+ \ {0} is asymp-
totic to one in Σ, and Σ is a Lipschitz submanifold homeomorphic to the unit simplex in
RN+ by radial projection.

Now we explain some concepts that will be used later. Let G ∈ C1(RN+ ,R) such that, for
some α in the range of G,

(7) Γ = {x ∈ RN+ : G(x) = α}

is a connected (N − 1)-dimensional surface restricted to RN+ . Suppose that RN+ is divided
into three mutually exclusive connected subsets Γ−, Γ and Γ+ with 0 ∈ Γ−. Then a point
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x ∈ RN+ is said to be below (on or above) Γ if x ∈ Γ− (x ∈ Γ or x ∈ Γ+); a nonempty set

S ⊂ RN+ is said to be below (on or above) Γ if S ⊂ Γ− ∪Γ (S ⊂ Γ or S ⊂ Γ+ ∪Γ); S ⊂ RN+
is said to be strictly below (above) Γ if S ⊂ Γ− (S ⊂ Γ+).

The function G is said to be convex if G(sx + (1 − s)y) ≥ sG(x) + (1 − s)G(y) holds for
any two points x, y in its domain and all s ∈ [0, 1]. For a surface Γ with the division of RN+
into Γ−, Γ and Γ+, Γ is said to be convex (concave) if for any distinct points x, y ∈ Γ, the
line segment xy = {tx+ (1− t)y : 0 ≤ t ≤ 1} is contained in Γ− ∪ Γ (Γ+ ∪ Γ). Recall that
a nonempty set S ⊂ RN+ is called convex if xy ⊂ S for all x, y ∈ S. From these concepts
we obtain some observations summarised in the following proposition.

Proposition 2.2. Assume that Γ defined by (7) divides RN+ into Γ−,Γ and Γ+ as described
above. Then the following statements are true.

(i) If Γ is a plane in RN+ \ {0} then it is both convex and concave.

(ii) The surface Γ is convex if and only if the set Γ− ∪ Γ is convex; Γ if concave if and
only if Γ ∪ Γ+ is convex.

(iii) If the function G is convex with G(0) = maxx∈RN
+
G(x), then Γ is also convex for

any α < G(0) in the range of G.

(iv) If the function −G is convex with G(0) = minx∈RN
+
G(x), then Γ is also convex for

any α > G(0) in the range of G.

(v) If the function G is convex with G(0) = minx∈RN
+
G(x), then Γ is concave for any

α > G(0) in the range of G.

(vi) If the function −G is convex with G(0) = maxx∈RN
+
G(x), then Γ is concave for any

α < G(0) in the range of G.

The proof of Proposition 2.2 can be found in the Appendix at the end of this paper.

For any point u ∈ Γ, the tangent plane of Γ at u is

(8) Tu(Γ) = {x ∈ RN+ : ∇G(u)(x− u) = 0}

if ∇G(u) 6= 0, where ∇G(u) = ( ∂G∂u1 , . . . ,
∂G
∂uN

) is viewed as a row vector. Denote the

positive half xi-axis by Ji for all i ∈ IN . Next, we assume that Γ intersects at least one
of the half axes Ji. If Γ ∩ Ji 6= ∅, we assume that Ri is the unique intersection point, i.e.
Γ∩ Ji = {Ri}. If Γ∩ Ji = ∅, we say that the point Ri does not exist. Now let L(Γ) be the
(N −1)-dimensional plane in RN+ determined by these intersection points: If Ri exists then
Ri ∈ L(Γ), if Ri does not exist then L(Γ) is parallel to the half axis Ji. Then the relative
positions of Tu(Γ),Γ and L(Γ) are clear from the proposition below when Γ is convex or
concave.

Proposition 2.3. (a) Suppose Γ given by (7) is convex. Then Γ is above L(Γ) but below
Tu(Γ) for any u ∈ Γ. (b) Suppose Γ is concave and, if Γ ∩ Jj = ∅ for some j ∈ IN , for



GLOBAL STABILITY AND REPULSION 5

any point w ∈ Γ, the half line L(w)j passing through w and parallel to Jj is contained in

Γ ∪ Γ+. Then Γ is below L(Γ) and, for any u ∈ Γ with ∇G(u)u 6= 0, Γ is above Tu(Γ).

The proof of Proposition 2.3 is also left to the Appendix.

For each i ∈ IN , the ith nullcline surface of (6) is defined by

(9) Γi = {x ∈ RN+ : Fi(x) = 0}.

If RN+ is divided into three mutually exclusive connected subsets Γ−i , Γi, Γ+
i then the

assumptions (A1)–(A3) imply that ẋi > 0 for x ∈ Γ−i and ẋi < 0 for x ∈ Γ+
i . The ith

coordinate plane is denoted by

(10) πi = {x ∈ RN+ : xi = 0}.

For any u, v ∈ RN+ with u ≤ v, i ∈ IN , and I ⊂ IN , define

[u, v] = {x ∈ RN+ : u ≤ x ≤ v},(11)

RN+ (u) = {x ∈ RN+ : x ≥ u},(12)

πi(u) = {x ∈ RN+ (u) : xi = ui},(13)

S(u, vi) = {x ∈ RN+ (u) : xi ≥ vi},(14)

S0(u, vi) = {x ∈ RN+ (u) : xi > vi},(15)

C0
I = {x ∈ RN+ : ∀i ∈ I, xi = 0;∀j ∈ IN \ I, xj > 0},(16)

RI = {x ∈ RN+ : ∀j ∈ IN \ I, xj > 0}.(17)

Then RN+ (0) = RN+ , πi(0) = πi, C
0
IN

= {0}, C0
∅ = intRN+ = R∅ and RIN = RN+ . For any

nonempty set A ⊂ RN and ε > 0, the ε-neighbourhood of A is denoted by

(18) B(A, ε) = {x ∈ RN : ‖x− a‖ < ε for some a ∈ A}.

Suppose p ∈ C0
I with I 6= IN is an equilibrium point. Then p ∈ Σ. We say that p is

globally attracting if limt→+∞ x(x0, t) = p for all x0 ∈ RI ; p is globally repelling if for all
x0 ∈ (Σ \ {p})∩RI , we have ω(x0) ⊂ (∪j∈IN\Iπj)∩Σ and α(x0) = {p}; p is called globally

asymptotically stable if p is globally attracting and p is locally asymptotically stable in RN+ .

Note that since Σ is a global attractor of (6) in RN+ \ {0}, if p is globally repelling, p is
essentially repelling on Σ ∩ RI . So we also say that p is globally repelling on Σ.

3. Geometric method for global stability

In this section, we assume that p ∈ RN+ \ {0} is a nontrivial equilibrium point of (6) with
support J = {j ∈ IN : pj > 0}, i.e. p ∈ C0

I for I = IN \ J 6= IN . Then p is an interior
equilibrium if J = IN or on the boundary ∂RN+ if J is a proper subset of IN . We call p
saturated if Fi(p) ≤ 0 for all i ∈ IN . Then, from the fact that Fi(p) is an eigenvalue of the
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Jacobian matrix Df(p) if i ∈ IN \J , it follows that a necessary condition for p to be stable
is that p must be saturated.

Now assume that p is a saturated equilibrium point. For each i ∈ IN , if Fi(p) = 0 then p
is on the ith nullcline surface

(19) Γi = {x ∈ RN+ : Fi(x) = 0}

and Γi at p has a tangent plane

(20) Li(p) = {x ∈ RN+ : ∇Fi(p)(x− p) = 0}

as ∇Fi(p) 6= 0 by (A4). We assume that on each positive half xi-axis, Ji, (6) has a unique
equilibrium point Ri, i.e. Γi ∩ Ji = {Ri}. Assume also that each Γi has at most one

intersection point Rij with Jj for each j ∈ IN (Rii = Ri). Let L̃i be the plane in RN+
determined by the intersection points Rij of Γi with the coordinate axes: If Γi intersects

Jj at a point Rij then Rij ∈ L̃i; if Rij does not exist then L̃i is parallel to Jj . Note that
(A4) implies that ∇Fi(p) � 0 and p > 0 so ∇Fi(p)p < 0. If Γi ∩ Jj = ∅, then, for any

point w ∈ Γi, since Fi(w) = 0 and ∂Fi
∂xj
≤ 0 by (A3), Fi(x) is nonincreasing on L(w)j so

Fi(x) ≤ Fi(w) = 0 for all x ∈ L(w)j . Thus, L(w)j ⊂ Γi ∪ Γ+
i . Then, if Γi is convex or

concave, from Proposition 2.3 we see that Γi is between Li(p) and L̃i: if Γi is convex then

it is below Li(p) but above L̃i; if Γi is concave then it is above Li(p) but below L̃i.

Suppose Fi(p) < 0 for some i ∈ IN \ J . Then p is above Γi so the plane Li(p) is not

tangent to Γi. If Γi is concave then it is below L̃i. However, if Γi is convex, we may further
assume that Fi is a convex function with Fi(0) = maxx∈RN

+
Fi(x) so that, by Proposition

2.2 (iii), both Γi and the surface {x ∈ RN+ : Fi(x) = Fi(p)} are convex surfaces and the

former is below the latter. Note that Li(p) is tangent to {x ∈ RN+ : Fi(x) = Fi(p)} at p

so {x ∈ RN+ : Fi(x) = Fi(p)} is below Li(p). Then Γi is also below Li(p). Hence, we can
always find a plane above Γi if p is above Γi.

Now for each k ∈ IN , define an upper plane Luk by Luk = L̃k if Γk is concave or Luk = Lk(p)

if Γk is convex and, for each j ∈ J , define a lower plane Llj by Llj = Lj(p) if Γj is concave

or Llj = L̃j if Γj if convex. Then each convex or concave Γi is below Lui for all i ∈ IN but

is above Lli for all i ∈ J .

