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Abstract

This paper analyses the long-memory properties of a high-frequency financial time

series dataset. It focuses on temporal aggregation and other features of the data, and

how they might affect the degree of dependence of the series. Fractional integration or

I(d) models are estimated with a variety of specifications for the error term. In brief, we

find evidence that a lower degree of integration is associated with lower data

frequencies. In particular, when the data are collected every 10 minutes there are several

cases with values of d strictly smaller than 1, implying mean-reverting behaviour;

however, for higher data frequencies the unit root null cannot be rejected. This holds for

all four series examined, namely Open, High, Low and Last observations for the US

dollar / British pound spot exchange rate and for different sample periods.
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1. Introduction

The Efficient Market Hypothesis (EMH) in its weak form rules out the possibility of

abnormal systematic profits over and above transaction costs and risk premia, as prices

should fully reflect available information (see Fama, 1970). The implication is that

stock prices should follow a random walk process, which implies unpredictable returns

(see Summers, 1986). Therefore, a finding of mean reversion in stock prices is seen as

inconsistent with equilibrium asset pricing models (see, e.g., Poterba and Summers,

1988 and Fama and French, 1988). A large number of studies have been carried out to

establish whether (log-)prices are indeed I(1) and, consequently, stock market returns

I(0) series, although business cycle variation and short-range dependence might also

lead to a rejection of long memory in stock prices (see Lo, 1991). However, as we

argued in Caporale and Gil-Alana (2002), the assumptions imposed by standard unit

root tests might be too restrictive, and the possibility of fractional orders of integration

with a slow rate of decay should be considered. Therefore that study performed tests

allowing for fractional alternatives and incorporating the I(0) and the I(1) models as

particular cases of interest, and found that US real stock returns are close to being I(0)

(note that if shocks are weakly autocorrelated, markets will not be efficient).

A subsequent contribution (see Caporale and Gil-Alana, 2007) decomposed the

stochastic process followed by US stock prices into a long-run component described by

the fractional differencing parameter (d) and a short-run (ARMA) structure. Finally, in

Caporale and Gil-Alana (2008) we introduced a more general model which, instead of

considering exclusively the component affecting the long-run or zero frequency, also

takes into account the cyclical structure. Specifically, a procedure was applied which

allows to test simultaneously for unit roots with possibly fractional orders of integration

at both the zero and the cyclical frequencies. Modelling simultaneously with long range
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dependence the zero and the cyclical frequencies can solve at least to some extent the

problem of misspecification that might arise with respect to these two frequencies.

However, the fractional differencing parameter may be very sensitive to the data

frequency used in the analysis. In fact, it has often been claimed that aggregation is

behind fractional integration: Robinson (1978) and Granger (1980) showed that the

aggregation of heterogeneous individual AR processes may produce fractional

integration. On the other hand, it is well known that temporal aggregation leads to finite

sample biases in the estimates of the fractional differencing parameter (see, e.g. Souza

and Smith, 2002).1 This is the main issue that will be investigated in the present study

by using a high frequency dataset on the US dollar-British pound spot exchange rate

collected every 1, 2, 3, 5, and 10 minutes. As in Caporale and Gil-Alana (2008), we

start the analysis using a general long memory model that incorporates poles at both the

zero and a cyclical frequency; however, since the evidence clearly suggested an order of

integration not significantly different from zero for the cyclical frequency, we then

focus exclusively on the long run or zero frequency.

Fractional integration in exchange rates markets has been examined in various

papers, many of them testing the Purchasing Power Parity (PPP) condition, which

occupies a central place in international economics. Applying R/S techniques to daily

rates for the British pound, French franc and Deutsche mark, Booth, Kaen and Koveos

(1982) found positive memory during the flexible exchange rate period (1973-1979) but

negative one (i.e., anti-persistence) during the fixed exchange rate period (1965-1971).

