
 
 

 

  

Abstract—This paper is concerned with transmembrane 
prediction analysis. Most of novel drug design requires the use 
of Membrane proteins. Transmembrane protein structure 
allows pharmaceutical industry to design new drugs based on 
structural layout. However, laboratory experimental structure 
determination by X-ray crystallography is difficult to be 
achieved as the hydrophobic molecules do not crystalize easily. 
Moreover, the sheer number of proteins demands a 
computational solution to transmembrane regions 
identifications. This research therefore presents a novel 
Adaptive Neural Fuzzy Inference System (ANFIS) approach to 
predict and analyze of membrane helices in amino acid 
sequences. The ANFIS technique is implemented to predict 
membrane helices using sliding window data capturing. The 
paper uses hydrophobicity and propensity to encode the 
datasets using the conventional one letter symbol of amino acid 
residues. The computer simulation results show that the offered 
ANFIS methodology predicts transmembrane regions with high 
accuracy for randomly selected proteins. 

I. INTRODUCTION 
very cell, whether it is prokaryotic or eukaryotic is 
surrounded in a thin covering coat named membrane. 
Membrane proteins are large sets of biological 

macromolecules and they play a central role in working of the 
cell. Cellular functions include communication between cells, 
communication between organelles and cytosol, ion 
transport, receptors, nutrient transport and links to the 
extracellular matrix to name a few [1-2]. Most membrane 
proteins are connected to cell membranes through the 
transmembrane domain that passes via the membrane lipid/fat 
bilayer. Transmembrane proteins perform several key tasks 
such as cell signaling, cell to cell communication, cell 
recognition and cell adhesion or bond. Their transport ability 
from outside to inside of cellular organisms makes them a 
focus of more than half of the drug based research. The parts 
of proteins which are in contact with the membranes tend to 
be made of fat-loving (hydrophobic) amino acids, since the 
membranes of cells are mainly made of fat. It is therefore vital 
to find transmembrane protein structure and transmembrane 
regions to be able to design novel drugs. Human Genome 
project demonstrated that around 30% of proteins are 
transmembrane and most of the drugs act on transmembrane 
proteins [3-4]. 
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Initial research in amino acid sequence helices started in 
1980’s with some improvements in hydrophobicity prediction 
[5]. The research has gathered momentum since then and the 
applications of artificial intelligence (AI) and statistical 
analysis have been conducted to transmembrane proteins. 
Rost et al [6] has applied neural Networks (NN) to prediction 
of the helical transmembrane proteins. The technique has 
been used in simple type classification with some 
improvements in the predictions. There have also been some 
statistical analysis methods with supervised machine-learning 
algorithms such as PhdHTM [6] and DAS [7] to prediction of 
transmembrane protein. For instance, research recently has 
been carried out in the applications of Support Vector 
Machine (SVM) and other techniques to transmembrane 
protein prediction [8]. Hidden Markov Model has also 
significantly been applied on many occasions to 
transmembrane protein prediction analysis [9]. The 
simulation results reveal that HMM outperforms earlier 
methods both when evaluated on low-resolution topology 
data and on high-resolution 3D structures. The authors claim 
that the topology could be correctly predicted for 
approximately two-thirds of all membrane proteins using 
HMM. Kazemian et al [10] has taken the research further by 
applying a dual SVM – Genetic Algorithm (GA) schemes to 
prediction of membrane alpha-helices. The computer 
simulation results show that the SVM-GA algorithm 
performs better than most conventional techniques for 
randomly selected proteins containing single and multiple 
transmembrane regions. This research takes the membrane 
alpha helices prediction further by applying a novel ANFIS 
technique, a method which has never been used in 
transmembrane protein prediction.  

II. AN ANFIS TECHNIQUE 
Neural adaptive learning techniques can be utilized to 

provide a method for a Fuzzy Inference System (FIS) to learn 
information about a complex dataset of protein sequences. 
The technique can be used to compute the Member Function 
(MF) parameters that most optimally suited for the associated 
FIS to track the given input/output data. The technique 
constructs an FIS whose MF weights are tuned using a NN 
based back propagation algorithm. The relevant MF 
parameters change throughout the training process and the 
adjustments of these are facilitated by gradient vectors 
[11-12]. Although fuzzy logic has widely been used in 
conjunction with neural networks to solve a range of real 
world problems, the area of transmembrane protein 
prediction still remains largely unexplored. In the case of 
multi-variable amino acid chain assessments, pure fuzzy 
logic based systems may not offer a feasible solution. This is 
because of high number of inter-dependent variables such as 
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propensity and hydrophobicity, make the construction of a 
manual expert guided rule-based system that robustly maps 
input/output relationship almost an impossible task. In order 
to overcome the shortcomings of manual knowledge 
acquisition to create such rule based model, NNs are applied 
to automatically extract fuzzy rules from the numerical data 
[13].  