Let A = (aij) and B = (bij) be N ×N matrices with real entries such that

Lui = {x ∈ RN+ : (Ax)i = 1}, i ∈ IN ,(21)

Lli = {x ∈ RN+ : (Bx)i = 1}, i ∈ J.(22)

Then the entries of A and B can be determined as follows. First, suppose Γi is concave,
so we have Lui = L̃i and Lli = Li(p). If Γi intersects the half axis Jj at the point Rij with
rij > 0 as its jth component, then aijrij = 1 so aij = 1

rij
; if Γi does not intersect Jj then
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aij = 0. So aij is defined by

(23) aij =

{
0 if Γi does not intersect Jj ,
1
rij

if the jth component ofRij is rij .

Since Li(p) has the equation ∇Fi(p)(x− p) = 0, we have ∇Fi(p)x = ∇Fi(p)p so (Bx)i = 1
with

(24) (Bx)i = (∇Fi(p)p)−1∇Fi(p)x,

i.e. (∇Fi(p)p)−1∇Fi(p) is taken to be the ith row of B. If Γi is convex then Lui = Li(p)

and Lli = L̃i. In this case, we have

(25) (Ax)i = (∇Fi(p)p)−1∇Fi(p)x,

i.e. (∇Fi(p)p)−1∇Fi(p) is taken to be the ith row of A, and bij is given by

(26) bij =

{
0 if Γi does not intersect Jj ,
1
rij

if the jth component ofRij is rij .

Note from (A4) that ∂Fi
∂xj

(p) < 0 for all i, j ∈ IN so that ∇Fi(p)p =
∑N

j=1
∂Fi
∂xj

(p)pj < 0.

Thus, (∇Fi(p)p)−1∇Fi(p)� 0. Then, from (A1)–(A4), (23)–(26) and the assumptions we
see that

(27) ∀i, j ∈ IN , aii > 0 and aij ≥ 0.

Let

(28) Y =

(
1

a11
, . . . ,

1

aNN

)T
.

For any subset K ⊂ IN and u ∈ RN , the point uK ∈ RN is defined by

(29) uKi =

{
ui if i ∈ K,
0 if i ∈ IN \K.

We are now in a position to state the main result of this section in geometric terms.

Theorem 3.1. Assume that the following conditions hold.

(a) System (6) has a saturated equilibrium point p ∈ RN+ \ {0} with support J ⊂ IN .

(b) For each i ∈ IN , the nullcline surface Γi is either concave or convex, and if Fi(p) <
0 with Γi convex, the function Fi is also convex with Fi(0) = maxx∈RN

+
Fi(x).

(c) For each i ∈ J , either the point Y IN\{i} is below Lli or the set Lli ∩ [0, Y IN\{i}] is
strictly above Luj for all j ∈ IN \ {i}.

Then p is globally attracting. If, in addition, all eigenvalues of the Jacobian matrix Df(p)
have negative real parts, then p is globally asymptotically stable.
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Remark 1. If p is a boundary equilibrium point with Fi(p) < 0 for some i ∈ IN \J and Γi is
convex, p is above Γi. As Fi(0) > 0 and Fi is continuous, there is a number si ∈ (0, 1) such
that Fi(sip) = 0. Since sip ∈ Γi, Li(sip) is a tangent plane of Γi at sip. By the convexity of
Γi, Γi is below Li(sip). Thus, as an alternative to the part of the condition (b) in Theorem
3.1, instead of requiring Fi to be a convex function, we may define Lui = Li(sip) with

(Ax)i = (∇Fi(sip)sip)−1∇Fi(sip)x

and require the inequalities in (27) hold.

Remark 2. Since Lli is described by the equation (Bx)i = 1 and Luj by the equation

(Ax)j = 1, condition (c) in Theorem 3.1 is ensured by the following inequalities: For each
i ∈ J , either

(30) (BY IN\{i})i < 1

or

(31) ∀j ∈ IN \ {i},max

{
0,
bij
ajj

(1− (AY IN\{i,j})j)

}
< 1− (BY IN\{i,j})i.

Indeed, it is obvious that (30) holds if and only if Y IN\{i} is below Lli. Since Lui and Lli
have equations

(Ax)i ≡ ai1x1 + ai2x2 + · · ·+ aiNxN = 1,

(Bx)i ≡ bi1x1 + bi2x2 + · · ·+ biNxN = 1

respectively and Lli is below Lui , we must have

∀i, j ∈ IN , aij ≤ bij .

If Y IN\{i} is not below Lli, then Y IN\{i} is on or above Lli so (BY IN\{i})i ≥ 1. If (31) holds,
then

(AY IN\{i,j})i ≤ (BY IN\{i,j})i < 1

so Y IN\{i,j} is below Lli for all j ∈ IN \ {i}. Thus, the line segment [Y IN\{i,j}, Y IN\{i}]

and the plane Lli have a unique intersection point Qj with 1
bij

(1− (BY IN\{i,j})i) as its jth

component. From (31) we obtain

1

ajj
(1− (AY IN\{i,j})j) <

1

bij
(1− (BY IN\{i,j})i).

If the expression on the left-hand side of the above inequality is negative, then [Y IN\{i,j}, Y IN\{i}]
is strictly above Luj so Qj is above Luj . Otherwise, since the expression on the left-hand
side of the above inequality is the jth component of the intersection point of the plane Luj
with the line segment [Y IN\{i,j}, Y IN\{i}], the above inequality shows that Qj is above Luj
for all j ∈ IN \ {i}. In particular, Y IN\{i} is above Luj for every j ∈ IN \ {i}. For each

k ∈ IN \ {i, j},
(AY IN\{i,j})k ≥ akkYk = 1
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so Y IN\{i,j} is on or above Luk . Thus, tY IN\{i,j}+(1− t)Y IN\{i} is above Luk for all t ∈ [0, 1)

and k ∈ IN \ {i, j}. Therefore, for all j, k ∈ IN \ {i}, Qj is above Luk . Since [0, Y IN\{i}]∩Lli
is the convex hull determined by Qj for all j ∈ IN \ {i}, [0, Y IN\{i}] ∩ Lli is strictly above
Luk for all k ∈ IN \ {i}.

For a particular class of systems (6) when each Γi is a plane, condition (b) in Theorem 3.1

is met as Γi is both concave and convex. Since Γi, L̃i (and Li(p) if p ∈ Γi) will coincide, in
condition (c) we shall use Γi instead of Lui and Lli.

Corollary 3.2. Assume that the following conditions hold.

(a) System (6) has a saturated equilibrium point p ∈ RN+ \ {0} with support J ⊂ IN .

(b) For each i ∈ IN , the nullcline surface Γi is a plane.

(c) For each i ∈ J , either the point Y IN\{i} is below Γi or the set Γi ∩ [0, Y IN\{i}] is
strictly above Γj for all j ∈ IN \ {i}.

Then p is globally attracting. If, in addition, all eigenvalues of the Jacobian matrix Df(p)
have negative real parts, then p is globally asymptotically stable.

Remark 3. When each Γi is a plane in RN+ with equation (Ax)i = 1, from Remark 2 we
see that condition (c) in Corollary 3.2 is guaranteed by the following inequalities: For each
i ∈ J , either

(32) (AY IN\{i})i < 1

or

(33) ∀j ∈ IN \ {i}, max

{
0,
aij
ajj

(1− (AY IN\{i,j})j)

}
< 1− (AY IN\{i,j})i.

Example 3.3. Consider the Ricker model (5) with N = 3, ri > 0, ci > 0 and

A =

 1 1
4

1
2

1
2 1 1

4
1
4

1
2 1

 .

It has an interior equilibrium p = (47 ,
4
7 ,

4
7)T and Y = (1, 1, 1)T . Since (AY {2,3})1 = 1

4 + 1
2 =

3
4 < 1, (AY {1,3})2 = 1

4 + 1
2 = 3

4 < 1 and (AY {1,2})3 = 1
4 + 1

2 = 3
4 < 1, (32) holds. Then,

from Corollary 3.2 and Remark 3, p is globally attracting. In addition, if each eigenvalue
of Df(p) has a negative real part, then p is globally asymptotically stable.

Note that the conditions (32) and (33) can be applied to any one of the systems (2)–(5).
In particular, for Lotka-Volterra system (2), these are consistent with the conditions given
in [7].

Example 3.4. Consider the system

ẋi = xi[1− a1 ln(1 + xi)− a2 ln(1 + xi+1)− · · · − aN ln(1 + xi+N−1)] = xiFi(x),
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for i ∈ IN and x ∈ RN+ , where the aj are positive constants and xj+N = xj . The system

has an interior equilibrium point p = p0(1, . . . , 1)T with

p0 = e1/(a1+···+aN ) − 1.

Since ln(1 + su+ (1− s)v) ≥ s ln(1 + u) + (1− s) ln(1 + v) for u ≥ 0, v ≥ 0 and 0 ≤ s ≤ 1,
each Fi satisfies

∀x, y ∈ RN+ , Fi(sx+ (1− s)y) ≤ sFi(x) + (1− s)Fi(y).

This shows that Γi = {x ∈ RN+ : Fi(x) = 0} is concave. Then

∂F

∂x
(p) = − 1

1 + p0


a1 a2 · · · aN
aN a1 · · · aN−1
· · · · · · · · · · · ·
a2 a3 · · · a1

 .

By (24),

B =

(
D

[
∂F

∂x
(p)p

])−1∂F
∂x

(p) = p−10

( N∑
i=1

ai

)−1
a1 a2 · · · aN
aN a1 · · · aN−1
· · · · · · · · · · · ·
a2 a3 · · · a1

 .

The intersection points of Γ1 with the coordinate axes are

(e1/a1 − 1, 0, . . . , 0)T , (0, e1/a2 − 1, . . . , 0)T , . . . , (0, . . . , 0, e1/aN − 1)T .

Thus, from (23),

A =


a′1 a′2 · · · a′N
a′N a′1 · · · a′N−1
· · · · · · · · · · · ·
a′2 a′3 · · · a′1

 , a′i =
1

e1/ai − 1
> 0.