Later, Cheung (1993) also found evidence of long memory behaviour in foreign

exchange markets during the managed floating regime. On the other hand, Baum,

1 Note, however, that Souza and Smith (2002) consider systematic sampling only, while the present work
focuses on returns. See also Souza (2005) and Hassler (2011) for other papers on fractional integration
under temporal aggregation.
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Barkoulas and Caglayan (1999) estimated fractional ARIMA (ARFIMA) models for

real exchange rates in the post-Bretton Woods era and found almost no evidence to

support long run PPP. Additional studies on exchange rate dynamics using fractional

integration are those by Crato and Ray (2000), Wang (2004), Dufrenot et al. (2006,

2008) and Aloy et al. (2011) among others. All these papers, however, focus on low

frequency (mainly quarterly) data, and do not examine the case of high frequency (intra-

day) data.

The present study focuses on the case of spot exchange rates with the aim of

gaining some insights into the interaction between fractional integration and high

frequency data. The results suggest that lower degrees of memory are associated with

lower data frequencies. The layout of the paper is as follows. Section 2 describes the

econometric methodology used. Section 3 provides details of the data and discusses the

empirical results. Section 4 summarises the main findings and offers some concluding

remarks.

2. Methodology

There are two definitions of long memory, one in the frequency domain and the other in

the time domain. Let us consider a zero-mean covariance stationary process { tx ,

,...1,0 t } with autocovariance function )( uttu xxE  . The time domain definition

of long memory states that:




u
u .

Assume that xt has an absolutely continuous spectral distribution, so that it has a spectral

density function, f(λ); according to the frequency domain definition of long memory the 

spectral density function is unbounded at some frequency λ in the interval [ ,0 ), i.e.,
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 .,,as)(f **  0

Most of the existing empirical literature considers the case when the singularity

or pole in the spectrum occurs at the zero frequency. This is the standard case of  dI

models of the form:

,...,1,0,)1(  tuxL tt
d (1)

with xt = 0 for t  ≤  0, and d > 0, where L is the lag-operator ( 1 tt xLx ) and tu is  0I ,

being defined in this context as a covariance stationary process with a spectral density

function that is positive and finite at any frequency. This includes a wide range of

model specifications such as the white noise, the stationary autoregression (AR),

moving average (MA), stationary ARMA etc.2

Note that the parameter d plays a crucial role in describing the degree of

dependence of the series. Specifically, if d = 0 in (1), xt = ut, and the series is I(0),

potentially including ARMA structures with the autocorrelations decaying at an

exponential rate. If d belongs to the interval (0, 0.5), the series is still covariance

stationary but the autocorrelations take longer to disappear than in the I(0) case. If d is

in the interval [0.5, 1), the series is no longer covariance stationary; however, it is still

mean-reverting with shocks affecting it disappearing in the long run. Finally, if d ≥  1 

the series is nonstationary and non-mean-reverting.

In this paper we analyse the long memory property of a high frequency financial

dataset, noting that the fractional differencing parameter can change substantially

depending on the data frequency employed. The methodology employed here to

estimate the fractional differencing parameter is based on the Whittle function in the

frequency domain (Dahlhaus, 1989). We also employ a testing procedure developed by

2 If ut in (1) is an ARMA(p, q) process, xt is then said to follow a Fractionally Integrated ARMA or
ARFIMA(p, d, q) model.
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Robinson (1994) allowing to test for any real value of d in I(d) models. This method is a

Lagrange Multiplier (LM) procedure and is the most efficient one in the context of

fractional integration. It tests the null hypothesis Ho: d = do for any real value do, and the

test statistic follows a standard (normal) limit distribution. Moreover this standard limit

behavior holds independently of the inclusion of deterministic terms (like intercept

and/or linear trends) and the specific modelling of the I(0) error term ut in (1). The

functional form of this method is specified in various empirical applications (Gil-Alana

and Robinson, 1997; Gil-Alana, 2000; etc.). Alternatively, we could have employed

Wald and LR test statistics against fractional alternatives with the same null and limit

theory as the LM test of Robinson (1994). Lobato and Velasco (2007) essentially

employed such a Wald testing procedure, although this method requires a consistent

estimate of d, and therefore the LM test of Robinson (1994) seems computationally

more attractive. Other methods, such as the one developed by Demetrescu, Kuzin and

Hassler (2008), which have been shown to be robust with respect to even unconditional

heteroscedasticity, were also implemented leading to practically the same results as

those reported in the paper.