This paper uses the hydrophobicity and the propensity 
schemes to encode the protein sequence datasets. The 
hydrophobic term describes the likelihood of amino acid 
residues to exist in a transmembrane domain. The possibility 
of a given amino acid to be in a transmembrane region can be 
calculated using the propensity values [14]. These two 
encoding methods of the hydrophobicity and the propensity 
are used as a result of an extensive research carried out by 
Bose et al [14-15] using neural networks and statistical data 
analysis.  

To ascertain that the two encoding systems are also good 
enough to produce optimal results using ANFIS, the research 
was initially carried out by using exhaustive search criteria. 
For this purpose, other encoding schemes to represent amino 
acid sequence datasets, such as, steric parameter, 
polarisability, volume, isoelectric point, helix probability, 
sheet probability, polarity, and of course hydrophobicity and 
propensity [15] were individually used. A simple exhaustive 
search was performed within the available nine inputs to 
select the inputs that best influence the transmembrane 
protein segments in amino acid chains. The search 

mechanism built an ANFIS model for each input variable 
which was then trained  
for one epoch and then the reported error was recorded for the  
training/checking dataset pairs. The sample data for this 
search was taken from alpha-helix protein sequences for 
randomly selected protein chains bearing the nine encoding 
schemes. The outcome of ANFIS Root Mean Square (RMS) 
error for one variable is shown in Table 1; the lowest two are 
hydrophobicity and propensity. Therefore a fixed protein 
sequence dataset is used in this research to ascertain the 
prediction accuracies of two of the physic-chemical 
encodings, propensity and hydrophobicity using ANFIS 
technique. 
 
 

 
 

Fig. 1: An example of sliding window based extraction for alpha-helix amino acid sequences 1jgy_L.
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TABLE I 
RMS ERROR VALUES FOR A SINGLE INPUT VARIABLE AFTER ONE 

EPOCH USING ANFIS 
==================================================
9 ANFIS models, each with one input selected from nine candidates.  
________________________________________________________ 

 
ANFIS model 1: Steric Parameter --> trn=0.3987, chk=0.4019 
ANFIS model 2: Polarisibility --> trn=0.3845, chk=0.4073 
ANFIS model 3: Volume--> trn=0.3893, chk=0.4011 
ANFIS model 4: Hydrophobicity--> trn=0.3882, chk=0.3739 
ANFIS model 5: Isoelectric Point --> trn=0.3819, chk=0.3870 
ANFIS model 6: Helix Probability --> trn=0.3929, chk=0.4103 
ANFIS model 7: Sheet Probability --> trn=0.3968, chk=0.3906 
ANFIS model 8: Propensity --> trn=0.3828, chk=0.3784 
ANFIS model 9: Polarity --> trn=0.3969, chk=0.3953 
==================================================
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Fig. 2. Data distribution for ANFIS network. 
 
An ANFIS model was setup to forecast alpha-helices by 

looking at individual amino-acid residue data sets based on a 
set number of previous trained parametric residues 
information. The fuzzy rule is provided below: 
 
If Havg is LOW and Pavg is AVERAGE and Vmax is HIGH, then 
Pi is > HIGH                                                                      (1) 
 
where Havg  and Pavg are the average hydrophobicities and 
propensities, and Vmax  is maximum volume of a set range of 
amino acid residues immediately before the classified residue 
Pi at position i, as shown in Fig. 1. Fig. 1 utilizes a prescribed 
number of moving amino acid residues, in here 15, known as 
the ‘sliding window’ to analyze the protein sequences 1jgy_L 
for the purpose of protein segment identification, where the 
alpha-helices are continuously found for the middle residue 
based on the hydrophobic values on both sides of the sliding 
window [10, 16]. The four variables for hydrophobicity and 
propensity are ‘Left_Hydrophobicity’, 
‘Right_Hydrophobicity’, ‘Left_Propensity’ and 
‘Right_Propensity’. The ANFIS technique considers the 
biological and statistical characteristics of the proteins and 
presents a method that differentiates single and multiple 
transmembrane segments in amino acid sequences. 