Clearly, aij > 0 for all i, j ∈ IN so (27) holds. By (28), Y = (e1/a1 − 1)(1, . . . , 1)T . Note
that A and B are both circulant matrices. Then (30) becomes

(34)

( N∑
i=2

ai

)
(e1/a1 − 1) <

( N∑
i=1

ai

)
(e1/(a1+···+aN ) − 1)

and (31) becomes

max

{
0, p−10

( N∑
i=1

ai

)−1
aj(e

1/a1 − 1)

[
1− (e1/a1 − 1)

∑
k∈IN\{1,j}

a′k

]}

< 1− (e1/a1 − 1)p−10

( N∑
i=1

ai

)−1 ∑
k∈IN\{1,j}

ak, ∀j ∈ IN \ {1}.(35)

By Remark 2 and Theorem 3.1, if either (34) or (35) holds, then p is globally attracting.
We observe that for fixed a1 > 0, (34) holds when a2, . . . , aN are small enough.
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4. Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into three steps.

Proof of Theorem 3.1. Step 1. We first show that ω(x0) ⊂ [0, Y ] for all x0 ∈ RN+ . For

each i ∈ IN and every x ∈ RN+ with xi > Yi, x is above Lui . Since Lui is above Γi, we have

x ∈ Γ+
i so ẋi = xiFi(x) < 0 due to Fi(0) > 0 by (A1). Thus, for any δ > 0, the flow of the

system will be transversal to the plane xi = Yi + δ downwardly, so ω(x0) is strictly below
the plane xi = Yi + δ for all x0 ∈ RN+ . Therefore, ω(x0) ⊂ [0, Y ] for all x0 ∈ RN+ .

Step 2. Assume that ω(x0) ⊂ [u, v] ⊂ [0, Y ] for all x0 ∈ RI . If for v′ with v′i = ui for some
i ∈ J and v′j = vj for all j ∈ IN \{i}, either v′ is below Lli or [u, v′]∩Lli is strictly above Luj
for all j ∈ IN \ {i}, we show the existence of δ > 0 such that ω(x0) ⊂ [ũ, v] for all x0 ∈ RI ,
where ũi = ui + δ ≤ vi and ũj = uj for all j ∈ IN \ {i}.

If v′ is below Lli, then [u, v′] is strictly below Lli. By the compactness of [u, v′], there
is a δ > 0 such that the set B([u, v′], 2δ) ∩ RN+ is strictly below Lli. As Lli is below Γi,

B([u, v′], 2δ) ∩ RN+ is strictly below Γi so any solution in B([u, v′], 2δ) ∩ RN+ \ πi satisfies
x′i(t) = xi(t)Fi(x(t)) > 0, i.e. xi(t) ↑. We show that, for ũ with ũi = ui + δ and ũj = uj
for all j ∈ IN \ {i},

(36) ω(x0) ⊂ [ũ, v], ∀x0 ∈ RI .

Suppose (36) is not true so ω(x0)∩ [u, v′′] 6= ∅ for some x0 ∈ RI , where v′′i = v′i+ δ = ui+ δ
and v′′j = vj for all j ∈ IN \ {i}. As ω(x0) ⊂ [u, v] and ω(x0) is compact, there is a

y0 ∈ ω(x0) such that yi ≥ y0i for all y ∈ ω(x0). If y0i > 0 then y0 ∈ B([u, v′], 2δ) ∩ RN+ \ πi
so xi(y

0, t) is increasing for |t| small enough. Thus, xi(y
0, t) < y0i for t close to 0 from left.

As the whole orbit γ(y0) is contained in ω(x0), this contradicts yi ≥ y0i for all y ∈ ω(x0).
Hence, we must have y0i = 0, so ui = 0 and y0 ∈ ω(x0) ∩ [u, v′] ⊂ πi. But xi(t) ↑ in
B([u, v′], 2δ) ∩ RN+ \ πi means that [u, v′] repels the solutions away so [u, v′] ∩ ω(x0) = ∅, a
contradiction to y0 ∈ ω(x0) ∩ [u, v′]. Therefore, we must have (36).

Now suppose [u, v′] ∩ Lli is strictly above Luj for all j ∈ IN \ {i} (see Figure 1 (a) for

illustration). Consider the plane

L′i = {x ∈ RN+ :
∑

j∈IN\{i}

bijxj + bii(ui + δ) = 1}.

Then L′i is parallel to the xi-axis and passes through Lli ∩ {x ∈ RN+ : xi = ui + δ}. Note

that for each x ∈ Lli ∩ [u, v′′],∑
j∈IN\{i}

bijxj + bii(ui + δ) ≥ (Bx)i = 1,
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Figure 1. (a) Illustration of condition (c) in theorem 3.1 for N = 3 and
distinct i, j, k in {1, 2, 3}. (b) Illustration of Lli and L′i for N = 3.

so x is on or above L′i. Thus, Lli ∩ [u, v′′] is above L′i (see Figure 1 (b) for illustration).
Also, we have

lim
δ→0

sup
x∈L′

i∩[u,v′′]
{ inf
y∈Ll

i∩[u,v′]
‖y − x‖} = 0.

Hence, ∀ε > 0, ∃δ0 > 0 such that ∀δ ∈ (0, δ0],

sup
x∈L′

i∩[u,v′′]
{ inf
y∈Ll

i∩[u,v′]
‖y − x‖} < ε.

So ∀x ∈ L′i ∩ [u, v′′], ∃y ∈ Lli ∩ [u, v′] such that ‖y− x‖ < ε. Therefore, for any ε > 0, there
is δ0 > 0 such that for δ ∈ (0, δ0],

L′i ∩ [u, v′′] ⊂ B(Lli ∩ [u, v′], ε).

Since Lli ∩ [u, v′] is strictly above Luj for all j ∈ IN \ {i}, for ε > 0 small enough the set

B(Lli∩ [u, v′], ε) is also strictly above Luj for all j ∈ IN \{i}. Thus, for δ ∈ (0, δ0], L
′
i∩ [u, v′′]

is strictly above Luj for all j ∈ IN \ {i}. As L′i is parallel to the xi-axis and aji ≥ 0 in the

equation (Ax)j = 1 for Luj , if (Ax)j > 1 then (Ax′)j > 1 for x′ with x′i ≥ xi and x′k = xk
for k ∈ IN \ {i}. Hence, L′i ∩ [u, v] is strictly above Luj for all j ∈ IN \ {i}. This shows

that each solution x(t) in [u, v] satisfies xj(t) ↓ for all j ∈ IN \ {i} as long as x(t) is on or
above L′i and xj(t) 6≡ 0. Therefore, for any solution x(t) staying in a very small vicinity of
[u, v], for t ≥ T , once it goes below L′i it will stay below L′i forever. Since ω(x0) ⊂ [u, v]
for all x0 ∈ RI , ω(x0) must be strictly below L′i. The subset of [u, v′′] strictly below L′i is
also strictly below Lli.

We show that (36) holds. Suppose (36) is not true. Then ω(x0) ∩ [u, v′′] 6= ∅ for some
x0 ∈ RI . Since ω(x0) ⊂ [u, v], there is y0 ∈ ω(x0) ∩ [u, v′′] such that yi ≥ y0i for all
y ∈ ω(x0). If ui = 0, as the subset of [u, v′] ⊂ πi below L′i is strictly below Γi, this set
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Figure 2. Illustration of Lui , L
l
i, L

u
i (δ) and Lli(δ) for N = 2.

repels the solutions in RI away from πi. Since ω(x0) is strictly below L′i, we must have
ω(x0) ∩ πi = ∅, so y0i > 0. Then, since y0 is below Γi, xi(y

0, t) < y0i for t < 0 close enough
to 0. As γ(y0) ⊂ ω(x0), this contradicts yi ≥ y0i for all y ∈ ω(x0). Therefore, (36) holds.

Step 3. Let u(s) = sp and v(s) = sp + (1 − s)Y for s ∈ [0, 1]. We show that ω(x0) ⊂
[u(s), v(s)] for all x0 ∈ RI and all s ∈ [0, 1]. Thus, ω(x0) = [u(1), v(1)] = {p} for all x0 ∈ RI
and the conclusion of Theorem 3.1 holds.

From step 1 we know that ω(x0) ⊂ [0, Y ] = [u(0), v(0)] for all x0 ∈ RN+ . By step 2 and
condition (c), there is a δ ∈ (0, 1) such that ω(x0) ⊂ [u(δ), Y ] for all x0 ∈ RI . Now define
an affine map mδ : RN+ → RN+ (u(δ)) by mδ(x) = δp + (1 − δ)x. Then mδ(p) = p and
mδ(x) − p = (1 − δ)(x − p). Thus, mδ maps the line segment xp to (1 − δ)xp, [0, Y ] to
[u(δ), v(δ)], and each Li(p) to Li(p) ∩ RN+ (u(δ)). Now consider the set

Cj = {sp+ (1− s)y : ∀y ∈ (∂RN+ ) ∩ L̃j ,∀s ∈ [0, 1]}

Then Cj is a cone surface with p as the vertex and L̃j as its base. The map mδ maps Cj
to Cj ∩ RN+ (u(δ)) and L̃j in RN+ to a plane L̂j in RN+ (u(δ)). Note that Cj ∩ RN+ (u(δ)) is

a cone with p as its vertex and L̂j as its base (see Figure 2 for illustration). Thus, if Γj
is concave (convex) then both L̃j and L̂j are above (below) Γj . Hence, mδ maps Lli and

Luj in RN+ to planes Lli(δ) and Luj (δ) in RN+ (u(δ)) for each i ∈ J and all j ∈ IN \ {i}. Due
to the nature of the map mδ projecting points along straight lines towards p, the relative
positions of Lli and Luj in RN+ are preserved for the planes Lli(δ) and Luj (δ) in RN+ (u(δ)) for

each i ∈ J and all j ∈ IN \ {i}.