3. Data and empirical results

The data used for the analysis are taken from Reuters, and are intraday data at the 1, 2,

3, 5, 10-minute frequency. Specifically, the series examined is the spot nominal

exchange rate of the US dollar pound vis-à-vis the British pound, for different sample

periods with a duration of one and a half days. We only report the results for the period

13/05/2010 (11:47) – 14/05/2010 (21:07), since those for other samples were very

similar.3 In this way we avoid the potential bias due to sample dependency. We focus on

3 We tried using five different sample periods over the years 2011 and 2012.
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samples of one day and a half on the basis of the computational time required when

working with high frequency data in the context of long memory and fractional

integration. However, we also conducted the analysis for a longer time series containing

about 4,000 observations (or roughly a week) and the results were once again

completely in line with those reported here. We examine four series: Open, High, Low

and Last values of the exchange rate collected every minute, where High (Low) stands

for the highest (lowest) price and Open (Last) for the initial (last) price observed in that

time interval. The aim is to detect whether there exist anomalies in the behaviour of

each of the series.

[Insert Figures 1 – 4 about here]

Figure 1 shows plots of the four series. The corresponding returns, obtained as

the first differences of the log-prices, are shown in Figure 2. Figures 3 and 4 display the

correlograms and the periodograms of the return series. The values of the former seem

to indicate that the original series may be I(1), suggesting the possibility of random

walk behaviour; however, the presence of some significant values in the correlograms

of the first differenced (logged) data, even at lags far away from zero might indicate

weak autocorrelation and/or fractional integration.4

First, we estimate the value of d for the four (logged) series at the highest

frequency (i.e., with data collected each minute). For this purpose we consider the

following model:

,...,2,1;)1(;  tuxLxty tt
d

tt  (2)

4 It is debatable whether the four series should be modelled separately and treated in the same way.
However, a simple visual inspection of Figure 1 shows that they move roughly in a very similar way.
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where yt is the time series observed, α and β are the deterministic terms (an intercept 

and a linear time trend respectively), and xt is assumed to be I(d), where d can be any

real number. Different assumptions will be made about the error term ut in (2).5

[Insert Table 1 about here]

Table 1 displays the results of the Whittle estimates of d along with the 95%

confidence interval of the non-rejection values according to Robinson’s (1994)

parametric approach. The error term ut is assumed to be a white noise in Table 1a, an

AR(1) process in Table 1b, whilst it is specified using the exponential spectral model of

Bloomfield (1973) in Table 1c. The latter is a non-parametric approach to modelling

I(0) terms that produces autocorrelations decaying exponentially as in the AR(MA)

case.

Table 1 shows the results of the estimated values of d, for the three standard

cases of no regressors (i.e., α = β = 0 in (2)), an intercept (α unknown and β = 0), and an 

intercept with a linear time trend (α and β unknown). Starting with the case of white 

noise errors (Table 1a), it can be seen that for “Open” and “Last” the estimates are

slightly below 1, though the unit root null cannot be rejected in any case. However, for

“High” and “Low” the unit root hypothesis is rejected in favour of higher degrees of

integration in the cases of an intercept and an intercept with a linear time trend. When

allowing autocorrelation in the form of an AR(1) process (in Table 1b), the results vary

depending on the inclusion or not of deterministic terms. Specifically, if no regressors

are included in the regression model, d is found to be strictly higher than 1 for all four

series; however, when including deterministic terms, the unit root null is almost never

rejected. The only exception is “High” with a linear trend, when the estimated value of

d is found to be 0.936, and the interval excludes the unit root in favour of mean

5 The inclusion of a linear time trend in equation (2) may appear unrealistic in the context of financial
data. Note, however that the time trend disappears in the long run as long as d > 0.
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reversion. When adopting the more general Bloomfield specification (Table 1c), the unit

root null hypothesis is never rejected, clearly suggesting that the returns series are I(0).