III.  DATA PREPARATION 
The training, checking (validation) and testing of datasets 
should include a diverse assortment of cases with each 
spanning a range of input variables. This is necessary to 
robustly train the fuzzy inference rule based and membership 
function (MF) weights. The decision of what and how many 
variables to use are important factors in training and 
performance of the ANFIS model for prediction of unknown 
amino acid sequences.  Furthermore, dispersion of the data 
values plays a crucial role in the performance of the network. 
Incorrect data and extreme outliers within a dataset may 

induce imprecision on the prediction model. In this project it 
was decided to categorize the data as shown in Fig. 2. The 
testing data was selected in a 70-30% manner with the test 
amino acid chains comprised of the bottom 30% amines from 
the downloaded global database files. This research selects 
primary protein sequences in order to model the prediction 
and classification of transmembrane (TM) sequences. The 
structural databases such as Protein Data Bank (PDB) are 
required to train these models to predict membrane spanning 
regions. 1024 amino acid chains were selected from PDBTM 
website and 720 amino acid sequences were used for training 
and 304 were utilized for validation and testing. 

IV.  COMPUTER SIMULATION RESULTS 
The data for training and testing purposes of the ANFIS 

model was loaded using the standard ‘ANFISEDIT’ 
command in Matlab [13]. The entire system was then mapped 
into fuzzy MFs of average hydrophobicity Havg, average 
propensity Pavg and maximum volume Vmax using a 
Takagi-Sugeno-Kang fuzzy inference system with neural 
weight adjustments. Takagi–Sugeno–Kang method is known 
to complement optimization and adaptive techniques [17].  

A. An ANFIS based Transmembrane Prediction 
The four variables ‘Left_Hydrophobicity’, 

‘Right_Hydrophobicity’, ‘Left_Propensity’ and 
‘Right_Propensity’ shown in Fig. 1 finally mapped to the NN 
in the ANFIS model. The role of the NN is to tune the 
corresponding membership functions in order to model the 
underlying feature space of each middle amino acid sequence 
with respect to its immediate neighborhood residue as 
demonstrated in Fig. 1. The proposed ANFIS network 
produces a comprehensive computer generated fuzzy logic 
rules using equation (1).  Fig. 3 demonstrates a rule based FIS 
which is obtained using the NN based training to generate the 
rules. In this scenario the ANFIS technique generates 81 
rules, 14 of which are outlined in Fig. 3. Two examples of 
MFs are further elaborated in Fig. 4. In Fig. 4 (a) the 
propensity MFs greater than 1 predict a high affinity to be 
placed in a transmembrane region. The positive values for the 
hydrophobicity MFs demonstrate an increased possibility for 
the specific residue to appear in a transmembrane region. The 
differentiation between transmembrane and 
non-transmembrane regions are further demonstrated using 
amino acid sequence 2ZXW Chain D in Fig. 5. The figure 
outlines 145 amino acid sequence protein and the residues 
from 76 to 99 fall within transmembrane regions. In Fig. 5, 
the residues in the positive waveform area imply 
hydrophobicity and the residues greater than 1 signify 
propensity. The transmembrane region is called ‘AA Chain’ 
in the figure.  

The mutual effect of each of these variables can be further 
analyzed with surface mapping of the input variables in Figs. 
6 and 7. The surface plot of the rule-based fuzzy in Fig. 6 
from Left-to-Right comparison of the propensity input 
variables, show a gradual increase of amino acid residues 
from low propensity to high propensity moving from 
non-transmembrane to transmembrane region. This is 
because the propensity MFs greater than 1 has likelihood to 
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be in the transmembrane region. The surface plot of the 
rule-based fuzzy in Fig. 7 shows the output variables of 
hydrophobicity from negative to positive values, 
demonstrating that amino acid sequence residues changing 
from non-transmembrane to transmembrane segments. An 

ascent from ‘Right_Hydrophobicity’ to 
‘Left_Hydrophobicity’ indicates that the amino acid residues 
are moving from non-transmembrane to transmembrane 
regions.  

 

 
 

Fig. 3. Rule-based Fuzzy Inference System obtained as a result of NN based training. 
 