For each i ∈ IN , Γi in RN+ (u(δ)) is below Lui (δ). The intersection point Rii of Lui with

the xi-axis has 1
aii

as its ith component and 0 as other components. The point Rii is
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mapped to mδ(Rii) = δp + (1 − δ)Rii, which has δpi + 1−δ
aii

as its ith component and δpj

as the jth component for j 6= i. Since Lui (δ) is below the plane xi = δpi + 1−δ
aii

, by the

reasoning similar to that in step 1 we see that ω(x0) is below this plane for all x0 ∈ RI .
As v(δ) = mδ(Y ) = δp+ (1− δ)Y with vi(δ) = δpi + 1−δ

aii
, we have ω(x0) ⊂ [u(δ), v(δ)] for

all x0 ∈ RI .

For each i ∈ J , let vi(δ)
′ = ui(δ) and vj(δ)

′ = vj(δ) for j ∈ IN \ {i}. Then condition (c)

and the nature of mδ imply that either v(δ)′ is below Lli(δ) or Lli(δ)∩ [u(δ), v(δ)′] is strictly
above Luj (δ) for all j ∈ IN \ {i}. From step 2 again, we can always replace δ ∈ (0, 1) by

a larger one. Repetition of the above process shows that ω(x0) ⊂ [u(δ), v(δ)] holds for all
x0 ∈ RI and all δ ∈ (0, 1). Taking the limit δ → 1−, we obtain ω(x0) = {p}. �

5. Geometric method for global repulsion

In this section, we assume that p is an interior equilibrium point, so p ∈ intRN+ . When

each nullcline surface Γi is concave or convex, we define the planes Lui and Lli in the same
way as in section 3 for i ∈ IN . Then each Γi is below Lui but above Lli,

Lli = {x ∈ RN+ : (Bx)i = 1}, Lui = {x ∈ RN+ : (Ax)i = 1}.

Thus,

(37) ∀i, j ∈ IN , aij ≤ bij .

We also assume that for each i ∈ IN , the intersection point of Lli with the positive half
xi-axis is above Luj for all j ∈ IN \ {i}. Then aji/bii > 1 so

(38) ∀i ∈ IN , ∀j ∈ IN \ {i}, aji > bii > 0.

From (37) and (38) we have

ajj ≤ bjj < aij ≤ bij (i 6= j).

For any k ∈ IN \ {i}, as bii < aji, if bik > ajk then the system of simultaneous equa-
tions

(39) biixi + bikxk = 1, ajixi + ajkxk = 1

has a solution

xi =
ajk − bik

biiajk − bikaji
> 0, xj =

bii − aji
biiajk − bikaji

> 0.

This shows that Luj and Lli restricted to ∩m∈IN\{i,k}πm has a unique intersection point.

This is obviously true for k = j as bij > ajj . If bik ≤ ajk then (39) has no solution with

xi > 0. Thus, the largest possible ith component of the points in Lli ∩ Luj is

max

{
bik − ajk

ajibik − ajkbii
: k ∈ IN \ {i} if bik > ajk

}
.
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Now define U � 0 by

(40) Ui = max

{
bik − ajk

ajibik − ajkbii
: j, k ∈ IN \ {i} if bik > ajk

}
, i ∈ IN .

For a surface Γ in RN+ , we call it strongly balanced if for all distinct points u, v ∈ Γ, neither

u− v nor v − u is in RN+ .

Theorem 5.1. Assume that the following conditions hold.

(a) System (6) has an interior equilibrium point p ∈ intRN+ .

(b) For each i ∈ IN , the nullcline surface Γi is strongly balanced and either convex or
concave.

(c) For each i ∈ IN , the intersection point of Lli with the positive half xi-axis is above
Luj for all j ∈ IN \ {i}.

(d) For each i ∈ IN , either πi ∩ [0, U ] or Lui ∩ πi ∩ [0, U ] is strictly below Llj for all

j ∈ IN \ {i}, where U is defined by (40).

Then p is globally repelling.

Remark 4. Let D ⊂ RN+ be a bounded region such that Γi ⊂ D for all i ∈ IN . Then, by
Proposition 2.2 (iii) and (vi), the requirement of each Γi to be concave or convex in part of
condition (b) in Theorem 5.1 is guaranteed if each function Fi or −Fi is a convex function
in D with Fi(0) = maxx∈RN

+
Fi(x). The requirement that each Γi is strongly balanced is

ensured by the following:

(41) ∀i, j ∈ IN , ∀u ∈ D,
∂Fi
∂xj

(u) < 0.

Indeed, (41) implies that Fi(x) is strictly increasing in each xj for x ∈ D. Thus, for any
u, v ∈ D with u < v, we have Fi(u) > Fi(v), so it is impossible to have both u ∈ Γi and
v ∈ Γi.

Remark 5. The algebraic condition equivalent to condition (c) in Theorem 5.1 is (38).
Then from (40) we see that conditions (a)–(c) guarantee the existence of U � 0: Ui
is the maximum of the ith components of all the possible intersection points of Lli with
∪j∈IN\{i}L

u
j . Note that each set Lui ∩ πi ∩ [0, U ] in condition (d), if not empty, is a convex

hull which is determined by linear combinations of a finite number of vertices vi1, . . . , vim.
Thus, Lui ∩ πi ∩ [0, U ] is strictly below Llj for all j ∈ IN \ {i} if and only if each vertex vik
is below Llj for all j ∈ IN \ {i}. This will be clear from Figure 3 in Example 5.4 later.

Remark 6. Under the conditions of Theorem 5.1, from Theorem 2.1 we see that p is
a saddle point with a one-dimensional stable manifold W s(p) and (N − 1)-dimensional
unstable manifold W u(p) = intΣ \ {p}. Thus, for each x0 � 0, we have ω(x0) = {p} if
x0 ∈W s(p) and ω(x0) ⊂ ∂Σ if x0 6∈W s(p). For each x0 ∈ intΣ \ {p}, we have ω(x0) ⊂ ∂Σ
and α(x0) = {p}.



16 ZHANYUAN HOU

For a particular class of systems (6) when each Γi is a plane, so Γi = Lui = Lli, it is both
concave and convex. Then condition (c) of Theorem 5.1 guarantees that each Γi is strongly
balanced. Thus, condition (b) is redundant and Theorem 5.1 is simplified as follows.

Corollary 5.2. Assume that the following conditions hold.

(a) System (6) has an equilibrium point p ∈ intRN+ .

(b) For each i ∈ IN , the nullcline surface Γi is a plane.

(c) Each axial equilibrium point Ri is above Γj for all j ∈ IN \ {i}.

(d) For each i ∈ IN , either πi ∩ [0, U ] or Γi ∩ πi ∩ [0, U ] is strictly below Γj for all

j ∈ IN \ {i}, where U is given by (40) with Lli = Lui = Γi.

Then p is globally repelling.

Example 5.3. Consider the system (4) with ri > 0, ci > 0 and aij > 0 for all i, j ∈ IN .
Suppose p ∈ intRN+ is an interior equilibrium point. Then each Γi is a plane,

∀i ∈ IN ,Γi = Lli = Lui = {x ∈ RN+ : ai1x1 + · · ·+ aiNxN = 1}.

Assume that each axial equilibrium Ri is above Γj for all j ∈ IN \ {i}, i.e.

∀i, j ∈ IN (i 6= j), aji > aii > 0.

Define U � 0 by

∀i ∈ IN , Ui = max

{
aik − ajk

ajiaik − ajkaii
: j, k ∈ IN \ {i} if aik > ajk

}
.

Then, by Corollary 5.2, p is globally repelling if either πi∩ [0, U ] or Γi∩πi∩ [0, U ] is strictly
below Γj for all i ∈ IN and j ∈ IN \ {i}.

Note that the above result for (4) is also true for other systems in (2)–(5). In particular,
for Lotka-Volterra system (2), this result is consistent with [9].

Example 5.4. Consider the system

ẋ1 = x1(1− 2ax1 − ax21 − x2 − x3) = x1F1(x),

ẋ2 = x2(1− x1 − 2ax2 − ax22 − x3) = x2F2(x),(42)

ẋ3 = x3(1− x1 − x2 − 2ax3 − ax23) = x3F3(x),

where a > 0 is a constant. The system has an interior equilibrium point p = p0(1, 1, 1)T

with p0 satisfying ap20 + 2(a+ 1)p0 = 1, so

p0 =
1

a
[
√
a+ (a+ 1)2 − (a+ 1)] =

1√
a2 + 3a+ 1 + a+ 1

.
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Then

Γ1 = {x ∈ R3
+ : 2ax1 + ax21 + x2 + x3 = 1},

Γ2 = {x ∈ R3
+ : x1 + 2ax2 + ax22 + x3 = 1},

Γ1 = {x ∈ R3
+ : x1 + x2 + 2ax3 + ax23 = 1},

L1(p) = 2a(1 + p0)x1 + x2 + x3 = 1 + ap20,

L2(p) = x1 + 2a(1 + p0)x2 + x3 = 1 + ap20,

L3(p) = x1 + x2 + 2a(1 + p0)x3 = 1 + ap20.

As Γ1 intersects the axes at (
√

1 + 1
a − 1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T respectively and

(
√

1 + 1
a − 1)−1 = a(

√
1 + 1

a + 1), we have

L̃1 = {x ∈ R3
+ : a(

√
1 +

1

a
+ 1)x1 + x2 + x3 = 1}.

Similarly,

L̃2 = {x ∈ R3
+ : x1 + a(

√
1 +

1

a
+ 1)x2 + x3 = 1},

L̃3 = {x ∈ R3
+ : x1 + x2 + a(

√
1 +

1

a
+ 1)x3 = 1}.