The t-values imply that the time trend coefficients are not statistically significant, whilst

the intercepts are always significant. Thus, the model with an intercept seems to be the

most adequate specification for these series.

[Insert Figures 5 and 6 about here]

Next we focus on the variance of the return series and examine the squared and

absolute returns, which are used as proxies for volatility. These two measures have been

widely employed in the financial literature to measure volatility.6 Plots of the absolute

return series are displayed in Figure 5, while Figure 6 shows the squared returns. No

structural breaks are apparent in any of these figures.

[Insert Table 2 about here]

Table 2 reports the estimates of d for the absolute and squared returns under the

assumption that the error term is white noise. Very similar results were obtained

imposing weakly autocorrelated errors. The estimates are significantly positive in all

cases, the values ranging between 0.142 (“Last” with an intercept) and 0.162 (“High”

with no regressors) in case of the absolute returns, and between 0.096 (“Low” with a

linear trend) and 0.109 (“Last” with an intercept) for the squared returns. When testing

for autocorrelation in the error terms we do not find any evidence for it suggesting that

the I(d) structure is sufficient to describe the time dependence in the absolute and

squared returns. These results are consistent with those reported in the literature for

lower frequency data, that is, the exchange rates appear to be I(1) implying that returns

are I(0), and the associated volatility is I(d) with a positive and small value of d.

6 Absolute returns were employed among others by Ding et al. (1993), Granger and Ding (1996),
Bollerslev and Wright (2000), Gil-Alana (2005), Sibbertsen (2004) and Cotter (2005), whereas squared
returns were used in Lobato and Savin (1998), Gil-Alana (2003) and Cotter (2005). Using the “realized
variance” produced very similar results.
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In the context of high frequency data, it is interesting to investigate if the same

result holds as the distance between observations increases. For this purpose we

examine again the long memory property of the same variables but now using data

which are collected every 2, 3, 5 and 10 minutes respectively.

[Insert Table 3 about here]

Table 3 displays the results using these lower frequencies assuming that the error

term is a white noise process. Once more, when allowing for weak autocorrelation the

estimation results for d were practically the same. Starting with data collected every 2

minutes (see Table 3a), it can be seen that the unit root null is almost never rejected.

The only two exceptions are “Low” with an intercept, and with an intercept and a linear

trend, where d is strictly above 1. Focusing now on the data collected every 3 minutes

(Table 3b), it can be seen that the estimated values of d are slightly smaller, and the unit

root null hypothesis is never rejected. In general the estimates of d are smaller by about

0.020 compared with those reported in Table 3a. Table 3c concerns the data collected

every 5 minutes. Once more the values are smaller than in previous tables, and the same

happens in Table 3d which concerns data collected every 10 minutes. In this case, even

values which are strictly smaller than 1 are found, implying a small degree of mean-

reverting behaviour.

[Insert Tables 4 and 5 about here]

Tables 4 and 5 display the estimates of d for the absolute and squared returns

series respectively, again assuming white noise errors. The results here are slightly more

ambiguous as there is no monotonic decrease in the value of d as the time distance

between the observations increases. For example, in the two cases of absolute and

squared returns the highest values for “Last” occur for data collected every 3 minutes,

and for “High” and “Low” for data collected every 5 minutes. This lack of monotonicity
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in the relationship between data frequency and the order of integration in the volatility

processes is also found in the case of autocorrelated errors.

Finally, we employ a semiparametric method to estimate the values of d for the

series of interest, without assuming a functional form for the error term. We follow a

procedure developed by Robinson (1995). This method is essentially a local ‘Whittle

estimator’ in the frequency domain, which uses a band of frequencies that degenerates

to zero. The estimator is implicitly defined by:

,log
1

2)(logminargˆ

1
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where m is a bandwidth number, and I(s) is the periodogram of the raw time series, xt,

given by:
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and d  (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions,

Robinson (1995) proved that:

,)4/1,0()ˆ(  TasNddm do

where do is the true value of d. This estimator is robust to a certain degree of conditional

heteroscedasticity and is more efficient than other more recent semiparametric

competitors.