 
Table 2 outlines 18 randomly selected proteins from 

PDBTM datasets. The prediction rates of these proteins are 
shown for non-transmembrane, transmembrane and the 
overall accuracy using the ANFIS algorithm. The results are 
based on average encoding schemes of hydrophobicity and 
propensity. The average transmembrane protein prediction 
accuracy is 87.28% and the average non-transmembrane 
protein forecast is 64.05%. The overall average prediction 
accuracy is 83.21%. For transmembrane prediction, the 
lowest performance is for the amino acid sequence 3a0h 
(Chain J) of 46.67%, whereas the highest prediction accuracy 
of 100% is obtained for the amino acid sequences 3abk 
(Chain D) and 3abk (Chain G). The ANFIS method therefore 
presents the best outcome for transmembrane prediction 
(87.28%) for the helical sequences. The results are further 
shown in Fig. 8 using bar chart. Fig. 8 demonstrates 
transmembrane domain predictions for the lowest 

performance of the amino acid sequence 3a0h (Chain J) and 
the highest performance of the amino acid sequences 3abk 
(Chain D) and 3abk (Chain G). The overall average forecast 
accuracy is again 83.21% in Fig. 8. 

V.   CONCLUSION 
This paper discusses the applications of a novel ANFIS 

technique to prediction and analysis of membrane 
alpha-helices. The proposed model applies a neural adaptive 
learning technique to provide a method for a Fuzzy Inference 
System (FIS) to analyze a complex dataset of protein 
sequences. Single and multiple transmembrane regions in 
amino acid sequences are differentiated by the ANFIS 
technique by considering the biological and statistical 
characteristics of the proteins. Training and testing dataset of 
1024 global single and multiple transmembrane regions were 
selected from Protein Data Bank (PDBTM) database and 
utilized to optimize the proposed ANFIS model and the 
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computer simulation has been carried out using a customized 
training and testing database of alpha-helix transmembrane 
regions from a diverse range of organisms. The computer 
simulation results using 18 randomly selected proteins reveal 
that the transmembrane protein accuracy of  87.28%  can be  

 
 

 
 

Fig. 4. (a) and (b) are two triangular MFs tuned using the NN based training. 
 
 
 

 
 
 

Fig. 5. To differentiate between transmembrane and non-transmembrane 
regions by hydrophobicity and propensity encodings. 

 
 

 
 
 

Figure 6: Ascent from ‘Left_Propensity’ to ‘Right_Propensity’ indicates the 
amino acid residues moving from non-transmembrane to transmembrane 

regions. 
 

 
obtained using the proposed ANFIS technique. The ANFIS 
methodology matches one of the best performing algorithms 
and  presenting  an  alternative  approach  to  transmembrane 
helix prediction. Further research is required to compare these 
results with other conventional techniques, such as Support 
Vector Machine and Hidden Markov Model using other 
datasets like Swiss-Prot and UniProt. 
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Fig. 7. Ascent from ‘Right_Hydrophobicity’ to ‘Left_Hydrophobicity’ 
indicates that the amino acid residues moving from non-transmembrane to 

transmembrane regions. 
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TABLE II 

RESULTS OF 18 RANDOMLY SELECTED HELICAL SEQUENCES USING ANFIS 
TECHNIQUE 

 
  
 Protein 

  
 Algorithm 

  
 Overall     
 Accuracy 

 
Non-TM 
prediction 
accuracy 
 

 
TM      
 prediction  
 accuracy 

2a06_C ANFIS 73.4417 60.2273 85.4922 

2a06_E ANFIS 86.5591 25 95.679 

2a06_G ANFIS 84.507 52.381 98 

3a0b_A ANFIS 75.4491 52.439 82.9365 

3a0b_B ANFIS 85.9833 67.0455 90.2564 

3a0b_E ANFIS 80.8219 64.2857 84.7458 

3a0h_F ANFIS 58.8235 52.9412 64.7059 

3a0h_H ANFIS 90.7407 92.8571 90 

3a0h_J  ANFIS 70 93.3333 46.6667 

2a79_B ANFIS 81.1861 57.3529 85.0356 

2a79_J ANFIS 81.1861 57.3529 85.0356 

2a79_N ANFIS 81.1861 57.3529 85.0356 

3abk_D ANFIS 97.0803 77.7778 100 

3abk_B ANFIS 90.3226 69.697 94.0217 

3abk_G ANFIS 86.6667 44.4444 100 

3a3y_A ANFIS 83.4971 52.9703 91.0539 

3a3y_B ANFIS 93.5593 80.9524 94.5255 

3a3y_G ANFIS 96.875 94.4444 97.8261 
 
 

Average 83.21587 64.04751 87.27869 

 
 
 

 
 
 

Fig. 8. Bar chart results for 18 randomly selected helical sequences using 
ANFIS network. 
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