Note that

∀i ∈ I3, ∀x, y ∈ R3
+, Fi(sx+ (1− s)y) ≥ sFi(x) + (1− s)Fi(y)

so F1, F2 and F3 are convex functions with Fi(0) = maxx∈R3
+
Fi(x) for i ∈ I3. By Propo-

sation 2.2 (iii), Γ1,Γ2 and Γ3 are convex. Then Lli = L̃i and Lui = Li(p) for i ∈ I3. Since
∂Fi
∂xi

= −2a − 2axi < 0 and ∂Fi
∂xj

= −1 < 0 for i, j ∈ I3 (i 6= j), by Remark 4 each Γi is

strongly balanced. Thus, conditions (a) and (b) of Theorem 5.1 are fulfilled.

If a ∈ (0, 0.3], then we have p0 <
1
2 so p20 <

1
4 and√

1 +
1

a
− 1 ≥

√
1.3

0.3
− 1 >

4.3

4
≥ 1 +

1

4
a > 1 + ap20.

Thus, the equilibrium point (
√

1 + 1
a − 1, 0, 0)T , which is the intersection point of Ll1 with

the positive half x1-axis, is above Lu2 and Lu3 . By symmetry, condition (c) of Theorem 5.1
is met.

To check condition (d), we need to find U � 0 given by (40). The point in Ll1 ∩Lu2 ∩ π3 is
given by the solution of

a(

√
1 +

1

a
+ 1)x1 + x2 = 1, x1 + 2a(1 + p0)x2 = 1 + ap20,
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which has the components

x1 =
1 + ap20 − 2a(1 + p0)

1− 2a2(
√

1 + 1
a + 1)(1 + p0)

, x2 =
1− a(

√
1 + 1

a + 1)(1 + ap20)

1− 2a2(
√

1 + 1
a + 1)(1 + p0)

, x3 = 0.

The point in Ll1 ∩ Lu3 ∩ π3 is given by the solution of

a(

√
1 +

1

a
+ 1)x1 + x2 = 1, x1 + x2 = 1 + ap20,

which has the components

x1 =
ap20

1− a(
√

1 + 1
a + 1)

, x2 =
1− a(

√
1 + 1

a + 1)(1 + ap20)

1− a(
√

1 + 1
a + 1)

, x3 = 0.

The point in Ll1 ∩ Lu2 ∩ π2 is the same as that in Ll1 ∩ Lu3 ∩ π3 with the swap of x2 and x3,
and the point in Ll1 ∩ Lu3 ∩ π2 is the same as that in Ll1 ∩ Lu2 ∩ π3 with the swap of x2 and
x3. We can easily check that the function

f(s) =
ap20 + s

1− a(
√

1 + 1
a + 1) + a(

√
1 + 1

a + 1)s

is increasing in s, so

1 + ap20 − 2a(1 + p0)

1− 2a2(
√

1 + 1
a + 1)(1 + p0)

= f(1− 2a(1 + p0)) > f(0) =
ap20

1− a(
√

1 + 1
a + 1)

.

Then, by (40), U1 is the maximum of the first component of the points in Ll1 ∩ Lu2 ∩ π3,
Ll1 ∩ Lu3 ∩ π3, Ll1 ∩ Lu2 ∩ π2 and Ll1 ∩ Lu3 ∩ π2. Thus,

U1 =
1 + ap20 − 2a(1 + p0)

1− 2a2(
√

1 + 1
a + 1)(1 + p0)

and by symmetry, U2 = U3 = U1.

Next, we derive a condition on a so that condition (d) of Theorem 5.1 is satisfied. The set
Lu1 ∩ π1 ∩ [0, U ] is the line segment AB (see Figure 3) on the plane x1 = 0 with A(u0, U3)
and B(U2, u0), where

u0 = 1 + ap20 − U3 =
2a(1 + p0)[1− a(

√
1 + 1

a + 1)(1 + ap20)]

1− 2a2(
√

1 + 1
a + 1)(1 + p0)

.

The point in Ll2 ∩ Lu1 ∩ π1 is given by the solution of

a(

√
1 +

1

a
+ 1)x2 + x3 = 1, x2 + x3 = 1 + ap20,
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Figure 3. Illustration of Lu1 ∩ π1 ∩ [0, U ], Ll2 ∩ π1 and Ll3 ∩ π1.

which has the components

x1 = 0, x2 =
ap20

1− a(
√

1 + 1
a + 1)

, x3 =
1− a(

√
1 + 1

a + 1)(1 + ap20)

1− a(
√

1 + 1
a + 1)

.

As the axial fixed point (0,
√

1 + 1
a − 1, 0)T , which is the intersection point of Ll2 with the

positive half x2-axis, is above Lu1 , any point in Ll2∩π1 with
ap20

1−a(
√

1+ 1
a
+1)

< x2 ≤
√

1 + 1
a−1

is above Lu1 . Thus, Lu1 ∩ π1 ∩ [0, U ] is strictly below Ll2 if u0 >
ap20

1−a(
√

1+ 1
a
+1)

(see Figure 3).

Note that p0 <
1
2 so 1+p0

p20
> 6. Then, if a ∈ (0, 0.3] is small enough to satisfy

(43) 12[1− a(

√
1 +

1

a
+ 1)(1 + ap20)][1− a(

√
1 +

1

a
+ 1)] + 2a2(

√
1 +

1

a
+ 1)(1 + p0) ≥ 1,

Lu1 ∩ π1 ∩ [0, U ] is strictly below Ll2. Similarly, (43) also ensures that Lu1 ∩ π1 ∩ [0, U ] is
strictly below Ll3. By symmetry, (43) guarantees condition (d) of Theorem 5.1. Therefore,
p is a global repellor if a ≤ 0.3 and satisfies (43).

6. Proof of Theorem 5.1

To prepare for the proof of Theorem 5.1, we present five lemmas below, of which the first
three reveal some general properties of (6) under certain conditions and the last two are
closely related to the conditions of Theorem 5.1.
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Lemma 6.1. If the ith axial fixed point Ri is above (below) Γj for all j ∈ IN \ {i}, then
Ri is an attractor in RN+ (a repellor in Σ).

Proof. Note that ∇(xiFi(x))|x=Ri � 0 by (A4),

∂xjFj(x)

∂xk
|x=Ri = 0,

∂xjFj(x)

∂xj
|x=Ri = Fj(Ri), k 6= j 6= i.

Thus, the eigenvalue of ∂D[x]F (x)
∂x |x=Ri with an eigenvector on xi-axis is negative and the

Fj(Ri) are eigenvalues of ∂D[x]F (x)
∂x |x=Ri with an eigenvector transversal to the xi-axis. If

Ri is above (below) Γj for all j ∈ IN \ {i}, then ∂D[x]F (x)
∂x |x=Ri has N negative eigenvalues

(N−1 positive eigenvalues with eigenvectors transversal to the xi-axis) so Ri is an attractor
in RN+ (a repellor in Σ). �

Lemma 6.2. Assume that each Γi is strongly balanced. For any u ∈ RN+ \{0} with support
I ⊂ IN , if there is a nonempty I0 ⊂ I such that u is below Γj for all j ∈ I0 but is on Γk
for all k ∈ I \ I0, then u ∈ Br(0).

Proof. If I0 = I, then x(u, t) is below Γj for all j ∈ I and sufficiently small |t|. Since
each Γj is strongly balanced, by the monotone property of competitive systems, we have
x(u, t2) < x(u, t1) < u for all t2 < t1 < 0. Then there is a q ∈ RN+ with q < u such that
α(u) = {q} so q is an equilibrium point. We show that q = 0 so that u ∈ Br(0).

For each i ∈ I, since ui > 0, Fi(u) > 0, Fi(0) > 0 by (A1), and Fi(v) < 0 for sufficiently
large |v| by (A3), if Fi(q) ≤ 0, then the continuity of Fi ensures the existence of q′, u′ ∈ Γi
satisfying q ≤ q′ < u < u′. This contradicts the assumption that Γi is strongly balanced.
Therefore, we must have Fi(q) > 0. Since q is an equilibrium point, we have D[q]F (q) = 0
so q = 0 and u ∈ Br(0).

If I0 6= I, let u(ε) > 0 be defined by

uj(ε) = uj for j 6∈ I \ I0, uk(ε) = uk − ε for k ∈ I \ I0
for sufficiently small ε > 0. Then u(ε) < u. As each Γi is strongly balanced, we have
Fi(u(ε)) > 0 so u(ε) is below Γi for all i ∈ I. Thus, from the case of I0 = I, we have

u(ε) ∈ Br(0) and Fi(x(u(ε), t)) > 0, ∀t < 0, ∀i ∈ I

for each sufficiently small ε > 0. Then, by continuous dependence on initial values, we
have Fi(x(u, t)) ≥ 0 for all t < 0 and i ∈ I. But ẋj(u, 0) = ujFj(u) > 0 for j ∈ I0, so
xj(u, t) < uj for all t < 0 and j ∈ I0. Then x(u, t) < u for all t < 0. Since each Γi is
strongly balanced, we have Fi(x(u, t)) > 0 for all t < 0 and i ∈ I. Hence, x(u, t) ∈ Br(0)
for all t < 0 so u ∈ Br(0). �

Lemma 6.3. Assume that each Γi is strongly balanced. For any u ∈ RN+ \{0} with support
I ⊂ IN , if there is a nonempty I0 ⊂ I such that u is above Γj for all j ∈ I0 but is on Γk
for all k ∈ I \ I0, then u ∈ Br(∞).
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The proof of Lemma 6.3 is similar to that of Lemma 6.2 so we omit it here.

Lemma 6.4. Assume that each Γi is strongly balanced. Assume the existence of u ∈ RN+ ,
i ∈ IN and vi > ui such that either S0(u, vi) or Γi ∩ S0(u, vi) is strictly above Γj for all
j ∈ IN \ {i}. Then, for each x0 ∈ RN+ \ {0}, if ω(x0) ⊂ RN+ (u) then either ω(x0) ⊂ RN+ (u) \
S0(u, vi) or ω(x0) = {Ri} (so Ri ∈ RN+ (u)). Moreover, if the whole trajectory γ(x0) is in

Σ∩RN+ (u) for some x0 ∈ intΣ, then either ω(x0) = {Ri} and α(x0) ⊂ Σ∩(RN+ (u)\S0(u, vi))

or γ(x0) ⊂ Σ ∩ (RN+ (u) \ S0(u, vi)).