[Insert Figures 7 – 10 about here]

The results based on the above approach are displayed in Figures 7 – 10. Given

the nonstationary nature of the series examined, first-differenced data are used for the

estimation, then adding 1 to the estimated values to obtain the proper orders of
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integration of the series.7 It can be seen that the values are similar for the four series.

Along with the estimates we also present the 95% confidence band corresponding to the

I(1) hypothesis. We display the estimates for a range of values of the bandwidth

parameter m, first from m = 1, …, 100, and then using a shorter interval, m = 50, 51, …,

100. The highest estimates correspond to the highest frequency, while the lowest ones

correspond to the series with data collected every 10 minutes, giving further support to

the hypothesis that lower degrees of dependence are associated with lower data

frequencies.8 This is also consistent with the Monte Carlo experiments conducted in

Caporale and Gil-Alana (2010), who find that, if the differencing parameter in the Data

Generating Process has a fractional value, using data at a lower frequency increases the

distortion in the estimation of d, producing lower values and higher evidence of mean

reversion. On the other hand, this is in contrast to Souza (2005) and other recent papers

that show that temporal aggregation leaves the degree of integration unchanged (Souza,

2007, 2008a,b) (except for the rather peculiar case of negative d, or anti-persistence)

under systematic sampling, implying that the finite-sample behaviour might differ

substantially from that implied by theory.9

4. Conclusions

Despite the existence of a very extensive literature, there is still lack of consensus on

what is the most appropriate specification for many financial series. For instance,

whether asset returns of asset prices are predictable or not is still controversial: the

efficiency market hypothesis suggests that they should follow a random walk (see

7 When using the Abadir et al.’s (2007) approach, which is an extension of Robinson’s (1995) that does
not impose stationarity, the estimates were almost identical to those reported in the paper, and similar
results were obtained with log-periodogram type estimators.
8 Estimating d with the same bandwidth m = (T)0.5 produces evidence of unit roots in all series except the
data collected at the 10-minute frequency.
9 The sample size is large enough to justify the use of the asymptotic methods employed in this paper.
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Fama, 1970), but mean reversion is often found (see, e.g., Poterba and Summers, 1988).

More recently, it has become clear that it is essential to consider the possibility of

fractional integration in order to analyse the long-memory properties and to allow for a

much richer dynamic specification. Various models have been suggested, increasingly

general (see, e.g., Caporale and Gil-Alana, 2002, 2007, 2008). The first contribution of

the present study is to show that indeed exchange rates dynamics may incorporate long

memory components. A potentially crucial issue which has been overlooked is the

extent to which the fractional differencing parameter might be sensitive to the data

frequency. The second contribution of this paper is to examine this issue empirically

using high frequency data on the US dollar-British pound spot exchange rate. In

particular, we examined intra-day data (collected every 1, 2, 3, 5 and 10 minutes) for the

open, close, high and low values of the exchange rate. In brief, we find evidence that a

lower degree of integration is associated with lower data frequencies, and this holds for

all the sample periods examined. In particular, when the data are collected every 10

minutes there are several cases with values of d strictly smaller than 1, implying a

certain degree of mean-reverting behaviour; however, for higher data frequencies the

unit root null cannot be rejected. This is the case for all the four series examined, and

for different periods within the sample.

The above results indicate that the order of integration of a time series observed

at different intervals may differ. There is no an obvious argument to justify this result.

One possibility could be that the data generating process changes with the sampling

frequency, although Hassler (2011) showed that this argument is not very strong as in

the case of nonstationary fractional integration many of the basic time series properties

are preserved under skip sampling. A more plausible argument could be the existence of

a bias in the estimation results. Here we have two potential biases. One arises from
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temporal aggregation as suggested by Souza and Smith (2002).10 A second type of bias

may arise from the high frequency of the data. It is well known that in this case there is

microstructure noise and that this noise component becomes stronger as the sampling

frequency increases. In the context of the semiparametric log-periodogram estimator

Sun and Phillips (2003) derived an explicit form for this bias, which is negative and

increases in absolute value as the variance of the noise increases. Sun and Phillips

(2004) conjecture that the bias for Whittle-type estimators should be similar. Thus, we

have two potential forces that move the bias in opposite directions. Which bias

dominates in the case of the methods employed in the present study will be examined in

future papers.

In essence, the results suggest that series that are expected to be I(1) consistently

with market efficiency might not be so if the sampling frequency is high. Thus, for the

10-minute data, the unit root hypothesis is rejected in favour of mean reversion,

Although this does not necessarily imply that the market is inefficient, since the

assumption of a random walk is merely a sufficient but not a necessary condition for the

EMH.11

Finally, it might be asked whether the lower degrees of dependence observed at

the lower frequencies is the result of small sample bias. However, it should be noted

that even at the lowest data frequencies the sample size is large enough to justify the

estimation of a fractional integration model. Extending the dataset to longer periods of

time produced very similar results at a high computational cost (all computations were

obtained using Fortran and the codes of the programs are available from the authors

upon request). Other approaches could be applied to these and other high frequency data

10 These authors investigated this bias for parametric and semiparametric estimates of d and showed that
the estimates decreased to zero as the sampling frequency decreases.
11 Note that some of the findings in this paper suggest that the absolute and the squared returns are I(d)
with d positive and small, which makes the assumption of a constant variance also questionable.
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such as the one suggested by Ohanissian et al. (2008) in their study on fractional

integration, structural breaks and data frequency. Note that fractional integration and

structural breaks are issues which are intimately related, but the latter is not relevant in

the case of high frequency data as those used in this study.
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Figure 1: Series in levels
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Figure 2: Returns
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Figure 3: Correlograms of returns
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The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation.

Figure 4: Periodograms of returns
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Table 1: Estimates of the fractional differencing parameter d

a) White noise errors

No regressors An intercept A linear time trend

Open 0.997 (0.970, 1.027) 0.983 (0.955, 1.015) 0.983 (0.956, 1.015)

High 0.998 (0.971, 1.028) 1.101 (1.066, 1.141) 1.101 (1.066, 1.141)

Low 0.997 (0.970, 1.027) 1.130 (1.095, 1.169) 1.130 (1.095, 1.169)

Last 0.998 (0.970, 1.028) 0.977 (0.950, 1.007) 0.977 (0.950, 1.007)

b) AR (1) errors

No regressors An intercept A linear time trend

Open 1.381 (1.328, 1.441) 0.973 (0.923, 1.031) 0.974 (0.924, 1.031)

High 1.382 (1.329, 1.442) 0.934 (0.879, 0.996) 0.936 (0.883, 0.996)

Low 1.381 (1.327, 1.440) 0.969 (0.907, 1.037) 0.970 (0.910, 1.037)

Last 1.382 (1.329, 1.442) 1.004 (0.954, 1.060) 1.004 (0.955, 1.060)

c) Bloomfield-type errors

No regressors An intercept A linear time trend

Open 0.997 (0.944, 1.041) 0.963 (0.922, 1.029) 0.970 (0.923, 1.029)

High 0.991 (0.950, 1.042) 0.962 (0.914, 1.006) 0.962 (0.915, 1.006)

Low 0.990 (0.951, 1.047) 0.988 (0.939, 1.047) 0.988 (0.940, 1.047)

Last 0.998 (0.950, 1.049) 1.010 (0.955, 1.057) 1.010 (0.955, 1.057)

The values in parentheses give the 95% confidence band for the non-rejection values of d.
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Figure 5: Absolute returns
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Figure 6: Squared returns
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Table 2: Estimates of d for the absolute and squared returns with white noise errors

a) Absolute returns

No regressors An intercept A linear time trend

Open 0.149 (0.131, 0.171) 0.148 (0.130, 0.168) 0.144 (0.126, 0.165)

High 0.162 (0.142, 0.185) 0.159 (0.140, 0.181) 0.156 (0.136, 0.178)