Proof. If S0(u, vi) is strictly above Γi then it is strictly above Γj for all j ∈ IN . By Lemma
6.3, S0(u, vi) ⊂ Br(∞) so Σ ∩ S0(u, vi) = ∅. If ω(x0) ⊂ RN+ (u) for some x0 ∈ RN+ \ {0}, as

ω(x0) ⊂ Σ by Theorem 2.1, we have ω(x0) ∩ S0(u, vi) = ∅ so ω(x0) ⊂ RN+ (u) \ S0(u, vi).

Now suppose Γi∩S0(u, vi) 6= ∅. Since this set is strictly above Γj for all j ∈ IN \{i}, either
S0(u, vi) contains no equilibrium point or, if Ri ∈ S0(u, vi), the axial equilibrium point Ri
is the unique equilibrium point in S0(u, vi) and, by Lemma 6.1, Ri is an attractor. By
Lemma 6.3, any point on or above Γi in S0(u, vi) \ {Ri} belongs to Br(∞), so it can be
neither an ω-limit point nor an α-limit point.

For any x0 ∈ RN+ \ {0}, if ω(x0) ⊂ RN+ (u) with ω(x0)∩S0(u, vi) 6= ∅, we show that ω(x0) =
{Ri}. Indeed, if Ri ∈ ω(x0) ∩ S0(u, vi), then Ri is the unique ω-limit point in Ba(Ri).
As ω(x0) is connected, we must have ω(x0) = {Ri}. Now suppose Ri 6∈ ω(x0) ∩ S0(u, vi).
Then ω(x0) ∩ S0(u, vi) is strictly below Γi so it contains no equilibrium point. For any
point q ∈ ω(x0)∩ S0(u, vi), x(q, t) ∈ ω(x0) for all t ∈ R and xi(q, t) is increasing as long as
x(q, t) ∈ ω(x0) ∩ S0(u, vi). Thus,

x(q, t) ∈ ω(x0) ∩ S(u, qi) ⊂ ω(x0) ∩ S0(u, vi)

and xi(q, t) is increasing for all t ≥ 0. Since ω(x0) ∩ S(u, qi) is compact and strictly below
Γi, we have

(44) δ0 = min{Fi(x) : x ∈ ω(x0) ∩ S(u, qi)} > 0

so

(45) xi(q, t) = qi exp

(∫ t

0
Fi(x(q, s))ds

)
≥ qieδ0t,∀t ≥ 0.

This leads to the unboundedness of x(q, t) for t ≥ 0, a contradiction to x(q, t) ∈ ω(x0) ∩
S(u, qi). Hence, we have shown that the case Ri 6∈ ω(x0) ∩ S0(u, vi) 6= ∅ does not exist.
Therefore, for any x0 ∈ RN+ \ {0} with ω(x0) ⊂ RN+ (u), we have either ω(x0) ⊂ RN+ (u) \
S0(u, vi) or ω(x0) = {Ri} so Ri ∈ RN+ (u).

Next, we suppose γ(x0) ⊂ Σ ∩ RN+ (u) for some x0 ∈ intΣ. If γ(x0) ∩ Σ ∩ S0(u, vi) 6= ∅,
as any point on or above Γi (except Ri) belongs to Br(∞) and Ri 6∈ γ(x0), γ(x0) ∩ Σ ∩
S0(u, vi) is strictly below Γi. Thus, xi(x0, t) is increasing as long as x(x0, t) ∈ S0(u, vi).
By γ(x0) ⊂ Σ ∩ RN+ (u), there is a t1 ∈ R such that x(x0, t) ∈ S0(u, vi) for t > t1 but

x(x0, t) ∈ RN+ (u)\S0(u, vi) for t ≤ t1. Thus, α(x0) ⊂ Σ∩(RN+ (u)\S0(u, vi)) and, as xi(x0, t)
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is increasing for t > t1, ω(x0) ⊂ S0(u, vi). It then follows from the previous paragraph that
ω(x0) = {Ri}. If γ(x0) ∩ Σ ∩ S0(u, vi) = ∅ then γ(x0) ⊂ Σ ∩ (RN+ (u) \ S0(u, vi)). �

Lemma 6.5. Under the conditions of Theorem 5.1, assume the existence of u ∈ RN+ , i ∈ IN
and v > u with vi > ui such that u is below Γi and either πi(u)∩ [u, v] or Γi ∩ πi(u)∩ [u, v]
is below Γj for all j ∈ IN \ {i} and Ri 6∈ [u, v]. Then there is a δ ∈ (0, vi − ui) such that
if ω(x0) ⊂ [u, v] for some x0 � 0, then either ω(x0) ⊂ πi (and ui = 0) or ω(x0) ⊂ [u′, v],
where u′i = ui + δ and u′j = uj for all j ∈ IN \ {i}. Moreover, if γ(x0) ⊂ Σ∩ [u, v] for some

x0 ∈ intΣ, then either ω(x0) ⊂ πi and α(x0) ⊂ Σ ∩ [u′, v] or γ(x0) ⊂ Σ ∩ [u′, v].

Proof. Let D = {x ∈ πi(u) ∩ [u, v] : Fi(x) ≥ 0}. Since u is below Γi, we have Fi(u) > 0
so u ∈ D and D 6= ∅. By the assumption, D is strictly below Γj for all j ∈ IN \ {i}, so
Ri is the only possible nontrivial equilibrium in D. But D ⊂ [u, v] and Ri 6∈ [u, v]. Hence,
Ri 6∈ D so D conatins no nontrivial equilibrium point. Since each point in D is on or
below Γi, by Lemma 6.2 D ⊂ Br(0). Since Br(0) is open in RN+ , D is compact, and Fi is
continuous, there is a small δ ∈ (0, vi − ui) such that the set

S = {x ∈ [u, v] : xi ≤ ui + δ, Fi(x) ≥ −δ}
is a subset of Br(0). Thus, any nontrivial point in S is neither an ω-limit point nor an
α-limit point. So ω(x0) ∩ S = ∅ if x0 6= 0. Now suppose ω(x0) ⊂ [u, v] and ω(x0) ∩
([u, v] \ [u′, v]) 6= ∅ for some x0 ∈ RN+ \ {0}. We show that ω(x0) ⊂ πi so ui = 0. Since
y ∈ ω(x0) ∩ ([u, v] \ [u′, v]) implies y 6∈ S so Fi(y) < −δ, by the compactness of ω(x0) and
the continuity of Fi, there is an ε > 0 such that

(46) ∀z ∈ B(ω(x0), ε) with zi ≤ ui + δ + ε, Fi(z) ≤ −δ/2.
By definition of ω(x0) and the assumption ω(x0) ∩ ([u, v] \ [u′, v]) 6= ∅, there is a T > 0
such that xi(x0, T ) < ui + δ + ε and x(x0, t) ∈ B(ω(x0), ε) for all t ≥ T . Then, by (46),

(47) xi(x0, t) = xi(x0, T ) exp

(∫ t

T
Fi(x(x0, s))ds

)
≤ xi(x0, T )e−δ(t−T )/2

for t > T as long as xi(x0, t) < ui + δ + ε. This shows that limt→+∞ xi(x0, t) = 0, so
ω(x0) ⊂ πi and ui = 0.

Finally, suppose γ(x0) ⊂ Σ∩[u, v] for some x0 ∈ intΣ. If γ(x0)∩Σ∩([u, v]\[u′, v]) 6= ∅, then,
as Σ∩Br(0) = ∅ so γ(x0)∩S = ∅, from the definition of S we see that Fi(x(x0, t)) < −δ so
xi(x0, t) is decreasing as long as xi(x0, t) ≤ u′i. This shows the existence of T ∈ R such that
xi(x0, t) ≤ u′i and Fi(x(x0, t)) < −δ for all t ≥ T but xi(x0, t) > u′i for t < T . Therefore,
α(x0) ⊂ Σ∩ [u′, v] and, from (47), ω(x0) ⊂ πi and ui = 0. If γ(x0)∩Σ∩ ([u, v] \ [u′, v]) = ∅
then γ(x0) ⊂ Σ ∩ [u′, v]. �

With the help of Lemmas 6.1–6.5, we are now in a position to prove Theorem 5.1.

Proof of Thorem 5.1. For each i ∈ IN , by condition (c) and (40) we see that Lli ∩S0(0, Ui)
is strictly above Luj for all j ∈ IN \ {i}. From condition (b) we know that Γi is above Lli
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and Γj is below Luj . So Γi ∩ S0(0, Ui) is strictly above Γj for all j ∈ IN \ {i}. By Lemma

6.4 with u = 0 and vi = Ui, for each x0 ∈ RN+ \ {0} we have either ω(x0) ⊂ [0, U ] or
ω(x0) = {Ri} for some i ∈ IN . Moreover, for each x0 ∈ intΣ, we have either ω(x0) = {Ri}
and α(x0) ⊂ Σ ∩ [0, U ] for some i ∈ IN or γ(x0) ⊂ Σ ∩ [0, U ].

By condition (d), for each i ∈ IN , either πi ∩ [0, U ] or Lui ∩ πi ∩ [0, U ] is strictly below
Llj for all j ∈ IN \ {i} so either πi ∩ [0, U ] or Γi ∩ πi ∩ [0, U ] is strictly below Γj for all

j ∈ IN \ {i}. Note that 0 is below Γi by (A1). From (40) and condition (c) we know that
the intersection point Rii of Lli with the positive half xi-axis satisfies Rii 6∈ [0, U ]. As the
ith axial equilibrium Ri is on or above Lli whereas Rii ∈ Lli, we must have Ri 6∈ [0, U ].
Then, by Lemma 6.5 with [u, v] = [0, U ], there is a δ ∈ (0, 1) such that for all x0 ∈ RN+ \{0}
we have either ω(x0) ⊂ πi for some i ∈ IN or ω(x0) ⊂ [δp, U ]. Further, for all x0 ∈ intΣ, we
have either ω(x0) ⊂ πi ∩Σ and α(x0) ⊂ [δp, U ]∩Σ for some i ∈ IN or γ(x0) ⊂ [δp, U ]∩Σ.