Low 0.154 (0.134, 0.171) 0.151 (0.132, 0.172) 0.149 (0.129, 0.176)

Last 0.143 (0.123, 0.167) 0.142 (0.124, 0.163) 0.136 (0.117, 0.158)

b) Squared returns

No regressors An intercept A linear time trend

Open 0.106 (0.088, 0.126) 0.107 (0.089, 0.127) 0.103 (0.085, 0.124)

High 0.098 (0.078, 0.121) 0.099 (0.080, 0.122) 0.094 (0.074, 0.118)

Low 0.098 (0.079, 0.120) 0.099 (0.080, 0.121) 0.096 (0.077, 0.118)

Last 0.106 (0.088, 0.128) 0.109 (0.090, 0.130) 0.102 (0.082, 0.124)

The values in parentheses give the 95% confidence band for the non-rejection values of d.
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Table 3: Estimates of the fractional differencing parameter based on white noise ut

a) 2 minutes

No regressors An intercept A linear time trend

Open 0.994 (0.956, 1.038) 0.980 (0.939, 1.028) 0.980 (0.940, 1.028)

High 0.994 (0.956, 1.038) 1.034 (0.989, 1.087) 1.034 (0.989, 1.087)

Low 0.995 (0.957, 1.039) 1.062 (1.017, 1.116) 1.062 (1.017, 1.115)

Last 0.994 (0.957, 1.039) 0.989 (0.948, 1.035) 0.989 (0.949, 1.035)

b) 3 minutes

No regressors An intercept A linear time trend

Open 0.992 (0.946, 1.047) 0.962 (0.912, 1.019) 0.963 (0.914, 1.019)

High 0.992 (0.946, 1.047) 1.003 (0.950, 1.066) 1.003 (0.951, 1.065)

Low 0.993 (0.947, 1.048) 1.041 (0.984, 1.108) 1.041 (0.985, 1.107)

Last 0.992 (0.946, 1.048) 0.958 (0.907, 1.016) 0.958 0.910, 1.016)

c) 5 minutes

No regressors An intercept A linear time trend

Open 0.990 (0.930, 1.064) 0.941 (0.872, 1.024) 0.942 (0.877, 1.024)

High 0.990 (0.931, 1.064) 0.948 (0.880, 1.030) 0.949 (0.885, 1.030)

Low 0.990 (0.931, 1.064) 0.981 (0.910, 1.069) 0.982 (0.913, 1.068)

Last 0.989 (0.930, 1.063) 0.942 (0.874, 1.024) 0.944 (0.879, 1.023)

d) 10 minutes

No regressors An intercept A linear time trend

Open 0.977 (0.895, 1.088) 0.831 (0.719, 0.957) 0.848 (0.761, 0.961)

High 0.978 (0.895, 1.089) 0.869 (0.766, 0.990) 0.881 (0.794, 0.991)

Low 0.977 (0.895, 1.088) 0.860 (0.750, 0.987) 0.873 (0.784, 0.988)

Last 0.978 (0.895, 1.089) 0.861 (0.755, 0.983) 0.872 (0.785, 0.985)

The values in parentheses give the 95% confidence band for the non-rejection values of d.
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Table 4: Estimates of d for the absolute returns

a) 2 minutes

No regressors An intercept A linear time trend

Open 0.188 (0.157, 0.225) 0.182 (0.153, 0.217) 0.179 (0.149, 0.215)

High 0.181 (0.152, 0.216) 0.179 (0.151, 0.211) 0.174 (0.146, 0.208)

Low 0.176 (0.148, 0.210) 0.171 (0.144, 0.202) 0.168 (0.141, 0.200)

Last 0.143 (0.116, 0.173) 0.140 (0.116, 0.169) 0.136 (0.111, 0.166)

b) 3 minutes

No regressors An intercept A linear time trend

Open 0.159 (0.124, 0.202) 0.157 (0.124, 0.197) 0.151 (0.116, 0.192)

High 0.178 (0.143, 0.221) 0.176 (0.143, 0.216) 0.171 (0.136, 0.212)