Now define an affine map mδ : RN+ → RN+ (δp) by

mδ(x) = δp+ (1− δ)x.

Then mδ(0) = δp, mδ(p) = p, mδ(U) = δp + (1 − δ)U . Let [u(δ), v(δ)] = [mδ(0),mδ(U)].

Then mδ maps [0, U ] to [u(δ), v(δ)], each Li(p) to Li(p)∩RN+ (u(δ)), and each L̃j to a plane

L̂j in RN+ (u(δ)). Note that L̃j is the convex hull of the vertex set {Vj1, . . . , VjN}, i.e.

L̃j = {s1VJ1 + · · · sNVjN : ∀i ∈ IN , si ≥ 0, s1 + · · ·+ sN = 1},

and L̂j is the convex hull of the vertex set {mδ(Vj1), . . . ,mδ(VjN )}. Since each Γi is concave

or convex, Γi is between Li(p) and L̃i, so Γi∩RN+ (u(δ)) is between Li(p)∩RN+ (u(δ)) and L̂i,

the one above Γi∩RN+ (u(δ)) is denoted by Lui (δ) and the one below Γi∩RN+ (u(δ)) is denoted

by Lli(δ). Then it follows from the radial projection feature of mδ (centred at p) that the
relationship between the positions of the Llj(δ), L

u
j (δ), p and [u(δ), v(δ)] in RN+ (u(δ)) is

exactly the same as that of the Llj , L
u
j , p and [0, U ] in RN+ . Thus, for each i ∈ IN ,

Lli(δ) ∩ S0(u(δ), vi(δ)) is strictly above Luj (δ) for all j ∈ IN \ {i} so Γi ∩ S0(u(δ), vi(δ)) is

strictly above Γj for all j ∈ IN \{i}. Following the conclusion from the previous paragraph
and by Lemma 6.4, for each x0 ∈ RN+ \{0} we have either ω(x0) ⊂ [u(δ), v(δ)] or ω(x0) ⊂ πk
for some k ∈ IN . Furthermore, for each x0 ∈ intΣ, we have either ω(x0) ⊂ Σ ∩ πk and
α(x0) ⊂ Σ ∩ [u(δ), v(δ)] for some k ∈ IN or γ(x0) ⊂ Σ ∩ [u(δ), v(δ)].

From condition (d) and the feature of mδ we see that for each i ∈ IN , Lui (δ) ∩ πi(u(δ)) ∩
[u(δ), v(δ)] is strictly below Llj(δ) for all j ∈ IN \ {i}. By Lemma 6.5 again and repeating

the above process, we obtain δ1 ∈ (δ, 1) so that [u(δ), v(δ)] can be replaced by [u(δ1), v(δ1)]
in the above conclusion. Since this process can be repeated as long as δ1 < 1, by taking
the supremum of such δ1, we obtain the conclusion with [u(1), v(1)] = {p}. Therefore, for
each x0 ∈ RN+ \ {0}, we have either ω(x0) ⊂ πi for some i ∈ IN or ω(x0) = {p}; for each
x0 ∈ intΣ, we have either ω(x0) ⊂ Σ ∩ πi for some i ∈ IN and α(x0) = {p} or γ(x0) = {p}
so x0 = p. �
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7. Conclusion

So far by using geometric analysis, we have obtained a sufficient condition (Theorem 3.1)
for a boundary or an interior equilibrium point p to be globally asymptotically stable. We
have also derived a sufficient condition (Theorem 5.1) for an interior equilibrium point to
be globally repelling on Σ. These results can be applied to a class of systems (6) when
each nullcline surface Γi is concave or convex, so that an upper plane Lui above Γi and a
lower plane Lli below Γi can be defined. Then, geometric conditions of the theorems are
formed by using the relative positions of the Lui and the Llj on the boundary ∂RN+ within

a set [0, V ].

Note that Theorem 5.1 for global repulsion cannot be applied to a boundary equilibrium
point p ∈ RN+ \ {0} with support J a proper subset of IN . However, it can be applied to
the |J |-dimensional subsystem

(48) ẋi = xiFi(x), i ∈ J, x ∈ ∩k∈IN\Jπk
as p is an interior equilibrium of (48). If p is globally repelling for the |J |-dimensional
subsystem (48) and there is a saturated boundary equilibrium point p0 that is globally
attracting for system (6), then it might be possible for p to be globally repelling on Σ.

Theorem 7.1. Assume that the following conditions hold:

(a) The kth axial equilibrium point Rk of (6) is saturated for some k ∈ IN .

(b) For each i ∈ IN , the nullcline surface Γi is either concave or convex. If Γi is convex
with Fi(Rk) < 0 then the function Fi is also convex with Fi(0) = maxx∈RN

+
Fi(x).

(c) For all i, j ∈ IN \{k}, the intersection point Rki of Llk with the positive half xi-axis
is above Luj .

(d) System (6) has an equilibrium p ∈ RN+ with support J = IN \ {k} and p as an
interior equilibrium point of the subsystem

(49) ẋi = xiFi(x), i ∈ J, x ∈ πk,
is globally repelling on Σ ∩ πk.

(e) Any α limit set α(x0) consists of a single equilibrium point if α(x0) ⊂ Σ ∩ πk ∩
(∪j∈Jπj).

(f) The unstable manifold W u(q) for each equilibrium q in Σ∩πk∩(∪j∈Jπj) is a subset
of ∪j∈Jπj.

Then p is globally repelling on Σ and Rk is globally attracting. Moreover, if Rk is above Γi
for all i ∈ J , then Rk is globally asymptotically stable.

Proof. From condition (c) we know that either Y J is below Llk or Llk ∩ [0, Y ]∩πk is strictly
above Luj for all j ∈ IN \ {k}, where Y is defined by (28). By conditions (a)–(c) and
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Theorem 3.1, Rk is globally attracting. Thus, we have ω(x0) = {Rk} for any x0 ∈ Σ ∩RJ .
In particular, Rk attracts the compact set Σδ = {x ∈ Σ : xk = δ} for sufficiently small
δ > 0. Condition (c) and Lemma 6.3 imply that Σ ∩ πk is strictly below Γk. Thus, Σδ is
strictly below Γk for sufficiently small δ > 0. Since xk(t) is increasing as long as x(t) is below
Γk, we have shown that α(x0) ⊂ Σ∩ πk for x0 ∈ Σδ and, hence, for all x0 ∈ Σ∩RJ \ {Rk}.
As p repels on Σ ∩ πk by condition (d) and p is below Γk, p is a repellor on Σ. Thus,
for any α(x0) ⊂ Σ ∩ πk, we have either α(x0) = {p} or α(x0) ⊂ Σ ∩ πk ∩ (∪j∈Jπj). By
condition (e) we know that, as t→ −∞, x(x0, t) converges to p or an equilibrium point in
Σ∩πk∩ (∪j∈Jπj) for x0 ∈ Σ∩RJ \{Rk}. Now we claim that α(x0) = {p} for all x0 ∈ intΣ.
Indeed, x0 � 0 so x0 6∈ πi for all i ∈ IN . By condition (f), x0 6∈W u(q) for any equilibrium
point q ∈ Σ∩πk ∩ (∪j∈Jπj). Thus, α(x0) 6⊂ Σ∩πk ∩ (∪j∈Jπj) so α(x0) = {p}. Therefore, p
is globally repelling on Σ. Finally, if Rk is above Γi for all i ∈ J , then the Jacobian matrix
Df(Rk) has N negative eigenvalues, so Rk is globally asymptotically stable. �

Example 7.2. Consider the system

ẋ1 = x1(1− 2ax1 − ax21 − x2 − x3 − x4) = x1F1(x),

ẋ2 = x2(1− x1 − 2ax2 − ax22 − x3 − x4) = x2F2(x),(50)

ẋ3 = x3(1− x1 − x2 − 2ax3 − ax23 − x4) = x3F3(x),

ẋ4 = x4(2− 3ax1 − 3ax2 − 3ax3 − x4) = x4F4(x),

where a ∈ (0, 0.3] is a constant satisfying (43). The 3-dimensional subsystem on π4 is the
system (42) in Example 5.4. So p = (p0, p0, p0, 0)T is globally repelling on Σ ∩ π4. This
shows that system (50) satisfies condition (d) of Theorem 7.1. The axial equilibrium point
R4 = (0, 0, 0, 2)T is above Γ1,Γ2 and Γ3 so it is saturated. Clearly, Γ4 is a plane and
F1, F2, F3 are convex (see Example 5.4 in section 5). Thus, (50) meets conditions (a) and
(b) of Theorem 7.1. The intersection points of Lu1 , L

u
2 , L

u
3 and Ll4 with the positive half

x1-axis are (
1+ap20

2a(1+p0)
, 0, 0, 0)T , (1, 0, 0, 0)T , (1, 0, 0, 0)T and R41 = ( 2

3a , 0, 0, 0)T respectively.

As p0 <
1
2 and a ≤ 0.3, we have

1 <
1 + ap20

0.9
≤ 1 + ap20

2a(1 + p0)
<

1

2a
+

1

2[( 1
p0

)2 + 1
p0

]
<

1

2a
+

1

12
=

6 + a

12a
<

2

3a
.

Thus, R41 is above Lu1 , L
u
2 and Lu3 . By symmetry, R42 and R43 are also above Lu1 , L

u
2 and

Lu3 . This shows that (50) satisfies condition (c) of Theorem 7.1. To check conditions (e)
and (f), we note that the phase portrait on Σ ∩ π4 is given by Figure 4. From the flow on
Σ ∩ π4 we see that any α(x0) ⊂ Σ ∩ π4 must consist of a single equilibrium point. Thus,
condition (e) of Theorem 7.1 holds for (50). Since Σ ∩ π4 is strictly below Γ4, for any
equilibrium point q ∈ Σ ∩ π4 ∩ (π1 ∪ π2 ∪ π3), Df(q) has an eigenvector in π1 ∪ π2 ∪ π3
transverse to π4 corresponding to the positive eigenvalue F4(q). By the invariance of each
πi, we have W u(q) ⊂ (π1 ∪ π2 ∪ π3). Thus, (50) satisfies condition (f) of Theorem 7.1.
Then, by Theorem 7.1, R4 is globally asymptotically stable and p is globally repelling on
Σ.
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Figure 4. Phase portrait for system (50) on Σ ∩ π4.

Discussion. For any equilibrium p ∈ Σ with support J ⊂ IN , we call p saturated in
reversed time if Fi(p) ≥ 0 for all i ∈ IN . As Fi(p) is an eigenvalue of the Jacobian matrix
Df(p) if i ∈ IN \ J , it follows that a necessary condition for p to be a repellor on Σ is
that p must be saturated in reversed time. Combining Theorems 5.1 and 7.1, we have
obtained sufficient conditions for an equilibrium p saturated in reversed time to be globally
repelling on Σ if p has at most one zero component (i.e. |J | ≥ N − 1). However, if p has
more than one zero components, our theorems for global repulsion are not applicable. Does
the geometric method used here still have the power to deal with the problem of global
repulsion when |J | < N − 1? This is left as an open problem.

Appendix

The proofs of Propositions 2.2 and 2.3 are given below.

Proof of Proposition 2.2. (i) and (ii) are straightforward from the definitions of convexity
and concavity of a surface and convexity of a set.

(iii) Taking any x, y ∈ Γ with α < G(0) in the range of G, by the convexity of G we have

(51) ∀s ∈ [0, 1], G(sx+ (1− s)y) ≥ sG(x) + (1− s)G(y) = sα+ (1− s)α = α.

Since 0 ∈ Γ− andG(0) > α, we must haveG(w) > α for all w ∈ Γ−. So sx+(1−s)y ∈ Γ−∪Γ
for all s ∈ [0, 1]. This shows that Γ is convex.

(iv) Since −G is convex, for any α > G(0) in the range of G and x, y ∈ Γ, we have

(52) ∀s ∈ [0, 1],−G(sx+ (1− s)y) ≥ −sG(x)− (1− s)G(y) = −sα− (1− s)α = −α.
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So G(sx+ (1− s)y) ≤ α for all s ∈ [0, 1]. Then G(0) < α and 0 ∈ Γ− imply G(w) < α for
all w ∈ Γ−. Thus, sx+ (1− s)y ∈ Γ− ∪ Γ for all s ∈ [0, 1], so Γ is convex.

(v) Since G is convex, (51) holds for all x, y ∈ Γ with α > G(0) in the range of G. Since
0 ∈ Γ− and G(0) < α, we must have G(w) < α for all w ∈ Γ− and G(w) ≥ α for all
w ∈ Γ ∪ Γ+. It then follows from (51) that xy ⊂ Γ ∪ Γ+, so Γ is concave.

(vi) Since −G is convex, (52) holds for all x, y ∈ Γ with α < G(0) in the range of G. Since
0 ∈ Γ− and G(0) > α, we must have G(w) > α for all w ∈ Γ− and G(w) ≤ α for all
w ∈ Γ∪Γ+. It then follows from (52) that xy ⊂ Γ∪Γ+. This shows the concavity of Γ. �

Proof of Proposition 2.3. Note that the sign of G(x)− α on Γ− is opposite to that on Γ+.
We first assume G(x)− α < 0 for x ∈ Γ− and G(x)− α > 0 for x ∈ Γ+.

(a) From the convexity of Γ and Proposition 2.2 (ii), Γ− ∪ Γ is a convex set. So, for each
x ∈ Γ− ∪ Γ \ {u}, xu ⊂ Γ− ∪ Γ. Thus,

(53) ∀s ∈ [0, 1], G(sx+ (1− s)u)−G(u) = G(u+ s(x− u))− α ≤ 0.

From this it follows that

D−→uxG(u) = lim
s→0+

1

s
[G(u+ s(x− u))−G(u)] ≤ 0.

Since the directional derivative of G satisfies

D−→uxG(u) = ∇G(u)
(x− u)

‖x− u‖
=

1

‖x− u‖
∇G(u)(x− u),

we obtain ∇G(u)(x− u) ≤ 0 for all x ∈ Γ− ∪ Γ. This shows that Γ− ∪ Γ is on one side of
Tu(Γ). As 0 ∈ Γ− and 0 is below Tu(Γ), the set Γ− ∪ Γ is below Tu(Γ) and so is Γ.

To show that Γ is above L(Γ), we need only show that L(Γ) is below Γ, i.e. L(Γ) ⊂ Γ−∪Γ. If
Ri, Rj exist for some distinct i, j ∈ IN , as Ri, Rj ∈ Γ, by the convexity of Γ and Proposition

2.2 (i), RiRj ⊂ (Γ− ∪ Γ) ∩ L(Γ). If Ri exists but Rj does not exist, then Jj ⊂ Γ−. Let

Qj ∈ Jj with vj as its jth component. Then RiQj ⊂ Γ−∪Γ. As the half line L(Ri)j passing

through Ri and parallel to Jj lies in L(Γ), by the definition of L(Γ), and is the limit of RiQj
as vj → +∞, we also have L(Ri)j ⊂ (Γ−∪Γ)∩L(Γ). This shows that each one-dimensional

edge of L(Γ) is contained in Γ− ∪ Γ. Since Γ− ∪ Γ is convex and L(Γ) is both convex
and concave, for any x, y ∈ (Γ− ∪ Γ) ∩ L(Γ), we must have xy ⊂ (Γ− ∪ Γ) ∩ L(Γ). As
each two-dimensional face of L(Γ) consists of xy with x, y taking all the points in two one-
dimensional edges, all two-dimensional faces of L(Γ) are contained in Γ− ∪ Γ. Repeating
this process a finite number of times, we obtain L(Γ) ⊂ Γ− ∪ Γ. Hence, L(Γ) is below Γ.

(b) By the concavity of Γ and Proposition 2.2 (ii), Γ ∪ Γ+ is convex. So, for any x ∈
Γ ∪ Γ+ \ {u}, we have xu ⊂ Γ ∪ Γ+. Thus,

(54) ∀s ∈ [0, 1], G(sx+ (1− s)u)−G(u) = G(u+ s(x− u))− α ≥ 0,
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from which follows D−→uxG(u) ≥ 0. As D−→uxG(u) = 1
‖x−u‖∇G(u)(x−u), we obtain∇G(u)(x−

u) ≥ 0 for all x ∈ Γ ∪ Γ+. Thus, Γ ∪ Γ+ is on one side of Tu(Γ). We shall see that

(55) ∀w ∈ Γ,RN+ (w) = {x ∈ RN+ : x ≥ w} ⊂ Γ ∪ Γ+.

So, from this follows RN+ (u) ⊂ Γ∪Γ+ since u ∈ Γ. As 2u ∈ RN+ (u) so 2u ∈ Γ∪Γ+, we have
∇G(u)(2u− u) = ∇G(u)u ≥ 0. This together with ∇G(u)u 6= 0 implies that ∇G(u)u > 0
and ∇G(u)(0− u) < 0. Thus, Γ ∪ Γ+ is on one side of Tu(Γ) but 0 is on the other side of
Tu(Γ). Since 0 is below Tu(Γ) by definition, Γ ∪ Γ+ is above Tu(Γ) and so is Γ.

To show that Γ is below L(Γ), we need only show that L(Γ) is above Γ, i.e. L(Γ) ⊂ Γ∪Γ+.
For this purpose, we first show (55). We claim that L(w)i ⊂ Γ ∪ Γ+ for all i ∈ IN . Indeed,

if Ri does not exist, then the half line L(w)i lies in Γ∪Γ+ by assumption. If Ri exists, then,

for any Qi ∈ Ji with vi as its ith component and Qi > Ri, by the convexity of Γ ∪ Γ+ and
Qi, w ∈ Γ ∪ Γ+, we have wQi ⊂ Γ ∪ Γ+. Since L(w)i is the limit of wQi as vi → +∞, we

also have L(w)i ⊂ Γ ∪ Γ+. Then it follows from the convexity of Γ ∪ Γ+ that

L(w)i × L(w)j = {sx+ (1− s)y : x ∈ L(w)i, y ∈ L(w)j , s ∈ [0, 1]} ⊂ Γ ∪ Γ+

for all i, j ∈ IN . Since RN+ (w) = L(w)1 × L(w)2 × · · · × L(w)N , repeating the above process
a finite number of times, we have shown (55).

Now if Ri, Rj exist for some distinct i, j ∈ IN , RiRj is a one-dimensional edge of L(Γ)

and RiRj ⊂ Γ ∪ Γ+ by the convexity of Γ ∪ Γ+. If Ri exists but Rj does not exist, then
L(Ri)j is a one-dimensional edge of L(Γ) and L(Ri)j ⊂ Γ ∪ Γ+ by assumption. Thus, every

one-dimensional edge of L(Γ) is contained in Γ ∪ Γ+. Then, following the same reasoning
as we did in part (a), we obtain L(Γ) ⊂ Γ ∪ Γ+, so L(Γ) is above Γ.

The proof is complete under the assumption G(x) − α < 0 for x ∈ Γ− and G(x) − α > 0
for x ∈ Γ+. If G(x) − α > 0 for x ∈ Γ− and G(x) − α < 0 for x ∈ Γ+, the above proof is
still valid after swapping “≤” and “≥” in (53), (54) and some related inequalities. �
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