Low 0.165 (0.127, 0.212) 0.159 (0.124, 0.202) 0.156 (0.120, 0.200)

Last 0.167 (0.131, 0.211) 0.168 (0.135, 0.210) 0.160 (0.124, 0.204)

c) 5 minutes

No regressors An intercept A linear time trend

Open 0.189 (0.140, 0.247) 0.176 (0.133, 0.231) 0.175 (0.131, 0.230)

High 0.194 (0.144, 0.259) 0.190 (0.144, 0.249) 0.186 (0.138, 0.247)

Low 0.216 (0.165, 0.281) 0.203 (0.157, 0.262) 0.202 (0.155, 0.261)

Last 0.149 (0.106, 0.204) 0.150 (0.109, 0.202) 0.144 (0.102, 0.198)

d) 10 minutes

No regressors An intercept A linear time trend

Open 0.143 (0.077, 0.233) 0.136 (0.076, 0.213) 0.133 (0.071, 0.212)

High 0.088 (0.028, 0.174) 0.086 (0.028, 0.161) 0.084 (0.025, 0.160)

Low 0.133 (0.058, 0.233) 0.121 (0.055, 0.207) 0.121 (0.054, 0.207)

Last 0.088 (0.024, 0.176) 0.083 (0.024, 0.156) 0.083 (0.024, 0.160)

The values in parentheses give the 95% confidence band for the non-rejection values of d.
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Table 5: Estimates of d for the squared returns

a) 2 minutes

No regressors An intercept A linear time trend

Open 0.129 (0.096, 0.164) 0.130 (0.101, 0.164) 0.126 (0.100, 0.162)

High 0.115 (0.087, 0.149) 0.118 (0.090, 0.151) 0.110 (0.080, 0.145)

Low 0.113 (0.086, 0.145) 0.115 (0.088, 0.146) 0.111 (0.083, 0.143)

Last 0.097 (0.072, 0.127) 0.100 (0.075, 0.129) 0.093 (0.067, 0.124)

b) 3 minutes

No regressors An intercept A linear time trend

Open 0.106 (0.073, 0.148) 0.108 (0.075, 0.149) 0.103 (0.068, 0.145)

High 0.123 (0.090, 0.165) 0.125 (0.092, 0.166) 0.119 (0.084, 0.161)

Low 0.128 (0.089, 0.176) 0.129 (0.091, 0.176) 0.126 (0.087, 0.174)

Last 0.126 (0.090, 0.171) 0.130 (0.094, 0.174) 0.123 (0.084, 0.169)

c) 5 minutes

No regressors An intercept A linear time trend

Open 0.136 (0.088, 0.198) 0.135 (0.089, 0.195) 0.133 (0.085, 0.194)

High 0.144 (0.094, 0.210) 0.147 (0.097, 0.211) 0.141 (0.089, 0.208)

Low 0.160 (0.111, 0.224) 0.159 (0.111, 0.221) 0.157 (0.108, 0.220)

Last 0.110 (0.067, 0.166) 0.113 (0.070, 0.169) 0.107 (0.061, 0.164)

d) 10 minutes

No regressors An intercept A linear time trend

Open 0.088 (0.027, 0.171) 0.090 (0.028, 0.171) 0.085 (0.021, 0.168)

High 0.044 (-0.015, 0.125) 0.045 (-0.016, 0.127) 0.041 (-0.023, 0.125)

Low 0.083 (0.019, 0.177) 0.084 (0.020, 0.169) 0.082 (0.016, 0.168)

Last 0.049 (-0.011, 0.132) 0.051 (-0.011, 0.133) 0.049 (-0.015, 0.132)

The values in parentheses give the 95% confidence band for the non-rejection values of d.
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Figure 7: Estimates of d for the OPEN series for different bandwidth parameters
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Figure 8: Estimates of d for the HIGH series for different bandwidth parameters
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Figure 9: Estimates of d for the LOW series for different bandwidth parameters
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Figure 10: Estimates of d for the LAST series for different bandwidth parameters
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